
PKCS #11: Cryptographic

Token Interface Standard

An RSA Laboratories Technical Note

Version 1.0

April 28, 1995

RSA Laboratories
100 Marine Parkway
Redwood City, CA 94065 USA
(415) 595-7703
(415) 595-4126 (fax)
E-Mail: rsa-labs@rsa.com

Copyright 1994-5 RSA Laboratories, a division of RSA Data Security, Inc. License to copy this
document is granted provided that it is identified as “RSA Data Security, Inc. Public-Key
Cryptography Standards (PKCS)” in all material mentioning or referencing this document.
RSA, RC2, and RC4 are registered trademarks and MD2 and MD5 are trademarks of RSA Data
Security, Inc. The RSA public-key cryptosystem is protected by U.S. Patent #4,405,829. OS/2 is
a registered trademark of International Business Machines Corporation. Windows is a
trademark of Microsoft Corporation. Unix is a registerd trademark of UNIX System
Laboratories.

003-903052-100-000-000

Page III

Copyright © 1994-5 RSA Laboratories

Foreword

As public-key cryptography begins to see wide application and acceptance one thing is
increasingly clear: If it is going to be as effective as the underlying technology allows it to be,
there must be interoperable standards. Even though vendors may agree on the basic public-key
techniques, compatibility between implementations is by no means guaranteed. Interoperability
requires strict adherence to an agreed-upon standard format for transferred data.

Towards that goal, RSA Laboratories has developed, in cooperation with representatives of
industry, academia and government, a family of standards called Public-Key Cryptography
Standards, or PKCS for short.

PKCS is offered by RSA Laboratories to developers of computer systems employing public-key
technology. It is RSA Laboratories' intention to improve and refine the standards in conjunction
with computer system developers, with the goal of producing standards that most if not all
developers adopt.

The role of RSA Laboratories in the standards-making process is four-fold:

1. Publish carefully written documents describing the standards.

2. Solicit opinions and advice from developers and users on useful or necessary changes
and extensions.

3. Publish revised standards when appropriate.

4. Provide implementation guides and/or reference implementations.

During the process of PKCS development, RSA Laboratories retains final authority on each
document, though input from reviewers is clearly influential. However, RSA Laboratories’ goal
is to accelerate the development of formal standards, not to compete with such work. Thus,
when a PKCS document is accepted as a base document for a formal standard, RSA
Laboratories relinquishes its “ownership” of the document, giving way to the open standards
development process. RSA Laboratories may continue to develop related documents, of course,
under the terms described above.

The PKCS family currently includes the following documents:

PKCS #1: RSA Encryption Standard. Version 1.5, November 1993.

PKCS #3: Diffie-Hellman Key-Agreement Standard. Version 1.4, November 1993.

PKCS #5: Password-Based Encryption Standard. Version 1.5, November 1993.

PKCS #6: Extended-Certificate Syntax Standard. Version 1.5, November 1993.

PKCS #7: Cryptographic Message Syntax Standard. Version 1.5, November 1993.

PKCS #8: Private-Key Information Syntax Standard. Version 1.2, November 1993.

Page IV PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

PKCS #9: Selected Attribute Types. Version 1.1, November 1993.

PKCS #10: Certification Request Syntax Standard. Version 1.0, November 1993.

PKCS #11: Cryptographic Token Interface Standard. Version 1.0, April 1995.

PKCS documents are available by electronic mail to <pkcs@rsa.com>, or via anonymous ftp to
ftp.rsa.com in the pub/pkcs directory. There is also a electronic mailing list for discussion of
PKCS issues, <pkcs-users@rsa.com>; to join the list, send a request to <pkcs-users-
request@rsa.com>.

Comments on the PKCS documents, requests to register extensions to the standards, and
suggestions for additional standards are welcomed. Address correspondence to: PKCS Editor,
RSA Laboratories, 100 Marine Parkway, Suite 500, Redwood City, CA 94065; 415/595-7703; fax:
415/595-4126; E-mail: <pkcs-editor@rsa.com>.

Acknowledgements

It is difficult to enumerate all the people whose contributions brought PKCS #11 to fruition, and
any list will doubtless be incomplete. However, RSA Laboratories would particularly like to
acknowledge those who provided feedback on the draft documents:

Richard Ankney, Fischer International

Ashar Aziz, Sun Microsystems Inc.

Ali Bahreman, Bellcore

Frank Balluffi, Bankers Trust

Sara Bitan, RadGaurd LTD.

Eric Blossom, COMSEC Partners

John C. Brainard, Security Dynamics

Liudvikas Bukys, University of Rochester

Steve Burnett, RSA Data Security, Inc.

Victor Chang, RSA Data Security, Inc.

Bruno Couillard, EMCON Ltd.

Greg Dunn, Telequip Corp.

Steve Dussé, RSA Data Security, Inc.

Alan Eldridge, IRIS Associates

Mark H. Etzel, AT&T Bell Laboratories

Page V

Copyright © 1994-5 RSA Laboratories

Bill Fox, National Semiconductor

Hazem Hassan, Datakey, Inc.

Thomas C. Jones, ViaCrypt

John Kennedy, Cylink

Larry Kilgallen, LJK Software

Kevin Kingdon, Novell

Scott Lindsay, Mobius

Roland Lockhart, BNR

Hoa Ly, RSA Data Security, Inc.

Thi Nguyen, Secure Communications Inc.

Denis Pinkas, Bull

Jim Press, ICL

P. Rajaram, Bellcore

William Rohland, Datakey, Inc.

Andrew Ryan, SmartDiskette Limited

Paul Schlyter, AU System

Wolfgang Schneider, GMD

Stephen Seal, CRYPTOCard

Don Stephenson, Sun Microsystems, Inc.

Bruno Struif, GMD

Mandan M. Valluri, National Semiconductor

Charlie Watt, SecureWare

David E. Wood, DataKey, Inc.

Richard R.D. Young, BNR

Arthur Zachai, representing Telequip Corp.

Neal Ziring, NSA

Page VI PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

RSA Laboratories is grateful to those who assisted in other ways, and apologizes for any
omissions. In all, the mailing list for PKCS #11 consisted of more than 130 people, and as the
document was available on RSA’s ftp server, it is likely that that may others saw it as well.

PKCS #11’s document editor was Aram Pérez of International Computer Services, under
contract to RSA Laboratories; the project coordinator was Burt Kaliski of RSA Laboratories.

Page VII

Copyright © 1994-5 RSA Laboratories

Table of Contents

1. SCOPE...1

2. REFERENCES..2

3. DEFINITIONS ..4

4. SYMBOLS AND ABBREVIATIONS ..6

5. GENERAL OVERVIEW..8

5.1 DESIGN GOALS ...8

5.2 GENERAL MODEL..8

5.3 LOGICAL VIEW OF A TOKEN ...10

5.4 USERS..11

5.5 SESSIONS ...12

5.5.1 Read-only session states ...12

5.5.2 Read/write session states ..13

5.5.3 Session events...14

5.6 FUNCTION OVERVIEW ...14

6. SECURITY CONSIDERATIONS ..17

7. DATA TYPES ...19

7.1 GENERAL INFORMATION ...19

CK_VERSION...19

CK_INFO..19

CK_INFO_PTR...20

CK_NOTIFICATION...20

7.2 SLOT AND TOKEN TYPES ...20

CK_SLOT_ID..20

CK_SLOT_ID_PTR ...20

CK_SLOT_INFO...21

CK_SLOT_INFO_PTR ..21

CK_TOKEN_INFO ...21

CK_TOKEN_INFO_PTR...23

7.3 SESSION TYPES ...23

CK_SESSION_HANDLE ...23

CK_SESSION_HANDLE_PTR ..23

CK_USER_TYPE ..24

CK_STATE..24

CK_SESSION_INFO ...24

CK_SESSION_INFO_PTR ..25

7.4 OBJECT TYPES ..25

CK_OBJECT_HANDLE..25

CK_OBJECT_HANDLE_PTR ...25

CK_OBJECT_CLASS..25

CK_OBJECT_CLASS_PTR ...26

CK_KEY_TYPE...26

CK_CERTIFICATE_TYPE ..26

CK_ATTRIBUTE_TYPE..27

CK_ATTRIBUTE...28

Page VIII PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

CK_ATTRIBUTE_PTR ..28

CK_DATE...28

7.5 MECHANISMS ...29

CK_MECHANISM_TYPE..29

CK_MECHANISM_TYPE_PTR...29

CK_MECHANISM ..30

CK_MECHANISM_PTR..30

CK_MECHANISM_INFO..30

CK_MECHANISM_INFO_PTR...31

CK_RC2_CBC_PARAMS..31

7.6 FUNCTIONS ..31

CK_ENTRY...31

CK_RV..31

8. OBJECTS..34

8.1 COMMON ATTRIBUTES ..36

8.2 DATA OBJECTS ...36

8.3 CERTIFICATE OBJECTS ..37

8.4 COMMON KEY ATTRIBUTES ...39

8.5 PUBLIC KEY OBJECTS ..39

8.5.1 RSA public key objects ...40

8.5.2 DSA public key objects ...41

8.5.3 Diffie-Hellman public key objects...42

8.6 PRIVATE KEY OBJECTS ..42

8.6.1 RSA private key objects ..43

8.6.2 DSA private key objects..45

8.6.3 Diffie-Hellman private key objects ...46

8.7 SECRET KEY OBJECTS..46

8.7.1 Generic secret key objects ..47

8.7.2 RC2 secret key objects..48

8.7.3 RC4 secret key objects..49

8.7.4 DES secret key objects ...50

8.7.5 DES2 secret key objects..50

8.7.6 DES3 secret key objects..51

9. FUNCTIONS ...52

9.1 GENERAL PURPOSE ...54

C_Initialize ...54

C_GetInfo ...54

9.2 SLOT AND TOKEN MANAGEMENT ...55

C_GetSlotList..55

C_GetSlotInfo ...56

C_GetTokenInfo..56

C_GetMechanismList ..57

C_GetMechanismInfo..58

C_InitToken ..58

C_InitPIN..59

C_SetPIN ..60

9.3 SESSION MANAGEMENT...61

C_OpenSession ...61

C_CloseSession...62

C_CloseAllSessions...63

C_GetSessionInfo..64

C_Login ..64

Page IX

Copyright © 1994-5 RSA Laboratories

C_Logout ..65

9.4 OBJECT MANAGEMENT..65

C_CreateObject ..66

C_CopyObject...67

C_DestroyObject...68

C_GetObjectSize ...69

C_GetAttributeValue...70

C_SetAttributeValue..71

C_FindObjectsInit...72

C_FindObjects ..72

9.5 ENCRYPTION AND DECRYPTION...73

C_EncryptInit ...73

C_Encrypt...74

C_EncryptUpdate..75

C_EncryptFinal...76

C_DecryptInit ...77

C_Decrypt...78

C_DecryptUpdate ...79

C_DecryptFinal ..79

9.6 MESSAGE DIGESTING ..80

C_DigestInit..80

C_Digest ...81

C_DigestUpdate..82

C_DigestFinal...83

9.7 SIGNATURE AND VERIFICATION ...84

C_SignInit...84

C_Sign ..85

C_SignUpdate...86

C_SignFinal ..86

C_SignRecoverInit ..87

C_SignRecover..88

C_VerifyInit ..89

C_Verify..90

C_VerifyUpdate ..91

C_VerifyFinal ...91

C_VerifyRecoverInit..92

C_VerifyRecover ...93

9.8 KEY MANAGEMENT ..94

C_GenerateKey...94

C_GenerateKeyPair ..95

C_WrapKey...96

C_UnwrapKey...98

C_DeriveKey...99

9.9 RANDOM NUMBER GENERATION ..101

C_SeedRandom...101

C_GenerateRandom..102

9.10 PARALLEL FUNCTION MANAGEMENT..102

C_GetFunctionStatus ..102

C_CancelFunction ..103

9.11 CALLBACK FUNCTION ...104

Notify ..104

10. MECHANISMS...105

10.1 PKCS #1 RSA KEY PAIR GENERATION ..105

Page X PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

10.2 PKCS #1 RSA...106

10.3 ISO/IEC 9796 RSA ...107

10.4 X.509 (RAW) RSA ...108

10.5 DSA KEY PAIR GENERATION ...109

10.6 DSA..109

10.7 PKCS #3 DIFFIE-HELLMAN KEY PAIR GENERATION..110

10.8 PKCS #3 DIFFIE-HELLMAN KEY DERIVATION ..110

10.9 RC2 KEY GENERATION ...111

10.10 RC2-ECB ..111

10.11 RC2-CBC..112

10.12 RC2-MAC...112

10.13 RC4 KEY GENERATION..113

10.14 RC4...113

10.15 DES KEY GENERATION ...114

10.16 DES-ECB..114

10.17 DES-CBC..115

10.18 DES-MAC...115

10.19 DOUBLE-LENGTH DES KEY GENERATION...116

10.20 TRIPLE-LENGTH DES KEY GENERATION...116

10.21 TRIPLE-DES-ECB..116

10.22 TRIPLE-DES-CBC..117

10.23 TRIPLE-DES-MAC...118

10.24 MD2..118

10.25 MD5..119

10.26 SHA-1 ...119

APPENDIX A, TOKEN PROFILES ..121

APPENDIX B, COMPARISON OF CRYPTOKI AND OTHER API’S ...125

List of Figures

FIGURE 5-1, GENERAL MODEL..9

FIGURE 5-2, OBJECT HIERARCHY ..10

FIGURE 5-3, READ-ONLY SESSION STATES ..12

FIGURE 5-4, READ/WRITE SESSION STATES ...13

FIGURE 8-1, CRYPTOKI OBJECT HIERARCHY..34

FIGURE 8-2, KEY OBJECT DETAIL ...35

List of Tables

TABLE 4-1, SYMBOLS...6

TABLE 4-2, PREFIXES ...6

TABLE 4-3, CHARACTER SET ..7

TABLE 5-1, READ-ONLY SESSION STATES ...13

TABLE 5-2, READ/WRITE SESSION STATES ..14

TABLE 5-3, SESSION EVENTS ..14

TABLE 5-4, SUMMARY OF CRYPTOKI FUNCTIONS...15

TABLE 7-1, SLOT INFORMATION FLAGS...21

TABLE 7-2, TOKEN INFORMATION FLAGS ..23

TABLE 7-3, SESSION INFORMATION FLAGS ..25

Page XI

Copyright © 1994-5 RSA Laboratories

TABLE 7-4, MECHANISM INFORMATION FLAGS ...31

TABLE 8-1, COMMON OBJECT ATTRIBUTES ...36

TABLE 8-2, DATA OBJECT ATTRIBUTES ..36

TABLE 8-3, CERTIFICATE OBJECT ATTRIBUTES..38

TABLE 8-4, COMMON KEY ATTRIBUTES..39

TABLE 8-5, COMMON PUBLIC KEY ATTRIBUTES ..40

TABLE 8-6, RSA PUBLIC KEY OBJECT ATTRIBUTES...40

TABLE 8-7, DSA PUBLIC KEY OBJECT ATTRIBUTES ..41

TABLE 8-8, DIFFIE-HELLMAN PUBLIC KEY OBJECT ATTRIBUTES ..42

TABLE 8-9, COMMON PRIVATE KEY ATTRIBUTES ..43

TABLE 8-10, RSA PRIVATE KEY OBJECT ATTRIBUTES...44

TABLE 8-11, DSA PRIVATE KEY OBJECT ATTRIBUTES ..45

TABLE 8-12, DIFFIE-HELLMAN PRIVATE KEY OBJECT ATTRIBUTES ..46

TABLE 8-13, COMMON SECRET KEY ATTRIBUTES..47

TABLE 8-14, GENERIC SECRET KEY OBJECT ATTRIBUTES ..48

TABLE 8-15, RC2 SECRET KEY OBJECT ATTRIBUTES ..48

TABLE 8-16, RC4 SECRET KEY OBJECT ..49

TABLE 8-17, DES SECRET KEY OBJECT..50

TABLE 8-18, DES2 SECRET KEY OBJECT ATTRIBUTES ..50

TABLE 8-19, DES3 SECRET KEY OBJECT ATTRIBUTES ..51

TABLE 9-1, RETURN VALUES ..52

TABLE 9-2, ENCRYPTING MECHANISMS ..74

TABLE 9-3, DIGESTING MECHANISMS ...81

TABLE 9-4, SIGNING MECHANISMS ...84

TABLE 9-5, SIGNING WITH RECOVERY MECHANISMS...87

TABLE 9-6, VERIFYING MECHANISMS ...89

TABLE 9-7, VERIFY WITH RECOVERY MECHANISMS ..92

TABLE 9-8, KEY GENERATION MECHANISMS...94

TABLE 9-9, KEY PAIR GENERATION MECHANISMS...95

TABLE 9-10, WRAPPING MECHANISMS ..97

TABLE 9-11, UNWRAPPING MECHANISMS..98

TABLE 9-12, DERIVING MECHANISMS ...100

TABLE 10-1, MECHANISMS VS. FUNCTIONS..105

TABLE 10-2, PKCS #1 RSA KEY AND DATA LENGTH CONSTRAINTS ...107

TABLE 10-3, ISO/IEC 9796 RSA KEY AND DATA LENGTH CONSTRAINTS..108

TABLE 10-4, X.509 (RAW) RSA KEY AND DATA LENGTH CONSTRAINTS..108

TABLE 10-5, DSA KEY AND DATA LENGTH CONSTRAINTS ..110

TABLE 10-6, RC2-ECB KEY AND DATA LENGTH CONSTRAINTS ..112

TABLE 10-7, RC2-CBC KEY AND DATA LENGTH CONSTRAINTS ..112

TABLE 10-8, RC2-MAC KEY AND DATA LENGTH CONSTRAINTS ...113

TABLE 10-9, RC4 KEY AND DATA LENGTH CONSTRAINTS ...113

TABLE 10-10, DES-ECB KEY AND DATA LENGTH CONSTRAINTS ..115

TABLE 10-11, DES-CBC KEY AND DATA LENGTH CONSTRAINTS ..115

TABLE 10-12, DES-MAC KEY AND DATA LENGTH CONSTRAINTS ...116

TABLE 10-13, TRIPLE-DES-ECB KEY AND DATA LENGTH CONSTRAINTS ..117

TABLE 10-14, TRIPLE-DES-CBC KEY AND DATA LENGTH CONSTRAINTS ..118

TABLE 10-15, TRIPLE-DES-MAC KEY AND DATA LENGTH CONSTRAINTS ...118

TABLE 10-16, MD2 DATA LENGTH CONSTRAINTS ..119

TABLE 10-17, MD5 DATA LENGTH CONSTRAINTS ..119

TABLE 10-18, SHA-1 DATA LENGTH CONSTRAINTS ...119

Page XII PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

SCOPE Page 1

Copyright © 1994-5 RSA Laboratories

1. Scope

This standard specifies an application programming interface (API), called “Cryptoki,” to
devices which hold cryptographic information and perform cryptographic functions. Cryptoki,
pronounced “crypto-key” and short for “cryptographic token interface,” follows a simple object-
based approach, addressing the goals of technology independence (any kind of device) and
resource sharing (multiple applications accessing multiple devices), presenting to applications a
common, logical view of the device called a “cryptographic token.”

This document specifies the data types and functions available to an application requiring
cryptographic services using the ANSI C programming language. These data types and
functions will be provided as a C header file by the supplier of a Cryptoki library. A separate
document provides a generic, programming language independent Cryptoki interface.
Additional documents will provide bindings between Cryptoki and other programming
languages.

Cryptoki isolates an application from the details of the cryptographic device. The application
does not have to change to interface to a different type of device or to run in a different
environment; thus the application is portable. How Cryptoki provides this isolation is beyond
the scope of this document, though some conventions for the support of multiple types of device
will be addressed in a separate document.

The set of cryptographic mechanisms (algorithms) supported in this version is somewhat
limited; but new mechanisms can easily be added without changing the general interface. It is
expected that additional mechanisms will be published from time to time in separate
documents. It is also possible for token vendors to define their own mechanisms (although for
interoperability, registration through the PKCS process is preferable).

Cryptoki is intended for cryptographic devices associated with a single user, so some features
that would be included in a general-purpose interface are omitted. For example, Cryptoki does
not have a means of distinguishing multiple “users.” The focus is on a single user’s keys and
perhaps a small number of public-key certificates related to them. Moreover, the emphasis is on
cryptography. While the device may perform useful non-cryptographic functions, such
functions are left to other interfaces.

Page 2 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

2. References

ANSI C ANSI/ISO. ANSI/ISO 9899-1990: American National Standard for Programming
Languages -- C. 1990.

ANSI X9.9 ANSI. American National Standard X9.9: Financial Institution Message
Authentication Code. 1982.

ANSI X9.17 ANSI. American National Standard X9.17: Financial Institution Key Management
(Wholesale). 1985.

ANSI X9.31 Accredited Standards Committee X9. Public Key Cryptography Using Reversible
Algorithms for the Financial Services Industry: Part 1: The RSA Signature Algorithm.
Working draft, March 7, 1993.

ANSI X9.42 Accredited Standards Committee X9. Public Key Cryptography for the Financial
Services Industry: Management of Symmetric Algorithm Keys Using Diffie-Hellman.
Working draft, September 21, 1994.

CDPD Ameritech Mobile Communications et al. Cellular Digital Packet Data System
Specifications: Part 406: Airlink Security. 1993.

FIPS PUB 46–2 National Institute of Standards and Technology (formerly National Bureau of
Standards). FIPS PUB 46-2: Data Encryption Standard. December 30, 1993.

FIPS PUB 74 National Institute of Standards and Technology (formerly National Bureau of
Standards). FIPS PUB 74: Guidelines for Implementing and Using the NBS Data
Encryption Standard. April 1, 1981.

FIPS PUB 81 National Institute of Standards and Technology (formerly National Bureau of
Standards). FIPS PUB 81: DES Modes of Operation. December 1980.

FIPS PUB 113 National Institute of Standards and Technology (formerly National Bureau of
Standards). FIPS PUB 113: Computer Data Authentication. May 30, 1985.

FIPS PUB 180 National Institute of Standards and Technology. FIPS PUB 180: Secure Hash
Standard (SHS). May 11, 1993. In May 1994, NIST announced a weakness in the
Secure Hash Standard defined in FIPS 180; a revised version is expected to be
issued as FIPS 180-1.

FIPS PUB 186 National Institute of Standards and Technology. FIPS PUB 186: Digital Signature
Standard. May 19, 1994.

GCS-API X/Open Company Ltd. Generic Cryptographic Service API (GCS-API), Base - Draft
2. February 14, 1995.

ISO 7816-1 ISO. International Standard 7816-1: Identification Cards — Integrated Circuit(s) with
Contacts — Part 1: Physical Characteristics. 1987.

REFERENCES Page 3

Copyright © 1994-5 RSA Laboratories

ISO 7816-4 ISO. Identification Cards — Integrated Circuit(s) with Contacts — Part 4: Inter-
industry Commands for Interchange. Committee draft, 1993.

ISO/IEC 9796 ISO/IEC. International Standard 9796: Digital Signature Scheme Giving Message
Recovery. July 1991.

PCMCIA Personal Computer Memory Card International Association. PC Card Standard.
Release 2.1, July 1993.

PKCS #1 RSA Laboratories. RSA Encryption Standard. Version 1.5, November 1993.

PKCS #3 RSA Laboratories. Diffie-Hellman Key-Agreement Standard. Version 1.4,
November 1993.

PKCS #7 RSA Laboratories. Cryptographic Message Syntax Standard. Version 1.5,
November 1993.

RFC 1319 B. Kaliski. RFC 1319: The MD2 Message-Digest Algorithm. RSA Laboratories,
April 1992.

RFC 1321 R. Rivest. RFC 1321: The MD5 Message-Digest Algorithm. MIT Laboratory for
Computer Science and RSA Data Security, Inc., April 1992.

RFC 1421 J. Linn. RFC 1421: Privacy Enhancement for Internet Electronic Mail: Part I: Message
Encryption and Authentication Procedures. IAB IRTF PSRG, IETF PEM WG,
February 1993.

RFC 1423 D. Balenson. RFC 1423: Privacy Enhancement for Internet Electronic Mail: Part III:
Algorithms, Modes, and Identifiers. TIS and IAB IRTF PSRG, IETF PEM WG,
February 1993.

RFC 1508 J. Linn. RFC 1508: Generic Security Services Application Programming Interface.
Geer Zolot Associates, September 1993.

RFC 1509 J. Wray. RFC 1509: Generic Security Services API: C-bindings. Digital Equipment
Corporation, September 1993.

X.208 ITU-T (formerly CCITT). Recommendation X.208: Specification of Basic Encoding
Rules for Abstract Syntax Notation One (ASN.1). 1988.

X.209 ITU-T (formerly CCITT). Recommendation X.209: Specification of Abstract Syntax
Notation One (ASN.1). 1988.

X.500 ITU-T (formerly CCITT). Recommendation X.500: The Directory—Overview of
Concepts and Services. 1988.

X.509 ITU-T (formerly CCITT). Recommendation X.509: The Directory—Authentication
Framework. 1993. (Proposed extensions to X.509 are given in ISO/IEC 9594-8
PDAM 1: Information Technology—Open Systems Interconnection—The Directory:
Authentication Framework—Amendment 1: Certificate Extensions. 1994.)

Page 4 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

3. Definitions

For the purposes of this standard, the following definitions apply.

API Application programming interface.

Application Any computer program that calls the Cryptoki interface.

ASN.1 Abstract Syntax Notation One, as defined in X.208.

Attribute A characteristic of an object.

BER Basic Encoding Rules, as defined in X.209.

CBC Cipher Block Chaining mode, as defined in FIPS PUB 81.

Certificate A signed message binding a subject name and a public key.

Cryptographic Device A device storing cryptographic information and possibly
performing cryptographic functions. May be implemented
as a smart card, smart disk, PCMCIA card, or with some
other technology, including software only or a process on a
server.

Cryptoki The Cryptographic Token Interface defined in this
standard.

Cryptoki library A library that implements the functions specified in this
standard.

DES Data Encryption Standard, as defined in FIPS PUB 46-2.

DSA Digital Signature Algorithm, as defined in FIPS PUB 186.

ECB Electronic Codebook mode, as defined in FIPS PUB 81.

MAC Message Authentication Code, as defined in ANSI X9.9.

MD2 RSA Data Security, Inc.'s MD2 message-digest algorithm,
as defined in RFC 1319.

MD5 RSA Data Security, Inc.'s MD5 message-digest algorithm,
as defined in RFC 1321.

Mechanism A process for implementing a cryptographic operation.

Object An item that is stored on a token; may be data, a certificate,
or a key.

DEFINITIONS Page 5

Copyright © 1994-5 RSA Laboratories

PIN Personal Identification Number.

RSA The RSA public-key cryptosystem, as defined in PKCS #1.

RC2 RSA Data Security’s proprietary RC2 symmetric block
cipher.

RC4 RSA Data Security’s proprietary RC4 symmetric stream
cipher.

Reader The means by which information is exchanged with a
device.

Session A logical connection between an application and a token.

SHA Secure Hash Algorithm, as defined in FIPS PUB 180.

Slot A logical reader that potentially contains a token.

Subject Name The X.500 distinguished name of the entity to which a key
is assigned.

SO A Security Officer user.

Token The logical view of a cryptographic device defined by
Cryptoki.

User The person using an application that interfaces to Cryptoki.

Page 6 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

4. Symbols and abbreviations

The following symbols are used in this standard:

Table 4-1, Symbols

Symbol Definition

N/A Not applicable

R/O Read-only

R/W Read/write

The following prefixes are used in this standard:

Table 4-2, Prefixes

Prefix Description

C_ Function

CK_ Data type

CKA_ Attribute

CKC_ Certificate type

CKF_ Bit flag

CKK_ Key type

CKM_ Mechanism type

CKN_ Notification

CKO_ Object class

CKS_ Session state

CKR_ Return value

CKU_ User type

p a pointer

pb a pointer to a CK_BYTE

ph a pointer to a handle

pus a pointer to a
CK_USHORT

ul a CK_ULONG

us a CK_USHORT

In Cryptoki, a flag is a boolean flag that can be TRUE or FALSE. A zero value means the flag is
FALSE, and a non-zero value means the flag is TRUE. Cryptoki defines these labels if they are
not already defined.

