
Driver I/O Control (IOCTL) Functions

Revision 2.4 09/25/95 5-1

Chapter 5: Driver I/O Control (IOCTL) Functions

The NetWare operating system or other NetWare Loadable Modules (NLMs) can make IOCTL requests to a driver

to access the driver's standard system or custom IOCTL functions. IOCTL requests reference individual adapter cards,

as opposed to the standard I/O routines that deal with devices attached to the cards. IOCTLs are designed as special calls

to the driver that do not fit in the context of normal read and write I/O requests.

IOCTLPoll

When the OS issues an IOCTL request, the OS calls the driver's IOCTL notification routine (IOCTLPoll) to indicate

to the driver that an IOCTL request has been placed on the adapter's IOCTL queue. (NOTE: This call is made once

and only once for each IOCTL.) Entry to IOCTLPoll occurs at a non-blocking process level (identical to IOPoll). The

driver's IOCTLPoll routine must do one of the following three actions:

1) Elect to postpone processing the IOCTL request. This is done by setting an indicator in the driver's control

structures that an IOCTL is pending (if required), then returning to the caller.

Later, when the OS calls an interrupt service routine (ISR) or a timer exit, the request can be initiated. This

is done by calling GetIOCTL, validating the IOCTL request obtained, starting the requested operation (if any),

then returning to the caller. Upon completion of the function, the driver places the completion status in the

IOCTLRequestStructure, calls PutIOCTL to notify the OS of request completion, then returns to the caller or

point of interrupt. (The driver must not wait in a sense-loop for the function to complete. This would halt all

other processes, including the servicing LAN packets.)

2) Notify the caller that the IOCTL requested is not supported by the driver and was not completed. This is done

by calling GetIOCTL to acquire the IOCTL request, placing "not-supported" status in the completion status

field of the request (see IOCTLRequestStructure and IOCTL completion status below), calling PutIOCTL to

notify the OS, then returning to the caller.

Device Driver Developers' Guide

Revision 2.4 09/25/955-2

3) Accept and initiate the IOCTL request. Call GetIOCTL to obtain the request, then decode the requested

function and sub-function codes. Drivers will normally use the subfunction code as an index into a jump table

containing the standard IOCTL routines that are required to be supported.

If the IOCTL function can be completed immediately, the routine must complete the required action, place the

completion status in the IOCTLRequestStructure, then call PutIOCTL to notify the OS that the request is

completed. Following this, the driver will return to the caller.

If the IOCTL function initiated cannot be completed immediately, but must wait for an interrupt, the driver

must now initiate the action, set indicators in the necessary structures to indicate that the current function is an

IOCTL, and save the IOCTLRequestStructure handle. The driver should then return program control to the

caller. Upon entry to the driver ISR, at the completion of the function, the driver must fill in the completion

status in the IOCTLRequestStructure, then make a PutIOCTL call to notify the IOCTL caller that the requested

function is now complete. The driver may then check to determine if any further I/O requests or IOCTLs can

be issued, and start one, if possible. Finally, the driver must return back to the caller of the driver ISR.

The IOCTLRequestStructure is outlined below:

typedef struct IOCTLRequestStructure

{

LONG DriverLink;

CardStruct *CardHandle;

WORD CompletionCode;

BYTE Function;

BYTE SubFunction;

LONG IOCTLParameter;

LONG *IOCTLBuffer;

} IOCTLRequestStruct;

Figure 5-1 The IOCTL Request Structure

Driver I/O Control (IOCTL) Functions

Revision 2.4 09/25/95 5-3

Each field in the IOCTL Request structure is defined below:

DriverLink This field is used only by the driver. It can be used to link the outstanding IOCTL requests

at the driver level. This field has no effect in NetWare v3.xx, v4.xx.

CardHandle This field contains a card handle. This is the same value that AddDiskSystem returned

during initialization. The field is not valid until after the IOCTL has been acquired

using a GetIOCTL.

CompletionCode The driver fills in this field before returning the IOCTL request structure to the

application or NetWare. The possible completion codes are defined in Figure 5-2

below.

Function This field specifies the target IOCTL routine. These routines are explained in the next

section.

SubFunction This field specifies the target subfunction relative to the target IOCTL function.

Subfunctions are explained in the next section.

IOCTLParameter This field is often used to specify the target device or disk. This is the same value as

that returned by AddDiskDevice. Other values could also be passed in this field as

needed. When not used, this parameter should be zero.

IOCTLBuffer This field has variable usage. It sometimes contains request information and other

times a pointer to a buffer containing request information. When not used, this

parameter should be zero. See the specific IOCTL calls listed below for more

information.

Device Driver Developers' Guide

Revision 2.4 09/25/955-4

IOCTL Request Return Status

Drivers use the CompletionCode field in the IOCTLRequestStructure to return a completion or device status to the

calling application. The status returned is a two byte code. The general set of status codes and their definitions are

listed below. Valid codes for individual IOCTLs are listed in their specific definitions. In general, all IOCTLs

should be completed and returned with a "No Error" status unless 1) the hardware has malfunctioned, 2) the

IOCTL is state dependent and the driver/device is in an erroneous state, or 3) the IOCTL requires a status code to

be returned to an application. (In the last case, the IOCTL should be completed and returned with the status code.)

Completion/Device Status returned to the calling application

No Error 0000h

Non-Media Error 0003h

Device Not Active 0004h

Adapter Card Error 0005h

Device Parameter Error 0006h

System Parameter Error 0007h

Not Supported By Device 0008h

Device Fault 0103h

No Media Present 0703h

Media Write Protected 0803h

Magazine Not Present 0F09h

Changer Error 1009h

Changer Source Empty 1109h

Changer Destination Full 1209h

Changer Jammed 1303h

Magazine Error 1409h

Magazine Source Empty 1509h

Magazine Destination Full 1609h

Magazine Jammed 1703h

Driver Custom Status E0xxh - FExxh

Not Supported By Driver FFF9h

Figure 5-2 IOCTL Request Return Status

Driver I/O Control (IOCTL) Functions

Revision 2.4 09/25/95 5-5

Request Completion Status Codes:

No Error The request was completed successfully.

