
 The RC6 Block Cipher:
 A simple fast secure
 AES proposal
Ronald L. Rivest MIT
Matt Robshaw RSA Labs
Ray Sidney RSA Labs
Yiqun Lisa Yin RSA Labs

 (August 21, 1998)

Outline
 Design Philosophy
 Description of RC6
 Implementation Results
 Security
 Conclusion

Design Philosophy
 Leverage our experience with RC5: use data-

dependent rotations to achieve a high level
of security.

 Adapt RC5 to meet AES requirements
 Take advantage of a new primitive for

increased security and efficiency: 32x32
multiplication, which executes quickly on
modern processors, to compute rotation
amounts.

Description of RC6

Description of RC6
 RC6-w/r/b parameters:

– Word size in bits: w (32)(lg(w) = 5)
– Number of rounds: r (20)
– Number of key bytes: b (16, 24, or 32)

 Key Expansion:
– Produces array S[0 … 2r + 3] of w-bit round

keys.
 Encryption and Decryption:

– Input/Output in 32-bit registers A,B,C,D

RC6 Primitive Operations
A + B Addition modulo 2w

A - B Subtraction modulo 2w

A  B Exclusive-Or
A <<< B Rotate A left by amount in

 low-order lg(w) bits of B
A >>> B Rotate A right, similarly
(A,B,C,D) = (B,C,D,A) Parallel assignment

A x B Multiplication modulo 2w

RC
5

RC6 Encryption (Generic)
 B = B + S[0]

D = D + S[1]
for i = 1 to r do
 {
 t = (B x (2B + 1)) <<< lg(w)
 u = (D x (2D + 1)) <<< lg(w)
 A = ((A  t) <<< u) + S[2i]
 C = ((C  u) <<< t) + S[2i + 1]
 (A, B, C, D) = (B, C, D, A)
 }
A = A + S[2r + 2]
C = C + S[2r + 3]

RC6 Encryption (for AES)
 B = B + S[0]

D = D + S[1]
for i = 1 to 20 do
 {
 t = (B x (2B + 1)) <<< 5
 u = (D x (2D + 1)) <<< 5
 A = ((A  t) <<< u) + S[2i]
 C = ((C  u) <<< t) + S[2i + 1]
 (A, B, C, D) = (B, C, D, A)
 }
A = A + S[42]
C = C + S[43]

RC6 Decryption (for AES)
 C = C - S[43]

A = A - S[42]
for i = 20 downto 1 do
 {
 (A, B, C, D) = (D, A, B, C)
 u = (D x (2D + 1)) <<< 5
 t = (B x (2B + 1)) <<< 5
 C = ((C - S[2i + 1]) >>> t)  u
 A = ((A - S[2i]) >>> u)  t
 }
 D = D - S[1]
 B = B - S[0]

Key Expansion (Same as RC5’s)
 Input: array L[0 … c-1] of input key words
 Output: array S[0 … 43] of round key words
 Procedure:

S[0] = 0xB7E15163
for i = 1 to 43 do S[i] = S[i-1] + 0x9E3779B9
A = B = i = j = 0
for s = 1 to 132 do
 { A = S[i] = (S[i] + A + B) <<< 3
 B = L[j] = (L[j] + A + B) <<< (A + B)
 i = (i + 1) mod 44
 j = (j + 1) mod c }

From RC5 to RC6
 in seven easy steps

(1) Start with RC5
 RC5 encryption inner loop:
 for i = 1 to r do

 {
 A = ((A  B) <<< B) + S[i]
 (A, B) = (B, A)
 }

Can RC5 be strengthened by having rotation
amounts depend on all the bits of B?

 Modulo function?
Use low-order bits of (B mod d)
Too slow!

 Linear function?
Use high-order bits of (c x B)
Hard to pick c well!

 Quadratic function?
Use high-order bits of (B x (2B+1))
Just right!

Better rotation amounts?

B x (2B+1) is one-to-one mod 2w

Proof: By contradiction. If B  C but
B x (2B + 1) = C x (2C + 1) (mod 2w)
then
 (B - C) x (2B+2C+1) = 0 (mod 2w)
But (B-C) is nonzero and (2B+2C+1) is odd;
their product can’t be zero! 