#ifndef FALSE
#define FALSE 0
#endif

SYMBOLS AND ABBREVIATIONS Page 7

Copyright © 1994-5 RSA Laboratories

#ifndef TRUE
#define TRUE (!FALSE)
#endif

Cryptoki is based on ANSI C types and defines the following data types:

/* an unsigned 8-bit value */
typedef unsigned char CK_BYTE;

/* an unsigned 8-bit character */
typedef CK_BYTE CK_CHAR;

/* a BYTE-sized Boolean flag */
typedef CK_BYTE CK_BBOOL;

/* an unsigned value, at least 16 bits long */
typedef unsigned short int CK_USHORT;

/* an unsigned value, at least 32 bits long */
typedef unsigned long int CK_ULONG;

/* at least 32 bits, each bit is a Boolean flag */
typedef CK_ULONG CK_FLAGS;

Cryptoki also uses pointers to these data types which are implementation dependent. These
pointers are:

CK_BYTE_PTR /* Pointer to a CK_BYTE */
CK_CHAR_PTR /* Pointer to a CK_CHAR */
CK_USHORT_PTR /* Pointer to a CK_USHORT */
CK_VOID_PTR /* Pointer to a void */

NULL_PTR /* a NULL pointer */

It follows that many of the data and pointer types will vary somewhat from one environment to
another (e.g., a CK_ULONG will sometimes be 32 bits, and sometimes perhaps 64 bits).
However, these details should not affect the application, assuming it is compiled with a
Cryptoki header file consistent with the Cryptoki library to which the application is linked.

All numbers and values expressed in this document are decimal, unless they are preceded by
“0x”, in which case they are hexadecimal values.

The CK_CHAR data type holds characters from the following table, taken from ANSI C:

Table 4-3, Character Set

Category Characters

Letters A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z

Numbers 0 1 2 3 4 5 6 7 8 9

Graphic characters ! “ # % & ‘ () * + , - . / : ; < = > ? [\] ^ _ { | } ~

Blank character ‘ ‘

Page 8 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

5. General overview

Portable computing devices such as smart cards, PCMCIA cards, and smart diskettes are ideal
tools for implementing public-key cryptography, as they provide a way to store the private-key
component of a public-key/private-key pair securely, under the control of a single user. With
such a device, a cryptographic application, rather than performing cryptographic operations
itself, programs the device to perform the operations, with sensitive information such as private
keys never being revealed. As more applications are developed for public-key cryptography, a
standard programming interface for the these devices becomes increasingly valuable. This
standard addresses this need.

5.1 Design goals

Cryptoki was intended from the beginning as an interface between applications and all kinds of
portable cryptographic devices, such as those based on smart cards, PCMCIA cards, and smart
diskettes. There are already standards (de facto or official) for interfacing to these devices at
some level. For instance, the mechanical characteristics and electrical connections are well-
defined, as are the methods for supplying commands and receiving results. (See, for example,
ISO 7816, or the PCMCIA specifications.)

What remained to be defined were particular commands for performing cryptography. It
would not be enough simply to define command sets for each kind of device, as that would not
solve the general problem of an application interface independent of the device. To do so is still a
long-term goal, and would certainly contribute to interoperability. The primary goal of
Cryptoki was a lower-level programming interface that abstracts the details of the devices, and
presents to the application a common model of the cryptographic device, called a
“cryptographic token” (or simply “token”).

A secondary goal was resource sharing. As desktop multi-tasking operating systems become
more popular, a single device should be shared between more than one application. In addition,
an application should be able to interface to more than one device at a given time.

It is not the goal of Cryptoki to be a generic interface to cryptographic operations or security
services, although one certainly could build such operations and services with the functions that
Cryptoki provides. Thus, Cryptoki is intended to complement, not compete with such emerging
and evolving interfaces as “Generic Security Services Application Programming Interface”
(RFC’s 1508 and 1509) and “Generic Cryptographic Service API” (GCS-API) from X/Open.

5.2 General model

Cryptoki's general model is illustrated in the following figure. The model begins with one or
more applications that need to perform certain cryptographic operations, and ends with a
cryptographic device, on which some or all of the operations are actually performed. A user
may be associated with an application.

GENERAL OVERVIEW Page 9

Copyright © 1994-5 RSA Laboratories

Figure 5-1, General Model

Cryptoki provides an interface to one or more cryptographic devices that are active in the
system through a number of “slots”. Each slot, which corresponds to a physical reader or other
device interface, may contain a token. A token is “present in the slot” (typically) when a
cryptographic device is present in the reader. Of course, since Cryptoki provides a logical view
of slots and tokens, there may be other physical interpretations. It is possible that multiple slots
may share the same physical reader. The point is that a system has some number of slots and
applications can connect to all those tokens.

A cryptographic device can perform some cryptographic operations, following a certain
command set; these commands are typically passed through standard device drivers, for
instance PCMCIA card services or socket services. Cryptoki makes the cryptographic device
look logically like every other device, regardless of the implementation technology. Thus the
application need not interface directly to the device drivers (or even know which ones are
involved); Cryptoki hides these details. Indeed, the “device” may be implemented entirely in
software, for instance as a process running on a server; no hardware is necessary.

Cryptoki would likely be implemented as a library supporting the functions in the interface, and
applications would be linked to the library. An application may be linked to Cryptoki directly,
or Cryptoki could be a so-called “shared” library (or dynamic link library), in which case the
application would link the library dynamically. Shared libraries are fairly straightforward in
operating systems such as Microsoft Windows , OS/2 , and can be achieved, without too
much difficulty, in Unix and DOS systems.

The dynamic approach would certainly have advantages as new libraries are made available,
but from a security perspective, there are some drawbacks. In particular, if the library is easily
replaced, then there is the possibility that an attacker can substitute a rogue library that
intercepts a user’s PIN. From a security perspective, direct linking would probably be better.
However, whether the linking is direct or dynamic, the programming interface between the
application and Cryptoki remains the same.

Application 1

Cryptoki

Slot 1 Slot n

Application n

Other Security Layers

Token 1

Cryptographic Device 1

Token n

Cryptographic Device n

Page 10 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

The kinds of devices and capabilities supported will depend on the particular Cryptoki library.
This standard only specifies the interface to the library, not its features. In particular, not all
libraries will support all the mechanisms (algorithms) defined in this interface (since not all
tokens are expected to support all the mechanisms), and libraries will likely support only a
subset of all the kinds of cryptographic devices that are available. (The more kinds, the better,
of course, and it is anticipated that libraries will be developed supporting multiple kinds of
token, not just those from a single vendor.) It is expected that as applications are developed that
interface to Cryptoki, standard library and token “profiles” will emerge.

5.3 Logical view of a token

Cryptoki’s logical view of a token is a device that stores objects and can perform cryptographic
functions. Cryptoki defines three classes of object: Data, Certificates, and Keys. A data object is
defined by an application. A certificate object stores a public-key certificate. A key object stores
an encryption key. The encryption key be may a public key (RSA, DSA or Diffie-Hellman), a
private key (RSA, DSA or Diffie-Hellman) or a secret key (RC2, RC4, DES, etc.). This view is
illustrated in the following figure. The key types given are those supported for this version of
Cryptoki; other key types may well be added in future versions.

Object

CertificateKeyData

Object Type

Private KeyPublic Key Secret Key

Key Type

DSARSA
Diffie-

Hellman
DSARSA

Diffie-

Hellman
RC4RC2 DES DES2

Public Key Type Private Key Type Secret Key Type

DES3Generic

Figure 5-2, Object Hierarchy

Objects are also classified according to their lifetime and visibility. “Token objects” are visible to
all applications connected to the token, and remain in the token after the “session” or connection

GENERAL OVERVIEW Page 11

Copyright © 1994-5 RSA Laboratories

between an application and the token is closed. “Session objects” are visible only to the
application that creates them, and are destroyed automatically when the session is closed.

Further classification defines access requirements. “Public objects” are visible to all applications
that have a session with the token. “Private objects” are visible to an application only after a
user has been authenticated to the token by a PIN.

A token can create and destroy objects, manipulate them, and search for them. It can also
perform cryptographic functions on objects. It is possible for the token to perform the
cryptographic operations in parallel with the application, assuming the underlying device has its
own processor. In addition, a token may have an internal random number generator.

It is important to distinguish between the logical view of a token and the actual implementation,
because not all cryptographic devices will have this concept of “objects,” or be able to perform
every kind of cryptographic function. Many devices will simply have fixed storage places for
keys of a fixed algorithm, and be able to do a limited set of operations. Cryptoki's role is to
translate this into the logical view, mapping attributes to fixed storage elements and so on. Not
all Cryptoki libraries and tokens need to support every object type. It is expected that standard
“profiles” will be developed, specifying sets of algorithms to be supported.

“Attributes” are characteristics that distinguish an instance of an object. In Cryptoki, there are
general attributes, such as whether the object is private or public. There are also attributes
particular to an object, such as a modulus or exponent for RSA keys.

5.4 Users

This version of Cryptoki recognizes two token user types. One type is a Security Officer (SO).
The other type is the normal user. Both types of user must be authenticated with a PIN to the
token before any access to private objects is allowed. Some tokens may require that a user be
authenticated before any cryptographic function can be performed on the token, whether or not
it involves private objects. The role of the SO is to initialize a token and to set the normal user’s
PIN, and possibly manipulate some public objects. A normal user cannot log in until the SO has
set the user’s PIN.

Other than the support for two types of user, Cryptoki does not address the relationship
between the SO and a community of users. In particular, the SO and the User may be the same
person or may be different, but such matters are outside the scope of this standard.

With respect to PINs, Cryptoki assumes only that they are variable-length character strings from
the set in Table 4-3. Any translation to the device’s requirements is left to the Cryptoki library.
The following items are beyond the scope of Cryptoki:

• Any padding of the PIN.

• How the PINs are generated (by the user, by the application, or some other means).

Future version of Cryptoki will address other means of authentication, such as biometrics and
PIN entry via a PIN pad attached to the device or its reader.

Page 12 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

5.5 Sessions

Cryptoki requires that an application “open a session” with a token before the application has
access to the token’s objects and functions. The session provides the logical connection between
the application and the token. A session can be a read/write (R/W) session or a read-only
(R/O) session. Read/write and read-only refer to the access to token objects, not to session
objects. In both session types, an application can create, read, write and destroy session objects,
and read token objects. However, only in a read/write session can an application create, write
and destroy token objects.

After a session is opened, the application has access to the token’s “public” objects. To gain
access to the token’s “private” objects, a user must log in and be authenticated.

Cryptoki supports multiple sessions on multiple tokens. An application may have one or more
sessions with one or more tokens. A token may have multiple sessions with one or more
applications. Some tokens may allow only one read/write session at any given time.

An open session can be in one of several states. The session state determines allowable access to
objects and functions that can be performed on them. The session states are described in the
next two sections.

5.5.1 Read-only session states

A read-only session can be in one of two states, as illustrated in the following figure. When the
session is opened, it is in the “R/O Public Session” state. Only the normal user may open a
read-only session.

The following table describes the session states:

R/O Public

Session

R/O User

Functions

L
o
g
 I
n
 U

s
e
r

L
o
g
 O

u
t

Close Session

Clo
se

 S
es

sio
n

D
e
v
ic

e
R

e
m

o
v
e
d

Figure 5-3, Read-Only Session States

GENERAL OVERVIEW Page 13

Copyright © 1994-5 RSA Laboratories

Table 5-1, Read-Only Session States

State Description

R/O Public Session The application has opened a read-only session. The application has
read-only access to public objects on the token.

R/O User Functions The normal user has been authenticated to the token. The application
has read-only access to public and private objects on the token.

5.5.2 Read/write session states

A read/write session can be in one of three states, as illustrated in the following figure. When
the session is opened, it is in the “R/W Public Session” state.

R/W Public

Session

R/W SO Functions

L
o
g
 I
n
 S

O

L
o
g
 O

u
t

R/W User

Functions

L
o
g
 I
n
 U

s
e
r

L
o
g
 O

u
t

Close Session

Close Session

Clo
se

 S
es

sio
n

D
e
v
ic

e
R

e
m

o
v
e
d

D
e
v
ic

e
R

e
m

o
v
e
d

Figure 5-4, Read/Write Session States

Page 14 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

The following table describes the session states:

Table 5-2, Read/Write Session States

State Description

R/W Public Session The application has opened a read/write session. The application has
read/write access to public objects on the token.

R/W SO Functions The Security Officer has been authenticated to the token. The
application has read/write access only to public objects on the token,
not to private objects. The SO can set the normal user’s PIN.

R/W User Functions The normal user has been authenticated to the token. The application
has read/write access to public and private objects on the token.

5.5.3 Session events

Session events cause the session state to change. The following table describes the events.

Table 5-3, Session Events

Event Occurs when...

Log In SO the SO is authenticated to the token.

Log In User the normal user is authenticated to the token.

Log Out the application logs out the current user.

Close Session the application closes the session or an application closes all sessions.

Device Removed the device underlying the token has been removed from its slot.

Note that when the device is removed, the user is automatically logged out. However, the
session remains open. If the device is reinserted, the application can log in the user again
without opening a new session.

5.6 Function overview

The Cryptoki API consists of a number of functions, spanning slot and token management
through object management, as well as cryptographic functions. These functions are presented
in the following table.

GENERAL OVERVIEW Page 15

Copyright © 1994-5 RSA Laboratories

Table 5-4, Summary of Cryptoki Functions

Category Function Description

General C_Initialize initializes Cryptoki

purpose C_GetInfo obtains general information about Cryptoki

Slot and C_GetSlotList obtains a list of slots in the system

token C_GetSlotInfo obtains information about a particular slot

management C_GetTokenInfo obtains information about a particular token

C_GetMechansimList obtains a list of mechanisms supported by a token

C_GetMechanismInfo obtains information about a particular mechanism

C_InitToken initializes a token

C_InitPIN initializes the normal user’s PIN

C_SetPIN modifies the PIN of the current user

Session
management

C_OpenSession opens a connection or “session” between an
application and a particular token

C_CloseSession closes a session

C_CloseAllSessions closes all sessions with a token

C_GetSessionInfo obtains information about the session

C_Login logs into a token

C_Logout logs out from a token

Object C_CreateObject creates an object

management C_CopyObject creates a copy of an object

C_DestroyObject destroys an object

C_GetObjectSize obtains the size of an object in bytes

C_GetAttributeValue obtains an attribute value of an object

C_SetAttributeValue modifies an attribute value of an object

C_FindObjectsInit initializes an object search operation

C_FindObjects continues an object search operation

Encryption C_EncryptInit initializes an encryption operation

and C_Encrypt encrypts single-part data

decryption C_EncryptUpdate continues a multiple-part encryption operation

C_EncryptFinal finishes a multiple-part encryption operation

C_DecryptInit initializes a decryption operation

C_Decrypt decrypts single-part encrypted data

C_DecryptUpdate continues a multiple-part decryption operation

C_DecryptFinal finishes a multiple-part decryption operation

Message C_DigestInit initializes a message-digesting operation

digesting C_Digest digests single-part data

C_DigestUpdate continues a multiple-part digesting operation

C_DigestFinal finishes a multiple-part digesting operation

Page 16 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

Category Function Description

Signature C_SignInit initializes a signature operation

and C_Sign signs single-part data

verification C_SignUpdate continues a multiple-part signature operation

C_SignFinal finishes a multiple-part signature operation

C_SignRecoverInit initializes a signature operation, where the data
can be recovered from the signature

C_SignRecover signs single-part data, where the data can be
recovered from the signature

C_VerifyInit initializes a verification operation

C_Verify verifies a signature on single-part data

C_VerifyUpdate continues a multiple-part verification operation

C_VerifyFinal finishes a multiple-part verification operation

C_VerifyRecoverInit initializes a verification operation where the data
is recovered from the signature

C_VerifyRecover verifies a signature on single-part data, where the
data is recovered from the signature

Key C_GenerateKey generates a secret key

management C_GenerateKeyPair generates a public-key/private-key pair

C_WrapKey wraps (encrypts) a key

C_UnwrapKey unwraps (decrypts) a key

C_DeriveKey derives a key from a base key

Random number C_SeedRandom mixes in additional seed material to the random
number generator

generation C_GenerateRandom generates random data

Function
management

C_GetFunctionStatus obtains updated status of a function running in
parallel with the application

C_CancelFunction cancels a function running in parallel with the
application

Callbacks Notify processes notifications from Cryptoki

Functions in the “Encryption and decryption,” “Message digesting,” “Signature and
verification,” and “Key management” categories may run in parallel with the application if the
token has the capability and the session is opened in this mode.

SECURITY CONSIDERATIONS Page 17

Copyright © 1994-5 RSA Laboratories

6. Security considerations

As an interface to cryptographic devices, Cryptoki provides a basis for security in a computer or
communications system. Two of the particular features of the interface that facilitate such
security are the following:

1. Access to private objects on the token, and possibly to cryptographic functions, requires a
PIN. Thus possessing the cryptographic device that implements the token is not sufficient;
the PIN is also needed.

2. Maximum protection is given to objects marked “sensitive”—they cannot be read from the
token, nor exported through the cryptographic functions (though they can be used as keys).

It is expected that access to private and sensitive object by means other than Cryptoki (e.g.,
other programming interfaces, or reverse engineering of the device) would be difficult.

If a device does not have a tamper-proof environment or protected memory in which to store
private and sensitive objects, the device may encrypt the objects with a master key which is
perhaps derived from the user’s PIN. The particular mechanism for protecting private objects is
left to the device implementation, however.

Based on these features it should be possible to design applications in such a way that the token
can provide adequate security for the objects the applications manage.

Of course, cryptography is only one element of security, and the token is only one component in
a system. While the token itself may be secure, one must also consider the security of the
operating system by which the application interfaces to it, especially since the PIN is passed
through the operating system. It is easy for a rogue application on the operating system to
obtain the PIN; it is also possible that other devices monitoring communication lines to the
cryptographic device can obtain the PIN. Rogue applications and devices may also change the
commands sent to the cryptographic device to obtain other services than what the application
requested.

It is important to be sure that the system is secure against such attack. Cryptoki may well play a
role here, for instance if a token is involved in the “booting up” of the system.

It is important to note that none of the attacks just described can compromise objects marked
“sensitive,” since the “sensitive” attribute cannot be changed once set. However, during key
generation, before a private key is marked “sensitive,” a copy of the private key could be
obtained by the rogue application, so it is important to generate keys in a more trusted
environment, than the environment in which one performs normal operations.

An application may also want to be sure that the token is “legitimate” in some sense (for a
variety of reasons, including export restrictions). This is outside the scope of the present
standard, but it can be achieved by distributing the token with a built-in, certified
public/private-key pair, by which the token can prove its identity. The certificate would be
signed by an authority (presumably the one indicating that the token is “legitimate”), whose
public key is known to the application. The application would verify the certificate, and
challenge the token to prove its identity by signing a time-varying message with its built-in
private key.

Page 18 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

Once a normal user has been authenticated to the token, Cryptoki does not restrict which
cryptographic operations the user may perform. The user may perform any operation
supported by the token.

DATA TYPES Page 19

Copyright © 1994-5 RSA Laboratories

7. Data types

Cryptoki's data types are described in following subsections, organized into categories, based on
the kind of information they represent.

7.1 General information

Cryptoki represents general information with the following types.

♦ ♦ CK_VERSION

CK_VERSION is a structure that describes the version of Cryptoki. It is defined as follows:

typedef struct CK_VERSION {
CK_BYTE major;
CK_BYTE minor;

} CK_VERSION;

The fields of the structure have the following meanings:

major major version number, the integer portion of the version

minor minor version number, the hundredths portion of the
version

For version 1.0, major = 1 and minor = 0. For version 2.1, major = 2 and minor = 10. Minor
revisions of the standard are always upwardly compatible within the same major version
number.

♦ ♦ CK_INFO

CK_INFO provides general information about Cryptoki. It is defined as follows:

typedef struct CK_INFO {
CK_VERSION version;
CK_CHAR manufacturerID[32];
CK_FLAGS flags;

} CK_INFO;

The fields of the structure have the following meanings:

version Cryptoki interface version number, for compatibility with
future revisions of this interface

manufacturerID ID of the Cryptoki library manufacturer; must be padded
with the blank character (‘ ‘)

Page 20 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

flags bit flags reserved for future versions; must be zero for this
version

♦ ♦ CK_INFO_PTR

CK_INFO_PTR points to a CK_INFO structure. It is implementation dependent.

♦ ♦ CK_NOTIFICATION

CK_NOTIFICATION enumerates the types of notifications that Cryptoki provides to an
application. It is defined as follows:

typedef enum CK_NOTIFICATION {
CKN_SURRENDER,
CKN_COMPLETE,
CKN_DEVICE_REMOVED

} CK_NOTIFICATION;

The notifications have the following meanings:

CKN_SURRENDER Cryptoki is surrendering the execution of a function so that
the application may perform other operations. After
performing such operations, the application should
indicate to Cryptoki whether to continue or cancel the
function.

CKN_COMPLETE A function running in parallel has completed.

CKN_DEVICE_REMOVED Cryptoki detected that the device underlying the token has
been removed from the reader (assuming the token has the
capability)

7.2 Slot and token types

Cryptoki represents slot and token information with the following types.

♦ ♦ CK_SLOT_ID

CK_SLOT_ID is a Cryptoki assigned value that identifies a slot. It is defined as follows:

typedef CK_ULONG CK_SLOT_ID;

A CK_SLOT_ID is returned by C_GetSlotList.

♦ ♦ CK_SLOT_ID_PTR

CK_SLOT_ID_PTR points to a CK_SLOT_ID. It is implementation dependent.

DATA TYPES Page 21

Copyright © 1994-5 RSA Laboratories

♦ ♦ CK_SLOT_INFO

CK_SLOT_INFO provides information about a slot. It is defined as follows:

typedef struct CK_SLOT_INFO {
CK_CHAR slotDescription[64];
CK_CHAR manufacturerID[32];
CK_FLAGS flags;

} CK_SLOT_INFO;

The fields of the structure have the following meanings:

slotDescription character-string description of the slot (the type of interface
between the device and the computer); must be padded
with the blank character (‘ ‘)

manufacturerID ID of the “slot” manufacturer; must be padded with the
blank character (‘ ‘)

flags bits flags that provide capabilities of the slot.

The following table defines the flags.

Table 7-1, Slot Information Flags

Bit Flag Mask Meaning

CKF_TOKEN_PRESENT 0x0001 TRUE if a token is present in the slot (e.g., a device
is in the reader)

CKF_REMOVABLE_DEVICE 0x0002 TRUE if the reader supports removable devices

CKF_HW_SLOT 0x0004 TRUE if the slot is a hardware slot as opposed to a
software slot implementing a “soft token”

♦ ♦ CK_SLOT_INFO_PTR

CK_SLOT_INFO_PTR points to a CK_SLOT_INFO structure. It is implementation dependent.

♦ ♦ CK_TOKEN_INFO

CK_TOKEN_INFO provides information about a token. It is defined as follows:

typedef struct CK_TOKEN_INFO {
CK_CHAR label[32];
CK_CHAR manufacturerID[32];
CK_CHAR model[16];
CK_CHAR serialNumber[16];
CK_FLAGS flags;
CK_USHORT usMaxSessionCount;
CK_USHORT usSessionCount;
CK_USHORT usMaxRwSessionCount;
CK_USHORT usRwSessionCount;

Page 22 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

CK_USHORT usMaxPinLen;
CK_USHORT usMinPinLen;
CK_ULONG ulTotalPublicMemory;
CK_ULONG ulFreePublicMemory;
CK_ULONG ulTotalPrivateMemory;
CK_ULONG ulFreePrivateMemory;

} CK_TOKEN_INFO;

The fields of the structure have the following meanings:

label application defined label, assigned during token
initialization; must be padded with the blank character (‘ ‘)

manufacturerID ID of the device manufacturer; must be padded with the
blank character (‘ ‘)

model model of the device; must be padded with the blank
character (‘ ‘)

serialNumber character-string serial number of the device; must be
padded with the blank character (‘ ‘)

flags bit flags indicating capabilities and status of the device as
defined below

usMaxSessionCount maximum number of sessions that can be opened with the
token at one time

usSessionCount number of sessions that are currently open with the token

usMaxRwSessionCount maximum number of read/write sessions that can be
opened with the token at one time

usRwSessionCount number of read/write sessions that are currently open with
the token

usMaxPinLen maximum length in bytes of the PIN

usMinPinLen minimum length in bytes of the PIN

ulTotalPublicMemory the total amount of memory in bytes occupied by public
objects

ulFreePublicMemory the amount of free (unused) memory in bytes for public
objects

ulTotalPrivateMemory the total amount of memory in bytes occupied by private
objects

ulFreePrivateMemory the amount of free (unused) memory in bytes for private
objects

DATA TYPES Page 23

Copyright © 1994-5 RSA Laboratories

The flags parameter is defined as follows:

Table 7-2, Token Information Flags

Bit Flag Mask Meaning

CKF_RNG 0x0001 TRUE if the token has its own random number
generator

CKF_WRITE_PROTECTED 0x0002 TRUE if the token is write-protected

CKF_LOGIN_REQUIRED 0x0004 TRUE if a user must be logged in to perform
cryptographic functions

CKF_USER_PIN_INITIALIZED 0x0008 TRUE if the normal user’s PIN has been initialized

CKF_EXCLUSIVE_EXISTS 0x0010 TRUE if an exclusive session exists

♦ ♦ CK_TOKEN_INFO_PTR

CK_TOKEN_INFO_PTR points to a CK_TOKEN_INFO structure. It is implementation
dependent.

7.3 Session types

Cryptoki represents session information with the following types.

♦ ♦ CK_SESSION_HANDLE

CK_SESSION_HANDLE is a Cryptoki-assigned value that identifies a session. It is defined as
follows:

typedef CK_ULONG CK_SESSION_HANDLE;

♦ ♦ CK_SESSION_HANDLE_PTR

CK_SESSION_HANDLE_PTR points to a CK_SESSION_HANDLE. It is implementation
dependent.

Page 24 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

♦ ♦ CK_USER_TYPE

CK_USER_TYPE enumerates the types of Cryptoki users described in Section 5.4. It is defined
as follows:

typedef enum CK_USER_TYPE {
CKU_SO, /* Security Officer */
CKU_USER /* Normal user */

} CK_USER_TYPE;

♦ ♦ CK_STATE

CK_STATE enumerates the session states decribed in Sections 5.5.1 and 5.5.2. It is defined as
follows:

typedef enum CK_STATE {
CKS_RW_PUBLIC_SESSION,
CKS_RW_USER_FUNCTIONS,
CKS_RO_PUBLIC_SESSION,
CKS_RO_SO_FUNCTIONS,
CKS_RO_USER_FUNCTIONS

} CK_STATE;

♦ ♦ CK_SESSION_INFO

CK_SESSION_INFO provides information about a session. It is defined as follows:

typedef struct CK_SESSION_INFO {
CK_SLOT_ID slotID;
CK_STATE state;
CK_FLAGS flags;
CK_USHORT usDeviceError;

} CK_SESSION_INFO;

The fields of the structure have the following meanings:

slotID ID of the slot that interfaces with the token

state the state of the session

flags bit flags that define the type of session; the flags are
defined below

usDeviceError an error code defined by the cryptographic device. Used
for errors not covered by Cryptoki.

The flags are defined in the following table.

DATA TYPES Page 25

Copyright © 1994-5 RSA Laboratories

Table 7-3, Session Information Flags

Bit Flag Mask Meaning

CKF_EXCLUSIVE_SESSION 0x0001 TRUE if the session is exclusive; FALSE if the session
is shared

CKF_RW_SESSION 0x0002 TRUE if the session is read/write; FALSE if the
session is read-only

CKF_SERIAL_SESSION 0x0004 TRUE if cryptographic functions are performed in
serial with the application; FALSE if the functions
may be performed in parallel with the application

♦ ♦ CK_SESSION_INFO_PTR

CK_SESSION_INFO_PTR points to a CK_SESSION_INFO structure. It is implementation
dependent.

7.4 Object types

Cryptoki represents object information with the following types.

♦ ♦ CK_OBJECT_HANDLE

CK_OBJECT_HANDLE is a token-specific identifier for an object. It is defined as follows:

typedef CK_ULONG CK_OBJECT_HANDLE;

The handle is assigned by Cryptoki when an object is created. The handle for an object is unique
among all objects in the token at a given time, and remains constant until the object is destroyed.

