
Copyright © 1996-1999 RSA Laboratories, a division of RSA Data Security, Inc., a Security Dynamics

Company. License to copy this document is granted provided that it is identified as “RSA Data Security,

Inc. Public-Key Cryptography Standards (PKCS)” in all material mentioning or referencing this document.

003-903077-100-001-000

PKCS 12 v1.0: Personal Information Exchange Syntax

RSA Laboratories

June 24, 1999

Table of Contents

1 INTRODUCTION... 2

2 DEFINITIONS AND NOTATION .. 2

3 OVERVIEW .. 4

3.1 EXCHANGE MODES .. 4

3.2 MODE CHOICE POLICIES... 5

3.3 TRUSTED PUBLIC KEYS .. 5

3.4 THE AUTHENTICATEDSAFE ... 6

4 PFX PDU SYNTAX .. 7

4.1 THE AUTHENTICATEDSAFE TYPE... 8

4.2 THE SAFEBAG TYPE .. 8

4.2.1 The KeyBag type ... 9
4.2.2 The PKCS-8ShroudedKeyBag type... 10
4.2.3 The CertBag type .. 10
4.2.4 The CRLBag type .. 10
4.2.5 The SecretBag type ... 11
4.2.6 The SafeContents type... 11

5 USING PFX PDUS .. 11

5.1 CREATING PFX PDUS... 11

5.2 IMPORTING KEYS, ETC., FROM A PFX PDU... 12

A. MESSAGE AUTHENTICATION CODES (MACS) ... 13

B. DERIVING KEYS AND IVS FROM PASSWORDS AND SALT.. 13

B.1 PASSWORD FORMATTING... 13

B.2 GENERAL METHOD .. 14

B.3 MORE ON THE ID BYTE ... 15

B.4 KEYS AND IVS FOR PASSWORD PRIVACY MODE... 15

B.5 KEYS FOR PASSWORD INTEGRITY MODE .. 16

PKCS 12 V1.0: PERSONAL INFORMATION EXCHANGE SYNTAX 2

Copyright © 1999 RSA Laboratories

C. ASN.1 MODULE... 17

D. A NOTE ON EXPORT REGULATIONS... 20

E. INTELLECTUAL PROPERTY CONSIDERATIONS.. 21

F. REFERENCES .. 21

G. ACKNOWLEDGMENTS... 22

H. ABOUT PKCS... 22

1 Introduction

This standard describes a transfer syntax for personal identity information, including

private keys, certificates, miscellaneous secrets, and extensions. Machines, applications,

browsers, Internet kiosks, and so on, that support this standard will allow a user to import,

export, and exercise a single set of personal identity information.

This standard supports direct transfer of personal information under several privacy and

integrity modes. The most secure of the privacy and integrity modes require the source

and destination platforms to have trusted public/private key pairs usable for digital

signatures and encryption, respectively. The standard also supports lower security,

password-based privacy and integrity modes for those cases where trusted public/private

key pairs are not available.

This standard should be amenable to both software and hardware implementations.

Hardware implementations offer physical security in tamper-resistant tokens such as

smart cards and PCMCIA devices.

This standard can be viewed as building on PKCS #8 [17] by including essential but

ancillary identity information along with private keys and by instituting higher security

through public-key privacy and integrity modes.

2 Definitions and notation

AlgorithmIdentifier: An ASN.1 type that identifies an algorithm (by an object identifier)

and any associated parameters. This type is defined in [10].

ASN.1: Abstract Syntax Notation One, as defined in [2], [3], [4], [5], [6] and [7].

Attribute: An ASN.1 type that identifies an attribute type (by an object identifier) and an

associated attribute value. The ASN.1 type Attribute is defined in [9].

PKCS 12 V1.0: PERSONAL INFORMATION EXCHANGE SYNTAX 3

Copyright © 1999 RSA Laboratories

Certificate: A digitally signed data unit binding a public key to identity information. A

specific format for identity certificates is defined in [10]. Another format is described in

[13].

Certificate Revocation List (CRL): A digitally signed list of certificates that should no

longer be honored, having been revoked by the issuers or a higher authority. One format

for CRLs is defined in [10].

ContentInfo: An ASN.1 type used to hold data that may have been cryptographically

protected. This type is defined in [16].

DER: Distinguished Encoding Rules, as defined in [8].

Destination platform: The ultimate, final target platform for the personal information

originating from the source platform. Even though certain information may be

transported from the destination platform to the source platform, the ultimate target for

personal information is always called the destination platform.

DigestInfo: An ASN.1 type used to hold a message digest. This type is defined in [16].

Encryption Key Pair (DestEncK): A public/private key pair used for the public-key

privacy mode of this standard. The public half is called PDestEncK (TPDestEncK when

emphasizing that the public key is “trusted”), and the private half is called VDestEncK.

Export time: The time that a user reads personal information from a source platform and

transforms the information into an interoperable, secure protocol data unit (PDU).

Import time: The time that a user writes personal information from a Safe PDU, to a

destination platform.

Message Authentication Code (MAC): A type of collision-resistant, “unpredictable”

function of a message and a secret key. MACs are used for data authentication, and are

akin to secret-key digital signatures in many respects.

Object Identifier: A sequence of integers that uniquely identifies an associated data

object in a global name space administrated by a hierarchy of naming authorities. This is a

primitive data type in ASN.1.

PFX: The top-level exchange PDU defined in this standard.

Platform: A combination of machine, operating system, and applications software within

which the user exercises personal identity. An application, in this context, is software

that uses personal information. Two platforms differ if their machine types differ or if

their applications software differs. There is at least one platform per user in multi-user

systems.