Non-Media Error The request was not completed successfully because an unspecified error

has occurred.

Device Not Active The device has been de-activated and is no longer functional.

Adapter Error The driver has detected a host bus adapter failure.

Device Parameter Error The device has detected an error in a parameter supplied by the caller.

System Parameter Error The OS or driver has detected an error in a parameter supplied by the caller.

Not Supported By Device The device does not support the requested function.

Device Fault The device has failed and is no longer functional.

No Media Present No media is present in the device.

Media Write Protected The media is present but is write-protected.

No Magazine Present No magazine is present in the device.

Changer Error An unspecified media changer error has occurred.

Changer Source Empty There is no media present in the changer source location specified in the

IOCTL.

Changer Destination Full There is media present in the changer destination location specified in the

IOCTL.

Changer Jammed The media changer mechanism is jammed.

Not Supported by Driver The driver does not support this function, and the request has been

ignored.

Magazine Error An unspecified media magazine error has occurred.

Magazine Source Empty There is no media present in the magazine source location specified in the

IOCTL.

Magazine Destination Full There is media present in the magazine destination location specified in

the IOCTL.

Magazine Jammed The media magazine mechanism is jammed.

Driver Custom Status These codes are available for drivers to use to return special or custom

status to associated NLMs. Use of these codes will prevent the driver

Device Driver Developers' Guide

Revision 2.4 09/25/955-6

from working with other NLMs which are not aware of the custom codes

designated by the driver.

Not Supported by Driver The driver does not support this function, and the request has been

ignored.

Driver I/O Control (IOCTL) Functions

Revision 2.4 09/25/95 5-7

Using GetIOCTL

The driver must "acquire" all (queued) IOCTL requests using the NetWare routine GetIOCTL. GetIOCTL is passed

the CardHandle and a pointer to an IOCTLRequestStructure (or zero) and returns a pointer to an

IOCTLRequestStructure that the driver may service. If the driver needs to retrieve a particular request, it can pass a

pointer to that request in the nextRequest parameter (see Figure 5-3). GetIOCTL will return the same pointer, and

the driver can then proceed with servicing the request. If the driver simply wants whichever request is next, it passes

a 0 in the nextRequest parameter. GetIOCTL then returns a pointer to the next request. If GetIOCTL returns a

pointer value of zero, no IOCTL request was "acquired" or available.

IOCTLRequestStruct *GetIOCTL(

CardStruct *CardHandle,

IOCTLRequestStruct *IOCTLRequest);

Figure 5-3 GetIOCTL Syntax

To service an IOCTL request after having acquired it, the IOCTLPoll routine examines the IOCTL request

structure's function field and responds by calling the appropriate function and passing it the IOCTL request.

After completing the function requested, all IOCTL requests must be returned to the OS. The OS has provided the

PutIOCTL routine for this purpose.

Device Driver Developers' Guide

Revision 2.4 09/25/955-8

IOCTLPoll

The IOCTLPoll routine services IOCTL requests from NetWare or other

loadable modules.

Syntax

void IOCTLPoll(

CardStruct *CardHandle,

IOCTLRequestStruct *IOCTLRequest)

Return Values

None

Parameters

CardHandle Passes a pointer to the adapter card's card structure.

IOCTLRequest Passes a pointer to an IOCTLRequestStructure.

Remarks

The name of the IOCTLPoll routine is arbitrary. When the driver's InitializeDriver routine

calls the NetWare routine AddDiskSystem, the InitializeDriver routine passes the address

of the IOCTL Poll routine to NetWare.

Driver I/O Control (IOCTL) Functions

Revision 2.4 09/25/95 5-9

IOCTLPoll Routine

IOCTLPoll(

CardStruct *CardHandle,

IOCTLRequestStruct *IOCTLRequest)

{

IOCTLRequestStruct *NewRequest;

if (CardHandle -> status == BUSY)

{

++IOCTLRequestCount; /*Reminder that this request */

return; /*needs to be serviced later. */

}

while (NewRequest = GetIOCTL(CardHandle, 0))

{

/* Check the structure's IOCTLParameter field */

switch (NewRequest->SubFunction)

{

case ACTIVATEDEVICE:

.

.

.

break;

case DEACTIVATEDEVICE:

.

.

.

break;

default:

NewRequest->CompletionCode = NOT_SUPPORTED;

}

/* Note: PutIOCTL() must be called at some point following a call to

GetIOCTL(), but it may be called from another function (for

instance, while waiting for completion of an IOCTL). In this

case, PutIOCTL must NOT be called at this point.

*/

if (CardHandle -> status == BUSY)

return;

PutIOCTL(CardHandle, NewRequest);

} /* end of while (...) */

} /* end of IOCTLPoll */

Device Driver Developers' Guide

Revision 2.4 09/25/955-10

Standard IOCTL Functions

As explained in the previous section, individual IOCTL requests are specified by the function and sub-function

fields in the IOCTLRequestStructure.

(Note: All IOCTLs supported in the NetWare v3.11 specification are still supported in NetWare v3.1x/v4.xx;

however, some IOCTLs that were defined but never implemented have been removed or reassigned to

other function and subfunction numbers. When writing new drivers or updating previous drivers, Novell

recommends using IOCTLs as now defined in the NetWare v3.1x/v4.xx specification.)