Cryptoki considers an object handle valid if and only if the object exists and is accessible to the
application. In particular, object handles for private objects are valid if only if a user is logged in.

♦ ♦ CK_OBJECT_HANDLE_PTR

CK_OBJECT_HANDLE_PTR points to a CK_OBJECT_HANDLE. It is implementation
dependent.

♦ ♦ CK_OBJECT_CLASS

CK_OBJECT_CLASS is a value that identifies the classes (or types) of objects that Cryptoki
recognizes. It is defined as follows:

typedef CK_USHORT CK_OBJECT_CLASS;

For this version of Cryptoki, the following classed of objects are defined:

Page 26 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

#define CKO_DATA 0x0000
#define CKO_CERTIFICATE 0x0001
#define CKO_PUBLIC_KEY 0x0002
#define CKO_PRIVATE_KEY 0x0003
#define CKO_SECRET_KEY 0x0004
#define CKO_VENDOR_DEFINED 0x8000

Object classes CKO_VENDOR_DEFINED and above are permanently reserved for token
vendors. For interoperability, vendors should register their object classes through the PKCS
process.

♦ ♦ CK_OBJECT_CLASS_PTR

CK_OBJECT_CLASS_PTR points to a CK_OBJECT_CLASS structure. It is implementation
dependent.

♦ ♦ CK_KEY_TYPE

CK_KEY_TYPE is a value that identifies a key type. It is defined as follows:

typedef CK_USHORT CK_KEY_TYPE;

For this version of Cryptoki, the following key types are defined:

#define CKK_RSA 0x0000
#define CKK_DSA 0x0001
#define CKK_DH 0x0002
#define CKK_GENERIC_SECRET 0x0010
#define CKK_RC2 0x0011
#define CKK_RC4 0x0012
#define CKK_DES 0x0013
#define CKK_DES2 0x0014
#define CKK_DES3 0x0015
#define CKK_VENDOR_DEFINED 0x8000

Key types CKK_VENDOR_DEFINED and above are permanently reserved for token vendors.
For interoperability, vendors should register their key types through the PKCS process.

♦ ♦ CK_CERTIFICATE_TYPE

CK_CERTIFICATE_TYPE is a value that identifies a certificate type. It is defined as follows:

typedef CK_USHORT CK_CERTIFICATE_TYPE;

For this version of Cryptoki, the following certificate types are defined:

#define CKC_X_509 0x0000
#define CKC_VENDOR_DEFINED 0x8000

DATA TYPES Page 27

Copyright © 1994-5 RSA Laboratories

Certificate types CKC_VENDOR_DEFINED and above are permanently reserved for token
vendors. For interoperability, vendors should register their certificate types through the PKCS
process.

♦ ♦ CK_ATTRIBUTE_TYPE

CK_ATTRIBUTE_TYPE is a value that identifies an attribute type. It is defined as follows:

typedef CK_USHORT CK_ATTRIBUTE_TYPE;

For this version of Cryptoki, the following attribute types are defined:

#define CKA_CLASS 0x0000
#define CKA_TOKEN 0x0001
#define CKA_PRIVATE 0x0002
#define CKA_LABEL 0x0003
#define CKA_APPLICATION 0x0010
#define CKA_VALUE 0x0011
#define CKA_CERTIFICATE_TYPE 0x0080
#define CKA_ISSUER 0x0081
#define CKA_SERIAL_NUMBER 0x0082
#define CKA_KEY_TYPE 0x0100
#define CKA_SUBJECT 0x0101
#define CKA_ID 0x0102
#define CKA_SENSITIVE 0x0103
#define CKA_ENCRYPT 0x0104
#define CKA_DECRYPT 0x0105
#define CKA_WRAP 0x0106
#define CKA_UNWRAP 0x0107
#define CKA_SIGN 0x0108
#define CKA_SIGN_RECOVER 0x0109
#define CKA_VERIFY 0x010A
#define CKA_VERIFY_RECOVER 0x010B
#define CKA_DERIVE 0x010C
#define CKA_MODULUS 0x0120
#define CKA_MODULUS_BITS 0x0121
#define CKA_PUBLIC_EXPONENT 0x0122
#define CKA_PRIVATE_EXPONENT 0x0123
#define CKA_PRIME_1 0x0124
#define CKA_PRIME_2 0x0125
#define CKA_EXPONENT_1 0x0126
#define CKA_EXPONENT_2 0x0127
#define CKA_COEFFICIENT 0x0128
#define CKA_PRIME 0x0130
#define CKA_SUBPRIME 0x0131
#define CKA_BASE 0x0132
#define CKA_VALUE_BITS 0x0160
#define CKA_VALUE_LEN 0x0161
#define CKA_VENDOR_DEFINED 0x8000

Section 8 defines the attributes for each object class. Attribute types CKA_VENDOR_DEFINED
and above are permanently reserved for token vendors. For interoperability, vendors should
register their attribute types through the PKCS process.

Page 28 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

♦ ♦ CK_ATTRIBUTE

CK_ATTRIBUTE is a structure that includes the type, length and value of an attribute. It is
defined as follows:

typedef struct CK_ATTRIBUTE {
CK_ATTRIBUTE_TYPE type;
CK_VOID_PTR pValue;
CK_USHORT usValueLen;

} CK_ATTRIBUTE;

The fields of the structure have the following meanings:

type the attribute type

pValue pointer to the value of the attribute

usValueLen length in bytes of the value

If an attribute has no value, then pValue = NULL_PTR, and usValueLen = 0. An array of
CK_ATTRIBUTEs is called a “template” and is used for creating, manipulating and searching
for objects. Note that pValue is an “void” pointer, facilitating the passing of arbitrary values.
Both the application and Cryptoki library must ensure that the pointer can be safely cast to the
expected type (e.g., without word-alignment errors).

♦ ♦ CK_ATTRIBUTE_PTR

CK_ATTRIBUTE_PTR points to a CK_ATTRIBUTE structure. It is implementation dependent.

♦ ♦ CK_DATE

CK_DATE is a structure that defines a date. It is defined as follows:

typedef struct CK_DATE{
CK_CHAR year[4];
CK_CHAR month[2];
CK_CHAR day[2];

} CK_DATE;

The fields of the structure have the following meanings:

year the year (“1900” - “9999”)

month the month (“01” - “12”)

day the day (“01” - “31”)

The fields hold numeric characters from the character set in Table 4-3, not the literal byte values.

DATA TYPES Page 29

Copyright © 1994-5 RSA Laboratories

7.5 Mechanisms

A mechanism specifies how a certain process is to be performed. Cryptoki supports the
following types for describing mechanisms. Section 10 provides a complete description of the
mechanisms and their relation to the functions.

♦ ♦ CK_MECHANISM_TYPE

CK_MECHANISM_TYPE is a value that identifies a mechanism type. It is defined as follows:

typedef CK_USHORT CK_MECHANISM_TYPE;

For this version of Cryptoki, the following mechanism types are defined:

#define CKM_RSA_PKCS_KEY_PAIR_GEN 0x0000
#define CKM_RSA_PKCS 0x0001
#define CKM_RSA_9796 0x0002
#define CMK_RSA_X_509 0x0003
#define CKM_DSA_KEY_PAIR_GEN 0x0010
#define CKM_DSA 0x0011
#define CKM_DH_PKCS_KEY_PAIR_GEN 0x0020
#define CKM_DH_PKCS_DERIVE 0x0021
#define CKM_RC2_KEY_GEN 0x0100
#define CKM_RC2_ECB 0x0101
#define CKM_RC2_CBC 0x0102
#define CKM_RC2_MAC 0x0103
#define CKM_RC4_KEY_GEN 0x0110
#define CKM_RC4 0x0111
#define CKM_DES_KEY_GEN 0x0120
#define CKM_DES_ECB 0x0121
#define CKM_DES_CBC 0x0122
#define CKM_DES_MAC 0x0123
#define CKM_DES2_KEY_GEN 0x0130
#define CKM_DES3_KEY_GEN 0x0131
#define CKM_DES3_ECB 0x0132
#define CKM_DES3_CBC 0x0133
#define CKM_DES3_MAC 0x0134
#define CKM_MD2 0x0200
#define CKM_MD5 0x0210
#define CKM_SHA_1 0x0220
#define CKM_VENDOR_DEFINED 0x8000

Mechanism types CKM_VENDOR_DEFINED and above are permanently reserved for token
vendors. For interoperability, vendors should register their mechanism types through the PKCS
process.

♦ ♦ CK_MECHANISM_TYPE_PTR

CK_MECHANISM_TYPE_PTR points to a CK_MECHANISM_TYPE structure. It is
implementation dependent.

Page 30 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

♦ ♦ CK_MECHANISM

CK_MECHANISM is a structure that specifies a particular mechanism. It is defined as follows:

typedef struct CK_MECHANISM {
CK_MECHANISM_TYPE mechanism;
CK_VOID_PTR pParameter;
CK_USHORT usParameterLen;

} CK_MECHANISM;

The fields of the structure have the following meanings:

mechanism the type of mechanism

pParameter pointer to the parameter if required by the mechanism

usParameterLen length in bytes of the parameter

Note that pParameter is an “void” pointer, facilitating the passing of arbitrary values. Both the
application and Cryptoki library must ensure that the pointer can be safely cast to the expected
type (e.g., without word-alignment errors).

♦ ♦ CK_MECHANISM_PTR

CK_MECHANISM_PTR points to a CK_MECHANISM structure. It is implementation
dependent.

♦ ♦ CK_MECHANISM_INFO

CK_MECHANISM_INFO is a structure that provides information about a particular
mechanism. It is defined as follows:

typedef struct CK_MECHANISM_INFO {
CK_ULONG ulMinKeySize;
CK_ULONG ulMaxKeySize;
CK_FLAGS flags;

} CK_MECHANISM_INFO;

The fields of the structure have the following meanings:

ulMinKeySize the minimum size of the key for the mechanism

ulMaxKeySize the maximum size of the key for the mechanism

flags bit flags specifying mechanism capabilities

The flags are defined as follows.

DATA TYPES Page 31

Copyright © 1994-5 RSA Laboratories

Table 7-4, Mechanism Information FLags

Bit Flag Mask Meaning

CKF_HW 0x0001 TRUE if the mechanism is performed by the device; FALSE if
the mechanism is performed in software

CKF_EXTENSION 0x8000 TRUE if an extension to the flags; FALSE if no extensions.
Must be FALSE for this version.

♦ ♦ CK_MECHANISM_INFO_PTR

CK_MECHANISM_INFO_PTR points to a CK_MECHANISM_INFO structure. It is
implementation dependent.

♦ ♦ CK_RC2_CBC_PARAMS

CK_RC2_CBC_PARAMS is a structure that provides the parameters to the CKM_RC2_CBC
mechanism. It is defined as follows:

typedef struct CK_RC2_CBC_PARAMS {
CK_USHORT usEffectiveBits;
CK_BYTE iv[8];

} CK_RC2_CBC;

The fields of the structure have the following meanings:

usEffectiveBits the effective number of bits in the RC2 search space, must
be between 1 and 1024

iv the initialization vector for cipher block chaining mode

7.6 Functions

Cryptoki represents information about functions with the following data types.

♦ ♦ CK_ENTRY

CK_ENTRY is an entry (or function) into Cryptoki. It is implementation dependent.

♦ ♦ CK_RV

CK_RV is a value that identifies the return value of a Cryptoki function. It is defined as follows:

typedef CK_USHORT CK_RV;

For this version of Cryptoki, the following return values are defined:

Page 32 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

#define CKR_OK 0x0000
#define CKR_CANCEL 0x0001
#define CKR_HOST_MEMORY 0x0002
#define CKR_SLOT_ID_INVALID 0x0003
#define CKR_FLAGS_INVALID 0x0004
#define CKR_ATTRIBUTE_READ_ONLY 0x0010
#define CKR_ATTRIBUTE_SENSITIVE 0x0011
#define CKR_ATTRIBUTE_TYPE_INVALID 0x0012
#define CKR_ATTRIBUTE_VALUE_INVALID 0x0013
#define CKR_DATA_INVALID 0x0020
#define CKR_DATA_LEN_RANGE 0x0021
#define CKR_DEVICE_ERROR 0x0030
#define CKR_DEVICE_MEMORY 0x0031
#define CKR_DEVICE_REMOVED 0x0032
#define CKR_ENCRYPTED_DATA_INVALID 0x0040
#define CKR_ENCRYPTED_DATA_LEN_RANGE 0x0041
#define CKR_FUNCTION_CANCELED 0x0050
#define CKR_FUNCTION_NOT_PARALLEL 0x0051
#define CKR_FUNCTION_PARALLEL 0x0052
#define CKR_KEY_HANDLE_INVALID 0x0060
#define CKR_KEY_SENSITIVE 0x0061
#define CKR_KEY_SIZE_RANGE 0x0062
#define CKR_KEY_TYPE_INCONSISTENT 0x0063
#define CKR_MECHANISM_INVALID 0x0070
#define CKR_MECHANISM_PARAM_INVALID 0x0071
#define CKR_OBJECT_CLASS_INCONSISTENT 0x0080
#define CKR_OBJECT_CLASS_INVALID 0x0081
#define CKR_OBJECT_HANDLE_INVALID 0x0082
#define CKR_OPERATION_ACTIVE 0x0090
#define CKR_OPERATION_NOT_INITIALIZED 0x0091
#define CKR_PIN_INCORRECT 0x00A0
#define CKR_PIN_INVALID 0x00A1
#define CKR_PIN_LEN_RANGE 0x00A2
#define CKR_SESSION_CLOSED 0x00B0
#define CKR_SESSION_COUNT 0x00B1
#define CKR_SESSION_EXCLUSIVE_EXISTS 0x00B2
#define CKR_SESSION_HANDLE_INVALID 0x00B3
#define CKR_SESSION_PARALLEL_NOT_SUPPORTED 0x00B4
#define CKR_SESSION_READ_ONLY 0x00B5
#define CKR_SIGNATURE_INVALID 0x00C0
#define CKR_SIGNATURE_LEN_RANGE 0x00C1
#define CKR_TEMPLATE_INCOMPLETE 0x00D0
#define CKR_TEMPLATE_INCONSISTENT 0x00D1
#define CKR_TOKEN_NOT_PRESENT 0x00E0
#define CKR_TOKEN_NOT_RECOGNIZED 0x00E1
#define CKR_TOKEN_WRITE_PROTECTED 0x00E2
#define CKR_UNWRAPPING_KEY_HANDLE_INVALID 0x00F0
#define CKR_UNWRAPPING_KEY_SIZE_RANGE 0x00F1
#define CKR_UNWRAPPING_KEY_TYPE_INCONSISTENT 0x00F2
#define CKR_USER_ALREADY_LOGGED_IN 0x0100
#define CKR_USER_NOT_LOGGED_IN 0x0101
#define CKR_USER_PIN_NOT_INITIALIZED 0x0102
#define CKR_USER_TYPE_INVALID 0x0103
#define CKR_WRAPPED_KEY_INVALID 0x0110
#define CKR_WRAPPED_KEY_LEN_RANGE 0x0112
#define CKR_WRAPPING_KEY_HANDLE_INVALID 0x0113
#define CKR_WRAPPING_KEY_SIZE_RANGE 0x0114
#define CKR_WRAPPING_KEY_TYPE_INCONSISTENT 0x0115
#define CKR_VENDOR_DEFINED 0x8000

DATA TYPES Page 33

Copyright © 1994-5 RSA Laboratories

Section 9 defines the meanings of each CK_RV value. Return values
CKR_VENDOR_DEFINED and above are permanently reserved for token vendors. For
interoperability, vendors should register their return through the PKCS process.

Page 34 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

8. Objects

Cryptoki recognizes a number of classes of objects, as defined in the CK_OBJECT_CLASS data
type. Objects consist of a set of attributes, each of which has a given value. The following figure
illustrates the high-level hierarchy of the Cryptoki objects and the attributes they support.

Key
Application

Value

Data

Class

Token

Private

Label

Object

Object Type

Subject

ID

Value

Certificate

Figure 8-1, Cryptoki Object Hierarchy

The following figure illustrates the details of the key objects.

OBJECTS Page 35

Copyright © 1994-5 RSA Laboratories

Modulus

Modulus Bits

Public Exponent

RSA

Prime

Subprime

Base

Value

DSA

Prime

Base

Value

Diffie-Hellman

Modulus

Public Exponent

Private Exponent

Prime 1

Prime 2

Exponent 1

Exponent 2

Coefficient

RSA

Prime

Subprime

Base

Value

DSA

Prime

Base

Value

Diffie-Hellman

Public Key Type

Private Key Type

Subject

Encrypt

Verify

Verify Recover

Wrap

Public Key

Subject

Sensitive

Decrypt

Sign

Sign Recover

Unwrap

Private Key

Secret Key Type

Sensitive

Encrypt

Decrypt

Sign

Verify

Wrap

Unwrap

Secret Key

KeyType

ID

Start Date

End Date

Derive

Key

Value

Value Len

Generic

Value

DES

Value

DES2

Value

DES3

Value

Value Len

RC4

Value

Value Len

RC2

Figure 8-2, Key Object Detail

Cryptoki provides functions for creating and destroying objects, and for obtaining and
modifying the values of attributes. Some of the cryptographic functions (e.g., key generation)
also create objects to hold their results.

Objects are always “well-formed” in Cryptoki—that is, an object always contains required
attributes, and the attributes are always consistent with one another, from the time the object is
created. (This is in contrast with object-based paradigms where an object has no attributes other
than perhaps a class when it is created, and is “uninitialized” for some time. In Cryptoki, objects
are always initialized.)

To ensure that the required attributes are defined, the functions that create objects take a
“template” as an argument, where the template specifies initial attribute values. The template
can also provide input to cryptographic functions that create objects (e.g., it can specify a key
size). Cryptographic functions that create objects may also contribute some of the initial
attribute values (see Section 8 for details). In any case, all the attributes supported by an object
class that do not have default values must be specified when an object is created, either in the
template, or by the function.

Tables in this section define attributes in terms of the data type of the attribute value and the
meaning of the attribute, which may include a default initial value. Some of the data types are
defined explicitly by Cryptoki (e.g., CK_OBJECT_CLASS). Attributes may also take the
following types:

Byte array an arbitrary string (array) of CK_BYTEs

Page 36 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

Big integer a string of CK_BYTEs representing an integer of arbitrary
size, most significant byte first, without a sign bit (e.g., the
integer 32768 is represented as the byte string 0x80 0x00)

Local string a string of CK_CHARs (see Table 4-3)

8.1 Common attributes

The following table defines the attributes common to all objects.

Table 8-1, Common Object Attributes

Attribute Data Type Meaning

CKA_CLASS1 CK_OBJECT_CLASS Object class (type)

CKA_TOKEN CK_BBOOL TRUE if object is a token object (vs. session
object) (default FALSE)

CKA_PRIVATE CK_BBOOL TRUE if object is a private object (vs. public
object) (default FALSE)

CKA_LABEL Local string Description of the object (default empty)

1Must be specified when object is created

Only the CKA_LABEL attribute may be modified after the object is created. (The CKA_TOKEN

and CKA_PRIVATE attributes can be changed in the process of copying an object.)

When the CKA_PRIVATE attribute is TRUE, a user may not access the object until the user has
been authenticated to the token.

The CKA_LABEL attribute is intended to assist users in browsing.

Additional attributes for each object type are described in the following sections. Note that only
attributes visible to applications are listed. Objects may well carry other information, useful to a
token, which is not visible to the application.

8.2 Data objects

Data objects (object class CKO_DATA) hold information defined by an application. Other than
providing access to a data objects, Cryptoki does not attach any special meaning to a data object.
The following table lists the attributes supported by data objects, in addition to the common
attributes listed in Table 8-1.

Table 8-2, Data Object Attributes

Attribute Data type Meaning

CKA_APPLICATION Local string Description of the application that manages the object
(default empty)

CKA_VALUE Byte array Value of the object (default empty)

Both of these attributes may be modified after the object is created.

OBJECTS Page 37

Copyright © 1994-5 RSA Laboratories

The CKA_APPLICATION attribute provides a means for applications to distinguish among the
objects they manage. Cryptoki does not provide a means of ensuring that only a particular
application has access to a data object, however.

The following is a sample template for creating a data object:

CK_OBJECT_CLASS class = CKO_DATA;
CK_CHAR label[] = “A data object”;
CK_CHAR application[] = “An application”;
CK_BYTE data[] = “Sample data”;
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_TOKEN, &true, 1},
 {CKA_LABEL, label, sizeof(label)},
 {CKA_APPLICATION, application, sizeof(application)},
 {CKA_VALUE, data, sizeof(data)}
};

8.3 Certificate objects

Certificate objects (object class CKO_CERTIFICATE) hold public-key certificates. Other than
providing access to a certificate objects, Cryptoki does not attach any special meaning to
certificates. The following table defines the common certificate object attributes, in addition to
the common attributes listed in Table 8-1.

Table 8-3, Common Certificate Object Attributes

Attribute Data type Meaning

CKA_CERTIFICATE_TYPE1 CK_CERTIFICATE_TYPE Type of certificate

1Must be specified when the object is created.

8.3.1 X.509 certificate objects

X.509 certificate objects (certificate type CKC_X_509) hold X.509 certificates. The following table
defines the X.509 certificate object attributes, in addition to the common attributes listed in Table
8-1 and Table 8-3.

Page 38 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

Table 8-4, X.509 Certificate Object Attributes

Attribute Data type Meaning

CKA_SUBJECT1 Byte array DER encoding of the certificate subject name

CKA_ID Byte array Key identifier for public/private key pair
(default empty)

CKA_ISSUER Byte array DER encoding of the certificate issuer name
(default empty)

CKA_SERIAL_NUMBER Byte array DER encoding of the certificate serial number
(default empty)

CKA_VALUE1 Byte array BER encoding of the certificate

1Must be specified when the object is created.

Only the CKA_ID, CKA_ISSUER, and CKA_SERIAL_NUMBER attributes may be modified
after the object is created.

The CKA_ID attribute is intended as a means of distinguishing multiple public-key/private-key
pairs held by the same subject (whether stored in the same token or not). (Since the keys are
distinguished by subject name as well as identifier, it is possible that keys for different subjects
may have the same CKA_ID value without introducing any ambiguity.)

It is intended in the interests of interoperability that the subject name and key identifier for a
certificate will be the same as those for the corresponding public and private keys (though it is
not required that all be stored in the same token). But Cryptoki does not enforce this association,
or even the uniqueness of the key identifier for a given subject; in particular, an application may
leave the key identifier empty.

The CKA_ISSUER and CKA_SERIAL_NUMBER attributes are for compatibility with PKCS #7
and Privacy Enhanced Mail (RFC1421). Note that with the proposed version 3 extensions to
X.509 certificates, the key identifier may be carried in the certificate. It is intended that the
CKA_ID value be identical to the key identifier in such a certificate extension.

The following is a sample template for creating a certificate object:

CK_OBJECT_CLASS class = CKO_CERTIFICATE;
CK_CERTIFICATE_TYPE certType = CKC_X_509;
CK_CHAR label[] = “A certificate object”;
CK_BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK_BYTE certificate[] = {...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_CERTIFICATE_TYPE, &certType, sizeof(certType)};
 {CKA_TOKEN, &true, 1},
 {CKA_LABEL, label, sizeof(label)},
 {CKA_SUBJECT, subject, sizeof(subject)},
 {CKA_ID, id, sizeof(id)},
 {CKA_VALUE, certificate, sizeof(certificate)},
};

OBJECTS Page 39

Copyright © 1994-5 RSA Laboratories

8.4 Key objects

Key objects hold encryption keys, which can be public keys, private keys, or secret keys. The
following table defines the attributes common to public key, private key and secret key classes,
in addition to the common attributes listed in Table 8-1.

Table 8-5, Common Key Attributes

Attribute Data Type Meaning

CKA_KEY_TYPE1 CK_KEY_TYPE Type of key

CKA_ID Byte array Key identifier for key (default empty)

CKA_START_DATE CK_DATE Start date for the key (default empty)

CKA_END_DATE CK_DATE End date for the key (default empty)

CKA_DERIVE CK_BBOOL TRUE if key supports key derivation (default
FALSE)

1Must be specified when the object is created.

All of these attributes except CKA_KEY_TYPE may be modified after the object is created.

Note that the start and end dates are for reference only; Cryptoki does not attach any special
meaning to them. In particular, it does not restrict usage of a key according to the dates; this is
up to the application.

The CKA_ID field is intended to distinguish among multiple keys. In the case of public and
private keys, this is for multiple keys held by the same subject; the key identifier for a public key
and its corresponding private key should be the same. The key identifier should also be the
same as for the corresponding certificate. Cryptoki does not enforce this association, however.
(See Section 8.3 for further commentary.)

In the case of secret keys, the meaning of the CKA_ID attribute is up to the application.

8.5 Public key objects

Public key objects (object class CKO_PUBLIC_KEY) hold public keys. This version of Cryptoki
recognizes three types of public keys: RSA, DSA, and Diffie-Hellman. The following table
defines the attributes common to all public keys, in addition to the common attributes listed in
Table 8-1 and Table 8-5.

Page 40 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

Table 8-6, Common Public Key Attributes

Attribute Data type Meaning

CKA_SUBJECT Byte array DER encoding of the key subject name

CKA_ENCRYPT CK_BBOOL TRUE if key supports encryption1

CKA_VERIFY CK_BBOOL TRUE if key supports verification1

CKA_VERIFY_RECOVER CK_BBOOL TRUE if key supports verification where the data
is recovered from the signature1

CKA_WRAP CK_BBOOL TRUE if key supports wrapping1

1 Default is up to the token, based on what mechanisms it supports; the application can specify
an explicit value in the template, and Cryptoki may reject it if no compatible mechanism is
supported.

All of these attributes may be modified after the object is created.

It is intended in the interests of interoperability that the subject name and key identifier for a
public key will be the same as those for the corresponding certificate and private key.
(However, it is not required that the certificate and private key also be stored on the token.)

8.5.1 RSA public key objects

RSA public key objects (object class CKO_PUBLIC_KEY, key type CKK_RSA) hold RSA public
keys. The following table defines the RSA public key object attributes, in addition to the
common attributes listed in Table 8-1, Table 8-5 and Table 8-6.

Table 8-7, RSA Public Key Object Attributes

Attribute Data type Meaning

CKA_MODULUS1 Big integer Modulus n

CKA_MODULUS_BITS2 CK_USHORT Length in bits of modulus n

CKA_PUBLIC_EXPONENT1 Big integer Public exponent e

1Must be specified when the object is created. 2Specify this attribute only in a template for
generating a key of this type.

None of these attributes may be modified after the object is created.

Depending on the token, there may be limits on the length of key components. See PKCS #1 for
more information on RSA keys.

The following is a sample template for creating an RSA public key object:

CK_OBJECT_CLASS class = CKO_PUBLIC_KEY;
CK_KEY_TYPE keyType = CKK_RSA;
CK_CHAR label[] = “An RSA public key object”;
CK_BYTE modulus[] = {...};
CK_BYTE exponent[] = {...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},

OBJECTS Page 41

Copyright © 1994-5 RSA Laboratories

 {CKA_TOKEN, &true, 1},
 {CKA_LABEL, label, sizeof(label)},
 {CKA_WRAP, &true, 1},
 {CKA_ENCRYPT, &true, 1},
 {CKA_MODULUS, modulus, sizeof(modulus)},
 {CKA_PUBLIC_EXPONENT, exponent, sizeof(exponent)},
};

8.5.2 DSA public key objects

DSA public key objects (object class CKO_PUBLIC_KEY, key type CKK_DSA) hold DSA public
keys. The following table defines the DSA public key object attributes, in addition to the
common attributes listed in Table 8-1, Table 8-5 and Table 8-6.

Table 8-8, DSA Public Key Object Attributes

Attribute Data type Meaning

CKA_PRIME1 Big integer Prime p (512 to 1024 bits, in steps of 64 bits)

CKA_SUBPRIME1 Big integer Subprime q (160 bits)

CKA_BASE1 Big integer Base g

CKA_VALUE1 Big integer Public value y

1Must be specified when the object is created.

None of these attributes may be modified after the object is created.

