
Open Document Management API
Version 1.0

The Open Document Management API (ODMA) is a standardized, high-
level interface between desktop applications and document
management systems (DMSs). Its purposes are:

1. To make DMS services available to users of desktop application in
a seamless manner so that these services appear to the user like
extensions of the applications.

2. To reduce the application vendors' burden of having to deal with
multiple DMS vendors. By writing to ODMA an application vendor
has potentially integrated his application with all supporting
DMSs.

3. To reduce the DMS vendors' burden of integrating with multiple
applications. By supporting ODMA a DMS vendor has potentially
integrated with all applications that have written to ODMA.

4. To reduce effort and complexity needed to install and maintain
DMSs.

ODMA specifies a set of interfaces that applications can use to initiate
actions within a DMS. The API is intended to be relatively easy for
application vendors to incorporate into updates of existing
applications; it should not require major restructuring. Note that this
version of ODMA does not specify how DMSs may initiate actions within
the applications.

The ODMA API is platform-independent. The associated data type
definitions and binding information are platform-specific.

Document IDs

Many of the ODMA functions accept or return a Document ID

ODMA Version 1.0 0 4/18/21

parameter. A document ID is a persistent, portable identifier for a
document. It can be stored and used in a later session, and it can be
passed across platforms via email or other processes.

Document IDs are case-insensitive, null-terminated strings of printable
characters. The format of a document ID is

::ODMA\DM_ID\DM_SPECIFIC_INFO

The DM_ID portion of a document ID will identify which DMS provided
the ID. This information is primarily for the use of ODMA itself;
applications using ODMA generally should not need to know which DMS
provided a particular ID. The ODMA group members will coordinate
these IDs to ensure their uniqueness. The maximum length of the
DM_ID portion of the document ID is specified by the constant
ODM_DMID_MAX.

The DM_SPECIFIC_INFO portion of the ID will vary depending on which
DMS built the ID. The total length of the document ID including the
terminating Null character cannot exceed ODM_DOCID_MAX bytes.

ODMA-aware applications should be able to handle a document ID
anywhere they handle an externally-generated document filename.
For example, if the application allows a document filename to be
passed as a command line argument then it should allow a document
ID to be passed in the same way. If the application allows document
filenames to be used in DDE commands then it should also support the
use of document IDs in the same commands.

Constants

ODM_DOCID_MAX 255 - Maximum
length of a document ID including the
terminating Null character.

ODM_FILENAME_MAX platform
dependent - Maximum length of a
path/filename returned by ODMA including
the terminating Null character. The value
will be 128 on Windows 3.x, 256 on
Windows 4.x and Macintosh, and 1024 on

ODMA Version 1.0 1 4/18/21

Unix platforms.
ODM_API_VERSION 100 - The version of

the ODMA API to which this header file
corresponds. See the description of
ODMRegisterApp.

ODM_DMID_MAX 9 - Maximum length
of a DMS ID including the terminating Null
character.

Error Handling

Nearly all of the ODMA functions use the return value to indicate to the
calling application whether the function succeeded, failed because the
user cancelled the operation, or failed for other reasons. The DMS is
responsible for displaying informational error messages to the user
where appropriate except when the ODM_SILENT flag is specified.
The DMS must take care to return the appropriate error indication
because applications may act differently depending on whether an
ODMA call was cancelled by the user or failed for other reasons. The
calling application generally should not display error messages when
an error value is returned from ODMA unless the ODM_SILENT flag
was specified.

Connections and the ODMA Connection Manager

The ODMA connection manager is a small software module that sits
between applications using ODMA and document management
systems implementing ODMA. It manages the connections between
these components and routes ODMA calls to the appropriate provider.
A freely-redistributable copy of the ODMA connection manager will be
provided to any vendor wishing to implement or make use of the ODMA
API.

Document Format Names

When new documents are registered with a DMS via ODMA and when
an existing document's format is changed by an application, the
application passes a document format name to ODMA. Document

ODMA Version 1.0 2 4/18/21

format names are Null-terminated strings defining the format of a
document's content. Application vendors are encouraged to make
public the format names they choose for their proprietary formats so
that other ODMA users and providers can standardize on the same
names. The odma.h header file contains names for common, non-
proprietary formats such as text, RTF, and tiff.

Character Sets

All strings passed to or returned from ODMA functions should be in the
native character set of the system on which ODMA is being used. So
for example, 8859-1 would be used on English Windows, Shift-JIS would
be used on Japanese Windows, Unicode would be used on NT, etc. The
term "Null-terminated" as used in this specification means terminated
by the character set's natural Null character. For most character sets
this means a single byte with the value 0x0; for Unicode it means a
sequence of 2 bytes with the value 0x0. If an application obtains an
ODMA document ID on one platform and later uses it on another
platform, the application is responsible for translating the ID to the
native character set of the second platform before using it there.

