
N U M B E R 8 — S E P T E M B E R 3 , 1 9 9 8

News and advice on data security and cryptography

Bulletin
RSA

Laboratories’

Robert Baldwin is a Technical Director at RSA Data Security; he

can be reached at baldwin@rsa.com or baldwin@lcs.mit.edu.

Preliminary Analysis of the BSAFE 3.x
Pseudorandom Number Generators

RSA Laboratories
A Division of RSA Data Security

®

Robert W. Baldwin

RSA Data Security

San Mateo, California

Abstract
An enormous number of commercial applications

(over 350 million copies) rely on the BSAFE and

JSAFE toolkits from RSA Data Security to gener-

ate cryptographically strong pseudorandom numbers

for keys, initialization vectors, challenges, etc. This

paper describes the algorithms used by these tool-

kits, discusses their design, analyzes their resistance

to various attacks, and presents results from statisti-

cal tests. The algorithms appear to be well suited

for cryptographic applications.

Introduction & Background
The amazing feature of cryptography is that it re-

duces the problem of protecting a large amount of

data to the problem of protecting a small amount of

keying material. However, generating even a small

amount of keying material is hard. The trouble is

that gathering good randomness (bits that cannot

be predicted or influenced by an attacker) can take

several thousand milliseconds, which is unaccept-

able for most applications. The usual solution is to

rely on a good pseudorandom number generator

(PRNG) to quickly produce keying material from

an initial seed of good randomness.

This paper presents a preliminary analysis of two

PRNGs called MD5Random and SHA1Random

that are based on the MD5 [15] and SHA1 [14] di-

gest functions. These PRNGs are implemented in

the JSAFE and BSAFE cryptographic toolkits from

RSA Data Security. These algorithms are used in

over 350 million copies of commercial software to

generate keys (both public key pairs and symmetric

keys), cipher initialization vectors, and random val-

ues for challenge-response protocols.

After describing the algorithms, we discuss their de-

sign and identify various assumptions that are made

about the properties of the underlying digest func-

tions. The discussion explains why these PRNG

are believed to be cryptographically strong. The

next section discusses how the generators resist vari-

ous attacks in order to explore the implications of

the design choices. The attack section is similar to

the analysis reported in [9] for other PRNG algo-

rithms. The statistical properties of the PRNG are

then presented based on both classical randomness

tests [2, 6, 7, 8, and 10] and the Marsaglia Diehard

tests [12].

Algorithm Description
These PRNGs are defined as abstract objects with

three operations:

The B_RandomInit operation creates the

PRNG algorithm object by allocating and zeroing

the state and buffers plus initializing the related di-

gest object (MD5 or SHA1).

The B_RandomUpdate operation adds seed

bytes to initialize or update the state. This is called

initially before generating output, and may be

called after producing output in order to add more

seeding to the state. For backward compatibility

with BSAFE versions 1 and 2, an algorithm similar

2

R S A L A B O R A T O R I E S B U L L E T I N # 8 — S E P T E M B E R 3 , 1 9 9 8

t o t h e o n e i n R S A R E F [1 7] i s u s e d i f

B_RandomUpdate is only called once before call-

ing B_GenerateRandomBytes. This paper

describes the generation algorithm used when

B_RandomUpdate is called two or more times

before the first generate call.

The B_GenerateRandomBytes operation re-

turns a sequence of generated bytes and updates the

internal state and buffers as needed.

Operators:

“+” is unsigned integer addition

“*” is unsigned integer multiplication

“**” is unsigned integer exponentiation

“||” is concatenation

“| x |” is the length of x in bits

Variables:

Xj where j > 0 is a sequence of seed material blocks

passed to one or more state update operations be-

tween output generation operations. For example,

X1 contains all the bytes passed via all the calls to

B_RandomUpdate before the first call to

B_GenerateRandomBytes. The length of Xj

is an arbitrarily long multiple of 8 bits.

Yji is the ith block of output from the generator after

seeding with blocks X1 through Xj.

Sji is the state used to generate Yji.

L = |Yji| = |Sji| is 128 bits for MD5Random and

160 bits for SHA1Random.

H (x) is the digest of x, which is either MD5 (x) or

SHA1 (x).

C = Odd (H (“”)) is an odd L-bit constant computed

by hashing a zero length bit string and setting the

least significant (right most) bit of the result to one.

Algorithm Initialization (B_RandomInit):

j = 1, i = 0, and buffered output is cleared

State updating (B_RandomUpdate):

Sj = H (Sj–1 || Xj), j = j + 1, i = 0

where S0 = zero length bitstring and buffered

output is cleared

The value of the Xj seed block can be passed to the

PRNG using one or more calls to the BSAFE

B_RandomUpdate function. The resulting new

state does not depend on how the Xj bytes are

chopped into sub-blocks passed to the individual up-

date calls. In effect, the PRNG buffers all the seed

bytes in Xj until the next call to the generate func-

tion. In practice, only the most recent 64 bytes (512

bits) are buffered since the rest are run through the

digest’s compression function.

Output generation (B_GenerateRandomBytes):

Yji = H (Sji), i = i + 1, Sji = (Sj + (C * i)) mod 2L

The PRNG returns successive bytes of the Yji values

and it buffers unused bytes of the Yji to satisfy future

calls to B_GenerateRandomBytes. When the

buffer is exhausted, the parameter, i, is incremented

and new values for Sji and Yji are generated. Calling

B_RandomUpdate resets the parameter, i, to zero.

Design Goals, Assumptions and
Considerations
The primary goals for these PRNG algorithms are

listed below.

Algorithm Goals

1. Output indistinguishable from true random se-

quence.

