
PKCS #11: Cryptographic
Token Interface Standard
An RSA Laboratories Technical Note
Version 2.0 DRAFT 2
July 1, 1997April 15, 1997

RSA Laboratories
100 Marine Parkway, Suite 500
Redwood City, CA 94065 USA
(415) 595-7703
(415) 595-4126 (fax)
E-Mail: rsa-labs@rsa.com

Page III

Foreword

As public-key cryptography begins to see wide application and acceptance, one
thing is increasingly clear: If it is going to be as effective as the underlying
technology allows it to be, there must be interoperable standards. Even though
vendors may agree on the basic public-key techniques, compatibility between
implementations is by no means guaranteed. Interoperability requires strict
adherence to an agreed-upon standard format for transferred data.

Towards that goal, RSA Laboratories has developed, in cooperation with
representatives of industry, academia and government, a family of standards called
Public-Key Cryptography Standards, or PKCS for short.

PKCS is offered by RSA Laboratories to developers of computer systems employing
public-key technology. It is RSA Laboratories' intention to improve and refine the
standards in conjunction with computer system developers, with the goal of
producing standards that most if not all developers adopt.

The role of RSA Laboratories in the standards-making process is four-fold:

1. Publish carefully written documents describing the standards.

2. Solicit opinions and advice from developers and users on useful or
necessary changes and extensions.

3. Publish revised standards when appropriate.

4. Provide implementation guides and/or reference implementations.

During the process of PKCS development, RSA Laboratories retains final authority
on each document, though input from reviewers is clearly influential. However, RSA
Laboratories’ goal is to accelerate the development of formal standards, not to
compete with such work. Thus, when a PKCS document is accepted as a base
document for a formal standard, RSA Laboratories relinquishes its “ownership” of
the document, giving way to the open standards development process. RSA
Laboratories may continue to develop related documents, of course, under the
terms described above.

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Copyright Ó 1994-7 RSA Laboratories, a division of RSA Data Security, Inc. License
to copy this document is granted provided that it is identified as “RSA Data
Security, Inc. Public-Key Cryptography Standards (PKCS)” in all material
mentioning or referencing this document. RSA, RC2, RC4, and RC5 are registered
trademarks and MD2 and MD5 are trademarks of RSA Data Security, Inc. The RSA
public-key cryptosystem is protected by U.S. Patent #4,405,829. CAST, CAST3,
and CAST5 are trademarks of NortelEntrust Technologies. OS/2 is a registered
trademark and CDMF (Commercial Data Masking Facility) is a trademark of
International Business Machines Corporation. LYNKS is a registered trademark of
SPYRUS Corporation. IDEA is a trademark of Ascom Systec. Windows, Windows
3.1, and Windows 95 are trademarks of Microsoft Corporation. Unix is a registered
trademark of UNIX System Laboratories. FORTEZZA is a registered trademark of
the National Security Agency.

 Page IV

The PKCS family currently includes the following documents:

PKCS #1: RSA Encryption Standard. Version 1.5, November 1993.

PKCS #3: Diffie-Hellman Key-Agreement Standard. Version 1.4, November
1993.

PKCS #5: Password-Based Encryption Standard. Version 1.5, November 1993.

PKCS #6: Extended-Certificate Syntax Standard. Version 1.5, November 1993.

PKCS #7: Cryptographic Message Syntax Standard. Version 1.5, November
1993.

PKCS #8: Private-Key Information Syntax Standard. Version 1.2, November
1993.

PKCS #9: Selected Attribute Types. Version 1.1, November 1993.

PKCS #10: Certification Request Syntax Standard. Version 1.0, November
1993.

PKCS #11: Cryptographic Token Interface Standard. Version 1.0, April 1995.

PKCS documents are available by sending electronic mail to <pkcs@rsa.com> or via
anonymous ftp to ftp.rsa.com in the pub/pkcs directory. There is an electronic
mailing list, <pkcs-tng@rsa.com>, for discussion of issues relevant to the “next
generation” of the PKCS standards. To subscribe to this list, send e-mail to
<majordomo@rsa.com> with the line “subscribe pkcs-tng” in the message body.
To unsubscribe, send e-mail to <majordomo@rsa.com> with the line “unsubscribe
pkcs-tng” in the message body.

There is also an electronic mailing list, <cryptoki@rsa.com>, specifically for
discussion of PKCS #11. To subscribe to this list, send e-mail to
<majordomo@rsa.com> with the line “subscribe cryptoki” in the message body.
To unsubscribe, send e-mail to <majordomo@rsa.com> with the line “unsubscribe
cryptoki” in the message body.

Comments on the PKCS documents, requests to register extensions to the
standards, and suggestions for additional standards are welcomed. Address
correspondence to: PKCS Editor, RSA Laboratories, 100 Marine Parkway, Suite
500, Redwood City, CA 94065; 415/595-7703; fax: 415/595-4126; E-mail: <pkcs-
editor@rsa.com>.

It would be difficult to enumerate all the people and organizations who helped to
produce PKCS #11. RSA Laboratories is grateful to each and every one of them.
Especial thanks go to Bruno Couillard of Chrysalis-ITS and John Centafont of NSA
for the many hours they spent writing up parts of this document.

For v1.0, PKCS #11’s document editor was Aram Pérez of International Computer
Services, under contract to RSA Laboratories; the project coordinator was Burt
Kaliski of RSA Laboratories. For v2.0, Ray Sidney served as document editor and
project coordinator.

Page IV PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

Table of Contents

1. SCOPE..

2. REFERENCES..

3. DEFINITIONS..

4. SYMBOLS AND ABBREVIATIONS...

5. GENERAL OVERVIEW...
5.1 Design goals..
5.2 General model...
5.3 Logical view of a token..
5.4 Users...
5.5 Sessions...

5.5.1 Read-only session states...
5.5.2 Read/write session states..
5.5.3 Permitted object accesses by sessions...
5.5.4 Session events...
5.5.5 Session handles and object handles..
5.5.6 Capabilities of sessions...
5.5.7 Public Cryptoki libraries and private Cryptoki libraries...................................
5.5.8 Example of use of sessions..

5.6 Function overview...
6. SECURITY CONSIDERATIONS..

7. DATA TYPES..
7.1 General information..

CK_VERSION...
CK_VERSION_PTR...
CK_INFO..
CK_INFO_PTR..
CK_NOTIFICATION..

7.2 Slot and token types..
CK_SLOT_ID...
CK_SLOT_ID_PTR...
CK_SLOT_INFO..
CK_SLOT_INFO_PTR..
CK_TOKEN_INFO...
CK_TOKEN_INFO_PTR..

7.3 Session types...
CK_SESSION_HANDLE...
CK_SESSION_HANDLE_PTR...
CK_USER_TYPE...
CK_STATE..
CK_SESSION_INFO...
CK_SESSION_INFO_PTR...

7.4 Object types..
CK_OBJECT_HANDLE..

APPENDIX A Page V

 Page VI

CK_OBJECT_HANDLE_PTR..
CK_OBJECT_CLASS...
CK_OBJECT_CLASS_PTR...
CK_KEY_TYPE..
CK_CERTIFICATE_TYPE..
CK_ATTRIBUTE_TYPE...
CK_ATTRIBUTE..
CK_ATTRIBUTE_PTR...
CK_DATE..

7.5 Data types for mechanisms...
CK_MECHANISM_TYPE..
CK_MECHANISM_TYPE_PTR..
CK_MECHANISM...
CK_MECHANISM_PTR..
CK_MECHANISM_INFO..
CK_MECHANISM_INFO_PTR..

7.6 Function types...
CK_ENTRY...
CK_RV..
CK_NOTIFY..
CK_FUNCTION_LIST...
CK_FUNCTION_LIST_PTR...
CK_FUNCTION_LIST_PTR_PTR...

8. OBJECTS..
8.1 Common attributes..
8.2 Data objects..
8.3 Certificate objects...

8.3.1 X.509 certificate objects...
8.4 Key objects..
8.5 Public key objects..

8.5.1 RSA public key objects..
8.5.2 DSA public key objects..
8.5.3 ECDSA public key objects...
8.5.4 Diffie-Hellman public key objects...
8.5.5 KEA public key objects..
8.5.6 MAYFLY public key objects...

8.6 Private key objects..
8.6.1 RSA private key objects..
8.6.2 DSA private key objects..
8.6.3 ECDSA private key objects...
8.6.4 Diffie-Hellman private key objects..
8.6.5 KEA private key objects..
8.6.6 MAYFLY private key objects...

8.7 Secret key objects...
8.7.1 Generic secret key objects..
8.7.2 RC2 secret key objects..
8.7.3 RC4 secret key objects..
8.7.4 RC5 secret key objects..
8.7.5 DES secret key objects...
8.7.6 DES2 secret key objects...
8.7.7 DES3 secret key objects...
8.7.8 CAST secret key objects..
8.7.9 CAST3 secret key objects..
8.7.10 CAST5 secret key objects...

Page VI PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

8.7.11 IDEA secret key objects..
8.7.12 CDMF secret key objects..
8.7.13 SKIPJACK secret key objects..
8.7.14 BATON secret key objects..
8.7.15 JUNIPER secret key objects..

9. FUNCTIONS...
9.1 Function return values..

9.1.1 Universal Cryptoki function return values..
9.1.2 Cryptoki function return values for functions that use a session handle..........
9.1.3 Cryptoki function return values for functions that use a token........................
9.1.4 All the other Cryptoki function return values...
9.1.5 More on relative priorities of Cryptoki errors...

9.2 Conventions for functions which return output in a variable-length buffer............
9.3 Disclaimer concerning sample code..
9.4 General-purpose functions..

C_Initialize..
C_Finalize...
C_GetInfo...
C_GetFunctionList..

9.5 Slot and token management functions..
C_GetSlotList...
C_GetSlotInfo...
C_GetTokenInfo..
C_GetMechanismList...
C_GetMechanismInfo...
C_InitToken..
C_InitPIN..
C_SetPIN..

9.6 Session management functions...
C_OpenSession...
C_CloseSession..
C_CloseAllSessions...
C_GetSessionInfo...
C_GetOperationState...
C_SetOperationState..
C_Login..
C_Logout..

9.7 Object management functions..
C_CreateObject..
C_CopyObject...
C_DestroyObject..
C_GetObjectSize...
C_GetAttributeValue..
C_SetAttributeValue...
C_FindObjectsInit...
C_FindObjects..
C_FindObjectsFinal..

9.8 Encryption functions...
C_EncryptInit...
C_Encrypt...
C_EncryptUpdate...
C_EncryptFinal...

9.9 Decryption functions...
C_DecryptInit...

APPENDIX A Page VII

 Page VIII

C_Decrypt...
C_DecryptUpdate...
C_DecryptFinal...

9.10 Message digesting functions...
C_DigestInit..
C_Digest...
C_DigestUpdate...
C_DigestKey...
C_DigestFinal...

9.11 Signing and MACing functions..
C_SignInit...
C_Sign..
C_SignUpdate...
C_SignFinal..
C_SignRecoverInit..
C_SignRecover...