Application Interfaces

An ODMA-aware application can choose to communicate with the
ODMA Connection Manager either through a traditional, function-
oriented API or through Component Object Model (COM) interfaces.
Prototypes and constants used for the function-oriented API are
included in the odma.h header file. Prototypes, constants, and
interface definitions for the COM interface are included in the
odmacom.h header file.

After calling ODMRegisterApp applications can obtain one or more
COM interfaces to ODMA through the ODMQueryInterface function.
The IODMDocMan interface provides an alternate entry point to most
of the ODMA functions documented below. This interface and its
interface ID are defined in the odmacom.h header file.

Note that IODMDocMan::QueryInterface will only query the default DMS
for the calling application. The application must call

ODMA Version 1.0 3 4/18/21

ODMQueryInterface in order to query other DMSs.

ODMA API

ODMRegisterApp
ODMSTATUS ODMRegisterApp(ODMHANDLE FAR *pOdmHandle, WORD
version, LPSTR lpszAppId, DWORD dwEnvData, LPVOID pReserved)

ODMRegisterApp registers an application with the appropriate
Document Management System (DMS) and returns a handle that can
be used in calls to other ODMA functions. An application must call this
function before calling any of the other ODMA functions. A task may
call ODMRegisterApp more than once; each call will return a different
handle, each of which must be deregistered via ODMUnRegisterApp.

Parameters:

pOdmHandle - out - If successful, a handle is returned here that
can be used in calls to other ODMA functions. If the registration
fails then 0 is returned here.

version - in - Specifies the version of the API required by the
application. 100 should be passed to indicate version 1.0, 110
should be passed to indicate version 1.1, etc. The macro
ODM_API_VERSION can be used to get the correct version
number at compile time. All versions of the ODMA API will be
downward compatible, so this should be interpreted as the
minimum version number that the calling application expects the
DMS to support. If the DMS does not support the specified
version or a higher version then it should return an error.

lpszAppId - in - A unique identifier for the application. The
maximum length for this string is 16 characters including the
terminating Null, and it cannot begin with a digit. It is
recommended that a Windows application use the File Manager
ProgId for its primary document class, but this is not required.

ODMA Version 1.0 4 4/18/21

dwEnvData - in - Environment data. On Windows platforms this is
a Window handle for a parent window in the calling application.
The DMS may use this window handle as the parent window for
any dialogs or other windows it displays in response to ODMA
calls. This handle must remain valid for the duration of the ODMA
session (i.e. until ODMUnRegisterApp is called).

pReserved - in - Reserved for future use. Must be set to Null.

Return value: 0 is returned if successful. ODM_E_NODMS is
returned if no Document Management System has been registered for
the calling application. ODM_E_CANTINIT is returned if a DMS is
registered for the calling application, but it fails to initialize itself.
ODM_E_VERSION is returned if the DMS does not support the
requested version of the API.

ODMUnRegisterApp
void ODMUnRegisterApp(ODMHANDLE odmHandle)

An application that previously registered itself with a DMS via
ODMRegisterApp should call this function when it is finished using
the DMS. This would typically be done when the application is shutting
down. After this call returns, the DMS handle is no longer valid and
cannot be used for subsequent calls to ODMA functions.

Parameters:

odmHandle - in - An ODMA handle obtained by a previous call to
ODMRegisterApp.

ODMSelectDoc
ODMSTATUS ODMSelectDoc(ODMHANDLE odmHandle, LPSTR
lpszDocId, LPDWORD pdwFlags)

This function causes the DMS to return a document ID representing a
document that has been selected for some action. Typically the DMS

ODMA Version 1.0 5 4/18/21

will display searching and other dialogs that allow the user to
interactively select a document from among those managed by the
DMS. An application would typically call this function whenever the
user needs to select a document to be opened or imported.

Parameters:

odmHandle - in - An ODMA handle obtained by a previous call to
ODMRegisterApp.

lpszDocId - out - A pointer to a buffer where the DMS will return
the ID of the document selected by the user. This buffer needs to
be at least ODM_DOCID_MAX bytes in length. If successful then
a null-terminated document ID will be returned here. Otherwise
the contents of the buffer will be undefined.

pdwFlags - in/out - On input, 0 or a combination of 1 or more of
the following values:

ODM_SILENT - The DMS should not require user interaction
while satisfying the call. If the call cannot be satisfied
without user interaction then an error should be returned.

