
Device Driver Design

Revision 2.4 09/25/95 2-1

Chapter 2: Device Driver Design

This chapter summarizes the components of a NetWare loadable device driver. The data structures and driver routines

required to support this architecture are described below.

Data Structures

Drivers are required to create and maintain several data structures to interface with the Operating System. Most device

driver's will require the following five structures:

• IOConfigurationStructure

• AdapterOptionStructure

• CardStructure

• DiskStructure

• AESEventStructure

The IOConfigurationStructure is defined by NetWare (one for each adapter card), and is required by the driver when

the driver calls various NetWare support routines. The Adapter Options Structure is also defined by NetWare, and is

required if the driver calls the ParseDriverParameters support routine (which fills out the options in the

IOConfigurationStructure from the command line and/or interactively from the operator console). The Card and Disk

structures are also required, but their contents (if any) are determined entirely by the drivers requirements. The AES

structure is defined by NetWare, and is required to set up a timer for driver timeout recovery and other required

functions.

The occurrence of each structure within the driver depends on the driver's hardware configuration. Each adapter board

must have an associated IOConfigurationStructure and a CardStructure. Each storage device also requires a

DiskStructure.

Device drivers are also required to work with two additional structures. These structures are defined by NetWare, and

used by the Operating System to represent caller requests. The request structures are:

• IOCTLRequestStructure

• IORequestStructure

The IOCTLRequestStructure and IORequestStructure are defined by NetWare and are passed to the driver by the

GetIOCTL and GetRequest system routines respectively, as described in Chapter 7.

Handles for the following structures are passed as parameters to some of the driver routines and NetWare driver support

routines. The structures are defined in the OS and their size and configuration are transparent to the driver.

• NLMDefinitionStructure

• ScreenStructure

• SemaphoreStructure

Additional structures are optional and can be used as needed.

Device Driver Developers' Guide

Revision 2.4 09/25/952-2

IOConfigurationStructure

A loadable device driver maintains an instance of the IOConfigurationStructure for each supported adapter board. The

IOConfigurationStructure contains information about I/O ports, decode memory addresses and ranges, interrupts, and

DMA channels. A driver uses the structure during initialization to reserve file server hardware resources (the structure

may not be re-used for subsequent adapters).

Since a driver's initialization routine is typically called once for each adapter board, drivers can dynamically allocate each

IOConfigurationStructure (if desired) by calling the Alloc support routine. The driver may also simply reserve the

required space in its data segment for the structures.

The OS routines ParseDriverParameters, DeRegisterHardwareOptions, RegisterHardwareOptions, AddDiskSystem,

and DeleteDiskSystem all require the IOConfigurationStructure. The support routine ParseDriverParameters may be

called by the driver to fill out the necessary fields in the IOConfigurationStructure prior to registering it with the OS (the

driver must supply a value indicating which options are required, described in Chapter 7 in the section describing

"ParseDriverParameters" as the NeedBitMap). All fields of the IOConfigurationStructure must be zeroed prior to calling

ParseDriverParameters, with the exceptions noted below:

IOConfigStruct struc typedef struct IOConfigurationStructure {

Reserved0 dd ? LONG Reserved0;

Flags dw ? WORD Flags;

Slot dw ? WORD Slot;

IOPort0 dw ? WORD IOPort0;

IOLength0 dw ? WORD IOLength0;

IOPort1 dw ? WORD IOPort1;

IOLength1 dw ? WORD IOLength1;

MemoryDecode0 dd ? LONG MemoryDecode0;

MemoryLength0 dw ? WORD MemoryLength0;

MemoryDecode1 dd ? LONG MemoryDecode1;

MemoryLength1 dw ? WORD MemoryLength1;

Interrupt0 db ? BYTE Interrupt0;

Interrupt1 db ? BYTE Interrupt1;

DMAUsage0 db ? BYTE DMAUsage0;

DMAUsage1 db ? BYTE DMAUsage1;

IORTag dd ? LONG IORTag;

Reserved1 dd ? LONG Reserved1;

CmdLineOptionStr dd ? BYTE *CmdLineOptionStr;

Reserved3 db 18 dup (?) BYTE Reserved3[18];

