ACEReference.doc

ACEReference.doc

] COLLABORATORS
TITLE :
ACEReference.doc
ACTION NAME DATE SIGNATURE
WRITTEN BY March 1, 2022
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

ACEReference.doc iii

Contents
1 ACEReference.doc 1
1.1 Main Menu 1
1.2 IntroducCtion e e e 8
1.3 ABS e 9
1.4 ADDRESS . . . 9
1.5 ALLOC . . . 9
16 AND . . o e e 10
1.7 ARGS . . 10
1.8 ARGCOUNT e e e 10
1.9 AREA . . o 11
1.10 AREAFILL e 11
LIT ASC . e 11
1.12 ASSEM . . o e 11
LI3 ATN . o 12
114 BACK e e 12
1.15 BEEP . . o o 12
1.16 BEVELBOX 12
L17 BINS . o 12
1.18 BREAK . . . 13
1.19 CALL . .« 13
1.20 CASE . . . e 13
1.21 CHDIR . . . e e 13
1.22 CHRS . . . o 14
123 CINT . . . e 14
1.24 CIRCLE e 14
1.25 CLEAR ALLOC e e e e e e e 14
1.26 CLNG o e 15
1.27 CLOSE . . . e 15
128 CLS . . o 15

1.29 COLOR . . . e 15

ACEReference.doc iv

1.30 CONST . . . e 16
L31 COS . . 16
1.32 CSNG . . . e 16
1.33 CSRLIN o 16
1.34 CSTR . . . e 16
135 DATA . . 17
1.36 DATES 17
137 DAY . . 17
1.38 DECLARE e 18
1.39 DEFEN 19
1.40 DEFXXX o oo e e 20
1AL DIM . . . 20
1.42 EOF . . . o e 21
143 END . . . 22
1.44 ERR . . . o e 22
1.45 ERROR 23
146 EQV . . e 23
1.47 EXITFOR 23
148 EXIT SUB e e 24
149 EXP . . o 24
1.50 EXTERNAL e 25
151 FILEBOXS o 25
1.52 FILES e 25
1.53 FIX . 26
1.54 FONT e 27
1.55 FOR.NEXT 27
1.56 FORWARD 27
1.57 FRE . . . o 27
1.58 GADGET e 28
1.59 GADGET CLOSE e 30
1.60 GADGET MOD e 30
1.61 GADGET ON e e e e 30
1.62 GADGET WAIT e 30
1.63 GOSUB.RETURN 31
1.64 GOTO e 31
1.65 HANDLE 31
1.66 HEADING e 31
1.67 HEXS . . . o 31

1.68 HOME e 31

ACEReference.doc v

1.69 TF . e e 32
L70 TFF . . 32
1.71 IFF CLOSE o e 33
172 TFF OPEN 33
1.73 IFFREAD o e 33
L74 IMP . . . 34
L75 INKEYS . . . 34
1.76 INPUTBOX 34
1.77 INPUTBOXS 35
L78 INPUT 35
179 INPUT#. . . o o 35
180 INPUTS o e 36
L.81 INSTR e 37
L82 INT . . o 37
1.83 KILL . . o e 37
184 LEFTS o e e 37
1.85 LEN . . o o e 37
1.86 LET 37
1.87 LIBRARY e 38
1.88 LINE 38
1.89 LINEINPUT e e e e 38
1.90 LOCATE 39
191 LOF . . o e e 39
192 LOG o 39
1.93 LONGINT o e 39
1.94 MENU 40
1.95 MENU CLEAR e 41
1.96 MENU ON 41
1.97 MENU WAIT e e 41
1.98 MESSAGE CLEAR 41
1.99 MESSAGE CLOSE e 42
1.LIOOMESSAGE OPEN 42
1.1I0IMESSAGE READ e 42
LLIO2ZMESSAGE WAIT 42
1.10BMESSAGE WRITE e 43
LI0AMIDS . . . o 43
LLIOSMOD . . o e e 43
LIO6GMOUSE 43

LLIOTMOUSE ON o e e 43

ACEReference.doc Vi

LIOBMSGBOX o e 44
LIOONAME 44
LITONOT . . . o e 44
LITIOCTS . . o o e e e e 45
1.1120N..GOTO/GOSUB e e e 45
LII3BOPEN 45
LIT40PTION o e 45
LIISOR . . o 46
LII6PAINT . . . e 46
LIITPALETTE 46
LI18PATTERN o e 46
LIIOPEEKX 47
L.1I20PENDOWN e 47
LI2IPENUP 47
L122POINT e 47
LI23POKEX 47
L124POS . . o e 47
LI25POTX . . . o 48
L126POTY . . o o e 48
LI27PRINT . . . o 48
LA28PRINT # . . . e 49
LI29PRINTS . . . 49
L130PSET . . o o e 50
LI3IPTAB . . . 50
1.132RANDOMIZE e 50
LI33READ 50
LI34REM . . o o e 51
L.I35SREPEAT.UNTIL e 51
1.136RESTORE e 51
LI37RIGHTS . . . o 51
LI38RND . . o o e 52
LI39SADD 52
LI40SAY . . o e 52
LI4ISCREEN 54
1.142SCREEN BACK e 54
1.I43SCREEN CLOSE e 54
1.144SCREEN FORWARD e e 55
LI45SCROLL 55

1.146SERIAL o e 55

ACEReference.doc Vii

1.147SERIAL CLOSE e e 57
I.I48SERTIAL OPEN 57
1.149SERIAL READ e 58
L.ISOSERTAL WRITE 58
LISISETHEADING e e 59
LIS2SETXY . . o o 59
LAS3SGN . o o e 59
LIS4SHARED 59
LASSSHL . o o o e 60
LIS6SHR . . . 60
L.IS7TSHORTINTo o e 60
LISESINGLE 60
LIS9SIZEOF e 60
LIOOSIN . . o 61
LLI6ISLEEP o e 61
LI62SLEEP FOR 61
LI63SOUND e 62
LI64SPACES o o e 62
LLI6SSPC . . e 62
LI6G6SQR . . 62
LIOTSTICK . . . e e e 62
LLI6BSTOP 63
LI69STRS . . o 63
LIT0STRIG o 63
LI7ISTRING . . . o e 63
LI72STRINGS o 64
LI73STRUCT e e e 64
LITASTYLE . . . 65
1.175SUB.END SUB e 65
LITOSWAP . . 65
LA7TISYSTEM . . . o e 66
LIT8TAB . . . 67
LIT9TAN . . o e 67
LIBOTIMES . . . o o o 67
LASITIMER e 67
LIS2TIMER ON 67
LIS3TRANSLATES o e e 68
LIBATURN . . . 68

L.I8STURNLEFT e e 68

ACEReference.doc viii

L.IS6TURNRIGHT e e e e e 68
LIBTUCASES . . . o 68
LISBVAL . . . 68
L.I89VARPTR . . . o e 69
L.I90WAVE . . o e 69
LIOTWHILE.WEND 69
LIO2ZWINDOW . . . o 70
L.1I93WINDOW CLOSE e e e 71
LIGAWINDOW ON e e e 71
LIOSWINDOW OUTPUTo e e e e e e 71
L.I96WRITE o e 71
LI97XCOR . . o e 72
LIOBYCOR 72
LIOOXOR . . . 72

1.200Index L e e 72

ACEReference.doc 1/80

Chapter 1

ACEReference.doc

1.1 Main Menu

Introduction
FILES
MESSAGE WRITE
SGN

ABS

FIX

MIDS

SHARED
ADDRESS

FONT

MOD

SHL

ALLOC

FOR. .NEXT
MOUSE

SHR

AND

ACEReference.doc

2/80

FORWARD

MOUSE ON

SHORTINT

ARGS

FRE

MSGBOX

SINGLE

ARGCOUNT

GADGET

NAME

SIZEOF

AREA

GADGET CLOSE

NOT

SIN

AREAFILL

GADGET MOD

OCTS

SLEEP

ASC

GADGET ON

ON. .GOTO/GOSUB

SLEEP FOR

ASSEM

GADGET WAIT

OPEN

SOUND

ATN

ACEReference.doc 3/80

GOSUB. .RETURN

OPTION

SPACES

BACK

GOTO

OR

SPC

BEEP

HANDLE

PAINT

SOR

BEVELBOX

HEADING

PALETTE

STICK

BINS

HEXS

PATTERN

STOP

BREAK

HOME

PEEKx

STRS

CALL

IF

PENDOWN

STRIG

CASE

IFF

ACEReference.doc 4/80

PENUP

STRING

CHDIR

IFF CLOSE

POINT

STRINGS

CHRS

IFF OPEN

POKEx

STRUCT

CINT

IFF READ

POS

STYLE

CIRCLE

IMP

POTX

SUB..END SUB

CLEAR ALLOC

INKEYS

POTY

SWAP

CLNG

INPUTBOX

PRINT

SYSTEM

CLOSE

INPUTBOXS

ACEReference.doc

5/80

PRINT #

TAB

CLS

INPUT

PRINTS

TAN

COLOR

INPUT #

PSET

TIMES

CONST

INPUTS

PTAB

TIMER

COS

INSTR

RANDOMIZE

TIMER ON

CSNG

INT

READ

TRANSLATES

CSRLIN

KILL

REM

TURN

CSTR

LEFTS

REPEAT. .UNTIL

ACEReference.doc

6/80

TURNLEFT

DATA

LEN

RESTORE

TURNRIGHT

DATES

LET

RIGHTS

UCASES

DAY

LIBRARY

RND

VAL

DECLARE

LINE

SADD

VARPTR

DEF FN

LINE INPUT

SAY

WAVE

DEFxxX

LOCATE

SCREEN

WHILE. .WEND

DIM

LOF

SCREEN BACK

ACEReference.doc

7 /80

WINDOW

EOF

LOG

SCREEN CLOSE

WINDOW CLOSE

END

LONGINT

SCREEN FORWARD

WINDOW ON

ERR

MENU

SCROLL

WINDOW OUTPUT

ERROR

MENU CLEAR

SERIAL

WRITE

EQV

MENU ON

SERIAL CLOSE

XCOR

EXIT FOR

MENU WAIT

SERIAL OPEN

YCOR

EXIT SUB

MESSAGE CLOSE

SERIAL READ

XOR

ACEReference.doc 8/80

EXP
MESSAGE OPEN

SERIAL WRITE
ACE Guide

EXTERNAL
MESSAGE READ

SETHEADING
AIDE Guide

FILEBOXS
MESSAGE WAIT

SETXY

1.2 Introduction

o +
| ACE v2.3 |
o +
e +
| Command and Function Reference|
e +
Introduction

This document consists of a description of currently implemented commands
and functions.

As with AmigaBASIC, the case of commands and functions is of no
consequence.

NOTES:

[] means that a parameter or command component is optional.
— <> surround literals, names and expressions.
- .. 1lmplies that statements are expected to follow.

- Commands and functions marked with an asterix are found only in
ACE, not AmigaBASIC.

— Standard trigonometric functions take their arguments in radians.

- EOS = end-of-string character (ASCII 0).

— MAXSTRINGLEN currently equals 1024. The last character in a
string is EOS, so if you want a string which holds 1024
characters, you need a 1025 byte string (see

ACEReference.doc 9/80

STRING
command) .

- For boolean operators such as AND,OR,IMP etc the values T and F
(TRUE and FALSE) refer to -1 and 0 respectively.

1.3 ABS

ABS - syntax: ABS (n)
— Returns the absolute value of n.

1.4 ADDRESS

ADDRESS =« - syntax: ADDRESS <identifier>[,..]

— Declares and initialises one or more variables of type
address. In fact, this data type is synonymous with the
long integer (see

LONGINT

) data type. Its main purpose
is to make clear just what sort of data is going to be
used. This is especially useful when passing addresses
as parameters to subprograms.

- See also
SUB
4
STRUCT
1.5 ALLOC
ALLOC = — syntax: ALLOC (<bytes>[, <memory-type>])

— This is ACE’s hassle-free memory allocator.

— You can call this function to get the start address of a
block of memory at least <bytes> bytes in size.

— The <memory-type> argument can be one of the following:

0 = CHIP memory
= FAST memory
2 = PUBLIC memory

—
|

3 = CLEARED CHIP memory
4 = CLEARED FAST memory
5 = CLEARED PUBLIC memory

6 = ANY suitable memory (MEMF_ANY)
7 = ANY suitable cleared memory

- If a value outside this range is specified or this

ACEReference.doc

10/80

parameter i1s omitted, the result is identical to having
specified a <memory-type> of 7. Note that in ACE v2.0 the
default was CLEARED PUBLIC memory.
Specifying ANY (6,7) allows the operating system to select
the best available memory, so specify a <memory-type> of 6
or 7 for general use and CHIP memory for sound samples or
other data which must be accessible by the co-processors.
— If the requested block of memory can’t be allocated
for whatever reason (eg: memory is too fragmented)
ALLOC returns zero.
— CLEARED memory is filled with zeros.
— The main benefit of ALLOC is that it keeps a record of
memory allocations, freeing all memory allocated via it
at the end of a program run.
— ALLOC will free allocated memory even if a program aborts
due to a ctrl-c break or an error (except where a GURU
results) .
- Use of ALLOC assumes that you know what you’re doing with
memory and why you want a chunk of it.
For more information about memory allocation on the Amiga,
see the Exec/Intuition autodocs re: AllocMem () /FreeMem()
and AllocRemember () /FreeRemember (). See also the manual
"RKM: Libraries".