PKCS 12 V1.0: PERSONAL INFORMATION EXCHANGE SYNTAX 4

Copyright © 1999 RSA Laboratories

Protocol Data Unit (PDU): A sequence of bits in machine-independent format

constituting a message in a protocol.

Shrouding: Encryption as applied to private keys, possibly in concert with a policy that

prevents the plaintext of the key from ever being visible beyond a certain, well-defined

interface.

Signature Key Pair (SrcSigK): A platform-specific signature key pair used for the

public-key integrity mode of this standard. The public half is called PSrcSigK

(TPSrcSigK when emphasizing that the public key is “trusted”), and the private half is

called VSrcSigK.

Source platform: The origin platform of the personal information ultimately intended for

the destination platform. Even though certain information may be transported from the

destination platform to the source platform, the platform that is the origin of personal

information is always called the source platform.

In this document, ASN.1 types, values and object sets are written in bold Helvetica.

3 Overview

3.1 Exchange modes

There are four combinations of privacy modes and integrity modes. The privacy modes

use encryption to protect personal information from exposure, and the integrity modes

protect personal information from tampering. Without protection from tampering, an

adversary could conceivably substitute invalid information for the user’s personal

information without the user being aware of the substitution.

The following are the privacy modes:

• Public-key privacy mode: Personal information is enveloped on the source platform

using a trusted encryption public key of a known destination platform (see Section

3.3). The envelope is opened with the corresponding private key.

• Password privacy mode: Personal information is encrypted with a symmetric key

derived from a user name and a privacy password, as in [15]. If password integrity

mode is used as well, the privacy password and the integrity password may or may not

be the same.

The following are the integrity modes:

PKCS 12 V1.0: PERSONAL INFORMATION EXCHANGE SYNTAX 5

Copyright © 1999 RSA Laboratories

• Public-key integrity mode: Integrity is guaranteed through a digital signature on the

contents of the PFX PDU, which is produced using the source platform’s private

signature key. The signature is verified on the destination platform by using the

corresponding public key (see Section 3.4).

• Password integrity mode: Integrity is guaranteed through a message authentication
code (MAC) derived from a secret integrity password. If password privacy mode is

used as well, the privacy password and the integrity password may or may not be the

same.

3.2 Mode choice policies

All combinations of the privacy and integrity modes are permitted in this standard. Of

course, good security policy suggests that certain practices be avoided, e.g., it can be

unwise to transport private keys without physical protection when using password privacy

mode or when using public-key privacy mode with weak symmetric encryption.

Unfortunately, weak symmetric encryption may be required for products exported from

certain countries under applicable export regulations (see Appendix D).

In general, the public key modes for both privacy and integrity are preferable to the

password modes (from a security viewpoint). However, it is not always possible to use

the public key modes. For example, it may not be known at export time what the

destination platform is; if this is the case, then the use of the public-key privacy mode is

precluded.

3.3 Trusted public keys

Asymmetric key pairs may be used in this standard in two ways: public-key privacy mode

and public-key integrity mode. For public-key privacy mode, an encryption key pair is

required; for public-key integrity mode, a signature key pair is required.

It may be appropriate for the keys discussed in this section to be platform-specific keys

dedicated solely for the purpose of transporting a user’s personal information. Whether

or not that is the case, though, the keys discussed here should not be confused with the

user’s personal keys that the user wishes to transport from one platform to another (these

latter keys are stored within the PDU).

For public-key privacy mode, the private key from the encryption key pair is kept on the

destination platform, where it is ultimately used to open a private envelope. The

corresponding trusted public key is called TPDestEncK.

PKCS 12 V1.0: PERSONAL INFORMATION EXCHANGE SYNTAX 6

Copyright © 1999 RSA Laboratories

For public-key integrity mode, the private key from the signature pair is kept on the

source platform, where it is used to sign personal information. The corresponding trusted

public key is called TPSrcSigK.

For both uses of public/private key pairs, the public key from the key pair must be

transported to the other platform such that it is trusted to have originated at the correct

platform. Judging whether or not a public key is trusted in this sense must ultimately be

left to the user. There are a variety of methods for ensuring that a public key is trusted.

The processes of imbuing keys with trust and of verifying trustworthiness of keys are not

discussed further in this document. Whenever asymmetric keys are discussed in what

follows, the public keys are assumed to be trusted.

3.4 The AuthenticatedSafe

Each compliant platform shall be able to import and export AuthenticatedSafe PDUs

wrapped in PFX PDUs.

For integrity, the AuthenticatedSafe is either signed (if public-key integrity mode is used)

or MACed (if password integrity mode is used) to produce a PFX PDU. If the

AuthenticatedSafe is signed, then it is accompanied by a digital signature, which was

produced on the source platform with a private signature key, VSrcSigK, corresponding

to a trusted public signature key, TPSrcSigK. TPSrcSigK must accompany the PFX to the

destination platform, where the user can verify the trust in the key and can verify the

signature on the AuthenticatedSafe. If the AuthenticatedSafe is MACed, then it is

accompanied by a Message Authentication Code computed from a secret integrity

password; salt bits; an iteration count and the contents of the AuthenticatedSafe.