Function Sub-Function

0 0 Activate Device

1 Deactivate Device

2 Format

3 Device Verify Mode

4 Identify Device

5 Return Bad-Block Info

6 Return Device Status

7 Logical Device Mount

8 Logical Device Dismount

9 Lock Device Media

10 Unlock Device Media

11 Eject Media

1 0 ReturnDeviceInfo (see old v3.11 func.0, subfunc.17)

1 ReturnMediaInfo (see old v3.11 func.0, subfunc.18)

2 SetDeviceParameters (see old v3.11 func.0, subfunc.19)

3 ReturnTapeDeviceInfo

2 0 ReturnMagazineInfo

1 (not assigned)

2 ReturnMagazineMediaMapping

3 MagazineSelectCommand

4 MagazineDeselectCommand

5 MagazineLoad

6 MagazineUnload

7 MagazineEject

3 0 ReturnChangerInfo

1 ReturnChangerDeviceMapping

2 ReturnChangerMediaMapping

3 ChangerCommand

4-63 Reserved by Novell

64-255 IOCTLs for third party use. Assigned by Novell

IOCTL Functions deleted from the new specification

0 12 Return Changer Element count

13 Return Changer Element Info

14 Changer command

15 Select Media

16 Unselect Media

Figure 5-4 v3.1x/v4.xx IOCTL (I/O Control) Routine Assignments

Driver I/O Control (IOCTL) Functions

Revision 2.4 09/25/95 5-11

Function Sub-Function

0 0 Activate Device

1 Deactivate Device

2 Format

3 Device Verify Mode

4 Identify Device

5 Return Bad-Block Info

6 Return Device Status

7 Logical Device Mount

8 Logical Device Dismount

9 Lock Device Media

10 Unlock Device Media

11 Eject Media

12 Return Changer Element count *

13 Return Changer Element Info *

14 Changer command *

15 Select Media *

16 Unselect Media *

17 ReturnDeviceInfo (see 3.1x/v4.xx func.1, subfunc.0) *

18 ReturnMediaInfo (see 3.1x/v4.xx func.1, subfunc.1) *

19 SetDeviceParameters (see 3.1x/v4.xx func.1, subfunc.2) *

1-63 Reserved by Novell

64-255 IOCTLs for third party use. Assigned by Novell

* These IOCTLs are defined in later versions of the 3.11 specification but are never issued by the NetWare 3.11 OS.

Figure 5-5 Old v3.11 IOCTL (I/O Control) Routine Assignments

Novell has reserved IOCTL functions 4 through 63. IOCTLs 64 and up will be assigned by Novell to developers

(Novell assigns certified drivers a Driver ID number. If another loadable module needs the driver to perform a

special IOCTL service, this value could be used as a function number in the IOCTLPoll procedure).

Device Driver Developers' Guide

Revision 2.4 09/25/955-12

Activate Device (Mandatory) Function: 0

Sub-function: 0

This IOCTL directs the driver to activate a mounted device. The driver should return a "No Error"

CompletionCode if the device is powered up and fully operational. This call may cause a previously deactivated

device to be re-activated, provided that the device is now functional (the driver must recognize this call for

previously deactivated drives). The driver must verify that media is present for removable devices.

Allowed CompletionCode values (in IOCTLRequestStructure):

0000h No Error

0003h Non-Media Error

0005h Adapter Card Error

0006h Device Parameter Error

0007h System Parameter Error

0103h Device Fault

0703h No Media Present

IOCTL Request Structure Fields

LONG DriverLink Driver specific usage.

CardStruct *CardHandle Contains the card handle returned by AddDiskSystem.

WORD CompletionCode The driver fills this field with a completion status.

BYTE Function Contains a value of 0.

BYTE SubFunction Contains a value of 0.

LONG IOCTLParameter Contains the device handle returned by AddDiskDevice.

LONG *IOCTLBuffer Not used.

Driver I/O Control (IOCTL) Functions

Revision 2.4 09/25/95 5-13

Deactivate Device (Mandatory) Function: 0

Sub-function: 1

The Deactivate Device IOCTL notifies the driver that a device has been deactivated by NetWare, resulting from

a hardware error, HotFix error, or user request. When a device is deactivated, the driver must return all

requests previously obtained (using a GetRequest) but not completed. This is done using PutRequest and a

"Device Not Active" completion code.

In NetWare v4.xx and NetWare v3.12 all pending requests are removed from the queue and returned with a

"Device Not Active" status code by the OS. (These are requests that were not obtained by the driver using

GetRequest.)

In NetWare v3.11, the driver must initiate the removal of the requests from the queue. This is done in one of

two ways:

1) by putting a request back using PutRequest and a "Non-Media Error" completion code. This may require

the driver to first obtain a request using GetRequest. (This method has the undesirable side effect of issuing

a drive failure deactivation message to the console.)

2) by getting all the request from the queue using GetRequest and putting them back using PutRequest and a

"Device Not Active" return code. (GetRequest will return a NULL request handle when the queue is

empty.)

The driver should respond to any subsequent calls to the IOPoll routine by obtaining the request (using

GetRequest) and returning it (using PutRequest) with the "Device Not Active" completion code. This

procedure should be continued until an Activate Device IOCTL is received.

The device structure is not removed from the OS. The driver may make AlertDevice calls to the OS to indicate

further status changes to the device. An "Activate" IOCTL may change the device to "Active" status provided

that the device can resume normal function (the driver must return "No Error" status).

Possible Completion Codes (in IOCTLRequestStructure):

0000h No Error

0006h Device Parameter Error

0007h System Parameter Error

IOCTL Request Structure Fields

LONG DriverLink Driver specific usage.

CardStruct *CardHandle Contains the card handle returned by AddDiskSystem.

WORD CompletionCode The driver fills this field with a completion status.

BYTE Function Contains a value of 0.

BYTE SubFunction Contains a value of 1.

LONG IOCTLParameter Contains the device handle returned by AddDiskDevice.

LONG *IOCTLBuffer Not used.

The OS makes a "Deactivate" call to all registered devices prior to completing a "down" command.

Device Driver Developers' Guide

Revision 2.4 09/25/955-14

Format Device (Optional) Function: 0

Sub-function: 2

This IOCTL directs the driver to format the device. The format IOCTL should have been preceded by a

"Return Device Status" IOCTL (allows removables to redefine drive geometry, access flags, and other related

indicators). The driver must keep a format-busy indicator for each device, and either return "Device Not

Active" status or postpone servicing all IOCTL and I/O requests until the format operation is completed.

Possible Completion Codes (in IOCTLRequestStructure):

0000h No Error

0003h Non-Media Error

0005h Adapter Card Error

0006h Device Parameter Error

0007h System Parameter Error

0008h Not Supported By Device

0103h Device Fault

0703h No Media Present

0803h Media Write Protected

FFF9h Not Supported By Driver

IOCTL Request Structure Fields

LONG DriverLink Driver specific usage.

