
Open Document Management API

Version 1.0

The Open Document Management API (ODMA) is a standardized, high-level interface between
desktop applications and document management systems (DMSs). Its purposes are:

1. To make DMS services available to users of desktop application in a seamless manner
so that these services appear to the user like extensions of the applications.

2. To reduce the application vendors' burden of having to deal with multiple DMS vendors.
By writing to ODMA an application vendor has potentially integrated his application with all
supporting DMSs.

3. To reduce the DMS vendors' burden of integrating with multiple applications. By
supporting ODMA a DMS vendor has potentially integrated with all applications that have written
to ODMA.

4. To reduce effort and complexity needed to install and maintain DMSs.

ODMA specifies a set of interfaces that applications can use to initiate actions within a DMS.
The API is intended to be relatively easy for application vendors to incorporate into updates of
existing applications; it should not require major restructuring. Note that this version of ODMA
does not specify how DMSs may initiate actions within the applications.

The ODMA API is platform-independent. The associated data type definitions and binding
information are platform-specific.

Document IDs

Many of the ODMA functions accept or return a Document ID parameter. A document ID is a
persistent, portable identifier for a document. It can be stored and used in a later session, and it
can be passed across platforms via email or other processes.

Document IDs are case-insensitive, null-terminated strings of printable characters. The format
of a document ID is

::ODMA\DM_ID\DM_SPECIFIC_INFO

The DM_ID portion of a document ID will identify which DMS provided the ID. This information
is primarily for the use of ODMA itself; applications using ODMA generally should not need to
know which DMS provided a particular ID. The ODMA group members will coordinate these IDs
to ensure their uniqueness. The maximum length of the DM_ID portion of the document ID is
specified by the constant ODM_DMID_MAX.

The DM_SPECIFIC_INFO portion of the ID will vary depending on which DMS built the ID. The

ODMA Version 1.0 1 June 24, 1994

total length of the document ID including the terminating Null character cannot exceed
ODM_DOCID_MAX bytes.

ODMA-aware applications should be able to handle a document ID anywhere they handle an
externally-generated document filename. For example, if the application allows a document
filename to be passed as a command line argument then it should allow a document ID to be
passed in the same way. If the application allows document filenames to be used in DDE
commands then it should also support the use of document IDs in the same commands.

Constants

ODM_DOCID_MAX 255 - Maximum length of a document ID including the
terminating Null character.

ODM_FILENAME_MAX platform dependent - Maximum length of a path/filename
returned by ODMA including the terminating Null character. The value will be 128 on
Windows 3.x, 256 on Windows 4.x and Macintosh, and 1024 on Unix platforms.

ODM_API_VERSION 100 - The version of the ODMA API to which this header
file corresponds. See the description of ODMRegisterApp.
ODM_DMID_MAX 9 - Maximum length of a DMS ID including the terminating
Null character.

Error Handling

Nearly all of the ODMA functions use the return value to indicate to the calling application
whether the function succeeded, failed because the user cancelled the operation, or failed for
other reasons. The DMS is responsible for displaying informational error messages to the user
where appropriate except when the ODM_SILENT flag is specified. The DMS must take care to
return the appropriate error indication because applications may act differently depending on
whether an ODMA call was cancelled by the user or failed for other reasons. The calling
application generally should not display error messages when an error value is returned from
ODMA unless the ODM_SILENT flag was specified.

Connections and the ODMA Connection Manager

The ODMA connection manager is a small software module that sits between applications using
ODMA and document management systems implementing ODMA. It manages the connections
between these components and routes ODMA calls to the appropriate provider. A freely-
redistributable copy of the ODMA connection manager will be provided to any vendor wishing to
implement or make use of the ODMA API.

Document Format Names

When new documents are registered with a DMS via ODMA and when an existing document's
format is changed by an application, the application passes a document format name to ODMA.
Document format names are Null-terminated strings defining the format of a document's

ODMA Version 1.0 2 June 24, 1994

content. Application vendors are encouraged to make public the format names they choose for
their proprietary formats so that other ODMA users and providers can standardize on the same
names. The odma.h header file contains names for common, non-proprietary formats such as
text, RTF, and tiff.

Character Sets

All strings passed to or returned from ODMA functions should be in the native character set of
the system on which ODMA is being used. So for example, 8859-1 would be used on English
Windows, Shift-JIS would be used on Japanese Windows, Unicode would be used on NT, etc.
The term "Null-terminated" as used in this specification means terminated by the character set's
natural Null character. For most character sets this means a single byte with the value 0x0; for
Unicode it means a sequence of 2 bytes with the value 0x0. If an application obtains an ODMA
document ID on one platform and later uses it on another platform, the application is
responsible for translating the ID to the native character set of the second platform before using
it there.