The AuthenticatedSafe itself consists of a sequence of ContentInfo values, some of which

may consist of plaintext (data), and others which may either be enveloped (if public-key

privacy mode is used) or encrypted (if password privacy mode is used). If the contents are

enveloped, then they are encrypted with a symmetric cipher under a freshly generated key,

which is in turn encrypted with RSA asymmetric encryption. The RSA public key used to

encrypt the symmetric key is called TPDestEncK, and corresponds to an RSA private key,

VDestEncK, on the destination platform. TPDestEncK needs to be trusted by the user

when it is used at export time. If the contents are encrypted, then they are encrypted with

a symmetric cipher under a key derived from a secret privacy password, salt bits and an

iteration counter.

Each ContentInfo contains an arbitrary collection of private keys, PKCS #8 shrouded

private keys, certificates, CRLs, or opaque data objects, at the user’s discretion, stored in

values of type SafeContents.

PKCS 12 V1.0: PERSONAL INFORMATION EXCHANGE SYNTAX 7

Copyright © 1999 RSA Laboratories

The raison d’être for the unencrypted option is that some governments restrict certain

uses of cryptography. Having several parts in an AuthenticatedSafe keeps implementers’

options open. For example, it may be the case that strong cryptography can be used to

make PKCS #8-shrouded keys, but then these shrouded keys should not be further

encrypted, because super-encryption can limit a product’s exportability. The multi-part

AuthenticatedSafe design permits this possibility.

Around the AuthenticatedSafe is the integrity-mode wrapper, which protects the entire

contents of the AuthenticatedSafe (including unencrypted parts, if they are present). This

is the reverse of the wrapping order in many protocols, in which privacy is the outermost

protection. This latter, more common wrapping order avoids signatures on encrypted

data, which are undesirable under certain circumstances; however, these circumstances do

not apply to this document, and it is therefore preferable to protect the integrity of as

much information as possible.

4 PFX PDU syntax

This format corresponds to the data model presented above, with wrappers for privacy

and integrity. This section makes free reference to PKCS #7 [16], and assumes the reader

is familiar with terms defined in that document.

All modes of direct exchange use the same PDU format. ASN.1 and BER-encoding

ensure platform-independence.

This standard has one ASN.1 export: PFX. This is the outer integrity wrapper. Instances

of PFX contain:

1. A version indicator. The version shall be v3 for this version of this document.

2. A PKCS #7 ContentInfo, whose contentType is signedData in public-key integrity

mode and data in password integrity mode.

3. An optional instance of MacData, present only in password integrity. This object, if

present, contains a PKCS #7 DigestInfo, which holds the MAC value, a macSalt and

an iterationCount. As described in Appendix B, the MAC key is derived from the

password, the macSalt and the iterationCount; as described in Section 5, the MAC is

computed from the authSafe value and the MAC key via HMAC [11]. The password

and the MAC key are not actually present anywhere in the PFX. The salt and (to a

certain extent) the iteration count thwarts dictionary attacks against the integrity

password.

PFX ::= SEQUENCE {
 version INTEGER {v3(3)}(v3,...),

PKCS 12 V1.0: PERSONAL INFORMATION EXCHANGE SYNTAX 8

Copyright © 1999 RSA Laboratories

 authSafe ContentInfo,
 macData MacData OPTIONAL
}

MacData ::= SEQUENCE {
 mac DigestInfo,

macSalt OCTET STRING,
iterations INTEGER DEFAULT 1
-- Note: The default is for historical reasons and its use is deprecated. A higher
-- value, like 1024, is recommended.

}

4.1 The AuthenticatedSafe type

As mentioned, the contentType field of authSafe shall be of type data or signedData. The

content field of the authSafe shall, either directly (data case) or indirectly (signedData
case) contain a BER-encoded value of type AuthenticatedSafe.

AuthenticatedSafe ::= SEQUENCE OF ContentInfo
-- Data if unencrypted
-- EncryptedData if password-encrypted
-- EnvelopedData if public key-encrypted

An AuthenticatedSafe contains a sequence of ContentInfo values. The content field of

these ContentInfo values contains either plaintext, encrypted or enveloped data. In the

case of encrypted or enveloped data, the plaintext of the data holds the BER-encoding of

an instance of SafeContents. Section 5.1 of this document describes the construction of

values of type AuthenticatedSafe in more detail.

4.2 The SafeBag type

The SafeContents type is made up of SafeBags. Each SafeBag holds one piece of

information—a key, a certificate, etc.—which is identified by an object identifier.

SafeContents ::= SEQUENCE OF SafeBag

SafeBag ::= SEQUENCE {
 bagId BAG-TYPE.&id ({PKCS12BagSet})
 bagValue [0] EXPLICIT BAG-TYPE.&Type({PKCS12BagSet}{@bagId}),
 bagAttributes SET OF PKCS12Attribute OPTIONAL
}

PKCS12Attribute ::= SEQUENCE {
attrId ATTRIBUTE.&id ({PKCS12AttrSet}),
attrValues SET OF ATTRIBUTE.&Type ({PKCS12AttrSet}{@attrId})

} -- This type is compatible with the X.500 type ’Attribute’

PKCS12AttrSet ATTRIBUTE ::= {

PKCS 12 V1.0: PERSONAL INFORMATION EXCHANGE SYNTAX 9

Copyright © 1999 RSA Laboratories

friendlyName | -- from PKCS #9
localKeyId, -- from PKCS #9
... -- Other attributes are allowed

}

The optional bagAttributes field allows users to assign nicknames and identifiers to keys,

etc., and permits visual tools to display meaningful strings of some sort to the user.