Corollary:
B uniform  B x (2B+1) uniform
(and high-order bits are uniform too!)

High-order bits of B x (2B+1)
 The high-order bits of

f(B) = B x (2B + 1) = 2B2 + B
 depend on all the bits of B .

 Let B = B31B30B29 … B1B0 in binary.
 Flipping bit i of input B

– Leaves bits 0 … i-1 of f(B) unchanged,
– Flips bit i of f(B) with probability one,
– Flips bit j of f(B) , for j > i , with probability

approximately 1/2 (1/4…1),
– is likely to change some high-order bit.

 for i = 1 to r do
 {
 t = (B x (2B + 1)) <<< 5
 A = ((A  B) <<< t) + S[i]
 (A, B) = (B, A)
 }

But now much of the output of this nice
multiplication is being wasted...

(2) Quadratic Rotation Amounts

 for i = 1 to r do
 {
 t = (B x (2B + 1)) <<< 5
 A = ((A  t) <<< t) + S[i]
 (A, B) = (B, A)
 }

Now AES requires 128-bit blocks.
We could use two 64-bit registers, but
64-bit operations are poorly supported with typical
C compilers...

(3) Use t, not B, as xor input

(4) Do two RC5’s in parallel
 Use four 32-bit regs (A,B,C,D), and do

RC5 on (C,D) in parallel with RC5 on (A,B):
 for i = 1 to r do

 {
 t = (B x (2B + 1)) <<< 5
 A = ((A  t) <<< t) + S[2i]
 (A, B) = (B, A)
 u = (D x (2D + 1)) <<< 5
 C = ((C  u) <<< u) + S[2i + 1]

 (C, D) = (D, C)
 }

(5) Mix up data between copies
 Switch rotation amounts between copies, and

cyclically permute registers instead of swapping:
for i = 1 to r do
 {
 t = (B x (2B + 1)) <<< 5
 u = (D x (2D + 1)) <<< 5
 A = ((A  t) <<< u) + S[2i]
 C = ((C  u) <<< t) + S[2i + 1]
 (A, B, C, D) = (B, C, D, A)
 }

One Round of RC6

55

ff

A B C D

<<<<<<

<<< <<<

S[2i] S[2i+1]

A B C D

t u

(6) Add Pre- and Post-Whitening
 B = B + S[0]

D = D + S[1]
for i = 1 to r do
 {
 t = (B x (2B + 1)) <<< 5
 u = (D x (2D + 1)) <<< 5
 A = ((A  t) <<< u) + S[2i]
 C = ((C  u) <<< t) + S[2i + 1]
 (A, B, C, D) = (B, C, D, A)
 }
A = A + S[2r + 2]
C = C + S[2r + 3]

 B = B + S[0]
D = D + S[1]
for i = 1 to 20 do
 {
 t = (B x (2B + 1)) <<< 5
 u = (D x (2D + 1)) <<< 5
 A = ((A  t) <<< u) + S[2i]
 C = ((C  u) <<< t) + S[2i + 1]
 (A, B, C, D) = (B, C, D, A)
 }
A = A + S[42]
C = C + S[43]

(7) Set r = 20 for high security

Final RC6

(based on analysis)

RC6 Implementation Results

Less than two clocks per bit of plaintext !

Java Borland C Assembly

Setup 110000 2300 1108

Encrypt 16200 616 254

Decrypt 16500 566 254

CPU Cycles / Operation

Java Borland C Assembly

Setup 1820 86956 180500

Encrypt 12300 325000 787000

Decrypt 12100 353000 788000

Operations/Second (200MHz)

Java Borland C Assembly

Encrypt 0.197
1.57

5.19
41.5

12.6
100.8

Decrypt 0.194
1.55

5.65
45.2

12.6
100.8

Encryption Rate (200MHz)
MegaBytes / second
MegaBits / second

Over 100 Megabits / second !