9.12 Functions for verifying signatures and MACs...
C_VerifyInit..
C_Verify..
C_VerifyUpdate..
C_VerifyFinal..
C_VerifyRecoverInit...
C_VerifyRecover...

9.13 Dual-function cryptographic functions..
C_DigestEncryptUpdate...
C_DecryptDigestUpdate...
C_SignEncryptUpdate..
C_DecryptVerifyUpdate...

9.14 Key management functions...
C_GenerateKey...
C_GenerateKeyPair..
C_WrapKey...
C_UnwrapKey...
C_DeriveKey...

9.15 Random number generation functions..
C_SeedRandom..
C_GenerateRandom...

9.16 Parallel function management functions...
C_GetFunctionStatus...
C_CancelFunction..

9.17 Callback functions...
9.17.1 Token insertion callbacks..
9.17.2 Token removal callbacks...
9.17.3 Parallel function completion callbacks..
9.17.4 Serial function surrender callbacks..

10. MECHANISMS...
10.1 RSA mechanisms...

10.1.1 PKCS #1 RSA key pair generation..
10.1.2 PKCS #1 RSA..
10.1.3 ISO/IEC 9796 RSA..
10.1.4 X.509 (raw) RSA..
10.1.5 PKCS #1 RSA signature with MD2, MD5, or SHA-1.......................................

10.2 DSA mechanisms...
10.2.1 DSA key pair generation...

Page VIII PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

10.2.2 DSA...
10.2.3 DSA with SHA-1..
10.2.4 FORTEZZA timestamp..

10.3 ECDSA mechanisms..
10.3.1 ECDSA key pair generation..
10.3.2 ECDSA...
10.3.3 ECDSA with SHA-1...

10.4 Diffie-Hellman mechanisms..
10.4.1 PKCS #3 Diffie-Hellman key pair generation...
10.4.2 PKCS #3 Diffie-Hellman key derivation..

10.5 KEA mechanism parameters...
CK_KEA_DERIVE_PARAMS..
CK_KEA_DERIVE_PARAMS_PTR...

10.6 KEA mechanisms...
10.6.1 KEA key pair generation...
10.6.2 KEA key derivation..

10.7 MAYFLY mechanism parameters..
CK_MAYFLY_DERIVE_PARAMS..
CK_MAYFLY_DERIVE_PARAMS_PTR..

10.8 MAYFLY mechanisms..
10.8.1 MAYFLY key pair generation..
10.8.2 MAYFLY key derivation...

10.9 Generic secret key mechanisms..
10.9.1 Generic secret key generation..

10.10 Wrapping/unwrapping private keys (RSA, Diffie-Hellman, and DSA).................
10.11 The RC2 cipher...
10.12 RC2 mechanism parameters...

CK_RC2_PARAMS..
CK_RC2_PARAMS_PTR..
CK_RC2_CBC_PARAMS..
CK_RC2_CBC_PARAMS_PTR...
CK_RC2_MAC_GENERAL_PARAMS...
CK_RC2_MAC_GENERAL_PARAMS_PTR..

10.13 RC2 mechanisms...
10.13.1 RC2 key generation...
10.13.2 RC2-ECB...
10.13.3 RC2-CBC...
10.13.4 RC2-CBC with PKCS padding...
10.13.5 General-length RC2-MAC..
10.13.6 RC2-MAC...

10.14 RC4 mechanisms...
10.14.1 RC4 key generation...
10.14.2 RC4..

10.15 The RC5 cipher...
10.16 RC5 mechanism parameters...

CK_RC5_PARAMS..
CK_RC5_PARAMS_PTR..
CK_RC5_CBC_PARAMS..
CK_RC5_CBC_PARAMS_PTR...
CK_RC5_MAC_GENERAL_PARAMS...
CK_RC5_MAC_GENERAL_PARAMS_PTR..

10.17 RC5 mechanisms...
10.17.1 RC5 key generation...
10.17.2 RC5-ECB...
10.17.3 RC5-CBC...

APPENDIX A Page IX

 Page X

10.17.4 RC5-CBC with PKCS padding...
10.17.5 General-length RC5-MAC..
10.17.6 RC5-MAC...

10.18 General block cipher mechanism parameters..
CK_MAC_GENERAL_PARAMS...
CK_MAC_GENERAL_PARAMS_PTR...

10.19 General block cipher mechanisms..
10.19.1 General block cipher key generation..
10.19.2 General block cipher ECB...
10.19.3 General block cipher CBC...
10.19.4 General block cipher CBC with PKCS padding...
10.19.5 General-length general block cipher MAC..
10.19.6 General block cipher MAC..

10.20 Double-length DES mechanisms...
10.20.1 Double-length DES key generation...

10.21 SKIPJACK mechanism parameters..
CK_SKIPJACK_PRIVATE_WRAP_PARAMS...
CK_SKIPJACK_PRIVATE_WRAP_PARAMS_PTR...
CK_SKIPJACK_RELAYX_PARAMS..
CK_SKIPJACK_RELAYX_PARAMS_PTR..

10.22 SKIPJACK mechanisms...
10.22.1 SKIPJACK key generation...
10.22.2 SKIPJACK-ECB64..
10.22.3 SKIPJACK-CBC64..
10.22.4 SKIPJACK-OFB64..
10.22.5 SKIPJACK-CFB64..
10.22.6 SKIPJACK-CFB32..
10.22.7 SKIPJACK-CFB16..
10.22.8 SKIPJACK-CFB8..
10.22.9 SKIPJACK-WRAP...
10.22.10 SKIPJACK-PRIVATE-WRAP...
10.22.11 SKIPJACK-RELAYX..

10.23 BATON mechanisms..
10.23.1 BATON key generation..
10.23.2 BATON-ECB128..
10.23.3 BATON-ECB96..
10.23.4 BATON-CBC128..
10.23.5 BATON-COUNTER..
10.23.6 BATON-SHUFFLE...
10.23.7 BATON WRAP...

10.24 JUNIPER mechanisms...
10.24.1 JUNIPER key generation...
10.24.2 JUNIPER-ECB128...
10.24.3 JUNIPER-CBC128...
10.24.4 JUNIPER-COUNTER...
10.24.5 JUNIPER-SHUFFLE..
10.24.6 JUNIPER WRAP...

10.25 MD2 mechanisms..
10.25.1 MD2...
10.25.2 General-length MD2-HMAC..
10.25.3 MD2-HMAC...
10.25.4 MD2 key derivation...

10.26 MD5 mechanisms..
10.26.1 MD5...
10.26.2 General-length MD5-HMAC..

Page X PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

10.26.3 MD5-HMAC...
10.26.4 MD5 key derivation...

10.27 SHA-1 mechanisms...
10.27.1 SHA-1..
10.27.2 General-length SHA-1-HMAC...
10.27.3 SHA-1-HMAC..
10.27.4 SHA-1 key derivation..

10.28 FASTHASH mechanisms...
10.28.1 FASTHASH..

10.29 Password-based encryption mechanism parameters..
CK_PBE_PARAMS..
CK_PBE_PARAMS_PTR..

10.30 Password-based encryption mechanisms..
10.30.1 MD2-PBE for DES-CBC...
10.30.2 MD5-PBE for DES-CBC...
10.30.3 MD5-PBE for CAST-CBC...
10.30.4 MD5-PBE for CAST3-CBC...
10.30.5 MD5-PBE for CAST5-CBC...

10.31 SET mechanism parameters...
CK_KEY_WRAP_SET_OAEP_PARAMS..
CK_KEY_WRAP_SET_OAEP_PARAMS_PTR..

10.32 SET mechanisms...
10.32.1 OAEP key wrapping for SET...

10.33 LYNKS mechanisms..
10.33.1 LYNKS key wrapping..

10.34 SSL mechanism parameters...
CK_SSL3_RANDOM_DATA...
CK_SSL3_MASTER_KEY_DERIVE_PARAMS..
CK_SSL3_MASTER_KEY_DERIVE_PARAMS_PTR...
CK_SSL3_KEY_MAT_OUT..
CK_SSL3_KEY_MAT_OUT_PTR..
CK_SSL3_KEY_MAT_PARAMS...
CK_SSL3_KEY_MAT_PARAMS_PTR...

10.35 SSL mechanisms...
10.35.1 Pre_master key generation...
10.35.2 Master key derivation...
10.35.3 Key and MAC derivation...
10.35.4 MD5 MACing in SSL 3.0...
10.35.5 SHA-1 MACing in SSL 3.0...

10.36 Parameters for miscellaneous simple key derivation mechanisms.....................
CK_KEY_DERIVATION_STRING_DATA...
CK_KEY_DERIVATION_STRING_DATA_PTR...
CK_EXTRACT_PARAMS...
CK_EXTRACT_PARAMS_PTR...

10.37 Miscellaneous simple key derivation mechanisms..
10.37.1 Concatenation of a base key and another key..
10.37.2 Concatenation of a base key and data..
10.37.3 Concatenation of data and a base key..
10.37.4 XORing of a key and data..
10.37.5 Extraction of one key from another key..

11. CRYPTOKI TIPS AND REMINDERS..
11.1 Sessions...
11.2 Objects, attributes, and templates..
11.3 Signing with recovery...

APPENDIX A Page XI

 Page XII

APPENDIX A, TOKEN PROFILES..

APPENDIX B, COMPARISON OF CRYPTOKI AND OTHER APIS......................