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are collectively the
“DSA parameters.” See FIPS PUB 186 for more information on DSA keys.

The following is a sample template for creating an DSA public key object:

CK_OBJECT_CLASS class = CKO_PUBLIC_KEY;
CK_KEY_TYPE keyType = CKK_DSA;
CK_CHAR label[] = “A DSA public key object”;
CK_BYTE prime[] = {...};
CK_BYTE subprime[] = {...};
CK_BYTE base[] = {...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, 1},
 {CKA_LABEL, label, sizeof(label)},
 {CKA_PRIME, prime, sizeof(prime)},
 {CKA_SUBPRIME, subprime, sizeof(subprime)},
 {CKA_BASE, base, sizeof(base)},
};

Page 42 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

8.5.3 Diffie-Hellman public key objects

Diffie-Hellman public key objects (object class CKO_PUBLIC_KEY, key type CKK_DH) hold
Diffie-Hellman public keys. The following table defines the RSA public key object attributes, in
addition to the common attributes listed in Table 8-1, Table 8-5 and Table 8-6.

Table 8-9, Diffie-Hellman Public Key Object Attributes

Attribute Data type Meaning

CKA_PRIME1 Big integer Prime p

CKA_BASE1 Big integer Base g

CKA_VALUE1 Big integer Public value y

1Must be specified when object is created.

None of these attributes may be modified after the object is created.

The CKA_PRIME and CKA_BASE attribute values are collectively the “Diffie-Hellman
parameters.” Depending on the token, there may be limits on the length of the key components.
See PKCS #3 for more information on Diffie-Hellman keys.

The following is a sample template for creating a Diffie-Hellman public key object:

CK_OBJECT_CLASS class = CKO_PUBLIC_KEY;
CK_KEY_TYPE keyType = CKK_DH;
CK_CHAR label[] = “A Diffie-Hellman public key object”;
CK_BYTE prime[] = {...};
CK_BYTE subprime[] = {...};
CK_BYTE base[] = {...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, 1},
 {CKA_LABEL, label, sizeof(label)},
 {CKA_PRIME, prime, sizeof(prime)},
 {CKA_SUBPRIME, subprime, sizeof(subprime)},
 {CKA_BASE, base, sizeof(base)},
};

8.6 Private key objects

Private key objects (object class CKO_PUBLIC_KEY) hold private keys. This version of
Cryptoki recognizes three types of private key: RSA, DSA, and Diffie-Hellman. The following
table defines the attributes common to all private keys, in addition to the common attributes
listed in Table 8-1 and Table 8-5.

OBJECTS Page 43

Copyright © 1994-5 RSA Laboratories

Table 8-10, Common Private Key Attributes

Attribute Data type Meaning

CKA_SUBJECT Byte array DER encoding of certificate subject name (default
empty)

CKA_SENSITIVE CK_BBOOL TRUE if object is sensitive1

CKA_DECRYPT CK_BBOOL TRUE if key supports decryption1

CKA_SIGN CK_BBOOL TRUE if key supports signatures where the
signature is an appendix to the data1

CKA_SIGN_RECOVER CK_BBOOL TRUE if key supports signatures where the data
can be recovered from the signature1

CKA_UNWRAP CK_BBOOL TRUE if key supports unwrapping1

1 Default is up to the token, based on what mechanisms it supports; the application can specify
an explicit value in the template, and Cryptoki may reject it if no compatible mechanism is
supported.

All of these attributes may be modified after the object is created. However, the
CKA_SENSITIVE attribute may only be set to TRUE.

It is intended in the interests of interoperability that the subject name and key identifier for a
private key will be the same as those for the corresponding certificate and public key.
(However, it is not required that the certificate and public key also be stored on the token.)

If the CKA_SENSITIVE attribute is TRUE, then certain attributes of the private key cannot be
revealed outside the token. Also, the private key cannot be wrapped if the CKA_SENSITIVE
attribute is TRUE, since it could potentially be recovered outside the token if the unwrapping
key is known outside. The attribute table for the each type of private key specifies which
attributes are not revealed.

8.6.1 RSA private key objects

RSA private key objects (object class CKO_PRIVATE_KEY, key type CKK_RSA) hold RSA
private keys. The following table defines the RSA private key object attributes, in addition to
the common attributes listed in Table 8-1, Table 8-5 and Table 8-10.

Page 44 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

Table 8-11, RSA Private Key Object Attributes

Attribute Data type Meaning

CKA_MODULUS1 Big integer Modulus n

CKA_PUBLIC_EXPONENT1 Big integer Public exponent e

CKA_PRIVATE_EXPONENT1,2 Big integer Private exponent d

CKA_PRIME_11,2 Big integer Prime p

CKA_PRIME_21,2 Big integer Prime q

CKA_EXPONENT_11,2 Big integer Private exponent d modulo p-1

CKA_EXPONENT_21,2 Big integer Private exponent d modulo q-1

CKA_COEFFICIENT1,2 Big integer CRT coefficient q-1 mod p

1Must be specified when object is created. 2Cannot be revealed when CKA_SENSITIVE
attribute is TRUE.

None of these attributes may be modified after the object is created.

Depending on the token, there may be limits on the length of the key components. See PKCS #1
for more information on RSA keys.

The following is a sample template for creating an RSA private key object:

CK_OBJECT_CLASS class = CKO_PRIVATE_KEY;
CK_KEY_TYPE keyType = CKK_RSA;
CK_CHAR label[] = “An RSA private key object”;
CK_BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK_BYTE modulus[] = {...};
CK_BYTE publicExponent[] = {...};
CK_BYTE privateExponent[] = {...};
CK_BYTE prime1[] = {...};
CK_BYTE prime2[] = {...};
CK_BYTE exponent1[] = {...};
CK_BYTE exponent2[] = {...};
CK_BYTE coefficient[] = {...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, 1},
 {CKA_LABEL, label, sizeof(label)},
 {CKA_SUBJECT, subject, sizeof(subject)},
 {CKA_ID, id, sizeof(id)},
 {CKA_SENSITIVE, &true, 1},
 {CKA_DECRYPT, &true, 1},
 {CKA_SIGN, &true, 1},
 {CKA_MODULUS, modulus, sizeof(modulus)},
 {CKA_PUBLIC_EXPONENT, publicExponent, sizeof(publicExponent)},
 {CKA_PRIVATE_EXPONENT, privateExponent, sizeof(privateExponent)},
 {CKA_PRIME_1, prime1, sizeof(prime1)},
 {CKA_PRIME_2, prime2, sizeof(prime2)},
 {CKA_EXPONENT_1, exponent1, sizeof(exponent1)},
 {CKA_EXPONENT_2, exponent2, sizeof(exponent2)},
 {CKA_COEFFICIENT, coefficient, sizeof(coefficient)}
};

OBJECTS Page 45

Copyright © 1994-5 RSA Laboratories

8.6.2 DSA private key objects

DSA private key objects (object class CKO_PRIVATE_KEY, key type CKK_DSA) hold DSA
private keys. The following table defines the DSA private key object attributes, in addition to
the common attributes listed in Table 8-1, Table 8-5 and Table 8-10.

Table 8-12, DSA Private Key Object Attributes

Attribute Data type Meaning

CKA_PRIME1 Big integer Prime p (512 to 1024 bits, in steps of 64 bits)

CKA_SUBPRIME1 Big integer Subprime q (160 bits)

CKA_BASE1 Big integer Base g

CKA_VALUE1,2 Big integer Private value x

1Must be specified when object is created. 2Cannot be revealed when CKA_SENSITIVE
attribute is TRUE.

None of these attributes may be modified after the object is created.

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are collectively the
“DSA parameters.” See FIPS PUB 186 for more information on DSA keys.

The following is a sample template for creating a DSA private key object:

CK_OBJECT_CLASS class = CKO_PRIVATE_KEY;
CK_KEY_TYPE keyType = CKK_DSA;
CK_CHAR label[] = “A DSA private key object”;
CK_BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK_BYTE prime[] = {...};
CK_BYTE subprime[] = {...};
CK_BYTE base[] = {...};
CK_BYTE value[] = {...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, 1},
 {CKA_LABEL, label, sizeof(label)},
 {CKA_SUBJECT, subject, sizeof(subject)},
 {CKA_ID, id, sizeof(id)},
 {CKA_SENSITIVE, &true, 1},
 {CKA_SIGN, &true, 1},
 {CKA_PRIME, prime, sizeof(prime)},
 {CKA_SUBPRIME, subprime, sizeof(subprime)},
 {CKA_BASE, base, sizeof(base)},
 {CKA_VALUE, value, sizeof(value)}
};

8.6.3 Diffie-Hellman private key objects

Diffie-Hellman private key objects (object class CKO_PRIVATE_KEY, key type CKK_DH) hold
Diffie-Hellman private keys. The following table defines the Diffie-Hellman private key object
attributes, in addition to the common attributes listed in Table 8-1, Table 8-5 and Table 8-10.

Page 46 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

Table 8-13, Diffie-Hellman Private Key Object Attributes

Attribute Data type Meaning

CKA_PRIME1 Big integer Prime p

CKA_BASE1 Big integer Base g

CKA_VALUE1,2 Big integer Private value x

CKA_VALUE_BITS3 CK_USHORT Length in bits of private value x

1Must be specified when object is created. 2Cannot be revealed when CKA_SENSITIVE
attribute is TRUE. 3Specify this attribute only in a template for generating a key of this type.

None of these attributes may be modified after the object is created.

The CKA_PRIME and CKA_BASE attribute values are collectively the “Diffie-Hellman
parameters.” Depending on the token, there may be limits on the length of the key components.
See PKCS #3 for more information on Diffie-Hellman keys.

The following is a sample template for creating a Diffie-Hellman private key object:

CK_OBJECT_CLASS class = CKO_PRIVATE_KEY;
CK_KEY_TYPE keyType = CKK_DH;
CK_CHAR label[] = “A Diffie-Hellman private key object”;
CK_BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK_BYTE prime[] = {...};
CK_BYTE base[] = {...};
CK_BYTE value[] = {...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, 1},
 {CKA_LABEL, label, sizeof(label)},
 {CKA_SUBJECT, subject, sizeof(subject)},
 {CKA_ID, id, sizeof(id)},
 {CKA_SENSITIVE, &true, 1},
 {CKA_DERIVE, &true, 1},
 {CKA_PRIME, prime, sizeof(prime)},
 {CKA_BASE, base, sizeof(base)},
 {CKA_VALUE, value, sizeof(value)}
};

8.7 Secret key objects

Secret key objects (object class CKO_SECRET_KEY) hold secret keys. This version of Cryptoki
recognizes six types of secret key: generic, RC2, RC4, DES, DES2, and DES3. The following table
defines the attributes common to all secret keys, in addition to the common attributes listed in
Table 8-1 and Table 8-5.

OBJECTS Page 47

Copyright © 1994-5 RSA Laboratories

Table 8-14, Common Secret Key Attributes

Attribute Data type Meaning

CKA_SENSITIVE CK_BBOOL TRUE if object is sensitive (default FALSE)

CKA_ENCRYPT CK_BBOOL TRUE if key supports encryption1

CKA_DECRYPT CK_BBOOL TRUE if key supports decryption1

CKA_SIGN CK_BBOOL TRUE if key supports signatures (i.e., authentication
codes) where the signature is an appendix to the
data1

CKA_VERIFY CK_BBOOL TRUE if key supports verification (i.e., of
authentication codes) where the signature is an
appendix to the data1

CKA_WRAP CK_BBOOL TRUE if key supports wrapping1

CKA_UNWRAP CK_BBOOL TRUE if key supports unwrapping1

1 Default is up to the token, based on what mechanisms it supports; the application can specify
an explicit value in the template, and Cryptoki may reject it if no compatible mechanism is
supported.

All of these attributes may be modified after the object is created. However, the
CKA_SENSITIVE attribute may only be set to TRUE.

If the CKA_SENSITIVE attribute is TRUE, then certain attributes of the secret key cannot be
revealed outside the token. Also, the secret key cannot be wrapped if the CKA_SENSITIVE
attribute is TRUE, since it could potentially be recovered outside the token if the unwrapping
key is known outside. The attribute table for the each type of secret key specifies which
attributes are not revealed.

8.7.1 Generic secret key objects

Generic secret key objects (object class CKO_SECRET_KEY, key type
CKK_GENERIC_SECRET) hold generic secret keys. This keys do not support encryption,
decryption, signatures or verification; however, other keys can be derived from them. The
following table defines the generic secret key object attributes, in addition to the common
attributes listed in Table 8-1, Table 8-5 and Table 8-14.

Table 8-15, Generic Secret Key Object Attributes

Attribute Data type Meaning

CKA_VALUE1,2 Byte array Key value (arbitrary length)

CKA_VALUE_LEN3 CK_USHORT Length in bytes of key value

1Must be specified when object is created. 2Cannot be revealed when CKA_SENSITIVE
attribute is TRUE. 3Specify this attribute only in a template for unwrapping or deriving a key of
this type.

None of these attributes may be modified after the object is created.

The following is a sample template for creating a generic secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;

Page 48 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

CK_KEY_TYPE keyType = CKK_GENERIC_SECRET;
CK_CHAR label[] = “A generic secret key object”;
CK_BYTE value[] = {...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, 1},
 {CKA_LABEL, label, sizeof(label)},
 {CKA_DERIVE, &true, 1},
 {CKA_VALUE, value, sizeof(value)}
};

8.7.2 RC2 secret key objects

RC2 secret key objects (object class CKO_SECRET_KEY, key type CKK_RC2) hold RC2 keys.
The following table defines the RC2 secret key object attributes, in addition to the common
attributes listed in Table 8-1, Table 8-5 and Table 8-14.

Table 8-16, RC2 Secret Key Object Attributes

Attribute Data type Meaning

CKA_VALUE1,2 Byte array Key value (1 to 128 bytes)

CKA_VALUE_LEN3 CK_USHORT Length in bytes of key value

1Must be specified when object is created. 2Cannot be revealed when CKA_SENSITIVE
attribute is TRUE. 3Specify this attribute only in a template for generating, unwrapping or
deriving a key of this type.

None of these attributes may be modified after the object is created.

The following is a sample template for creating an RC2 secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_RC2;
CK_CHAR label[] = “An RC2 secret key object”;
CK_BYTE value[] = {...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},

OBJECTS Page 49

Copyright © 1994-5 RSA Laboratories

 {CKA_TOKEN, &true, 1},
 {CKA_LABEL, label, sizeof(label)},
 {CKA_ENCRYPT, &true, 1},
 {CKA_VALUE, value, sizeof(value)}
};

8.7.3 RC4 secret key objects

RC4 secret key objects (object class CKO_SECRET_KEY, key type CKK_RC4) hold RC4 keys.
The following table defines the RC4 secret key object attributes, in addition to the common
attributes listed in Table 8-1, Table 8-5 and Table 8-14.

Table 8-17, RC4 Secret Key Object

Attribute Data type Meaning

CKA_VALUE1,2 Byte array Key value (1 to 256 bytes)

CKA_VALUE_LEN3 CK_USHORT Length in bytes of key value

1Must be specified when object is created. 2Cannot be revealed when CKA_SENSITIVE
attribute is TRUE. 3Specify this attribute only in a template for generating, unwrapping or
deriving a key of this type.

None of these attributes may be modified after the object is created.

The following is a sample template for creating an RC4 secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_RC4;
CK_CHAR label[] = “An RC4 secret key object”;
CK_BYTE value[] = {...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, 1},
 {CKA_LABEL, label, sizeof(label)},
 {CKA_ENCRYPT, &true, 1},
 {CKA_VALUE, value, sizeof(value)}
};

Page 50 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

8.7.4 DES secret key objects

DES secret key objects (object class CKO_SECRET_KEY, key type CKK_DES) hold single-
length DES keys. The following table defines the DES secret key object attributes, in addition to
the common attributes listed in Table 8-1, Table 8-5 and Table 8-14.

Table 8-18, DES Secret Key Object

Attribute Data type Meaning

CKA_VALUE1,2 Byte array Key value (always 8 bytes long)

1Must be specified when object is created. 2Cannot be revealed when CKA_SENSITIVE
attribute is TRUE.

None of these attributes may be modified after the object is created.

The following is a sample template for creating a DES secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES;
CK_CHAR label[] = “A DES secret key object”;
CK_BYTE value[8] = {...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, 1},
 {CKA_LABEL, label, sizeof(label)},
 {CKA_ENCRYPT, &true, 1},
 {CKA_VALUE, value, sizeof(value)}
};

8.7.5 DES2 secret key objects

DES2 secret key objects (object class CKO_SECRET_KEY, key type CKK_DES2) hold double-
length DES keys. The following table defines the DES2 secret key object attributes, in addition
to the common attributes listed in Table 8-1, Table 8-5 and Table 8-14.

Table 8-19, DES2 Secret Key Object Attributes

Attribute Data type Meaning

CKA_VALUE1,2 Byte array Key value (always 16 bytes long)

1Must be specified when object is created. 2Cannot be revealed when CKA_SENSITIVE
attribute is TRUE.

None of these attributes may be modified after the object is created.

The following is a sample template for creating a double-length DES secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES2;
CK_CHAR label[] = “A DES2 secret key object”;
CK_BYTE value[16] = {...};

OBJECTS Page 51

Copyright © 1994-5 RSA Laboratories

CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, 1},
 {CKA_LABEL, label, sizeof(label)},
 {CKA_ENCRYPT, &true, 1},
 {CKA_VALUE, value, sizeof(value)}
};

8.7.6 DES3 secret key objects

DES3 secret key objects (object class CKO_SECRET_KEY, key type CKK_DES3) hold triple-
length DES keys. The following table defines the DES3 secret key object attributes, in addition
to the common attributes listed in Table 8-1, Table 8-5 and Table 8-14.

Table 8-20, DES3 Secret Key Object Attributes

Attribute Data type Meaning

CKA_VALUE1,2 Byte array Key value (always 24 bytes long)

1Must be specified when object is created. 2Cannot be revealed when CKA_SENSITIVE
attribute is TRUE.

None of these attributes may be modified after the object is created.

The following is a sample template for creating a triple-length DES secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES3;
CK_CHAR label[] = “A DES3 secret key object”;
CK_BYTE value[24] = {...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, 1},
 {CKA_LABEL, label, sizeof(label)},
 {CKA_ENCRYPT, &true, 1},
 {CKA_VALUE, value, sizeof(value)}
};

Page 52 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

9. Functions

Cryptoki's functions are organized into the following categories:

• general purpose

• slot and token management

• session management

• object management

• encryption and decryption

• message digesting

• signature and verification

• key management

• function management

• callback

Each function returns a CK_RV value. The following table lists each function return value (in
alphabetical order):

Table 9-1, Return Values

Return Value Meaning

CKR_ATTRIBUTE_READ_ONLY attribute cannot be modified

CKR_ATTRIBUTE_SENSITIVE attribute is sensitive and cannot be
revealed

CKR_ATTRIBUTE_TYPE_INVALID attribute type is invalid

CKR_ATTRIBUTE_VALUE_INVALID attribute value is invalid

CKR_CANCEL function should be canceled

CKR_DATA_INVALID data is invalid

CKR_DATA_LEN_RANGE data length is out of range

CKR_DEVICE_ERROR device error

CKR_DEVICE_MEMORY not enough memory on device

CKR_DEVICE_REMOVED device has been removed

CKR_ENCRYPTED_DATA_INVALID encrypted data is invalid

CKR_ENCRYPTED_DATA_LEN_RANGE encrypted data length is out of range

CKR_FLAGS_INVALID flags are invalid

CKR_FUNCTION_CANCELED function has been canceled

CKR_FUNCTION_NOT_PARALLEL no function is executing in parallel

FUNCTIONS Page 53

Copyright © 1994-5 RSA Laboratories

Return Value Meaning

CKR_FUNCTION_PARALLEL function is executing in parallel

CKR_HOST_MEMORY not enough memory on host

CKR_KEY_HANDLE_INVALID key handle is invalid

CKR_KEY_SENSITIVE key is sensitive and cannot be revealed

CKR_KEY_SIZE_RANGE key size is out of range

CKR_KEY_TYPE_INCONSISTENT key type is inconsistent with
mechanism

CKR_MECHANISM_INVALID mechanism is invalid

CKR_MECHANISM_PARAM_INVALID mechanism parameter is invalid

CKR_OBJECT_CLASS_INCONSISTENT object class is inconsistent with
mechanism

CKR_OBJECT_CLASS_INVALID object class is invalid

CKR_OBJECT_HANDLE_INVALID object handle is invalid

CKR_OK function has completed successfully

CKR_OPERATION_ACTIVE another operation is already active

CKR_OPERATION_NOT_INITIALIZED operation has not been initialized

CKR_PIN_INCORRECT PIN is incorrect

CKR_PIN_INVALID new PIN contains invalid characters

CKR_PIN_LEN_RANGE new PIN length is out of range
(assuming token specifies range)

CKR_SESSION_CLOSED session has been closed

CKR_SESSION_COUNT session limits have been reached

CKR_SESSION_EXCLUSIVE_EXISTS an exclusive session already exists

CKR_SESSION_HANDLE_INVALID session handle is invalid

CKR_SESSION_PARALLEL_NOT_SUPPORTED parallel execution is not supported

CKR_SESSION_READ_ONLY session is read-only

CKR_SIGNATURE_INVALID signature is invalid

CKR_SIGNATURE_LEN_RANGE signature length is out of range

CKR_SLOT_ID_INVALID slot ID is invalid

CKR_TEMPLATE_INCOMPLETE template is incomplete

CKR_TEMPLATE_INCONSISTENT template is inconsistent

CKR_TOKEN_NOT_PRESENT slot does not contain a token

CKR_TOKEN_NOT_RECOGNIZED the token was not recognized

CKR_TOKEN_WRITE_PROTECTED token is write-protected

CKR_UNWRAPPING_KEY_HANDLE_INVALID unwrapping key handle is invalid

CKR_UNWRAPPING_KEY_SIZE_RANGE unwrapping key size is out of range

CKR_UNWRAPPING_KEY_TYPE_INCONSISTENT unwrapping key type is inconsistent
with mechanism

CKR_USER_ALREADY_LOGGED_IN a user is already logged in

CKR_USER_NOT_LOGGED_IN a user is not logged in

CKR_USER_PIN_NOT_INITIALIZED the user’s PIN has not been intialized

CKR_USER_TYPE_INVALID user type is invalid

CKR_WRAPPED_KEY_INVALID wrapped key is invalid

Page 54 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

Return Value Meaning

CKR_WRAPPED_KEY_LEN_RANGE wrapped key length is out of range

CKR_WRAPPING_KEY_HANDLE_INVALID wrapping key handle is invalid

CKR_WRAPPING_KEY_SIZE_RANGE wrapping key size is out of range

CKR_WRAPPING_KEY_TYPE_INCONSISTENT wrapping key type is inconsistent with
mechanism

9.1 General purpose

Cryptoki provides the following general purpose functions.

♦ ♦ C_Initialize

CK_RV CK_ENTRY C_Initialize(
CK_VOID_PTR pReserved

);

C_Initialize initializes the Cryptoki library. C_Initialize should be the first call made by an
application. This function is implementation defined; Cryptoki may, for example, initialize its
internal memory buffers, or any other resources it may require. The pReserved parameter is
reserved for future versions. For this version, it should be set to NULL_PTR.

Return values: CKR_OK, CKR_HOST_MEMORY

Example:

CK_RV rv;

rv = C_Initialize(NULL_PTR);

♦ ♦ C_GetInfo

CK_RV CK_ENTRY C_GetInfo(
CK_INFO_PTR pInfo

);

C_GetInfo returns general information about Cryptoki. pInfo points to the location that receives
the information.

Return values: CKR_OK, CKR_HOST_MEMORY

Example:

CK_INFO info;
CK_RV rv;

rv = C_GetInfo(&info);

FUNCTIONS Page 55

Copyright © 1994-5 RSA Laboratories

if(rv == CKR_OK){
 if(info.version.major == 1){
 .
 .
 .
 }
}

9.2 Slot and token management

Cryptoki provides the following functions for slot and token management.

♦ ♦ C_GetSlotList

CK_RV CK_ENTRY C_GetSlotList(
CK_BBOOL tokenPresent,
CK_SLOT_ID_PTR pSlotList,
CK_USHORT_PTR pusCount

);

C_GetSlotList obtains a list of slots in the system. tokenPresent indicates whether the list
includes only those slots with a token present (TRUE), or all slots (FALSE); pSlotList points to
the location that receives the list (array) of slot IDs; and pusCount points to the location that
receives the number of slots.

The application should call this function twice. The first time, pSlotList should be NULL_PTR.
In this case, Cryptoki only returns the number of slots. The second time, pSlotList should point
to a location large enough to receive the list of slots. If there are no slot IDs to return, the
location that pusCount points to receives 0.

Return values: CKR_OK, CKR_HOST_MEMORY

Example:

CK_SLOT_ID_PTR pSlotList;
CK_USHORT usCount;
CK_RV rv;

rv = C_GetSlotList(FALSE, NULL_PTR, &usCount);
if((rv == CKR_OK) && (usCount > 0)){
 pSlotList = (CK_SLOT_ID_PTR) malloc(usCount *

sizeof(CK_SLOT_ID));
 rv = C_GetSlotList(FALSE, pSlotList, &usCount);
 if(rv == CKR_OK){
 .
 .
 .
 }
 free(pSlotList);
}

Page 56 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

♦ ♦ C_GetSlotInfo

CK_RV CK_ENTRY C_GetSlotInfo(
CK_SLOT_ID slotID,
CK_SLOT_INFO_PTR pInfo

);

C_GetSlotInfo obtains information about a particular slot in the system. slotID is the ID of the
slot; pInfo points to the location that receives the slot information.

Return values: CKR_OK, CKR_SLOT_ID_INVALID, CKR_HOST_MEMORY

Example:

CK_SLOT_ID_PTR pSlotList;
CK_USHORT usCount;
CK_SLOT_INFO info;
CK_RV rv;

rv = C_GetSlotList(FALSE, NULL_PTR, &usCount);
if((rv == CKR_OK) && (usCount > 0)){
 pSlotList = (CK_SLOT_ID_PTR) malloc(usCount *

sizeof(CK_SLOT_ID));
 rv = C_GetSlotList(FALSE, pSlotList, &usCount);
 if(rv == CKR_OK){
 rv = C_GetSlotInfo(pSlotList[0], &info);
 .
 .
 .
 }
 free(pSlotList);
}

♦ ♦ C_GetTokenInfo

CK_RV CK_ENTRY C_GetTokenInfo(
CK_SLOT_ID slotID,
CK_TOKEN_INFO_PTR pInfo

);

C_GetTokenInfo obtains information about a particular token in the system. slotID is the ID of
the token’s slot; pInfo points to the location that receives the token information.

Return values: CKR_OK, CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT,
CKR_HOST_MEMORY, CKR_TOKEN_NOT_RECONIZED

Example:

CK_SLOT_ID_PTR pSlotList;
CK_USHORT usCount;
CK_TOKEN_INFO info;
CK_RV rv;

FUNCTIONS Page 57

Copyright © 1994-5 RSA Laboratories

rv = C_GetSlotList(TRUE, NULL_PTR, &usCount);
if((rv == CKR_OK) && (usCount > 0)){
 pSlotList = (CK_SLOT_ID_PTR) malloc(usCount *

sizeof(CK_SLOT_ID));
 rv = C_GetSlotList(TRUE, pSlotList, &usCount);
 if(rv == CKR_OK){
 rv = C_GetTokenInfo(pSlotList[0], &info);
 .
 .
 .
 }
 free(pSlotList);
}

♦ ♦ C_GetMechanismList

CK_RV CK_ENTRY C_GetMechanismList(
CK_SLOT_ID slotID,
CK_MECHANISM_TYPE_PTR pMechanismList,
CK_USHORT_PTR pusCount

);

C_GetMechanismList obtains a list of mechanism types supported by a token. slotID is the ID of
the token’s slot; pMechanismList points to the location that receives the list (array) of mechanism
types; and pusCount points to the location that receives the number of mechanisms.

The application should call this function twice. The first time, pMechanismList should be
NULL_PTR. In this case, Cryptoki only returns the number of mechanisms supported. The
second time, pMechanismList should point to a location large enough to receive the list of
mechanism types.

