
The NetWare Driver Environment

Revision 2.4 09/25/95 1-1

Chapter 1: The NetWare Driver Environment

Drivers as NLMs

NetWare file server device drivers are NetWare Loadable Modules (NLMs), allowing a network supervisor to add or

delete drivers while the system is running. This chapter gives a brief overview of the NetWare Operating System driver

environment with emphasis on the concept of loadable modules. The routines a device driver NLM must provide to

interface with the NetWare Operating System are discussed later in Chapter 3.

Device drivers must be converted from object form to a special Loadable Module form. The driver must provide basic

NLM interface routines which adhere to NLM interface specifications and facilitate dynamic loading and unloading.

The driver must also follow prescribed procedures and must utilize the defined standard routines outlined in Chapter

7 to interface to the Operating System. The driver must make public its required NLM interface routines, Mass Storage

Control interface routines, and import any required NetWare Operating System interface routines. The details of this

NLM driver creation procedure and definition file keywords are discussed in Appendix A.

Loading and Unloading Drivers

To load a driver, it must be placed 1) on a floppy diskette, 2) in a directory on the DOS partition of the file server's hard

disk, or 3) in the SYS:SYSTEM directory of the file server.

After the file server is loaded and running, the console command "LOAD" is used to load the desired driver into file

server memory. The following examples show how to load a sample driver from all three sources.

Example load from a floppy disk drive:

load a:sample slot=3 port=200 int=5 card=5 <Enter>

Example load from a local hard disk:

load c:sample card=4 <Enter>

Example load from the file server (only if SYS: volume is mounted):

load sample card=7 <Enter>

The NetWare Loader resolves the drivers import list and dynamically links the driver to the NetWare Operating System.

Device Driver Developers' Guide

Revision 2.4 09/25/951-2

To unload a driver, use the file server console command "UNLOAD" as follows:

unload sample <Enter>

Unloading a driver causes all outstanding requests for all devices serviced by the driver to be flushed, after which any

resources allocated by the driver must be returned to the OS. The driver is removed from memory after it returns to the

routine that requested the unload. A reentrant driver (discussed below) must flush all requests and return all resources

for all cards for which it has been specified in previously successful "LOAD" commands. A single call to the driver's

unload entry point indicates an unload for all associated adapter cards.

Reentrance

A driver may be declared reentrant. Declaring a driver reentrant in the definitions file will cause subsequent "LOAD"

commands (multiple adapter cards supported by the driver) for the same driver to use the driver image first loaded into

memory. For each instance of the driver initialization routine, the OS passes to the driver a pointer to the command line

so that the command line parameters may be process.

The OS support function ParseDriverParameters is provided to process driver parameters, check for possible conflicts,

and prompt the console operator for required parameters that are missing. Reentrant drivers preserve the integrity of

the information specific to each instance loaded. This requires proper use of control blocks, tables, structure pointers,

and interrupt disabling in particular areas. Calls to and from the OS (IOPoll, PutRequest, GetRequest, etc) facilitate

reentrancy by passing as a parameter the structure pointer that that identify the instance being call.

The NetWare Driver Environment

Revision 2.4 09/25/95 1-3

OS Environment

All drivers are required to run in 32-bit mode regardless of the language used to write the driver. Drivers may always

assume SS=ES=DS, but should not assume that the Code Segment Register is identical with DS. Drivers must comply

with several execution levels provided by the OS. Drivers must not violate the defined environment of the current

execution level. The execution levels and their associated environments are as follows:

A) Blocking Process Level

The Blocking Process Level is an execution level where a process can make calls to system routines that temporarily

suspend its (the process') execution while waiting for the completion of another task. At this level the code executes

as the operating system's currently scheduled process. Routines called from this level may make calls to blocking

routines that can put the current process and the associated thread of execution to sleep until completion of some

task. Driver routines called at this level execute as an extension of the current executing process. Any routines

described in Chapter 7 may be called at this level, whether indicated as blocking or non-blocking. However,

routines indicated in Chapter 7 as requiring the processor interrupts to be disabled must be called with interrupts

disabled.

Driver routines called at this level are responsible to do necessary housekeeping required for the "C" compatible

interface defined for drivers (see Appendix C for details).

Interrupts are normally enabled upon entry to routines at this level. It is often necessary for a driver to disable

interrupts for a period of time to accomplish reentrance, to call system routines, or to maintain driver integrity. Care

should be taken to disable interrupts for the absolute minimum period required to accomplish necessary functions.

Disabling interrupts for any significant period will cause server performance degradation and poor response time.

Routines at this level may not execute with interrupts disabled for more than 25 milliseconds. They also

must return to the Operating System or cause a task switch within 250 milliseconds. If the function to be

accomplished by the called routine requires more than the above period, the driver must call DelayMyself,

CYieldIfNeeded (v4.xx), CRescheduleLast (v3.1x), or another system routine which causes a task switch so that

other NetWare processes may be serviced in a timely fashion. Failure to do so may cause the Operating System to

indicate the drivers violation on the server console.

Driver-defined entry points called at blocking process level are:

Driver Initialization

Driver Check

Driver Unload

Driver Scan for Devices

Driver Delete Device

Driver TimeOut - AESProcess Event Entry (Sleep option only)

Device Driver Developers' Guide

Revision 2.4 09/25/951-4

B) Non-Blocking Process Level

Non-Blocking Process Level is defined as an execution level where a process is not permitted to temporarily block

or suspend its thread of execution (by making calls to system routines which suspend the process execution until

the specified function is completed). At this level the code executes as the operating system's currently scheduled

process. Routines called from this level may not make calls to blocking routines that may put the process and the

associated thread of execution to sleep until completion. Driver routines called at this level also execute as an

extension of the current executing process. Only system routines indicated in Chapter 7 as non-blocking may be

called at this level.

Routines at this level may not execute with interrupts disabled for more than 25 milliseconds. They also

must return to the Operating System within 250 milliseconds.

Driver routines called at this level are responsible to do necessary housekeeping required for the "C" compatible

interface defined for drivers (see Appendix C for details).

Interrupts are inhibited upon entry to routines at this level, with the exception of the No Sleep AESProcess event

entry, which is enabled.

Driver-defined entry points called at non-blocking process level are:

Driver IOCTLPoll

Driver IOPoll

Driver TimeOut - AESProcess Event Entry (No Sleep option)

C) Interrupt Level

The current process is unknown upon entry at this level. Blocking routines that might put the process and the

associated thread of execution to sleep until completion may not be called under any circumstance from this level.

Only system routines indicated in Chapter 7 as non-blocking may be called at this level.

Interrupts are always inhibited upon entry to routines at this level.

The only entry point at this level is the Driver ISR entry.

The driver's ISR is not required to save or restore registers, because all registers have been saved and segment

registers initialized prior to the ISR routine being called by the system ISR entry point. The driver must execute a

RET to return from the call, specifically must not execute an IRETD before returning, because an IRETD will be

issued by the system ISR after the driver returns. The driver must issue required EOI(s) (End Of Interrupt) by

calling the CDoEndOfInterrupt support routine.

Drivers must be coded with care if interrupts are enabled after issuing necessary EOI(s). Drivers must also protect

themselves if they enable interrupts during the ISR routine and the interrupt is shared. (See Chapter 6 for shared

interrupt details.) Drivers must clear the interrupt request in the associated adapter card, and must also issue the

EOI(s) by calling the NetWare drive support routine.

Driver ISR routines may not execute with interrupts disabled for more than 25 milliseconds. They also must

return to the Operating System within 250 milliseconds.