Application Interfaces

An ODMA-aware application can choose to communicate with the ODMA Connection Manager
either through a traditional, function-oriented API or through Component Object Model (COM)
interfaces. Prototypes and constants used for the function-oriented API are included in the
odma.h header file. Prototypes, constants, and interface definitions for the COM interface are
included in the odmacom.h header file.

After calling ODMRegisterApp applications can obtain one or more COM interfaces to ODMA
through the ODMQueryInterface function. The IODMDocMan interface provides an alternate
entry point to most of the ODMA functions documented below. This interface and its interface
ID are defined in the odmacom.h header file.

Note that IODMDocMan::QueryInterface will only query the default DMS for the calling
application. The application must call ODMQueryInterface in order to query other DMSs.

ODMA API

ODMRegisterApp
ODMSTATUS ODMRegisterApp(ODMHANDLE FAR *pOdmHandle, WORD version, LPSTR
lpszAppId, DWORD dwEnvData, LPVOID pReserved)

ODMRegisterApp registers an application with the appropriate Document Management System
(DMS) and returns a handle that can be used in calls to other ODMA functions. An application
must call this function before calling any of the other ODMA functions. A task may call
ODMRegisterApp more than once; each call will return a different handle, each of which must
be deregistered via ODMUnRegisterApp.

ODMA Version 1.0 3 June 24, 1994

Parameters:

pOdmHandle - out - If successful, a handle is returned here that can be used in calls to
other ODMA functions. If the registration fails then 0 is returned here.

version - in - Specifies the version of the API required by the application. 100 should be
passed to indicate version 1.0, 110 should be passed to indicate version 1.1, etc. The
macro ODM_API_VERSION can be used to get the correct version number at compile
time. All versions of the ODMA API will be downward compatible, so this should be
interpreted as the minimum version number that the calling application expects the DMS
to support. If the DMS does not support the specified version or a higher version then it
should return an error.

lpszAppId - in - A unique identifier for the application. The maximum length for this string
is 16 characters including the terminating Null, and it cannot begin with a digit. It is
recommended that a Windows application use the File Manager ProgId for its primary
document class, but this is not required.

dwEnvData - in - Environment data. On Windows platforms this is a Window handle for
a parent window in the calling application. The DMS may use this window handle as the
parent window for any dialogs or other windows it displays in response to ODMA calls.
This handle must remain valid for the duration of the ODMA session (i.e. until
ODMUnRegisterApp is called).

pReserved - in - Reserved for future use. Must be set to Null.

Return value: 0 is returned if successful. ODM_E_NODMS is returned if no Document
Management System has been registered for the calling application. ODM_E_CANTINIT is
returned if a DMS is registered for the calling application, but it fails to initialize itself.
ODM_E_VERSION is returned if the DMS does not support the requested version of the API.

ODMUnRegisterApp
void ODMUnRegisterApp(ODMHANDLE odmHandle)

An application that previously registered itself with a DMS via ODMRegisterApp should call this
function when it is finished using the DMS. This would typically be done when the application is
shutting down. After this call returns, the DMS handle is no longer valid and cannot be used for
subsequent calls to ODMA functions.

Parameters:

odmHandle - in - An ODMA handle obtained by a previous call to ODMRegisterApp.

ODMA Version 1.0 4 June 24, 1994

ODMSelectDoc
ODMSTATUS ODMSelectDoc(ODMHANDLE odmHandle, LPSTR lpszDocId, LPDWORD
pdwFlags)

This function causes the DMS to return a document ID representing a document that has been
selected for some action. Typically the DMS will display searching and other dialogs that allow
the user to interactively select a document from among those managed by the DMS. An
application would typically call this function whenever the user needs to select a document to be
opened or imported.

Parameters:

odmHandle - in - An ODMA handle obtained by a previous call to ODMRegisterApp.

lpszDocId - out - A pointer to a buffer where the DMS will return the ID of the document
selected by the user. This buffer needs to be at least ODM_DOCID_MAX bytes in
length. If successful then a null-terminated document ID will be returned here.
Otherwise the contents of the buffer will be undefined.

pdwFlags - in/out - On input, 0 or a combination of 1 or more of the following values:

ODM_SILENT - The DMS should not require user interaction while satisfying the
call. If the call cannot be satisfied without user interaction then an error should
be returned.