Upon return, one of the following flags will be set unless an
error occurred:

ODM_MODIFYMODE - The user indicated that the selected
document should be opened in a modifiable mode.

ODM_VIEWMODE - The user indicated that the selected
document should be opened in a view-only mode.

Return value: 0 if successful. ODM_E_CANCEL if the user does not
make a selection. ODM_E_APPSELECT if the user indicated that he
wants to make a selection using the application's regular file selection
facilities rather than using the DMS. In this case the application should
just display its regular selection dialog as though ODMA were not
present. ODM_E_OTHERAPP if the user selected a document from a
different application; generally the caller should treat this the same as
ODM_E_CANCEL. ODM_E_USERINT if the ODM_SILENT flag was
specified and the DMS could not make a selection without user

ODMA Version 1.0 6 4/18/21

interaction. ODM_E_HANDLE if odmHandle was invalid.

In the case that ODM_E_APPSELECT is returned and a document is
opened through the application's regular file selection facilities, the
following behaviors are recommended:

1. File | Save and File | Close should be handled as though the DMS
were not present.

2. File | Save As should he handled through ODMA (specifically through
the ODMSaveAs function). This will allow documents to be imported
into the DMS.

ODMOpenDoc
ODMSTATUS ODMOpenDoc(ODMHANDLE odmHandle, DWORD flags,
LPSTR lpszDocId, LPSTR lpszDocLocation)

This function causes the DMS to make a document available to the
application. It performs any necessary pre-processing (mapping
network drives, checking security, etc.) and then returns to the
application a temporary filename that can be used to access the
document during the current session. Note that this function does not
open the document file; it merely makes the file temporarily available
to the calling application. The application can then open, read, write,
and close the file as needed. When the application is finished using
the file, it should call ODMCloseDoc.

If ODM_MODIFYMODE is requested, the DMS may refuse the request
if the user has view-only rights or if the document is currently checked-
out to another user. It is recommended that the application retry the
request specifying ODM_VIEWMODE in this case so that the user can
at least view the document.

Parameters:

odmHandle - in - An ODMA handle obtained by a previous call to
ODMRegisterApp.

flags - in - One or more of the following flags:

ODMA Version 1.0 7 4/18/21

ODM_MODIFYMODE - The DMS should make the
document available in a modifiable mode. This mode
is assumed if ODM_VIEWMODE is not explicitly
requested.

ODM_VIEWMODE - The DMS should make the document
available in a view-only mode. Any changes made to
the document will not be transferred back to the
document repository. Note that it is invalid to specify
both ODM_VIEWMODE and ODM_MODIFYMODE in
the same call.

ODM_SILENT - The DMS should not require user interaction
while satisfying the call. If the call cannot be satisfied
without user interaction then an error should be
returned.

lpszDocId - in - A document ID. This is typically obtained by a call
to ODMSelectDoc or ODMNewDoc.

lpszDocLocation - out - A pointer to a buffer of at least
ODM_FILENAME_MAX bytes in length. The DMS will store in
this buffer a Null-terminated string indicating where the caller can
access the document during the current session. Typically this
will be the full path/file name of the specified document, but
some document formats may dictate another type of location
such as a directory name. If an error occurs then the contents of
the buffer will be undefined.

Return value: 0 if successful. ODM_E_ACCESS if the user does not
have the access rights requested (for example, modify mode was
requested but the user only has view rights to the document).
ODM_E_INUSE if the user is currently unable to access the document
because it is checked out by another user; this differs from
ODM_E_ACCESS in that it is expected that the user might be able to
access the document in the specified mode at some point in the future.
ODM_E_DOCID if the document ID is invalid or refers to a document
that no longer exists. ODM_E_USERINT if the ODM_SILENT flag was
specified and the DMS could not make the specified document
available without user interaction. ODM_E_FAIL if the DMS is unable
to make the document accessible for any other reason.
ODM_E_HANDLE if odmHandle was invalid.

ODMA Version 1.0 8 4/18/21

ODMSaveDoc
ODMSTATUS ODMSaveDoc(ODMHandle odmHandle, LPSTR lpszDocId,
LPSTR lpszNewDocId)

This function tells the DMS that the document should be saved to the
document repository. An application would typically call this function
after saving changes to the temporary file returned by ODMOpenDoc.
A new document ID is returned to the application which should be used
for all subsequent operations on the document. This ID replaces the
previous document ID in the current session. The new ID may or may
not be the same as the original ID. It will usually be the same unless
the DMS saved the document as a new version or as a new document.
If the new ID is different from the previous ID then the previous ID
cannot be used subsequently without doing an ODMOpenDoc on it.