CardStruct *CardHandle Contains the card handle returned by AddDiskSystem.

WORD CompletionCode The driver fills this field with a completion status.

BYTE Function Contains a value of 0.

BYTE SubFunction Contains a value of 2.

LONG IOCTLParameter Contains the device handle returned by AddDiskDevice.

LONG IOCTLBuffer This field is initially supplied by the caller, and indicates the interleave factor to

be used in formatting the drive (0=default, 1=1:1, 2=1:2, 3=1:3, etc). The driver

will return the actual interleave factor used in this field. This field is used only for

interleave factors. Drivers for devices which require special interleave tables to be

given to the controller or drive must generate the corresponding tables internally.

Driver I/O Control (IOCTL) Functions

Revision 2.4 09/25/95 5-15

Device Verify Mode (Mandatory for Read/Write Devices) Function: 0

Sub-function: 3

This IOCTL directs the driver to set or return the status of the device's current read-after-write-verify mode.

During initialization the driver must use the GetReadAfterWriteVerifyStatus call to obtain the default system

Read-After-Write Verify mode (On or Off) and then set the mode of all supported devices accordingly. The

use of software in place of hardware verification and vise versa is discretionary.

Possible Completion Codes (in IOCTLRequestStructure):

0000h No Error

0006h Device Parameter Error

0007h System Parameter Error

0008h Not Supported By Device

FFF9h Not Supported By Driver

IOCTL Request Structure Fields

LONG DriverLink Driver specific usage.

CardStruct *CardHandle Contains the card handle returned by AddDiskSystem.

WORD CompletionCode The driver fills this field with a completion status.

BYTE Function Contains a value of 0.

BYTE SubFunction Contains a value of 3.

LONG IOCTLParameter Contains the device handle returned by AddDiskDevice.

LONG *IOCTLBuffer Points to a buffer (size LONG) containing one of the following values:

 0 Do not verify writes on this device

 1 Perform write verification with hardware

 2 Perform write verification with software

 3 Return current device verify mode (no change)

Note: The driver must return the actual mode set for the device in this buffer location, which may differ from

the mode initially supplied by the IOCTL caller.

Device Driver Developers' Guide

Revision 2.4 09/25/955-16

Identify Device (Optional) Function: 0

Sub-function: 4

This IOCTL directs the driver to identify a device by causing it to beep or flash its select light.

Possible Completion Codes (in IOCTLRequestStructure):

0000h No Error

0003h Non-Media Error

0006h Device Parameter Error

0007h System Parameter Error

0008h Not Supported By Device

FFF9h Not Supported By Driver

IOCTL Request Structure Fields

LONG DriverLink Driver specific usage.

CardStruct *CardHandle Contains the card handle returned by AddDiskSystem.

WORD CompletionCode The driver fills this field with a completion status.

BYTE Function Contains a value of 0.

BYTE SubFunction Contains a value of 4.

LONG IOCTLParameter Contains the device handle returned by AddDiskDevice.

LONG *IOCTLBuffer Points to a buffer containing one of the following values:

 0 Start Identifying

 1 Stop Identifying

 2 Identify once

 3 Return current identification mode in buffer (mode set by previous

identify status call in this location)

Note: The driver must return the identification mode set for the device in this same buffer location for option 3.

Drivers supporting this IOCTL should retain the current identify mode in a dedicated field, and initialize the

field to a value of 1.

Driver I/O Control (IOCTL) Functions

Revision 2.4 09/25/95 5-17

Return Bad Block Info (Optional) Function: 0

Sub-function: 5

This IOCTL directs the driver to returns bad block information used by HotFix when initializing a partition.

Parameters are listed below.

Possible Completion Codes (in IOCTLRequestStructure):

0000h No Error

0003h Non-Media Error

0006h Device Parameter Error

0007h System Parameter Error

0008h Not Supported By Device

0703h No Media Present

FFF9h Not Supported By Driver

IOCTL Request Structure Fields

LONG DriverLink Driver specific usage.

CardStruct *CardHandle Contains the card handle returned by AddDiskSystem.

WORD CompletionCode The driver fills this field with a completion status.

BYTE Function Contains a value of 0.

BYTE SubFunction Contains a value of 5.

LONG IOCTLParameter Contains the device handle returned by AddDiskDevice.

LONG *IOCTLBuffer Points to a buffer containing the information as defined in the structure

bbinfostruct (shown below):

struct bbinfostruct

 {

 LONG badblockcount /*set by caller*/

 LONG beginningsequencenumber /*set by caller*/

 LONG endingsequencenumber /*set by driver*/

 struct bbstruct badblocks[badblockcount];

 }

struct bbstruct

 {

LONG physicalsectornumber;

LONG numberofsectors;

 };

Since the calling application cannot make any assumptions about the amount of bad block information returned

by the driver, this IOCTL should be called in a recursive manner with updated "beginningsequencenumber" to

obtain all bad block information.

Prior to making this IOCTL call, the calling application allocates memory for a bbinfostruct that will receive bad

block information, sets the "badblockcount" field to indicate the size of the "badblocks" field, and initializes the

beginning sequence number to zero.

Device Driver Developers' Guide

Revision 2.4 09/25/955-18

The driver uses the "badblockcount" field to determine the number of bad blocks it can return. The

"beginningsequencenumber" field tells the driver where to begin indexing into its bad block table. The driver

fills the "badblocks" array with bad block information and updates the "endingsequencenumber" with the index

for the next set of bad block information.

If the IOCTL returns with a "No Error" completion code, the calling application can determine the amount of

bad block information returned by subtracting the "beginningsequencenumber" from the

"endingsequencenumber". It can then process the valid entries in the "badblocks" field. If the "badblocks" array

is full, the driver can obtain additional bad block information by copying the contents of the

"endingsequencenumber" field into the "beginningsequencenumber" field and reissuing the IOCTL.