2. Knowledge of some outputs does not help pre-

dict future or past outputs.

3. Make good use of the “entropy” in the seeding

material.

4. Guaranteed long cycle length.

5. Sufficiently large internal state to avoid exhaus-

tive search.

6. Good performance.

7. Simple algorithm.

The goals provide different yard sticks for measuring

the algorithm, but do not provide well-defined ob-

jectives that must be met. The objectives were:

Algorithm Objectives

1. Allow re-seeding interspersed with output gen-

eration.

2. Generated bytes depend on all preceding seed

bytes.

3. State depends on order of the seeding bytes

passed to update function.

4. State does not depend on how seed bytes

are chopped into buffers that are passed to

the update function. For example, calling

B_RandomUpdate twice with the seeds “ab”

3

R S A L A B O R A T O R I E S B U L L E T I N # 8 — S E P T E M B E R 3 , 1 9 9 8

and “cdef” produces the same state as passing

“abc” then “def”. This property simplifies the

analysis of the PRNG seeding.

5. State update and output generation runs in con-

stant time to avoid timing attacks.

6. Generated sequence does not depend on the or-

der in which groups of bytes are requested. For

example, if two generators start in the same state

and the first one is asked to return two bytes,

then asked to return four bytes, the same six byte

sequence is returned as would be by asking the

second generator to return five bytes and then

one byte. This property simplifies the analysis of

the PRNG output.

7. Use at most one underlying digest algorithm ob-

ject.

8. Avoid the use of encryption functions to sim-

plify export compliance issues.

Design Discussion

It would be nice to design a PRNG based on struc-

tures with provable security properties. For example,

the ability to distinguish the PRNG output from truly

random bytes should be related to some properties of

the digest function or its underlying compression op-

erator. Unfortunately, we did not know of any such

structures or proofs.

However, there are several features in the design of

these algorithms that are intended to rely on accepted

features of digest functions to thwart cryptanalysis.

For example, digest functions are assumed to be hard

to invert, so given the output Yji it is cryptographi-

cally difficult to find any value, Z, such that Yji = H

(Z). This means that finding the specific L-bit state

value, Sji, that generated Yji, should be hard. Thus

one of the design assumptions is that this hard to

invert property is true even if the input values to H

are restricted to the 2L possible state values.

The state update formula, Sji = (Sj + (C * i)) mod 2L,

was chosen to avoid possible related input attacks

against the digest function by changing a large and

irregular number of bits between successive state val-

ues. The motivation for this comes from viewing

the compression function as an encryption operator

with a 512-bit key and an L-bit input. When the

input to MD5 or SHA1 is less than 56 bytes, as is

the case with these algorithms, the digest function

can be defined as:

H (Sji) = IV + G (IV, Sji || zeros || LC)

Where G (M, K) is the compression function, IV is a

published constant, and LC is an 8-byte value that

encodes the length of Sji in bits. The LC value is a

constant for these PRNGs. The compression func-

tion is assumed to be a good random permutation

that maps the L-bit M value into an unrelated L-bit

result based on the 512-bit value K. The G function

effectively encrypts M using K as the key. The com-

pression functions for MD5 and SHA1 are con-

structed to be permutations. The “goodness” that is

assumed by these PRNG algorithms is that it is cryp-

tographically hard to find K given M and G(M,K).

This design assumed it is hard to find K given a

known fixed M and a known output. For example,

we assume that there are no statistical characteris-

tics of the output blocks, Yji, that would help an at-

tacker recognize when a trial value of K is close to

the actual Sji value. The design assumes that the fixed

known value of M, which is IV, does not help the

attacker.

However these generators were designed to avoid

excessive reliance on the G function being a perfect

pseudorandom permutation. The PRNGs were de-

signed to avoid related key weaknesses in the G func-

tion. Published results [16, 4] on the compression

function of MD5 and the round functions that are

shared between MD5 and SHA1 suggest that this

precaution is prudent. Thus one design criteria was

to update the generator state, which becomes the

varying part of G’s K input, in a manner that pro-

duces large and irregular Hamming differences be-

tween successive K values.

Several ways of updating the state were considered.

A linear feedback shift register (LSFR) was consid-

ered but eliminated because the first round of SHA1

involves a rolling exclusive-or that is a kind of LSFR.

Adding a constant is also a linear operation, but it is

over Z2
L rather than GF2

32 as in SHA1, so it was

accepted. An odd constant guarantees that the

PRNG will have a maximum cycle length, which is

of 2L blocks of L bytes each.

The generators are also designed to prevent an at-

tacker from seeing several M values encrypted with

the same K value for the compression function G

(M, K). In these algorithms, M is always the known

constant IV. If there are cryptographic weaknesses

in the G function when viewed as an encryption

function, then limiting the number of known plain-

... there are

several features

in the design

of these

algorithms that

are intended

to rely on

accepted

features of

digest functions

to thwart

cryptanalysis.

4

R S A L A B O R A T O R I E S B U L L E T I N # 8 — S E P T E M B E R 3 , 1 9 9 8

text-ciphertext pairs available to the attacker should

help. For example, it would be hard to mount a

linear or differential cryptanalysis attack against G

since each key value is only used once. Of course, if

G is viewed as a function that encrypts K with the

fixed key M, then many ciphertext blocks are known

and the attacker must find one of the matching

plaintext blocks. We assume this is hard for MD5

and SHA1.

These PRNGs can also be defined in terms of a pseu-

dorandom function, F, which maps L-bit values to L-

bit values, where

F (x) = G (IV, x || zero || LC),

where IV and LC are known constants.