Upon return, one of the following flags will be set unless an error occurred:

ODM_MODIFYMODE - The user indicated that the selected document should be
opened in a modifiable mode.

ODM_VIEWMODE - The user indicated that the selected document should be
opened in a view-only mode.

Return value: 0 if successful. ODM_E_CANCEL if the user does not make a selection.
ODM_E_APPSELECT if the user indicated that he wants to make a selection using the
application's regular file selection facilities rather than using the DMS. In this case the
application should just display its regular selection dialog as though ODMA were not present.
ODM_E_OTHERAPP if the user selected a document from a different application; generally the
caller should treat this the same as ODM_E_CANCEL. ODM_E_USERINT if the ODM_SILENT
flag was specified and the DMS could not make a selection without user interaction.
ODM_E_HANDLE if odmHandle was invalid.

In the case that ODM_E_APPSELECT is returned and a document is opened through the
application's regular file selection facilities, the following behaviors are recommended:

1. File | Save and File | Close should be handled as though the DMS were not present.

2. File | Save As should he handled through ODMA (specifically through the ODMSaveAs
function). This will allow documents to be imported into the DMS.

ODMA Version 1.0 5 June 24, 1994

ODMOpenDoc
ODMSTATUS ODMOpenDoc(ODMHANDLE odmHandle, DWORD flags, LPSTR lpszDocId,
LPSTR lpszDocLocation)

This function causes the DMS to make a document available to the application. It performs any
necessary pre-processing (mapping network drives, checking security, etc.) and then returns to
the application a temporary filename that can be used to access the document during the
current session. Note that this function does not open the document file; it merely makes the
file temporarily available to the calling application. The application can then open, read, write,
and close the file as needed. When the application is finished using the file, it should call
ODMCloseDoc.

If ODM_MODIFYMODE is requested, the DMS may refuse the request if the user has view-only
rights or if the document is currently checked-out to another user. It is recommended that the
application retry the request specifying ODM_VIEWMODE in this case so that the user can at
least view the document.

Parameters:

odmHandle - in - An ODMA handle obtained by a previous call to ODMRegisterApp.

flags - in - One or more of the following flags:

ODM_MODIFYMODE - The DMS should make the document available in a
modifiable mode. This mode is assumed if ODM_VIEWMODE is not
explicitly requested.

ODM_VIEWMODE - The DMS should make the document available in a view-
only mode. Any changes made to the document will not be transferred
back to the document repository. Note that it is invalid to specify both
ODM_VIEWMODE and ODM_MODIFYMODE in the same call.

ODM_SILENT - The DMS should not require user interaction while satisfying the
call. If the call cannot be satisfied without user interaction then an error
should be returned.

lpszDocId - in - A document ID. This is typically obtained by a call to ODMSelectDoc or
ODMNewDoc.

lpszDocLocation - out - A pointer to a buffer of at least ODM_FILENAME_MAX bytes in
length. The DMS will store in this buffer a Null-terminated string indicating where the
caller can access the document during the current session. Typically this will be the full
path/file name of the specified document, but some document formats may dictate
another type of location such as a directory name. If an error occurs then the contents
of the buffer will be undefined.

Return value: 0 if successful. ODM_E_ACCESS if the user does not have the access rights
requested (for example, modify mode was requested but the user only has view rights to the

ODMA Version 1.0 6 June 24, 1994

document). ODM_E_INUSE if the user is currently unable to access the document because it is
checked out by another user; this differs from ODM_E_ACCESS in that it is expected that the
user might be able to access the document in the specified mode at some point in the future.
ODM_E_DOCID if the document ID is invalid or refers to a document that no longer exists.
ODM_E_USERINT if the ODM_SILENT flag was specified and the DMS could not make the
specified document available without user interaction. ODM_E_FAIL if the DMS is unable to
make the document accessible for any other reason. ODM_E_HANDLE if odmHandle was
invalid.

ODMSaveDoc
ODMSTATUS ODMSaveDoc(ODMHandle odmHandle, LPSTR lpszDocId, LPSTR
lpszNewDocId)

This function tells the DMS that the document should be saved to the document repository. An
application would typically call this function after saving changes to the temporary file returned
by ODMOpenDoc. A new document ID is returned to the application which should be used for
all subsequent operations on the document. This ID replaces the previous document ID in the
current session. The new ID may or may not be the same as the original ID. It will usually be
the same unless the DMS saved the document as a new version or as a new document. If the
new ID is different from the previous ID then the previous ID cannot be used subsequently
without doing an ODMOpenDoc on it.