Return values: CKR_OK, CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT,
CKR_HOST_MEMORY

Example:

CK_SLOT_ID slotID;
CK_MECHANISM_TYPE_PTR pMechanismList;
CK_USHORT usCount;
CK_RV rv;

rv = C_GetMechanismList(slotID, NULL_PTR, &usCount);
if((rv == CKR_OK) && (usCount > 0)){
 pMechanismList = (CK_MECHANISM_TYPE_PTR) malloc(usCount *

sizeof(CK_MECHANISM_TYPE));
 rv = C_GetMechanismList(slotID, pMechanismList, &usCount);
 if(rv == CKR_OK){
 .
 .
 .
 }
 free(pMechanismList);
}

Page 58 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

♦ ♦ C_GetMechanismInfo

CK_RV CK_ENTRY C_GetMechanismInfo(
CK_SLOT_ID slotID,
CK_MECHANISM_TYPE type,
CK_MECHANISM_INFO_PTR pInfo

);

C_GetMechanismInfo obtains information about a particular mechanism possibly supported by
a token. slotID is the ID of the token’s slot; type is the type of mechanism; and pInfo points to the
location that receives the mechanism information.

Return values: CKR_OK, CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT,
CKR_HOST_MEMORY

Example:

CK_SLOT_ID_PTR pSlotList;
CK_USHORT usCount;
CK_MECHANISM_INFO info;
CK_RV rv;

rv = C_GetSlotList(TRUE, NULL_PTR, &usCount);
if((rv == CKR_OK) && (usCount > 0)){
 pSlotList = (CK_SLOT_ID_PTR) malloc(usCount *

sizeof(CK_SLOT_ID));
 rv = C_GetSlotList(TRUE, pSlotList, &usCount);
 if(rv == CKR_OK){
 rv = C_GetMechanismInfo(pSlotList[0], CKM_MD2, &info);
 .
 .
 .
 }
 free(pSlotList);
}

♦ ♦ C_InitToken

CK_RV CK_ENTRY C_InitToken(
CK_SLOT_ID slotID,
CK_CHAR_PTR pPin,
CK_USHORT usPinLen,
CK_CHAR_PTR pLabel

);

C_InitToken initializes a token. slotID is the ID of the token’s slot; pPin points to the SO’s initial
PIN; usPinLen is the length in bytes of the PIN; pLabel points to the 32-byte label of the token
(must be padded with the blank characters).

When a token is initialized, all objects are destroyed that can be destroyed (i.e., all except for
“indestructible” objects such as keys built in to the token). Also, access by the normal user is

FUNCTIONS Page 59

Copyright © 1994-5 RSA Laboratories

disabled until the SO sets the normal user’s PIN. Depending on the token, some “default”
objects may be created, and attributes of some objects may be set to default values.

Return values: CKR_OK, CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT,
CKR_TOKEN_WRITE_PROTECTED, CKR_HOST_MEMORY, CKR_DEVICE_ERROR,
CKR_PIN_LEN_RANGE, CKR_TOKEN_NOT_RECOGNIZED

Example:

CK_SLOT_ID slotID;
CK_CHAR pin[] = {“MyPIN”};
CK_CHAR label[32];
CK_RV rv;

memset(label, ‘ ’, sizeof(label));
memcpy(label, “My first token”, sizeof(“My first token”));
rv = C_InitToken(slotID, pin, sizeof(pin), label);
if(rv == CKR_OK){
 .
 .
 .
}

♦ ♦ C_InitPIN

CK_RV CK_ENTRY C_InitPIN(
CK_SESSION_HANDLE hSession,
CK_CHAR_PTR pPin,
CK_USHORT usPinLen

);

C_InitPIN initializes the normal user’s PIN. hSession is the session’s handle; pPin points to the
normal user’s PIN; and usPinLen is the length in bytes of the PIN.

This function can only be called in the “R/W SO Functions” state.

Return values: CKR_OK, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_SESSION_CLOSED, CKR_USER_NOT_LOGGED_IN, CKR_PIN_LEN_RANGE,
CKR_PIN_INVALID, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example:

CK_SESSION_HANDLE hSession;
CK_CHAR newPin[]= {“NewPIN”};
CK_RV rv;

rv = C_InitPIN(hSession, newPin, sizeof(newPin));
if(rv == CKR_OK){
 .
 .
 .
}

Page 60 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

♦ ♦ C_SetPIN

CK_RV CK_ENTRY C_SetPIN(
CK_SESSION_HANDLE hSession,
CK_CHAR_PTR pOldPin,
CK_USHORT usOldLen,
CK_CHAR_PTR pNewPin,
CK_USHORT usNewLen

);

C_SetPIN modifies the PIN of user that is currently logged in. hSession is the session’s handle;
pOldPin points to the old PIN; usOldLen is the length of the old PIN; pNewPin points to the new
PIN; and usNewLen is the length of the new PIN.

This function can only be called in the “R/W SO Functions” state or “R/W User Functions”
state.

Return values: CKR_OK, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_SESSION_CLOSED, CKR_USER_NOT_LOGGED_IN, CKR_PIN_INCORRECT,
CKR_PIN_LEN_RANGE, CKR_PIN_INVALID, CKR_HOST_MEMORY,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example:

CK_SESSION_HANDLE hSession;
CK_CHAR oldPin[] = {“OldPIN”};
CK_CHAR newPin[] = {“NewPIN”};
CK_RV rv;

rv = C_SetPIN(hSession, oldPin, sizeof(oldPin), newPin,
sizeof(newPin));

if(rv == CKR_OK){
 .
 .
 .
}

FUNCTIONS Page 61

Copyright © 1994-5 RSA Laboratories

9.3 Session management

Cryptoki provides the following functions for session management.

A typical application would call C_OpenSession after selecting a token and C_CloseSession
after completing all operations with the token. Only in special cases, such as when other
applications connected to a token have failed, would an application call C_CloseAllSessions.

An application may have concurrent sessions with more than one token. It is also possible that a
token may have concurrent sessions with more than one application.

♦ ♦ C_OpenSession

CK_RV CK_ENTRY C_OpenSession(
CK_SLOT_ID slotID,
CK_FLAGS flags,
CK_VOID_PTR pApplication,
CK_RV CK_ENTRY (*Notify)(CK_SESSION_HANDLE hSession,
 CK_NOTIFICATION event, CK_VOID_PTR pApplication),
CK_SESSION_HANDLE_PTR phSession

);

C_OpenSession opens a session between an application and a token. slotID is the slot’s ID; flags
indicates the type of session; pApplication is an application-defined pointer to be passed to the
notification callback; Notify is the address of the notification callback function; and phSession
points to the location that receives the handle for the new session.

The flags parameter consists of the logical-or of zero or more bit flags defined in the
CK_SESSION_INFO data type. If no bits are set in the flags parameter, then the session is
opened as a shared, read-only session, with the cryptographic functions performed in parallel
with the application (assuming the token has this capability—otherwise functions are performed
in serial).

In a parallel session, cryptographic functions may return control to the application before
completing (the return value CKR_FUNCTION_PARALLEL indicates this condition). The
application may call C_GetFunctionStatus to obtain updated status of the function, which will
be CKR_FUNCTION_PARALLEL until the function completes, and CKR_OK or another return
value indicating an error when the function completes. Alternatively, the application can wait
until Cryptoki sends notification that the function has completed through the Notify callback.
The application may also call C_CancelFunction to cancel the function.

If an application calls another function (cryptographic or otherwise) before one that is executing
in parallel completes, Cryptoki will wait until the one that is executing completes. Thus an
application can run only one function at any given time in a given session. (To achieve parallel
execution of multiple functions, the application should open additional sessions.)

Cryptographic functions running in serial with the application may surrender control through
the Notify callback, so that the application may perform other operations or cancel the function.

Non-cryptographic functions always run in serial with the application, and do not surrender
control.

Page 62 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

There may be a limit on the number of concurrent sessions with the token, which may depend
on whether the session is “read-only” or “read/write.” There can only be one exclusive session
with a token.

If the token is in “write-protected” (as indicated in the CK_TOKEN_INFO structure), then the
session also must be “read-only.”

The Notify callback function is used by Cryptoki to notify the application of certain events. If the
application does not support the callback, it should pass NULL_PTR as the address. The Notify
callback function is described in Section 0.

Return values: CKR_OK, CKR_SLOT_ID_INVALID, CKR_FLAGS_INVALID,
CKR_SESSION_COUNT, CKR_SESSION_PARALLEL_NOT_SUPPORTED,
CKR_TOKEN_WRITE_PROTECTED, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example:

CK_SESSION_HANDLE hSession;
CK_SLOT_ID slotID;
CK_RV rv;
CK_BYTE application;

CK_RV CK_ENTRY MyNotify(CK_SESSION_HANDLE hSession,
 CK_NOTIFICATION event, CK_VOID_PTR pApplication);

slotID = 1;
rv = C_OpenSession(slotID, CKF_EXCLUSIVE_SESSION, &application,

MyNotify, &hSession);
if(rv == CKR_OK){
 .
 .
 .
}

♦ ♦ C_CloseSession

CK_RV CK_ENTRY C_CloseSession(
CK_SESSION_HANDLE hSession

);

C_CloseSession closes a session between an application and a token. hSession is the session’s
handle.

When a session is closed, session objects created during the session are destroyed automatically,
and if a function is running in parallel with the application, it is canceled.

Depending on the token, when the last session with the token is closed, the token may be
“ejected” from its reader, assuming this capability exists.

Return values: CKR_OK, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_HOST_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

FUNCTIONS Page 63

Copyright © 1994-5 RSA Laboratories

Example:

CK_SESSION_HANDLE hSession;
CK_SLOT_ID slotID;
CK_RV rv;
CK_BYTE application;

CK_RV CK_ENTRY MyNotify(CK_SESSION_HANDLE hSession,
 CK_NOTIFICATION event, CK_VOID_PTR pApplication);

slotID = 1;
rv = C_OpenSession(slotID, CKF_EXCLUSIVE_SESSION, &application,

MyNotify, &hSession);
if(rv == CKR_OK){
 .
 .
 .

C_CloseSession(hSession);
}

♦ ♦ C_CloseAllSessions

CK_RV CK_ENTRY C_CloseAllSessions(
CK_SLOT_ID slotID

);

C_CloseAllSessions closes all sessions with a token. slotID specifies the token’s slot.

This function should only be called when there is no other way to recover control of a token,
such as when other applications connected to the token have failed.

Depending on the token, the token may be “ejected” from its reader, assuming this capability
exists.

When an application is disconnected from a token in this manner, it receives a
CKR_SESSION_CLOSED error on its next call to Cryptoki.

Return values: CKR_OK, CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT,
CKR_HOST_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example:

CK_SLOT_ID slotID;
CK_RV rv;

slotID = 1;
rv = C_CloseAllSessions(slotID);

Page 64 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

♦ ♦ C_GetSessionInfo

CK_RV CK_ENTRY C_GetSessionInfo(
CK_SESSION_HANDLE hSession,
CK_SESSION_INFO_PTR pInfo

);

C_GetSessionInfo obtains information about the session. hSession is the session’s handle; and
pInfo points to the location that receives the session information.

Return values: CKR_OK, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_HOST_MEMORY, CKR_DEVICE_REMOVED

Example:

CK_SESSION_HANDLE hSession;
CK_SESSION_INFO info;
CK_RV rv;

rv = C_GetSessionInfo(hSession, &info);
if(rv == CKR_OK){
 .
 .
 .
}

♦ ♦ C_Login

CK_RV CK_ENTRY C_Login(
CK_SESSION_HANDLE hSession,
CK_USER_TYPE userType,
CK_CHAR_PTR pPin,
CK_USHORT usPinLen

);

C_Login logs a user into a token. hSession is the session’s handle; userType is the user type; pPin
points to the user’s PIN; and usPinLen is the length of the PIN. Depending on the user type and
the current session type, the state will become one of the following: “R/W SO Functions”, “R/O
SO Functions”, “R/W User Functions”, or “R/O User Functions”.

Return values: CKR_OK, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_USER_ALREADY_LOGGED_IN, CKR_USER_TYPE_INVALID, CKR_PIN_INCORRECT,
CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_DEVICE_ERROR

Example:

CK_SESSION_HANDLE hSession;
CK_CHAR userPIN[] = {“MyPIN”};
CK_RV rv;

rv = C_Login(hSession, CKU_USER, userPIN, sizeof(userPIN));

FUNCTIONS Page 65

Copyright © 1994-5 RSA Laboratories

if(rv == CKR_OK){
 .
 .
 .
}

♦ ♦ C_Logout

CK_RV CK_ENTRY C_Logout(
CK_SESSION_HANDLE hSession

);

C_Logout logs a user out from a token. hSession is the session’s handle. Depending on the
current user type and the current session type, the state will become either “R/W Public
Session” or “R/O Public Session”.

Return values: CKR_OK, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_USER_NOT_LOGGED_IN, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example:

CK_SESSION_HANDLE hSession;
CK_CHAR userPIN[] = {“MyPIN”};
CK_RV rv;

rv = C_Login(hSession, CKU_USER, userPIN, sizeof(userPIN));
if(rv == CKR_OK){
 .
 .
 .

C_Logout(hSession);
}

9.4 Object management

Cryptoki provides the following functions for managing objects. Additional functions for
managing key objects are described in Section 9.8.

Page 66 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

♦ ♦ C_CreateObject

CK_RV CK_ENTRY C_CreateObject(
CK_SESSION_HANDLE hSession,
CK_ATTRIBUTE_PTR pTemplate,
CK_USHORT usCount,
CK_OBJECT_HANDLE_PTR phObject

);

C_CreateObject creates a new object. hSession is the session’s handle; pTemplate points to the
object’s template; usCount is the number of attributes in the template; and phObject points to the
location that receives the new object’s handle.

Only session object can be created during a read-only session. Only public objects can be
created when no user is logged in.

Return values: CKR_OK, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_SESSION_CLOSED, CKR_OBJECT_CLASS_INVALID,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_TEMPLATE_INCOMPLETE, CKR_TEMPLATE_INCONSISTENT,
CKR_USER_NOT_LOGGED_IN, CKR_TOKEN_WRITE_PROTECTED, CKR_HOST_MEMORY,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE
 hData,
 hCertificate,
 hKey;
CK_OBJECT_CLASS

dataClass = CKO_DATA,
certificateClass = CKO_CERTIFICATE,
keyClass = CKO_PUBLIC_KEY;

CK_KEY_TYPE keyType = CKK_RSA;
CK_CHAR application[] = {“My Application”};
CK_BYTE dataValue[] = {...};
CK_BYTE subject[] = {...};
CK_BYTE id[] = {...};
CK_BYTE certificateValue[] = {...};
CK_BYTE modulus[] = {...};
CK_BYTE exponent[] = {...};
CK_BYTE true = TRUE;
CK_ATTRIBUTE dataTemplate[] = {
 {CKA_CLASS, &dataClass, sizeof(dataClass)},
 {CKA_TOKEN, &true, 1},
 {CKA_APPLICATION, application, sizeof(application)},
 {CKA_VALUE, dataValue, sizeof(dataValue)}
};
CK_ATTRIBUTE certificateTemplate[] = {
 {CKA_CLASS, &certificateClass, sizeof(certificateClass)},
 {CKA_TOKEN, &true, 1},
 {CKA_SUBJECT, subject, sizeof(subject)},
 {CKA_ID, id, sizeof(id)},
 {CKA_VALUE, certificateValue, sizeof(certificateValue)}
};

FUNCTIONS Page 67

Copyright © 1994-5 RSA Laboratories

CK_ATTRIBUTE keyTemplate[] = {
 {CKA_CLASS, &keyClass, sizeof(keyClass)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_WRAP, &true, 1},
 {CKA_MODULUS, modulus, sizeof(modulus)},
 {CKA_PUBLIC_EXPONENT, exponent, sizeof(exponent)}
 };
CK_RV rv;

/* Create a data object */
rv = C_CreateObject(hSession, &dataTemplate, 4, &hData);
if(rv == CKR_OK){
 .
 .
 .
}
/* Create a certificate object */
rv = C_CreateObject(hSession, &certificateTemplate, 5,

&hCertificate);
if(rv == CKR_OK){
 .
 .
 .
}
/* Create a RSA private key object */
rv = C_CreateObject(hSession, &keyTemplate, 5, &hKey);
if(rv == CKR_OK){
 .
 .
 .
}

♦ ♦ C_CopyObject

CK_RV CK_ENTRY C_CopyObject(
CK_SESSION_HANDLE hSession,
CK_OBJECT_HANDLE hObject,
CK_ATTRIBUTE_PTR pTemplate,
CK_USHORT usCount,
CK_OBJECT_HANDLE_PTR phNewObject

);

C_CopyObject copies an object, creating a new object for the copy. hSession is the session’s
handle; hObject is the object’s handle; pTemplate points to the template for the new object;
usCount is the number of attributes in the template; and phNewObject points to the location that
receives the handle for the copy of the object.

The template may specify new values of any attributes of the object that can ordinarily be
modified, and it may also specify new values of the CKA_TOKEN and CKA_PRIVATE
attributes (e.g., to copy a session object to a token object).

Only session objects can be created during a read-only session. Only public objects can be
created when no user is logged in.

Page 68 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

Return values: CKR_OK, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_SESSION_CLOSED, CKR_OBJECT_HANDLE_INVALID,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_USER_NOT_LOGGED_IN, CKR_TOKEN_WRITE_PROTECTED, CKR_HOST_MEMORY,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_OBJECT_HANDLE hNewKey;
CK_OBJECT_CLASS keyClass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES;
CK_BYTE id[] = {...};
CK_BYTE keyValue[] = {...};
CK_BYTE false = FALSE;
CK_BYTE true = TRUE;
CK_ATTRIBUTE keyTemplate[] = {
 {CKA_CLASS, &keyClass, sizeof(keyClass)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &false, 1},
 {CKA_ID, id, sizeof(id)},
 {CKA_VALUE, keyValue, sizeof(keyValue)}
};
CK_ATTRIBUTE copyTemplate[] = {
 {CKA_TOKEN, &true, 1}
};
CK_RV rv;

/* Create a DES secret key session object */
rv = C_CreateObject(hSession, &keyTemplate, 5, &hKey);
if(rv == CKR_OK){
 /* Create a copy on the token */
 rv = C_CopyObject(hSession, hKey, ©Template, 1, &hNewKey);
 .
 .
 .
}

♦ ♦ C_DestroyObject

CK_RV CK_ENTRY C_DestroyObject(
CK_SESSION_HANDLE hSession,
CK_OBJECT_HANDLE hObject

);

C_DestroyObject destroys an object. hSession is the session’s handle; and hObject is the object’s
handle.

Only session objects can be destroyed during a read-only session. Only public objects can be
destroyed when no user is logged in.

Return values: CKR_OK, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_SESSION_CLOSED, CKR_OBJECT_HANDLE_INVALID,

FUNCTIONS Page 69

Copyright © 1994-5 RSA Laboratories

CKR_TOKEN_WRITE_PROTECTED, CKR_HOST_MEMORY, CKR_DEVICE_REMOVED,
CKR_DEVICE_ERROR

Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hObject;
CK_OBJECT_CLASS dataClass = CKO_DATA;
CK_CHAR application[] = {“My Application”};
CK_BYTE value[] = {...};
CK_BYTE true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &dataClass, sizeof(dataClass)},
 {CKA_TOKEN, &true, 1},
 {CKA_APPLICATION, application, sizeof(application)},
 {CKA_VALUE, value, sizeof(value)}
};
CK_RV rv;

rv = C_CreateObject(hSession, &template, 4, &hObject);
if(rv == CKR_OK){
 .
 .
 .
 C_DestroyObject(hSession, hObject);
}

♦ ♦ C_GetObjectSize

CK_RV CK_ENTRY C_GetObjectSize(
CK_SESSION_HANDLE hSession,
CK_OBJECT_HANDLE hObject,
CK_USHORT_PTR pusSize

);

C_GetObjectSize gets the size of an object in bytes. hSession is the session’s handle; hObject is
the object’s handle; and pusSize points to the location that receives the size in bytes of the object.

Return values: CKR_OK, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_OBJECT_HANDLE_INVALID, CKR_HOST_MEMORY, CKR_DEVICE_REMOVED,
CKR_DEVICE_ERROR

Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hObject;
CK_OBJECT_CLASS dataClass = CKO_DATA;
CK_CHAR application[] = {“My Application”};
CK_BYTE dataValue[] = {...};
CK_BYTE value[] = {...};
CK_BYTE true = TRUE;

Page 70 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &dataClass, sizeof(dataClass)},
 {CKA_TOKEN, &true, 1},
 {CKA_APPLICATION, application, sizeof(application)},
 {CKA_VALUE, value, sizeof(value)}
};
CK_USHORT usSize;
CK_RV rv;

rv = C_CreateObject(hSession, &template, 4, &hObject);
if(rv == CKR_OK){
 rv = C_GetObjectSize(hSession, hObject, &usSize);
 .
 .
 .
 C_DestroyObject(hSession, hObject);
}

♦ ♦ C_GetAttributeValue

CK_RV CK_ENTRY C_GetAttributeValue(
CK_SESSION_HANDLE hSession,
CK_OBJECT_HANDLE hObject,
CK_ATTRIBUTE_PTR pTemplate,
CK_USHORT usCount

);

C_GetAttributeValue obtains the value of one or more object attributes. hSession is the session’s
handle; hObject is the object’s handle; pTemplate points to a template that specifies which
attribute values are to be obtained, and receives the attribute values; and usCount is the number
of attributes in the template.

The application must ensure that the location that receives a attribute value can hold the value.
If it does not know the length of the value, then the application should pass NULL_PTR as the
pValue parameter for the attribute in the template and C_GetAttributeValue will only return the
length of the value. See Section 8 for more details on attributes.

If the object is marked “sensitive”, it may not be possible to obtain the value of the attribute.

Return values: CKR_OK, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_OBJECT_HANDLE_INVALID, CKR_ATTRIBUTE_TYPE_INVALID,
CKR_ATTRIBUTE_SENSITIVE, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hObject;
CK_BYTE_PTR pModulus, pExponent;
CK_ATTRIBUTE template[] = {

{CKA_MODULUS, NULL_PTR, 0},
{CKA_PUBLIC_EXPONENT, NULL_PTR, 0}

};
CK_RV rv;

FUNCTIONS Page 71

Copyright © 1994-5 RSA Laboratories

rv = C_GetAttributeValue(hSession, hObject, &template, 2);
if(rv == CKR_OK){
 pModulus = (CK_BYTE_PTR) malloc(template[0].usValueLen);
 template[0].pValue = pModulus;
 pExponent = (CK_BYTE_PTR) malloc(template[1].usValueLen);
 template[1].pValue = pExponent;
 rv = C_GetAttributeValue(hSession, hObject, &template, 2);
 if(rv == CKR_OK){
 .
 .
 .
 }
 free(pModulus);
 free(pExponent);
}

♦ ♦ C_SetAttributeValue

CK_RV CK_ENTRY C_SetAttributeValue(
CK_SESSION_HANDLE hSession,
CK_OBJECT_HANDLE hObject,
CK_ATTRIBUTE_PTR pTemplate,
CK_USHORT usCount

);

C_SetAttributeValue modifies the value of one or more attributes of an object. hSession is the
session’s handle; hObject is the object’s handle; pTemplate points to a template that specifies
which attribute values are to be modified and their new values; and usCount is the number of
attributes in the template.

Only session objects can be modified during a read-only session.

Not all attributes can be modified; see Section 8 for more details.

Return values: CKR_OK, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY
CKR_SESSION_CLOSED, CKR_OBJECT_HANDLE_INVALID,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_READ_ONLY,
CKR_ATTRIBUTE_VALUE_INVALID, CKR_TOKEN_WRITE_PROTECTED,
CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_DEVICE_ERROR

Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hObject;
CK_CHAR label[] = {“New label”};
CK_ATTRIBUTE template[] = {

CKA_LABEL, label, sizeof(label)
};
CK_RV rv;

rv = C_SetAttributeValue(hSession, hObject, &template, 1);

Page 72 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

if(rv == CKR_OK){
.
.
.

}

♦ ♦ C_FindObjectsInit

CK_RV CK_ENTRY C_FindObjectsInit(
CK_SESSION_HANDLE hSession,
CK_ATTRIBUTE_PTR pTemplate,
CK_USHORT usCount

);

C_FindObjectsInit initializes a search for token and session objects that match a template.
hSession is the session’s handle; pTemplate points to a search template that specifies the attribute
values to match; and usCount is the number of attributes in the search template. The matching
criterion is an exact byte-for-byte match with all attributes in the template. To find all objects, set
usCount is 0.

After calling C_FindObjectsInit, the application may call C_FindObjects one or more times to
obtain the handles of the objects matching the template. At most one search operation may be
active at a given time in a given session.

Return values: CKR_OK, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_OPERATION_ACTIVE, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example: See C_FindObjects.

♦ ♦ C_FindObjects

CK_RV CK_ENTRY C_FindObjects(
CK_SESSION_HANDLE hSession,
CK_OBJECT_HANDLE_PTR phObject,
CK_USHORT usMaxObjectCount,
CK_USHORT_PTR pusObjectCount

);

C_FindObjects continues a search for token and session objects that match a template, obtaining
additional object handles. hSession is the session’s handle; phObject points to the location that
receives the list (array) of additional object handles; usMaxObjectCount is the maximum number
of object handles to be returned; and pusObjectCount points to the location that receives the
actual number of object handles returned. If there are no more objects matching the template,
then the location that pusObjectCount points to receives 0.

The search must have been initialized with C_FindObjectsInit.

FUNCTIONS Page 73

Copyright © 1994-5 RSA Laboratories

Return values: CKR_OK, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_DEVICE_ERROR

Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hObject;
CK_USHORT usObjectCount;
CK_RV rv;

rv = C_FindObjectsInit(hSession, NULL_PTR, 0);
if(rv == CKR_OK){
 while (1) {

rv = C_FindObjects(hSession, &hObject, 1, &usObjectCount);
 if (rv != CKR_OK || usObjectCount == 0)
 break;

.

.

.
 }
}

9.5 Encryption and decryption

Cryptoki provides the following functions for encrypting and decrypting data. All these
functions run in parallel with the application if the session was opened with the
CKF_SERIAL_SESSION flag set to FALSE and the token supports parallel execution.

♦ ♦ C_EncryptInit

CK_RV CK_ENTRY C_EncryptInit(
CK_SESSION_HANDLE hSession,
CK_MECHANISM_PTR pMechanism,
CK_OBJECT_HANDLE hKey

);

C_EncryptInit initializes an encryption operation. hSession is the session’s handle; pMechanism
points to the encryption mechanism; and hKey is the handle of the encryption key.

The CKA_ENCRYPT attribute of the encryption key, which indicates whether the key supports
encryption, must be TRUE.

After calling C_EncryptInit, the application may call C_Encrypt to encrypt data in a single part,
or C_EncryptUpdate one or more times followed by C_EncryptFinal to encrypt data in multiple
parts. The encryption operation is “active” until the application calls C_Encrypt or
C_EncryptFinal. To process additional data (in single or multiple parts), the application must
call C_EncryptInit again. At most one cryptographic operation may be active at a given time in
a given session. C_EncryptInit cannot initialize a new operation if another is already active.

Page 74 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

The following mechanisms are supported in this version:

Table 9-2, Encryption Mechanisms

Mechanism Key type

PKCS #1 RSA1 RSA public

X.509 (raw) RSA1 RSA public

RC2 (ECB and CBC mode) RC2

RC4 RC4

DES (ECB and CBC mode) DES

triple-DES (ECB and CBC mode) double or triple-length DES

1 Single-part only.

Section 0 provides more details on the mechanisms.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID,
CKR_KEY_HANDLE_INVALID, CKR_KEY_TYPE_INCONSISTENT, CKR_KEY_SIZE_RANGE,
CKR_OPERATION_ACTIVE, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example: See C_Encrypt.

♦ ♦ C_Encrypt

CK_RV CK_ENTRY C_Encrypt(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pData,
CK_USHORT usDataLen,
CK_BYTE_PTR pEncryptedData,
CK_USHORT_PTR pusEncryptedDataLen

);

C_Encrypt encrypts single-part data. hSession is the session’s handle; pData points to the data;
usDataLen is the length in bytes of the data; pEncryptedData points to the location that receives
the encrypted data; and pusEncryptedData points to the location that receives the length in bytes
of the encrypted data.