LinearMemory0 dd ? LONG LinearMemory0;

LinearMemory1 dd ? LONG LinearMemory1;

Reserved4 db 8 dup (?) BYTE Reserved4[8];

IOConfigStruct ends } IOConfigStruct;

Figure 2-1 IOConfigurationStructure for NetWare v4.xx

Device Driver Design

Revision 2.4 09/25/95 2-3

IOConfigStruct struc typedef struct IOConfigurationStructure {

Reserved0 dd ? LONG Reserved0;

Flags dw ? WORD Flags;

Slot dw ? WORD Slot;

IOPort0 dw ? WORD IOPort0;

IOLength0 dw ? WORD IOLength0;

IOPort1 dw ? WORD IOPort1;

IOLength1 dw ? WORD IOLength1;

MemoryDecode0 dd ? LONG MemoryDecode0;

MemoryLength0 dw ? WORD MemoryLength0;

MemoryDecode1 dd ? LONG MemoryDecode1;

MemoryLength1 dw ? WORD MemoryLength1;

Interrupt0 db ? BYTE Interrupt0;

Interrupt1 db ? BYTE Interrupt1;

DMAUsage0 db ? BYTE DMAUsage0;

DMAUsage1 db ? BYTE DMAUsage1;

IORTag dd ? LONG IORTag;

Reserved1 dd ? LONG Reserved1;

Reserved2 dd ? LONG Reserved2;

Reserved3 db 18 dup (?) BYTE Reserved3[18];

Reserved4 db 16 dup (?) BYTE Reserved4[16];

IOConfigStruct ends } IOConfigStruct;

Figure 2-2 IOConfigurationStructure for NetWare v3.1x

Each IOConfigurationStructure field is described below:

Reserved0 Reserved by NetWare.

Flags Various features or characteristics of the driver are enabled by setting the correct bits

(flags) in this field as described below. This field must be set before calling

ParseDriverParameters routine.

IODetached 01h

Bits 02h - 100h must be set when the corresponding hardware options (I/O device

addresses, interrupts, etc.) are to be shared by all the adapter cards linked to a single

driver.

IOSharablePort0Bit 02h

IOSharablePort1Bit 04h

IOSharableMem0Bit 08h

IOSharableMem1Bit 10h

IOSharableInt0Bit 20h

IOSharableInt1Bit 40h

IOSharableDMA0Bit 80h

IOSharableDMA1Bit 100h

Device Driver Developers' Guide

Revision 2.4 09/25/952-4

v4.xx only - Bit 200h must be set if custom command line options pointed to by the

CmdLineOptionStr field are to be included in the STARTUP.NCF file.

IOCmdLineOptionsBit 200h

v4.xx only - Bit 400h must be set if the standard hardware options defined in

IOConfigurationStructure (I/O device addresses, interrupts, DMA, etc.) are not to be

included in the STARTUP.NCF file. (This bit does not affect the custom command line

options.) (Note: Any valid value in the Slot field will cause all other standard hardware

options to be excluded from the STARTUP.NCF file.)

IONoHardwareOptionsBit 400h

Slot For adapter boards running in PS/2 and EISA machines, this field holds the slot number

where the board is installed.

IOPort0 Contains the primary base I/O port for this adapter board.

IOLength0 Contains the number of I/O ports starting at IOPort0.

IOPort1 Contains the secondary base I/O port for this adapter board.

IOLength1 Contains the number of I/O ports starting at IOPort1.

MemoryDecode0 Must contain the primary shared memory absolute address used by the adapter board (if

any).

MemoryLength0 Contains the amount of memory (in paragraphs) that the adapter board uses starting at

MemoryDecode0.

MemoryDecode1 Must contain the secondary shared memory absolute address used by the adapter board

(if any).

MemoryLength1 Contains the amount of memory (in paragraphs) that the adapter board uses starting at

MemoryDecode1.

Interrupt0 Contains the primary interrupt vector number. This field must be initialized to FFh if it

is unused.

Interrupt1 Contains the secondary interrupt vector number. This field must be initialized to FFh if

it is unused.

DMAUsage0 Contains the primary DMA channel used by the adapter board. This field must be

initialized to FFh if it is unused.