Driver I/O Control (IOCTL) Functions

Revision 2.4 09/25/95 5-19

Return Device Status (Mandatory for Removables) Function: 0

Sub-function: 6

This IOCTL directs the driver to return general status of a device. It is issued after a "Logical Device Mount"

IOCTL to update NetWare device information (for removable media). Please note that it is not valid to change

some restricted items, such as the drive type, or the access flags with the following exception: If the media is no

longer writable, (i.e. the write-protect tab has been set on media in a MO unit, or the media of a WORM device

has run out of space) the ReadOnlyDevice AccessFlag should be set.

Possible Completion Codes (in IOCTLRequestStructure):

0000h No Error

0003h Non-Media Error

0006h Device Parameter Error

0007h System Parameter Error

0008h Not Supported By Device

0703h No Media Present

FFF9h Not Supported By Driver

IOCTL Request Structure Fields

LONG DriverLink Driver specific usage.

CardStruct *CardHandle Contains the card handle returned by AddDiskSystem.

WORD CompletionCode The driver fills this field with a completion status.

BYTE Function Contains a value of 0.

BYTE SubFunction Contains a value of 6.

LONG IOCTLParameter Contains the device handle returned by AddDiskDevice.

LONG *IOCTLBuffer Points to a structure the driver must fill with information in the following format:

Buffer Structure

LONG Reserved0

LONG Reserved1

LONG DriveTotalSize

LONG DriveParameters

LONG DriveSizes

LONG EstFormatTime

LONG Reserved2[6]

Device Driver Developers' Guide

Revision 2.4 09/25/955-20

The fields in the buffer structure are defined as follows:

DriveTotalSize The useable sector capacity of the physical device or media (if removeable). The

sector size is as reported in the SectorSize field. For writeable media this value should

be rounded down to a cylinder boundary (using the device geometry as reported

below), since all partitions must begin and end on cylinder boundaries. For read-only

media (CDROM) this value should be reported with no modifications. For sequencial

access devices, if the capacity is unknown, this field should be set to a -2.

DriveParameters For sequencial access devices, this field should be set to a -1. For all other devices,

this field includes the following drive parameter fields:

db SectorCount (lsb)

db HeadCount

dw CylinderCount (msw)

SectorCount is the device's sectors per track.

HeadCount is the device's number of heads.

CylinderCount is the number of cylinders on the device. For writeable media the

SectorCount and HeadCount parameters are used by the partition editor to determine

the partition boundaries and are required to match the geometry of other partitions on

the drive. For read-only media, if the device capacity does not fall on a cylinder

boundary, the count should be incremented to include the partial cylinder. (See

DriveTotalSize.)

DriveSizes Information about the drive size. It includes the following bytes:

 db AccessFlags (lsb)

 db DriveType

 db BlockSize

 db SectorSize (msb)

AccessFlags indicates special device or access characteristics to be used with the

device:

RemovableDevice 01h

ReadOnlyDevice 02h

WriteSequential 04h

ChangerDevice 10h *

MagazineDevice 20h *

* v3.12 & v4.xx only

RemovableDevice indicates that the device exists even if it is not currently ready or

doesn't have valid media present. It also implies that the media geometry may be re-

defined when a change of media occurs (determined by this IOCTL call).

Driver I/O Control (IOCTL) Functions

Revision 2.4 09/25/95 5-21

ReadOnlyDevice indicates to the OS that no write calls should be issued to this

device. (NetWare volumes are only supported for Read-Only devices with v3.11 and

later versions).

WriteSequential indicates to the OS that the device is sequential and that writes will

be done in the sequence they are issued to the device (random reads may be simulated

with sequential devices).

ChangerDevice indicates to the OS that a Read/Write device associated with an

autochanger is being added to the system. If this flag is set, the NetWare 4.xx or 3.12

OS will subsequently issue the appropriate IOCTLs in order to obtain the autochanger

configuration.

MagazineDevice indicates to the OS that a Read/Write device associated with a

magazine is being added to the system. If this flag is set, the NetWare 4.xx or 3.12

OS will subsequently issue the appropriate IOCTLs in order to obtain the magazine

configuration.

The DriveType is defined as follows:

0 Hard disk

1 CD-ROM Device *

2 WORM Device *

3 Tape Device *

4 Magneto-Optical (MO) Device

* Note: NetWare volumes are not currently supported on these device types

BlockSize is the maximum I/O request blocksize that may be issued to the device

driver.

Example (assume actual sector size = 512):

0 - 1 sector (512) 4 - 16 sectors (8K)

1 - 2 sectors (1K) 5 - 32 sectors (16K)

2 - 4 sectors (2K) 6 - 64 sectors (32K)

3 - 8 sectors (4K) 7 - 128 sectors (64K)

SectorSize:

The value inserted for SectorSize is actually a shift factor. The shift factor is used as

the exponent in the following formula:

512 * 2 = Actual Sector Size(sectorSize)

Currently, for devices that support NetWare volumes this must be a value of 0 which

calculates to a sector size of 512. The NetWare File System only supports 512-byte

sectors, and requests generated by it will be in sectors of that size. Drivers that

support devices with native sector sizes other than 512 are required to make the

appropriate sector translations for these requests. This restriction may be ignored for

devices that bypass the NetWare File System.

EstFormatTime Driver estimated time to format media, in minutes (zero if undetermined).

Device Driver Developers' Guide

Revision 2.4 09/25/955-22

Logical Device Mount (Mandatory for Removables) Function: 0

Sub-function: 7

This IOCTL directs the driver to confirm the presence of valid media in the device and its operability (mounts

the media).

Possible Completion Codes (in IOCTLRequestStructure):

0000h No Error

0003h Non-Media Error

0006h Device Parameter Error

0007h System Parameter Error

0008h Not Supported By Device

0703h No Media Present

FFF9h Not Supported By Driver

IOCTL Request Structure Fields

LONG DriverLink Driver specific usage.

CardStruct *CardHandle Contains the card handle returned by AddDiskSystem.

WORD CompletionCode The driver fills this field with a completion status.

BYTE Function Contains a value of 0.

BYTE SubFunction Contains a value of 7.

LONG IOCTLParameter Contains the device handle returned by AddDiskDevice.

LONG *IOCTLBuffer Not used.