Parameters:

odmHandle - in - An ODMA handle obtained by a previous call to
ODMRegisterApp.

lpszDocId - in - A document ID. This is typically obtained by a call
to ODMSelectDoc or ODMNewDoc. This document must have
been previously opened in modify mode by a call to
ODMOpenDoc.

lpszNewDocId - out - A pointer to a buffer where the DMS will
return the new ID of the document. This buffer needs to be at
least ODM_DOCID_MAX bytes in length. If successful then a
null-terminated document ID will be returned here. Otherwise the
contents of the buffer will be undefined.

Return value: 0 if successful. ODM_E_OPENMODE if the document
was not previously opened in modifiable mode. ODM_E_FAIL if the
DMS is unable to save the document to the document repository.
ODM_E_HANDLE if odmHandle was invalid.

ODMA Version 1.0 9 4/18/21

ODMCloseDoc
ODMSTATUS ODMCloseDoc(ODMHANDLE odmHandle, LPSTR
lpszDocId, DWORD activeTime, DWORD pagesPrinted, LPVOID
sessionData, WORD dataLen)

An application that has opened a document by calling ODMOpenDoc
must call ODMCloseDoc when it is finished using the document. The
application should not call this function until after it has closed the
document, because the DMS may move the document or make it
inaccessible as a result of this call. Note that this function will not
cause the document to be saved into the DMS's persistent repository
unless ODMSaveDoc has been called previously.
Parameters:

odmHandle - in - An ODMA handle obtained by a previous call to
ODMRegisterApp.

lpszDocId - in - A Null-terminated document ID. This is typically
obtained by a call to ODMSelectDoc or ODMNewDoc. This
document must have been previously opened by a call to
ODMOpenDoc.

activeTime - in - If the application tracks time spent editing the
document then it should pass the number of seconds here.
Otherwise it should pass 0xFFFFFFFF.

pagesPrinted - in - If the application tracks the number of pages
printed from this document during the current editing session, it
should pass this number here. Otherwise it should pass
0xFFFFFFFF.

sessionData - in - The application may pass other information
regarding the current editing session in this parameter. For
example, an application might pass the number of keystrokes
that were entered. The calling application is free to determine
the format of this data, so DMSs that rely on this information will
have to coordinate with each application supported. Null should
be passed if the application has no meaningful information to
pass through this parameter.

dataLen - in - The length of the data passed in the sessionData

ODMA Version 1.0 10 4/18/21

parameter. Ignored if sessionData is Null.

Return value: 0 if successful. ODM_E_NOOPEN if the document
was not open. ODM_E_HANDLE if odmHandle was invalid.

ODMNewDoc
ODMSTATUS ODMNewDoc(ODMHANDLE odmHandle, LPSTR lpszDocId,
DWORD dwFlags, LPSTR lpszFormat, LPSTR lpszDocLocation)

This function causes the DMS to create a new document profile and
return the document ID for the new document to the calling
application.

Parameters:

odmHandle - in - An ODMA handle obtained by a previous call to
ODMRegisterApp.

lpszDocId - out - A pointer to a buffer where the DMS will return
the ID of the document selected by the user. This buffer needs to
be at least ODM_DOCID_MAX bytes in length. If successful then
a Null-terminated document ID will be returned here. Otherwise
the contents of the buffer will be undefined.

dwFlags - in - 0 or a combination of 1 or more of the following
values:

ODM_SILENT - The DMS should not require user interaction
while satisfying the call. If the call cannot be satisfied
without user interaction then an error should be returned.

lpszFormat - in - A Null-terminated string naming the format of
the new document's content. Note that this may be changed
later via an ODMSaveAs call.

lpszDocLocation - in - Normally DMSs select the location for a new
document. But if the document already exists and is large or

ODMA Version 1.0 11 4/18/21

resides on read-only storage then the calling application can use
this parameter to tell the DMS where the document is currently
stored. This is a hint to the DMS that the document should be left
in this location. Note that some DMSs may ignore this hint and
move the document anyway. The calling application should not
directly access the document in this location following the call to
ODMNewDoc; it should use ODMOpenDoc to obtain a location
for subsequent access to the document. In most cases the
application should pass Null in this parameter to allow the DMS to
determine the document's storage location.

Return value: 0 if successful. ODM_E_CANCEL if the user cancels
the creation of the new document. ODM_E_FAIL if the DMS failed to
create the new document. ODM_E_USERINT if the ODM_SILENT flag
was specified and the DMS could not make the specified document
available without user interaction. ODM_E_APPSELECT if the user
indicated that he wants to select the document's filename using the
application's regular file selection facilities rather than using the DMS.
In this case the application should just display its regular filename
selection dialog as though ODMA were not present. ODM_E_HANDLE
if odmHandle was invalid.