DMAUsage1 Contains the secondary DMA channel used by the adapter board. This field must be

initialized to FFh if it is unused.

Device Driver Design

Revision 2.4 09/25/95 2-5

IORTag The IORegistrationSignature resource tag must be placed in this field before any calls

can be made to ParseDriverParameters or RegisterHardwareOptions.

Reserved1 Reserved by NetWare.

CmdLineOptionStr v4.xx only - Pointer to linked CmdLineOptionStruct structures that contain custom

command line options in string format to be included in the STARTUP.NCF. If this field

is to be used, bits 9 and 10 of the Flag field need to be set appropriately. The structures

have the following format.

CmdLineOptionStruct struc typedef struct CmdLineOptionStructure {

Link dd ? CmdLineOptionStructure *Link;

OptionStr dd ? char *OptionStr;

CmdLineOptionStruct ends } CmdLineOptionStruct;

Link Pointer to the next structure in the list.

OptionStr NULL terminated string that holds a custom command line option to be

included in the STARTUP.NCF file.

Reserved2 v3.1x only - Reserved by NetWare.

Reserved3 Reserved by NetWare.

LinearMemory0 v4.xx only - The RegisterHardwareOptions support routine fills this field with the linear

(logical) address translation of the absolute address in MemoryDecode0.

LinearMemory1 v4.xx only - The RegisterHardwareOptions support routine fills this field with the linear

(logical) address translation of the absolute address in MemoryDecode1.

Reserved4 Reserved by NetWare.

Device Driver Developers' Guide

Revision 2.4 09/25/952-6

AdapterOptionStructure

In order to use the NetWare support routine ParseDriverParameters to parse the command line, a device driver must

maintain a single instance (or more if more than one adapter type is supported by the same driver) of the

AdapterOptionStructure (See ParseDriverParameters in Chapter 7). This structure serves as a template defining the

available choices for various adapter options. ParseDriverParameters uses this template to query the operator, validate

entries, and to fill in the associated fields in the supplied IOConfigurationStructure.

AdapterOptionStruct struc typedef struct AdapterOptionDefinitionStructure {

IOSlot dd ? LONG *IOSlot;

IOPort0 dd ? LONG *IOPort0;

IOLength0 dd ? LONG *IOLength0;

IOPort1 dd ? LONG *IOPort1;

IOLength1 dd ? LONG *IOLength1;

MemoryDecode0 dd ? LONG *MemoryDecode0;

MemoryLength0 dd ? LONG *MemoryLength0;

MemoryDecode1 dd ? LONG *MemoryDecode1;

MemoryLength1 dd ? LONG *MemoryLength1;

Interrupt0 dd ? LONG *Interrupt0;

Interrupt1 dd ? LONG *Interrupt1;

DMA0 dd ? LONG *DMA0;

DMA1 dd ? LONG *DMA1;

AdapterOptionStruct ends } AdapterOptionStruct;

Figure 2-3 Defining an Adapter Option Structure

Each field in the structure is a double-word pointer to a length-preceded list of parameters. Each list assumes the

following form:

List dd n ;number of entries LONG List[n]

dd entry1 ;first (default) value

dd entry2

.

.

dd entryn ;last available value

Figure 2-4 Defining an Options Parameter List

If entries are not used in the AdapterOptionStructure, the pointer to the associated list is allowed to be replaced by a

zero value. The fields are explained in more detail in the IOConfigurationStructure section above.

Device Driver Design

Revision 2.4 09/25/95 2-7

CardStructure

As with the IOConfigurationStructure, a driver maintains a CardStructure for each supported adapter board. This

structure is especially helpful in creating re-entrant drivers, making card information easy to access without

complicating stack management. The size and content of this structure is defined by the needs of the driver.

The Card Structure is not allocated by the driver's initialization routine. Instead, the initialization routine passes

NetWare the requested size of the structure when the initialization routine calls AddDiskSystem. AddDiskSystem

then allocates memory for the structure, zeros it, and returns a pointer to the CardStructure back to the driver. If a

driver does not require any information to be kept in this structure, it should supply a zero as the requested structure

size when calling AddDiskSystem. The driver must retain the structure handle passed back by AddDiskSystem, even

if the structure size requested was zero (many driver support routines require the CardStructure pointer as a

parameter).