List of Figures
FIGURE 5-1, GENERAL MODEL...
FIGURE 5-2, OBJECT HIERARCHY..
FIGURE 5-3, READ-ONLY SESSION STATES..
FIGURE 5-4, READ/WRITE SESSION STATES..
FIGURE 8-1, CRYPTOKI OBJECT HIERARCHY..
FIGURE 8-2, KEY OBJECT DETAIL..
List of Tables
TABLE 4-1,SYMBOLS..
TABLE 4-2, PREFIXES...
TABLE 4-3, CHARACTER SET...
TABLE 5-1, READ-ONLY SESSION STATES...
TABLE 5-2, READ/WRITE SESSION STATES..
TABLE 5-3, ACCESS TO DIFFERENT TYPES OBJECTS BY DIFFERENT TYPES OF SESSIONS..........
TABLE 5-4, SESSION EVENTS...
TABLE 5-5, SUMMARY OF CRYPTOKI FUNCTIONS...
TABLE 7-1, SLOT INFORMATION FLAGS...
TABLE 7-2, TOKEN INFORMATION FLAGS..
TABLE 7-3, SESSION INFORMATION FLAGS..
TABLE 7-4, MECHANISM INFORMATION FLAGS..
TABLE 8-1, COMMON OBJECT ATTRIBUTES..
TABLE 8-2, DATA OBJECT ATTRIBUTES..
TABLE 8-3, COMMON CERTIFICATE OBJECT ATTRIBUTES..
TABLE 8-4, X.509 CERTIFICATE OBJECT ATTRIBUTES..
TABLE 8-5, COMMON FOOTNOTES FOR KEY ATTRIBUTE TABLES...
TABLE 8-6, COMMON KEY ATTRIBUTES...
TABLE 8-7, COMMON PUBLIC KEY ATTRIBUTES...
TABLE 8-8, RSA PUBLIC KEY OBJECT ATTRIBUTES..
TABLE 8-9, DSA PUBLIC KEY OBJECT ATTRIBUTES..
TABLE 8-10, ECDSA PUBLIC KEY OBJECT ATTRIBUTES...
TABLE 8-11, DIFFIE-HELLMAN PUBLIC KEY OBJECT ATTRIBUTES...
TABLE 8-12, KEA PUBLIC KEY OBJECT ATTRIBUTES..
TABLE 8-13, MAYFLY PUBLIC KEY OBJECT ATTRIBUTES...
TABLE 8-14, COMMON PRIVATE KEY ATTRIBUTES...
TABLE 8-15, RSA PRIVATE KEY OBJECT ATTRIBUTES...
TABLE 8-16, DSA PRIVATE KEY OBJECT ATTRIBUTES..
TABLE 8-17, ECDSA PRIVATE KEY OBJECT ATTRIBUTES..
TABLE 8-18, DIFFIE-HELLMAN PRIVATE KEY OBJECT ATTRIBUTES..
TABLE 8-19, KEA PRIVATE KEY OBJECT ATTRIBUTES...
TABLE 8-20, MAYFLY PRIVATE KEY OBJECT ATTRIBUTES...
TABLE 8-21, COMMON SECRET KEY ATTRIBUTES..
TABLE 8-22, GENERIC SECRET KEY OBJECT ATTRIBUTES...
TABLE 8-23, RC2 SECRET KEY OBJECT ATTRIBUTES...
TABLE 8-24, RC4 SECRET KEY OBJECT..
TABLE 8-25, RC4 SECRET KEY OBJECT..
TABLE 8-26, DES SECRET KEY OBJECT..
TABLE 8-27, DES2 SECRET KEY OBJECT ATTRIBUTES...
TABLE 8-28, DES3 SECRET KEY OBJECT ATTRIBUTES...
TABLE 8-29, CAST SECRET KEY OBJECT ATTRIBUTES...

Page XII PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

TABLE 8-30, CAST3 SECRET KEY OBJECT ATTRIBUTES...
TABLE 8-31, CAST5 SECRET KEY OBJECT ATTRIBUTES...
TABLE 8-32, IDEA SECRET KEY OBJECT...
TABLE 8-33, CDMF SECRET KEY OBJECT...
TABLE 8-34, SKIPJACK SECRET KEY OBJECT...
TABLE 8-35, BATON SECRET KEY OBJECT...
TABLE 8-36, JUNIPER SECRET KEY OBJECT..
TABLE 10-1, MECHANISMS VS. FUNCTIONS..
TABLE 10-2, PKCS #1 RSA: KEY AND DATA LENGTH CONSTRAINTS....................................
TABLE 10-3, ISO/IEC 9796 RSA: KEY AND DATA LENGTH CONSTRAINTS............................
TABLE 10-4, X.509 (RAW) RSA: KEY AND DATA LENGTH CONSTRAINTS...............................
TABLE 10-5, PKCS #1 RSA SIGNATURES WITH MD2, MD5, OR SHA-1: KEY AND DATA

LENGTH CONSTRAINTS..
TABLE 10-6, DSA: KEY AND DATA LENGTH CONSTRAINTS..
TABLE 10-7, DSA WITH SHA-1: KEY AND DATA LENGTH CONSTRAINTS................................
TABLE 10-8, FORTEZZA TIMESTAMP: KEY AND DATA LENGTH CONSTRAINTS.......................
TABLE 10-9, ECDSA: KEY AND DATA LENGTH CONSTRAINTS...
TABLE 10-10, ECDSA WITH SHA-1: KEY AND DATA LENGTH CONSTRAINTS.........................
TABLE 10-11, RC2-ECB: KEY AND DATA LENGTH CONSTRAINTS..
TABLE 10-12, RC2-CBC: KEY AND DATA LENGTH CONSTRAINTS..
TABLE 10-13, RC2-CBC WITH PKCS PADDING: KEY AND DATA LENGTH CONSTRAINTS.........
TABLE 10-14, GENERAL-LENGTH RC2-MAC: KEY AND DATA LENGTH CONSTRAINTS.............
TABLE 10-15, RC2-MAC: KEY AND DATA LENGTH CONSTRAINTS...
TABLE 10-16, RC4 KEY AND DATA LENGTH CONSTRAINTS...
TABLE 10-17, RC5-ECB: KEY AND DATA LENGTH CONSTRAINTS..
TABLE 10-18, RC5-CBC: KEY AND DATA LENGTH CONSTRAINTS..
TABLE 10-19, RC5-CBC WITH PKCS PADDING: KEY AND DATA LENGTH CONSTRAINTS.........
TABLE 10-20, GENERAL-LENGTH RC2-MAC: KEY AND DATA LENGTH CONSTRAINTS.............
TABLE 10-21, RC5-MAC: KEY AND DATA LENGTH CONSTRAINTS...
TABLE 10-22, GENERAL BLOCK CIPHER ECB: KEY AND DATA LENGTH CONSTRAINTS.............
TABLE 10-23, GENERAL BLOCK CIPHER CBC: KEY AND DATA LENGTH CONSTRAINTS.............
TABLE 10-24, GENERAL BLOCK CIPHER CBC WITH PKCS PADDING: KEY AND DATA LENGTH

CONSTRAINTS..
TABLE 10-25, GENERAL-LENGTH GENERAL BLOCK CIPHER MAC: KEY AND DATA LENGTH

CONSTRAINTS..
TABLE 10-26, GENERAL BLOCK CIPHER MAC: KEY AND DATA LENGTH CONSTRAINTS............
TABLE 10-27, SKIPJACK-ECB64: DATA AND LENGTH CONSTRAINTS...................................
TABLE 10-28, SKIPJACK-CBC64: DATA AND LENGTH CONSTRAINTS...................................
TABLE 10-29, SKIPJACK-OFB64: DATA AND LENGTH CONSTRAINTS...................................
TABLE 10-30, SKIPJACK-CFB64: DATA AND LENGTH CONSTRAINTS....................................
TABLE 10-31, SKIPJACK-CFB32: DATA AND LENGTH CONSTRAINTS....................................
TABLE 10-32, SKIPJACK-CFB16: DATA AND LENGTH CONSTRAINTS....................................
TABLE 10-33, SKIPJACK-CFB8: DATA AND LENGTH CONSTRAINTS......................................
TABLE 10-34, BATON-ECB128: DATA AND LENGTH CONSTRAINTS......................................
TABLE 10-35, BATON-ECB96: DATA AND LENGTH CONSTRAINTS..
TABLE 10-36, BATON-CBC128: DATA AND LENGTH CONSTRAINTS......................................
TABLE 10-37, BATON-COUNTER: DATA AND LENGTH CONSTRAINTS.................................
TABLE 10-38, BATON-SHUFFLE: DATA AND LENGTH CONSTRAINTS..................................
TABLE 10-39, JUNIPER-ECB128: DATA AND LENGTH CONSTRAINTS...................................
TABLE 10-40, JUNIPER-CBC128: DATA AND LENGTH CONSTRAINTS...................................
TABLE 10-41, JUNIPER-COUNTER: DATA AND LENGTH CONSTRAINTS...............................
TABLE 10-42, JUNIPER-SHUFFLE: DATA AND LENGTH CONSTRAINTS...............................
TABLE 10-43, MD2: DATA LENGTH CONSTRAINTS..
TABLE 10-44, GENERAL-LENGTH MD2-HMAC: KEY AND DATA LENGTH CONSTRAINTS.........
TABLE 10-45, MD5: DATA LENGTH CONSTRAINTS..

APPENDIX A Page XIII

 Page XIV

TABLE 10-46, GENERAL-LENGTH MD5-HMAC: KEY AND DATA LENGTH CONSTRAINTS.........
TABLE 10-47, SHA-1: DATA LENGTH CONSTRAINTS...
TABLE 10-48, GENERAL-LENGTH SHA-1-HMAC: KEY AND DATA LENGTH CONSTRAINTS.......
TABLE 10-49, FASTHASH: DATA LENGTH CONSTRAINTS..
TABLE 10-50, MD5 MACING IN SSL 3.0: KEY AND DATA LENGTH CONSTRAINTS.................
TABLE 10-51, SHA-1 MACING IN SSL 3.0: KEY AND DATA LENGTH CONSTRAINTS..............

Page XIV PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

Page 1 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

1Scope

This standard specifies an application programming interface (API), called
“Cryptoki,” to devices which hold cryptographic information and perform
cryptographic functions. Cryptoki, pronounced “crypto-key” and short for
“cryptographic token interface,” follows a simple object-based approach,
addressing the goals of technology independence (any kind of device) and resource
sharing (multiple applications accessing multiple devices), presenting to
applications a common, logical view of the device called a “cryptographic token”.

This document specifies the data types and functions available to an application
requiring cryptographic services using the ANSI C programming language. These
data types and functions will be provided as a C header file by the supplier of a
Cryptoki library. A separate document provides a generic, language-independent
Cryptoki interface. Additional documents will provide bindings between Cryptoki
and other programming languages.

Cryptoki isolates an application from the details of the cryptographic device. The
application does not have to change to interface to a different type of device or to
run in a different environment; thus, the application is portable. How Cryptoki
provides this isolation is beyond the scope of this document, although some
conventions for the support of multiple types of device will be addressed here and
in a separate document.

A number of cryptographic mechanisms (algorithms) are supported in this version;
in addition, new mechanisms can easily be added later without changing the
general interface. It is possible that additional mechanisms will be published from
time to time in separate documents. It is also possible for token vendors to define
their own mechanisms (although, for the sake of interoperability, registration
through the PKCS process is preferable).

Cryptoki v2.0 is intended for cryptographic devices associated with a single user, so
some features that would be included in a general-purpose interface are omitted.
For example, Cryptoki v2.0 does not have a means of distinguishing multiple
“users”. The focus is on a single user’s keys and perhaps a small number of public-
key certificates related to them. Moreover, the emphasis is on cryptography. While
the device may perform useful non-cryptographic functions, such functions are left
to other interfaces.

2References

ANSI C ANSI/ISO. ANSI/ISO 9899-1990: American National Standard for
Programming Languages -- C. 1990.

ANSI X9.9 ANSI. American National Standard X9.9: Financial Institution
Message Authentication Code. 1982.

ANSI X9.17 ANSI. American National Standard X9.17: Financial Institution
Key Management (Wholesale). 1985.

ANSI X9.31 Accredited Standards Committee X9. Public Key Cryptography
Using Reversible Algorithms for the Financial Services Industry:
Part 1: The RSA Signature Algorithm. Working draft, March 7,
1993.