— See also CLEAR ALLOC.

1.6 AND

AND

— Boolean operator: X AND Y.

1.7 ARGS$

ARGS «* - syntax: ARGS$ (n) where n=0..ARGCOUNT.

— Returns the nth command line argument as a string.

— If n=0 the name of the command is returned.

- Note that ARGS$ only works for CLI/Shell launched
programs. See ace.guide for details about how to access
Workbench arguments.

- See also

ARGCOUNT

1.8 ARGCOUNT

ACEReference.doc 11/80
ARGCOUNT = - Returns the number of command line arguments.

— See also ace.guide re: Workbench arguments.
1.9 AREA

AREA - syntax: AREA [STEP] (x,V)

— Functions indentically to AmigaBASIC’s AREA command.

— Defines a set of up to 20 points to be joined
into a polygon and filled by
AREAFILL

1.10 AREAFILL

AREAFILL - syntax: AREAFILL [mode]
- Same as AmigaBASIC’s AREAFILL command.
— The optional mode can be 0 or 1:

0 = fill polygon with current pattern and
foreground color.
1 = £fill polygon with current pattern
but inverse of foreground color
(max-color-id - fdgnd-color-id).
- See also
PATTERN
command.
1.11 ASC
ASC - syntax: ASC (XS$)
— Returns the ASCII code of the first character in X$.
1.12 ASSEM
ASSEM x — syntax: ASSEM

<line of assembly code>
<line of assembly code>

END ASSEM

— This allows for the inline inclusion of assembly source

code into the A68K file generated by ACE.

— ACE does not attempt to check the correctness of the

ACEReference.doc 12/80
inline code, leaving the task of assembly up to A68K.
- If you use this facility, it is assumed that you know
what you are doing.
- For correct handling of the assembly source lines,
do not place ASSEM or END ASSEM on the same line as
any of the code you wish to include.
1.13 ATN
ATN - syntax: ATN(n)
- Returns the arctangent of n.
1.14 BACK
BACK « - syntax: BACK n
- Moves the turtle back n steps.
1.15 BEEP
BEEP — Issues a brief pulse from the speaker.

BEEP doesn’t flash the screen as it does in AmigaBASIC.
This command is useful for alerting the user to an error
or other important event.

1.16 BEVELBOX

BEVELBOX =« -

1.17 BINS

syntax: BEVELBOX (x1,vyl)-(x2,y2),style

This command renders a Wb 2.x/3.0 style 3D bevel-box
according to the specified rectangle and style.

The style parameter can take on the following values:

Style Bevel-Box

1 RATISED

2 RECESSED

3 STRING-GADGET STYLE

The style parameter will have different results
depending upon the combination of foreground and
background colours. The above styles hold true for
the standard Workbench 2.x colours.

ACEReference.doc 13/80

BINS «* - syntax: BINS (n)
- Returns a string containing the binary equivalent of n.
- If n is a single-precision value, ACE coerces it to
integer.

1.18 BREAK

BREAK — syntax: BREAK ON|OFF |STOP
— These commands are used for enabling, disabling and
suspending ON BREAK event trapping.
— See the Event Trapping section in ace.guide.

1.19 CALL

CALL — Passes control to a user-defined subprogram,
shared library function, external function,
or user—-defined machine code routine.
— Subprogram CALLs can be recursive in ACE.
- See also sections on subprograms, shared library access,
external functions and machine code calls in ace.guide.

1.20 CASE

CASE = — This is ACE’s version of the CASE statement and is
different from the Pascal CASE and C switch statements.
- The syntax is:

CASE
<expression> : <statement>
[<expression> : <statement>]
END CASE

where <expression> can be any legal expression ranging
from a constant to a relational or mathematical
expression.

— The expression is used as a boolean such that 0 is false
and any non-zero value is true.

— Each expression is evaluated until one is found to be
true. The corresponding statement is then executed.

— The statement can consist of a single legal ACE statement
(including block IF and loops) or a multi-statement.

1.21 CHDIR

14 /80

ACEReference.doc
CHDIR

1.22 CHR$
CHRS

1.23 CINT
CINT

1.24 CIRCLE

CIRCLE

syntax: CHDIR <dirname>

where <dirname> is a string corresponding to the name of
a directory.

If <dirname> is a legitimate directory and is accessible
from the current directory, it will become the new
current directory.

In short, this is ACE’s equivalent of the AmigaDOS "cd"
command, the only difference being that the path change
is not reflected in the shell prompt (if the program is
run from the shell).

syntax: CHRS (n)
Returns a string consisting of a single character with
the ASCII value n.

syntax: CINT (n)

Converts n to a signed short integer by rounding the
fractional portion.

When the fractional portion is exactly .5, CINT xalwaysx
rounds up in ACE, whereas in AmigaBASIC if the integer
portion is even, CINT rounds down, and up if the integer
portion is odd.

syntax: CIRCLE (x,vy),radius[,color-id,start,end, aspect]
Start and end angles are specified in DEGREES xnotx
radians because this is probably more useful when
thinking about circles.

(Note: this may be changed to radians in future).

If a whole ellipse is to be drawn, the graphics library
DrawEllipse () function is used. However, if the start
angle is not 0 or the end angle is not 359 (these are
the defaults when not specified), a different routine

is used. The latter is quite slow and may well be changed

in a future release of ACE.
The default ASPECT is .44 as in AmigaBASIC.

1.25 CLEAR ALLOC

ACEReference.doc

15/80

CLEAR ALLOC =«

1.26 CLNG

CLNG

1.27 CLOSE

1.28 CLS

CLS

1.29 COLOR

- syntax: CLEAR ALLOC

- Frees all memory allocated by calls to ALLOC.

- Subsequent use of ALLOC is permitted.

— This allows for a more intelligent use of memory
allocation, especially when memory is tight.

— syntax: CLNG (n)

— Converts n to a signed long integer by rounding the
fractional portion.

— When the fractional portion is exactly .5, CLNG xalways=*
rounds up in ACE, whereas in AmigaBASIC if the integer
portion is even, CLNG rounds down, and up if the integer
portion is odd.

CLOSE - syntax: CLOSE [#]filenumber[, [#]filenumber.

where filenumber represents an open file.

— This command closes at least one open file.

- Note that in ACE, CLOSE must be followed by at least one
filenumber, unlike AmigaBASIC.

— See section on files in ace.guide.

- See also

ERR

— Clears the current output window or screen and sets the
pen position to the upper left corner.

— CLS does not affect any other screens or windows except
the one which is currently active.

COLOR - syntax: color fgnd-id[,bgnd-id]

- Changes the foreground and/or background color to
fgnd-id and bgnd-id respectively.

— Note that in ACE, you can change just the foreground
color, both the foreground and background colors,
but not the background color alone. This may be changed
in a future revision.

— The

PALETTE

-]

ACEReference.doc

16 /80

1.30 CONST

1.31 COS

COSs

1.32 CSNG

CSNG

1.33 CSRLIN

CSRLIN

1.34 CSTR

CSTR =*

command i1s used to change the colors
corresponding to given color-ids.

CONST = - syntax: CONST <ident> = [+|-]<constant>[, ..

where <constant> is a signed numeric constant.
— Defines a named numeric constant or constants, the type
being *unaffected* by the the
DEFxxx
directives or type
(%$&'#S$) suffixes. All constant definitions are GLOBAL.
— A number of definitions can be separated by commas.

- syntax: COS(n)
- Returns the cosine of n.

- syntax: CSNG (n)
- Converts n to a single-precision value.

— Returns the print line in the current user-defined screen
or window.

— CSRLIN and POS have no meaning in a CLI/shell and will
return 0 if used when a CLI/shell is the current output
window.

- syntax: CSTR(<address>)

— Coerces a long integer address into a string.

- This is intended for taking an allocated area of memory
and using it as a string of characters. Be aware that
this memory block must be NULL terminated.

- A typical use for CSTR is something like this:

x$=CSTR (addr&)

ACEReference.doc 17 /80

— The maximum string length of MAXSTRINGLEN bytes in some
functions still applies.

1.35 DATA

DATA - syntax: DATA [numeric-constant | string-constant <
10,..1

- Stores numeric and/or string constants into a global
data list to be accessed by the

READ

statement.

— DATA statements may be located anywhere in a program and
are non-executable.

— Strings need only be enclosed in quotes if they contain
commas, spaces or colons or other non-identifier
characters.

— In ACE, all numbers from DATA statements are currently
stored as single-precision values with a possible loss of
accuracy if LARGE long integers are originally specified.
This may be rectified in a future revision. Thus far
however, I have not had problems because of it. 1In order
to overcome this, do the following:

READ X$
X&=LONGINT (X$)
DATA "123456789"

— In the above example, the BASIC function
VAL
is
substituted with
LONGINT
because the former always
returns a single precision value which is what we
are trying to avoid, while the latter extracts a
long integer from a string.

1.36 DATES$

DATES - Returns the current system date as a ten-character string
of the format: mm-dd-yyyy.

1.37 DAY

DAY =« - Returns the day of the week as an integer from <+
0..6,
where 0=Sunday and 6=Saturday.
— The value returned by DAY reflects the last call to
DATES

ACEReference.doc

18 /80

and is otherwise undefined.

1.38 DECLARE

DECLARE — This has four uses in ACE:

1. DECLARE FUNCTION [<type>] <func-name>[%&!#$][(param-list)]
LIBRARY [<lib-name>]

(see section on shared library functions in ace.guide)

2. DECLARE FUNCTION [<type>] <func-name>[%&!#S5][(param-1list)]
EXTERNAL

which declares an external function. See also

EXTERNAL
command .

(see section on External References in ace.guide)

3. DECLARE SUB [<type>] subprogram-name|[(parameter—-1list)]
[EXTERNAL]

which is used for forward SUB declarations. If
the EXTERNAL keyword is used the subprogram is
expected to be defined in another ACE module.
The reference will be resolved at link time.

(see "Creating & using ACE subprogram modules"
in ace.guide)

In 1,2 and 3 above, <type> may be one of the following:
ADDRESS, LONGINT, SHORTINT, SINGLE, STRING

while param-list consists of comma-separated identifiers
each optionally preceded by one of the above type
specifiers.

4. DECLARE STRUCT <type> [+] <identl> [, [*] <identN>..]

where a structure variable of type <struct-type> is
created. If "x" precedes the variable identifier,

a pointer to the structure is created, otherwise
memory is allocated. In both cases, "identN"

holds the start address of the structure. In the
latter case, the address is resolved at load time
while in the former, the address is allocated at
run time (eg: with ALLOC).

- Only the first usage is supported by AmigaBASIC (but
without type specifier keywords).

ACEReference.doc 19/80

1.39 DEFFN
DEF FN — syntax:
DEF [FN]funcname[!#%&$] [(param-list)] [EXTERNAL] = <expr>

- As an extension to this syntax, in ACE it is also
possible to follow the DEF keyword with one of the
following:

ADDRESS, LONGINT, SHORTINT, SINGLE, STRING

— These keywords may also precede each item in the
parameter list.

— This command provides the simple defined function
capability found in many BASICs.

— The parameters are passed by value and are combined
in the expression on the right hand side of the "=" to
yield a function return value.

- Like a subprogram, a defined function in ACE doesn’t have
access to global variables. Unlike the former, DEF FNs
cannot use SHARED to get around this. In other words, if
the function needs to use a particular value, you must
pass it to the function via the parameter list. If a
variable is defined in the expression (just by being used)
its value will be local to the function (and unknown).

— The function may only be invoked as part of an expression,

eg:

DEF SEC (x)=1/COS (x)
PRINT SEC(12)

defines and invokes the secant function which can then be
used in the same way as other built-in functions (eg:

COSs

) .

— Note from the above that the "FN" prefix is optional
in ACE. If used, there must be no spaces between "FN"
and the function name.

— The fact that subprograms (SUBs) in ACE have return
values and so can be treated as functions obviates the
need for DEF FN to some extent, but the shorter definition
may be considered better in some cases. Contrast the
above definition with the following:

SUB SEC (x)
SEC=1/COS (x)
END SUB

- A slightly different example is:

DEF ADDRESS chipmem (bytes&) = ALLOC (bytesé&,0)

ACEReference.doc

20/80

which when invoked would return the start address of
a block of CHIP memory.

— Once a function has been defined, you cannot redefine
it (AmigaBASIC allows this) in the same program.

— If the optional EXTERNAL keyword is used, the function

will be externally visible to other modules. See ace.guide

section "Creating & using ACE subprogram modules".

- See the file ACEinclude:MathFunc.h for examples of
defined functions (taken from Appendix E of the
AmigaBASIC Manual) .