Driver I/O Control (IOCTL) Functions

Revision 2.4 09/25/95 5-23

Logical Device Dismount (Mandatory for Removables) Function: 0

Sub-function: 8

This IOCTL is a notification from the Operating System that the media mounted will no longer be referenced

(logically dismounts the media on a removable device). It directs the driver to unlock the media but not eject it.

Possible Completion Codes (in IOCTLRequestStructure):

0000h No Error

0006h Device Parameter Error

0007h System Parameter Error

0008h Not Supported By Device

FFF9h Not Supported By Driver

IOCTL Request Structure Fields

LONG DriverLink Driver specific usage.

CardStruct *CardHandle Contains the card handle returned by AddDiskSystem.

WORD CompletionCode The driver fills this field with a completion status.

BYTE Function Contains a value of 0.

BYTE SubFunction Contains a value of 8.

LONG IOCTLParameter Contains the device handle returned by AddDiskDevice.

LONG *IOCTLBuffer Not used.

Device Driver Developers' Guide

Revision 2.4 09/25/955-24

Lock Device Media (Optional) Function: 0

Sub-function: 9

This IOCTL directs the driver to physically lock the media in the removable device so that it cannot be manually

ejected.

Possible Completion Codes (in IOCTLRequestStructure):

0000h No Error

0003h Non-Media Error

0006h Device Parameter Error

0007h System Parameter Error

0008h Not Supported By Device

0703h No Media Present

FFF9h Not Supported By Driver

IOCTL Request Structure Fields

LONG DriverLink Driver specific usage.

CardStruct *CardHandle Contains the card handle returned by AddDiskSystem.

WORD CompletionCode The driver fills this field with a completion status.

BYTE Function Contains a value of 0.

BYTE SubFunction Contains a value of 9.

LONG IOCTLParameter Contains the device handle returned by AddDiskDevice.

LONG *IOCTLBuffer Not used.

Driver I/O Control (IOCTL) Functions

Revision 2.4 09/25/95 5-25

Unlock Device Media (Optional) Function: 0

Sub-function: 10

This IOCTL directs the driver to physically unlock the media on a mounted removable device so that it may be

ejected or removed.

Possible Completion Codes (in IOCTLRequestStructure):

0000h No Error

0003h Non-Media Error

0006h Device Parameter Error

0007h System Parameter Error

0008h Not Supported By Device

FFF9h Not Supported By Driver

IOCTL Request Structure Fields

LONG DriverLink Driver specific usage.

CardStruct *CardHandle Contains the card handle returned by AddDiskSystem.

WORD CompletionCode The driver fills this field with a completion status.

BYTE Function Contains a value of 0.

BYTE SubFunction Contains a value of 10.

LONG IOCTLParameter Contains the device handle returned by AddDiskDevice.

LONG *IOCTLBuffer Not used.

Device Driver Developers' Guide

Revision 2.4 09/25/955-26

Eject Media (Optional) Function: 0

Sub-function: 11

This IOCTL directs the driver to eject the media in a removable device. This function will override a lock. This

call is illegal for a device embedded within a autochanger (see the "Changer Command" IOCTL).

Possible Completion Codes (in IOCTLRequestStructure):

0000h No Error

0003h Non-Media Error

0006h Device Parameter Error

0007h System Parameter Error

0008h Not Supported By Device

0703h No Media Present

FFF9h Not Supported By Driver

IOCTL Request Structure Fields

LONG DriverLink Driver specific usage.

CardStruct *CardHandle Contains the card handle returned by AddDiskSystem.

WORD CompletionCode The driver fills this field with a completion status.

BYTE Function Contains a value of 0.

BYTE SubFunction Contains a value of 11.

LONG IOCTLParameter Contains the device handle returned by AddDiskDevice.

LONG *IOCTLBuffer Not used.

Driver I/O Control (IOCTL) Functions

Revision 2.4 09/25/95 5-27

Return Device Info (Mandatory for Removables) Function: 1

(Recommended for all other device types) Sub-function: 0

This IOCTL directs the driver to return additional information about the device. For removable devices, this

IOCTL should be filled out to the extent possible and returned with “No Error”, even if there is no media

present.

Possible Completion Codes (in IOCTLRequestStructure):

0000h No Error

0003h Non-Media Error

0008h Not Supported By Device

FFF9h Not Supported By Driver

IOCTL Request Structure Fields

LONG DriverLink Driver specific usage.

CardStruct *CardHandle Contains the card handle returned by AddDiskSystem.

WORD CompletionCode The driver fills this field with a completion status.

BYTE Function Contains a value of 1.

BYTE SubFunction Contains a value of 0.

LONG IOCTLParameter Contains the device handle returned by AddDiskDevice.

LONG *IOCTLBuffer Points to a structure the driver must fill with information in the following format:

Bytes Field Description

4 device type Indicates the device type.

disk 0x00000000

tape 0x00000001

printer 0x00000002

WORM 0x00000004

CDROM 0x00000005

magneto optical 0x00000007

changer 0x00000008

multiple 0x00000009

4 device type Bit map indicating the device functionality supported by the device.

mask

disk 0x00000001

tape 0x00000002

printer 0x00000004

WORM 0x00000010

CDROM 0x00000020

magneto optical 0x00000080

changer 0x00000100

Device Driver Developers' Guide

Revision 2.4 09/25/955-28

4 media Indicates the type of cartridge/magazine that the device can use. The

cartridge definition may be expanded by Novell to accommodate new classes of media.

If unknown, this field should be set to a -2

fixed media 0x00000000

5.25 in floppy 0x00000001

3.5 in floppy 0x00000002

5.25 in optical 0x00000003

3.5 in optical 0x00000004

.5 in tape 0x00000005

.25 in tape 0x00000006

8 mm tape 0x00000007

4 mm tape 0x00000008

Bernoulli disk 0x00000009

12 in optical 0x0000000A

4 function Indicates the type of I/O access functions supported on the device.

mask

random read 0x00000001

random write 0x00000002

random write once 0x00000004

sequential read 0x00000008

sequential write 0x00000010

reset end of media 0x00000020

single file marks 0x00000040

consecutive file marks 0x00000080

single set marks 0x00000100

consecutive set marks 0x00000200

relative data blocks 0x00000400

absolute data blocks 0x00000800

sequential partition operations 0x00001000

physical media operations 0x00002000

random erase 0x00004000

4 control mask Indicates the type of I/O control functions (IOCTLs) that can be issued to this

device.