Note: Tape or other device drivers must also use the AddDiskSystem call to receive the proper information

during initialization.

CardStruct struc typedef struct CardStructure {

. .

. .

 (driver defined) (driver defined)

. .

. .

CardStruct ends } CardStruct;

Figure 2-5 Driver-defined CardStructure

The format of the CardStructure is undefined. Drivers may utilize this structure according to their requirements.

The structure should include all information required for one adapter board. An IOConfigurationStructure pointer,

along with a list of registered DiskStructures, etc., are usually appropriate to keep in a CardStructure.

Device Driver Developers' Guide

Revision 2.4 09/25/952-8

DiskStructure

A device driver maintains a DiskStructure for each supported storage device. A driver's disk (device) initialization

routine (Scan For Devices) allocates this structure by calling AddDiskDevice and passing the requested SIZE of the

DiskStructure as one of the parameters. AddDiskDevice then allocates memory for the structure, zeros it, and

returns a pointer to the allocated memory. If a driver does not require this structure, it should pass a zero as the

requested size, and must retain the pointer returned (required by many system support routines).

Note: Tape or other device drivers must also use the AddDiskSystem call to receive the proper information

during initialization.

DiskStruct struc typedef struct DiskStructure {

.

. .

 (driver defined) .

. (driver defined)

. .

DiskStruct ends

.

} DiskStruct;

Figure 2-6 Driver-defined DiskStructure

Like the CardStructure, the format of the DiskStructure is undefined. The driver may define use and contents of the

structure as required. It will at least need to contain a pointer to the associated CardStructure or

IOConfigurationStructure. Normally the DiskStructure should include any information the driver needs to maintain

information corresponding to one disk or mass storage device, such as retry counters, pending operations, etc.

AESEventStructure

A device driver maintains an AES structure for each separate time-out entry point desired (it is not suggested that

the driver use many timers, as each active timer may require additional system overhead while processing clock

interrupts). The AES structure must be initialized before calling ScheduleNoSleepAESProcessEvent. Drivers must

place the resource tag acquired during the first part of the initialize driver module into the AES structure, so that the

Operating System can track the resource.

Device Driver Design

Revision 2.4 09/25/95 2-9

AESEventStructure struc typedef struct AESEventStructure {

AESReserved0 dd ? LONG AESReserved0;

AESWakeUpInterval dd ? LONG AESWakeUpInterval;

AESReserved1 dd ? LONG AESReserved1;

AESProcessToCall dd ? void (*AESProcessToCall)(

AESResourceTag dd ? AESEventStruct *EventPtr);

AESReserved2 dd ? LONG AESResourceTag;

AESEventStructure ends LONG AESReserved2;

 } AESEventStruct;

Figure 2-7 AESEvent Structure definition

Each field in the AES Event structure is defined below:

AESReserved0 Reserved by NetWare.

AESWakeUpInterval Indicates the time interval for waking up your Timeout routine in system clock

ticks (approximately 1/18.2 second per tick). Generally, this interval should be

small enough to provide reasonable recovery time, but not so small as to affect

overall server performance.

AESReserved1 Reserved by NetWare.

AESProcessToCall A pointer to the routine that will be called once for each

ScheduleNoSleepAESProcessEvent call. A pointer to the AESEvent structure

(EventPtr) is passed as a parameter to the routine. Additional information required

by the driver may be passed to the AESEvent by appending it to the end of the

structure.

AESResourceTag Resource tag returned by AllocateResourceTag when called with the

AESProcessSignature during initialization. This field must be initialized prior to

making the call to ScheduleNoSleepAESProcessEvent.

AESReserved2 Reserved by NetWare.