1.40 DEFxxx

DEFxxx

1.41 DIM

- syntax: DEFxxx <letter> | _ [-<letter> | _] [, ..]

— The DEFxxx commands (DEFINT,DEFLNG,DEFSNG,DEFDBL,DEFSTR)
are global data type directives which affect data objects

in both the main program and subprograms.
- For example:

DEFLNG a-z,_

declares all data objects to be of type LONGINT unless
overridden by another DEFxxx directive, variable
declaration or trailing character (%&!#3$).

— DEFDBL currently defaults to single-precision since
double-precision floating-point is not yet supported by
ACE.

DIM - syntax:

DIM [<type>]<name> (<i>[,..]) [SIZE <n>] [ADDRESS <addr>][,..]

where

<type> may be one of the following:

ADDRESS, LONGINT, SHORTINT, SINGLE, STRING

ACE requires that _all_ arrays be dimensioned before use.
For a subscript range of 0..n, you must DIMension

an array with an index of n.

Up to 255 dimensions can be specified with up to

32767 elements per dimension. On a 3 Mb machine, around
11 dimensions is the practical limit.

Fach dimension must be specified as a short integer constant

(literal or defined).

The SIZE option is for the specification of string element
length other than the default MAXSTRINGLEN value.

The ADDRESS option allows you to specify some arbitrarily
allocated area of memory for the array space.

Both options (SIZE and ADDRESS) may be used together in

ACEReference.doc

21/80

DIM. This is not so for simple (string) variables where
only one or the other may be used (see

STRING

command) .
When used in DIM, the SIZE option specifies how big each
string element is to be.
SHARED is not an option and ACE arrays are shared in the
same way as variables. See "Subprograms" in ace.guide.

- Arrays may be dynamically allocated in ACE, eg:

1.42 EOF

CONST STRSIZE=80

myStrArrayAddr& = ALLOC (numlines*STRSIZE)

IF myStrArrayAddr& = 0& THEN STOP

DIM wds$ (1) SIZE STRSIZE ADDRESS myStrArrayAddré&

This will allocate space for an array of numlines strings,
each 80 bytes in length. A single array element is
specified just to keep ACE happy, but since there is no
array range checking, and the ADDRESS option has been
used, the number of elements in the array is in reality
numlines (a variable containing say, the number of lines
in a file).

Note that this means that you will be able to access
elements from O..numlines-1. If you want O0..numlines
— or even l..numlines - then the ALLOC line must read:

myStrArrayAddr& = ALLOC ((numlines+1) *STRSIZE)

Here’s a more complex example, showing how to
dynamically allocate space for a 2D array:

rangeArray& = ALLOC ((N+1) % (SIZEOF (SHORTINT) x(3+1)))
IF rangeArray& = 0 THEN STOP
DIM range%(1l,3) ADDRESS rangeArrayé&

The first index is Jjust to keep ACE happy. Space is
allocated via ALLOC and the really critical thing here
is the "3" indicating how many columns in the table (as
it were) - 0 to 3 - to ensure correct array element
calculations.

Since ACE does no run-time array bounds checking, you can
specify range% (N,M) where N>=0 and M>=0 and M<=3. The zeroth
index is the reason why we need the +1 in two places in the
above ALLOC call.

See also ACEinclude:array_size.h for a subprogram which
returns the correct size to be passed to ALLOC for 2D and 3D
arrays, thus making such calculations unnecessary.

ACEReference.doc 22/80

EOF - syntax: EOF (n)
where n is the filenumber of an open file.

- EOF is a function which returns either -1 or 0 depending
upon whether the file pointer has reached the end-of-file
or not.

— If the file doesn’t exist or hasn’t been opened, EOF
returns -1.

- See also

ERR
1.43 END
END — Closes standard libraries, performs other <+
cleanup
operations and passes control back to parent process
(CLI/Shell or Wb).
— Don’t use END within an
IF..THEN. .END IF
block. Use
STOP
instead which is functionally equivalent in ACE.
1.44 ERR
ERR - syntax: ERR

— This parameterless function returns the error code
corresponding to a failed operation (or zero if no
error has occurred) and then *ximmediatelyx clears the
error code (sets it to zero).

- It is important to realise that the error code is
cleared before the function returns its wvalue, since
unless this value is stored, it will be lost.

— The most typical usage is as part of a conditional test,
eg: IF ERR<>0 THEN PRINT "Error!":STOP

— ERR may also be called after an error has been trapped
by the ON ERROR event trapping mechanism. See ace.guide
for more details about event trapping in ACE.

— Here are the current codes:

—-— AmigaBASIC codes —--
52 - Bad File Number
54 - Bad File Mode

-— AmigaDOS codes —-—

103

to

233 - See The AmigaDOS Manual (Bantam),
Error Codes and Messages.

ACEReference.doc 23/80

—-— ACE codes —-

300 - Error opening serial port

301 - Error closing serial port

302 - Error reading from/querying serial port
303 - Error writing to serial port

304 - Bad channel number/serial port not open
400 - Error opening message channel

401 - Error closing message channel

402 - Error reading message channel

403 - Error writing to message channel

404 - Error waiting on message channel

405 - Bad message channel

500 - Error opening IFF file
501 - Error closing IFF file
502 - Error reading IFF file
503 - Bad IFF channel

600 - Error opening screen
700 - Error opening window
1.45 ERROR
ERROR — syntax: ERROR ON|OFF | STOP

— These commands are used for enabling, disabling and
suspending ON ERROR event trapping.
— See the Event Trapping section in ace.guide.

1.46 EQV
EQV — Boolean operator: X EQV Y.
XY Out
T T T
T F F
F T F
FF T
1.47 EXIT FOR
EXIT FOR = — This command allows for the premature, <=
conditional
termination of a
FOR. .NEXT

loop.
- Since ACE uses the stack for FOR..NEXT loop counter &
step values, issuing a

ACEReference.doc

24/80

RETURN
inside a FOR loop is

dangerous because the top item on the stack is something
other than the expected return address.

— In short, leaving a FOR loop before it has finished and
never returning (

CALL

and
GOSUB
are okay since they will
return to the loop) 1is unsafe in ACE, which is why EXIT
FOR has been provided because it properly cleans up the
stack before prematurely exiting the loop.

— When nesting one FOR loop inside another, be aware that
the inner FOR loop’s EXIT FOR will override any previous
EXIT FOR directives in the enclosing outer FOR loop.

As a consequence of this:

FOR I=1 TO 10

PRINT I
FOR J=1 TO 5
PRINT J
IF MOUSE (0) THEN EXIT FOR
NEXT
IF MOUSE (0) THEN EXIT FOR
NEXT

will have the desired effect, whereas:

FOR I=1 TO 10

PRINT T
IF MOUSE (0) THEN EXIT FOR ' ..overridden below!
FOR J=1 TO 5
PRINT J
IF MOUSE (0) THEN EXIT FOR
NEXT
NEXT

will not. Observe the effect of running these two
code fragments in order to see what’s going on here.

1.48 EXIT SUB

EXIT SUB — This command can only be used inside a subprogram and
when encountered, has the effect of passing control back
to the caller of the subprogram in which it appears.

— If the current instantiation of the subprogram is the
result of a recursive call, control will be returned
to the previous instantiation of the same subprogram.

1.49 EXP

ACEReference.doc 25/80

EXP - syntax: EXP (n)
- Returns e to the power n, where e is the base of
natural logarithms or 2.7182818284590.

1.50 EXTERNAL

EXTERNAL =* - syntax: EXTERNAL [FUNCTION] [<type>] <identifier <>
>[%6&!5]

— Used to declare an external function or variable.
— To declare the data type of an external object, either
qualifier characters or one of the following type keywords
may be used:

ADDRESS, LONGINT, SHORTINT, SINGLE, STRING

— See the section on External References in ace.guide.
- See also the
DECLARE
command for an alternative
(and better) external function declaration syntax.

1.51 FILEBOX$

FILEBOXS = - syntax: FILEBOXS (title-string[,default-directoryl])
— This function invokes a file requester and returns
the user’s selection as a fully qualified path.

— The title-string is displayed in the title bar of
the file requester (eg: "Open", "Select a file").

— If the (optional) default-directory is specified,
the file requester’s initial "view" will be in that
directory.

— If the program is running under Wb 2.04 or higher,
an ASL file requester appears. If not, an Arp
requester is invoked which means that if you are
running Wb 1.3 or lower, you’ll need arp.library
in your LIBS: directory.

- If you are using FileBox$ under Wb 1.3 make sure
you have a stack (in the shell/CLI or Tool) which
is at least 5000 bytes in size.

1.52 FILES

FILES - syntax: FILES [TO <storefile>] [,<target>]

— Gives an unsorted directory listing ala AmigaBASIC
except that ACE’s version takes two optional arguments
while AmigaBASIC’s takes one (<target>).

- If <storefile> is specified, the listing will be
captured by that file.

ACEReference.doc 26 /80
- If <storefile> is omitted, it is assumed that the
program containing the FILES command was invoked
from a shell or CLI (since the listing will be
displayed) .
— The <target> argument can be a file, directory or
AmigaDOS device name which is to be the subject
of the directory listing.
1.53 FIX

FIX - syntax: FIX(n)
— The function returns the truncated integer portion of n.
- FIX(n) 1is equivalent to SGN(n) *INT (ABS(n)) .
— Whereas INT (n) rounds off a negative number
to the next lowest whole number, FIX does not.

or

- syntax: FIX n

— The command which is found only in ACE is intended to
have a similar effect to the FIX button found on some
calculators that is, to change the number of decimal
places ACE rounds a single-precision number to.

— FIX utilises the ami.lib function arnd(). When the wvalue
of n is anything other than 8, arnd() is invoked. This
affects the commands:

PRINT

4

PRINTS

4

WRITE#

14
PRINT#
and

STRS

— FIX should be considered experimental since I have not
completely figured out what all the values of n (as used
directly by arnd()) do yet.

- In a future release, a given value for n may have
different results than it does now. Currently, n may be
positive or negative.

Examples

FIX -3
PRINT 12.3456

would display: 12.35

— PRINT USING will obviate the need for this command in
a future release in any case.

ACEReference.doc

271780

1.54

FONT

FONT =* - syntax: FONT <name>,<size>

— Changes the font for the current output window.
 is a string such as "opal" or "opal.font"
and <size> is an integer point size.

— Currently only works for windows created with the

WINDOW
command, not for shells.
It is best to follow a FONT statement with a LOCATE
command to "notify" the window of the font change (eg.
LOCATE 1,1). This ensures correct line-feed height for
future PRINT statements.
- See also the
STYLE
command (which works
in ALL windows) .

1.55 FOR..NEXT

FOR. .NEXT - syntax: FOR <variable>=x TO y [STEP z]

— The statements between FOR and NEXT are iterated
the number of times it takes for <variable> to become
equal to or greater than y (or less than y if z is
negative) starting from x. The loop index <variable>
is incremented by z, or 1 if STEP is not specified.

— NEXT can only be followed by a variable, colon or
comment and must appear on a separate line or in a
multi-statement (not after THEN for example).

— Any attempt to use a shared variable as a FOR loop index
will result in an (intentional) compilation error.

- If you want to branch out of a FOR loop never to return,
use EXIT FOR. See also the further discussion of this
issue (including RETURNing from within a FOR loop) in the
"Limitations" section of ace.guide.

1.56 FORWARD

FORWARD «* - syntax: FORWARD n

- Move the turtle forward n steps.

1.57 FRE

ACEReference.doc

28/80

FRE -

syntax: FRE (n)
where n is -1,0,1,2 or 3.

— Since ACE’s run-time environment is different to

1.58 GADGET

GA

Type

AmigaBASIC's,
takes different arguments than
FRE returns the amount of free

FRE returns different values and

in AmigaBASIC.
system memory according

-> largest contiguous CHIP memory available.
-> largest contiguous FAST memory available.

id, status[,gadval, rectangle, type <«

to n:
n=-1 -> total CHIP + FAST memory free.
n= 0 -> total CHIP memory free.
n= 1 -> total FAST memory free.
n= 2
n= 3

DGET = - syntax: GADGET

[,style]]

where id is a unique gadget ID
is 1 or 0 to enable or disable
The keywords ON and OFF can be

from 1 to 255 and status
the gadget, respectively.
used instead of 1 and O.

The remainder of the parameters are optional, but all
except style must be specified when creating a new

gadget. If a string or longint

gadget has no style

specification, the default is left-justification of text.

The first of these, gadval, 1is
integer (see below); rectangle
the gadget as (x1,yl)—-(x2,vy2).

either a string or long
defines the border of

The GADGET command creates a new gadget or alters the
status of an existing gadget according to the above

and in accordance with the final two parameters: type
and style, as follows (gadval meaning is also shown) :

Type may either be a numeric value from 1 to 5 or one
of the following keywords: BUTTON, STRING, LONGINT,

POTX or POTY, correspondingly.

Gadget Style Effect Gadval
Boolean 1 All points inside the Gadget text
gadget are complemented
when it is clicked (this
is the default).
2 A box is drawn around Gadget text

the gadget when clicked.