ANSI X9.42 Accredited Standards Committee X9. Public Key Cryptography for
the Financial Services Industry: Management of Symmetric
Algorithm Keys Using Diffie-Hellman. Working draft, September
21, 1994.

CDPD Ameritech Mobile Communications et al. Cellular Digital Packet
Data System Specifications: Part 406: Airlink Security. 1993.

FIPS PUB 46–2 National Institute of Standards and Technology (formerly National
Bureau of Standards). FIPS PUB 46-2: Data Encryption Standard.
December 30, 1993.

FIPS PUB 74 National Institute of Standards and Technology (formerly National
Bureau of Standards). FIPS PUB 74: Guidelines for Implementing
and Using the NBS Data Encryption Standard. April 1, 1981.

FIPS PUB 81 National Institute of Standards and Technology (formerly National
Bureau of Standards). FIPS PUB 81: DES Modes of Operation.
December 1980.

FIPS PUB 113 National Institute of Standards and Technology (formerly National
Bureau of Standards). FIPS PUB 113: Computer Data
Authentication. May 30, 1985.

FIPS PUB 180-1 National Institute of Standards and Technology. FIPS PUB 180-1:
Secure Hash Standard. April 17, 1995.

FIPS PUB 186 National Institute of Standards and Technology. FIPS PUB 186:
Digital Signature Standard. May 19, 1994.

FORTEZZA CIPG NSA, Workstation Security Products. FORTEZZA Cryptologic
Interface Programmers Guide, Revision 1.52. November, 1995.

GCS-API X/Open Company Ltd. Generic Cryptographic Service API (GCS-
API), Base - Draft 2. February 14, 1995.

APPENDIX B Page 2

Page 3 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

ISO 7816-1 ISO. International Standard 7816-1: Identification Cards —
Integrated Circuit(s) with Contacts — Part 1: Physical
Characteristics. 1987.

ISO 7816-4 ISO. Identification Cards — Integrated Circuit(s) with Contacts —
Part 4: Inter-industry Commands for Interchange. Committee
draft, 1993.

ISO/IEC 9796 ISO/IEC. International Standard 9796: Digital Signature Scheme
Giving Message Recovery. July 1991.

PCMCIA Personal Computer Memory Card International Association. PC
Card Standard. Release 2.1, July 1993.

PKCS #1 RSA Laboratories. RSA Encryption Standard. Version 1.5,
November 1993.

PKCS #3 RSA Laboratories. Diffie-Hellman Key-Agreement Standard.
Version 1.4, November 1993.

PKCS #7 RSA Laboratories. Cryptographic Message Syntax Standard.
Version 1.5, November 1993.

RFC 1319 B. Kaliski. RFC 1319: The MD2 Message-Digest Algorithm. RSA
Laboratories, April 1992.

RFC 1321 R. Rivest. RFC 1321: The MD5 Message-Digest Algorithm. MIT
Laboratory for Computer Science and RSA Data Security, Inc.,
April 1992.

RFC 1421 J. Linn. RFC 1421: Privacy Enhancement for Internet Electronic
Mail: Part I: Message Encryption and Authentication Procedures.
IAB IRTF PSRG, IETF PEM WG, February 1993.

RFC 1423 D. Balenson. RFC 1423: Privacy Enhancement for Internet
Electronic Mail: Part III: Algorithms, Modes, and Identifiers. TIS
and IAB IRTF PSRG, IETF PEM WG, February 1993.

RFC 1508 J. Linn. RFC 1508: Generic Security Services Application
Programming Interface. Geer Zolot Associates, September 1993.

RFC 1509 J. Wray. RFC 1509: Generic Security Services API: C-bindings.
Digital Equipment Corporation, September 1993.

X.208 ITU-T (formerly CCITT). Recommendation X.208: Specification of
Abstract Syntax Notation One (ASN.1). 1988.

X.209 ITU-T (formerly CCITT). Recommendation X.209: Specification of
Basic Encoding Rules for Abstract Syntax Notation One (ASN.1).
1988.

X.500 ITU-T (formerly CCITT). Recommendation X.500: The Directory—
Overview of Concepts and Services. 1988.

X.509 ITU-T (formerly CCITT). Recommendation X.509: The Directory—
Authentication Framework. 1993. (Proposed extensions to X.509
are given in ISO/IEC 9594-8 PDAM 1: Information Technology—
Open Systems Interconnection—The Directory: Authentication
Framework—Amendment 1: Certificate Extensions. 1994.)

APPENDIX B Page 4

Page 5 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

3Definitions

For the purposes of this standard, the following definitions apply:

API Application programming interface.

Application Any computer program that calls the Cryptoki
interface.

ASN.1 Abstract Syntax Notation One, as defined in X.208.

Attribute A characteristic of an object.

BATON MISSI’s BATON block cipher.

BER Basic Encoding Rules, as defined in X.209.

CAST Nortel’sEntrust Technologies’ proprietary
symmetric block cipher.

CAST3 Nortel’sEntrust Technologies’ proprietary
symmetric block cipher.

CAST5 Nortel’s proprietaryEntrust Technologies’
symmetric block cipher.

CBC Cipher Block Chaining mode, as defined in FIPS
PUB 81.

CDMF Commercial Data Masking Facility, a block
encipherment method specified by International
Business Machines Corporation and based on DES.

Certificate A signed message binding a subject name and a
public key.

Cryptographic Device A device storing cryptographic information and
possibly performing cryptographic functions. May
be implemented as a smart card, smart disk,
PCMCIA card, or with some other technology, such
as software only, as a process on a server.

Cryptoki The Cryptographic Token Interface defined in this
standard.

Cryptoki library A library that implements the functions specified in
this standard.

DES Data Encryption Standard, as defined in FIPS PUB
46-2.

DSA Digital Signature Algorithm, as defined in FIPS
PUB 186.

ECB Electronic Codebook mode, as defined in FIPS PUB
81.

ECDSA Elliptic Curve DSA, as in IEEE P1363.

FASTHASH MISSI’s FASTHASH message-digesting algorithm.

IDEA Ascom Systec’s symmetric block cipher.

JUNIPER MISSI’s JUNIPER block cipher.

KEA MISSI’s Key Exchange Algorithm.

LYNKS A smart card manufactured by SPYRUS.

MAC Message Authentication Code, as defined in ANSI
X9.9.

MAYFLY MISSI’s MAYFLY key agreement algorithm.

MD2 RSA Data Security, Inc.'s MD2 message-digest
algorithm, as defined in RFC 1319.

MD5 RSA Data Security, Inc.'s MD5 message-digest
algorithm, as defined in RFC 1321.

Mechanism A process for implementing a cryptographic
operation.

OAEP Optimal Asymmetric Encryption Padding for RSA.

Object An item that is stored on a token; may be data, a
certificate, or a key.

PIN Personal Identification Number.

RSA The RSA public-key cryptosystem, as defined in
PKCS #1.

RC2 RSA Data Security’s proprietary RC2 symmetric
block cipher.

RC4 RSA Data Security’s proprietary RC4 symmetric
stream cipher.

RC5 RSA Data Security’s RC5 symmetric block cipher.

Reader The means by which information is exchanged with
a device.

APPENDIX B Page 6

Page 7 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

Session A logical connection between an application and a
token.

SET The Secure Electronic Transaction protocol.

SHA-1 The (revised) Secure Hash Algorithm, as defined in
FIPS PUB 180, as amended by NIST-1.

Slot A logical reader that potentially contains a token.

SKIPJACK MISSI’s SKIPJACK block cipher.

SSL The Secure Sockets Layer 3.0 protocol.

Subject Name The X.500 distinguished name of the entity to
which a key is assigned.

SO A Security Officer user.

Token The logical view of a cryptographic device defined
by Cryptoki.

User The person using an application that interfaces to
Cryptoki.

4Symbols and abbreviations

The following symbols are used in this standard:

Table 44-1,Symbols

Symbo
l

Definition

N/A Not
applicable

R/O Read-only
R/W Read/write

The following prefixes are used in this standard:

Table 44-2, Prefixes

Prefix Description
C_ Function
CK_ Data type
CKA_ Attribute
CKC_ Certificate type
CKF_ Bit flag
CKK_ Key type
CKM_ Mechanism type
CKN_ Notification
CKO_ Object class
CKS_ Session state
CKR_ Return value
CKU_ User type
h a handle
ul a CK_ULONG
p a pointer
pb a pointer to a CK_BYTE
ph a pointer to a handle
pul a pointer to a

CK_ULONG

Cryptoki is based on ANSI C types, and defines the following data types:

APPENDIX B Page 8

Page 9 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

/* an unsigned 8-bit value */
typedef unsigned char CK_BYTE;

/* an unsigned 8-bit character */
typedef CK_BYTE CK_CHAR;

/* a BYTE-sized Boolean flag */
typedef CK_BYTE CK_BBOOL;

/* an unsigned value, at least 32 bits long */
typedef unsigned long int CK_ULONG;

/* a signed value, the same size as a CK_ULONG */
typedef long int CK_LONG;

/* at least 32 bits; each bit is a Boolean flag */
typedef CK_ULONG CK_FLAGS;

Cryptoki also uses pointers to these data types, which are implementation-
dependent. These pointers are:

CK_BYTE_PTR /* Pointer to a CK_BYTE */
CK_CHAR_PTR /* Pointer to a CK_CHAR */
CK_ULONG_PTR /* Pointer to a CK_ULONG */
CK_VOID_PTR /* Pointer to a void */

NULL_PTR /* A NULL pointer */

It follows that many of the data and pointer types will vary somewhat from one
environment to another (e.g., a CK_ULONG will sometimes be 32 bits, and
sometimes perhaps 64 bits). However, these details should not affect an
application, assuming it is compiled with a Cryptoki header file consistent with the
Cryptoki library to which the application is linked.

All numbers and values expressed in this document are decimal, unless they are
preceded by “0x”, in which case they are hexadecimal values.

The CK_CHAR data type holds characters from the following table, taken from
ANSI C:

Table 44-3, Character Set

Category Characters
Letters A B C D E F G H I J K L M N O P Q R S T U V W

X Y Z a b c d e f g h i j k l m n o p q r s t u v w x y
z

Numbers 0 1 2 3 4 5 6 7 8 9
Graphic
characters

! “ # % & ‘ () * + , - . / : ; < = > ? [\] ^ _ { | } ~

Blank character ‘ ‘

In Cryptoki, a flag is a boolean flag that can be TRUE or FALSE. A zero value
means the flag is FALSE, and a non-zero value means the flag is TRUE. Cryptoki
defines these macros, if needed:

#ifndef FALSE
#define FALSE 0
#endif

#ifndef TRUE
#define TRUE (!FALSE)
#endif

APPENDIX B Page 10

Page 11 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

5General overview

Portable computing devices such as smart cards, PCMCIA cards, and smart
diskettes are ideal tools for implementing public-key cryptography, as they provide
a way to store the private-key component of a public-key/private-key pair securely,
under the control of a single user. With such a device, a cryptographic application,
rather than performing cryptographic operations itself, programs the device to
perform the operations, with sensitive information such as private keys never being
revealed. As more applications are developed for public-key cryptography, a
standard programming interface for these devices becomes increasingly valuable.
This standard addresses this need.