Parameters:

odmHandle - in - An ODMA handle obtained by a previous call to ODMRegisterApp.

lpszDocId - in - A document ID. This is typically obtained by a call to ODMSelectDoc or
ODMNewDoc. This document must have been previously opened in modify mode by a
call to ODMOpenDoc.

lpszNewDocId - out - A pointer to a buffer where the DMS will return the new ID of the
document. This buffer needs to be at least ODM_DOCID_MAX bytes in length. If
successful then a null-terminated document ID will be returned here. Otherwise the
contents of the buffer will be undefined.

Return value: 0 if successful. ODM_E_OPENMODE if the document was not previously
opened in modifiable mode. ODM_E_FAIL if the DMS is unable to save the document to the
document repository. ODM_E_HANDLE if odmHandle was invalid.

ODMCloseDoc
ODMSTATUS ODMCloseDoc(ODMHANDLE odmHandle, LPSTR lpszDocId, DWORD
activeTime, DWORD pagesPrinted, LPVOID sessionData, WORD dataLen)

An application that has opened a document by calling ODMOpenDoc must call ODMCloseDoc

ODMA Version 1.0 7 June 24, 1994

when it is finished using the document. The application should not call this function until after it
has closed the document, because the DMS may move the document or make it inaccessible
as a result of this call. Note that this function will not cause the document to be saved into the
DMS's persistent repository unless ODMSaveDoc has been called previously.

Parameters:

odmHandle - in - An ODMA handle obtained by a previous call to ODMRegisterApp.

lpszDocId - in - A Null-terminated document ID. This is typically obtained by a call to
ODMSelectDoc or ODMNewDoc. This document must have been previously opened
by a call to ODMOpenDoc.

activeTime - in - If the application tracks time spent editing the document then it should
pass the number of seconds here. Otherwise it should pass 0xFFFFFFFF.

pagesPrinted - in - If the application tracks the number of pages printed from this
document during the current editing session, it should pass this number here. Otherwise
it should pass 0xFFFFFFFF.

sessionData - in - The application may pass other information regarding the current
editing session in this parameter. For example, an application might pass the number of
keystrokes that were entered. The calling application is free to determine the format of
this data, so DMSs that rely on this information will have to coordinate with each
application supported. Null should be passed if the application has no meaningful
information to pass through this parameter.

dataLen - in - The length of the data passed in the sessionData parameter. Ignored if
sessionData is Null.

Return value: 0 if successful. ODM_E_NOOPEN if the document was not open.
ODM_E_HANDLE if odmHandle was invalid.

ODMNewDoc
ODMSTATUS ODMNewDoc(ODMHANDLE odmHandle, LPSTR lpszDocId, DWORD dwFlags,
LPSTR lpszFormat, LPSTR lpszDocLocation)

This function causes the DMS to create a new document profile and return the document ID for
the new document to the calling application.

Parameters:

odmHandle - in - An ODMA handle obtained by a previous call to ODMRegisterApp.

lpszDocId - out - A pointer to a buffer where the DMS will return the ID of the document
selected by the user. This buffer needs to be at least ODM_DOCID_MAX bytes in
length. If successful then a Null-terminated document ID will be returned here.

ODMA Version 1.0 8 June 24, 1994

Otherwise the contents of the buffer will be undefined.

dwFlags - in - 0 or a combination of 1 or more of the following values:

ODM_SILENT - The DMS should not require user interaction while satisfying the
call. If the call cannot be satisfied without user interaction then an error should
be returned.

lpszFormat - in - A Null-terminated string naming the format of the new document's
content. Note that this may be changed later via an ODMSaveAs call.

lpszDocLocation - in - Normally DMSs select the location for a new document. But if the
document already exists and is large or resides on read-only storage then the calling
application can use this parameter to tell the DMS where the document is currently
stored. This is a hint to the DMS that the document should be left in this location. Note
that some DMSs may ignore this hint and move the document anyway. The calling
application should not directly access the document in this location following the call to
ODMNewDoc; it should use ODMOpenDoc to obtain a location for subsequent access
to the document. In most cases the application should pass Null in this parameter to
allow the DMS to determine the document's storage location.

Return value: 0 if successful. ODM_E_CANCEL if the user cancels the creation of the new
document. ODM_E_FAIL if the DMS failed to create the new document. ODM_E_USERINT if
the ODM_SILENT flag was specified and the DMS could not make the specified document
available without user interaction. ODM_E_APPSELECT if the user indicated that he wants to
select the document's filename using the application's regular file selection facilities rather than
using the DMS. In this case the application should just display its regular filename selection
dialog as though ODMA were not present. ODM_E_HANDLE if odmHandle was invalid.