3 Borderless.

Gadget text

ACEReference.doc

29/80

OR

String 1 Center justifies text.

2 Right justifies text.

Default text

(The default is left justification).

LongInt 1 Center justifies number. Default number

(as string)

2 Right justifies number.

(The default is left justification).

Horiz.

Slider 1 Borderless.
Vertical

Slider 1 Borderless.

- syntax: GADGET (n)

where n is a number from 0 to 3.

Maximum
slider value
(0..gadval)

Maximum
slider value
(0..gadval)

— The GADGET function returns information about the
last gadget event according to the following:

N

0

-1 if a gadget event has occurred since the last

call to GADGET (0), O otherwise.

The number of the last gadget selected. If the
window’s close gadget was clicked after doing a
GADGET WAIT 0, 256 will be returned. This is not
the case for event trapping of gadgets, where

ON WINDOW should be used instead.

Returns the address of the string from the most
recently selected string gadget or the long integer
value from the most recently selected LongInt

gadget.

In the former case, use ACE’s

CSTR
function to
convert the address into an ACE string.

Returns the slider position of the most recently

selected (horizontal or vertical)

gadget.

proportional

ACEReference.doc 30/80

1.59 GADGET CLOSE

GADGET CLOSE * - syntax: GADGET CLOSE id

— This command removes the specified gadget from the
current output window and should always be called
when you are finished with a gadget.

- Make sure that the window belonging to the gadget you
wish to close is the current output window (see

WINDOW

OUTPUT
command) .

1.60 GADGET MOD

GADGET MOD * - syntax: GADGET MOD id, knob-position[,max- <>
positions]
— This command modifies the specified proportional
gadget.

— The new knob position (within the gadget’s body) must
be specified.

— The optional max-positions parameter if specified changes
the number of discrete positions in which the knob may be
found. A significant change from the previous value given
(eg. see the gadval parameter in the

GADGET

command) may
result in a change to the knob size.

1.61 GADGET ON

GADGET ON .. x - syntax: GADGET ON|OFF |STOP
— These commands are used for enabling, disabling and
suspending ON GADGET event trapping.
- See the Event Trapping section in ace.guide.

1.62 GADGET WAIT

GADGET WAIT =« - syntax: GADGET WAIT id

— This command puts the program to sleep until it receives
a message that the specified gadget has been selected.

- If id=0 the program will wake up when ANY gadget is
selected. A call to

ACEReference.doc

31/80

GADGET

(1) can then be used to

determine the number of the gadget.

1.63 GOSUB..RETURN

GOSUB. .RETURN -

syntax: GOSUB <label> | <line>

GOSUB transfers control to the specified label or line.
RETURN passes control back to the statement following the
most recent GOSUB command.

— Issuing a RETURN without a matching GOSUB will generally
invoke the GURU.

1.64 GOTO

GOTO -
1.65 HANDLE
HANDLE * -

1.66 HEADING

HEADING = -

1.67 HEXS$

HEXS -

1.68 HOME

HOME =«

syntax: GOTO <label> | <line>
Transfers control to the specified label or line.

syntax: HANDLE (n)

where n is the file number of an OPENed file (1..255).
This function returns a long integer which is a pointer
to a dos file handle suitable for use with dos.library
functions such as Read (xRead when declared in
ACE/AmigaBASIC) .

If HANDLE returns 0 the file does not exist or can’t be
opened as requested.

Returns the turtle’s current heading in degrees (0..359).

syntax: HEXS (n)
Returns a string which represents the hexadecimal value
of the decimal argument n.

Move the turtle to its home position.

ACEReference.doc

32/80

1.69

1.70

IF

IFF

IF

ST
r
EN
b

IF

CS
£

SC
c

IF
c

- syntax: IF..THEN..[ELSE..]
IF..GOTO..[ELSE..]
IF..THEN
[ELSE]
END IF

ELSEIF is not yet implemented.
IF..[ELSE]..END IF blocks can be nested.

Use

OP

ather than

D

efore an END IF

otherwise the compiler will become confused.
There must be _something_ between IF..THEN

and END IF, even if only a blank line or comment,

eqg.
IF x=2 THEN
’..do something or maybe nothing
END TIF
Fox - syntax: IFF (channel,n)

This function returns information about the IFF graphics

file associated with the specified channel.

The channel parameter must be in the range 1..255.

The values returned are dictated by N thus:

N Return value

0 Address of name of IFF picture form (eg: ILBM).
Use ACE'’s

TR

unction to retrieve the string.

1 Width of picture.

2 Height of picture.

3 Depth of picture.

4 Screen Mode to use in SCREEN command. Note:
IFF (channel, 3) returns a depth of 6, HAM mode
is currently assumed even though it might be
extra-halfbrite. If the picture doesn’t render
correctly, use screen-mode 6 rather than 5

REEN

ommand) . Alternatively, don’t specify
the screen-id when using the

F READ

ommand.

ACEReference.doc 33/80

This issue may be resolved in a future revision.

— Information returned by values to this function when
N is in the range 1..4 can be used directly in a SCREEN
command.

- See also

IFF OPEN

r

IFF READ

and

ERR

1.71 IFF CLOSE

IFF CLOSE = — syntax: IFF CLOSE [#]channel
— Closes the specified IFF channel.
- If a screen was opened by IFF READ, IFF CLOSE will
close this.
- See also
ERR

1.72 IFF OPEN

IFF OPEN = - syntax: IFF OPEN [#]channel,file—-name

— This command associates an IFF picture file with the
specified channel.

- All subsequent IFF command/function calls use this
channel number.

— The IFF OPEN command also stores important information
about the picture file for

IFF READ

and

IFF

(channel,n) .

- See also

ERR

1.73 IFF READ

IFF READ =« - syntax: IFF READ [#]channel[, screen—-id]

— This command loads the IFF picture from the file
associated with the specified channel.

— The screen-id is optional. If not supplied, a non-ACE
screen and window will be used to display the picture,

ACEReference.doc 34/80

which is closed later by a call to
IFF CLOSE

— Otherwise, the screen should be opened in accordance with
the information returned via the
IFF
function.
- See also
ERR
and ace.guide.

1.74 IMP
IMP - Boolean operator: X IMP Y.
XY Out
T T T
T F F
FT T
F F T
1.75 INKEY$
INKEYS - syntax: INKEYS$

- Returns a single character string when a keystroke
is pending, otherwise the NULL string is returned.

— INKEYS$ works fine in user-defined windows, but since
a normal CON: window intercepts all keystrokes, INKEYS$
is not very useful in a shell/CLI.

1.76 INPUTBOX

INPUTBOX = — syntax: INPUTBOX (prompt[,title][,default][,xpos

1[,ypos])

— This function returns a long integer value after invoking
a requester which prompts the user to enter a value. If
you need to get a single-precision value, apply VAL to
the result of the

INPUTBOXS

function (see next entry).

— An OK and Cancel gadget allow the user to accept or
reject the entered value. Zero is returned if the Cancel
gadget 1is selected.

— The prompt string must be specified but all other
parameters are optional: title goes into the requester’s
title bar; default is a string containing a default
integer value which becomes the return value if nothing
is entered; xpos and ypos specify where to place the

ACEReference.doc 35/80
requester on the screen.
- Example: num& = INPUTBOX ("Enter a number:",,"12345")
1.77 INPUTBOXS$

INPUTBOXS =

1.78

INPUT

1.79

INPUT

INPUT #

syntax: INPUTBOXS (prompt[,title][,default] [,xpos][,ypos])
This function returns a string value after invoking

a requester which prompts the user to enter a value.

An OK and Cancel gadget allow the user to accept or
reject the entered string. If Cancel is selected the NULL
string is returned.

The prompt string must be specified but all other
parameters are optional: title goes into the requester’s
title bar; default is a string return value to be used if
no new value is entered; xpos and ypos specify where to
place the requester on the screen.

Example: command$ = INPUTBOXS ("Enter a command:")

syntax: INPUT [<prompt-string>] [;|,] varl [[;],] varN..]
Strings, integers and fixed-point or exponential format
single-precision values can be input from the keyboard.
Each value must appear on a separate line even when

a single INPUT statement contains multiple variables.

If a semicolon precedes a variable "? " will appear,
while if a comma is used no "? " will appear.

As of ACE v2.0 INPUT works with any screen or window
mode.

INPUT # - syntax: INPUT #filenumber,<variable-list>

Reads data items from a sequential file.

The variables in <variable-list> must each match the type
of item being read.

If unambiguous data format is required, it is best to

use

WRITE#

to store the values that INPUT# will read
since WRITE# separates each item with commas and delimits
strings with double quotes allowing for spaces. WRITE#
will also result in more efficient use of disk space and
faster reading by INPUT#.

— ACE accepts white space (line feeds, spaces, tabs),

commas and quotes as delimiters for each field in a
sequential file.

AmigaBASIC and ACE sequential file formats are virtually
identical.

ACEReference.doc 36 /80

— See also "Files" section in ace.guide.
- See also

ERR
1.80 INPUTS$
INPUTS - syntax: INPUTS (X, [#]filenumber)
- Returns a string of X characters from the filenumber’th
file.

— There is a 32K upper limit for X in ACE, but if you
want to read a whole file for example, and the file
length (determined by the

LOF

function) is greater than
MAXSTRINGLEN you should do the following:

STRING myString SIZE N

OPEN "I",#1,filename$
myString = INPUTS (LOF (1), #1)
CLOSE #1

or if you want to allocate space at run-time according
to the exact file size:

bytes& = LOF (1) + 1 "..need "+1" for EOS marker
addr& = ALLOC (bytes&)

STRING myString ADDRESS addré&

OPEN "I", #1,filename$

myString = INPUTS (bytesé&, #1)

CLOSE #1

— This method should only be used for small text files as
it is slow, and text is really the only useful thing to
put in a string if you wish to manipulate it. Some string
functions will react unexpectedly to non-text characters
in strings.

- If you wish to read a large file rapidly, it’s best to
use the dos.library function Read (declared as xRead in
BASIC). The sound player play.b gives an example of this.

- In general INPUTS$ is most useful for reading a few
characters at a time from a file. If you wish to read a
line at a time, use

LINE INPUT#

Use
INPUT#
if you want
to read numbers or delimited strings.

— INPUTS in ACE is only used for sequential file input, so
the filenumber is not optional. In AmigaBASIC, if the
latter is omitted, input is taken from the keyboard.

Not so in ACE.
- See also section on files in ace.guide.

ACEReference.doc

37/80

1.81 INSTR
INSTR

1.82 INT
INT

1.83 KILL
KILL

1.84 LEFTS$
LEFTS

1.85 LEN
LEN

1.86 LET
LET

syntax: INSTR([I,]XS$,Y$)

INSTR searches for the first occurrence of Y$ in X$ and
returns the character position from 1..N in XS$.

If the optional offset I is specified, the search starts
from that position, otherwise the search starts from the
first character in XS$.

If I is greater than len(X$) or X$="" or ¥Y$ is not found
in X$ or len(Y$) > len(X$), INSTR returns O.

If Y$="", INSTR returns I or 1.

X$ and Y$ can be string expressions, variables or
literals or any combination thereof.

syntax: INT (n)
Returns the largest integer less than or equal to n.

syntax: KILL <filespec>
Deletes a file or directory.

syntax: LEFTS$ (X$,I)

Returns a string which contains the leftmost I characters
of X$.

If T > len(X$), the whole string (X$) is returned.

If T = 0, the NULL string is returned.

syntax: LEN (X$)
Returns the number of characters in XS$.

syntax: [LET] <variable> = <expression>

LET assigns a value to a variable.

Its use is optional so that LET X=1 is equivalent
to X=1.

ACEReference.doc

38/80

1.87 LIBRARY

LIBRARY
1.88 LINE
LINE

syntax: LIBRARY [CLOSE] [<libname>]

Opens or closes one or more Amiga shared libraries.
Note that <libname> may be with or without quotes
and can either end in ".library", ".bmap" or have no
file extension whatever in ACE.

For example, to open the graphics library, two legal
syntaxes are:

LIBRARY graphics
and
LIBRARY "graphics.library"

LIBRARY CLOSE closes all open libraries or a single
library can be specified instead.

See "Shared library function calls" section in ace.guide.

The syntax of this command - apart from the simple
case of LINE (x1,vl)-(x2,y2)[,color,b[f]] - is a little
unclear from the AmigaBASIC manual.

The syntax of the LINE command in ACE is currently as
follows:

LINE [STEP] (x1,yl) [-(x2,y2) [, [color], [b[£]]]]

The second STEP directive has been omitted, but may be
added in a future revision.

A statement such as LINE STEP (100,90) will cause a line
to be drawn from the last referenced coordinate to
100,90. 1In addition, this use of LINE does *notx allow
for colour setting as can be seen from the ACE syntax

specification whereas LINE (100,90)-(200,150),color does.

The same is true for the "b" and "bf" options. A future
version may correct this problem.

Note: When using "b" or "bf", x2 must be >= x1 and y2
must be >= yl otherwise display weirdness will result!

1.89 LINE INPUT

element) .