The design assumes that virtually all output values

are generated by F (x) when x is varied over all L-bit

values. Without this assumption, the PRNG would

produce a subset of the possible output blocks. That

is, F is assumed to be nearly a pseudorandom permu-

tation. This property is not obvious from the con-

struction of G for either SHA1 or MD5, but it ap-

pears to follow from the collision resistance proper-

ties of the hash functions.

Resistance to Attacks

Exhaustive Seeding Search

All PRNGs can be compromised if the attacker can

guess the seed bytes that initialized the generator.

The attacker can try all possible seed byte values and

check the computed result. The check could be di-

rect against an observed value like a CBC mode ini-

tialization vector, or indirect such as using the com-

puted result as a triple-DES key and checking to see

if it decrypts a message correctly.

The success of a seeding search attack depends on

how the application gathers seeding material and

how much access the attacker has to the system while

the generators are being seeded. This attack does

not depend on the PRNG algorithms. It depends on

the volume and quality of the seeding material.

There are many poor sources of seed material, such

as clock values, that the attacker can guess, or user

keystrokes that can be observed over a network con-

nection. It may also be possible for the attacker to

force the system into a known state or at least into a

state for which there is less entropy. For example,

on a multi-user computer, network statistics are hard

to predict if the machine has been running for a long

time, but easy to predict if the system is rebooted

and the counters are reset to zero.

System statistics bring up another problem. The at-

tacker may be able to directly observe the statistics

by having a process running on the machine while

the PRNG is being seeded. See [1, 5] for further

discussion of good seed gathering.

Exhaustive State Search

Rather than guessing at the seeding material, the

attacker can guess at the internal state of the gen-

erator. These generators have L bits of state, which

is 128 bits for MD5Random and 160 bits for

SHA1Random. Exhaustive search of such a large

space is considered to be impractical both now and

into the foreseeable future.

Despite the impractical nature of these attacks, they

do set a theoretical limit on the strength of a crypto-

graphic system that uses these PRNG to generate

keys. For example, triple-DES with three keys has

168 bits of key material, so you might assume that an

attacker would have to try all 2168 keys for exhaus-

tive search. However, if MD5Random generates the

triple-DES key, then at most 2128 different triple-DES

keys are used by the system, so the attacker’s work is

reduced. The same analysis holds for RSA or DSA

key generation. For example, for 2048 bit RSA keys,

it is definitely easier to try all 2128 states for

MD5Random than to factor this large modulus.

One design criterion was to make the internal state

of the PRNG be large enough to make exhaustive

state search impractical. The 128 and 160 bit state

sizes meet this criterion. For example, a 128 bit state

can take on 3 x 10**38 different values. Assuming

that an attacker had a billion computers (10**9) that

each could try one billion (10**9) states per second

running all year long (3 x 10**7 seconds per year),

it would take 10**13 years to try all states. By com-

parison, the visible universe is only about 4 x 10**9

years old.

Pre-computation

An attacker can precompute the Yji output values

produced by different Sji state values. This reduces

the time needed to find the state for any observed or

deduced Yji value, but increases the amount of pre-

computation and storage required.

Despite the

impractical

nature of

these attacks,

they do set

a theoretical

limit on the

strength of a

cryptographic

system that

uses these

PRNG to

generate keys.

5

R S A L A B O R A T O R I E S B U L L E T I N # 8 — S E P T E M B E R 3 , 1 9 9 8

A space-time trade-off is possible with this attack if

the PRNGs are used to produce a long sequence of

outputs. The attacker could pre-compute every Nth

value of the state and wait for one of those to be used.

Again, the large state size makes this attack infea-

sible.

Malicious Software Attacks

If a PRNG is implemented in software on a device

that allows other software to be loaded (e.g., program-

mable smart cards, PCs, Web Servers, upgradeable

cryptographic hardware), then a virus or other mali-

cious software might be able to read the internal state

of the PRNG. The state Sji and the unused bytes of

Yji are in memory. The virus might also be able to

observe any new seed bytes. A virus that cannot

communicate this information to the attacker is

harmless, however the impact of being able to com-

municate is explored in the next two sections.

Compromise Forward Tracking

If the PRNG state is compromised, the attacker can

compute future values of the generator by adding the

known constant, C. We considered adding an un-

known constant, which would in effect increase the

size of the state to 2L bits, but decided against it for

several reasons. First, the state was already large

enough to prevent exhaustive search, so a state com-

promise is unlikely to occur unless a virus is present,

in which case the unknown constant would be cap-

tured along with the L bits of state. Second, the

constant would have to be generated from the same

seed material as the initial state. That is, the PRNG

would have to generate two L-bit values from the

same Xj values. Several systems have attempted to

solve this problem by putting fixed values before or

after the seed material being digested, but there is

no analytic basis for this. In the end, the desire for

simplicity eliminated this choice.

The forward tracking of the PRNG is halted when

the application adds new seed material, which causes

the state to become H (Sji || Xj+1), provided that

Xj+1 is not revealed to the attacker. Even if Xj+1 is

not revealed, the attacker may be able to guess the

new seed bytes and confirm a guess by observing or

deducing actual outputs of the generator as discussed

in the section on exhaustive seed searching. For this

reason RSA recommends that seed material be added

in large blocks with enough unpredictability to

thwart an exhaustive seeding search [1].

Compromise Back Tracking

A state compromise allows limited back tracking.

The state, Sji = Sj + C*i, can be rolled backwards to

Sj0
 by subtracting C. The attacker can compute

backwards from Yji to Yj0
, but the hash function that

relates Sj and Sj–1 prevents the attacker from going

back any further, even if the previous seed bytes Xj–1

are known since Sj = H (Sj–1 || Xj) and H is hard to

invert.