The encryption operation must have been initialized with C_EncryptInit.

For constraints on data length, refer to the description of the encryption mechanism.

C_Encrypt is equivalent to a sequence of C_EncryptUpdate and C_EncryptFinal.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_OPERATION_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DATA_INVALID,

FUNCTIONS Page 75

Copyright © 1994-5 RSA Laboratories

CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_DEVICE_ERROR

Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_MECHANISM mechanism = {

CKM_DES_ECB, NULL_PTR, 0
};
CK_BYTE encryptedData[8];
CK_USHORT usEncryptedDataLen;
CK_BYTE data[8];
CK_RV rv;

memset(data, ‘A’, sizeof(data));
rv = C_EncryptInit(hSession, &mechanism, hKey);
if(rv == CKR_OK){

rv = C_Encrypt(hSession, data, sizeof(data), encryptedData,
&usEncryptedDataLen);

}

♦ ♦ C_EncryptUpdate

CK_RV CK_ENTRY C_EncryptUpdate(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pPart,
CK_USHORT usPartLen,
CK_BYTE_PTR pEncryptedPart,
CK_USHORT_PTR pusEncryptedPartLen

);

C_EncryptUpdate continues a multiple-part encryption operation, processing another data part.
hSession is the session’s handle; pPart points to the data part; usPartLen is the length of the data
part; pEncryptedPart points to the location that receives the encrypted data part; and
pusEncryptedPart points to the location that receives the length of the encrypted data part.

The encryption operation must have been initialized with C_EncryptInit. This function may be
called any number of times in succession.

For constraints on data length, refer to the description of the encryption mechanism.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_OPERATION_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DATA_INVALID,
CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_DEVICE_ERROR

Example: See C_EncryptFinal.

Page 76 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

♦ ♦ C_EncryptFinal

CK_RV CK_ENTRY C_EncryptFinal(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pLastEncryptedPart,
CK_USHORT_PTR pusEncryptedPartLen

);

C_EncryptFinal finishes a multiple-part encryption operation. hSession is the session’s handle;
pLastEncryptedPart points to the location that receives the last encrypted data part, if any; and
pusLastEncryptedPartLen points to the location that receives the length of the last encrypted data
part.

The encryption operation must have been initialized with C_EncryptInit.

For constraints on data length, refer to the description of the encryption mechanism.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_OPERATION_NOT_INITIALIZED, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example:

#define BUF_SZ 512

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_BYTE iv[8];
CK_MECHANISM mechanism = {

CKM_DES_CBC, iv, sizeof(iv)
};
CK_BYTE encryptedData[BUF_SZ];
CK_USHORT usEncryptedDataLen;
CK_BYTE data[2*BUF_SZ];
CK_RV rv;

memset(iv, 0, sizeof(iv));
memset(data, ‘A’, 2*BUF_SZ);
rv = C_EncryptInit(hSession, &mechanism, hKey);
if(rv == CKR_OK){
 C_EncryptUpdate(hSession, &data[0], BUF_SZ, encryptedData,

&usEncryptedDataLen);
 .
 .
 .
 C_EncryptUpdate(hSession, &data[BUF_SZ], BUF_SZ, encryptedData,

&usEncryptedDataLen);
 .
 .
 .
 C_EncryptFinal(hSession, encryptedData, &usEncryptedDataLen);
}

FUNCTIONS Page 77

Copyright © 1994-5 RSA Laboratories

♦ ♦ C_DecryptInit

CK_RV CK_ENTRY C_DecryptInit(
CK_SESSION_HANDLE hSession,
CK_MECHANISM_PTR pMechanism,
CK_OBJECT_HANDLE hKey

);

C_DecryptInit initializes a decryption operation. hSession is the session’s handle; pMechanism
points to the decryption mechanism; and hKey is the handle of the decryption key.

The CKA_DECRYPT attribute of the decryption key, which indicates whether the key supports
decryption, must be TRUE.

After calling C_DecryptInit, the application may call C_Decrypt to encrypt data in a single part,
or C_DecryptUpdate one or more times followed by C_DecryptFinal to encrypt data in
multiple parts. The decryption operation is “active” until the application calls C_Decrypt or
C_DecryptFinal. To process additional data (in single or multiple parts), the application must
call C_DecryptInit again. At most one cryptographic operation may be active at a given time in
a given session. C_DecryptInit cannot initialize a new operation if another is already active.

The following mechanisms are supported in this version:

Table 9-3, Decryption Mechanisms

Mechanism Key type

PKCS #1 RSA1 RSA public

X.509 (raw) RSA1 RSA public

RC2 (ECB and CBC mode) RC2

RC4 RC4

DES (ECB and CBC mode) DES

triple-DES (ECB and CBC mode) double or triple-length DES

1 Single-part only.

Section 10 gives more details on the mechanisms.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID,
CKR_KEY_HANDLE_INVALID, CKR_KEY_TYPE_INCONSISTENT, CKR_KEY_SIZE_RANGE,
CKR_OPERATION_ACTIVE, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example: See C_Decrypt.

Page 78 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

♦ ♦ C_Decrypt

CK_RV CK_ENTRY C_Decrypt(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pEncryptedData,
CK_USHORT usEncryptedDataLen,
CK_BYTE_PTR pData,
CK_USHORT_PTR pusDataLen

);

C_Decrypt decrypts encrypted data in a single part. hSession is the session’s handle;
pEncryptedData points to the encrypted data; usEncryptedDataLen is the length of the encrypted
data; pData points to the location that receives the recovered data; and pusDataLen points to the
location that receives the length of the recovered data.

The decryption operation must have been initialized with C_DecryptInit.

For constraints on data length, refer to the description of the decryption mechanism.

C_Decrypt is equivalent to a sequence of C_DecryptUpdate and C_DecryptFinal.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_OPERATION_NOT_INITIALIZED, CKR_ENCRYPTED_DATA_LEN_RANGE,
CKR_ENCRYPTED_DATA_INVALID, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_MECHANISM mechanism = {

CKM_DES_ECB, NULL_PTR, 0
};
CK_BYTE encryptedData[8];
CK_BYTE data[8];
CK_USHORT usDataLen;
CK_RV rv;

memset(encryptedData, ‘A’, sizeof(encryptedData));
rv = C_DecryptInit(hSession, &mechanism, hKey);
if(rv == CKR_OK){

rv = C_Decrypt(hSession, encryptedData, sizeof(encryptedData),
data, &usDataLen);

}

FUNCTIONS Page 79

Copyright © 1994-5 RSA Laboratories

♦ ♦ C_DecryptUpdate

CK_RV CK_ENTRY C_DecryptUpdate(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pEncryptedPart,
CK_USHORT usEncryptedPartLen,
CK_BYTE_PTR pPart,
CK_USHORT_PTR pusPartLen

);

C_DecryptUpdate continues a multiple-part decryption operation, processing another
encrypted data part. hSession is the session’s handle; pEncryptedPart points to the encrypted data
part; usEncryptedPartLen is the length of the encrypted data part; pPart points to the location that
receives the recovered data part; and pusPartLen points to the location that receives the length of
the recovered data part.

The decryption operation must have been initialized with C_DecryptInit. This function may be
called any number of times in succession.

For constraints on data length, refer to the description of the decryption mechanism.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_OPERATION_NOT_INITIALIZED, CKR_ENCRYPTED_DATA_LEN_RANGE,
CKR_ENCRYPTED_DATA_INVALID, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example: See C_DecryptFinal.

♦ ♦ C_DecryptFinal

CK_RV CK_ENTRY C_DecryptFinal(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pLastPart,
CK_USHORT_PTR usLastPartLen

);

C_DecryptFinal finishes a multiple-part decryption operation. hSession is the session’s handle;
pLastPart points to the location that receives the last recovered data part, if any; and
pusLastPartLen points to the location that receives the length of the last recovered data part.

The decryption operation must have been initialized with C_DecryptInit.

For constraints on data length, refer to the description of the decryption mechanism.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_OPERATION_NOT_INITIALIZED, CKR_ENCRYPTED_DATA_LEN_RANGE,

Page 80 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

CKR_ENCRYPTED_DATA_INVALID, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example:

#define BUF_SZ 512

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_BYTE iv[8];
CK_MECHANISM mechanism = {

CKM_DES_CBC, iv, sizeof(iv)
};
CK_BYTE encryptedData[2*BUF_SZ];
CK_BYTE data[BUF_SZ];
CK_USHORT usDataLen;
CK_RV rv;

memset(iv, 0, sizeof(iv));
memset(encryptedData, ‘A’, 2*BUF_SZ);
rv = C_DecryptInit(hSession, &mechanism, hKey);
if(rv == CKR_OK){
 C_DecryptUpdate(hSession, &encryptedData[0], BUF_SZ, data,

&usDataLen);
 .
 .
 .
 C_DecryptUpdate(hSession, &encryptedData[BUF_SZ], BUF_SZ, data,

&usDataLen);
 .
 .
 .
 C_DecryptFinal(hSession, data, &usDataLen);
}

9.6 Message digesting

Cryptoki provides the following functions for digesting data. All these functions run in parallel
with the application if the session was opened with the CKF_SERIAL_SESSION flag set to
FALSE and the token supports parallel execution.

♦ ♦ C_DigestInit

CK_RV CK_ENTRY C_DigestInit(
CK_SESSION_HANDLE hSession,
CK_MECHANISM_PTR pMechanism

);

C_DigestInit initializes a message-digesting operation. hSession is the session’s handle; and
pMechanism points to the digesting mechanism.

FUNCTIONS Page 81

Copyright © 1994-5 RSA Laboratories

After calling C_DigestInit, the application may call C_Digest to digest in a single part, or
C_DigestUpdate one or more times followed by C_DigestFinal to digest data in multiple parts.
The message-digesting operation is “active” until the application calls C_Digest or
C_DigestFinal. To process additional data (in single or multiple parts), the application must call
C_DigestInit again. At most one cryptographic operation may be active at a given time in a
given session. C_DigestInit cannot initialize a new operation if another is already active.

The following mechanisms are supported in this version:

Table 9-4, Digesting Mechanisms

Mechanism

MD2

MD5

SHA-1

Section 10 gives more details on the mechanisms.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID,
CKR_OPERATION_ACTIVE, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example: See C_Digest.

♦ ♦ C_Digest

CK_RV CK_ENTRY C_Digest(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pData,
CK_USHORT usDataLen,
CK_BYTE_PTR pDigest,
CK_USHORT_PTR pusDigestLen

);

C_Digest digests data in a single part. hSession is the session’s handle, pData points to the data;
usDataLen is the length of the data; pDigest points to the location that receives the message
digest; and pusDigestLen points to the location that receives the length of the message digest.

The digest operation must have been initialized with C_DigestInit.

For constraints on data length, refer to the description of the message-digesting mechanism.

C_Digest is equivalent to a sequence of C_DigestUpdate and C_DigestFinal.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_OPERATION_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DATA_INVALID,

Page 82 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_DEVICE_ERROR

Example:

CK_SESSION_HANDLE hSession;
CK_MECHANISM mechanism = {

CKM_MD2, NULL_PTR, 0
};
CK_BYTE data[] = {...};
CK_BYTE digest[16];
CK_USHORT usDigestLen;
CK_RV rv;

rv = C_DigestInit(hSession, &mechanism);
if(rv == CKR_OK){

rv = C_Digest(hSession, data, sizeof(data), digest,
&usDigestLen);

}

♦ ♦ C_DigestUpdate

CK_RV CK_ENTRY C_DigestUpdate(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pPart,
CK_USHORT usPartLen

);

C_DigestUpdate continues a multiple-part message-digesting operation, processing another
data part. hSession is the session’s handle, pPart points to the data part; and usPartLen is the
length of the data part.

The message-digesting operation must have been initialized with C_DigestInit. This function
may be called any number of times in succession.

For constraints on data length, refer to the description of the message-digesting mechanism.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_OPERATION_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DATA_INVALID,
CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_DEVICE_ERROR

Example: See C_DigestFinal.

FUNCTIONS Page 83

Copyright © 1994-5 RSA Laboratories

♦ ♦ C_DigestFinal

CK_RV CK_ENTRY C_DigestFinal(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pDigest,
CK_USHORT_PTR pusDigestLen

);

C_DigestFinal finishes a multiple-part message-digesting operation, returning the message
digest. hSession is the session’s handle; pDigest points to the location that receives the message
digest; and pusDigestLen points to the location that receives the length of the message digest.

The message-digesting operation must have been initialized with C_DigestInit.

For constraints on data length, refer to the description of the message-digesting mechanism.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_OPERATION_NOT_INITIALIZED, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Cryptoki provides the following functions for digesting data.

Example:

CK_SESSION_HANDLE hSession;
CK_MECHANISM mechanism = {

CKM_MD2, NULL_PTR, 0
};
CK_BYTE data[] = {...};
CK_BYTE digest[16];
CK_USHORT usDigestLen;
CK_RV rv;

rv = C_DigestInit(hSession, &mechanism);
if(rv == CKR_OK){

rv = C_DigestUpdate(hSession, data, sizeof(data));
.
.
.
rv = C_DigestFinal(hSession, digest, &usDigestLen);

}

Page 84 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

9.7 Signature and verification

Cryptoki provides the following functions for signing data and verifying signatures. (For the
purposes of Cryptoki, these operations also encompass data authentication codes.) All these
functions run in parallel with the application if the session was opened with the
CKF_SERIAL_SESSION flag set to FALSE and the token supports parallel execution.

♦ ♦ C_SignInit

CK_RV CK_ENTRY C_SignInit(
CK_SESSION_HANDLE hSession,
CK_MECHANISM_PTR pMechanism,
CK_OBJECT_HANDLE hKey

);

C_SignInit initializes a signature operation, where the signature is an appendix to the data.
hSession is the session’s handle; pMechanism points to the signature mechanism; and hKey is the
handle of the signature key.

The CKA_SIGN attribute of the signature key, which indicates whether the key supports
signatures with appendix, must be TRUE.

After calling C_SignInit, the application may call C_Sign to sign in a single part, or
C_SignUpdate one or more times followed by C_SignFinal to sign data in multiple parts. The
signature operation is “active” until the application calls C_Sign or C_SignFinal. To process
additional data (in single or multiple parts), the application must call C_SignInit again. At most
one cryptographic operation may be active at a given time in a given session. C_SignInit cannot
initialize a new operation if another is already active.

The following mechanisms are supported in this version:

Table 9-5, Signature Mechanisms

Mechanism Key type

PKCS #1 RSA1 RSA private

ISO/IEC 9796 RSA1 RSA private

X.509 (raw) RSA1 RSA private

DSA1 DSA private

RC2-MAC RC2

DES-MAC DES

triple-DES-MAC double-length or triple-length DES

1 Single-part only.

Section 10 gives more details on the mechanisms.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID,

FUNCTIONS Page 85

Copyright © 1994-5 RSA Laboratories

CKR_KEY_HANDLE_INVALID, CKR_KEY_TYPE_INCONSISTENT, CKR_KEY_SIZE_RANGE,
CKR_OPERATION_ACTIVE, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example: See C_Sign.

♦ ♦ C_Sign

CK_RV CK_ENTRY C_Sign(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pData,
CK_USHORT usDataLen,
CK_BYTE_PTR pSignature,
CK_USHORT_PTR pusSignatureLen

);

C_Sign signs data in a single part, where the signature is an appendix to the data. hSession is the
session’s handle; pData points to the data; usDataLen is the length of the data; pSignature points
to the location that receives the signature; and pusSignatureLen points to the location that
receives the length of the signature.

The signature operation must have been initialized with C_SignInit.

For constraints on data length, refer to the description of the signature mechanism.

C_Sign is equivalent to a sequence of C_SignUpdate and C_SignFinal.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_OPERATION_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DATA_INVALID,
CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_DEVICE_ERROR

Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_MECHANISM mechanism = {

CKM_DSA, NULL_PTR, 0
};
CK_BYTE data[20] = {...};
CK_BYTE signature[40];
CK_USHORT usSignatureLen;
CK_RV rv;

rv = C_SignInit(hSession, &mechanism, hKey);
if(rv == CKR_OK){

rv = C_Sign(hSession, data, sizeof(data), signature,
&usSignatureLen);

}

Page 86 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

♦ ♦ C_SignUpdate

CK_RV CK_ENTRY C_SignUpdate(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pPart,
CK_USHORT usPartLen

);

C_SignUpdate continues a multiple-part signature operation, processing another data part.
hSession is the session’s handle, pPart points to the data part; and usPartLen is the length of the
data part.

The signature operation must have been initialized with C_SignInit. This function may be called
any number of times in succession.

For constraints on data length, refer to the description of the signature mechanism.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_OPERATION_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DATA_INVALID,
CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_DEVICE_ERROR

Example: See C_SignFinal.

♦ ♦ C_SignFinal

CK_RV CK_ENTRY C_SignFinal(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pSignature,
CK_USHORT_PTR pusSignatureLen

);

C_SignFinal finishes a multiple-part signature operation, returning the signature. hSession is the
session’s handle; pSignature points to the location that receives the signature; and
pusSignatureLen points to the location that receives the length of the signature.

The signature operation must have been initialized with C_SignInit.

For constraints on data length, refer to the description of the signature mechanism.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_OPERATION_NOT_INITIALIZED, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;

FUNCTIONS Page 87

Copyright © 1994-5 RSA Laboratories

CK_MECHANISM mechanism = {
CKM_DES_MAC, NULL_PTR, 0

};
CK_BYTE data[] = {...};
CK_BYTE mac[4];
CK_USHORT usMacLen;
CK_RV rv;

rv = C_SignInit(hSession, &mechanism, hKey);
if(rv == CKR_OK){

rv = C_SignUpdate(hSession, data, sizeof(data));
.
.
.
rv = C_SignFinal(hSession, mac, &usMacLen);

}

♦ ♦ C_SignRecoverInit

CK_RV CK_ENTRY C_SignRecoverInit(
CK_SESSION_HANDLE hSession,
CK_MECHANISM_PTR pMechanism,
CK_OBJECT_HANDLE hKey

);

C_SignRecoverInit initializes a signature operation, where the data can be recovered from the
signature. hSession is the session’s handle; pMechanism points to the structure that specifies the
signature mechanism; and hKey is the handle of the signature key.

The CKA_SIGN_RECOVER attribute of the signature key, which indicates whether the key
supports signatures where the data can be recovered from the signature, must be TRUE.

After calling C_SignRecoverInit, the application may call C_SignRecover to sign in a single
part. The signature operation is “active” until the application calls C_SignRecover. At most one
cryptographic operation may be active at a given time in a given session. C_SignRecoverInit
cannot initialize a new operation if another is already active.

The following mechanisms are supported in this version:

Table 9-6, Signature With Recovery Mechanisms

Mechanism Key type

PKCS #1 RSA RSA private

ISO/IEC 9796 RSA RSA private

X.509 (raw) RSA RSA private

Section 10 gives more details on the mechanisms.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID,
CKR_KEY_HANDLE_INVALID, CKR_KEY_TYPE_INCONSISTENT,

Page 88 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

CKR_KEY_SIZE_RANGE, CKR_OPERATION_ACTIVE, CKR_HOST_MEMORY,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example: See C_SignRecover.

♦ ♦ C_SignRecover

CK_RV CK_ENTRY C_SignRecover(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pData,
CK_USHORT usDataLen,
CK_BYTE_PTR pSignature,
CK_USHORT_PTR pusSignatureLen

);

C_SignRecover signs data in a single operation, where the data can be recovered from the
signature. hSession is the session’s handle; pData points to the data; usDataLen is the length of the
data; pSignature points to the location that receives the signature; and pusSignatureLen points to
the location that receives the length of the signature.

The signature operation must have been initialized with C_SignRecoverInit.

For constraints on data length, refer to the description of the signature mechanism.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_OPERATION_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DATA_INVALID,
CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_DEVICE_ERROR

Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_MECHANISM mechanism = {

CKM_RSA_9796, NULL_PTR, 0
};
CK_BYTE data[] = {...};
CK_BYTE signature[128];
CK_USHORT usSignatureLen;
CK_RV rv;

rv = C_SignRecoverInit(hSession, &mechanism, hKey);
if(rv == CKR_OK){

rv = C_SignRecover(hSession, data, sizeof(data), signature,
&usSignatureLen);

}

FUNCTIONS Page 89

Copyright © 1994-5 RSA Laboratories

♦ ♦ C_VerifyInit

CK_RV CK_ENTRY C_VerifyInit(
CK_SESSION_HANDLE hSession,
CK_MECHANISM_PTR pMechanism,
CK_OBJECT_HANDLE hKey

);

C_VerifyInit initializes a verification operation, where the signature is an appendix to the data.
hSession is the session’s handle; pMechanism points to the structure that specifies the verification
mechanism; and hKey is the handle of the verification key.

The CKA_VERIFY attribute of the verification key, which indicates whether the key supports
verification where the signature is an appendix to the data, must be TRUE.

After calling C_VerifyInit, the application may call C_Verify to verify a signature on data in a
single part, or C_VerifyUpdate one or more times followed by C_VerifyFinal to verify a
signature on data in multiple parts. The verification operation is “active” until the application
calls C_Verify or C_VerifyFinal. To process additional data (in single or multiple parts), the
application must call C_VerifyInit again. At most one cryptographic operation may be active at
a given time in a given session. C_VerifyInit cannot initialize a new operation if another is
already active.

The following mechanisms are supported in this version:

Table 9-7, Verification Mechanisms

Mechanism Key type

PKCS #1 RSA1 RSA public

ISO/IEC 9796 RSA1 RSA public

X.509 (raw) RSA1 RSA public

DSA1 DSA public

RC2-MAC RC2

DES-MAC DES

triple-DES-MAC double-length or triple-length DES

1 Single-part only.

Section 10 gives more details on the mechanisms.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID,
CKR_KEY_HANDLE_INVALID, CKR_KEY_TYPE_INCONSISTENT,
CKR_KEY_SIZE_RANGE, CKR_OPERATION_ACTIVE, CKR_HOST_MEMORY,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example: See C_Verify.

Page 90 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

♦ ♦ C_Verify

CK_RV CK_ENTRY C_Verify(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pData,
CK_USHORT usDataLen,
CK_BYTE_PTR pSignature,
CK_USHORT usSignatureLen

);

C_Verify verifies a signature in a single-part operation, where the signature is an appendix to
the data. hSession is the session’s handle; pData points to the data; usDataLen is the length of the
data; pSignature points to the signature; and usSignatureLen is the length of the signature.

The verification operation must have been initialized with C_VerifyInit.

For constraints on data length, refer to the description of the verification mechanism.

C_Verify is equivalent to a sequence of C_VerifyUpdate and C_VerifyFinal.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_OPERATION_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DATA_INVALID,
CKR_SIGNATURE_LEN_RANGE, CKR_SIGNATURE_INVALID, CKR_HOST_MEMORY,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_MECHANISM mechanism = {

CKM_DSA, NULL_PTR, 0
};
CK_BYTE data[20] = {...};
CK_BYTE signature[40];
CK_RV rv;

rv = C_VerifyInit(hSession, &mechanism, hKey);
if(rv == CKR_OK){

rv = C_Verify(hSession, data, sizeof(data), signature,
sizeof(signature));

}

FUNCTIONS Page 91

Copyright © 1994-5 RSA Laboratories

♦ ♦ C_VerifyUpdate

CK_RV CK_ENTRY C_VerifyUpdate(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pPart,
CK_USHORT usPartLen

);

C_VerifyUpdate continues a multiple-part verification operation, processing another data part.
hSession is the session’s handle, pPart points to the data part; and usPartLen is the length of the
data part.

The verification operation must have been initialized with C_VerifyInit. This function may be
called any number of times in succession.

For constraints on data length, refer to the description of the verification mechanism.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_OPERATION_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DATA_INVALID,
CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_DEVICE_ERROR

Example: See C_VerifyFinal.

♦ ♦ C_VerifyFinal

CK_RV CK_ENTRY C_VerifyFinal(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pSignature,
CK_USHORT usSignatureLen

);

C_VerifyFinal finishes a multiple-part verification operation, checking the signature. hSession is
the session’s handle; pSignature points to the signature; and usSignatureLen is the length of the
signature.

The verification operation must have been initialized with C_VerifyInit.

For constraints on data length, refer to the description of the verification mechanism.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_OPERATION_NOT_INITIALIZED, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;

Page 92 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

CK_MECHANISM mechanism = {
CKM_DES_MAC, NULL_PTR, 0

};
CK_BYTE data[] = {...};
CK_BYTE mac[4];
CK_RV rv;

rv = C_VerifyInit(hSession, &mechanism, hKey);
if(rv == CKR_OK){

rv = C_VerifyUpdate(hSession, data, sizeof(data));
.
.
.
rv = C_VerifyFinal(hSession, mac, sizeof(mac));

}

♦ ♦ C_VerifyRecoverInit

CK_RV CK_ENTRY C_VerifyRecoverInit(
CK_SESSION_HANDLE hSession,
CK_MECHANISM_PTR pMechanism,
CK_OBJECT_HANDLE hKey

);

C_VerifyRecoverInit initializes a signature verification operation, where the data is recovered
from the signature. hSession is the session’s handle; pMechanism points to the structure that
specifies the verification mechanism; and hKey is the handle of the verification key.

The CKA_VERIFY_RECOVER attribute of the verification key, which indicates whether the key
supports verification where the data is recovered from the signature, must be TRUE.

After calling C_VerifyRecoverInit, the application may call C_VerifyRecover to verify a
signature on data in a single part. The verification operation is “active” until the application calls
C_VerifyRecover. At most one cryptographic operation may be active at a given time in a given
session. C_VerifyRecoverInit cannot initialize a new operation if another is already active.

The following mechanisms are supported in this version:

Table 9-8, Verification With Recovery Mechanisms

Mechanism Key type

PKCS #1 RSA RSA public

ISO/IEC 9796 RSA RSA public

X.509 (raw) RSA RSA public

Section 10 gives more details on the mechanisms.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_OPERATION_NOT_INITIALIZED, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_KEY_HANDLE_INVALID,
CKR_KEY_TYPE_INCONSISTENT, CKR_KEY_SIZE_RANGE, CKR_OPERATION_ACTIVE,

FUNCTIONS Page 93

Copyright © 1994-5 RSA Laboratories

CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_DEVICE_ERROR

Example: See C_VerifyRecover.

♦ ♦ C_VerifyRecover

CK_RV CK_ENTRY C_VerifyRecover(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pSignature,
CK_USHORT usSignatureLen,
CK_BYTE_PTR pData,
CK_USHORT_PTR pusDataLen

);

C_VerifyRecover verifies a signature in a single-part operation, where the data is recovered
from the signature. hSession is the session’s handle; pSignature points to the signature;
usSignatureLen is the length of the signature; pData points to the location that receives the
recovered data; and pusDataLen points to the location that receives the length of the recovered
data.

The verification operation must have been initialized with C_VerifyRecoverInit.

For constraints on data length, refer to the description of the verification mechanism.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_OPERATION_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DATA_INVALID,
CKR_SIGNATURE_LEN_RANGE, CKR_SIGNATURE_INVALID, CKR_HOST_MEMORY,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_MECHANISM mechanism = {

CKM_RSA_9796, NULL_PTR, 0
};
CK_BYTE data[] = {...};
CK_USHORT usDataLen;
CK_BYTE signature[128];
CK_RV rv;

rv = C_VerifyRecoverInit(hSession, &mechanism, hKey);
if(rv == CKR_OK){

rv = C_VerifyRecover(hSession, signature, sizeof(signature),
data, &usDataLen);

}

Page 94 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

9.8 Key management

Cryptoki provides the following functions for key management. All these functions run in
parallel with the application if the session was opened with the CKF_SERIAL_SESSION flag set
to FALSE and the token supports parallel execution.

♦ ♦ C_GenerateKey

CK_RV CK_ENTRY C_GenerateKey(
CK_SESSION_HANDLE hSession,
CK_MECHANISM_PTR pMechanism,
CK_ATTRIBUTE_PTR pTemplate,
CK_USHORT usCount,
CK_OBJECT_HANDLE_PTR phKey

);

C_GenerateKey generates a secret key, creating a new key object. hSession is the session’s
handle; pMechanism points to the key generation mechanism; pTemplate points to the template
for the new key; usCount is the number of attributes in the template; and phKey points to the
location that receives the handle of the new key.