Device Driver Developers' Guide

Revision 2.4 09/25/952-10

IOCTLRequestStructure

The IOCTLRequestStructure is defined by the Operating System, and a structure built by the OS for each IOCTL

request. This structure holds the information necessary for processing special calls made to the Driver for IOCTL

functions. The definition of the IOCTLRequestStructure is as follows:

IOCTLRequestStruct struc typedef struct IOCTLRequestStructure {

DriverLink dd ? LONG DriverLink;

CardHandle dd ? CardStruct *CardHandle;

CompletionCode dw ? WORD CompletionCode;

Function db ? BYTE Function;

SubFunction db ? BYTE SubFunction;

Parameter dd? LONG Parameter;

IOCTLBuffer dd ? LONG IOCTLBuffer;

IOCTLRequestStruct ends } IOCTLRequestStruct;

Figure 2-8 An IOCTLRequest Structure

Each field in the IOCTL Request structure is defined below.

DriverLink This field is used only by the driver. It can be used to link the outstanding IOCTL requests

at the driver level. This field is not used by the OS.

CardHandle This field contains a card handle. This is the same value that AddDiskSystem returned

during initialization.

CompletionCode The driver fills in this field before returning the IOCTL Request structure to the

application or NetWare (see Chapter 5 for a complete list of possible completion status

codes).

Specific error conditions should be returned using codes appropriate to the calling

application. Before the request is returned, the driver may use this field locally.

Device Driver Design

Revision 2.4 09/25/95 2-11

Function This field specifies the requested IOCTL function (The IOCTL functions are

discussed in detail in Chapter 5).

SubFunction This field has the required IOCTL subfunction which may indicate the actual function

to be performed by the IOCTL (IOCTL request Subfunctions are explained in

Chapter 5).

Parameter This field is often used to specify a DiskStructure address. When used as such, this

value is the same as that returned by AddDiskDevice when registering a new device.

Other values could also be passed in this field as needed.

IOCTLBuffer This field, if used, provides a pointer to additional request information (zero if not

used). For more information, see Chapter 5.

As explained in the previous section, individual IOCTL requests are specified by the function field in the IOCTL

Request structure. If the request can perform more than one task, the function is given in the subfunction field.

Figure 2-8 shows the defined IOCTL functions.

0-3 Novell Assigned (General IOCTLs)

4-63 Novell Reserved

64-255 IOCTLs assigned to Developers

Figure 2-9 IOCTL Number Assignments

Novell has reserved IOCTL functions 0 through 63. IOCTLs 64 and up will be assigned by Novell to developers

upon request. Novell assigns certified drivers a Driver ID. If another loadable module needs the driver to perform a

special IOCTL service, this value could be used as a function number in the IOCTL poll procedure.

Device Driver Developers' Guide

Revision 2.4 09/25/952-12

IORequestStructure

The IORequestStructure is defined by the Operating System, and a structure is built by the OS for each request.

The structure holds information necessary for processing standard I/O calls, and is defined as follows:

IORequestStruct struc typedef struct IORequestStructure {

DriverLink dd ? struct IORequestStructure *DriverLink;

DiskHandle dd ? DiskStruct *DiskHandle;

CompletionCode dw ? WORD CompletionCode;

Function db ? BYTE Function;

Parameter1 db ? BYTE Parameter1;

Parameter2 dd ? LONG Parameter2;

Parameter3 dd ? LONG Parameter3;

IORequestStruct ends } IORequestStruct;

Figure 2-10 An IORequest Structure

Each parameter in the I/O Request structure is defined below.

DriverLink Previously, this parameter was not used by the OS, and could be used by the driver as a link

field, information holder, etc. However, in NetWare v3.11 and subsequent versions, this field

contains the handle of a request available on the queue (if any) that is contiguous to the current

one. This allows a driver to combine requests. (This is desirable if the device can access

multiple blocks of storage at a time.) The field will be zero if no contiguous request is

available. Be aware that application NLMs that bypass the OS cache by making direct I/O

requests may invalidate this field. Always verify the continuity of the requests. The driver

may choose to ignore this information and use the field as before.

DiskHandle This parameter specifies the target device or disk. This is the same value as that returned by the

NetWare routine AddDiskDevice. This field is not valid until after the request has been

obtained using the GetRequest routine.

CompletionCode The driver fills in this parameter before posting completion of the I/O Request structure to

NetWare (see Chapter 6 for the complete list of possible completion codes).

Device Driver Design

Revision 2.4 09/25/95 2-13

Function This parameter byte specifies the function number of the I/O request being issued.