ODMSaveAs
ODMSTATUS ODMSaveAs(ODMHANDLE odmHandle, LPSTR lpszDocId, LPSTR
lpszNewDocId, LPSTR lpszFormat, ODMSAVEASCALLBACK pcbCallBack, LPVOID
pInstanceData)

This function causes the DMS to return a new document ID for a document that is based on an
existing document. An application would typically call this function in response to the user
selecting a SaveAs menu option. ODMSaveAs causes the DMS to display options to the user
for selecting the destination for the new document. This might be an entirely new document or
a new version of the current document.

Often the application will want to present additional options to the user at this point such as
different file formats or encrypting the document. This is accomplished via the pcbCallBack
parameter. ODMA implementors should provide a method for users to access this function if
desired. For example, the DMS may show a dialog that includes an Options button. If the user
clicks this button, the DMS would call the application's callback function which would give the

ODMA Version 1.0 9 June 24, 1994

application a chance to display other save options.

Note that following a successful call to ODMSaveAs the calling application may have two
different document IDs to work with. This is different than the situation with ODMSaveDoc
where the new ID replaces the old one in the current session. The state of the document
specified by the old ID remains the same after the call. The document specified by the new ID
will be in the closed state following the call. A typical sequence of operations an application
might follow in response to the user selecting File | Save As would be:

Application passes the currently open document's ID to ODMSaveAs. If Null is returned for the
new ID then the sequence is complete. If a new ID for the document is returned then
continue with the steps below.

Application calls ODMOpenDoc on the new ID. This returns a new filename for the document.
Application saves the document to the new filename and then calls ODMSaveDoc on the new

ID to indicate to the DMS that the new document should be saved in the document
repository.

Application calls ODMCloseDoc on the old ID.
The application can now forget about the old ID and use the new ID for all subsequent

operations on the file. When the current session is completed it will call ODMCloseDoc
on the new ID.

Parameters:

odmHandle - in - An ODMA handle obtained by a previous call to ODMRegisterApp.

lpszDocId - in - A Null-terminated document ID. This is typically obtained by a call to
ODMSelectDoc or ODMNewDoc. This document may or may not be open at the time
that ODMSaveAs is called. Its open status will remain the same after this call.

lpszNewDocId - out - A pointer to a buffer where the DMS will return the ID of the new
document. This buffer needs to be at least ODM_DOCID_MAX bytes in length. If
successful then a Null-terminated document ID will be returned here, unless the
document is saved with the current ID. In this case the first byte of this buffer will be set
to Null and 0 will be returned. Otherwise the contents of the buffer will be undefined.

lpszFormat - in - A Null-terminated string naming the format in which the application
expects to save the document. This may be passed as a parameter to the pcbCallBack
function which may return a different format.

pcbCallBack - in - A pointer to a callback function that can be used by the application to
make other saving options available to the user. Any UI presented by this callback
function should be task modal. The function should return a pointer to a format string
which may or may not be the same as the original format string. This parameter may be
null if the application does not wish to present any options. The callback function's
interface is as follows:

LPSTR SaveAsCallBack(DWORD dwEnvData, LPSTR lpszFormat, LPVOID
pInstanceData)

ODMA Version 1.0 10 June 24, 1994

dwEnvData - in - Environment data. On Windows platforms this is a Window
handle for a parent window to associate with the callback function's display. If
the DMS displayed a dialog in response to the ODMSaveAs call then it should
pass the window handle for that dialog. Otherwise it should pass the window
handle obtained from the ODMRegisterApp call. The callback function may use
this window handle as the parent window for any dialogs or other windows it
displays.

lpszFormat - The currently selected document format.

pInstanceData - The instance data passed from the calling application.

pInstanceData - in - A pointer to caller context information that will be passed to the
pcbCallBack function. This data will not be accessed by ODMA.

Return value: 0 if successful. ODM_E_CANCEL if the user cancels the creation of the new
document. ODM_E_DOCID if the document ID is invalid or refers to a document that no longer
exists. ODM_E_FAIL if the DMS is unable to create the new document. ODM_E_HANDLE if
odmHandle was invalid.

ODMActivate
ODMSTATUS ODMActivate(ODMHANDLE odmHandle, WORD action, LPSTR lpszDocId)

This function causes the DMS to perform actions that do not require cooperation from the calling
application. Control is returned to the calling application after the specified action has been
completed. Note that a DMS is not required to support all of these actions.