On an 8-bit processor
 On an Intel MCS51 (1 Mhz clock)
 Encrypt/decrypt at 9.2 Kbits/second

(13535 cycles/block;
 from actual implementation)

 Key setup in 27 milliseconds
 Only 176 bytes needed for table of

round keys.
 Fits on smart card (< 256 bytes RAM).

Custom RC6 IC
 0.25 micron CMOS process
 One round/clock at 200 MHz
 Conventional multiplier designs
 0.05 mm2 of silicon
 21 milliwatts of power
 Encrypt/decrypt at 1.3 Gbits/second
 With pipelining, can go faster, at cost of

more area and power

RC6 Security Analysis

Analysis procedures
 Intensive analysis, based on most

effective known attacks (e.g. linear
and differential cryptanalysis)

 Analyze not only RC6, but also several
“simplified” forms (e.g. with no
quadratic function, no fixed rotation
by 5 bits, etc…)

Linear analysis
 Find approximations for r-2 rounds.
 Two ways to approximate A = B <<< C

– with one bit each of A, B, C (type I)
– with one bit each of A, B only (type II)
– each have bias 1/64; type I more useful

 Non-zero bias across f(B) only when input bit
= output bit. (Best for lsb.)

 Also include effects of multiple linear
approximations and linear hulls.

Estimate of number of plaintext/ciphertext
pairs required to mount a linear attack.

(Only 2128 such pairs are available.)

Rounds Pairs
 8 247

 12 283

 16 2119

 20 RC6 2155

 24 2191

Security against linear attacks

Infeasible

Differential analysis
 Considers use of (iterative and non-iterative)

(r-2)-round differentials as well as (r-2)-round
characteristics.

 Considers two notions of “difference”:
– exclusive-or
– subtraction (better!)

 Combination of quadratic function and fixed
rotation by 5 bits very good at thwarting
differential attacks.

An iterative RC6 differential
 A B C D

 1<<16 1<<11 0 0
 1<<11 0 0 0
 0 0 0 1<<s
 0 1<<26 1<<s 0
 1<<26 1<<21 0 1<<v
 1<<21 1<<16 1<<v 0
 1<<16 1<<11 0 0

 Probability = 2-91

Estimate of number of plaintext pairs
required to mount a differential attack.

(Only 2128 such pairs are available.)

Rounds Pairs
 8 256

 12 2117

 16 2190

 20 RC6 2238

 24 2299

Security against
 differential attacks

Infeasible

Security of Key Expansion
 Key expansion is identical to that of RC5; no

known weaknesses.
 No known weak keys.
 No known related-key attacks.
 Round keys appear to be a “random” function

of the supplied key.
 Bonus: key expansion is quite “one-way”---

difficult to infer supplied key from round
keys.

Conclusion
 RC6 more than meets the requirements for

the AES; it is
– simple,
– fast, and
– secure.

 For more information, including copy of
these slides, copy of RC6 description, and
security analysis, see
 www.rsa.com/rsalabs/aes

 (The End)

	The RC6 Block Cipher: A simple fast secure AES proposal
	Outline
	Design Philosophy
	Description of RC6
	Slide 5
	RC6 Primitive Operations
	RC6 Encryption (Generic)
	RC6 Encryption (for AES)
	RC6 Decryption (for AES)
	Key Expansion (Same as RC5’s)
	From RC5 to RC6 in seven easy steps
	(1) Start with RC5
	Better rotation amounts?
	B x (2B+1) is one-to-one mod 2w
	High-order bits of B x (2B+1)
	(2) Quadratic Rotation Amounts
	(3) Use t, not B, as xor input
	(4) Do two RC5’s in parallel
	(5) Mix up data between copies
	One Round of RC6
	(6) Add Pre- and Post-Whitening
	(7) Set r = 20 for high security
	RC6 Implementation Results
	CPU Cycles / Operation
	Operations/Second (200MHz)
	Encryption Rate (200MHz)
	On an 8-bit processor
	Custom RC6 IC
	RC6 Security Analysis
	Analysis procedures
	Linear analysis
	Security against linear attacks
	Differential analysis
	An iterative RC6 differential
	Security against differential attacks
	Security of Key Expansion
	Conclusion
	(The End)