ODMSaveAs
ODMSTATUS ODMSaveAs(ODMHANDLE odmHandle, LPSTR lpszDocId,
LPSTR lpszNewDocId, LPSTR lpszFormat, ODMSAVEASCALLBACK
pcbCallBack, LPVOID pInstanceData)

This function causes the DMS to return a new document ID for a
document that is based on an existing document. An application would
typically call this function in response to the user selecting a SaveAs
menu option. ODMSaveAs causes the DMS to display options to the
user for selecting the destination for the new document. This might be
an entirely new document or a new version of the current document.

Often the application will want to present additional options to the user
at this point such as different file formats or encrypting the document.
This is accomplished via the pcbCallBack parameter. ODMA
implementors should provide a method for users to access this
function if desired. For example, the DMS may show a dialog that
ODMA Version 1.0 12 4/18/21

includes an Options button. If the user clicks this button, the DMS
would call the application's callback function which would give the
application a chance to display other save options.

Note that following a successful call to ODMSaveAs the calling
application may have two different document IDs to work with. This is
different than the situation with ODMSaveDoc where the new ID
replaces the old one in the current session. The state of the document
specified by the old ID remains the same after the call. The document
specified by the new ID will be in the closed state following the call. A
typical sequence of operations an application might follow in response
to the user selecting File | Save As would be:

Application passes the currently open document's ID to ODMSaveAs.
If Null is returned for the new ID then the sequence is complete.
If a new ID for the document is returned then continue with the
steps below.

Application calls ODMOpenDoc on the new ID. This returns a new
filename for the document.

Application saves the document to the new filename and then calls
ODMSaveDoc on the new ID to indicate to the DMS that the new
document should be saved in the document repository.

Application calls ODMCloseDoc on the old ID.
The application can now forget about the old ID and use the new ID for

all subsequent operations on the file. When the current session is
completed it will call ODMCloseDoc on the new ID.

Parameters:

odmHandle - in - An ODMA handle obtained by a previous call to
ODMRegisterApp.

lpszDocId - in - A Null-terminated document ID. This is typically
obtained by a call to ODMSelectDoc or ODMNewDoc. This
document may or may not be open at the time that ODMSaveAs
is called. Its open status will remain the same after this call.

lpszNewDocId - out - A pointer to a buffer where the DMS will
return the ID of the new document. This buffer needs to be at
least ODM_DOCID_MAX bytes in length. If successful then a
Null-terminated document ID will be returned here, unless the

ODMA Version 1.0 13 4/18/21

document is saved with the current ID. In this case the first byte
of this buffer will be set to Null and 0 will be returned. Otherwise
the contents of the buffer will be undefined.

lpszFormat - in - A Null-terminated string naming the format in
which the application expects to save the document. This may
be passed as a parameter to the pcbCallBack function which may
return a different format.

pcbCallBack - in - A pointer to a callback function that can be
used by the application to make other saving options available to
the user. Any UI presented by this callback function should be
task modal. The function should return a pointer to a format
string which may or may not be the same as the original format
string. This parameter may be null if the application does not
wish to present any options. The callback function's interface is
as follows:

LPSTR SaveAsCallBack(DWORD dwEnvData,
LPSTR lpszFormat, LPVOID pInstanceData)

dwEnvData - in - Environment data. On Windows platforms
this is a Window handle for a parent window to associate
with the callback function's display. If the DMS displayed a
dialog in response to the ODMSaveAs call then it should
pass the window handle for that dialog. Otherwise it should
pass the window handle obtained from the ODMRegisterApp
call. The callback function may use this window handle as
the parent window for any dialogs or other windows it
displays.

lpszFormat - The currently selected document format.

pInstanceData - The instance data passed from the calling
application.

pInstanceData - in - A pointer to caller context information that
will be passed to the pcbCallBack function. This data will not be
accessed by ODMA.

Return value: 0 if successful. ODM_E_CANCEL if the user cancels

ODMA Version 1.0 14 4/18/21

the creation of the new document. ODM_E_DOCID if the document ID
is invalid or refers to a document that no longer exists. ODM_E_FAIL if
the DMS is unable to create the new document. ODM_E_HANDLE if
odmHandle was invalid.

ODMActivate
ODMSTATUS ODMActivate(ODMHANDLE odmHandle, WORD action,
LPSTR lpszDocId)

This function causes the DMS to perform actions that do not require
cooperation from the calling application. Control is returned to the
calling application after the specified action has been completed. Note
that a DMS is not required to support all of these actions.