Func. SubFunc.

activate/deactivate 0x00000001 0 0, 1

mount/dismount 0x00000002 0 7, 8

select/unselect 0x00000004 2 3, 4

lock/unlock 0x00000008 0 9, 10

eject 0x00000010 0 11

move media 0x00000020 3 3

magazine support 0x00000040 2 0 - 7

changer support 0x00000080 3 0 - 3

Driver I/O Control (IOCTL) Functions

Revision 2.4 09/25/95 5-29

4 data transfer Indicates the current transfer unit size (sector size) of the device in bytes.

unit size Currently, the NetWare File System only supports 512 byte sectors.

Devices that contain mountable NetWare volumes must return a value of 512

in this field. This restriction may be ignored for devices that bypass the

NetWare File System. If unknown, this field should be set to a -2

4 maximum Indicates the maximum number of transfer units that can be specified in a

transfer size single command. If unknown, this field should be set to a -2.

4 capacity in Indicates the capacity of the device in units defined in the "data transfer

unit size unit size" field. If unknown, this field should be set to a -2.

4 preferred Indicates the preferred (native) transfer unit size (sector size) of the

unit size device in in bytes. If the value in this field differs from that in the "data

transfer unit size", the device driver is required to make the appropriate sector

translations on all requests received. If unknown, this field should be set to a

-2

64 reserved Reserved by NetWare.

Device Driver Developers' Guide

Revision 2.4 09/25/955-30

Return Media Info (Mandatory for Removables) Function: 1

(Recommended for all other device types) Sub-function: 1

This IOCTL directs the driver to return additional information about the media in the device.

Possible Completion Codes (in IOCTLRequestStructure):

0000h No Error

0003h Non-Media Error

0008h Not Supported By Device

0703h No Media Present

FFF9h Not Supported By Driver

IOCTL Request Structure Fields

LONG DriverLink Driver specific usage.

CardStruct *CardHandle Contains the card handle returned by AddDiskSystem.

WORD CompletionCode The driver fills this field with a completion status.

BYTE Function Contains a value of 1.

BYTE SubFunction Contains a value of 1.

LONG IOCTLParameter Contains the device handle returned by AddDiskDevice.

LONG *IOCTLBuffer Points to a structure the driver must fill with information in the following format:

Bytes Field Description

4 media type This field indicates the media type.

disk 0x00000000

tape 0x00000001

printer 0x00000002

WORM 0x00000004

CDROM 0x00000005

magneto optical 0x00000007

4 media type This field is a bit map indicating the type media supported by the device.

mask

disk 0x00000001

tape 0x00000002

printer 0x00000004

WORM 0x00000010

CDROM 0x00000020

magneto optical 0x00000080

Driver I/O Control (IOCTL) Functions

Revision 2.4 09/25/95 5-31

4 media This field indicates the type of cartridge/magazine that the device can use.

cartridge The definition may be expanded by Novell to accommodate new classes of media. If

unknown, this field should be set to a -2

fixed media 0x00000000

5.25 in floppy 0x00000001

3.5 in floppy 0x00000002

5.25 in optical 0x00000003

3.5 in optical 0x00000004

.5 in tape 0x00000005

.25 in tape 0x00000006

8 mm tape 0x00000007

4 mm tape 0x00000008

Bernoulli disk 0x00000009

12 in optical 0x0000000A

4 function This field indicates the type of I/O access functions supported on the

mask device.

random read 0x00000001

random write 0x00000002

random write once 0x00000004

sequential read 0x00000008

sequential write 0x00000010

reset end of media 0x00000020

single file marks 0x00000040

consecutive file marks 0x00000080

single set marks 0x00000100

consecutive set marks 0x00000200

relative data blocks 0x00000400

absolute data blocks 0x00000800

sequential partition operations 0x00001000

physical media operations 0x00002000

random erase 0x00004000

4 control mask This field indicates the type of I/O control functions (IOCTLs) that can be

issued to this device.

Func. SubFunc.

activate/deactivate 0x00000001 0 0, 1

mount/dismount 0x00000002 0 7, 8

select/unselect 0x00000004 2 3, 4

lock/unlock 0x00000008 0 9, 10

eject 0x00000010 0 11

move media 0x00000020 3 3

Device Driver Developers' Guide

Revision 2.4 09/25/955-32

4 data transfer This field indicates the current transfer unit size (sector size) used to

unit size record data on the "unit"-size media in bytes. Currently, the NetWare File

System only supports 512 byte sectors. Devices that contain mountable

NetWare volumes must return a value of 512 in this field. This restriction

may be ignored for devices that bypass the NetWare File System.

4 maximum This field indicates the maximum number of transfer units that can be

transfer size specified in a single command.

4 capacity in Indicates the capacity of the media in units defined in the "data transfer

 unit size unit size" field. If unknown, this field should be set to a -2.

4 preferred Indicates the preferred (native) transfer unit size (sector size) of the media

unit size in bytes. If the value in this field differs from that in the "data transfer unit

size", the device driver is required to make the appropriate sector translations

on all requests received.

4 media A value of one (1) in this field indicates that the media has not been

formatting formatted and requires formatting before data can be written to it. A value of

zero (0) indicates that the media is formatted.

64 reserved Reserved by NetWare.

Driver I/O Control (IOCTL) Functions

Revision 2.4 09/25/95 5-33

Set Device Parameters (Mandatory for Tape Drives) Function: 1

(Recommended for all other device types) Sub-function: 2

This IOCTL directs the driver to set the device configuration options. A single parameter is set with each call.

Possible Completion Codes (in IOCTLRequestStructure):

0000h No Error

0003h Non-Media Error

0008h Not Supported By Device

0703h No Media Present

FFF9h Not Supported By Driver

IOCTL Request Structure Fields

LONG DriverLink Driver specific usage.

CardStruct *CardHandle Contains the card handle returned by AddDiskSystem.