An application that wants to prevent backtracking

can call B_RandomUpdate after each call to

B_GenerateRandomBytes to force an applica-

tion of the hash function to the internal state. In

this case the generator becomes:

Yj = H (Sj) and Sj+1 = H (Sj | Xj+1)

Even if Xj is known, the non-invertability of H makes

it cryptographically infeasible for an attacker to find

Sj from Sj+1.

Input Entropy

Ideally a PRNG would extract as much entropy out

of the seeding material as possible. These generators

extract at most L bits of entropy due to the use of a

digest function. For MD5 and SHA1, L is consid-

ered to be large enough to thwart exhaustive state

search. We considered using a universal hash func-

tion like an LSFR, but ruled against it due to the

possibility of an attacker controlling a portion of the

seed input as discussed below. For an LSFR it would

be easy to compute the impact on the state of chang-

ing a portion of the seeding material.

The initial state value is the digest of all the seed

material supplied in any number of calls to

B_RandomUpdate before the first call to

B_GenerateRandomBytes. Specially:

S1 = H (X1)

where X1 is the concatenation of all the bytes passed

to the seeding routine before the first call to the gen-

erate routine.

This is an improvement over the BSAFE 2.x algo-

rithm which produces different states based on how

the seed material is chopped into the blocks and

passed to B_RandomUpdate. More seriously, the

state for the old PRNGs did not depend on the order

in which the blocks were supplied. This problem

If the PRNG

state is

compromised,

the attacker

can compute

future values

of the generator

by adding

the known

constant, C.

6

R S A L A B O R A T O R I E S B U L L E T I N # 8 — S E P T E M B E R 3 , 1 9 9 8

was noticed by Paul Kocher while consulting for

RSA Labs and was fixed in the next release of

BSAFE. It is described further in [11, 1].

The algorithm for adding new seed material into the

state after some bytes have been generated is:

Sj+1 = H (Sji || Xj+1)

This is algorithm links the old state and the new

state using the digest function to ensure a crypto-

graphic mixing of the two. The mixing helps the

algorithms thwart an attacker who can influence the

range of values used for new seed bytes. One effect

of this algorithm is that the state of the generator

depends on both the seed bytes and the number and

location of calls to B_GenerateRandomBytes

within the stream of seed bytes. For example,

S2 = H ((H (X1) + n*C) || X2)

Where n is the number of times the PRNG needed

to update its state to generate all the bytes requested

by calls to B_GenerateRandomBytes before

the new block of seeding, X1, was added.

One alternative design was to make the state be the

hash of all the seed bytes seen so far. That is, Sj =

H (X1 || X2 || … || Xj). This links together the

seed bytes in the traditional way of digest functions

and makes the state independent of calls to the gen-

erate function. However, this design was eliminated

for implementation reasons. The final step in com-

puting a digest is to append a bit length value and

perform the last compression operation. These steps

destroy the internal buffers that would be necessary

to compute the state after the next block of seeding

is added. Retaining the internal buffers would re-

quire direct access to the compression function’s in-

puts (G’s inputs), which is not possible for hardware

implementations of MD5 and SHA1. In order to

allow BSAFE to work with hardware co-processors,

the PRNGs algorithms could not be based on inter-

nal access to the digest functions, so this design was

eliminated.

Chosen Seed Input

An attacker may be able to control some number of

the seed bytes. What advantage could this give?

For example, the attacker could force a web server

to reboot by crashing it, and any seed bytes that

were based on system counters would be predict-

able. The algorithm used to reduce seed bytes to

internal state involves a cryptographic hash func-

tion, which is assumed to have the property that

small changes to the input will produce large and

unpredictable changes in the output. As long as

the uncontrolled seed bytes provide a sufficiently

large amount of unpredictability, this attack is not

effective.

Cycle Shortening

Without adding new seed material, the generators

will have a cycle length of 2L L-bit blocks due to the

additive constant C. To shorten the cycle length,

the attacker would need to influence the new seed

mater ia l in speci f ic ways . For example ,

if an attacker can find a value Z such that S1 =

H (S1 || Z), then the cycle length will drop to one

L-bit block. The cryptographic properties of digest

functions make this attack infeasible. The collision

free property, which is assumed for strong digest func-

tions, means that it is infeasible to find any values

Z1 and Z2 such that H (Z1) = H (Z2). In this case,

S1 = H (X1) so the attacker must solve H (X1) = H

(H (X1) || Z), which seems harder even with a

known X1 value.

Timing Attacks

A Kocher-style [11] timing attack can be mounted

against a PRNG if the running time of its opera-

tions, either seed updating or output generation, de-

pends on the input or state values. The implemen-

tations of these PRNG in BSAFE and JSAFE take

constant time, so they are not susceptible to timing

attacks. In particular, the operation that adds the

large odd constant to the state after each output

block always executes the same number of instruc-

tions regardless of the input values. There are no

optimizations for operands or carry bits that are zero.

Summary of Cryptanalysis Discussion
The different attacks discussed above illustrate fea-

tures and limitations of these algorithms. Overall,

the algorithms appear to be well suited for applica-

tions that require a pseudorandom number genera-

tor with good cryptographic properties.

Statistical tests
The previous sections have discussed the crypto-

graphic features of these PRNG algorithms. Their

purpose was to identify the assumptions and design

features that support the hypothesis that an attacker

cannot accurately predict the actual output of the

Overall, the

algorithms

appear to be

well suited for

applications

that require a

pseudorandom

number

generator

with good

cryptographic

properties.