LINE INPUT - syntax: LINE INPUT #filenumber,<string-variable>

Reads a line from the filenumber’th sequential file and
stores it in <string-variable> (simple variable or array

If <string-variable> does not exist, ACE creates it.
Lines are delimited by a line-feed character (ASCII 10)
and the string which is returned consists of the
characters up to but not including the line-feed.

Note that the AmigaBASIC manual (8-72) shows a semicolon

ACEReference.doc 39/80

instead of a comma in the above syntax which is incorrect
since AmigaBASIC itself accepts only a comma.

- The alternative form of LINE INPUT for keyboard input is
not currently implemented in ACE.

— LINE INPUT will not read more than MAXSTRINGLEN
characters.

- See also

INPUTS
(which will read up to 32K of
characters),

INPUT#

and ace.guide’s section on files.

- See also

ERR

1.90 LOCATE

LOCATE - syntax: LOCATE line[,column].
— LOCATE changes the printing position for the current
screen or window.
— Note that the use of LOCATE on a screen or user-defined
window currently also changes the next graphics drawing
coordinates.

1.91 LOF

LOF - syntax: LOF (n)
where n is the file number of an open file.
- LOF returns the length of the file in bytes.
— If the file is not open or is non-existent, LOF returns 0.

- See also
ERR
1.92 LOG
LOG - syntax: LOG(n)

- Returns the natural logarithm of n (log base e of n).
- The argument n should be greater than zero.

1.93 LONGINT

ACEReference.doc

40/80

OR
1.94 MENU
MENU

OR

LONGINT = - syntax: LONGINT <identifier>[,..]
— Declares and initialises (to zero) one or more long
integer variables.

- syntax: LONGINT (X$)

— This function returns the numeric value of X$ as a long
integer number.

— The hexadecimal and octal directives (&H and &0) may
prefix the string in order to allow the handling of these
bases.

— LONGINT strips off leading whitespace (eg: spaces, tabs).

— The main use for this function is to overcome the loss of
accuracy which results when VAL is used to extract a
large long integer value from a string.

- See also

VAL

- syntax: MENU menu-id, item-id, state[,title[, command-key]]

— This command creates or modifies the state of a menu or
menu item as per AmigaBASIC.

— The final optional parameter is peculiar to ACE and if
used, specifies the Amiga-<key> sequence which if issued
results in the selection of the corresponding menu
option. The command key option is displayed along with
the menu item when the menu is rendered.

— The state parameter can have the following values:

State Effect

0 Menu or item is disabled (shadowed).
1 Menu or item is enabled.

2 Menu item is checkmarked.

There must be at least 2 spaces
preceding the item for the tick
to be rendered properly.

— The most advisable method of creating menus is to start
from the first menu and first item in each menu, and code
them in sequence thereafter.

- syntax: MENU (n)
— This function returns information about the most recently

ACEReference.doc

41/80

selected menu and item. If n=0 the number of the menu is
returned. If n=1 the number of the menu item is returned.
MENU (0) returns 0 between menu events after being called
once for a particular menu selection.

This function must be used in conjunction with MENU event
trapping or WAITing.

1.95 MENU CLEAR

MENU CLEAR «* - syntax: MENU CLEAR

This command is the equivalent of MENU RESET in
AmigaBASIC.

The result of calling this is to clear the menu strip for
the current output window. In AmigaBASIC the initial menu
for the interpreter’s window is restored if a new menu is
set up in that window. This does not apply in ACE.

WINDOW CLOSE

1.96 MENU ON

MENU ON .. -

performs a menu clear in case you don’t.

syntax: MENU ON|OFF |STOP

These commands are used for enabling, disabling and
suspending ON MENU event trapping.

See the Event Trapping section in ace.guide.

1.97 MENU WAIT

MENU WAIT =« -

syntax: MENU WAIT
This command puts the program to sleep until menu
activity is detected.

1.98 MESSAGE CLEAR

MESSAGE CLEAR *x - syntax: MESSAGE CLEAR [#]channel

Clears the message port associated with the specified
channel.
See also

ERR

ACEReference.doc 42 /80

1.99 MESSAGE CLOSE

MESSAGE CLOSE *x - syntax: MESSAGE CLOSE [#]channel
— Closes the specified message channel.

- See also

ERR

1.100 MESSAGE OPEN

MESSAGE OPEN x - syntax: MESSAGE OPEN [#]channel,port-name,mode

- Creates a message channel for reading (mode="R")
or writing (mode="W").

— If the channel is for writing, the port-name is
the name of a message port which is assumed to
exist. If it does not exist an error will result
(see ERR).

You can therefore poll a remote port to determine
when it has been created.

- See also

ERR

1.101 MESSAGE READ

MESSAGE READ * - syntax: MESSAGE READ [#]channel,buffer

— Reads a message into buffer from the specified message
channel.

- See also

ERR

1.102 MESSAGE WAIT

MESSAGE WAIT » - syntax: MESSAGE WAIT [#]channel

- Waits for a message to appear on the specified channel.

— Please note that if no message is forthcoming, this
command will wait forever.

- Waiting on a port opened for writing (mode = "W") has the
effect of waiting for the remote task to signal that it
has accepted a message written to its port. This allows
for synchronisation between processes, ie. A writes to B,
B accepts message from A, A continues processing.

- See also

ERR

ACEReference.doc

43/80

1.103 MESSAGE WRITE

MESSAGE WRITE *x - syntax: MESSAGE WRITE [#]channel,buffer
— Writes a message to the specified message channel from

the buffer.
- See also
ERR
1.104 MID$
MIDS - syntax: MIDS$ (XS,I[,J])
— Only the MIDS$ _function_ is currently implemented in ACE.
- Returns a string containing J characters from X$ starting
from the Ith character.
- If J is omitted or there are fewer than J characters
to the right of (and including) the Ith character, all
characters from the Ith position to the end of the string
are returned.
- If I > len(X$), MIDS$ returns the NULL string.
1.105 MOD
MOD - Modulo arithmetic operator: X MOD Y.

eg: 101 MOD 10 =1

1.106 MOUSE

MOUSE - syntax: MOUSE (n)
— Returns information about the current status of the
mouse.

— Values of n ranging from 0..2 are presently meaningful
in ACE.

— MOUSE (0) returns -1 or 0 to indicate whether the
left mouse button is currently being pressed or not.

— MOUSE (1) returns the X location of the mouse pointer
in the current output window or screen.

— MOUSE (2) returns the Y location of the mouse pointer
in the current output window or screen.

- Future revisions of ACE will add more functionality to
MOUSE (n) .

1.107 MOUSE ON

ACEReference.doc

44 /80

MOUSE

1.108 MSGBOX

ON

MSGBOX =

OR

1.109

NAME

1.110

NOT

syntax:

syntax: MOUSE ON|OFF |STOP

These commands are used for enabling, disabling and
suspending ON MOUSE event trapping.

See the Event Trapping section in ace.guide.

syntax: MSGBOX (message,button-textl[,button-text2])
This function invokes a system requester having one or
two buttons (boolean gadgets) with the specified text
in each, plus a message in the requester’s main body
as specified by the message parameter.

If only button-textl is given, a single button is
rendered, otherwise two buttons appear.

The function’s return value is -1 or 0 depending

upon whether the first or second button is selected by
the user. With only one button present, the return
value is always -1.

Example: result = MsgBox("Really Quit?","Yes", "No")

MSGBOX message,button-text

This statement can be used to display a simple system

requester.

Since no value is returned via this statement,

only a single button is permitted.

Example:

NAME

NOT

MsgBox "File Deleted!","Continue"

Note that the message may only consist of a single line
but a future revision will allow for multiple lines.
Note also that under Wb 1.3 the "message" text is used
to determine the width of the requester. Under Workbench
2.x/3.0, the operating system proportions the requester
appropriately.

syntax: NAME <filespecl> AS <filespec2>
Renames a file or directory.

Boolean operator: NOT X.

ACEReference.doc 45/80

1.111 OCTS$

OCTS$ - syntax: OCTS$ (n)
- Returns the octal string representation of the long
integer value n.

1.112 ON..GOTO/GOSUB

ON..GOTO/GOSUB - syntax 1: ON <integer—-expr> GOTO | GOSUB <label> | <line>
eg: ON n GOTO one,two,three, four, five

such that if n=1 the program will branch to the label
"one" and if n=4 the branch will be to "four".

- syntax 2: ON <event-spec> GOTO | GOSUB <label> | <line>
- See "Event Trapping" section in ace.guide.

1.113 OPEN

OPEN - syntax: OPEN mode, [#]filenumber,<filespec>
which is the same as syntax 1 in AmigaBASIC
except that no file-buffer size can be specified.

- Mode is an upper or lower case character where:

- "I" = open file for input
- "O" = open file for output
"A" = open file for appending;

creates new file if <filespec>
doesn’t exist.

— Filenumber is a value from 1..255 and <filespec>
is a string containing the file name (eg: "test.doc",
"dfl:letters/santa").

— Multiple files can be open simultaneously.

- See also
ERR
1.114 OPTION
OPTION = - syntax: OPTION <switch>+|-[,<switch>+|-..]

— Compiler directives (switches) can be issued via this
command instead of from the command line. The latter
only allows for compiler directives to be xactivatedsx.

— Each switch must be followed by a "+" or "-" with

ACEReference.doc 46 /80
the former activating the directive and the latter
neutralising it.
- Switches currently implemented are: b,c,E,i,1,m,0,w
- See ace.guide, "Compiler options" for details of each
switch. Notice that for switches i and O, activation
or deactivation takes effect at the end of compilation.
1.115 OR
OR — Boolean operator: X OR Y.

1.116 PAINT

PAINT -

1.117 PALETTE

PALETTE -

1.118 PATTERN

PATTERN -

XY Out
T T T
T F T
FT T
F F F
syntax: PAINT (x,y)[[,color-id] [,border-id]]

PAINT flood-fills an enclosed region with the
color specified by color-id and if the latter

is omitted, the current foreground pen is used.

If border-id is not specified, color-id is used

to determine when to stop the filling process by
looking for a border of that color. The use of
border-id allows a region to be filled with one
color and be bordered by another.

x and y can be anywhere within the enclosed region.
Note that the ACE version of PAINT has no STEP
option so x and y constitute an absolute coordinate.
STEP may be added in a future revision.

syntax: PALETTE color-id,R,G,B

where R,G,B are the red, green and blue color
components of color-id, each in the range 0..1.
Palette changes colors in the current screen
(including the Workbench!) .

syntax: PATTERN [line-pattern][,area-pattern] | RESTORE
Same as in AmigaBASIC with the addition of a RESTORE
option. PATTERN RESTORE resets the line and area patterns

ACEReference.doc 47/ 80

to their default values.

— The line-pattern is a short integer value.

- The area-pattern is a DIM’d short integer array.

— The number of elements in area-pattern must be a power
of 2.

1.119 PEEKXx

PEEKX - syntax: PEEKx (<address>)
— The functions PEEK,PEEKW and PEEKL return an 8-bit,
16-bit and 32-bit value from memory, respectively.

1.120 PENDOWN

PENDOWN * - Lowers the turtle’s "pen". This enables drawing by the
turtle graphics commands.

1.121 PENUP

PENUP - Raises the turtle’s "pen". This disables drawing by the
turtle graphics commands.

1.122 POINT

POINT - syntax: POINT (x,V)

- Returns the color-id of a point in the current output

window or screen.

1.123 POKEXx

POKEX - syntax: POKEx <address>, <numeric-value>

— The commands POKE,POKEW and POKEL change the contents of
<address> to <numeric-value>.
— The number of bits affected is 8, 16 and 32 respectively.
— Unless you know what you are POKEing and why, don’t (!!)
or you can expect a visit from the Guru.

1.124 POS

ACEReference.doc 48/80
POS - Returns the print column in the current user—- <
defined
screen or window.
— Note that the syntax is different from AmigaBASIC where a
dummy argument of zero is used: POS(0).
- POS and
CSRLIN
have no meaning in a CLI/shell and will
return 0 if used when a CLI/shell is the current output
window.
1.125 POTX
POTX = - syntax: POTX (n)
where n=0 or 1 (game port 1 or 2).
- Returns a short integer wvalue corresponding to the
current potentiometer reading on pin 5 of the game port.
- POTX(0) returns 0 currently.
1.126 POTY
POTY = - syntax: POTY (n)
where n=0 or 1 (game port 1 or 2).
- Returns a short integer value corresponding to the
current potentiometer reading on pin 9 of the game port.
- POTY(0) returns 0 currently.
1.127 PRINT

PRINT - syntax: PRINT [<expression>][,|;]| ..]
where <expression> is a string or numeric value to
be printed at the current print location of the current
(DOS or Intuition) output window.

LOCATE

can be used to set the location for the next PRINT
command. So can

SETXY

for printing in a non-shell window.

— PRINT can be abbreviated to ’?’ as in AmigaBASIC.

- If <expression> is followed by a semi-colon, a line-feed
will not occur before the next PRINT.

- If <expression> is followed by a comma, the effect is
the same except that first, a horizontal tab (CHRS$(9))
is sent to the output window.