WORD CompletionCode The driver fills this field with a completion status.

BYTE Function Contains a value of 1.

BYTE SubFunction Contains a value of 2.

LONG IOCTLParameter Contains the device handle returned by AddDiskDevice.

LONG *IOCTLBuffer Points to a structure in the following format that contains the device configuration

options to be set by the driver.

Buffer Structure

LONG ParamSelectMask

LONG OptionValue

LONG Reserved0[16]

Where:

ParamSelectMask This field is a bit mask that designates which parameter is to be set. The allowable

parameter selections are listed below with their corresponding bit mask.

00000001h Data Transfer Unit Size Indicates either the block size to be used when

writing to sequential access media or the default

sector size of random access devices. (See the

Return Device Info and Return Media Info

IOCTLs.)

00000002h Format Sector Size Sector size used to format the media in the device. (See

the Return Media Info IOCTL.)

00000004h Media Write Format Indicates the type of format this device will use

while writing to the media. (See the Return Tape

Device Info IOCTL.)

 00000008h Data Compression The compression state and options selected for a

tape device. (See the Return Tape Device Info

IOCTL.)

Device Driver Developers' Guide

Revision 2.4 09/25/955-34

OptionValue The field contains the value to which the parameter designated in ParamSelectMask is set.

Reserved0 Reserved by NetWare.

Driver I/O Control (IOCTL) Functions

Revision 2.4 09/25/95 5-35

Return Tape Device Info (Mandatory for Tape Drives) Function: 1

Sub-function: 3

This IOCTL directs the driver return additional information about a tape device. It provides a means by which

an application can discover if a particular device possesses all of the capabilities required by the application.

Possible Completion Codes (in IOCTLRequestStructure):

0000h No Error

0003h Non-Media Error

0008h Not Supported By Device

0703h No Media Present

FFF9h Not Supported By Driver

IOCTL Request Structure Fields

LONG DriverLink Driver specific usage.

CardStruct *CardHandle Contains the card handle returned by AddDiskSystem.

WORD CompletionCode The driver fills this field with a completion status.

BYTE Function Contains a value of 1.

BYTE SubFunction Contains a value of 3.

LONG IOCTLParameter Contains the device handle returned by AddDiskDevice.

LONG *IOCTLBuffer Points to a structure the driver must fill with information in the following format:

Bytes Field Description

4 Absolute Position Buffer Size Indicates the size of the buffer in bytes (usually 4) needed for the

absolute position information. (See the AbsoluteDataBlock

(0Bh) I/O function.)

4 Media Cartridge Indicated the type of media cartridge this device supports.

1/2 inch 0x00000005

1/4 inch 0x00000006

8mm 0x00000007

4mm 0x00000008

Device Driver Developers' Guide

Revision 2.4 09/25/955-36

4 Media Write Format Indicates the write formats supported by the device. The formats

will be grouped below according to the specifications that apply

to each tape size.

For 1/4 Inch:

QIC-24 0x00000001

QIC-120 0x00000002

QIC-150 0x00000004

QIC-320 0x00000008

QIC-525 0x00000010

QIC-1350 0x00000020

QIC-2100C 0x00000040

QIC-1000 0x00000080

QIC-3010 0x00000100

QIC-3020 0x00000200

For 1/2 Inch:

X3B5/87-099 0x00000001

X3B5/86-199 0x00000002

HI-TC1 0x00000004

HI-TC2 0x00000008

X3.193-1990 0x00000010

X3B5/91-174 0x00000020

X3B5/91-227 0x00000040

X3.266-199x 0x00000080

X3B5/94-354 0x00000100

For 8mm:

EXABYTE-8200 0x00000001 (14h X3.202-1991)

EXABYTE-8500 0x00000002 (15h ECMA TC17)

EXABYTE-8500C/05 0x00000004 (8Ch)

EXABYTE-8205 0x00000008 (90h)

EXABYTE-9500 0x00000010

For DAT:

DDS 0x00000001

Data DAT 0x00000002

DDS2 0x00000004

Driver I/O Control (IOCTL) Functions

Revision 2.4 09/25/95 5-37

4 Media Read Format Indicates the read formats supported by the device. (Use the same

values defined for Media Write Formats above.)

4 Minimum Block Size When in Fixed Block Mode, this field returns the minimum block

size supported by the device.

4 Maximum Block Size When in Fixed Block Mode, this field returns the maximum

block size supported by the device.

4 Maximum Partitions This field returns the maximum number of partitions that can be

created on a single media by this device.

4 Maximum Partition Size This field returns the maximum partition size (in megabytes) that can

be created by the device. For sequencial access devices, if the

maximum partition size is unknown, this field should be set to a -2.

4 Data Compression This field returns the options possible for data compression on

the device. It also returns the present state of the compression

function on the device. The options defined are bit encoded as

follows:

DeviceSupportsCompression 0x00000001

CompressionModeSelectable 0x00000002

DocompressionIsIndependent 0x00000004

The current state bits are defined as:

CompressionIsSelectedBit 0x00000100

DecompressionIsSelectedBit 0x00000200

64 Reserved Reserved for future use.

Device Driver Developers' Guide

Revision 2.4 09/25/955-38

Return Magazine Info (Mandatory for Magazines) Function: 2

Sub-function: 0

This IOCTL directs the driver to return a structure that contains magazine configuration data. This IOCTL

should not be issued until after the "Magazine Load" IOCTL is issued.

Possible Completion Codes (in IOCTLRequestStructure):

0000h No Error

0006h Device Parameter Error

0007h System Parameter Error

0008h Not Supported By Device

0F09h Magazine Not Present

1409h Magazine Error

1703h Magazine Jammed

FFF9h Not Supported By Driver

IOCTL Request Structure Fields

LONG DriverLink Driver specific usage.

CardStruct *CardHandle Contains the card handle returned by AddDiskSystem.

WORD CompletionCode The driver fills this field with a completion status.

BYTE Function Contains a value of 2.

BYTE SubFunction Contains a value of 0.

LONG IOCTLParameter Contains the device handle returned by AddDiskDevice.

LONG *IOCTLBuffer