Six types of safe bags are defined in this version of this document:

bagtypes OBJECT IDENTIFIER ::= {pkcs-12 10 1}

BAG-TYPE ::= TYPE-IDENTIFIER

keyBag BAG-TYPE ::=
{KeyBag IDENTIFIED BY {bagtypes 1}}

pkcs8ShroudedKeyBag BAG-TYPE ::=
{PKCS8ShroudedKeyBag IDENTIFIED BY {bagtypes 2}}

certBag BAG-TYPE ::=
{CertBag IDENTIFIED BY {bagtypes 3}}

crlBag BAG-TYPE ::=
{CRLBag IDENTIFIED BY {bagtypes 4}}

secretBag BAG-TYPE ::=
{SecretBag IDENTIFIED BY {bagtypes 5}}

safeContentsBag BAG-TYPE ::=
{SafeContents IDENTIFIED BY {bagtypes 6}}

PKCS12BagSet BAG-TYPE ::= {
keyBag |
pkcs8ShroudedKeyBag |
certBag |
crlBag |
secretBag |
safeContentsBag,
... -- For future extensions

}

As new bag types become recognized in future versions of this standard, the

PKCS12BagSet may be extended.

4.2.1 The KeyBag type

A KeyBag is a PKCS #8 PrivateKeyInfo. Note that a KeyBag contains only one private

key.

KeyBag ::= PrivateKeyInfo

PKCS 12 V1.0: PERSONAL INFORMATION EXCHANGE SYNTAX 10

Copyright © 1999 RSA Laboratories

4.2.2 The PKCS-8ShroudedKeyBag type

A PKCS8ShroudedKeyBag holds a private key, which has been shrouded in accordance

with PKCS #8. Note that a PKCS8ShroudedKeyBag holds only one shrouded private key.

PKCS8ShroudedKeyBag ::= EncryptedPrivateKeyInfo

4.2.3 The CertBag type

A CertBag contains a certificate of a certain type. Object identifiers are used to distinguish

between different certificate types.

CertBag ::= SEQUENCE {
certId BAG-TYPE.&id ({CertTypes}),

 certValue [0] EXPLICIT BAG-TYPE.&Type ({CertTypes}{@certId})
}

x509Certificate BAG-TYPE ::=
{OCTET STRING IDENTIFIED BY {certTypes 1}}
-- DER-encoded X.509 certificate stored in OCTET STRING

sdsiCertificate BAG-TYPE ::=
{IA5String IDENTIFIED BY {certTypes 2}}
-- Base64-encoded SDSI certificate stored in IA5String

CertTypes BAG-TYPE ::= {
x509Certificate |
sdsiCertificate,
... -- For future extensions

}

4.2.4 The CRLBag type

A CRLBag contains a certificate revocation list (CRL) of a certain type. Object identifiers

are used to distinguish between different CRL types.

CRLBag ::= SEQUENCE {
crlId BAG-TYPE.&id ({CRLTypes}),

 crlValue [0] EXPLICIT BAG-TYPE.&Type ({CRLTypes}{@crlId})
}

x509CRL BAG-TYPE ::=
{OCTET STRING IDENTIFIED BY {certTypes 1}
-- DER-encoded X.509 CRL stored in OCTET STRING

CRLTypes BAG-TYPE ::= {
x509CRL,
... -- For future extensions

}

PKCS 12 V1.0: PERSONAL INFORMATION EXCHANGE SYNTAX 11

Copyright © 1999 RSA Laboratories

4.2.5 The SecretBag type

Each of the user’s miscellaneous personal secrets is contained in an instance of

SecretBag, which holds an object identifier-dependent value. Note that a SecretBag
contains only one secret.

SecretBag ::= SEQUENCE {
 secretTypeId BAG-TYPE.&id ({SecretTypes}),
 secretValue [0] EXPLICIT BAG-TYPE.&Type ({SecretTypes}{secretTypeId})
}

SecretTypes BAG-TYPE ::= {
... -- For future extensions

}

Implementers' can add values at their own discretion to this set.

4.2.6 The SafeContents type

The sixth type of bag that can be held in a SafeBag is a SafeContents. This recursive
structure allows for arbitrary nesting of multiple KeyBags, PKCS8ShroudedKeyBags,
CertBags, CRLBags and SecretBags within the top-level SafeContents.

5 Using PFX PDUs

This section describes creation and usage of PFX PDUs.

5.1 Creating PFX PDUs

1) It is somewhat clear from the ASN.1 how to make a number of instances of
SafeContents, each containing a number of (possibly nested) instances of SafeBag.
Let us assume, therefore, a number of instances SC1, SC2,..., SCn of SafeContents.
Note that there can be a more or less arbitrary number of instances of SafeContents in
a PFX PDU. As will be seen in step 2, each instance can be encrypted (or not)
separately.

2) For each SCI, depending on the chosen encryption option,

a) If SCi is not to be encrypted, make a ContentInfo CIi holding content type Data.
The contents of the Data OCTET STRING shall be a BER-encoding of SCi

(including tag, length, and value octets).

PKCS 12 V1.0: PERSONAL INFORMATION EXCHANGE SYNTAX 12

Copyright © 1999 RSA Laboratories

b) If SCi is to be encrypted with a password, make a ContentInfo CIi of type

EncryptedData. The encryptedContentInfo field of CIi has its contentType field

set to data and its encryptedContent field set to the encryption of the BER-

encoding of SCi (note that the tag and length octets shall be present).

c) If SCi is to be encrypted with a public key, make a ContentInfo CIi of type

EnvelopedData in essentially the same fashion as the EncryptedData ContentInfo
was made in b).

3) Make an instance of AuthenticatedSafe by stringing together the CIi ’s in a

SEQUENCE.