The function codes are defined as follows:

Random Read 00h

Random Write 01h

Random Write Once 02h

Sequential Read 03h

Sequential Write 04h

Reset End Of Media Status 05h

Single File Mark(s) 06h

Write single file mark(s)

Space forward single file mark(s)

Space Backwards single file mark(s)

ConsecutiveFileMarks 07h

Write Consecutive file Marks

Space Forward until consecutive file marks

Space Backwards until consecutive file marks

Single Set Mark(s) 08h

Write single set mark(s)

Space forward single set mark(s)

Space backwards single set mark(s)

Consecutive Set Marks 09h

Write consecutive file marks

Space forward until consecutive set marks

Space backwards until consecutive set marks

Locate/Space Relative Data Block(s) 0Ah

Space forward data blocks

Space backwards data blocks

Locate/Space Absolute Data Block(s) 0Bh

Return absolute position

Goto absolute position

Partition Operations 0Ch

Format to partition media

Select partition

Return number of partitions

Return partition size

Return max. number of partitions that can be defined

Physical Media Operations 0Dh

Quick erase partition

Rewind partition

Go to end of partition

Security erase partition

Retention media

Goto end of partition

Random Erase 0Eh

Reserved 0Fh-3Fh

Device Driver Developers' Guide

Revision 2.4 09/25/952-14

Parameter1 Function dependent parameter

Parameter2 Function dependent parameter

Parameter3 Function dependent parameter

Driver Routines

This section summarizes the major routines a driver must provide to interface with NetWare. These

routines can be grouped under four headings:

• The Loadable Module Interface

• The Mass Storage Administrative Interface

• IOCTL (I/O Control) Operations Interface

• I/O Operations Interface

Each interface is summarized below. Chapters 3, 4, 5, and 6 discuss these interfaces in greater detail, as

well as describing some suggested approaches.

Device Driver Design

Revision 2.4 09/25/95 2-15

The Loadable Module Interface

A driver must comply with the NetWare Loadable Module (NLM) interface by defining three routine

entry points: initialize driver, check driver, and remove driver.

InitializeDriver

The application-defined InitializeDriver routine is called each time a "LOAD" command is issued

for the driver. Drivers typically are written so that a load command must be issued for each host

adapter. Drivers may recognize and register all associated cards with a single load command

(during the InitializeDriver routine). Drivers should also allow the operator to load the driver with a

single specified adapter. This will allow the operator to selectively enable only desired host adapters

for error determination, etc. (The driver could be written to recognize all adapters only if command

line does not specify an adapter.)

InitializeDriver validates and sets up hardware considerations like I/O ports, interrupts, and DMA

channels, AES timers, creates structures for adapters and drives, exchanges information with

NetWare, and initializes the adapter board. The initialize driver routine may indicate failure to set

up an adapter card upon return to its caller. This will cause the system to unload the driver code

unless the driver is re-entrant and has been successfully loaded previously.

CheckDriver

The NetWare console command UNLOAD calls the application-defined CheckDriver routine as a

precaution before unloading the driver. This routine checks each supported storage device to see if

the device is locked by another process. If the device is locked, NetWare displays a warning

message on the file server console and allows the console operator to abort the UNLOAD process

if desired.

If the device is locked and the operator continues to unload after a warning message, then NetWare

will call the RemoveDriver routine (see below).

RemoveDriver

NetWare calls the application-defined RemoveDriver routine only once. RemoveDriver removes

the entire driver (code and data images) from file server memory. RemoveDriver does the

following:

• Removes (or causes to be removed) all instances of DiskStructure (after associated flush of

requests) and CardStructure

• Returns all file server resources like memory, interrupts, I/O ports, and AES timers

• Removes the driver from memory by returning to the caller.

Note: CheckDriver and RemoveDriver are not called after a console operator issues a "down"

command.

Device Driver Developers' Guide

Revision 2.4 09/25/952-16

The Mass Storage Control Interface

The Mass Storage Control Interface provides two procedures which are registered with the OS through

the AddDiskSystem call. The routines recognize new devices, register them with the Operating

System, and remove the devices from the OS when appropriate. The routines are:

• ScanForDevices

• DeleteDevice

ScanForDevices

The ScanForDevices routine is a driver routine called by NetWare to request the driver to look at

its configuration and adapters, determine if un-registered devices are attached, and register them.