5.1Design goals

Cryptoki was intended from the beginning to be an interface between applications
and all kinds of portable cryptographic devices, such as those based on smart
cards, PCMCIA cards, and smart diskettes. There are already standards (de facto
or official) for interfacing to these devices at some level. For instance, the
mechanical characteristics and electrical connections are well-defined, as are the
methods for supplying commands and receiving results. (See, for example, ISO
7816, or the PCMCIA specifications.)

What remained to be defined were particular commands for performing
cryptography. It would not be enough simply to define command sets for each kind
of device, as that would not solve the general problem of an application interface
independent of the device. To do so is still a long-term goal, and would certainly
contribute to interoperability. The primary goal of Cryptoki was a lower-level
programming interface that abstracts the details of the devices, and presents to the
application a common model of the cryptographic device, called a “cryptographic
token” (or simply “token”).

A secondary goal was resource-sharing. As desktop multi-tasking operating
systems become more popular, a single device should be shared between more than
one application. In addition, an application should be able to interface to more than
one device at a given time.

It is not the goal of Cryptoki to be a generic interface to cryptographic operations
or security services, although one certainly could build such operations and
services with the functions that Cryptoki provides. Cryptoki is intended to
complement, not compete with, such emerging and evolving interfaces as “Generic
Security Services Application Programming Interface” (RFC’s 1508 and 1509) and
“Generic Cryptographic Service API” (GCS-API) from X/Open.

5.2General model

Cryptoki's general model is illustrated in the following figure. The model begins
with one or more applications that need to perform certain cryptographic
operations, and ends with a cryptographic device, on which some or all of the
operations are actually performed. A user may be associated with an application.

Figure 55-1, General Model

Cryptoki provides an interface to one or more cryptographic devices that are active
in the system through a number of “slots”. Each slot, which corresponds to a
physical reader or other device interface, may contain a token. A token is “present
in the slot” (typically) when a cryptographic device is present in the reader. Of
course, since Cryptoki provides a logical view of slots and tokens, there may be
other physical interpretations. It is possible that multiple slots may share the same
physical reader. The point is that a system has some number of slots, and
applications can connect to tokens in any or all of those slots.

A cryptographic device can perform some cryptographic operations, following a
certain command set; these commands are typically passed through standard
device drivers, for instance PCMCIA card services or socket services. Cryptoki
makes the cryptographic device look logically like every other device, regardless of
the implementation technology. Thus the application need not interface directly to
the device drivers (or even know which ones are involved); Cryptoki hides these
details. Indeed, the “device” may be implemented entirely in software (for
instance, as a process running on a server)-- no special hardware is necessary.

Cryptoki would likely be implemented as a library supporting the functions in the
interface, and applications would be linked to the library. An application may be
linked to Cryptoki directly, or Cryptoki could be a so-called “shared” library (or
dynamic link library), in which case the application would link the library
dynamically. Shared libraries are fairly straightforward to produce in operating
systems such as Microsoft WindowsÔ, OS/2Ô, and can be achieved, without too
much difficulty, in UnixÔ and DOS systems.

The dynamic approach would certainly have advantages as new libraries are made
available, but from a security perspective, there are some drawbacks. In particular,
if the library is easily replaced, then there is the possibility that an attacker can
substitute a rogue library that intercepts a user’s PIN. From a security perspective,
therefore, direct linking is generally preferable. However, whether the linking is

APPENDIX B Page 12

Application 1

Cryptoki

Slot 1 Slot n

Application n

Other Security Layers

Token 1

Cryptographic Device 1

Token n

Cryptographic Device n

Page 13 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

direct or dynamic, the programming interface between the application and a
Cryptoki library remains the same.

The kinds of devices and capabilities supported will depend on the particular
Cryptoki library. This standard specifies only the interface to the library, not its
features. In particular, not all libraries will support all the mechanisms (algorithms)
defined in this interface (since not all tokens are expected to support all the
mechanisms), and libraries will likely support only a subset of all the kinds of
cryptographic devices that are available. (The more kinds, the better, of course,
and it is anticipated that libraries will be developed supporting multiple kinds of
token, rather than just those from a single vendor.) It is expected that as
applications are developed that interface to Cryptoki, standard library and token
“profiles” will emerge.

5.3Logical view of a token

Cryptoki’s logical view of a token is a device that stores objects and can perform
cryptographic functions. Cryptoki defines three classes of object: Data,
Certificates, and Keys. A data object is defined by an application. A certificate
object stores a public-key certificate. A key object stores a cryptographic key. The
key may be a public key, a private key, or a secret key; each of these types of keys
has subtypes for use in specific mechanisms. This view is illustrated in the
following figure:

Object

CertificateKeyData

Object Type

Private KeyPublic Key Secret Key

Key Type

Figure 55-2, Object Hierarchy

Objects are also classified according to their lifetime and visibility. “Token objects”
are visible to all applications connected to the token, and remain in the token even
after the “sessions” (connections between an application and the token) are closed

and the token is removed from its slot. “Session objects” are more temporary:
whenever a session is closed by any means, all session objects created by that
session are automatically destroyed.

Further classification defines access requirements. “Public objects” are visible to
all applications that have a session with the token. “Private objects” are visible to
an application only after a user has been authenticated to the token by a PIN or
some other token-dependent method (for example, a biometric device).

A token can create and destroy objects, manipulate them, and search for them. It
can also perform cryptographic functions with objects. A token may have an
internal random number generator. It is possible for the token to perform
cryptographic operations in parallel with the application, assuming the underlying
device has its own processor.

It is important to distinguish between the logical view of a token and the actual
implementation, because not all cryptographic devices will have this concept of
“objects,” or be able to perform every kind of cryptographic function. Many devices
will simply have fixed storage places for keys of a fixed algorithm, and be able to do
a limited set of operations. Cryptoki's role is to translate this into the logical view,
mapping attributes to fixed storage elements and so on. Not all Cryptoki libraries
and tokens need to support every object type. It is expected that standard
“profiles” will be developed, specifying sets of algorithms to be supported.

“Attributes” are characteristics that distinguish an instance of an object. In
Cryptoki, there are general attributes, such as whether the object is private or
public. There are also attributes particular to a particular type of object, such as a
modulus or exponent for RSA keys.

5.4Users

This version of Cryptoki recognizes two token user types. One type is a Security
Officer (SO). The other type is the normal user. Only the normal user is allowed
access to private objects on the token, and that access is granted only after the
normal user has been authenticated. Some tokens may also require that a user be
authenticated before any cryptographic function can be performed on the token,
whether or not it involves private objects. The role of the SO is to initialize a token
and to set the normal user’s PIN (or otherwise define how the normal user may be
authenticated), and possibly manipulate some public objects. The normal user
cannot log in until the SO has set the normal user’s PIN.

Other than the support for two types of user, Cryptoki does not address the
relationship between the SO and a community of users. In particular, the SO and
the normal user may be the same person or may be different, but such matters are
outside the scope of this standard.

With respect to PINs that are entered through an application, Cryptoki assumes
only that they are variable-length strings of characters from the set in Table 4-3.
Any translation to the device’s requirements is left to the Cryptoki library. The
following items are beyond the scope of Cryptoki:

· Any padding of PINs.

APPENDIX B Page 14

Page 15 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

· How the PINs are generated (by the user, by the application, or by some other
means).

PINs that are entered via some means other than an application (e.g., via a PINpad
on the token) are even more abstract. Cryptoki knows how to wait for such a PIN to
be entered and used to gain authentication, and little more.

5.5Sessions

Cryptoki requires that an application open one or more sessions with a token before
the application has access to the token’s objects and functions. A session provides
a logical connection between the application and the token. A session can be a
read/write (R/W) session or a read-only (R/O) session. Read/write and read-only
refer to the access to token objects, not to session objects. In both session types,
an application can create, read, write and destroy session objects, and read token
objects. However, only in a read/write session can an application create, modify,
and destroy token objects.

All processes or threads of a given application have access to exactly the same
sessions and the same session objects. If several applications are running
concurrently, it may or may not be the case that they all have access to the same
sessions and the same session objects; this is implementation-dependent. Exactly
what constitutes an “application” is also implementation-dependent: in some
environments, it might be appropriate to consider an application to be a single
process; in other environments, that might not be appropriate.

After a session is opened, the application has access to the token’s public objects.
To gain access to the token’s private objects, the normal user must log in and be
authenticated.

When a session is closed, any session objects which were created in that session
are destroyed. This holds even for session objects which are “being used” by other
sessions.

Cryptoki supports multiple sessions on multiple tokens. An application may have
one or more sessions with one or more tokens. In general, a token may have
multiple sessions with one or more applications. A particular token may allow only
one session, or only one read/write session, at any given time, however.

An open session can be in one of several states. The session state determines
allowable access to objects and functions that can be performed on them. The
session states are described in Section 5.5.1 and Section 5.5.2.

5.5.1Read-only session states

A read-only session can be in one of two states, as illustrated in the following figure.
When the session is initially opened, it is in either the “R/O Public Session” state (if
there are no previously open sessions that are logged in) or the “R/O User
Functions” state (if there is already an open session that is logged in). Note that
read-only SO sessions do not exist.

The following table describes the session states:

Table 55-1, Read-Only Session States

State Description
R/O Public Session The application has opened a read-only session. The

application has read-only access to public token objects and
read/write access to public session objects.

R/O User
Functions

The normal user has been authenticated to the token. The
application has read-only access to all token objects (public or
private) and read/write access to all session objects (public or
private).

5.5.2Read/write session states

A read/write session can be in one of three states, as illustrated in the following
figure. When the session is opened, it is in either the “R/W Public Session” state (if
there are no previously open sessions that are logged in), the “R/W User Functions”
state (if there is already an open session that the normal user is logged into), or the
“R/W SO Functions” state (if there is already an open session that the SO is logged
into).

APPENDIX B Page 16

R/O Public
Session

R/O User
Functions

Log In User Log Out

Close Session

Close Session

Device
Removed

Device
Removed

Open Session

Open Session

Figure 55-3, Read-Only Session States

Page 17 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

The following table describes the session states:

Table 55-2, Read/Write Session States

State Description
R/W Public
Session

The application has opened a read/write session. The
application has read/write access to all public objects.

R/W SO Functions The Security Officer has been authenticated to the token. The
application has read/write access only to public objects on the
token, not to private objects. The SO can set the normal
user’s PIN.

R/W User
Functions

The normal user has been authenticated to the token. The
application has read/write access to all objects.

5.5.3Permitted object accesses by sessions

The following table summarizes the kind of access each type of session has to each
type of object. A given type of session has either read-only access, read/write
access, or no access whatsoever to a given type of object.

Note that creating or deleting an object requires read/write access to it, e.g., a “R/O
User Functions” session cannot create a token object.