4) Make a ContentInfo T holding content type Data. The contents of the Data OCTET
STRING shall be a BER-encoding of the AuthenticatedSafe value (including tag,

length, and value octets).

5) For integrity protection,

a) If the PFX PDU is to be authenticated with a digital signature, make a ContentInfo
C of type SignedData. The contentInfo field of the SignedData in C has T in it. C
is the ContentInfo in the top-level PFX structure.

b) If the PFX PDU is to be authenticated with HMAC, then an SHA-1 HMAC is

computed on the contents of the Data in T (i.e. excluding the OCTET STRING tag

and length bytes). This is exactly what would be initially digested in step 5a) if

public-key authentication were being used.

5.2 Importing keys, etc., from a PFX PDU

Importation from a PFX is accomplished essentially by reversing the procedure for

creating a PFX. In general, when an application imports keys, etc., from a PFX, it should

ignore any object identifiers that it is not familiar with. At times, it may be appropriate to

alert the user to the presence of such object identifiers.

Special care may be taken by the application when importing an item in the PFX would

require overwriting an item, which already exists locally. The behavior of the application

when such an item is encountered may depend on what the item is (i.e., it may be that a

PKCS #8-shrouded private key and a CRL should be treated differently here).

Appropriate behavior may be to ask the user what action should be taken for this item.

PKCS 12 V1.0: PERSONAL INFORMATION EXCHANGE SYNTAX 13

Copyright © 1999 RSA Laboratories

A. Message Authentication Codes (MACs)

A MAC is a special type of function of a message (data bits) and an integrity key. It can

be computed or checked only by someone possessing both the message and the integrity

key. Its security follows from the secrecy of the integrity key. In this standard, MACing

is used in password integrity mode.

This document uses a particular type of MAC called HMAC [11], which can be

constructed from any of a variety of hash functions. Note that the specification in [11]

differs somewhat from the specification in [12]. The hash function HMAC is based on is

identified in the MacData which holds the MAC; for this version of this standard, the hash

function should be SHA-1. As indicated in Section B.4, this implies that SHA-1 is also

used to derive the MAC key itself in password integrity mode, and that the MAC key has

160 bits.

When password integrity mode is used to secure a PFX PDU, an SHA-1 HMAC is

computed on the BER-encoding of the contents of the content field of the authSafe field

in the PFX PDU (see Section 5.1).

B. Deriving keys and IVs from passwords and salt

We present here a general method for using a hash function to produce various types of

pseudo-random bits from a password and a string of salt bits. This method is used for

password privacy mode and password integrity mode in the present standard
1
.

B.1 Password formatting

The underlying password-based encryption methods in PKCS #5 v1.5 viewed passwords

(and salt) as being simple byte strings. The underlying password-based encryption

methods and the underlying password-based authentication methods in this version of this

document are similar.

What’s left unspecified in the above paragraph is precisely where the byte string

representing a password comes from (this is not an issue with salt strings, since they are

supplied as a password-based encryption (or authentication) parameter). PKCS #5

Version 1.5 says: “How passwords are entered by an entity (a user) is outside the scope of
this standard. However, it is recommended in the interest of interoperability that when

1 Note: In general, procedures and algorithms defined in [15] should be used, this appendix is present only

to describe password-based key derivation using algorithms defined in this document.

PKCS 12 V1.0: PERSONAL INFORMATION EXCHANGE SYNTAX 14

Copyright © 1999 RSA Laboratories

messages encrypted according to this standard are to be transferred from one computer

system to another, the password should consist of printable ASCII characters (values 32

to 126 inclusive). This recommendation may require that password-entry software

support optional conversion from a local character set to ASCII.”

In this specification however, all passwords are created from BMPStrings with a NULL
terminator. This means that each character in the original BMPString is encoded in 2
bytes in big-endian format (most-significant byte first). There are no Unicode byte order
marks. The 2 bytes produced from the last character in the BMPString are followed by
two additional bytes with the value 0x00.

To illustrate with a simple example, if a user enters the 6-character password "Beavis",
the string that PKCS #12 implementations should treat as the password is the following
string of 14 bytes:

0x00 0x42 0x00 0x65 0x00 0x61 0x00 0x76 0x00 0x69 0x00 0x73 0x00 0x00

B.2 General method

Let H be a hash function built around a compression function f: Z2
u × Z2

v → Z2
u (that is, H

has a chaining variable and output of length u bits, and the message input to the
compression function of H is v bits). For MD2 and MD5, u=128 and v=512; for SHA-1,
u=160 and v=512. Furthermore, let r be the iteration count.

We assume here that u and v are both multiples of 8, as are the lengths of the password
and salt strings (which we denote by p and s, respectively) and the number n of pseudo-
random bits required. In addition, u and v are of course non-zero.

The following procedure can be used to produce pseudo-random bits for a particular
“purpose” which is identified by a byte, ID. The meaning of this ID byte will be
discussed later.

1. Construct a string, D (the “diversifier”), by concatenating v/8 copies of ID.

2. Concatenate copies of the salt together to create a string S of length v⋅s/v bits (the
final copy of the salt may be truncated to create S). Note that if the salt is the empty
string, then so is S.

3. Concatenate copies of the password together to create a string P of length v⋅p/v bits
(the final copy of the password may be truncated to create P). Note that if the
password is the empty string, then so is P.