7

R S A L A B O R A T O R I E S B U L L E T I N # 8 — S E P T E M B E R 3 , 1 9 9 8

PRNGs. This section presents information that sup-

ports the hypothesis that the output of these genera-

tors is not distinguishable from a truly random se-

quence. Intuitively, cryptographic strength seems to

imply good statistical properties, but it is reassuring

to have the results from actual statistical tests.

A separate report [16] describes the details of statis-

tical tests that were performed on MD5Random and

SHA1Random. They are summarized in this sec-

tion. The first tests are classics from [10, 2, 3, 6, and

7]. The second tests come from the Diehard soft-

ware [12], which was developed by Professor

Marsaglia specifically for testing pseudorandom num-

ber generators.

Classical Statistical Tests

The following tests are based on performing a pass/

fail statistical test on 1000 sequences of 340 bytes

each produced by the PRNG. The actual number

of samples that pass the tests are compared to the

theoretically expected number of passes. For ex-

ample, on average, 800 random bits should have 400

ones and 400 zeros, but we expect some variation,

so we can construct a test that only passes if the

number of ones is between 480 and 520. From prob-

ability theory we can predict the percentage of

samples that will pass this test if the sequences are

truly random. In this case the bit count range is

one standard deviation, so about 67% should pass.

A generator is weak if the actually number of

samples passing the test is too high or too low. For

example, a generator that produced an alternating

sequence of ones and zeros will have the correct av-

erage number of ones, but would fail this test, since

all of the samples would pass this test when only

67% are expected to pass.

The tests are summarized in the following table and

briefly described below. Each entry in the table be-

low gives the percentage of the 1000 sequences that

passed each test at the 95% significance level.

The tests can be split into two groups. The first group

consists of tests on the appearance of the output from

a pseudorandom source:

The frequency test checks that the balance between

1 and 0 bits lies within acceptable limits.

The serial test checks that the distribution of pairs

of adjacent bits, 00, 01, 10 and 11, is acceptable.

The runs test checks that the distribution of runs of

lengths m is acceptable, where m varies between 1

and 5. A run is a sequence of 1 or 0 bits. This range

of values for m is, again, a function of the number of

bits analyzed, though all possible values are tested

within the same test giving a single result, unlike

the poker test which gives a result for each value of

m independently.

The poker test considers each successive m-bit sub-

sequence (without overlap) and checks that each of

the 2m possible patterns appears an acceptable num-

ber of times. The range of values of m for which we

perform the poker test is a function of the number of

bits in the sequence. In these tests we restricted our-

selves to 2 ≤ m ≤ 5.

The auto-correlation test checks that the sequence

does not have too much agreement or correlation

when compared with itself offset by d positions. The

auto-correlation was tested for 1 ≤ d ≤ 20.

The second set of tests attempts to assess the com-

plexity of some output. They are all based around

the use of the linear complexity of a sequence and

they have been well studied in the literature [3, 10,

and 13].

The linear complexity of a sequence offers some mea-

sure of how easy it might be to reproduce some se-

Pass Rates at 5% Significance Level

MD5Random SHA1Random
Test Expected Actual Actual

Frequency 95% 95.2% 95.7%

Serial 95% 95.0% 95.0%

Runs 95% 94.3% 95.8%

Poker (3) 100% 98.8% 99.0%

Poker (4) 98% 96.9% 95.9%

Poker (5) 77% 82.2% 81.3%

Auto-correlation (14) 100% 100.0% 100.0%

Auto-correlation (16) 100% 99.8% 99.5%

Auto-correlation (18) 92% 92.4% 92.9%

Auto-correlation (20) 36% 35.7% 37.4%

Linear Complexity 95% 92.5% 92.4%

Jump Test 95% 95.5% 94.5%

Distribution of Jumps 90.3% 92.4% 90.7%

Table 1.

Classical Statistical

Tests Results

8

R S A L A B O R A T O R I E S B U L L E T I N # 8 — S E P T E M B E R 3 , 1 9 9 8

quence of bits. The linear complexity profile is obtained

by plotting the linear complexity against the num-

ber of bits analyzed. The appearance of this profile

for a perfectly random source has been evaluated and

so a pseudorandom bit generator can be tested

against this measure [10, 13. The linear complexity

profile test counts the number of jumps in the profile

of a sequence. The number of jumps is then checked

to see that it lies within acceptable bounds for the

experiment at the chosen significance level.

The jumps test is performed only if a sequence passes

the linear complexity profile test. Whilst the latter

checks that an acceptable number of jumps has oc-

curred in the profile, the jumps test assesses the fre-

quency of the different sizes of these jumps and

checks that they lie within acceptable bounds.

In summary, the following linear complexity related

tests were performed:

• The linear complexity of the sequence was evalu-

ated to see if it lay within acceptable limits.

• The linear complexity profile test was conducted

to see if the linear complexity profile had an ac-

ceptable number of jumps.

• The jumps test was completed which tests the

distribution of the jumps within the linear com-

plexity profile.

Diehard Statistical Tests
The next sets of tests were designed by Professor

Marsaglia to identify weaknesses in many common

non-cryptographic PRNG algorithms. They operate

on a single large sample from the generator (11 mega-

bytes) that is usually broken into 32-bit words be-

fore performing tests. These tests examine the most

significant bits of these words, the least significant

bits, and inter-bit correlations. The results are ex-

pressed in terms of a “p” value that should be uni-

formly distributed between zero and one. Bad

PRNGs will produce p values that are within 0.00001

of zero or one. The test was run 10 times and the

table reports the average and sample standard devia-

tion of the ten results. The average should be 0.5

and the standard deviation should be the square root

of one twelfth (about 0.289). A description of the

tests appears after the table.