— Note that ASCII 9 does not have exactly the same effect
as an AmigaBASIC tab, but the result is similar.

If spacing is critical, you should use TAB or SPC.

ACEReference.doc 49/80

1.128 PRINT #

PRINT # - syntax: PRINT #filenumber,<expression>[, ;| ..]
where <expression> is a string or numeric value to
be printed at the current print location in the
filenumber’th file.
— PRINT can be abbreviated to ’'?’ as in AmigaBASIC.
— This version of PRINT # writes values to a file in the
same format as they would appear in a window.
— One oddity is that since ACE strings are NULL-terminated,
and this NULL (ASCII 0) is normally not displayed, any
attempt to send this character to a file, eg:

PRINT #filenumber, CHRS (0)

should by all rights be ignored. However, since some
programs write NULLs to files as delimiters, ACE does NOT
ignore a lone CHR$(0). A consequence of this is that if
you send an empty - LEN(<string>) = 0 - string to a file,
an ASCII 0 will be written. This also holds true for
WRITE #filenumber,<string>. Just check the length of a
string before sending it to a file if in doubt.

- Given the above behaviour, use:

PRINT #filenumber, CHRS (10)
PRINT #filenumber," " ..at least 1 space

to cause a line—-feed to be sent to the file.
- See also
ERR

1.129 PRINTS

PRINTS = - syntax: PRINTS [<expression>]I[,|; | ..]
where <expression> is a string or numeric value to
be printed at the current x,y location of an open
screen or window.
SETXY
or
LOCATE
can be used
to set the X,Y coordinates for the next PRINTS command.
— This command is now redundant since as of ACE v2.0
PRINT
handles DOS and Intuition windows/screens <
transparently.
— However since PRINTS doesn’t have to make a decision
about whether to print to a DOS or Intuition window,
it is faster than PRINT. It is not intended for use in
a CLI/shell however.

ACEReference.doc 50/80

1.130 PSET
PSET - syntax: PSET [STEP] (x,vy)[,color-id]

— Plots a point in the current output window or
screen.

— If color-id is not specified, the current
foreground color is used.

— If STEP is specified, the point is relative to
the current x,y location as set by the last
graphics command.

1.131 PTAB

PTAB - syntax: PTAB(n)
where n is in the range: 0..32767

— This function is used in conjunction with

PRINT

to
move the horizontal print position for the current
output window to the nth pixel.

— Subsequent graphics commands are also affected by
PTAB.

1.132 RANDOMIZE

RANDOMIZE - syntax: RANDOMIZE <expression>
— Seeds the random number generator.
- In ACE, RANDOMIZE *requiresx an argument.
TIMER
and
all other arguments will be coerced to long integers.
— RANDOMIZE TIMER is the most commonly used syntax.

1.133 READ

READ - syntax: READ <variable>[,<variableN>..]

— Assigns <variable> the value of the next item in the
global data list as created by DATA statements in
the current program.

— The <variable> must be of the same type as the data
item to be read otherwise an unexpected value will be
assigned to <variable>.

- See also

DATA
(especially re: READing long values).

ACEReference.doc

51/80

1.134 REM

REM

- syntax: REM <comment>
- A single-line comment.
— All characters after REM until the end of line are

ignored.

either appear on a separate line or after a ":" in a
multi-statement, an apostrophe followed by a comment
can appear anywhere in the text of a program.

— Note that ACE also supports block comments: {..}.
— The ACE compiler can handle the three types of comments

while the pre-processor APP can only handle the ’ and
{..} forms. Some form of commenting is required by APP
so that pre-processor commands can be commented out.

1.135 REPEAT..UNTIL

REPEAT. .UNTIL =«

syntax: REPEAT

UNTIL <condition>

where <condition> is an expression which reduces
to a boolean (true/false) value.

- Statements between the REPEAT and UNTIL are executed

until the <condition> is true (ie: non—-zero).

— Styled after the Pascal REPEAT..UNTIL construct.
— The loop is always executed at least once.

1.136 RESTORE

1.137 RIGHTS

RIGHTS

RESTORE — syntax: RESTORE

— Resets the DATA pointer to the first
DATA

statement

in the program.

— Note that there is no optional label in the ACE version

of RESTORE. This may be added in a future revision.

syntax: RIGHTS (X$,I)

Returns a string which contains the rightmost I
characters of X$.

If T > len(X$), the whole string (X$) is returned.
If I = 0, the NULL string is returned.

REM can be substituted by an apostrophe as in AmigaBASIC.
— While REM is treated as a true statement, and must

ACEReference.doc

52 /80

syntax: RNDJ (X)]

The RND function takes an optional parameter and always
returns a single-precision pseudo-random value between 0
and 1.

At present if it is supplied, X is ignored in ACE.

SADD - syntax: SADD (<string-expression>)

— Returns the address of <string-expression> which can be

a string literal, variable or expression.

— Unlike AmigaBASIC, string allocations after a call to

1.138 RND
RND

1.139 SADD
1.140 SAY
SAY

SADD have no impact upon the address of <string-expression>.

VARPTR

can also safely be used to find the address of

a string variable.

In ACE, there is a SAY command and a SAY function.

SAY command

syntax: SAY <phoneme-string>[,mode-array]

Same as AmigaBASIC’s SAY command: speak a phoneme string.
The <phoneme-string> can be a string literal, expression
or variable, while the optional mode—array is a 9-element
(0..8) DIM’d short integer array.

The mode—-array is allowed, and the following parameters
are supported:

Argument Element Values Default
pitch 0 65..320 110
inflection 1 0 or 1 0

rate 2 40..400 150

voice 3 0 or 1 0

tuning 4 5000..28000 22200 (Hz)
volume 5 0..64 64
channel 6 0..11 10

mode 7 0 or 1 0

control 8 0,1 or 2 0

Inflection=0 allows inflections and emphasis of syllables
while inflection=1 gives a monotone voice.

The voice parameter specifies gender: O=male; l=female.
Audio channel values have the same meaning as in
AmigaBASIC:

ACEReference.doc

53 /80

Value Channel (s)

and 1

and 2

and 1

3 and 2

either available left channel

either available right channel

either available left/right pair of channels
any available single channel

H = O o0 Jo Ul dbd WK O

= O

— Mode is used to specify synchronous or asynchronous

speech (0 and 1 respectively).

Control is used when mode=1 to determine what action is
to be taken when asynchronous speech is active. If
control is set to 0, the current SAY command waits until
the last SAY is finished before executing. When control=l
the last SAY statement is cancelled and speech processing
stops until the next call to SAY. When control=2 ACE
interrupts the last SAY command and initiates the current
one.

— The defaults are the same as in AmigaBASIC.

SAY function (only works properly under 2.04 or higher)

where n equals 0, 1 or 2.

SAY (0) - returns true or false (-1 or 0) to indicate
whether there is currently active asynchronous
speech.

SAY (1) - returns the width of the "mouth" corresponding

to the phoneme being spoken.

SAY (2) - returns the height of the "mouth" corresponding
to the phoneme being spoken.

SAY (0) allows for monitoring of the asynchronous
speech process (see details of mode-array above).
Use of SAY(1l) and SAY(2) allows an animated mouth
to be drawn.

SAY(l)’s and SAY(2)’'s values reflect the last call
to SAY (0) and so must be used in conjunction with
the latter.

Usage of the SAY function is typically like this:

SAY ... " ..start asynchronous speech

WHILE SAY (0)
x = SAY (1)

ACEReference.doc 54/80

y = SAY(2)
WEND
1.141 SCREEN
SCREEN — The SCREEN statement syntax is the same as in AmigaBASIC:

SCREEN screen-id, width, height, depth, mode
where mode is one of the following:

= lores

= hires

lores, interlaced

= hires, interlaced.

= HAM (hold-and-modify) [ACE only]
= extra-halfbrite [ACE only]

o Ul W N
Il

- The SCREEN function (ACE only) syntax is SCREEN (n),

where:

SCREEN (0) - Returns a pointer to the Intuition window,
that is, the current output window or default
window for the screen.

SCREEN (1) - Returns a pointer to the Intuition screen.

SCREEN (2) - Returns a pointer to the rastport of
the default window or current output
window for the screen.

SCREEN (3) - Returns a pointer to the screen’s viewport.

SCREEN (4) - Returns a pointer to the screen’s bitmap.

SCREEN (5) - Returns the width of the screen’s font.

SCREEN (6) - Returns the height of the screen’s font.

- A future revision of ACE’s SCREEN command will support
AGA screen modes.

1.142 SCREEN BACK

SCREEN BACK — syntax: SCREEN BACK screen-id
— Sends the specified screen to the back of the display.

1.143 SCREEN CLOSE

ACEReference.doc

55/80

SCREEN CLOSE - syntax: SCREEN CLOSE screen-id
— Closes a single screen.

1.144 SCREEN FORWARD

SCREEN FORWARD - syntax: SCREEN FORWARD screen-id
— Makes the specified screen frontmost.

1.145 SCROLL

SCROLL - syntax: SCROLL (xmin,ymin)-(xmax,ymax),delta-x,delta-y

Scrolls bits inside the specified rectangle.

— Delta-x and delta-y specify motion right and down
respectively.

- Negative delta values produce motion to the left and up.

1.146 SERIAL

SERIAL = - syntax: SERIAL (channel,n)

where channel is a serial channel identifier from 1..255
and n is a function number from 0..12 (see below).

— This function returns information about an open serial
channel.

0 - Returns the number of characters in the serial
read buffer. Use this value to determine how many
bytes to read from the buffer (see

SERIAL READ

) .
1 — Unit number of serial device in use by this
channel (see

SERIAL OPEN
) .

2 - Baud rate.

3 - Parity. Actually the ASCII value of the character
representing the selected parity (N,E,0,M,S). Use

CHRS
function to recover the character.

4 — Number of data bits.

ACEReference.doc 56 /80

5 — Number of stop bits.
6 — Number of wires for handshaking: 3 or 7.
7 — XON/XOFF feature: 0=disabled; l=enabled.
8 — Shared access mode: 0O=disabled; l=enabled.
9 — Fast mode: O=disabled; l=enabled.
10 - Serial (read) buffer size in bytes.
11 — Name of serial device. Actually, the value

returned is the address in memory of the name
string. Use ACE’s
CSTR
function to convert it
to a string.

12 — A 16-bit word representing the status of the serial
port lines and registers.

Bit Active Symbol Function

0 - Reserved

1 - Reserved

2 high (RI) Parallel Select on A1000
+ Ring-indicator on A500/A2000

3 low (DSR) Data Set Ready
4 low (CTS) Clear To Send
5 low (CD) Carrier Detect
6 low (RTS) Ready To Send
7 low (DTR) Data Terminal Ready
8 high Read overrun

9 high Break sent
10 high Break received
11 high Transmit x—-OFFed
12 high Receive x-OFFed
13 - Reserved
14 - Reserved
15 - Reserved

If you wanted to test for Carrier Detect, code
such as:

carrier_detect = SERIAL(1,12) AND 32

would store 32 in carrier_detect if CD was high
(ie. no carrier) and 0 if CD was low (ie. carrier
detected). The value 32 is used here since CD 1is
associated with bit 5 and 275 is 32. The 1 here
means serial channel 1.

Note that the above status word is taken directly
from querying the serial device associated with a
particular channel and the above table is taken

ACEReference.doc

57/80

directly from the ROM Kernel Ref. Manual: Devices,
(1991), pg 278.

- For more information about the serial device modes etc,
see SERIAL OPEN command below and Commodore’s ROM Kernel
Reference Manual: Devices.

- See also
ERR

1.147 SERIAL CLOSE

SERIAL CLOSE % - syntax: SERIAL CLOSE [#] channel
— Closes a logical channel to a serial device.

- See also

ERR

1.148 SERIAL OPEN

SERTAL OPEN = - syntax:

SERIAL OPEN [#] channel,unit,baud,params][,size][,dev]

— This command opens a logical channel to a serial device.

— The channel parameter must be in the range 1..255.

— The unit parameter tells ACE which serial device unit to
open (eg. for a multi-port serial card). Normally
however, you should specify 0 for a single serial port.

— The baud rate is specified by the baud parameter. This
value can be in the range 110..292,000 on the Amiga.

— The next parameter is a string consisting of at least
three single character "switches":

parity - N,E,O,M or S. Other = N.

data bits - usually 7 or 8.

stop bits - usually 1 or 2.

wires - 3 or 7. Other = 7.

XON/XOFF - X = enabled. Other = disabled.
Access - S = shared. Other = exclusive.
Fast mode - F = fast mode. Other = normal.

- Parity, data bits and stop bits MUST be specified and
in the order shown above, while the remaining switches
are optional and can be given in any order.

- Fast mode is intended for use in conjunction
with peripherals which require high serial
throughput, eg. a MIDI device. Higher throughput
is achieved by certain internal serial device checks
being skipped. Fast mode should be used only when:

ACEReference.doc

58 /80

parity checking has been disabled, XON/XOFF handling

is disabled

and 8 bit characters are in use.

For a letter, upper or lower case can be used.