Parameters:

odmHandle - in - An ODMA handle obtained by a previous call to ODMRegisterApp.

action - in - One of the following action codes:

ODM_NONE - No specific action is requested. The DMS should simply make
itself visible and let the user select the action to be performed.

ODM_DELETE - The DMS should delete the specified document. Note that
most DMSs will not allow a deletion to occur if the document is currently
in use.

ODM_SHOWATTRIBUTES - The DMS should display the specified document's
profile or attributes.

ODM_EDITATTRIBUTES - The DMS should display the specified document's
profile or attributes, and the user should be put in edit mode. Note that
some DMSs will not allow a document's attributes to be edited while the
document is in use.

ODM_VIEWDOC - The DMS should display the specified document in a viewer
window.

ODM_OPENDOC - The DMS should open the specified document in its native

ODMA Version 1.0 11 June 24, 1994

application. This function is intended for use by applications other than
the document's native application (e-mail, workflow, annotation, etc.).
Applications should use ODMOpenDoc to access their own documents.

lpszDocId - in - A document ID specifying the document on which to perform the
requested action. This parameter may be Null if the action is ODM_NONE.

Return value: 0 if successful. ODM_E_DOCID if the document ID is invalid or refers to a
document that no longer exists. ODM_E_CANCEL if the action was canceled by the user.
ODM_E_ITEM if action is invalid or not supported by the DMS. ODM_E_FAIL if the action
could not be completed by the DMS. ODM_E_HANDLE if odmHandle was invalid.

ODMGetDocInfo
ODMSTATUS ODMGetDocInfo(ODMHANDLE odmHandle, LPSTR lpszDocId, WORD item,
LPSTR lpszData, WORD dataLen)

An application can use this function to obtain information about a document from the DMS.

Parameters:

odmHandle - in - An ODMA handle obtained by a previous call to ODMRegisterApp.

lpszDocId - in - A Null-terminated document ID. This is typically obtained by a call to
ODMSelectDoc or ODMNewDoc.

item - in - One of the following:

ODM_AUTHOR - Author of the document.
ODM_NAME - Name of the document. This is a descriptive name for the

document, not the filename.
ODM_TYPE - Type of the document. This is typically an indication of the format

or content of the document, i.e. correspondence, memo, contract, etc.
ODM_TITLETEXT - Suggested text to display in the document window's title bar.

This may include one or more fields from the document's profile and
possibly other information as well.

ODM_CONTENTFORMAT - The format string indicating the format of the
document's content.

ODM_DMS_DEFINED - The lpszData parameter contains a DMS-specific
indication of the data to be returned. Note that an application must know
which DMS it is talking to and must understand the data indications
supported by that DMS in order to use this item name.

lpszData - in/out - On input, ignored if item is anything other than ODM_DMS_DEFINED.
If item is ODM_DMS_DEFINED then lpszData contains an indication of the data to be
returned. On output, the requested data is returned in the buffer pointed to by lpszData.

dataLen - in - length of the output buffer pointed to by lpszData. If the data to be

ODMA Version 1.0 12 June 24, 1994

returned is longer than this, it will be truncated. In either case the returned data will
always be terminated with a Null character.

Return value: 0 if successful. ODM_E_DOCID if the document ID is invalid or refers to a
document that no longer exists. ODM_E_ITEM if item is invalid or not supported by the
document's DMS. ODM_E_HANDLE if odmHandle was invalid.

ODMSetDocInfo
ODMSTATUS ODMSetDocInfo(ODMHANDLE odmHandle, LPSTR lpszDocId, WORD item,
LPSTR lpszData)

An application can use this function to pass information about the document to the DMS. The
DMS may or may not accept the information; most DMSs validate attributes like document types
and authors against predefined tables.

Parameters:

odmHandle - in - An ODMA handle obtained by a previous call to ODMRegisterApp.

lpszDocId - in - A Null-terminated document ID. This is typically obtained by a call to
ODMSelectDoc or ODMNewDoc.

item - in - One of the following:

ODM_AUTHOR - Author of the document.
ODM_NAME - Name of the document. This is a descriptive name for the

document, not the filename.
ODM_TYPE - Type of the document. This is typically an indication of the format

or content of the document, i.e. correspondence, memo, contract, etc.
ODM_CONTENTFORMAT - The document's format string. Note that this merely

informs the DMS of a change in the document's format; it does not cause
a conversion process to take place within the DMS.