As an example of a bad PRNG, the output of a lin-

ear congruent generator (LCG) is included. The

equation for this LCG is X’ = 65 * X + 3 mod 2**32.

The multiplier and additive constants follow the

guideline in [10] for maximal length.

The following test descriptions are largely copied

from the documentation that accompanies the Die-

hard program.

For the Birthday Spacing test choose m birthdays in

a year of n days. List the spacing between the birth-

days. If j is the number of values that occur more

than once in that list, then j is asymptotically

Test Expected SHA1Random MD5Random LCG

Birthday Spacing Avg: 0.500 0.473 0.450 0.782
Std Dev: 0.289 0.290 0.284 0.295

5-Permutations Avg: 0.500 0.475 0.452 1.000
Std Dev: 0.289 0.357 0.345 0.000

Rank 31x31 Avg: 0.500 0.553 0.626 0.516
Std Dev: 0.289 0.213 0.231 0.257

Rank 32x32 Avg: 0.500 0.615 0.626 0.419
Std Dev: 0.289 0.228 0.226 0.014

Rank 6x8 Avg: 0.500 0.490 0.526 0.991
Std Dev 0.289 0.295 0.294 0.044

Missing 20bit words Avg: 0.500 0.499 0.495 0.000
Std Dev: 0.289 0.293 0.286 0.000

Missing 10bit pairs Avg: 0.500 0.485 0.523 1.000
Std Dev: 0.289 0.292 0.286 0.000

Missing 5bit quads Avg: 0.500 0.494 0.491 0.789
Std Dev: 0.289 0.282 0.279 0.408

Missing 2bit tens Avg: 0.500 0.518 0.466 1.000
Std Dev: 0.289 0.281 0.290 0.000

Count-Ones All Bytes Avg: 0.500 0.444 0.450 1.000
Std Dev: 0.289 0.275 0.237 0.000

Count-Ones Specific Avg 0.500 0.562 0.527 1.000
Std Dev 0.289 0.295 0.305 0.000

Parking Lot Avg 0.500 0.507 0.460 1.000
Std Dev 0.289 0.264 0.291 0.000

Minimum Distance Avg 0.500 0.520 0.611 1.000
Std Dev 0.289 0.271 0.226 0.000

Smallest 3D Sphere Avg 0.500 0.508 0.512 0.122
Std Dev 0.289 0.300 0.293 0.146

Squeeze Iterations Avg 0.500 0.377 0.531 1.000
Std Dev 0.289 0.299 0.335 0.000

Overlapping Sums Avg 0.500 0.476 0.506 0.486
Std Dev 0.289 0.292 0.300 0.352

Up-Down Runs Avg 0.500 0.495 0.456 0.692
Std Dev 0.289 0.283 0.322 0.311

Craps Game Avg 0.500 0.469 0.576 1.000
Std Dev 0.289 0.289 0.295 0.000

Table 2.

Diehard Statistical

Tests Results

9

R S A L A B O R A T O R I E S B U L L E T I N # 8 — S E P T E M B E R 3 , 1 9 9 8

Poisson distributed with mean m**3/(4n). This test

uses n=2**24 and m=2**9, so that the underlying

distribution for j is taken to be Poisson with

lambda=2**27/(2**26)=2. A sample of 500 j’s is

taken, and a chi-square goodness of fit test yields a p

value. The first test uses bits 1-24 from integers in

the specified file. Then the file is closed and re-

opened. Next, bits 2-25 are used to provide birth-

days, then 3-26 and so on to bits 9-32. Each set of

bits provides a p-value.

The 5-Permutations tests looks at a sequence of one

million 32-bit random integers. Each set of five con-

secutive integers can be in one of 120 states, for the

5! possible orderings of five numbers. Thus the 5th,

6th, 7th, ... numbers each provide a state. As many

thousands of state transitions are observed, cumula-

tive counts are made of the number of occurrences

of each state. Then the quadratic form in the in-

verse of the 120x120 covariance matrix yields a test

equivalent to the likelihood ratio test that the 120

cell counts came from the specified (asymptotically)

normal distribution with the specified 120x120 co-

variance matrix (with rank 99). This version uses

1,000,000 integers, twice.

The Rank 31x31 matrix test uses the leftmost 31

bits of 31 random integers from the test sequence to

form a 31x31 binary matrix over the field {0,1}. The

rank is determined. That rank can be from 0 to 31,

but ranks < 28 are rare, and their counts are pooled

with those for rank 28. Ranks are found for 40,000

such random matrices and a chi-square test is per-

formed on counts for ranks 31,30,29 and <=28.

The Rank 32x32 matrix test is like the 31x31 test

except that the matrix has 32 rows of 32-bits each.

Ranks less than 29 are pooled with the rank 29 count.

The Rank 6x8 matrix test uses six random 32-bit

integers from the test sequence, a specified 8-bit byte

is chosen, and the resulting six bytes form a 6x8 bi-

nary matrix whose rank is determined. Within the

32-bit word, all 24 starting bit positions for the 8-bit

byte are tested. The resulting rank can be 0 to 6, but

ranks 0,1,2,3 are rare; their counts are pooled with

those for rank 4. Ranks are found for 100,000 ran-

dom matrices, and a chi-square test is performed on

counts for ranks 6,5 and <=4.

The Missing 20bit words test treats the test se-

quence as a stream of “letters”, which are either 0 or

1 and examines the overlapping of 20-letter “words”.