4. Set I=S||P to be the concatenation of S and P.

PKCS 12 V1.0: PERSONAL INFORMATION EXCHANGE SYNTAX 15

Copyright © 1999 RSA Laboratories

5. Set c=n/u .

6. For i=1, 2, …, c, do the following:

a) Set Ai=Hr(D||I). (i.e. the r th hash of D||I, H(H(H(…H(D||I))))

b) Concatenate copies of Ai to create a string B of length v bits (the final copy of Ai

may be truncated to create B).

c) Treating I as a concatenation I0, I1, …, Ik-1 of v-bit blocks, where k=s/v+p/v ,
modify I by setting I j=(I j+B+1) mod 2v for each j.

7. Concatenate A1, A2, …, Ac together to form a pseudo-random bit string, A.

8. Use the first n bits of A as the output of this entire process.

If the above process is being used to generate a DES key, the process should be used to
create 64 random bits, and the key’s parity bits should be set after the 64 bits have been
produced. Similar concerns hold for 2-key and 3-key triple-DES keys, for CDMF keys,
and for any similar keys with parity bits “built into them”.

B.3 More on the ID byte

This standard specifies 3 different values for the ID byte mentioned above:

1. If ID=1, then the pseudo-random bits being produced are to be used as key material
for performing encryption or decryption.

2. If ID=2, then the pseudo-random bits being produced are to be used as an IV (Initial
Value) for encryption or decryption.

3. If ID=3, then the pseudo-random bits being produced are to be used as an integrity
key for MAC-ing.

B.4 Keys and IVs for password privacy mode

When password privacy mode is used to encrypt a PFX PDU, a password (typically
entered by the user), a salt and an iteration parameter are used to derive a key (and an IV,
if necessary). The password is a Unicode string, and as such, each character in it is
represented by 2 bytes. The salt is a byte string, and so can be represented directly as a
sequence of bytes.

PKCS 12 V1.0: PERSONAL INFORMATION EXCHANGE SYNTAX 16

Copyright © 1999 RSA Laboratories

This standard does not prescribe a length for the password. As usual, however, too short

a password might compromise privacy. A particular application might well require a

user-entered privacy password for creating a PFX PDU to have a password exceeding

some specific length.

This standard also does not prescribe a length for the salt. Ideally, the salt is as long as

the output of the hash function being used, and consists of completely random bits.

The iteration count is recommended to be 1024 or more (see [15] for more information).

PKCS #5 provides a number of algorithm identifiers for deriving keys and IVs; here, we

specify a few more, all of which use the procedure detailed in Section B.2 and Section

B.3 to construct keys (and IVs, where needed). As is implied by their names, all of the

object identifiers below use the hash function SHA-1.

pkcs-12PbeIds OBJECT IDENTIFIER ::= {pkcs-12 1}
pbeWithSHAAnd128BitRC4 OBJECT IDENTIFIER ::= {pkcs-12PbeIds 1}
pbeWithSHAAnd40BitRC4 OBJECT IDENTIFIER ::= {pkcs-12PbeIds 2}
pbeWithSHAAnd3-KeyTripleDES-CBC OBJECT IDENTIFIER ::= {pkcs-12PbeIds 3}
pbeWithSHAAnd2-KeyTripleDES-CBC OBJECT IDENTIFIER ::= {pkcs-12PbeIds 4}
pbeWithSHAAnd128BitRC2-CBC OBJECT IDENTIFIER ::= {pkcs-12PbeIds 5}
pbewithSHAAnd40BitRC2-CBC OBJECT IDENTIFIER ::= {pkcs-12PbeIds 6}

Each of the six PBE object identifiers above has the following ASN.1 type for

parameters:

pkcs-12PbeParams ::= SEQUENCE {
salt OCTET STRING,
iterations INTEGER

}

The pkcs-12PbeParams holds the salt which is used to generate the key (and IV, if

necessary) and the number of iterations to carry out.

Note that the first two algorithm identifiers above (the algorithm identifiers for RC4) only

derive keys; it is unnecessary to derive an IV for RC4.

B.5 Keys for password integrity mode

When password integrity mode is used to protect a PFX PDU, a password and salt are

used to derive a MAC key. As with password privacy mode, the password is a Unicode

string, and the salt is a byte string. No particular lengths are prescribed in this standard for

either the password or the salt, but the general advice about passwords and salt that was

given in Section B.4 applies here, as well.

PKCS 12 V1.0: PERSONAL INFORMATION EXCHANGE SYNTAX 17

Copyright © 1999 RSA Laboratories

The hash function used to derive MAC keys is whatever hash function is going to be used

for MACing. The MAC keys that are derived have the same length as the hash function’s
output. In this version of this standard, SHA-1 is used for performing all MACing, and so
all MAC keys are 160 bits. See Appendix A for more information on MACing.

C. ASN.1 module

This appendix documents all ASN.1 types, values and object sets defined in this
specification. It does so by providing an ASN.1 module called PKCS-12.

PKCS-12 {iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-12(12) modules(0)
 pkcs-12(1)}

-- This module has been checked for conformance with the ASN.1 standard by the OSS
-- ASN.1 Tools

DEFINITIONS IMPLICIT TAGS ::=

BEGIN

-- EXPORTS ALL
-- All types and values defined in this module is exported for use in other ASN.1 modules.