ODM_DMS_DEFINED - The lpszData parameter contains a DMS-specific
indication of the data being passed as well as the data itself. Note that an
application must know which DMS it is talking to and must understand the
data indications supported by that DMS in order to use this item name.

lpszData - in - the data being passed to the DMS. Must be null-terminated.

Return value: 0 if successful. ODM_E_DOCID if the document ID is invalid or refers to a
document that no longer exists. ODM_E_ITEM if item is invalid. ODM_E_HANDLE if
odmHandle was invalid. ODM_E_FAIL if the specified data was invalid or the DMS was unable
to accept it for other reasons.

ODMA Version 1.0 13 June 24, 1994

ODMGetDMSInfo
ODMSTATUS ODMGetDMSInfo(ODMHANDLE odmHandle, LPSTR lpszDmsId, LPWORD
pwVerNo, LPDWORD pdwExtensions)

This function returns information to the application about the currently active DMS.

Parameters:

odmHandle - in - An ODMA handle obtained by a previous call to ODMRegisterApp.

lpszDmsId - out - This should point to an area at least ODM_DMID_MAX bytes long. A
Null-terminated ID identifying the DMS is returned here. This is the same ID embedded
in document IDs returned by this DMS.

pwVerNo - out - The version of the ODMA API supported by this DMS is returned here.

pdwExtensions - out - Indications of extensions to the base ODMA API that are
supported by this DMS are returned here. No extensions have been defined yet, so
currently 0 will always be returned here.

Return value: 0 if successful. ODM_E_HANDLE if odmHandle was invalid.

ODMQueryInterface
HRESULT ODMQueryInterface(ODMHANDLE odmHandle, LPSTR lpszDocId, REFIID riid,
LPVOID FAR *ppvObj)

An application can use this function to get a COM interface from an ODMA provider. All ODMA
providers support the IODMDocMan interface, and individual DMSs may support other
interfaces as well. Note that this function is prototyped in odmacom.h instead of odma.h, so that
non-COM-aware applications do not have to #include the header files that define interface IDs.

Parameters:

odmHandle - in - An ODMA handle obtained by a previous call to ODMRegisterApp.

lpszDocId - in - An ODMA document ID or Null. If Null then the application's default DMS
is queried for the interface. Otherwise the DMS that created this document ID is
queried.

riid - in - The interface to be obtained from the DMS.

ppvObj - out - If the requested interface is supported by the DMS then it is returned here.
Otherwise ppvObj is set to Null.

Return value: S_OK if successful. E_INVALIDARG if odmHandle or lpszDocId is invalid.
E_NOINTERFACE if the requested interface is not supported by the DMS.

ODMA Version 1.0 14 June 24, 1994

ODMGetLeadMoniker
ODMSTATUS ODMGetLeadMoniker(ODMHANDLE odmHandle, LPSTR lpszDocId,
LPMONIKER FAR *ppMoniker)

Applications that are OLE 2 servers typically form composite monikers for their OLE links by
combining a file moniker representing the document with one or more item monikers
representing a particular section of the document. This approach often does not work in
environments where document management systems are in use because the filename that the
application sees is usually just temporary. This function lets the application obtain a leading
moniker from the DMS that can be used in place of the file moniker.

This function will only be available on platforms supporting OLE 2. This function may not be
supported by some DMSs; those DMSs will return ODM_E_FAIL. In this case the application
should go ahead and use the file moniker as though ODMA were not present. Note that this
function is prototyped in odmacom.h instead of odma.h, so that non-OLE-aware applications do
not have to #include the OLE header files.

Parameters:

odmHandle - in - An ODMA handle obtained by a previous call to ODMRegisterApp.

lpszDocId - in - An ODMA document ID.

ppMoniker - out - A leading moniker for the specified document ID will be returned here if
successful. Otherwise Null will be returned here.

Return value: 0 if successful. ODM_E_FAIL if the DMS that created the specified document
ID does not support OLE moniker building. ODM_E_DOCID if the document ID is invalid or
refers to a document that no longer exists. ODM_E_HANDLE if odmHandle is invalid.

DMS Interface

A DMS interfaces with ODMA through a function called ODMGetODMInterface and through
COM interfaces. When an application calls the ODMA connection manager's
ODMRegisterApp function, the connection manager calls the appropriate DMS's
ODMGetODMInterface function to establish a connection with the DMS. This function is
defined as follows:

ODMGetODMInterface
HRESULT ODMGetODMInterface(REFIID riid, LPVOID FAR *ppvObj, LPUNKNOWN
pUnkOuter, LPVOID pReserved, LPSTR lpszAppId, DWORD dwEnvData)

The ODMA connection manager calls this function to get an interface from a DMS. This

ODMA Version 1.0 15 June 24, 1994

function is not available to ODMA-aware applications.