Thus the first word is bits 1 to 20; the second is bits

2 to 21, and so on. The bitstream test counts the

number of missing 20-letter (20-bit) words in a string

of 2**21 overlapping 20-letter words. There are

2**20 possible 20 letter words. For a truly random

string of 2**21+19 bits, the number of missing words

j should be (very close to) normally distributed with

mean 141,909 and sigma 428. Thus (j–141909)/428

should be a standard normal variate (z score) that

leads to a uniform [0,1) p value. The test is repeated

twenty times.

The Missing 10bit pairs test, also called OPSO for

Overlapping Pairs Sparse Occupancy, treats the test

sequence as a stream of 10-bit “letters”, which can

take on 1024 different values. Each letter is deter-

mined by a selected ten bits from each 32-bit word

from the test sequence. All 22 starting positions for

this 10-bit letter are tried within the 32-bit word.

The number of overlapping 2-letter pairs that do not

occur in the entire sequence are counted. Those

counts should be very close to normally distributed

with a mean of 14909 and sigma of 290.

The Missing 5bit quads test, also called OQSO for

Overlapping Quad Sparse Occupancy, is similar to

the OPSO test except that it considers 4-letter words

from an alphabet of 32 letters. One letter is chosen

from each 32-bit word of the test sequence and the

test is run for all 27 different starting positions of the

5-bit letter within the 32-bit word.

The Missing 2bit tens test, also called the DNA test,

is similar to the OPSO test except that it considers

10-letter words from an alphabet of 4 letters (like the

four DNA bases C, G, A and T). One letter is cho-

sen from each 32-bit word of the test sequence and

the test is run for all 30 different starting positions of

the 2-bit letter within the 32-bit word.

The Count-Ones All Bytes test treats the test se-

quence as a stream of bytes (four per 32-bit word).

Each byte can contain 0 to 8 ones with probabilities

1,8,28,56,70,56,28,8,1 over 256. The bytes are con-

verted to one of five letters, A through E, based on

the number of ones in that byte. The letter A is gen-

erated by 0, 1, or 2 bits set to one. The B means 3

bits were set, 4 yields C, 5 yields D, and 6, 7, or 8

yield E. There are 5**5 possible five letter words and

strings of 256,000 overlapping 5-letter words create

the frequency count of each word. The quadratic form

10

R S A L A B O R A T O R I E S B U L L E T I N # 8 — S E P T E M B E R 3 , 1 9 9 8

in the weak inverse of the covariance matrix of the

cell counts provides a chi-square test Q5-Q4, the dif-

ference of the naïve Pearson sums of (OBS-EXP)**

2/EXP on the counts for 5- and 4-letter cell counts.

The Count-Ones Specific test is similar to the previ-

ous test except that only one 8-bit byte per 32-bit

word is used. The test is run for all 24 different start-

ing positions of the byte within the word.

The Parking Lot test is based on a square of side

100. Randomly “park” the first car, which is viewed

as a circle of radius 1, at a location determined from

two 32-bit words of the test sequence. Then try to

park a 2nd, a 3rd, and so on, each time parking “by

ear”. That is, if an attempt to park a car causes a

crash with one already parked, try again at a new

random location. To avoid path problems, consider

parking helicopters rather than cars. Each attempt

leads to either a crash or a success; the latter fol-

lowed by an increment to the list of cars already

parked. A simple characterization of this experiment

is, k, the number of cars successfully parked after

n=12,000 attempts. Simulation shows that k should

average 3523 with sigma 21.9 and is very close to

normally distributed. Thus (k–3523)/21.9 should be

a standard normal variable, which, converted to a

uniform variable, provides input to a KSTEST based

on a sample of 10.

The Minimum Distance test does the following 100

times. Choose n=8000 random points in a square of

side 10000. Find d, the minimum distance between

the (n**2–n)/2 pairs of points. If the points are truly

independent uniform, then d**2, the square of the

minimum distance should be (very close to) expo-

nentially distributed with mean 0.995. Thus 1–exp

(–d**2/0.995) should be uniform on [0,1) and a

KSTEST on the resulting 100 values serves as a test

of uniformity for random points in the square. The

KSTEST is based on the full set of 100 random

choices of 8000 points in the 10000x10000 square.

The 3D Sphere test chooses 4000 random points in

a cube of edge 1000. At each point, center a sphere

large enough to reach the next closest. Then the

volume of the smallest such sphere is (very close to)

exponentially distributed with mean 120pi/3. Thus

the radius cubed is exponential with mean 30. The

mean is obtained by extensive simulation. The

3DSPHERES test generates 4000 such spheres 20

times. Each min radius cubed leads to a uniform

variable by means of 1–exp (–r**3/30.), then a

KSTEST is done on the 20 p-values.

The Squeeze test converts the test sequence of 32-bit

integers into floating point numbers to get uniforms

on [0,1). Starting with k=2**31=2147483647, the test

finds j, the number of iterations necessary to reduce k

to 1, using the reduction k’=ceiling (k*U), with U

provided by floating integers from the file being

tested. Such j’s are found 100,000 times, then counts

for the number of times j was <=6,7,47, >=48 are used

to provide a chi-square test for cell frequencies.

In the Overlapping Sums test the 32-bit integers are

floated to get a sequence U(1),U(2),... of uniform

[0,1) var iables . Then over lapping sums,

S(1)=U(1)+...+U(100), S2=U(2)+...+U(101),... are

formed. The S’s are virtually normal with a certain

covariance matrix. A linear transformation of the

S’s converts them to independent standard normals,

which are converted to uniform variables for a

KSTEST.