The routine is called at blocking process level, and thus may make any calls to blocking routines

such as AddDiskDevice (which is required to register each device).

DO NOT remain in this routine for a significant length of time while waiting for responses from

devices. The OS limits the time drivers spend in process level (without causing a task switch or

process switch) to approximately 250 milliseconds.

Upon completion of the scan (and registration of any new devices found), the driver must return to

the caller. Error conditions encountered are ignored, and it is not possible to return an error code to

the caller from this routine. See chapter 4 for more detail regarding this procedure.

DeleteDevice

The NetWare OS deactivates devices that return an I/O request with a Non-Media Error

completion code but does not delete them from the system. All corresponding requests on the

internal queue are posted with an error status. At a later time, however, the OS may attempt to

reactivate the device. If reactivation is not desirable, the driver may choose to remove the device

structure from the system. DeleteDevice is called for this purpose. This routine processes all

pending drive requests, calls RemoveDiskDevice, unhooks the DiskStructure from the

CardStructure, etc, (driver clean-up), and then calls DeleteDiskDevice.

In NetWare v3.11 DeleteDevice is registered with the OS though the AddDiskSystem call. When

the device drives determines that the device should be removed it informs the OS using an

AlertDevice call and the proper parameter. The OS will then call the DeleteDevice routine.

In NetWare v4.xx and v3.1x (excluding v3.11) registration of the routine has been dropped, and

the device driver should call the routine directly from a blocking environment.

Device Driver Design

Revision 2.4 09/25/95 2-17

IOCTL (I/O Control) Operations Interface

The IOCTL Notification (IOCTLPoll) routine is the entry point for the driver's I/O control subroutines.

The NetWare OS and loadable modules can access the driver's IOCTL routines by passing an IOCTL

Request structure to this routine that contains a function and a subfunction number.

NetWare calls the IOCTLPoll routine to notify the driver that an IOCTL request has been issued. The

driver IOCTL processing code should do two things:

• Issue a GetIOCTL to "acquire" the request

• Make a PutIOCTL call to post completion of the IOCTL function request

GetIOCTL may be called with the request handle indicated in the IOCTLPoll entry (specific

GetIOCTL), or may be called with zero for a request handle, in which case the next sequential IOCTL

request will be obtained. The IOCTL poll routine may elect to issue a GetIOCTL call to acquire the

IOCTL request and initiate an operation, or it may elect to simply return to the caller, making a call to

GetIOCTL at a later time.

The IOCTLPoll routine may also examine the IOCTL request, determine that the function is not

supported by the driver, issue a GetIOCTL call, then issue a PutIOCTL call to post a "not supported"

return status (Return status for IOCTLs are defined in Chapter 5).

IOCTL requests are not placed on the elevator queues, but are placed on sequential non-sorted IOCTL

queues (one per adapter card), and thus are not queued in the same way that I/O requests are queued.

The IOCTL Poll routine is called at non-blocking process time, and thus may not make calls to any

blocking routines (any routines indicated in Chapter 7 as non-blocking may be called).

If the IOCTL can be serviced at the time of the IOCTLPoll call, the IOCTLPoll code examines the

request structure and routes the request to the proper IOCTL subroutine depending on the function and

subfunction numbers. When the IOCTL routine has completed the function, the driver fills in a

completion code field , returns the IOCTL Request structure to the calling module by making a call to

PutIOCTL, then returns to the caller or point of interrupt.

Device Driver Developers' Guide

Revision 2.4 09/25/952-18

I/O Operations Interface

I/O operations include the IOPoll, timeout, and interrupt service routines. The entry point to each

routine is passed as a parameter to, respectively, the AddDiskDevice,

ScheduleNoSleepAESProcessEvent, and SetHardwareInterrupt calls support routines.