Parameters:

odmHandle - in - An ODMA handle obtained by a previous call to
ODMRegisterApp.

action - in - One of the following action codes:

ODM_NONE - No specific action is requested. The DMS
should simply make itself visible and let the user
select the action to be performed.

ODM_DELETE - The DMS should delete the specified
document. Note that most DMSs will not allow a
deletion to occur if the document is currently in use.

ODM_SHOWATTRIBUTES - The DMS should display the
specified document's profile or attributes.

ODM_EDITATTRIBUTES - The DMS should display the
specified document's profile or attributes, and the user
should be put in edit mode. Note that some DMSs will
not allow a document's attributes to be edited while
the document is in use.

ODM_VIEWDOC - The DMS should display the specified
document in a viewer window.

ODM_OPENDOC - The DMS should open the specified
document in its native application. This function is
intended for use by applications other than the

ODMA Version 1.0 15 4/18/21

document's native application (e-mail, workflow,
annotation, etc.). Applications should use
ODMOpenDoc to access their own documents.

lpszDocId - in - A document ID specifying the document on which
to perform the requested action. This parameter may be Null if
the action is ODM_NONE.

Return value: 0 if successful. ODM_E_DOCID if the document ID is
invalid or refers to a document that no longer exists. ODM_E_CANCEL
if the action was canceled by the user. ODM_E_ITEM if action is
invalid or not supported by the DMS. ODM_E_FAIL if the action could
not be completed by the DMS. ODM_E_HANDLE if odmHandle was
invalid.

ODMGetDocInfo
ODMSTATUS ODMGetDocInfo(ODMHANDLE odmHandle, LPSTR
lpszDocId, WORD item, LPSTR lpszData, WORD dataLen)

An application can use this function to obtain information about a
document from the DMS.

Parameters:

odmHandle - in - An ODMA handle obtained by a previous call to
ODMRegisterApp.

lpszDocId - in - A Null-terminated document ID. This is typically
obtained by a call to ODMSelectDoc or ODMNewDoc.

item - in - One of the following:

ODM_AUTHOR - Author of the document.
ODM_NAME - Name of the document. This is a descriptive

name for the document, not the filename.
ODM_TYPE - Type of the document. This is typically an

indication of the format or content of the document,
i.e. correspondence, memo, contract, etc.

ODM_TITLETEXT - Suggested text to display in the
document window's title bar. This may include one or

ODMA Version 1.0 16 4/18/21

more fields from the document's profile and possibly
other information as well.

ODM_CONTENTFORMAT - The format
string indicating the format of the document's content.

ODM_DMS_DEFINED - The lpszData parameter contains a
DMS-specific indication of the data to be returned.
Note that an application must know which DMS it is
talking to and must understand the data indications
supported by that DMS in order to use this item name.

lpszData - in/out - On input, ignored if item is anything other than
ODM_DMS_DEFINED. If item is ODM_DMS_DEFINED then
lpszData contains an indication of the data to be returned. On
output, the requested data is returned in the buffer pointed to by
lpszData.

dataLen - in - length of the output buffer pointed to by lpszData.
If the data to be returned is longer than this, it will be truncated.
In either case the returned data will always be terminated with a
Null character.

Return value: 0 if successful. ODM_E_DOCID if the document ID is
invalid or refers to a document that no longer exists. ODM_E_ITEM if
item is invalid or not supported by the document's DMS.
ODM_E_HANDLE if odmHandle was invalid.

ODMSetDocInfo
ODMSTATUS ODMSetDocInfo(ODMHANDLE odmHandle, LPSTR
lpszDocId, WORD item, LPSTR lpszData)

An application can use this function to pass information about the
document to the DMS. The DMS may or may not accept the
information; most DMSs validate attributes like document types and
authors against predefined tables.

Parameters:

odmHandle - in - An ODMA handle obtained by a previous call to
ODMRegisterApp.

ODMA Version 1.0 17 4/18/21

lpszDocId - in - A Null-terminated document ID. This is typically
obtained by a call to ODMSelectDoc or ODMNewDoc.

item - in - One of the following:

ODM_AUTHOR - Author of the document.
ODM_NAME - Name of the document. This is a descriptive

name for the document, not the filename.
ODM_TYPE - Type of the document. This is typically an

indication of the format or content of the document,
i.e. correspondence, memo, contract, etc.

ODM_CONTENTFORMAT - The document's format string.
Note that this merely informs the DMS of a change in
the document's format; it does not cause a conversion
process to take place within the DMS.