The following mechanisms are supported in this version:

Table 9-9, Key Generation Mechanisms

Mechanism Key type

RC2 key generation RC2

RC4 key generation RC4

DES key generation DES1

double-length DES key generation double-length DES1

triple-length DES key generation triple-length DES1

1 No known “weak” or “semi-weak” DES keys are generated (see FIPS PUB 74).

Section 10 provides more details on the mechanisms and on which attributes the template must
specify.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY CKR_SESSION_CLOSED,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID,
CKR_OBJECT_CLASS_INVALID, CKR_OBJECT_CLASS_INCONSISTENT,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_TEMPLATE_INCOMPLETE, CKR_TEMPLATE_INCONSISTENT,
CKR_USER_NOT_LOGGED_IN, CKR_TOKEN_WRITE_PROTECTED,
CKR_OPERATION_ACTIVE, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;

FUNCTIONS Page 95

Copyright © 1994-5 RSA Laboratories

CK_MECHANISM mechanism = {
CKM_DES_KEY_GEN, NULL_PTR, 0

};
CK_RV rv;

rv = C_GenerateKey(hSession, &mechanism, NULL_PTR, 0, &hKey);
if(rv == CKR_OK){
 .
 .
 .
}

♦ ♦ C_GenerateKeyPair

CK_RV CK_ENTRY C_GenerateKeyPair(
CK_SESSION_HANDLE hSession,
CK_MECHANISM_PTR pMechanism,
CK_ATTRIBUTE_PTR pPublicKeyTemplate,
CK_USHORT usPublicKeyAttributeCount,
CK_ATTRIBUTE_PTR pPrivateKeyTemplate,
CK_USHORT usPrivateKeyAttributeCount,
CK_OBJECT_HANDLE_PTR phPrivateKey,
CK_OBJECT_HANDLE_PTR phPublicKey

);

C_GenerateKeyPair generates a public-key/private-key pair, creating new key objects. On
input, hSession is the session’s handle; pMechanism points to the key generation mechanism;
pPublicKeyTemplate points to the template for the public key; usPublicKeyAttributeCount is the
number of attributes in the public-key template; pPrivateKeyTemplate points to the template for
the private key; usPrivateKeyAttributeCount is the number of attributes in the private-key
template; phPublicKey points to the location that receives the handle of the new public key; and
phPrivateKey points to the location that receives the handle of the new private key.

The following mechanisms are supported in this version:

Table 9-10, Key Pair Generation Mechanisms

Mechanism Key types

PKCS #1 RSA key pair generation RSA public and private

DSA key pair generation DSA public and private

PKCS #3 Diffie-Hellman key pair generation DH public and private

Section 10 provides more details on the mechanisms and on which attributes the template must
specify.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY CKR_SESSION_CLOSED,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID,
CKR_OBJECT_CLASS_INVALID, CKR_OBJECT_CLASS_INCONSISTENT,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_TEMPLATE_INCOMPLETE, CKR_TEMPLATE_INCONSISTENT,
CKR_USER_NOT_LOGGED_IN, CKR_TOKEN_WRITE_PROTECTED,

Page 96 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

CKR_OPERATION_ACTIVE, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hPublicKey, hPrivateKey;
CK_MECHANISM mechanism = {

CKM_RSA_PKCS_KEY_PAIR_GEN, NULL_PTR, 0
};
CK_USHORT modulusBits = 768;
CK_BYTE publicExponent[] = { 3 };
CK_BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE publicKeyTemplate[] = {

{CKA_ENCRYPT, &true, 1},
{CKA_VERIFY, &true, 1},
{CKA_WRAP, &true, 1},
{CKA_MODULUS_BITS, &modulusBits, sizeof(modulusBits)},
{CKA_PUBLIC_EXPONENT, publicExponent, sizeof (publicExponent)}

};
CK_ATTRIBUTE privateKeyTemplate[] = {

{CKA_TOKEN, &true, 1},
{CKA_PRIVATE, &true, 1},
{CKA_SUBJECT, subject, sizeof(subject)},
{CKA_ID, id, sizeof(id)},
{CKA_SENSITIVE, &true, 1},
{CKA_DECRYPT, &true, 1},
{CKA_SIGN, &true, 1},
{CKA_UNWRAP, &true, 1}

};
CK_RV rv;

rv = C_GenerateKeyPair(hSession, &mechanism, publicKeyTemplate, 5,
privateKeyTemplate, 8, &hPublicKey, &hPrivateKey);

if(rv == CKR_OK){
 .
 .
 .
}

♦ ♦ C_WrapKey

CK_RV CK_ENTRY C_WrapKey(
CK_SESSION_HANDLE hSession,
CK_MECHANISM_PTR pMechanism,
CK_OBJECT_HANDLE hWrappingKey,
CK_OBJECT_HANDLE hKey,
CK_BYTE_PTR pWrappedKey,
CK_USHORT_PTR pusWrappedKeyLen

);

C_WrapKey wraps (i.e., encrypts) a key. hSession is the session’s handle; pMechanism points to
the wrapping mechanism; hWrappingKey is the handle of the wrapping key; hKey is the handle of

FUNCTIONS Page 97

Copyright © 1994-5 RSA Laboratories

the key to be wrapped; pWrappedKey points to the location that receives the wrapped key; and
pusWrappedKeyLen points to the location that receives the length of the wrapped key.

The CKA_WRAP attribute of the wrapping key, which indicates whether the key supports
wrapping, must be TRUE.

The following mechanisms are supported in this version:

Table 9-11, Wrapping Mechanisms

Mechanism Wrapping key type Type of key to be wrapped

PKCS #1 RSA RSA public RC2, RC4, DES, double or triple-length DES

X.509 (raw) RSA RSA public RC2, RC4, DES, double or triple-length DES

RC2 (ECB mode) RC2 RC2, RC4, DES, double or triple-length DES

DES (ECB mode) DES RC2, RC4, DES

triple-DES (ECB mode) double or triple-
length DES

RC2, RC4, DES, double or triple-length DES

Section 10 provides more details on the mechanisms and on which attributes the template must
specify.

Return Values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID,
CKR_WRAPPING_KEY_HANDLE_INVALID,
CKR_WRAPPING_KEY_TYPE_INCONSISTENT, CKR_WRAPPING_KEY_SIZE_RANGE,
CKR_KEY_SENSITIVE, CKR_KEY_HANDLE_INVALID, CKR_KEY_TYPE_INCONSISTENT,
CKR_KEY_SIZE_RANGE, CKR_OPERATION_ACTIVE, CKR_HOST_MEMORY,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hWrappingKey, hKey;
CK_MECHANISM mechanism = {

CKM_DES3_ECB, NULL_PTR, 0
};
CK_BYTE wrappedKey[8];
CK_USHORT usWrappedKeyLen;
CK_RV rv;

rv = C_WrapKey(hSession, &mechanism, hWrappingKey, hKey, wrappedKey,
&usWrappedKeyLen);

if(rv == CKR_OK){
 .
 .
 .
}

Page 98 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

♦ ♦ C_UnwrapKey

CK_RV CK_ENTRY C_UnwrapKey(
CK_SESSION_HANDLE hSession,
CK_MECHANISM_PTR pMechanism,
CK_OBJECT_HANDLE hUnwrappingKey,
CK_BYTE_PTR pWrappedKey,
CK_USHORT usWrappedKeyLen,
CK_ATTRIBUTE_PTR pTemplate,
CK_USHORT usAttributeCount,
CK_OBJECT_HANDLE_PTR phKey

);

C_UnwrapKey unwraps (i.e. decrypts) a wrapped key, creating a new key object. hSession is the
session’s handle; pMechanism points to the unwrapping mechanism; hUnwrappingKey is the
handle of the unwrapping key; pWrappedKey points to the wrapped key; usWrappedKeyLen is the
length of the wrapped key; pTemplate points to the template for the new key; usAttributeCount is
the number of attributes in the template; and phKey points to the location that receives the
handle of the recovered key.

The CKA_UNWRAP attribute of the unwrapping key, which indicates whether the key supports
unwrapping, must be TRUE.

The following mechanisms are supported in this version:

Table 9-12, Unwrapping Mechanisms

Mechanism Unwrapping key type Recovered key type

PKCS #1 RSA RSA private RC2, RC4, DES, double or triple-
length DES

X.509 (raw) RSA RSA private RC2, RC4, DES, double or triple-
length DES

RC2 (ECB mode) RC2 RC2, RC4, DES, double or triple-
length DES

DES (ECB mode) DES RC2, RC4, DES

triple-DES (ECB mode) double or triple-length DES RC2, RC4, DES, double or triple-
length DES

Section 10 provides more details on the mechanisms and on which attributes the template must
specify.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY CKR_SESSION_CLOSED,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID,
CKR_UNWRAPPING_KEY_HANDLE_INVALID,
CKR_UNWRAPPING_KEY_TYPE_INCONSISTENT,
CKR_UNWRAPPING_KEY_SIZE_RANGE, CKR_WRAPPED_KEY_LEN_RANGE,
CKR_WRAPPED_KEY_INVALID, CKR_OBJECT_CLASS_INVALID,
CKR_OBJECT_CLASS_INCONSISTENT, CKR_ATTRIBUTE_TYPE_INVALID,
CKR_ATTRIBUTE_VALUE_INVALID, CKR_TEMPLATE_INCOMPLETE,
CKR_TEMPLATE_INCONSISTENT, CKR_USER_NOT_LOGGED_IN,

FUNCTIONS Page 99

Copyright © 1994-5 RSA Laboratories

CKR_TOKEN_WRITE_PROTECTED, CKR_OPERATION_ACTIVE, CKR_HOST_MEMORY,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hUnwrappingKey, hKey;
CK_MECHANISM mechanism = {

CKM_DES3_ECB, NULL_PTR, 0
};
CK_BYTE wrappedKey[8] = {...};
CK_OBJECT_CLASS keyClass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES;
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {

{CKA_CLASS, &keyClass, sizeof(keyClass)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_ENCRYPT, &true, 1},
{CKA_DECRYPT, &true, 1}

};
CK_RV rv;

rv = C_UnwrapKey(hSession, &mechanism, hUnwrappingKey, wrappedKey,
sizeof(wrappedKey), template, 4, &hKey);

if(rv == CKR_OK){
 .
 .
 .
}

♦ ♦ C_DeriveKey

CK_RV CK_ENTRY C_DeriveKey(
CK_SESSION_HANDLE hSession,
CK_MECHANISM_PTR pMechanism,
CK_OBJECT_HANDLE hBaseKey,
CK_ATTRIBUTE_PTR pTemplate,
CK_USHORT usAttributeCount,
CK_OBJECT_HANDLE_PTR phKey

);

C_DeriveKey derives a key from a base key, creating a new key object. hSession is the session’s
handle; pMechanism points to a structure that specifies the key derivation mechanism; hBaseKey
is the handle of the base key; pTemplate points to the template for the new key; usAttributeCount
is the number of attributes in the template; and phKey points to the location that receives the
handle of the derived key.

The following mechanisms are supported in this version:

Page 100 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

Table 9-13, Key Derivation Mechanisms

Mechanism Base key type Derived key type

Diffie-Hellman key derivation DH private RC2, RC4, DES, double or triple-length
DES, or generic

Section 10 provides more details on the mechanisms and on which attributes the template must
specify.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY CKR_SESSION_CLOSED,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID,
CKR_KEY_HANDLE_INVALID, CKR_KEY_TYPE_INCONSISTENT,
CKR_KEY_SIZE_RANGE, CKR_OBJECT_CLASS_INVALID,
CKR_OBJECT_CLASS_INCONSISTENT, CKR_ATTRIBUTE_TYPE_INVALID,
CKR_ATTRIBUTE_VALUE_INVALID, CKR_TEMPLATE_INCOMPLETE,
CKR_TEMPLATE_INCONSISTENT, CKR_USER_NOT_LOGGED_IN,
CKR_TOKEN_WRITE_PROTECTED, CKR_OPERATION_ACTIVE, CKR_HOST_MEMORY,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hPublicKey, hPrivateKey, hKey;
CK_MECHANISM keyPairMechanism = {

CKM_DH_PKCS_KEY_PAIR_GEN, NULL_PTR, 0
};
CK_BYTE prime[] = {...};
CK_BYTE base[] = {...};
CK_BYTE publicValue[128];
CK_BYTE otherPublicValue[128];
CK_MECHANISM mechanism = {

CKM_DH_PKCS_DERIVE, otherPublicValue, sizeof(otherPublicValue)
};
CK_ATTRIBUTE pTemplate[] = {

CKA_VALUE, &publicValue, sizeof(publicValue)}
};
CK_OBJECT_CLASS keyClass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES;
CK_BBOOL true = TRUE;
CK_ATTRIBUTE publicKeyTemplate[] = {

{CKA_PRIME, prime, sizeof(prime)},
{CKA_BASE, base, sizeof(base)}

};
CK_ATTRIBUTE privateKeyTemplate[] = {

{CKA_DERIVE, &true, 1}
};
CK_ATTRIBUTE template[] = {

{CKA_CLASS, &keyClass, sizeof(keyClass)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_ENCRYPT, &true, 1},
{CKA_DECRYPT, &true, 1}

};
CK_RV rv;

rv = C_GenerateKeyPair(hSession, &keyPairMechanism,
publicKeyTemplate, 2, privateKeyTemplate, 1, &hPublicKey,
&hPrivateKey);

FUNCTIONS Page 101

Copyright © 1994-5 RSA Laboratories

if(rv == CKR_OK){
 rv = C_GetAttributeValue(hSession, hPublicKey, &pTemplate, 1);
 if(rv == CKR_OK){
 .
 /* exchange public values */
 .
 rv = C_DeriveKey(hSession, &mechanism, hPrivateKey, template,

4, &hKey);
 if(rv == CKR_OK){
 .
 .
 .
 }
 }
}

9.9 Random number generation

Cryptoki provides the following functions for generating random numbers. All these functions
run in parallel with the application if the session was opened with the CKF_SERIAL_SESSION
flag set to FALSE and the token supports parallel execution.

♦ ♦ C_SeedRandom

CK_RV CK_ENTRY C_SeedRandom(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pSeed,
CK_USHORT usSeedLen

);

C_SeedRandom mixes additional seed material into the token’s random number generator.
hSession is the session’s handle; pSeed points to the seed material; and usSeedLen is the length in
bytes of the seed material.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED, CKR_HOST_MEMORY,
CKR_DEVICE_MEMORY, CKR_OPERATION_ACTIVE, CKR_DEVICE_REMOVED,
CKR_DEVICE_ERROR

Example:

CK_SESSION_HANDLE hSession;
CK_BYTE seed[] = {...};
CK_RV rv;

rv = C_SeedRandom(hSession, seed, sizeof(seed));

Page 102 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

if(rv == CKR_OK){
 .
 .
 .
}

♦ ♦ C_GenerateRandom

CK_RV CK_ENTRY C_GenerateRandom(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pRandomData,
CK_USHORT usRandomLen

);

C_GenerateRandom generates random data. hSession is the session’s handle; pRandomData
points to the location that receives the random data; and usRandomLen is the length in bytes of
the random data to be generated.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED, CKR_HOST_MEMORY,
CKR_DEVICE_MEMORY, CKR_OPERATION_ACTIVE, CKR_DEVICE_REMOVED,
CKR_DEVICE_ERROR

Example:

CK_SESSION_HANDLE hSession;
CK_BYTE randomData[] = {...};
CK_RV rv;

rv = C_GenerateRandom(hSession, randomData, sizeof(randomData));
if(rv == CKR_OK){
 .
 .
 .
}

9.10 Parallel function management

Cryptoki provides the following functions for managing parallel execution of cryptographic
functions.

♦ ♦ C_GetFunctionStatus

CK_RV CK_ENTRY C_GetFunctionStatus(
CK_SESSION_HANDLE hSession

);

C_GetFunctionStatus obtains an updated status of a function running in parallel with an
application. hSession is the session’s handle.

FUNCTIONS Page 103

Copyright © 1994-5 RSA Laboratories

An application should call this function repeatedly until the return value is no longer
CKR_FUNCTION_NOT_PARALLEL.

Return values: CKR_OK, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_FUNCTION_NOT_PARALLEL, CKR_FUNCTION_PARALLEL,
CKR_FUNCTION_CANCELED, CKR_HOST_MEMORY, CKR_DEVICE_REMOVED,
CKR_DEVICE_ERROR

Example: see C_CancelFunction.

♦ ♦ C_CancelFunction

CK_RV CK_ENTRY C_CancelFunction(
CK_SESSION_HANDLE hSession

);

C_CancelFunction cancels a function running in parallel with an application. hSession is the
session’s handle.

Return values: CKR_OK, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_FUNCTION_NOT_PARALLEL, CKR_HOST_MEMORY

Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hPublicKey, hPrivateKey;
CK_MECHANISM mechanism = {

CKM_RSA_PKCS_KEY_PAIR_GEN, NULL_PTR, 0
};
CK_USHORT modulusBits = 768;
CK_BYTE publicExponent[] = {...};
CK_BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE publicKeyTemplate[] = {

{CKA_ENCRYPT, &true, 1},
{CKA_VERIFY, &true, 1},
{CKA_WRAP, &true, 1},
{CKA_MODULUS_BITS, &modulusBits, sizeof(modulusBits)},
{CKA_PUBLIC_EXPONENT, publicExponent, sizeof(publicExponent)}

};
CK_ATTRIBUTE privateKeyTemplate[] = {

{CKA_TOKEN, &true, 1},
{CKA_PRIVATE, &true, 1},
{CKA_SUBJECT, subject, sizeof(subject)},
{CKA_ID, id, sizeof(id)},
{CKA_SENSITIVE, &true, 1},
{CKA_DECRYPT, &true, 1},
{CKA_SIGN, &true, 1},
{CKA_UNWRAP, &true, 1}

};
CK_RV rv;
rv = C_GenerateKeyPair(hSession, &mechanism, publicKeyTemplate, 5,

privateKeyTemplate, 8, &hPublicKey, &hPrivateKey);

Page 104 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

while (rv == CKR_FUNCTION_PARALLEL) {
/* Check if user want to cancel function */
if(kbhit()){
 if(getch() == 27){ /* If user hit ESCape key */
 C_CancelFunction(hSession);
 break;
 }
}

 /* Perform other tasks or delay */
.
.
.
rv = C_GetFunctionStatus(hSession);

}

9.11 Callback function

Cryptoki uses the following callback function to notify the application of certain events.

♦ ♦ Notify

CK_RV CK_ENTRY Notify(
CK_SESSION_HANDLE hSession,
CK_NOTIFICATION event,
CK_VOID_PTR pApplication

);

Notify is an application callback that processes events. hSession is the session’s handle; event is
the event; and pApplication is an application-defined value (the same as passed to
C_OpenSession).

When event is CKN_SURRENDER, the callback may return CKR_CANCEL to cancel the
operation that is currently active. If the callback returns CKR_OK, Cryptoki continues the
operation. For other events, the callback should return CKR_OK.

Return values: CKR_OK, CKR_CANCEL.

MECHANISMS Page 105

Copyright © 1994-5 RSA Laboratories

10. Mechanisms

This section describes the mechanisms that this version of Cryptoki supports for cryptographic
operations. The following table summarizes the mechanisms and their uses.

Table 10-1, Mechanisms vs. Functions

Functions

Mechanism

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR
1

Digest Generate
2

Wrap

&

Unwrap

Derive

CKM_RSA_PKCS_KEY_PAIR_GEN ü
CKM_RSA_PKCS ü3 ü3 ü3 ü
CKM_RSA_9796 ü3 ü3

CMK_RSA_X_509 ü3 ü3 ü3 ü
CKM_DSA_KEY_PAIR_GEN ü
CKM_DSA ü3

CKM_DH_PKCS_KEY_PAIR_GEN ü
CKM_DH_PKCS_DERIVE ü
CKM_RC2_KEY_GEN ü
CKM_RC2_ECB ü ü
CKM_RC2_CBC ü
CKM_RC2_MAC ü
CKM_RC4_KEY_GEN ü
CKM_RC4 ü
CKM_DES_KEY_GEN ü
CKM_DES_ECB ü ü
CKM_DES_CBC ü
CKM_DES_MAC ü
CKM_DES2_KEY_GEN ü
CKM_DES3_KEY_GEN ü
CKM_DES3_ECB ü ü
CKM_DES3_CBC ü
CKM_DES3_MAC ü
CKM_MD2 ü
CKM_MD5 ü
CKM_SHA_1 ü

1 SR = SignRecover, VR = VerifyRecover. 2 Generate includes GenerateKey and GenerateKeyPair.
3 Single-part operations only.

10.1 PKCS #1 RSA key pair generation

The PKCS #1 RSA key pair generation mechanism, denoted
CKM_RSA_PKCS_KEY_PAIR_GEN, is a key generation mechanism based on the RSA public-
key cryptosystem as defined in PKCS #1.

It does not have a parameter.

Page 106 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

The mechanism generates RSA public/private key pairs with a particular modulus length in bits
and public exponent, as specified in the CKA_MODULUS_BITS and CKA_EXPONENT
attributes of the template for the public key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_MODULUS
attributes to the new public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_MODULUS,
CKA_PUBLIC_EXPONENT, CKA_PRIVATE_EXPONENT, CKA_PRIME_1, CKA_PRIME_2,
CKA_EXPONENT_1, CKA_EXPONENT_2, and CKA_COEFFICIENT attributes to the new
private key. Other attributes supported by the RSA public and private key types (specifically the
flags indicating which functions the keys support) may also be specified in the templates for the
keys or else are assigned default initial values.

Keys generated with this mechanism are compatible with the PKCS #1 RSA, ISO/IEC 9796 RSA,
and X.509 (raw) RSA mechanisms.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of RSA modulus sizes, in bits.

10.2 PKCS #1 RSA

The PKCS #1 RSA mechanism, denoted CKM_RSA_PKCS, is a multi-purpose mechanism based
on the RSA public-key cryptosystem and the block formats defined in PKCS #1. It supports
single-part encryption and decryption, single-part signatures and verification with and without
message recovery, key wrapping, and key unwrapping. This mechanism corresponds only to
the part of PKCS #1 that involves RSA; it does not compute a message digest or a DigestInfo
encoding as specified for the md2withRSAEncryption and md5withRSAEncryption
algorithms in PKCS #1.

It does not have a parameter.

This mechanism wraps and unwraps RC2, RC4, DES, double-length DES and triple-length DES
keys. For wrapping, the “input” to the encryption operation is the value of the CKA_VALUE
attribute of the key that is wrapped; similarly for unwrapping. The mechanism does not wrap
the key type or any other information about the key, except the key length; the application must
convey these separately. In particular, the mechanism contributes only the CKA_VALUE
attribute to the recovered key during unwrapping; other attributes, including the CKA_CLASS
attribute, must be specified in the template since the mechanism does preserve the key length.

Constraints on key types and the length of the data are summarized in the following table. For
encryption, decryption, signatures and signature verification, the input and output data may
begin at the same location in memory. In the table, k is the length in bytes of the RSA modulus.

MECHANISMS Page 107

Copyright © 1994-5 RSA Laboratories

Table 10-2, PKCS #1 RSA Key And Data Length Constraints

Function Key type Input length Output length Comments

C_Encrypt1 RSA public key ≤ k-11 k block type 02

C_Decrypt1 RSA private key k ≤ k-11 block type 01

C_Sign1 RSA private key ≤ k-11 k block type 01

C_SignRecover RSA private key ≤ k-11 k block type 01

C_Verify1 RSA public key ≤ k-11,k (2) N/A block type 02

C_VerifyRecover RSA public key k ≤ k-11 block type 02

C_WrapKey RSA public key ≤ k-11 k block type 01

C_UnwrapKey RSA private key k ≤ k-11 block type 01

1 Single-part operations only. 2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of RSA modulus sizes, in bits.

10.3 ISO/IEC 9796 RSA

The ISO/IEC 9796 RSA mechanism, denoted CKM_RSA_9796, is a mechanism for single-part
signatures and verification with and without message recovery based on the RSA public-key
cryptosystem and the block formats defined in ISO/IEC 9796 and its annex A. This mechanism
is compatible with the draft ANSI X9.31 (assuming the length in bits of the X9.31 hash value is a
multiple of 8).

This mechanism processes only byte strings, whereas ISO/IEC 9796 operates on bit strings.
Accordingly, the following transformations are performed:

• data is converted between byte and bit string formats by interpreting the most significant bit
of the leading byte of the byte string as the leftmost bit of the bit string, and the least
significant bit of the trailing byte of the byte string as the rightmost bit of the bit string (this
assumes the length in bits of the data is a multiple of 8)

• a signature is converted from a bit string to a byte string by padding the bit string on the left
with 0 to 7 zero bits so that the resulting length in bits is a multiple of 8, and converting the
resulting bit string as above; is it converted from a byte string to a bit string by converting
the byte string as above, and removing bits from the left so that the resulting length in bits is
the same as that of the RSA modulus

It does not have a parameter.

Constraints on key types and the length of input and output data are summarized in the
following table. The input and output data may begin at the same location in memory. In the
table, k is the length in bytes of the RSA modulus.

Page 108 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

Table 10-3, ISO/IEC 9796 RSA Key And Data Length Constraints

Function Key type Input length Output length

C_Sign1 RSA private key ≤ k/2 k

C_SignRecover1 RSA private key ≤ k/2 k

C_Verify1 RSA public key ≤ k/2 , k(2) N/A

C_VerifyRecover1 RSA public key k ≤ k/2

1 Single-part operations only. 2 Data length, signature length.

10.4 X.509 (raw) RSA

The X.509 (raw) RSA mechanism, denoted CKM_RSA_X_509, is a multi-purpose mechanism
based on the RSA public-key cryptosystem. It supports single-part encryption and decryption,
single-part signatures and verification with and without message recovery, key wrapping, and
key unwrapping based on the so-called “raw” RSA, as assumed in X.509.

“Raw” RSA as defined here encrypts a byte string by converting it to an integer, most significant
byte first, applying “raw” RSA exponentiation, and converting the result to a byte string, most
significant byte first. The input string, considered as an integer, must be less than the modulus;
the output string is also less than the modulus.

It does not have a parameter.

This mechanism wraps and unwraps RC2, RC4, DES, double-length DES and triple-length DES
keys. For wrapping, the “input” to the encryption operation is the value of the CKA_VALUE
attribute of the key that is wrapped; similarly for unwrapping. The mechanism does not wrap
the key type, key length, or any other information about the key; the application must convey
these separately.

Constraints on key types and the length of input and output data are summarized in the
following table. For encryption, decryption, signatures and signature verification, the input and
output data may begin at the same location in memory. In the table, k is the length in bytes of
the RSA modulus.

Table 10-4, X.509 (Raw) RSA Key And Data Length Constraints

Function Key type Input length Output length

C_Encrypt1 RSA public key ≤ k k

C_Decrypt1 RSA private key k ≤ k

C_Sign1 RSA private key ≤ k k

C_SignRecover1 RSA private key ≤ k k

C_Verify1 RSA public key ≤ k,k(2) N/A

C_VerifyRecover1 RSA public key k ≤ k

C_WrapKey RSA public key ≤ k k

C_UnwrapKey RSA private key k ≤ k

1 Single-part operations only. 2 Data length, signature length.

MECHANISMS Page 109

Copyright © 1994-5 RSA Laboratories

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of RSA modulus sizes, in bits.

This mechanism is intended for compatibility with applications that do not follow the PKCS #1
or ISO/IEC 9796 block formats.

10.5 DSA key pair generation

The DSA key pair generation mechanism, denoted CKM_DSA_KEY_PAIR_GEN, is a key pair
generation mechanism based on the Digital Signature Algorithm defined in FIPS PUB 186.

It does not have a parameter.

The mechanism generates DSA public/private key pairs with a particular prime, subprime and
base, as specified in the CKA_PRIME, CKA_SUBPRIME, and CKA_BASE attributes of the
template for the public key. (Note that this version of Cryptoki does not include a mechanism
for generating these DSA parameters.)

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE and CKA_VALUE attributes to
the new public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_SUBPRIME,
CKA_BASE, and CKA_VALUE attributes to the new private key. Other attributes supported by
the DSA public and private key types (specifically the flags indicating which functions the keys
support) may also be specified in the templates for the keys or else are assigned default initial
values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of DSA prime sizes, in bits.