R/W Public
Session

R/W SO
Functions

Lo
g

In
SO

Lo
g

Ou
t

R/W User
Functions

Lo
g

In
Us

er

Lo
g

Ou
t

Close Session/

Remove Device

Close Session/
Remove Device

Clos
e S

ess
ion

/

Rem
ove

 Devi
ce

Open Session

Open Session

Open Session

Figure 55-4, Read/Write Session States

Table 55-3, Access to Different Types Objects by Different Types of Sessions

Type of session

Type of object
R/O

Public
R/W

Public
R/O
User

R/W
User

R/W
SO

Public session object R/W R/W R/W R/W R/W
Private session object R/W R/W
Public token object R/O R/W R/O R/W R/W
Private token object R/O R/W

APPENDIX B Page 18

Page 19 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

5.5.4Session events

Session events cause the session state to change. The following table describes the
events:

Table 55-4, Session Events

Event Occurs when...
Log In SO the SO is authenticated to the token.
Log In User the normal user is authenticated to the token.
Log Out the application logs out the current user.
Close Session the application closes the session or an application closes all

sessions.
Device Removed the device underlying the token has been removed from its slot.

When the device is removed, all sessions are automatically logged out.
Furthermore, all sessions with the device are closed (this latter behavior is new for
v2.0 of Cryptoki)—an application cannot have a session with a token which is not
present. In actuality, Cryptoki may not be constantly monitoring whether or not the
token is present, and so the token’s absence may not be noticed until a Cryptoki
function is executed. If the token is re-inserted into the slot before that, Cryptoki
may never know that it was missing.

Also new to Cryptoki v2.0 is the fact that all sessions that an application has with a
token must have the same login/logout status (i.e., for a given application and
token, one of the following holds: all sessions are public sessions; all sessions are
SO sessions; or all sessions are user sessions). When an application’s session logs
in to a token, all of that application’s sessions with that token become logged in,
and when an application’s session logs out of a token, all of that application’s
sessions with that token become logged out. Similarly, for example, if an
application already has a R/O user session open with a token, and then opens a R/W
session with that token, the R/W session is automatically logged in.

This implies that a given application may not simultaneously have SO sessions and
user sessions open with a given token. It also implies that if an application has a
R/W SO session with a token, then it may not open a R/O session with that token,
since R/O SO sessions do not exist. For the same reason, if an application has a R/O
session open, then it may not log any other session into the token as the SO.

The above restrictions on the login/logout status of a single application’s sessions
may also hold for sessions opened by different application. For example, it may be
impossible for one application to have a R/O user session open with a token at the
same time that another application has a R/W SO session open with the same token.
Whether or not this is the case is implementation-dependent (see Section 5.5.7 and
Section 5.5.8 for more information).

5.5.5Session handles and object handles

A session handle is a Cryptoki-assigned value that identifies a session. It is akin to a
file handle, and is specified to functions to indicate which session the function

should act on. However, a session handle differs from a file handle in that all
threads or processes of an application have equal access to all session handles.
That is, anything that can be accomplished with a given file handle by one thread or
process can also be accomplished with that file handle by any other thread or
process belonging to the same application.

Cryptoki also has object handles, which are identifiers used to manipulate objects.
Object handles are similar to session handles: all threads or processes of a given
application have equal access to objects through object handles. The only
exception to this is that R/O sessions only have read-only access to token objects,
whereas R/W sessions have read/write access to token objects.

Valid session handles and object handles in Cryptoki always have nonzero values.

5.5.6Capabilities of sessions

Very roughly speaking, there are three broad types of operations an open session
can perform: administrative operations (such as logging in); object management
operations (such as destroying an object on the token); and cryptographic
operations (such as computing a message digest). In general, a single session can
perform only one operation at a time. This is the reason that it may be desirable for
a single application to open multiple sessions with a single token. For efficiency’s
sake, however, a single session can perform the following pairs of operation types
simultaneously: message digesting and encryption; decryption and message
digesting; signature or MACing and encryption; and decryption and verifying
signatures or MACs. Details on performing simultaneous cryptographic operations
in one session will be provided in Section 9.13.

5.5.7Public Cryptoki libraries and private Cryptoki libraries

Cryptoki v2.0 implementations come in two essentially different varieties: “public
Cryptoki libraries”, in which all applications using a token have access to the same
sessions and session objects (this was the only type of Cryptoki library in the
Cryptoki v1.0 document), and “private Cryptoki libraries”, in which each application
has its own private set of sessions and session objects, which no other application
can access.

5.5.8Example of use of sessions

We give here a detailed and lengthy example of how applications can make use of
sessions in a private Cryptoki library. Afterwards, we indicate how things would
differ if we were making use of a public Cryptoki library, instead. We caution that
our example is decidedly not meant to indicate how multiple applications should use
Cryptoki simultaneously; rather, it is meant to clarify what uses of Cryptoki’s
sessions and objects and handles are permissible. In other words, instead of
demonstrating good technique here, we demonstrate “pushing the envelope”.

For our example, we suppose that two applications, A and B, are using a private
Cryptoki library to access a single token. Each application has two processes
running: A has processes A1 and A2, and B has processes B1 and B2.

APPENDIX B Page 20

Page 21 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

1. A1 and B1 each initialize the Cryptoki library by calling C_Initialize (the
specifics of Cryptoki functions will be explained in Section 8.7.11). Note that
exactly one call to C_Initialize should be made for each application (as
opposed to one call for every process, for example).

2. A1 opens a R/W session and receives the session handle 7 for the session. Since
this is the first session to be opened for A, it is a public session.

3. A2 opens a R/O session and receives the session handle 4. Since all of A’s
existing sessions are public sessions, session 4 is also a public session.

4. A1 attempts to log the SO in to session 7. The attempt fails, because if session
7 becomes an SO session, then session 4 does, as well, and R/O SO sessions
do not exist. A1 receives an error message indicating that the existence of a
R/O session has blocked this attempt to log in.

5. A2 logs the normal user in to session 7. This turns session 7 into a R/W user
session, and turns session 4 into a R/O user session. Note that because A1
and A2 belong to the same application, they have equal access to all
sessions, and therefore, A2 is able to perform this action.

6. A2 opens a R/W session and receives the session handle 9. Since all of A’s
existing sessions are user sessions, session 9 is also a user session.

7. A1 closes session 9.

8. B1 attempts to log out session 4. The attempt fails, because A and B have no
access rights to each other’s sessions or objects. B1 receives an error
message which indicates that there is no such session handle.

9. B2 attempts to close session 4. The attempt fails in precisely the same way as
B1’s attempt to log out session 4 failed.

10. B1 opens a R/W session and receives the session handle 7. Note that, as far as
B is concerned, this is the first occurrence of session handle 7. A’s session 7
and B’s session 7 are completely different sessions.

11. B1 logs the SO in to [B’s] session 7. This turns B’s session 7 into a R/W SO
session, and has no effect on either of A’s sessions.

12. B2 attempts to open a R/O session. The attempt fails, since B already has an
SO session open, and R/O SO sessions do not exist. B1 receives an error
message indicating that the existence of an SO session has blocked this
attempt to open a R/O session.

13. A1 uses [A’s] session 7 to create a session object O1 of some sort and receives
the object handle 7. Note that a Cryptoki implementation may or may not
support separate spaces of handles for sessions and objects.

14. B1 uses [B’s] session 7 to create a token object O2 of some sort and receives
the object handle 7. As with session handles, different applications have no
access rights to each other’s object handles, and so B’s object handle 7 is
entirely different from A’s object handle 7. Of course, since B1 is an SO

session, it cannot create private objects, and so O2 must be a public object
(if B1 attempted to create a private object, it would fail).

15. B2 uses [B’s] session 7 to perform some operation to modify the object
associated with [B’s] object handle 7. This modifies O2.

16. A1 uses [A’s] session 4 to perform an object search operation to get a handle
for O2. The search returns object handle 1. Note that A’s object handle 1
and B’s object handle 7 now point to the same object.

17. A1 attempts to use [A’s] session 4 to modify the object associated with [A’s]
object handle 1. The attempt fails, because A’s session 4 is a R/O session,
and is therefore incapable of modifying O2, which is a token object. A1
receives an error message indicating that the session is a R/O session.

18. A1 uses [A’s] session 7 to modify the object associated with [A’s] object handle
1. This time, since A’s session 7 is a R/W session, the attempt succeeds in
modifying O2.

19. B1 uses [B’s] session 7 to perform an object search operation to find O1. Since
O1 is a session object belonging to A, however, the search does not succeed.

20. A2 uses [A’s] session 4 to perform some operation to modify the object
associated with [A’s] object handle 7. This operation modifies O1.

21. A2 uses [A’s] session 7 to destroy the object associated with [A’s] object handle
1. This destroys O2.

22. B1 attempts to perform some operation with the object associated with [B’s]
object handle 7. The attempt fails, since there is no longer any such object.
B1 receives an error message indicating that its object handle is invalid.

23. A1 logs out [A’s] session 4. This turns A’s session 4 into a R/O public session,
and turns A’s session 7 into a R/W public session.

24. A1 closes [A’s] session 7. This destroys the session object O1, which was
created by A’s session 7.

25. A2 attempt to use [A’s] session 4 to perform some operation with the object
associated with [A’s] object handle 7. The attempt fails, since there is no
longer any such object.

26. A2 executes a call to C_CloseAllSessions. This closes [A’s] session 4. At this
point, if A were to open a new session, the session would not be logged in.

27. B2 closes [B’s] session 7. At this point, if B were to open a new session, the
session would not be logged in.

28. A and B each call C_Finalize to indicate that they are done with the Cryptoki
library.

If A and B were using a public Cryptoki library, then all processes using the library
would have exactly the same access rights to sessions and objects. In other words,
in a public library, there is no distinction made between processes belonging to

APPENDIX B Page 22

Page 23 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

different applications. Anything that can be done by one application’s processes
with a given session handle can also be done by another application’s processes.
For example, with a public library, step 8 above would have succeeded. Also, with a
public library, step 10 could not return session handle 7, since session handle 7 was
already in use.

Furthermore, since public Cryptoki libraries have no notion of which application
“owns” a Cryptoki session, all sessions with a given token must have the same
login/logout status. Because of this, if one application logs out one of its sessions,
all sessions of all applications are logged out as well. It is therefore recommended
that applications only make a C_Logout call under exceptional circumstances.
Instead, when an application finishes using a token, it should close all “its” sessions
(i.e., all the sessions that it was using) one at a time, and then call C_Finalize.
Similarly, if an application using a public Cryptoki library calls
C_CloseAllSessions, all session of all applications will be closed, and so an
application should not normally execute such a call.

Applications should in general not intentionally attempt to share sessions or session
objects with one another, even when they are using a public Cryptoki library (an
application may not even know what type of Cryptoki library it is using, of course).