ODM_DMS_DEFINED - The lpszData parameter contains a
DMS-specific indication of the data being passed as
well as the data itself. Note that an application must
know which DMS it is talking to and must understand
the data indications supported by that DMS in order to
use this item name.

lpszData - in - the data being passed to the DMS. Must be null-
terminated.

Return value: 0 if successful. ODM_E_DOCID if the document ID is
invalid or refers to a document that no longer exists. ODM_E_ITEM if
item is invalid. ODM_E_HANDLE if odmHandle was invalid.
ODM_E_FAIL if the specified data was invalid or the DMS was unable
to accept it for other reasons.

ODMGetDMSInfo
ODMSTATUS ODMGetDMSInfo(ODMHANDLE odmHandle, LPSTR
lpszDmsId, LPWORD pwVerNo, LPDWORD pdwExtensions)

This function returns information to the application about the currently
active DMS.

Parameters:
ODMA Version 1.0 18 4/18/21

odmHandle - in - An ODMA handle obtained by a previous call to
ODMRegisterApp.
lpszDmsId - out - This should point to an area at least
ODM_DMID_MAX bytes long. A Null-terminated ID identifying
the DMS is returned here. This is the same ID embedded in
document IDs returned by this DMS.

pwVerNo - out - The version of the ODMA API supported by this
DMS is returned here.

pdwExtensions - out - Indications of extensions to the base ODMA
API that are supported by this DMS are returned here. No
extensions have been defined yet, so currently 0 will always be
returned here.

Return value: 0 if successful. ODM_E_HANDLE if odmHandle was
invalid.

ODMQueryInterface
HRESULT ODMQueryInterface(ODMHANDLE odmHandle, LPSTR
lpszDocId, REFIID riid, LPVOID FAR *ppvObj)

An application can use this function to get a COM interface from an
ODMA provider. All ODMA providers support the IODMDocMan
interface, and individual DMSs may support other interfaces as well.
Note that this function is prototyped in odmacom.h instead of odma.h,
so that non-COM-aware applications do not have to #include the
header files that define interface IDs.

Parameters:

odmHandle - in - An ODMA handle obtained by a previous call to
ODMRegisterApp.

lpszDocId - in - An ODMA document ID or Null. If Null then the
application's default DMS is queried for the interface. Otherwise
the DMS that created this document ID is queried.

riid - in - The interface to be obtained from the DMS.
ODMA Version 1.0 19 4/18/21

ppvObj - out - If the requested interface is supported by the DMS
then it is returned here. Otherwise ppvObj is set to Null.

Return value: S_OK if successful. E_INVALIDARG if odmHandle or
lpszDocId is invalid. E_NOINTERFACE if the requested interface is not
supported by the DMS.

ODMGetLeadMoniker
ODMSTATUS ODMGetLeadMoniker(ODMHANDLE odmHandle, LPSTR
lpszDocId, LPMONIKER FAR *ppMoniker)

Applications that are OLE 2 servers typically form composite monikers
for their OLE links by combining a file moniker representing the
document with one or more item monikers representing a particular
section of the document. This approach often does not work in
environments where document management systems are in use
because the filename that the application sees is usually just
temporary. This function lets the application obtain a leading moniker
from the DMS that can be used in place of the file moniker.
This function will only be available on platforms supporting OLE 2. This
function may not be supported by some DMSs; those DMSs will return
ODM_E_FAIL. In this case the application should go ahead and use
the file moniker as though ODMA were not present. Note that this
function is prototyped in odmacom.h instead of odma.h, so that non-
OLE-aware applications do not have to #include the OLE header files.

Parameters:

odmHandle - in - An ODMA handle obtained by a previous call to
ODMRegisterApp.

lpszDocId - in - An ODMA document ID.

ppMoniker - out - A leading moniker for the specified document ID
will be returned here if successful. Otherwise Null will be
returned here.

Return value: 0 if successful. ODM_E_FAIL if the DMS that created
ODMA Version 1.0 20 4/18/21

the specified document ID does not support OLE moniker building.
ODM_E_DOCID if the document ID is invalid or refers to a document
that no longer exists. ODM_E_HANDLE if odmHandle is invalid.

DMS Interface

A DMS interfaces with ODMA through a function called
ODMGetODMInterface and through COM interfaces. When an
application calls the ODMA connection manager's ODMRegisterApp
function, the connection manager calls the appropriate DMS's
ODMGetODMInterface function to establish a connection with the
DMS. This function is defined as follows:

ODMGetODMInterface
HRESULT ODMGetODMInterface(REFIID riid, LPVOID FAR *ppvObj,
LPUNKNOWN pUnkOuter, LPVOID pReserved, LPSTR lpszAppId, DWORD
dwEnvData)

The ODMA connection manager calls this function to get an interface
from a DMS. This function is not available to ODMA-aware
applications.