10.6 DSA

The DSA mechanism, denoted CKM_DSA, is a mechanism for single-part signatures and
verification based on the Digital Signature Algorithm defined in FIPS PUB 186. (This mechanism
corresponds only to the part of DSA that processes the 20-byte hash value; it does not compute
the hash value.)

For the purposes of this mechanism, a DSA signature is a 40-byte string, corresponding to the
concatenation of the DSA values r and s, each represented most significant byte first.

It does not have a parameter.

Constraints on key types and the length of data are summarized in the following table. The
input and output data may begin at the same location in memory.

Page 110 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

Table 10-5, DSA Key And Data Length Constraints

Function Key type Input

length

Output

length

C_Sign1 DSA private key 20 40

C_Verify1 DSA public key 20,402 N/A

1 Single-part operations only. 2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of DSA prime sizes, in bits.

10.7 PKCS #3 Diffie-Hellman key pair generation

The PKCS #3 Diffie-Hellman key pair generation mechanism, denoted
CKM_DH_PKCS_KEY_PAIR_GEN, is a key pair generation mechanism based on Diffie-
Hellman key agreement, as defined in PKCS #3. (This is analogous to what PKCS #3 calls “phase
I.”)

It does not have a parameter.

The mechanism generates Diffie-Hellman public/private key pairs with a particular prime and
base, as specified in the CKA_PRIME and CKA_BASE attributes of the template for the public
key. If the CKA_VALUE_BITS attribute of the private key is specified, the mechanism limits the
length in bits of the private value, as described in PKCS #3. (Note that this version of Cryptoki
does not include a mechanism for generating a prime and base.)

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE and CKA_VALUE attributes to
the new public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_BASE, and
CKA_VALUE attributes to the new private key; other attributes required by the Diffie-Hellman
public and private key types must be specified in the templates.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of Diffie-Hellman prime sizes, in bits.

10.8 PKCS #3 Diffie-Hellman key derivation

The PKCS #3 Diffie-Hellman key derivation mechanism, denoted CKM_DH_PKCS_DERIVE, is
a mechanism for key derivation based on Diffie-Hellman key agreement, as defined in PKCS #3.
(This is analogous to what PKCS #3 calls “phase II.”)

It has a parameter, which is the public value of the other party in the key agreement protocol,
represented most significant byte first.

The mechanism derives RC2, RC4, DES, double-length DES, triple-length DES and generic
secret keys from the public value of the other party and a Diffie-Hellman private key. It
computes a Diffie-Hellman secret value from the public value and private key according to
PKCS #3, and truncates the result according to the CKA_CLASS and CKA_KEY_TYPE attributes
of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute
of the template. (The truncation removes bytes from the leading end of the secret value.) The

MECHANISMS Page 111

Copyright © 1994-5 RSA Laboratories

mechanism contributes the result as the CKA_VALUE attribute of the new key; other attributes
required by the key type must be specified in the template.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of Diffie-Hellman prime sizes, in bits.

10.9 RC2 key generation

The RC2 key generation mechanism, denoted CKM_RC2_KEY_GEN, is a key generation
mechanism for RSA Data Security’s proprietary block cipher RC2.

It does not have a parameter.

The mechanism generates RC2 keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE and CKA_VALUE attributes to
the new key. Other attributes supported by the RC2 key type (specifically, the flags indicating
which functions the key supports) may be specified in the template for the key, or else are
assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of RC2 key sizes, in bits.

10.10 RC2-ECB

RC2-ECB, denoted CKM_RC2_ECB, is a mechanism for single- and multiple-part encryption
and decryption, key wrapping, and key unwrapping based on RSA Data Security’s proprietary
block cipher RC2 and electronic codebook mode as defined in FIPS PUB 81.

It has a parameter, a two-byte string that specifies the effective number of bits in the RC2 search
space, most significant byte first; the value must be between 1 and 1024.

This mechanism wraps and unwraps RC2, RC4, DES, double-length DES and triple-length DES
keys. For wrapping, the mechanism encrypts the value of the CKA_VALUE attribute of the key
that is wrapped, padded on the trailing end with up to seven null bytes so that the resulting
length is a multiple of eight. The output data is the same length as the padded input data. It
does not wrap the key type, key length, or any other information about the key; the application
must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according
to the CKA_CLASS and CKA_KEY_TYPE attributes of the template and, if it has one, and the
key type supports it, the CKA_VALUE_LEN attribute of the template. (Truncation is mainly an
issue for RC2 and RC4 keys.) The mechanism contributes the result as the CKA_VALUE
attribute of the new key; other attributes required by the key type must be specified in the
template.

Constraints on key types and the length of data are summarized in the following table. (These
constraints apply both to data supplied as a single part, and to each part of multiple-part data.)

Page 112 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

For encryption and decryption, the input and output data (parts) may begin at the same location
in memory.

Table 10-6, RC2-ECB Key And Data Length Constraints

Function Key type Input length Output length Comments

C_Encrypt RC2 multiple of 8 same as input length no final part

C_Decrypt RC2 multiple of 8 same as input length no final part

C_WrapKey RC2 any input length rounded up to
multiple of 8

C_UnwrapKey RC2 any input length rounded up to
multiple of 8

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of RC2 effective number of bits.

10.11 RC2-CBC

RC2-CBC, denoted CKM_RC2_CBC, is a mechanism for single- and multiple-part encryption
and decryption, based on RSA Data Security’s proprietary block cipher RC2 and cipher block
chaining mode as defined in FIPS PUB 81.

It has a parameter, a CK_RC2_CBC_PARAMS structure, where the first field indicates the
effective number of bits in the RC2 search space, and the next field is the initialization vector for
cipher block chaining mode. The effective number of bits must be between 1 and 1024.

Constraints on key types and the length of data are summarized in the following table. The
input and output data (parts) may begin at the same location in memory.

Table 10-7, RC2-CBC Key And Data Length Constraints

Function Key type Input length Output length Comments

C_Encrypt RC2 multiple of 8 same as input length no final part

C_Decrypt RC2 multiple of 8 same as input length no final part

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of RC2 effective number of bits.

10.12 RC2-MAC

RC2-MAC, denoted CKM_RC2_MAC, is a mechanism for single- and multiple-part signatures
(data authentication) and verification, based on RSA Data Security’s proprietary block cipher
RC2 and data authentication as defined in FIPS PUB 113.

It has a parameter, a two-byte string that specifies the effective number of bits in the RC2 search
space, most significant byte first; the value must be between 1 and 1024.

Constraints on key types and the length of data are summarized in the following table. (These
constraints apply both to data supplied as a single part, and to each part of multiple-part data.)
For single-part signing, the data and the signature may begin at the same location in memory.

MECHANISMS Page 113

Copyright © 1994-5 RSA Laboratories

Table 10-8, RC2-MAC Key And Data Length Constraints

Function Key type Data length Signature length

C_Sign RC2 any 4

C_Verify RC2 any 4

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of RC2 effective number of bits.

10.13 RC4 key generation

The RC4 key generation mechanism, denoted CKM_RC4_KEY_GEN, is a key generation
mechanism for RSA Data Security’s proprietary stream cipher RC4.

It does not have a parameter.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE and CKA_VALUE attributes to
the new key. Other attributes supported by the RC4 key type (specifically, the flags indicating
which functions the key supports) may be specified in the template for the key, or else are
assigned default initial values.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE and CKA_VALUE attributes to
the new key; other attributes required by the RC4 key type must be specified in the template.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of RC4 key sizes, in bits.

10.14 RC4

RC4, denoted CKM_RC4, is a mechanism for single- and multiple-part encryption and
decryption based on RSA Data Security’s proprietary stream cipher RC4.

It does not have a parameter.

Constraints on key types and the length of input and output data are summarized in the
following table. (These constraints apply both to data supplied as a single part, and to each part
of multiple-part data.) The input and output data (parts) may begin at the same location in
memory.

Table 10-9, RC4 Key And Data Length Constraints

Function Key type Input length Output length Comments

C_Encrypt RC4 any same as input length no final part

C_Decrypt RC4 any same as input length no final part

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of RC4 key sizes, in bits.

Page 114 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

10.15 DES key generation

The DES key generation mechanism, denoted CKM_DES_KEY_GEN, is a key generation
mechanism for DES as defined in FIPS PUB 46-2.

It does not have a parameter.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE and CKA_VALUE attributes to
the new key. Other attributes supported by the DES key type (specifically, the flags indicating
which functions the key supports) may be specified in the template for the key, or else are
assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure are not used.

10.16 DES-ECB

DES-ECB, denoted CKM_DES_ECB, is a mechanism for single- and multiple-part encryption
and decryption, key wrapping and key unwrapping following DES as defined in FIPS PUB 46-2
and electronic codebook mode as defined in FIPS PUB 81. It does not have a parameter.

This mechanism wraps and unwraps RC2, RC4, and single-length DES keys. For wrapping, the
mechanism encrypts the value of the CKA_VALUE attribute of the key that is wrapped, padded
on the trailing end with up to seven null bytes so that the resulting length is a multiple of eight.
The output data is the same length as the padded input data. It does not wrap the key type, key
length or any other information about the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according
to the CKA_CLASS and CKA_KEY_TYPE attributes of the template and, if it has one, and the
key type supports it, the CKA_VALUE_LEN attribute of the template. (Truncation is mainly an
issue for RC2 and RC4 keys.) The mechanism contributes the result as the CKA_VALUE
attribute of the new key; other attributes required by the key type must be specified in the
template.

Constraints on key types and the length of data are summarized in the following table. (These
constraints apply both to data supplied as a single part, and to each part of multiple-part data.)
For encryption and decryption, the input and output data may begin at the same location in
memory.

Table 10-10, DES-ECB Key And Data Length Constraints

Function Key type Input length Output length Comments

C_Encrypt DES multiple of 8 same as input length no final part

C_Decrypt DES multiple of 8 same as input length no final part

C_WrapKey DES any input length rounded up to
multiple of 8

C_UnwrapKey DES any input length rounded up to
multiple of 8

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure are not used.

MECHANISMS Page 115

Copyright © 1994-5 RSA Laboratories

10.17 DES-CBC

DES-CBC, denoted CKM_DES_CBC, is a mechanism for single- and multiple-part encryption
and decryption, following DES as defined in FIPS PUB 46-2 and cipher block chaining mode as
defined in FIPS PUB 81.

It has a parameter, an eight-byte initialization vector for cipher block chaining mode.

Constraints on key types and the length of data are summarized in the following table. (These
constraints apply both to data supplied as a single part, and to each part of multiple-part data.)
The input and output data (parts) may begin at the same location in memory.

Table 10-11, DES-CBC Key And Data Length Constraints

Function Key type Input length Output length Comments

C_Encrypt DES multiple of 8 same as input length no final part

C_Decrypt DES multiple of 8 same as input length no final part

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure are not used.

10.18 DES-MAC

DES-MAC, denoted CKM_DES_MAC, is a mechanism for single- and multiple-part signatures
(data authentication) and verification, following DES as defined in FIPS PUB 46-2 and data
authentication as defined in ANSI X9.9 (binary option) and FIPS PUB 113.

It does not have a parameter.

Constraints on key types and the length of input and output data are summarized in the
following table. (These constraints apply both to data supplied as a single part, and to each part
of multiple-part data.) For single-part signing, the data and signature may begin at the same
location in memory.

Table 10-12, DES-MAC Key And Data Length Constraints

Function Key type Data length Signature length

C_Sign DES any 4

C_Verify DES any 4

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure are not used.

10.19 Double-length DES key generation

The double-length DES key generation mechanism, denoted CKM_DES2_KEY_GEN, is a key
generation mechanism for double-length DES keys.

It does not have a parameter.

Page 116 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE and CKA_VALUE attributes to
the new key. Other attributes supported by the DES key type (specifically, the flags indicating
which functions the key supports) may be specified in the template for the key, or else are
assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure are not used.

10.20 Triple-length DES key generation

The triple-length DES key generation mechanism, denoted CKM_DES3_KEY_GEN, is a key
generation mechanism for triple-length DES keys.

It does not have a parameter.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE and CKA_VALUE attributes to
the new key. Other attributes supported by the DES key type (specifically, the flags indicating
which functions the key supports) may be specified in the template for the key, or else are
assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure are not used.

10.21 Triple-DES-ECB

Triple-DES-ECB, denoted CKM_DES3_ECB, is a mechanism for single- and multiple-part
encryption and decryption, key wrapping, and key unwrapping based on so-called “triple-DES”
and electronic codebook mode as defined in FIPS PUB 81.

Triple-DES as defined here follows the “EDE” convention, operating on either double-length or
triple-length DES keys. With a double-length DES key, the mechanism encrypts each block with
the first DES key, decrypts with the second DES key, then encrypts again with the first DES key.
With a triple-length DES keys, the mechanism encrypts each block with the first DES key,
decrypts with the second DES key, then encrypts with the third DES key.

It does not have a parameter.

This mechanism wraps and unwraps RC2, RC4, DES, double-length DES and triple-length DES
keys. For wrapping, the mechanism encrypts the value of the CKA_VALUE attribute of the key
that is wrapped, padded on the trailing end with up to seven null bytes so that the resulting
length is a multiple of eight. The output data is the same length as the padded input data. It
does not wrap the key type, key length, or any other information about the key; the application
must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according
to the CKA_CLASS and CKA_KEY_TYPE attributes of the template and, if it has one, and the
key type supports it, the CKA_VALUE_LEN attribute of the template. (Truncation is mainly an
issue for RC2 and RC4 keys.) The mechanism contributes the result as the CKA_VALUE
attribute of the new key; other attributes required by the key type must be specified in the
template.

MECHANISMS Page 117

Copyright © 1994-5 RSA Laboratories

Constraints on key types and the length of data are summarized in the following table. (These
constraints apply both to data supplied as a single part, and to each part of multiple-part data.)
For encryption and decryption, the input and output data (parts) may begin at the same location
in memory.

Table 10-13, Triple-DES-ECB Key And Data Length Constraints

Function Key type Input length Output length Comments

C_Encrypt double-length or
triple-length DES

multiple of 8 same as input length no final part

C_Decrypt (same as above) multiple of 8 same as input length no final part

C_WrapKey (same as above) any input length rounded up
to multiple of 8

C_UnwrapKey (same as above) any input length rounded up
to multiple of 8

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure are not used.

10.22 Triple-DES-CBC

Triple-DES-CBC, denoted CKM_DES3_CBC, is a mechanism for encryption and decryption,
based on so-called “triple-DES” and cipher block chaining mode as defined in FIPS PUB 81. It
has a parameter, an eight-byte initialization vector for cipher block chaining mode.

Constraints on key types and the length of input and output data are summarized in the
following table. The input and output data (parts) may begin at the same location in memory.

Table 10-14, Triple-DES-CBC Key And Data Length Constraints

Function Key type Input length Output length Comments

C_Encrypt double-length or
triple-length DES

multiple of 8 same as input length no final part

C_Decrypt double-length or
triple-length DES

multiple of 8 same as input length no final part

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure are not used.

10.23 Triple-DES-MAC

Triple-DES-MAC, denoted CKM_DES3_MAC, is a mechanism for single- and multiple-part
signatures (data authentication) and verification, based on so-called “triple-DES” and data
authentication as defined in FIPS PUB 113.

It does not have a parameter.

Constraints on key types and the length of data are summarized in the following table. (These
constraints apply both to data supplied as a single part, and to each part of multiple-part data.)
For single-part signing, the data and the signature may begin at the same location in memory.

Page 118 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

Table 10-15, Triple-DES-MAC Key And Data Length Constraints

Function Key type Data length Signature length

C_Sign double-length or
triple-length DES

any 4

C_Verify double-length or
triple-length DES

any 4

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure are not used.

10.24 MD2

The MD2 mechanism, denoted CKM_MD2, is a mechanism for message digesting, following the
MD2 message-digest algorithm defined in RFC 1319.

It does not have a parameter.

Constraints on the length of data are summarized in the following table. (These constraints
apply both to data supplied as a single part, and to each part of multiple-part data.) For single-
part digesting, the data and the digest may begin at the same location in memory.

Table 10-16, MD2 Data Length Constraints

Function Data length Digest length

C_Digest any 16

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure are not used.

10.25 MD5

The MD5 mechanism, denoted CKM_MD5, is a mechanism for message digesting, following the
MD5 message-digest algorithm defined in RFC 1321.

It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table.
(These constraints apply both to data supplied as a single part, and to each part of multiple-part
data.) For single-part digesting, the data and the digest may begin at the same location in
memory.

Table 10-17, MD5 Data Length Constraints

Function Data length Digest length

C_Digest any 16

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure are not used.

MECHANISMS Page 119

Copyright © 1994-5 RSA Laboratories

10.26 SHA-1

The SHA-1 mechanism, denoted CKM_SHA_1, is a mechanism for message digesting, following
the Secure Hash Algorithm defined in FIPS PUB 180, as subsequently amended by NIST.

 It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table.
(These constraints apply both to data supplied as a single part, and to each part of multiple-part
data.) For single-part digesting, the data and the digest may begin at the same location in
memory.

Table 10-18, SHA-1 Data Length Constraints

Function Input length Digest length

C_Digest any 20

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure are not used.

APPENDIX A Page 121

Copyright © 1994-5 RSA Laboratories

Appendix A, Token profiles

This appendix describes “profiles,” i.e., sets of mechanisms, which a token should support for
various common types of application. It is expected that these sets would be standardized as
parts of the various applications, for instance within a list of requirements on the module that
provides cryptographic services to the application (which may be a Cryptoki token in some
cases). Thus, these profiles are intended for reference only at this point, and are not part of this
standard.

The following table summarizes the mechanisms relevant to three common types of application.

Table A-1, Mechanisms vs. profiles

Application

Mechanism

Privacy-Enhanced

Mail

Government

Authentication-only

Cellular Digital

Packet Data

CKM_RSA_PKCS_KEY_PAIR_GEN ü
CKM_RSA_PKCS ü
CKM_RSA_9796

CMK_RSA_X_509

CKM_DSA_KEY_PAIR_GEN ü
CKM_DSA ü
CKM_DH_PKCS_KEY_PAIR_GEN ü
CKM_DH_PKCS_DERIVE ü
CKM_RC2_KEY_GEN

CKM_RC2_ECB

CKM_RC2_CBC

CKM_RC2_MAC

CKM_RC4_KEY_GEN ü
CKM_RC4 ü
CKM_DES_KEY_GEN ü
CKM_DES_ECB ü
CKM_DES_CBC ü
CKM_DES_MAC

CKM_DES2_KEY_GEN ü
CKM_DES3_KEY_GEN

CKM_DES3_ECB ü
CKM_DES3_CBC

CKM_DES3_MAC

CKM_MD2 ü
CKM_MD5 ü
CKM_SHA_1 ü
CKM_SHA_1_DERIVE

Page 122 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

A.1 Privacy-Enhanced Mail

Privacy-Enhanced Mail is a set of protocols and mechanisms providing confidentiality and
authentication for Internet electronic mail. Relevant mechanisms include the following (see RFC
1423 for details):

PKCS #1 RSA key pair generation (508–1024 bits)

PKCS #1 RSA (508-1024 bits)

DES key generation

DES-CBC

DES-ECB

double-length DES key generation

triple-DES-ECB

MD2

MD5

Variations on this set are certainly possible. For instance, PEM applications which make use only
of asymmetric key management do not need the DES-ECB or triple-DES-ECB mechanisms, or
the double-length DES key generation mechanism. Similarly, those which make use only of
symmetric key management do not need the PKCS #1 RSA or RSA key pair generation
mechanisms.

An “authentication-only” version of PEM with asymmetric key management would not need
DES-CBC or DES key generation.

It is also possible to consider “exportable” variants of PEM which replace DES-CBC with RC2-
CBC, perhaps limited to 40 bits, and limit the RSA key size to 512 bits.

A.2 Government authentication-only

The U.S. government has standardized on the Digital Signature Algorithm as defined in FIPS
PUB 186 for signatures and the Secure Hash Algorithm as defined in FIPS PUB 180 and
subsequently amended by NIST for message digesting. The relevant mechanisms include the
following:

DSA key generation (512-1024 bits)

DSA (512-1024 bits)

SHA-1

Note that this version of Cryptoki does not have a mechanism for generating DSA parameters.

APPENDIX A Page 123

Copyright © 1994-5 RSA Laboratories

A.3 Cellular Digital Packet Data

Cellular Digital Packet Data (CDPD) is a set of protocols for wireless communication. The basic
set of mechanisms to support CDPD applications includes the following:

Diffie-Hellman key generation (256-1024 bits)

Diffie-Hellman key derivation (256-1024 bits)

RC4 key generation (40-128 bits)

RC4 (40-128 bits)

(The initial CDPD security specification limits the size of the Diffie-Hellman key to 256 bits, but
has been recommended that the size be increased to at least 512 bits.)

Note that this version of Cryptoki does not have a mechanism for generating Diffie-Hellman
parameters.

Page 124 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

APPENDIX B Page 125

Copyright © 1994-5 RSA Laboratories

Appendix B, Comparison of Cryptoki and Other API’s

This appendix compares Cryptoki with the following cryptographic APIs:

• ANSI N13-94 - Guideline X9.TG-12-199X, Using Tessera in Financial Systems: An
Application Programing Interface, April 29, 1994

• FIPS PUB XXX - Standard for Cryptographic Service Calls (Draft), April 15, 1994

• X/Open GCS-API - Generic Cryptographic Service API, Draft 2, February 14, 1995

B.1 ANSI N13-1994

This proposed standard defines an API to the Tessera (now known as Fortezza) PCMCIA
Crypto Card. It is at a level similar to Cryptoki. The following table lists the ANSI N13-1994
functions with the equivalent Cryptoki functions.

ANSI N13-1994 Equivalent Cryptoki

CI_ChangePIN C_InitPIN, C_SetPIN

CI_CheckPIN C_Login

CI_Close C_CloseSession

CI_Decrypt C_DecryptInit, C_Decrypt, C_DecryptUpdate,
C_DecryptFinal

CI_DeleteCertificate C_DestroyObject

CI_DeleteKey C_DestroyObject

CI_Encrypt C_EncryptInit, C_Encrypt, C_EncryptUpdate, C_EncryptFinal

CI_ExtractX C_WrapKey

CI_GenerateIV C_GenerateRandom

CI_GenerateMEK C_GenerateKey

CI_GenerateRa C_GenerateRandom

CI_GenerateRandom C_GenerateRandom

CI_GenerateTEK C_GenerateKey

CI_GenerateX C_GenerateKeyPair

CI_GetCertificate C_FindObjects

CI_Configuration C_GetTokenInfo

CI_GetHash C_DigestInit, C_Digest, C_DigestUpdate, and C_DigestFinal

CI_GetIV No equivalent

CI_GetPersonalityList C_FindObjects

CI_GetState C_GetSessionInfo

CI_GetStatus C_GetTokenInfo

CI_GetTime No equivalent

Page 126 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

ANSI N13-1994 Equivalent Cryptoki

CI_Hash C_DigestInit, C_Digest, C_DigestUpdate, and C_DigestFinal

CI_Initialize C_Initialize

CI_InitializeHash C_DigestInit

CI_InstallX C_UnwrapKey

CI_LoadCertificate C_CreateObject

CI_LoadInitValues C_SeedRandom

CI_LoadIV C_EncryptInit, C_DecryptInit

CI_LoadK C_SignInit

CI_LoadPublicKeyParameters C_CreateObject

CI_LoadPIN C_SetPIN

CI_LoadX C_CreateObject

CI_Open C_OpenSession

CI_Relay C_WrapKey

CI_Reset C_CloseAllSessions

CI_Restore No equivalent

CI_Save No equivalent

CI_Select C_OpenSession

CI_SetKey C_EncryptInit, C_DecryptInit

CI_SetMode C_EncryptInit, C_DecryptInit

CI_SetPersonality C_CreateObject

CI_SetTime No equivalent

CI_Sign C_SignInit, C_Sign

CI_Timestamp No equivalent

CI_Terminate C_CloseAllSessions

CI_UnwrapKey C_UnwrapKey

CI_Verify C_VerifyInit, C_Verify

CI_VerifyTimestamp No equivalent

CI_WrapKey C_WrapKey

CI_Zeroize C_InitToken

B.2 FIPS PUB XXX

This proposed standard defines a set of generic cryptographic service calls for application
programs. It is at a level similar to Cryptoki. The following table lists the FIPS PUB XXX
functions with the equivalent Cryptoki functions.

FIPS PUB XXX Equivalent Cryptoki Functions

VerifyUser C_Login

CreateUser C_InitToken, C_InitPIN

APPENDIX B Page 127

Copyright © 1994-5 RSA Laboratories

FIPS PUB XXX Equivalent Cryptoki Functions

ChangeAuthent C_SetPIN

SetUserCommand No equivalent

ShowUserCommand No equivalent

DeleteUser C_InitToken

Logout C_Logout

Encipher C_EncryptInit, C_Encrypt, C_EncryptUpdate, C_EncryptFinal

Decipher C_DecryptInit, C_Decrypt, C_DecryptUpdate, C_DecryptFinal

ComputeDAC C_SignInit, C_Sign, C_SignUpdate, C_SignFinal

VerifyDAC C_VerifyInit, C_Verify, C_VerifyUpdate, C_VerifyFinal

GenRandNum C_SeedRandom, C_GenerateRandom

GenKey C_GenerateKey

DeleteKey C_DestroyObject

LoadKey C_CreateObject

ShowSecKey C_FindObjects

ExportKey C_WrapKey

ImportKey C_UnwrapKey

XorKeys No equivalent

SetCount No equivalent

ReadCount No equivalent

PubEncipher C_EncryptInit, C_Encrypt, C_EncryptUpdate, C_EncryptFinal

PubDecipher C_DecryptInit, C_Decrypt, C_DecryptUpdate, C_DecryptFinal

Hash C_DigestInit, C_Digest, C_DigestUpdate, C_DigestFinal

PreSign C_SignInit

SetPubParam C_GenerateKeyPair

ReadPubParam C_GetAttributeValue

Sign C_Sign

VerifySig C_VerifyInit, C_Verify

GenPubKey C_GenerateKeyPair

LoadPubKey C_CreateObject

ShowPubKey C_FindObjects

RetrvPubKey C_GetAttributeValue

DeletePubKey C_DestroyObject

LoadCert C_CreateObject

RetrvCert C_GetAttributeValue

PubExportKey C_WrapKey

PubImportKey C_UnwrapKey

Page 128 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

B.3 GCS-API

This proposed standard defines an API to high-level security services such as authentication of
identities and data-origin, non-repudiation, and separation and protection. It is at a higher level
than Cryptoki. The following table lists the GCS-API functions with the Cryptoki functions used
to implement the functions. Note that full support of GCS-API is left for future versions of
Cryptoki.

GCS-API Cryptoki implementation

retrieve_CC

release_CC

generate_hash C_DigestInit, C_Digest

generate_random_number C_GenerateRandom

generate_checkvalue C_SignInit, C_Sign, C_SignUpdate, C_SignFinal

verify_checkvalue C_VerifyInit, C_Verify, C_VerifyUpdate,
C_VerifyFinal

data_encipher C_EncryptInit, C_Encrypt, C_EncryptUpdate,
C_EncryptFinal

data_decipher C_DecryptInit, C_Decrypt, C_DecryptUpdate,
C_DecryptFinal

create_CC

derive_key C_DeriveKey

generate_key C_GenerateKey

store_CC

delete_CC

replicate_CC

export_key C_WrapKey

import_key C_UnwrapKey

archive_CC C_WrapKey

restore_CC C_UnwrapKey

set_key_state

generate_key_pattern

verify_key_pattern

derive_clear_key C_DeriveKey

generate_clear_key C_GenerateKey

load_key_parts

clear_key_encipher C_WrapKey

clear_key_decipher C_UnwrapKey

change_key_context

load_initial_key

generate_initial_key

set_current_master_key

protect_under_new_master_key

APPENDIX B Page 129

Copyright © 1994-5 RSA Laboratories

GCS-API Cryptoki implementation

protect_under_current_master_key

initialise_random_number_generator C_SeedRandom

install_algorithm

de_install_algorithm

disable_algorithm

enable_algorithm

set_defaults