IOPoll

NetWare calls the I/O Notification (IOPoll) routine to notify the driver that NetWare issued an I/O

request. NetWare passes a pointer to a DiskStructure and an I/O Request structure to the driver

IOPoll routine. The IOPoll routine determines if it can "acquire" another request, then makes a call

to GetRequest to obtain the next I/O request structure.

Once IOPoll obtains the request, the routine validates the request, executes a write or a read, fills in

a completion status code field, returns the I/O request structure to NetWare by making a call to

PutRequest, and returns to the caller or point of interrupt (most drivers may need to see if other

operations should be started prior to actual return).

The IOPoll entry is called at non-blocking process level, and thus may not make any calls to

blocking routines. It is possible to simply take the requests in sorted (by block address) order by

supplying a zero instead of the request handle which is provided by the caller. This allows the

driver to get the requests in the order the OS has placed them in on the Disk Elevator queues (dual

queues, both in ascending order).

It is also possible for a driver to do the requests in the specific order issued (typically for a tape or

sequential device), simply by allocating a queue for each device, then placing the request handles

sequentially in the device queue immediately upon entry to the IOPoll or IOCTLPoll routines,

along with an flag indicating the kind of request (I/O or IOCTL).

When a new request can be started, the driver would then obtain the next request handle (structure

pointer) from its own queue, issue a GetRequest or GetIOCTL to obtain the request, then start the

indicated request. This routine must operate in concert with the driver ISR to schedule I/O requests

and keep the operations flowing (see Chapter 6 for further details).

Device Driver Design

Revision 2.4 09/25/95 2-19

Timeout

A driver timeout routine is an essential driver routine that may be scheduled for periodic entry as an

asynchronous event. It checks adapter boards and determines the amount of time that has elapsed

since the card received a request. If the time exceeds an established limit, the Timeout routine may

take over and determine if an error condition has occurred.

This routine may also scan to see if any requests may need to be started on devices attached to the

card. Setting up a timer to scan for failed operations is essential, since the server must not cease to

operate because of an operation that is hung or "never completes" (see Chapter 6 for further

details). This routine or routines is called at non-blocking process time as long as the driver made a

call to ScheduleNoSleepAESProcessEvent. Timeout exits may be specified to be blocking by using

ScheduleSleepAESProcessEvent instead.

Other AESEvents may also be scheduled to handled tasks that cannot be completed in the current

environment. For instance, if in an ISR a need arises to make a call to a blocking routine, which is

illegal, a blocking AESEvent may be scheduled with a zero time delay to handle the call.

Interrupt Service Routine

For all hardware interrupts, the system Interrupt Service Routine (ISR) receives the interrupt and

calls the driver's ISR. A driver requires a separate ISR entry point for each card the driver will

support. Portions of the I/O Poll routine may be duplicated in the ISR if desired.

The driver ISR is responsible for the following:

• resetting the interrupt on the adapter card

• clearing the interrupt flag in the system interrupt controller(s). (You must call

CDoEndOfInterrupt to accomplish this step)

• finishing any required part of the function that the driver must do

(i.e. moving data to a system buffer

 canceling a timer for the operation just completed,

 retrying operations which did not complete successfully,

 posting completion status for operations which completed successfully

 or have exceeded their retry limit,

 looking for further operations to initiate for other requests,

 returning to the caller (the system ISR)

Much of the driver ISR may run with interrupts inhibited due to its function within the driver

architecture. Under no circumstances is a driver ISR allowed to make any calls to blocking

routines. See Chapter 6 for more specific detail on the driver ISR and its requirements.

Device Driver Developers' Guide

Revision 2.4 09/25/952-20

Required Device Driver Routines

Routine * Definition Point

InitializeDriver DRIVER.DEF

CheckDriver DRIVER.DEF

RemoveDriver DRIVER.DEF

ScanForDevices AddDiskSystem

DeleteDevice ** AddDiskSystem

IOCTLPoll AddDiskSystem

IOPoll AddDiskDevice

InterruptServiceRoutine (ISR) SetHardwareInterrupt

TimeOut ScheduleNoSleepAESProcessEvent or

ScheduleSleepAESProcessEvent

* = These routine names are not mandatory; developers may choose their own routine names.

** = This routine is required in NetWare v3.1x and is optional and known only to the driver in

NetWare v4.xx.