In the above description of switches "Other" means any
other character (I suggest you use "?" or some other
character consistently, to indicate "don’t care").

The optional parameter "size" specifies the size of the
serial xreadx buffer. At high baud rates the buffer can
fill up quickly. The default is 512 bytes.

The final parameter (dev) 1is also optional. This
specifies the name of the serial device to be used. The

device name defaults to "serial.device" if not specified.

An alternate serial device can be used as long as the
device’s commands are compatible with the standard
serial.device supplied with the Amiga. This device
normally lives in the DEVS: directory.

If using another serial device, simply supply its name
if it resides in the DEVS: directory, otherwise a full
path must be specified.

Here’s a typical example of SERIAL OPEN usage:
SERIAL OPEN 1,0,2400,"N81",1024

which opens a channel (#1) to the standard serial device
with a baud rate of 2400, no parity, 8 data bits and 1
stop bit. All 7 wires will be used for handshaking and
the serial read buffer size will be set to 1K.

See also

ERR

1.149 SERIAL READ

SERIAL READ =« - syntax: SERIAL READ [#] channel,buffer, length

Tells ACE to read length bytes from the serial buffer

corresponding to the (open) logical channel into a string

buffer.

The buffer can be a string variable or array.

Note that this command will wait for the serial port
read to complete before returning control to your
program, so use SERIAL(channel,0) to find out how many
bytes are waiting on the port and make length equal to
that value.

See also

ERR

1.150 SERIAL WRITE

ACEReference.doc

59/80

1.151

SETHEADING =

1.152

1.153

SGN

1.154

SERIAL WRITE x - syntax: SERIAL WRITE [#] channel,string, length

— Tells ACE to write length bytes to the serial port
corresponding to the (open) logical channel from a
string buffer.

- The string buffer can be any string expression.

- See also

ERR

SETHEADING

syntax: SETHEADING n
— Changes the turtle’s heading to n degrees.

SETXY

SETXY = - syntax: SETXY x,y
- Sets the x,y location for the next graphics command
in the current output window or open screen.
- Its primary use is for turtle graphics. To prevent the
turtle drawing a line when SETXY is used, the
PENUP
command should first be issued.

SGN

- syntax: SGN(n)
- Returns the sign of the number n:

if n>0, SGN(n) returns 1
if n=0, SGN(n) returns 0
if n<0, SGN(n) returns -1

SHARED
SHARED - syntax: SHARED <ident>[,<ident> ...]
- Variables, arrays and structures must explicitly
be shared between the main program and subprograms.
- Only
EXTERNAL

variables are exempt from such sharing in

ACE since they are global (see "Identifiers" in ace.guide).
— One or more SHARED statements can appear in a subprogram
and are usually placed before all other code in that SUB.

— Declarations of objects to be shared must appear in the

ACEReference.doc 60/80
main program before the subprogram is xdeclaredx.
- See subprograms section in ace.guide and the entry for
DIM
above re: DIM SHARED.
1.155 SHL
SHL =« - syntax: SHL (n,m)

where n is the value to be shifted and m is the number
of bit positions to shift.
— Arithmetic shift left function. Returns a long integer.
— Shifting left by 1 bit (or more) is faster than multiplying
by 2 (or powers thereof).

1.156 SHR

SHR = - syntax: SHR(n,m)
where n is the value to be shifted and m is the number
of bit positions to shift.
— Arithmetic shift right function. Returns a long integer.
- Shifting right by 1 bit (or more) is faster than dividing
by 2 (or powers thereof) .

1.157 SHORTINT

SHORTINT = - syntax: SHORTINT <identifier>[,..]
— Declares and initialises one or more short integer
variables.

1.158 SINGLE

SINGLE = - syntax: SINGLE <identifier>[,..]
— Declares and initialises one or more single-precision
variables.

1.159 SIZEOF

SIZEOF * - syntax:
SIZEOF (byte|shortint|longint |address|single|string|<ident>)
where <ident> is the name of a variable, array, structure
type or structure variable (not a SUB, function or external
variable).
— A size in bytes is returned.

ACEReference.doc 61/80

— The intention is the same as that of C’s sizeof () operator.
— SIZEOF is most useful when allocating memory for
structures.

1.160 SIN

SIN — syntax: SIN(n)
- Returns the sine of n.

1.161 SLEEP

SLEEP - syntax: SLEEP

— This command puts a program to sleep until there is
mouse, menu or keyboard activity. The program will
also be woken up by IntuiTicks (timer signals from a
user—-defined window or default screen window) at regular
intervals (every ~0.1 of a second) so your program can
perform other tasks.

- If SLEEP is called when the current output window is
a CLI/shell, SLEEP returns control to your program
immediately.

— Once a window loses the "focus" SLEEP waits indefinitely.
If this is likely to happen, you might want to use the

SLEEP FOR
command instead.

1.162 SLEEP FOR

SLEEP FOR = - syntax: SLEEP FOR <seconds>
— Suspends execution of a program for the specified number
of seconds, which can be a single-precision floating
point value greater than 0 (including values between 0 and 1).
— This command does NOT use a busy waiting method. Instead

it relies upon the dos.library Delay() function to delay
execution in a system-friendly way, without hogging CPU
time.

— The smallest practical value for <seconds> is 0.02 since
there are 50 ticks per second and 50%0.02 = 1 tick. Any
value less than 0.02 will therefore cause SLEEP FOR to
return immediately. This would have the same effect as
busy waiting which hogs CPU time. To see the effect of
various values of <seconds> run the following program
with the system tool PerfMon running:

WHILE INKEYS=""
SLEEP FOR n ’..where n 1s <seconds>
WEND

ACEReference.doc 62 /80

- You should notice that as <seconds> approaches zero,
CPU time looks more like it would if you had used
the above loop without SLEEP FOR at all.

1.163 SOUND

SOUND - syntax: SOUND period,duration],volume] [,voice]
— Note that the syntax of this command is different
from the equivalent statement in AmigaBASIC.
- See the sound section in ace.guide for details.
- See also the
WAVE
command. A combination of
these two commands in ACE allows you to easily
play sound samples (see example program play.b).
— SOUND currently uses the audio hardware directly
but a future revision will use the audio device.

1.164 SPACE$

SPACES - syntax: SPACES (n)
- Returns a string of n spaces.

1.165 SPC
SPC - syntax: SPC(n)
— This function is generally used in conjunction with
PRINT

and returns a string of n spaces, where n is a <
value from
0 to 255.

1.166 SQR

SQOR syntax: SQR(n)
— Returns the square root of n.

— The argument n must be >= 0.

1.167 STICK

ACEReference.doc

63 /80

STICK

1.168 STOP

1.169 STRS$

STRS

1.170 STRIG

STRIG

1.171

STRING

- syntax: STICK(n)

- Returns information about Jjoystick direction.

- At the moment, STICK(0) & STICK(l) always return O,
while STICK(2) & STICK(3) return the state of
the joystick in port 2 (B), where:

STICK(2) is joystick B in X direction.
STICK(3) is joystick B in Y direction.

- Return values are:

0 = joystick is not engaged.
1 = movement is upward or to the right.
-1 = movement is downward or to the left.
— STICK currently goes straight to the hardware. A future
revision may use the gameport device.

STOP - This is functionally equivalent to
END
in ACE.
- See also
IF..[ELSE]..END IF

- syntax: STRS (n)

- Returns the string representation of the numeric value n.

— The string includes a leading space or "-" depending upon
the sign of the number.

- syntax: STRIG(n)

- Returns information about the state of a joystick button.

— At the moment, STRIG(0), STRIG(l) & STRIG(2) always
return 0.

- STRIG(3) returns -1 if the port 2 Jjoystick’s
fire button is *currently* pressed and 0 if it isn’t.

— STRIG currently goes straight to the hardware. A future
revision may use the gameport device.

ACEReference.doc

64 /80

STRING = - syntax:

STRING <ident> [[ADDRESS <addr>] | [SIZE <size>]11[,..]

— Declares and initialises one or more string variables

1.172 STRING$

STRINGS -

1.173 STRUCT

S

D

with an optional size or address. If the size is not
specified, a length of MAXSTRINGLEN bytes is assumed.

If an address is specified, the SIZE option can’t be used
since the size of the area of memory pointed to by <addr>
has already been determined.

syntax: STRINGS (I,J) or STRING(I,XS).
STRINGS returns a string of length I consisting of
characters with ASCII code J or ASC(MIDS (XS$,1,1)).

TRUCT = - Defines a new structure data type, thus:
STRUCT <ident>
<type> <identl>
<type> <ident2>
<type> <identN>
END STRUCT
where <type> can be BYTE, SHORTINT, LONGINT, ADDRESS, SINGLE,
STRING and <identl>..<identN> are structure members of
one of these data types.
A structure member may also be another structure. In this
case, <type> must be the name of a previously defined
structure type. See ace.guide’s "Structures" section for
more about this.
Where a member is of type STRING, an optional size can be
specified (STRING <ident> [SIZE <size>]).
See also:
ECLARE

and the section on structures in

ace.guide.

Structures have been provided in ACE primarily to make
communicating with the operating system a little nicer
and to make dynamic data structures possible (see the
example programs turtle/bst.b and misc/linkedlist.b).
ACE structures cannot currently be array elements
although there is nothing to stop you from storing
structure start addresses in array elements. For an
example of this, see prgs/misc/array_of_structs.b.

See "Structures" section in ace.guide for more details.

ACEReference.doc

65/80

1.174 STYLE

STYLE =

- syntax: STYLE n

— Changes the text style for the current output window
(user—-defined window or shell).

— The single parameter can take on the following values:

n Effect

0 Plain

1 Underlined

2 Bold

4 Italic

8 Extended width (non-shell/CLI window only)

— These values can be added to produce cumulative effects
(eg: n=3 gives bold and underlined text).

1.175 SUB..END SUB

1.176 SWAP

SWAP

SUB. .END SUB - syntax:

SUB [<type>] <ident> [([<type>] <param> [..])] [EXTERNAL]

<statementl>
<statement2>

<statementN>
END SUB

where the optional <type> is one of: LONGINT,ADDRESS,
SHORTINT, SINGLE or STRING.

- In ACE, subprograms are non-static, allow recursion, may

have return values and have optional parameter lists.
— Parameters are call-by-value but ACE does provide
mechanisms for call-by-reference parameters.
— SHARED variables are supported in ACE (see
SHARED
command) .
- Note that since ACE SUBs are non-static, the STATIC
keyword is not allowed.
— The optional EXTERNAL keyword makes the subprogram
visible to other ACE modules.

- See "Subprograms" section in ace.guide for more details.

- syntax: SWAP <object>, <object>

where <object> is a simple/external variable, parameter,

array element, structure or structure member.
— This command swaps the value of the specified data

ACEReference.doc

66 /80

objects.

— SWAP is not intended to be used for exchanging two whole
arrays.

— ACE currently assumes a maximum length of MAXSTRINGLEN
when swapping strings.

1.177 SYSTEM

OR

OR

SYSTEM - syntax 1: SYSTEM n
where n is an integer exit wvalue (return code).

— SYSTEM causes an ACE program to exit with the specified
return code. The latter can be tested in a shell script
as WARN, ERROR etc. This value is hidden from a Workbench
launched program.

- Note that in AmigaBASIC, SYSTEM returns from the
interpreter to the shell/CLI or Workbench. The same is
true in ACE, except that

END

and

STOP

will also do this,
so SYSTEM’s intended purpose in ACE is different to that
in AmigaBASIC.

- syntax 2: SYSTEM command-string

— This version of the SYSTEM command attempts to run a
shell/CLI command. It is equivalent to the following
dos.library command:

Execute (command-string, stdin, stdout) .

- If the command writes to standard output, make sure you
are running the program from a shell/CLI or at least
that you have given the EXTERNAL stdout variable a valid
value corresponding to an open file’s handle, typically a
CON: or RAW: window (see

HANDLE

function) .
- Also, make sure that "Run" is in your C: directory.
- Examples:

SYSTEM "list" '..lists files in current directory

SYSTEM "dir > fred" ’..runs dir command and redirects
"..output to a file called fred.

- syntax 3: SYSTEM

— This *function* returns the Exec library version,
enabling your program to do different things depending
upon the version of the operating system under which it
is running.

- A value of 34 indicates Workbench 1.3 while 37 indicates
Workbench 2.04.

ACEReference.doc 67 /80

1.178 TAB
TAB - syntax: TAB(n)
— Used in conjunction with
PRINT
to move the print position
to the nth column.
- TAB(n) - where n=1..81.
- 1f n>81, wraparound will occur in a DOS window while
a user-defined (Intuition) window/screen will clip any
output past the last character position.
- if n<l, the next print position will be column 1 (leftmost).
1.179 TAN
TAN - syntax: TAN (n)
— Returns the tangent of n.
1.180 TIME$
TIMES - syntax: TIMES
- Returns the current time as a string of the format:
hh:mm:ss
where hh is hours, mm is minutes and ss is seconds.
1.181 TIMER
TIMER - syntax: TIMER

- Returns a single-precision value corresponding to
seconds elapsed since midnight.