Parameters:

riid - in - ID of the interface being requested. This will typically be IID_IODMDocMan,
but the connection manager may also pass through calls for other interfaces from the
client. ODMA providers must support the IID_IODMDocMan interface.

ppvObj - out - The requested interface should be returned here. If the DMS cannot
return the requested interface, ppvObj should be set to Null.

pUnkOuter - in - The controlling IUnknown interface for the aggregate object. ODMA
providers must support aggregation.

pReserved - in - Reserved for future use. Will always be set to Null.

lpszAppId - in - The ID of the calling application. See ODMRegisterApp.

dwEnvData - in - Environment specific data. On Windows platforms this will be a
window handle from the calling application. See ODMRegisterApp.

Return value: S_OK if successful. E_NOINTERFACE if the requested interface is not
supported.

Binding to the API under Windows 3.x

The ODMA connection manager, ODMA.DLL, and a corresponding link library, ODMA.LIB, will
be made freely available to any application vendor wishing to use them. Applications can
choose either of the methods described below to bind to ODMA:

1. Link to ODMA.LIB. Applications choosing this approach will need to install a copy of
ODMA.DLL into the Windows system directory at the time the application is installed unless a
newer copy of ODMA.DLL already resides there. At startup time the application can call
ODMRegisterApp to determine whether or not an ODMA provider is present for the calling
application.

2. Dynamically load ODMA.DLL at startup time with a call to LoadLibrary. With this
approach the application has to call GetProcAddress to get a pointer to each ODMA function it
will call, but the application does not have to do anything related to ODMA at installation time. If
ODMA.DLL doesn't exist or if ODMRegisterApp returns ODM_E_NODMS then the application
knows that no ODMA provider is present for the calling application.

Installing a DMS under Windows 3.x

The ODMA connection manager, ODMA.DLL, will be provided to all DMS vendors that want to
support the ODMA specification. This DLL will serve as a common entry point for applications

ODMA Version 1.0 16 June 24, 1994

that wish to call ODMA functions. Its implementation of ODMRegisterApp will figure out which
DMS is registered for default use by the calling application. It will then load the appropriate
DMS's DLL and pass through the function call. All other ODMA function calls that do not include
a document ID will be passed to this default DMS.

When an ODMA call is made that includes a document ID, the ODMA connection manager will
determine which DMS created the ID. If that DMS has not been initialized yet by the calling
application, the connection manager will call the provider's ODMGetODMInterface function and
will then pass through the current ODMA function call.

As part of its installation, a DMS should check whether a copy of ODMA.DLL already exists in
the Windows system directory. If it does not or if the DMS has a newer version then it should
copy its version of ODMA.DLL to the Windows system directory. Then it should register with the
ODMA connection manager by adding one or more keys to the registration database.

Each DMS must add a subkey to the root level ODMA key. This subkey should be named the
same as the DMS's DMS ID, and the subkey's value should specify the location of the DLL
containing the DMS's ODMA entry points. For example, suppose a DMS with a DMS ID of DDD
implemented its ODMA entry points in H:\ABC\XYZ.DLL. It would add the following key and
value to the registration database:

ODMA\DDD = H:\ABC\XYZ.DLL

If the DMS wanted to serve as the default ODMA provider to be used with all ODMA-aware
applications that were not registered with a specific DMS, it would add the DEFAULT subkey to
its DMS ID key as shown below:

ODMA\DDD\DEFAULT

If the DMS wanted to specifically register itself as the ODMA provider for one or more
applications, it would also add a subkey to the relevant applications' root level keys. Note that
this is only necessary if a different DMS is registered as the default ODMA provider. Each time
an application calls ODMRegisterApp, the connection manager looks in the registration
database for a root-level key that matches the specified application ID. If it finds such a key
then it looks under it for a subkey called ODMA. The value of this key is the DMS ID of the
specifically registered DMS. If the application ID key is not found or if the subkey ODMA does
not exist under it, the connection manager looks at the subkeys of the root-level key ODMA for a
default ODMA implementation.

For example, suppose a document management system with a DMS ID of DDD wanted to
support only one particular application that used QQQ as its application ID. It would add the
following key and value to the registration database in addition to the ODMA subkey described
above:

QQQ\ODMA = DDD

ODMA Version 1.0 17 June 24, 1994

BHC-325

ODMA Version 1.0 18 June 24, 1994