5.6Function overview

The Cryptoki API consists of a number of functions, spanning slot and token
management and object management, as well as cryptographic functions. These
functions are presented in the following table:

Table 55-5, Summary of Cryptoki Functions

Category Function Description
General C_Initialize initializes Cryptoki
purpose
functions

C_Finalize clean up miscellaneous Cryptoki-
associated resources

C_GetInfo obtains general information about
Cryptoki

C_GetFunctionList obtains entry points of Cryptoki library
functions

Slot and token C_GetSlotList obtains a list of slots in the system
management C_GetSlotInfo obtains information about a particular

slot
functions C_GetTokenInfo obtains information about a particular

token
C_GetMechanismList obtains a list of mechanisms supported by

a token
C_GetMechanismInfo obtains information about a particular

mechanism
C_InitToken initializes a token
C_InitPIN initializes the normal user’s PIN
C_SetPIN modifies the PIN of the current user

Session
management

C_OpenSession opens a connection between an
application and a particular token or sets

Category Function Description
functions up an application callback for token

insertion
C_CloseSession closes a session
C_CloseAllSessions closes all sessions with a token
C_GetSessionInfo obtains information about the session
C_GetOperationState obtains the cryptographic operations

state of a session
C_SetOperationState sets the cryptographic operations state of

a session
C_Login logs into a token
C_Logout logs out from a token

Object C_CreateObject creates an object
management C_CopyObject creates a copy of an object
functions C_DestroyObject destroys an object

C_GetObjectSize obtains the size of an object in bytes
C_GetAttributeValue obtains an attribute value of an object
C_SetAttributeValue modifies an attribute value of an object
C_FindObjectsInit initializes an object search operation
C_FindObjects continues an object search operation
C_FindObjectsFinal finishes an object search operation

Encryption C_EncryptInit initializes an encryption operation
functions C_Encrypt encrypts single-part data

C_EncryptUpdate continues a multiple-part encryption
operation

C_EncryptFinal finishes a multiple-part encryption
operation

Decryption C_DecryptInit initializes a decryption operation
functions C_Decrypt decrypts single-part encrypted data

C_DecryptUpdate continues a multiple-part decryption
operation

C_DecryptFinal finishes a multiple-part decryption
operation

Message C_DigestInit initializes a message-digesting operation
digesting C_Digest digests single-part data

C_DigestUpdate continues a multiple-part digesting
operation

C_DigestKey digests a key
C_DigestFinal finishes a multiple-part digesting

operation

APPENDIX B Page 24

Page 25 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

Category Function Description
Signing C_SignInit initializes a signature operation
and MACing C_Sign signs single-part data
functions C_SignUpdate continues a multiple-part signature

operation
C_SignFinal finishes a multiple-part signature

operation
C_SignRecoverInit initializes a signature operation, where

the data can be recovered from the
signature

C_SignRecover signs single-part data, where the data can
be recovered from the signature

Functions for
verifying

C_VerifyInit initializes a verification operation

signatures C_Verify verifies a signature on single-part data
and MACs C_VerifyUpdate continues a multiple-part verification

operation
C_VerifyFinal finishes a multiple-part verification

operation
C_VerifyRecoverInit initializes a verification operation where

the data is recovered from the signature
C_VerifyRecover verifies a signature on single-part data,

where the data is recovered from the
signature

Dual-purpose
cryptographic

C_DigestEncryptUpd
ate

continues simutaneous multi-part
digesting and encryption operations

functions C_DecryptDigestUpd
ate

continues simultaneous multi-part
decryption and digesting operations

C_SignEncryptUpdat
e

continues simultaneous multi-part
signature and encryption operations

C_DecryptVerifyUpda
te

continues simultaneous multi-part
decryption and verification operations

Key C_GenerateKey generates a secret key
management C_GenerateKeyPair generates a public-key/private-key pair
functions C_WrapKey wraps (encrypts) a key

C_UnwrapKey unwraps (decrypts) a key
C_DeriveKey derives a key from a base key

Random
number
generation

C_SeedRandom mixes in additional seed material to the
random number generator

functions C_GenerateRandom generates random data
Parallel
function
management

C_GetFunctionStatus obtains updated status of a function
running in parallel with the application

functions C_CancelFunction cancels a function running in parallel with
the application

Callback
function

application-supplied function to process
notifications from Cryptoki

Functions in the “Encryption functions”, “Decryption functions”, “Message
digesting functions”, “Signing and MACing functions”, “Functionsre for verifying
signatures and MACs”, “Dual-purpose cryptographic functions”, “Key management
functions”, and “Random number generation” categories may run in parallel with
the application if the token has the capability and the session is opened in this
mode.

APPENDIX B Page 26

Page 27 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

6Security considerations

As an interface to cryptographic devices, Cryptoki provides a basis for security in a
computer or communications system. Two of the particular features of the
interface that facilitate such security are the following:

1. Access to private objects on the token, and possibly to cryptographic functions,
requires a PIN. Thus, possessing the cryptographic device that implements
the token may not be sufficient to use it; the PIN may also be needed.

2. Additional protection can be given to private keys and secret keys by marking
them as “sensitive” or “nounextractable”. Sensitive keys cannot be revealed in
plaintext off the token, and nounextractable keys cannot be revealed off the
token even when encrypted (though they can still be used as keys).

It is expected that access to private, sensitive, or nounextractable object by means
other than Cryptoki (e.g., other programming interfaces, or reverse engineering of
the device) would be difficult.

If a device does not have a tamper-proof environment or protected memory in
which to store private and sensitive objects, the device may encrypt the objects
with a master key which is perhaps derived from the user’s PIN. The particular
mechanism for protecting private objects is left to the device implementation,
however.

Based on these features it should be possible to design applications in such a way
that the token can provide adequate security for the objects the applications
manage.

Of course, cryptography is only one element of security, and the token is only one
component in a system. While the token itself may be secure, one must also
consider the security of the operating system by which the application interfaces to
it, especially since the PIN may be passed through the operating system. This can
make it easy for a rogue application on the operating system to obtain the PIN; it is
also possible that other devices monitoring communication lines to the
cryptographic device can obtain the PIN. Rogue applications and devices may also
change the commands sent to the cryptographic device to obtain services other
than what the application requested.

It is important to be sure that the system is secure against such attack. Cryptoki
may well play a role here; for instance, a token may be involved in the “booting up”
of the system.

We note that none of the attacks just described can compromise keys marked
“sensitive,” since a key that is sensitive will always remain sensitive. Similarly, a
key that is unextractable cannot be modified to be extractable. However, during
key generation, if a private key or secret key is not created as “sensitive” and
“unextractable”, a copy of the private key could be obtained by a rogue application
before these attributes are set. It can therefore be important to generate keys in a
more trusted environment than the environment in which one performs normal
operations.

An application may also want to be sure that the token is “legitimate” in some sense
(for a variety of reasons, including export restrictions). This is outside the scope of
the present standard, but it can be achieved by distributing the token with a built-
in, certified public/private-key pair, by which the token can prove its identity. The
certificate would be signed by an authority (presumably the one indicating that the
token is “legitimate”) whose public key is known to the application. The application
would verify the certificate, and challenge the token to prove its identity by signing
a time-varying message with its built-in private key.

Once a normal user has been authenticated to the token, Cryptoki does not restrict
which cryptographic operations the user may perform. The user may perform any
operation supported by the token.

APPENDIX B Page 28

Page 29 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

7Data types

Cryptoki's data types are described in the following subsections, organized into
categories, based on the kind of information they represent. The data types for
holding parameters for various mechanisms, and the pointers to those parameters,
are not described here; these types are described with the information on the
mechanisms themselves, in Section 10.

7.1General information

Cryptoki represents general information with the following types:

¨ CK_VERSION

CK_VERSION is a structure that describes the version of a Cryptoki interface, a
Cryptoki library, an SSL implementation, or the hardware or firmware version of a
slot or token. It is defined as follows:

typedef struct CK_VERSION {
CK_BYTE major;
CK_BYTE minor;

} CK_VERSION;
The fields of the structure have the following meanings:

major major version number (the integer portion of the
version)

minor minor version number (the hundredths portion of
the version)

For version 1.0, major = 1 and minor = 0. For version 2.1, major = 2 and minor =
10. Minor revisions of the Cryptoki standard are always upwardly compatible
within the same major version number.

¨ CK_VERSION_PTR

CK_VERSION_PTR points to a CK_VERSION structure. It is implementation-
dependent.

¨ CK_INFO

CK_INFO provides general information about Cryptoki. It is defined as follows:
typedef struct CK_INFO {

CK_VERSION cryptokiVersion;
CK_CHAR manufacturerID[32];
CK_FLAGS flags;

CK_CHAR libraryDescription[32];
CK_VERSION libraryVersion;

} CK_INFO;

The fields of the structure have the following meanings:

cryptokiVersion Cryptoki interface version number, for
compatibility with future revisions of this interface

manufacturerID ID of the Cryptoki library manufacturer. Must be
padded with the blank character (‘ ‘)

flags bit flags reserved for future versions. Must be zero
for this version

libraryDescription character-string description of the library. Must be
padded with the blank character (‘ ‘)

libraryVersion Cryptoki library version number

For libraries written to the Cryptoki v2.0 document, the value of cryptokiVersion
should be 2.0; the value of libraryVersion is the version number of the library
software itself.

¨ CK_INFO_PTR

CK_INFO_PTR points to a CK_INFO structure. It is implementation-dependent.

¨ CK_NOTIFICATION

CK_NOTIFICATION holds the types of notifications that Cryptoki provides to an
application. It is defined as follows:

typedef CK_ULONG CK_NOTIFICATION;

For this version of Cryptoki, the following types of notifications are defined:
#define CKN_SURRENDER 0
#define CKN_COMPLETE 1
#define CKN_DEVICE_REMOVED 2
#define CKN_TOKEN_INSERTION 3

The notifications have the following meanings:

CKN_SURRENDER Cryptoki is surrendering the execution of a function
executing in serial so that the application may
perform other operations. After performing any
desired operations, the application should indicate
to Cryptoki whether to continue or cancel the
function.

CKN_COMPLETE a function running in parallel has completed.

APPENDIX B Page 30

Page 31 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

CKN_DEVICE_REMOVED Cryptoki has detected that the device underlying
the token has been removed from the reader. Not
all slots/tokens support this notification.

CKN_TOKEN_INSERTION Cryptoki has detected that the device underlying
the token has been inserted into the reader. Not all
slots/tokens support this notification.

7.2Slot and token types

Cryptoki represents slot and token information with the following types:

¨ CK_SLOT_ID

CK_SLOT_ID is a Cryptoki-assigned value that identifies a slot. It is defined as
follows:

typedef CK_ULONG CK_SLOT_ID;

A CK_SLOT_ID is returned by C_GetSlotList.

¨ CK_SLOT_ID_PTR

CK_SLOT_ID_PTR points to a CK_SLOT_ID. It is implementation-dependent.