The Up-Down Runs test counts runs up, and runs

down, in a sequence of uniform [0,1) variables,

obtained by floating the 32-bit integers in the test

sequence. This example shows how runs are counted:

.123,.357,.789,.425,.224,.416,.95 contains an up-run

of length 3, a down-run of length 2 and an up-run of

(at least) 2, depending on the next values. The co-

variance matrices for the runs-up and runs-down are

well known, leading to chi-square tests for quadratic

forms in the weak inverses of the covariance matri-

ces. Runs are counted for sequences of length

10,000. This is done ten times.

The Craps Game test plays 200,000 games of craps,

finds the number of wins and the number of throws

necessary to end game. The number of wins should

be (very close to) a normal with mean 200000p and

variance 200000p(1–p), with p=244/495. Throws

necessary to complete the game can vary from 1 to

infinity, but counts for all>21 are lumped with 21. A

chi-square test is made on the number-of-throws cell

counts. Each 32-bit integer from the test file pro-

vides the value for the throw of a die, by floating to

[0,1), multiplying by 6 and taking 1 plus the integer

part of the result.

Summary of Statistical Tests
The MD5Random and SHA1Random algorithms

produce output streams that pass all of the statistical

11

R S A L A B O R A T O R I E S B U L L E T I N # 8 — S E P T E M B E R 3 , 1 9 9 8

tests described in this paper. However, some of the

tests such as Poker-5 and Rank 32x32 produced re-

sults that were not as good as the others. Additional

testing could investigate whether these results indi-

cate a real problem or are just statistical anomalies.

Conclusions
This paper has described the algorithms used for the

BSAFE and JSAFE pseudorandom number genera-

tors, which are widely used in commercial products.

The design goals were presented and the discussion

explained the extent to which they were achieved.

The algorithm analysis highlighted the assumptions

that are made about the underlying hash functions

to ensure good cryptographic properties for the

PRNGs. The statistical tests provide additional as-

surances about the suitability of these algorithms as

random number generators. The preliminary analy-

sis presented here indicates that these are good algo-

rithms for generating cryptographically strong pseu-

dorandom numbers.

References
[1] R.W. Baldwin. Proper Initialization for the BSAFE Ran-

dom Number Generator. RSA Labs Bulletin 3, Redwood

City, California, January 1996. http://www.rsa.com/

rsalabs/pubs/updates/bull-3.pdf

[2] H. Beker and F. Piper. Cipher Systems. Van Nostrand,

London, 1982.

[3] G.D. Carter. Aspects of local linear complexity. Ph.D. the-

sis, University of London, 1989.

[4] H. Dobbertin. Cryptanalysis of MD4. In Proceedings of

the 3rd Workshop on Fast Software Encryption, Cam-

bridge, U.K., pages 53-70, Lecture Notes in Computer

Science 1039, Springer-Verlag, 1996.

[5] D. Eastlake 3rd, S. Crocker, J. Schiller. Randomness Rec-

ommendations for Security. RFC 1750, IETF. December

1994. Also at http://ds.internic.net/rfc/rfc1750.txt

[6] E.D. Erdmann. Empirical Tests of Binary Keystreams.

Master’s thesis, University of London, 1992.

[7] S.W. Golomb. Shift Register Sequences. Holden-Day, San

Francisco, 1967.

[8] I.J. Good. The serial test for sampling numbers and other

tests for randomness. Proc. Camb. Phil. Soc., 49:276-

284, 1953.

[9] J. Kelsey, B. Schneier, D. Wagner, and C. Hall.

Cryptanalytic Attacks on Pseudorandom Number Genera-

tors. Fast Software Encryption, Fifth International

Workshop Proceedings (March 1998), Springer-Verlag,

1998, to appear. Also available at http://www.

counterpane.com/pseudorandom_number.html

[10] D.E. Knuth. The Art of Computer Programming. Vol-

ume 2, Addison-Wesley, Reading, Mass., 2nd edition,

1981.

[11] P. Kocher. Timing Attacks on Diffie-Helman, RSA, DSS

and Other Systems. In Proceedings of Advances in

Cryptology – Crypto 96, Santa Barbara, California.

Pages 104 to 113 in Lecture Notes in Computer Sci-

ence #1109, Springer-Verlag. 1996.

[12] G. Marsaglia. Diehard Statistical Tests. http://

stat.fsu.edu/~geo/.

[13] H. Niederreiter. The linear complexity profile and the jump

complexity of keystream sequences. In I.B. Damgård, edi-

tor, Advances in Cryptology - Eurocrypt ‘90, pages 174 -

188, Springer-Verlag 1991.

[14] NIST, FIPS PUB 180-1: Secure Hash Standard, http://

csrc.nist.gov/fips/fip180-1.txt (ascii). April 1995.

[15] R. Rivest. The MD5 Digest Algorithm. RFC 1321. http:/

/ds.internic.net/rfc/rfc1321.txt April 1992.

[16] M.J.B. Robshaw. On Recent Results on MD2, MD4, and

MD5. RSA Labs Bulletin 4, Redwood City, California,

November 1996. http://www.rsa.com/rsalabs/pubs/up-

dates/bull-4.pdf

[17] RSA Data Security Inc. What is RSAREF? In RSA’s

Cryptography FAQ. http://www.rsa.com/rsalabs/

newfaq/q174.html

For more information on this and other recent

security developments, contact RSA Laborato-

ries at one of the addresses below.

RSA Laboratories

2955 Campus Drive, Suite 400

San Mateo, CA 94403 USA

650/295-7600

650/295-7599 (fax)

rsa-labs@rsa.com

http://www.rsa.com/rsalabs/

Copyright © 1998 RSA Laboratories, a division of RSA Data Security, Inc., a Security Dynamics Company. All rights reserved.

The preliminary

analysis

presented here

indicates that

these are good

algorithms for

generating

cryptographically

strong

pseudorandom

numbers.