Parameters:

riid - in - ID of the interface being requested. This will typically be
IID_IODMDocMan, but the connection manager may also pass
through calls for other interfaces from the client. ODMA providers
must support the IID_IODMDocMan interface.

ppvObj - out - The requested interface should be returned here. If
the DMS cannot return the requested interface, ppvObj should be
set to Null.

pUnkOuter - in - The controlling IUnknown interface for the
aggregate object. ODMA providers must support aggregation.

pReserved - in - Reserved for future use. Will always be set to
Null.

ODMA Version 1.0 21 4/18/21

lpszAppId - in - The ID of the calling application. See
ODMRegisterApp.

dwEnvData - in - Environment specific data. On Windows
platforms this will be a window handle from the calling
application. See ODMRegisterApp.

Return value: S_OK if successful. E_NOINTERFACE if the requested
interface is not supported.

Binding to the API under Windows 3.x

The ODMA connection manager, ODMA.DLL, and a corresponding link
library, ODMA.LIB, will be made freely available to any application
vendor wishing to use them. Applications can choose either of the
methods described below to bind to ODMA:

1. Link to ODMA.LIB. Applications choosing this approach will need
to install a copy of ODMA.DLL into the Windows system directory
at the time the application is installed unless a newer copy of
ODMA.DLL already resides there. At startup time the application
can call ODMRegisterApp to determine whether or not an
ODMA provider is present for the calling application.

2. Dynamically load ODMA.DLL at startup time with a call to
LoadLibrary. With this approach the application has to call
GetProcAddress to get a pointer to each ODMA function it will call,
but the application does not have to do anything related to ODMA
at installation time. If ODMA.DLL doesn't exist or if
ODMRegisterApp returns ODM_E_NODMS then the application
knows that no ODMA provider is present for the calling
application.

Installing a DMS under Windows 3.x

The ODMA connection manager, ODMA.DLL, will be provided to all DMS
vendors that want to support the ODMA specification. This DLL will
serve as a common entry point for applications that wish to call ODMA

ODMA Version 1.0 22 4/18/21

functions. Its implementation of ODMRegisterApp will figure out
which DMS is registered for default use by the calling application. It
will then load the appropriate DMS's DLL and pass through the function
call. All other ODMA function calls that do not include a document ID
will be passed to this default DMS.

When an ODMA call is made that includes a document ID, the ODMA
connection manager will determine which DMS created the ID. If that
DMS has not been initialized yet by the calling application, the
connection manager will call the provider's ODMGetODMInterface
function and will then pass through the current ODMA function call.

As part of its installation, a DMS should check whether a copy of
ODMA.DLL already exists in the Windows system directory. If it does
not or if the DMS has a newer version then it should copy its version of
ODMA.DLL to the Windows system directory. Then it should register
with the ODMA connection manager by adding one or more keys to the
registration database.

Each DMS must add a subkey to the root level ODMA key. This subkey
should be named the same as the DMS's DMS ID, and the subkey's
value should specify the location of the DLL containing the DMS's
ODMA entry points. For example, suppose a DMS with a DMS ID of
DDD implemented its ODMA entry points in H:\ABC\XYZ.DLL. It would
add the following key and value to the registration database:

ODMA\DDD = H:\ABC\XYZ.DLL

If the DMS wanted to serve as the default ODMA provider to be used
with all ODMA-aware applications that were not registered with a
specific DMS, it would add the DEFAULT subkey to its DMS ID key as
shown below:

ODMA\DDD\DEFAULT

If the DMS wanted to specifically register itself as the ODMA provider
for one or more applications, it would also add a subkey to the relevant
applications' root level keys. Note that this is only necessary if a
different DMS is registered as the default ODMA provider. Each time an
application calls ODMRegisterApp, the connection manager looks in
the registration database for a root-level key that matches the

ODMA Version 1.0 23 4/18/21

specified application ID. If it finds such a key then it looks under it for
a subkey called ODMA. The value of this key is the DMS ID of the
specifically registered DMS. If the application ID key is not found or if
the subkey ODMA does not exist under it, the connection manager
looks at the subkeys of the root-level key ODMA for a default ODMA
implementation.

For example, suppose a document management system with a DMS ID
of DDD wanted to support only one particular application that used
QQQ as its application ID. It would add the following key and value to
the registration database in addition to the ODMA subkey described
above:

QQQ\ODMA = DDD

BHCÄ325

ODMA Version 1.0 24 4/18/21