1.182 TIMER ON

TIMER ON .. - syntax: TIMER ON|OFF | STOP
— These commands are used for enabling, disabling and
suspending ON TIMER (n) event trapping.
— See the Event Trapping section in ace.guide.

ACEReference.doc 68 /80

1.183 TRANSLATES$

TRANSLATES - syntax: TRANSLATES (<string-expression>)
— Returns the phoneme-string equivalent of
<string-expression> where the latter contains words.

1.184 TURN

TURN = - syntax: TURN n
— Rotates the turtle by n degrees.
— If n is negative, the turtle will rotate
counter-clockwise while if it is positive,
the rotation will be clockwise.

1.185 TURNLEFT

TURNLEFT =* — syntax: TURNLEFT n
— Rotates the turtle counter-clockwise by n degrees.
- If n is negative, the result will be the same as
TURNRIGHT ABS(n) .

1.186 TURNRIGHT

TURNRIGHT = — syntax: TURNRIGHT n
- Rotates the turtle clockwise by n degrees.
- If n is negative, the result will be the same as
TURNLEFT ABS (n) .

1.187 UCASES$

UCASES - syntax: UCASES (<string-expression>)
- Returns <string-expression> with all alphabetic characters
in upper case.

1.188 VAL

VAL - syntax: VAL (XS$)
— Returns the numeric value of X$ as a single-precision
number.

— The translation of integers plus fixed-point and
exponential format single-precision values is supported.

— The hexadecimal and octal prefixes (&H and &0) are also
recognised by VAL.

- VAL strips off leading whitespace (eg: spaces, tabs).

ACEReference.doc 69 /80

— There may be a loss of accuracy if the string contains a
LARGE long integer value, due to the limitations of the
single-precision numeric format. To overcome this, use
the

LONGINT

(n) function.

1.189 VARPTR

VARPTR - syntax: VARPTR (<data-object>)

— Returns the absolute address of a numeric variable,
string, array, array element, structure, structure
member, external function or subprogram.

— You can safely use VARPTIR to find a string variable’s
address (

SADD

has also been provided for string variables
and expressions) .

— Unlike AmigaBASIC, an object’s address does *not*x move
around in memory once allocated.

— In ACE, the symbol "@" can be used instead of VARPTR,

eg: addr& = @n(2) ’..finds address of an array element

— When used in conjunction with a structure variable x,
@x will return the address of the variable itself, NOT
the start address of the structure (see "Structures" in
ace.guide for more).

- See also section on indirection operators in ace.guide.

1.190 WAVE

WAVE - syntax: WAVE voice,SIN | [waveform-address,byte- <

count]

— Defines a waveform of any length to be used by the SOUND
statement for a specified audio channel (voice: 0..3).

— If the SIN option is used, a sine waveform table is
allocated to the specified channel. This is the default
waveform for the

SOUND

statement.

— Unlike AmigaBASIC, the number of bytes in the waveform
table must be specified when SIN is not used.

- See also the Sound section in ace.guide.

1.191 WHILE..WEND

ACEReference.doc

70/80

WHILE..WEND

- syntax: WHILE <condition>

WEND

where <condition> is an expression which reduces
to a boolean (true/false) value.

— Statements inside the WHILE and WEND are executed
while the <condition> is true (ie: non-zero).

1.192 WINDOW

WINDOW — syntax:
WINDOW id, [title-string], (x1,v1)-(x2,v2)[,type][,screen-id]

where screen-id specifies the screen to which the window
should be attached and type can be a combination of the
following (31 is the default if type is not specified):

Type Effect
1 Window size can be changed via
sizing gadget.

2 Window can be moved about using
the title bar.

4 Window can be moved from front to
back using the Back gadget.

5 Under Release 2.x of the 0S, when
this Type value is specified alone
or as a component of larger Type
value (eg: 7,15,23) a zoom gadget
is added to the window allowing it
to be switched between the two most
recent window sizes.

8 Close gadget added to window.

16 Contents of window reappear after
it has been covered.

32 Window will be borderless.

The window-id must be from 1 to 9.

Note that if the rectangle as specified in the WINDOW
command is too large (according to screen mode), the
window won’t open.

- See also

ERR

ACEReference.doc

71/80

OR

- syntax: WINDOW (n)
— This function returns information related to ACE windows.

WINDOW (0) window—-id of the selected output window.

WINDOW (1) window—-id of current output window.

WINDOW (2) present width of current output window.

WINDOW (3) present height of current output window.

WINDOW (4) x—coordinate in current output window where
next pixel will be plotted.

WINDOW (5) y—coordinate in current output window where
next pixel will be plotted.

WINDOW (6) max legal colour-id for current output window.

WINDOW (7) pointer to Intuition Window for current output
window.

WINDOW (8) pointer to Rastport of current output window.

WINDOW (9) pointer to AmigaDOS file handle for current
output window (non-zero for shell/CLI only).

WINDOW (10) foreground pen in current output window.

WINDOW (11) background pen in current output window.

WINDOW (12) font width for current output window.

WINDOW (13) font height for current output window.

1.193 WINDOW CLOSE

WINDOW CLOSE

- syntax:

— See the section on Windows in ace.guide for more details.

WINDOW CLOSE id

- Closes the id’th window if it is open.

1.194 WINDOW ON

WINDOW ON

- syntax:

WINDOW ON|OFF |STOP

— These commands are used for enabling, disabling and
suspending ON WINDOW event trapping.
— See the Event Trapping section in ace.guide.

1.195 WINDOW OUTPUT

WINDOW OUTPUT - syntax: WINDOW OUTPUT id
- Makes the id’th open window the current output window.

1.196 WRITE

ACEReference.doc

72/80

1.197 XCOR
XCOR =*

1.198 YCOR
YCOR =*

1.199 XOR
XOR

1.200 Index

WRITE - syntax: WRITE #filenumber,expression-list

where filenumber corresponds to an open file.

— The expression-list can contain any combination
of data items (constants, variables) of any type
separated by commas.

— Note that the form of WRITE allowing for screen
output is not supported by ACE.

- See

PRINT#

re: the treatment of CHRS$(0) in file I/O by
ACE.

- See also

INPUT#

and the section on files in ace.guide.

- See also

ERR

— Returns the turtle’s current x—-coordinate.

- Returns the turtle’s current y-coordinate.

— Boolean operator: X XOR Y.

XY Out
T T F
T F T
F T T
F F F
A
ABS
ACE.Guide

ADDRESS

ACEReference.doc 73 /80

AIDE.Guide

ALLOC

AND

AREA

AREAFILL

ARGS

ARGCOUNT

ASC

ASSEM

ATN

B

BACK

BEEP

BEVELBOX

BINS

BREAK

C

CALL

CASE

CHDIR

CHRS$

CINT

CIRCLE

CLEAR ALLOC

CLNG

CLOSE

CLS

COLOR

CONST

ACEReference.doc 74 /80

COos
CSNG
CSRLIN
CSTR

D

DATA
DATES
DAY
DECLARE
DEF FN
DEFxxx
DIM

E

END
EOF
EQV
ERR

ERROR
Example.Guide

EXIT FOR
EXIT SUB
EXP
EXTERNAL
F
FILEBOXS
FILES
FIX

FONT

FOR. .NEXT

ACEReference.doc

75/80

FORWARD

FRE

G

GADGET CLOSE

GADGET MOD

GADGET ON

GADGET WAIT

GADGET

GOSUB. .RETURN

GOTO

H

HANDLE

HEADING

HEXS
History

HOME

I

IF

IFF CLOSE

IFF OPEN

IFF READ

IFF

IMP

INKEYS

INPUT #

INPUT

INPUTS

INPUTBOX

INPUTBOXS

ACEReference.doc 76 /80

INSTR
INT
Introduction

K

KILL

LEFTS

LEN

LET

LIBRARY

LINE INPUT

LINE

LOCATE

LOF

LOG

LONGINT

M

Main Menu

MENU CLEAR

MENU ON

MENU WAIT

MENU

MESSAGE CLEAR

MESSAGE CLOSE

MESSAGE OPEN

MESSAGE READ

MESSAGE WAIT

MESSAGE WRITE

ACEReference.doc 77 /80

MIDS$

MOD

MOUSE ON

MOUSE

MSGBOX

N

NAME

NOT

OCTS

ON..GOTO/GOSUB

OPEN

OPTION

OR

P

PATINT

PALETTE

PATTERN

PEEKx

PENDOWN

PENUP

POINT

POKEx

POS

POTX

POTY

PRINT #

PRINT

PRINTS

ACEReference.doc 78 /80

PSET

PTAB

RANDOMIZE

READ

REM

REPEAT. .UNTIL

RESTORE

RIGHTS

RND

S

SADD

SAY

SCREEN BACK

SCREEN CLOSE

SCREEN FORWARD

SCREEN

SCROLL

SERIAL CLOSE

SERIAL OPEN

SERIAL READ

SERTIAL WRITE

SERIAL

SETHEADING

SETXY

SGN

SHARED

SHL

ACEReference.doc 79 /80

SHORTINT

SHR

SIN

SINGLE

SIZEOF

SLEEP FOR

SLEEP

SOUND

SPACES

SPC

SOR

STICK

STOP

STRS

STRIG

STRING

STRINGS

STRUCT

STYLE

SUB..END SUB

SWAP

SYSTEM

T

TAB

TAN

TIMES

TIMER ON

TIMER

TRANSLATES

ACEReference.doc

80/80

TURN
TURNLEFT
TURNRIGHT

U

UCASES

4

VAL

VARPTR

W

WAVE

WHILE..WEND

WINDOW CLOSE

WINDOW ON

WINDOW OUTPUT

WINDOW

WRITE

X

XCOR

XOR

YCOR

	ACEReference.doc
	Main Menu
	Introduction
	ABS
	ADDRESS
	ALLOC
	AND
	ARG$
	ARGCOUNT
	AREA
	AREAFILL
	ASC
	ASSEM
	ATN
	BACK
	BEEP
	BEVELBOX
	BIN$
	BREAK
	CALL
	CASE
	CHDIR
	CHR$
	CINT
	CIRCLE
	CLEAR ALLOC
	CLNG
	CLOSE
	CLS
	COLOR
	CONST
	COS
	CSNG
	CSRLIN
	CSTR
	DATA
	DATE$
	DAY
	DECLARE
	DEF FN
	DEFxxx
	DIM
	EOF
	END
	ERR
	ERROR
	EQV
	EXIT FOR
	EXIT SUB
	EXP
	EXTERNAL
	FILEBOX$
	FILES
	FIX
	FONT
	FOR..NEXT
	FORWARD
	FRE
	GADGET
	GADGET CLOSE
	GADGET MOD
	GADGET ON
	GADGET WAIT
	GOSUB..RETURN
	GOTO
	HANDLE
	HEADING
	HEX$
	HOME
	IF
	IFF
	IFF CLOSE
	IFF OPEN
	IFF READ
	IMP
	INKEY$
	INPUTBOX
	INPUTBOX$
	INPUT
	INPUT #
	INPUT$
	INSTR
	INT
	KILL
	LEFT$
	LEN
	LET
	LIBRARY
	LINE
	LINE INPUT
	LOCATE
	LOF
	LOG
	LONGINT
	MENU
	MENU CLEAR
	MENU ON
	MENU WAIT
	MESSAGE CLEAR
	MESSAGE CLOSE
	MESSAGE OPEN
	MESSAGE READ
	MESSAGE WAIT
	MESSAGE WRITE
	MID$
	MOD
	MOUSE
	MOUSE ON
	MSGBOX
	NAME
	NOT
	OCT$
	ON..GOTO/GOSUB
	OPEN
	OPTION
	OR
	PAINT
	PALETTE
	PATTERN
	PEEKx
	PENDOWN
	PENUP
	POINT
	POKEx
	POS
	POTX
	POTY
	PRINT
	PRINT #
	PRINTS
	PSET
	PTAB
	RANDOMIZE
	READ
	REM
	REPEAT..UNTIL
	RESTORE
	RIGHT$
	RND
	SADD
	SAY
	SCREEN
	SCREEN BACK
	SCREEN CLOSE
	SCREEN FORWARD
	SCROLL
	SERIAL
	SERIAL CLOSE
	SERIAL OPEN
	SERIAL READ
	SERIAL WRITE
	SETHEADING
	SETXY
	SGN
	SHARED
	SHL
	SHR
	SHORTINT
	SINGLE
	SIZEOF
	SIN
	SLEEP
	SLEEP FOR
	SOUND
	SPACE$
	SPC
	SQR
	STICK
	STOP
	STR$
	STRIG
	STRING
	STRING$
	STRUCT
	STYLE
	SUB..END SUB
	SWAP
	SYSTEM
	TAB
	TAN
	TIME$
	TIMER
	TIMER ON
	TRANSLATE$
	TURN
	TURNLEFT
	TURNRIGHT
	UCASE$
	VAL
	VARPTR
	WAVE
	WHILE..WEND
	WINDOW
	WINDOW CLOSE
	WINDOW ON
	WINDOW OUTPUT
	WRITE
	XCOR
	YCOR
	XOR
	Index