IMPORTS

informationFramework
 FROM UsefulDefinitions {joint-iso-itu-t(2) ds(5) module(1) usefulDefinitions(0) 3}

ATTRIBUTE
FROM InformationFramework informationFramework

ContentInfo, DigestInfo
FROM PKCS-7 {iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-7(7)

modules(0) pkcs-7(1)}

PrivateKeyInfo, EncryptedPrivateKeyInfo
FROM PKCS-8 {iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-8(8)

modules(1) pkcs-8(1)}

pkcs-9, friendlyName, localKeyId, certTypes, crlTypes
FROM PKCS-9 {iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)

modules(0) pkcs-9(1)};

-- Object identifiers

rsadsi OBJECT IDENTIFIER ::= {iso(1) member-body(2) us(840) rsadsi(113549)}
pkcs OBJECT IDENTIFIER ::= {rsadsi pkcs(1)}
pkcs-12 OBJECT IDENTIFIER ::= {pkcs 12}

PKCS 12 V1.0: PERSONAL INFORMATION EXCHANGE SYNTAX 18

Copyright © 1999 RSA Laboratories

pkcs-12PbeIds OBJECT IDENTIFIER ::= {pkcs-12 1}
pbeWithSHAAnd128BitRC4 OBJECT IDENTIFIER ::= {pkcs-12PbeIds 1}
pbeWithSHAAnd40BitRC4 OBJECT IDENTIFIER ::= {pkcs-12PbeIds 2}
pbeWithSHAAnd3-KeyTripleDES-CBCOBJECT IDENTIFIER ::= {pkcs-12PbeIds 3}
pbeWithSHAAnd2-KeyTripleDES-CBCOBJECT IDENTIFIER ::= {pkcs-12PbeIds 4}
pbeWithSHAAnd128BitRC2-CBC OBJECT IDENTIFIER ::= {pkcs-12PbeIds 5}
pbewithSHAAnd40BitRC2-CBC OBJECT IDENTIFIER ::= {pkcs-12PbeIds 6}

bagtypes OBJECT IDENTIFIER ::= {pkcs-12 10 1}

-- The PFX PDU

PFX ::= SEQUENCE {
 version INTEGER {v3(3)}(v3,...),
 authSafe ContentInfo,
 macData MacData OPTIONAL
}

MacData ::= SEQUENCE {
 mac DigestInfo,

macSalt OCTET STRING,
iterations INTEGER DEFAULT 1
-- Note: The default is for historical reasons and its use is deprecated. A higher
-- value, like 1024 is recommended.

}

AuthenticatedSafe ::= SEQUENCE OF ContentInfo
-- Data if unencrypted
-- EncryptedData if password-encrypted
-- EnvelopedData if public key-encrypted

SafeContents ::= SEQUENCE OF SafeBag

SafeBag ::= SEQUENCE {
 bagId BAG-TYPE.&id ({PKCS12BagSet}),
 bagValue [0] EXPLICIT BAG-TYPE.&Type({PKCS12BagSet}{@bagId}),
 bagAttributes SET OF PKCS12Attribute OPTIONAL
}

-- Bag types

keyBag BAG-TYPE ::=
{KeyBag IDENTIFIED BY {bagtypes 1}}

pkcs-8ShroudedKeyBag BAG-TYPE ::=
{PKCS8ShroudedKeyBag IDENTIFIED BY {bagtypes 2}}

certBag BAG-TYPE ::=
{CertBag IDENTIFIED BY {bagtypes 3}}

crlBag BAG-TYPE ::=
{CRLBag IDENTIFIED BY {bagtypes 4}}

secretBag BAG-TYPE ::=
{SecretBag IDENTIFIED BY {bagtypes 5}}

PKCS 12 V1.0: PERSONAL INFORMATION EXCHANGE SYNTAX 19

Copyright © 1999 RSA Laboratories

safeContentsBag BAG-TYPE ::=
{SafeContents IDENTIFIED BY {bagtypes 6}}

PKCS12BagSet BAG-TYPE ::= {
keyBag |
pkcs8ShroudedKeyBag |
certBag |
crlBag |
secretBag |
safeContentsBag,
... -- For future extensions

}

BAG-TYPE ::= TYPE-IDENTIFIER

-- KeyBag

KeyBag ::= PrivateKeyInfo

-- Shrouded KeyBag

PKCS8ShroudedKeyBag ::= EncryptedPrivateKeyInfo

-- CertBag

CertBag ::= SEQUENCE {
certId BAG-TYPE.&id ({CertTypes}),
certValue [0] EXPLICIT BAG-TYPE.&Type ({CertTypes}{@certId})

}

x509Certificate BAG-TYPE ::=
{OCTET STRING IDENTIFIED BY {certTypes 1}}
-- DER-encoded X.509 certificate stored in OCTET STRING

sdsiCertificate BAG-TYPE ::=
{IA5String IDENTIFIED BY {certTypes 2}}
-- Base64-encoded SDSI certificate stored in IA5String

CertTypes BAG-TYPE ::= {
x509Certificate |
sdsiCertificate,
... -- For future extensions

}

-- CRLBag

CRLBag ::= SEQUENCE {
crlId BAG-TYPE.&id ({CRLTypes}),
crltValue [0] EXPLICIT BAG-TYPE.&Type ({CRLTypes}{@crlId})

}

x509CRL BAG-TYPE ::=

PKCS 12 V1.0: PERSONAL INFORMATION EXCHANGE SYNTAX 20

Copyright © 1999 RSA Laboratories

{OCTET STRING IDENTIFIED BY {certTypes 1}}
-- DER-encoded X.509 CRL stored in OCTET STRING

CRLTypes BAG-TYPE ::= {
x509CRL,
... -- For future extensions

}

-- Secret Bag

SecretBag ::= SEQUENCE {
secretTypeId BAG-TYPE.&id ({SecretTypes}),
secretValue [0] EXPLICIT BAG-TYPE.&Type ({SecretTypes}{@secretTypeId})

}

SecretTypes BAG-TYPE ::= {
... -- For future extensions

}

-- Attributes

PKCS12Attribute ::= SEQUENCE {
attrId ATTRIBUTE.&id ({PKCS12AttrSet}),
attrValues SET OF ATTRIBUTE.&Type ({PKCS12AttrSet}{@attrId})

} -- This type is compatible with the X.500 type ’Attribute’

PKCS12AttrSet ATTRIBUTE ::= {
friendlyName |
localKeyId,
... -- Other attributes are allowed

}

END

D. A note on export regulations

Several national governments, including the US government, restrict the export of

products containing encryption capabilities under international trade regulations.

Implementers are responsible for their own adherence to these regulations. No person or

organization connected with this standard accepts any responsibility or liability with

respect to implementers’ adherence to applicable regulations.

In pursuing export permission for their products, implementers should argue that PFX is
not a generic encryption facility; that it is intended for exchange of authentication
information only; that their products cannot be used to exchange arbitrary information (as
evidenced by their source code); and that, therefore, they should be allowed to export
products with strong encryption in this context and this context only.

PKCS 12 V1.0: PERSONAL INFORMATION EXCHANGE SYNTAX 21

Copyright © 1999 RSA Laboratories

E. Intellectual property considerations

RSA Data Security makes no patent claims on the general constructions described in this

document, although specific underlying techniques may be covered.

RC2 and RC4 are trademarks of RSA Data Security.

License to copy this document is granted provided that it is identified as “RSA Data
Security, Inc. Public-Key Cryptography Standards (PKCS)” in all material mentioning or
referencing this document.

RSA Data Security makes no representations regarding intellectual property claims by
other parties. Such determination is the responsibility of the user.

F. References

[1] H. Dobbertin. The status of MD5 after a recent attack. CryptoBytes, RSA
Laboratories. Vol.2, #2, 1996.

[2] ISO/IEC 8824-1:1995: Information technology — Abstract Syntax Notation One
(ASN.1) — Specification of basic notation. 1995.

[3] ISO/IEC 8824-1:1995/Amd.1: 1995: Information technology — Abstract Syntax
Notation One (ASN.1) — Specification of basic notation — Amendment 1 — Rules
of extensibility. 1995.

[4] ISO/IEC 8824-2:1995: Information technology — Abstract Syntax Notation One
(ASN.1) — Information object specification. 1995.

[5] ISO/IEC 8824-2:1995/Amd.1: 1995: Information technology — Abstract Syntax
Notation One (ASN.1) — Information object specification — Amendment 1 —
Rules of extensibility. 1995.

[6] ISO/IEC 8824-3:1995: Information technology — Abstract Syntax Notation One
(ASN.1) — Constraint specification. 1995.

[7] ISO/IEC 8824-4:1995: Information technology — Abstract Syntax Notation One
(ASN.1) — Parameterization of ASN.1 specifications. 1995.

[8] ISO/IEC 8825-1:1995: Information Technology – ASN.1 Encoding Rules:
Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER),
and Distinguished Encoding Rules. 1995.

PKCS 12 V1.0: PERSONAL INFORMATION EXCHANGE SYNTAX 22

Copyright © 1999 RSA Laboratories

[9] ISO/IEC 9594-2:1997. Information technology — Open Systems Interconnection
— The Directory: Models. 1997.

[10] ISO/IEC 9594-8:1997. Information technology — Open Systems Interconnection
— The Directory: Authentication Framework. 1997.

[11] H. Krawczyk, M. Bellare, and R. Canetti. RFC 2104: HMAC: Keyed-Hashing for
Message Authentication. IETF, February 1997.

[12] Microsoft Corporation. PFX: Personal Exchange Syntax and Protocol Standard.

Version 0.020, January 1997.

[13] R. Rivest and B. Lampson. Simple Distributed Security Infrastructure,

http://theory.lcs.mit.edu/~rivest/sdsi.ps, 1996.

[14] RSA Laboratories. PKCS #1: RSA Encryption Standard. Version 2.0, October

1998.

[15] RSA Laboratories. PKCS #5: Password-Based Encryption Standard. Version 2.0,

March 1999.

[16] RSA Laboratories. PKCS #7: Cryptographic Message Syntax Standard. Version

1.5, November 1993.

[17] RSA Laboratories. PKCS #8: Private-Key Information Syntax Standard. Version

1.2, November 1993.

G. Acknowledgments

Many thanks to Dan Simon of Microsoft Corporation and Jim Spring of Netscape

Communications Corporation for their assistance in preparing early drafts of this

document. Especial thanks to Brian Beckman of Microsoft Corporation for writing the

specification that this document is based on.

H. About PKCS

The Public-Key Cryptography Standards are specifications produced by RSA

Laboratories in cooperation with secure systems developers worldwide for the purpose of

accelerating the deployment of public-key cryptography. First published in 1991 as a

result of meetings with a small group of early adopters of public-key technology, the

PKCS documents have become widely referenced and implemented. Contributions from

the PKCS series have become part of many formal and de facto standards, including

ANSI X9 documents, PKIX, SET, S/MIME, and SSL.

PKCS 12 V1.0: PERSONAL INFORMATION EXCHANGE SYNTAX 23

Copyright © 1999 RSA Laboratories

Further development of PKCS occurs through mailing list discussions and occasional

workshops, and suggestions for improvement are welcome. For more information,

contact:

PKCS Editor

RSA Laboratories

20 Crosby Drive

Bedford, MA 01730 USA
pkcs-editor@rsa.com
http://www.rsa.com/rsalabs/pubs/PKCS