¨ CK_SLOT_INFO

CK_SLOT_INFO provides information about a slot. It is defined as follows:
typedef struct CK_SLOT_INFO {

CK_CHAR slotDescription[64];
CK_CHAR manufacturerID[32];
CK_FLAGS flags;
CK_VERSION hardwareVersion;
CK_VERSION firmwareVersion;

} CK_SLOT_INFO;

The fields of the structure have the following meanings:

slotDescription character-string description of the slot. Must be
padded with the blank character (‘ ‘)

manufacturerID ID of the slot manufacturer. Must be padded with
the blank character (‘ ‘)

flags bits flags that provide capabilities of the slot.

hardwareVersion version number of the slot’s hardware

firmwareVersion version number of the slot’s firmware

The following table defines the flags parameter:

Table 77-1, Slot Information Flags

Bit Flag Mask Meaning
CKF_TOKEN_PRESENT 0x000000

01
TRUE if a token is present in the slot
(e.g., a device is in the reader)

CKF_REMOVABLE_DEVI
CE

0x000000
02

TRUE if the reader supports removable
devices

CKF_HW_SLOT 0x000000
04

TRUE if the slot is a hardware slot, as
opposed to a software slot implementing
a “soft token”

¨ CK_SLOT_INFO_PTR

CK_SLOT_INFO_PTR points to a CK_SLOT_INFO structure. It is implementation-
dependent.

¨ CK_TOKEN_INFO

CK_TOKEN_INFO provides information about a token. It is defined as follows:
typedef struct CK_TOKEN_INFO {

CK_CHAR label[32];
CK_CHAR manufacturerID[32];
CK_CHAR model[16];
CK_CHAR serialNumber[16];
CK_FLAGS flags;
CK_ULONG ulMaxSessionCount;
CK_ULONG ulSessionCount;
CK_ULONG ulMaxRwSessionCount;
CK_ULONG ulRwSessionCount;
CK_ULONG ulMaxPinLen;
CK_ULONG ulMinPinLen;
CK_ULONG ulTotalPublicMemory;
CK_ULONG ulFreePublicMemory;
CK_ULONG ulTotalPrivateMemory;
CK_ULONG ulFreePrivateMemory;
CK_VERSION hardwareVersion;
CK_VERSION firmwareVersion;
CK_CHAR utcTime[16];

} CK_TOKEN_INFO;

The fields of the structure have the following meanings:

label application-defined label, assigned during token
initialization. Must be padded with the blank
character (‘ ‘)

APPENDIX B Page 32

Page 33 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

manufacturerID ID of the device manufacturer. Must be padded
with the blank character (‘ ‘)

model model of the device. Must be padded with the
blank character (‘ ‘)

serialNumber character-string serial number of the device. Must
be padded with the blank character (‘ ‘)

flags bit flags indicating capabilities and status of the
device as defined below

ulMaxSessionCount maximum number of sessions that can be opened
with the token at one time

ulSessionCount number of sessions that are currently open with the
token

ulMaxRwSessionCount maximum number of read/write sessions that can
be opened with the token at one time

ulRwSessionCount number of read/write sessions that are currently
open with the token

ulMaxPinLen maximum length in bytes of the PIN

ulMinPinLen minimum length in bytes of the PIN

ulTotalPublicMemory the total amount of memory in bytes in which
public objects may be stored

ulFreePublicMemory the amount of free (unused) memory in bytes for
public objects

ulTotalPrivateMemory the total amount of memory in bytes in which
private objects may be stored

ulFreePrivateMemory the amount of free (unused) memory in bytes for
private objects

hardwareVersion version number of hardware

firmwareVersion version number of firmware

utcTime current time as a character-string of length 16,
represented in the format YYYYMMDDhhmmssxx
(4 characters for the year; 2 characters each for
the month, the day, the hour, the minute, and the
second; and 2 additional reserved ‘0’ characters).
The value of this field only makes sense for tokens
equipped with a clock, as indicated in the token
information flags (see below)

The following table defines the flags parameter:

Table 77-2, Token Information Flags

Bit Flag Mask Meaning
CKF_RNG 0x00000

001
TRUE if the token has its
own random number
generator

CKF_WRITE_PROTECTED 0x00000
002

TRUE if the token is
write-protected

CKF_LOGIN_REQUIRED 0x00000
004

TRUE if a user must be
logged in to perform
cryptographic functions

CKF_USER_PIN_INITIALIZED 0x00000
008

TRUE if the normal
user’s PIN has been
initialized

CKF_EXCLUSIVE_EXISTS 0x00000
010

TRUE if an exclusive
session exists

CKF_RESTORE_KEY_NOT_NEEDED 0x00000
020

TRUE if a successful
save of a session’s
cryptographic operations
state always contains all
keys needed to restore
the state of the session

CKF_CLOCK_ON_TOKEN 0x00000
040

TRUE if token has its
own hardware clock

CKF_SUPPORTS_PARALLEL 0x00000
080

TRUE if token supports
parallel sessions through
this Cryptoki library

CKF_PROTECTED_AUTHENTICATION_PA
TH

0x00000
100

TRUE if token has a
“protected
authentication path”,
whereby a user can log
in to the token without
passing a PIN through
the Cryptoki library

CKF_DUAL_CRYPTO_OPERATIONS 0x00000
200

TRUE if a single session
with the token can
perform dual
cryptographic operations
(see Section 9.13)

Exactly what the CKF_WRITE_PROTECTED flag means is not specified in
Cryptoki. An application may be unable to perform certain actions on a write-
protected token; these actions can include any of the following, among other
actions:

· Creating/modifying an object on the token.

· Creating/modifying a token object on the token.

APPENDIX B Page 34

Page 35 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

· Changing the SO’s PIN.

· Changing the normal user’s PIN.

The ulMaxSessionCount, ulSessionCount, ulMaxRwSessionCount,
ulRwSessionCount, ulMaxPinLen, ulMinPinLen, ulTotalPublicMemory,
ulFreePublicMemory, ulTotalPrivateMemory, and ulFreePrivateMemory fields
have a quirk in their interpretations. For each of these fields, it is possible for a
token to return a special value which means, “I cannot/will not divulge that
information.” This value is the integer value -1, which (unfortunately) does not
fit into a variable of type CK_ULONG. The upshot of all this is that the correct
way to interpret (for example) the ulMaxSessionCount field is as follows:
CK_TOKEN_INFO info;

.

.

.
if ((CK_LONG) info.ulMaxSessionCount == -1) {

/* Token refuses to give value of ulMaxSessionCount */
.
.
.

} else {
/* info.ulMaxSessionCount really does contain what it should */
.
.
.

}

¨ CK_TOKEN_INFO_PTR

CK_TOKEN_INFO_PTR points to a CK_TOKEN_INFO structure. It is
implementation-dependent.

7.3Session types

Cryptoki represents session information with the following types:

¨ CK_SESSION_HANDLE

CK_SESSION_HANDLE is a Cryptoki-assigned value that identifies a session. It is
defined as follows:

typedef CK_ULONG CK_SESSION_HANDLE;

¨ CK_SESSION_HANDLE_PTR

CK_SESSION_HANDLE_PTR points to a CK_SESSION_HANDLE. It is
implementation-dependent.

¨ CK_USER_TYPE

CK_USER_TYPE holds the types of Cryptoki users described in Section 5.4. It is
defined as follows:

typedef CK_ULONG CK_USER_TYPE;

For this version of Cryptoki, the following types of users are defined:
#define CKU_SO 0
#define CKU_USER 1

¨ CK_STATE

CK_STATE holds the session state, as decribed in Sections 5.5.1 and 5.5.2. It is
defined as follows:

typedef CK_ULONG CK_STATE;

For this version of Cryptoki, the following session states are defined:
#define CKS_RO_PUBLIC_SESSION 0
#define CKS_RO_USER_FUNCTIONS 1
#define CKS_RW_PUBLIC_SESSION 2
#define CKS_RW_USER_FUNCTIONS 3
#define CKS_RW_SO_FUNCTIONS 4

¨ CK_SESSION_INFO

CK_SESSION_INFO provides information about a session. It is defined as follows:
typedef struct CK_SESSION_INFO {

CK_SLOT_ID slotID;
CK_STATE state;
CK_FLAGS flags;
CK_ULONG ulDeviceError;

} CK_SESSION_INFO;

The fields of the structure have the following meanings:

slotID ID of the slot that interfaces with the token

state the state of the session

flags bit flags that define the type of session; the flags
are defined below

ulDeviceError an error code defined by the cryptographic device.
Used for errors not covered by Cryptoki.

The following table defines the flags parameter:

APPENDIX B Page 36

Page 37 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

Table 77-3, Session Information Flags

Bit Flag Mask Meaning
CKF_EXCLUSIVE_SESSION 0x000000

01
TRUE if the session is exclusive; FALSE
if the session is shared

CKF_RW_SESSION 0x000000
02

TRUE if the session is read/write;
FALSE if the session is read-only

CKF_SERIAL_SESSION 0x000000
04

TRUE if cryptographic functions are
performed in serial with the
application; FALSE if the functions may
be performed in parallel with the
application

CKF_INSERTION_CALLBAC
K

0x000000
08

this flag is write-only, i.e., is supplied as
an argument to a C_OpenSession call,
but is never set in a session’s
CK_SESSION_INFO structure. It is
TRUE if the call is a request for a token
insertion callback, instead of being a
request to open a session

¨ CK_SESSION_INFO_PTR

CK_SESSION_INFO_PTR points to a CK_SESSION_INFO structure. It is
implementation-dependent.

7.4Object types

Cryptoki represents object information with the following types:

¨ CK_OBJECT_HANDLE

CK_OBJECT_HANDLE is a token-specific identifier for an object. It is defined as
follows:

typedef CK_ULONG CK_OBJECT_HANDLE;

When an object is created or found on a token, Cryptoki assigns it an object handle
for sessions to use to access it. A particular object on a token does not necessarily
have a handle which is fixed for the lifetime of the object; however, if a particular
session can use a particular handle to access a particular object, then that session
will continue to be able to use that handle to acces that object as long as the
session continues to exist, the object continues to exist, and the object continues to
be accessible to the session.

¨ CK_OBJECT_HANDLE_PTR

CK_OBJECT_HANDLE_PTR points to a CK_OBJECT_HANDLE. It is
implementation-dependent.

¨ CK_OBJECT_CLASS

CK_OBJECT_CLASS is a value that identifies the classes (or types) of objects that
Cryptoki recognizes. It is defined as follows:

typedef CK_ULONG CK_OBJECT_CLASS;

For this version of Cryptoki, the following classes of objects are defined:
#define CKO_DATA 0x00000000
#define CKO_CERTIFICATE 0x00000001
#define CKO_PUBLIC_KEY 0x00000002
#define CKO_PRIVATE_KEY 0x00000003
#define CKO_SECRET_KEY 0x00000004
#define CKO_VENDOR_DEFINED 0x80000000

Object classes CKO_VENDOR_DEFINED and above are permanently reserved for
token vendors. For interoperability, vendors should register their object classes
through the PKCS process.

¨ CK_OBJECT_CLASS_PTR

CK_OBJECT_CLASS_PTR points to a CK_OBJECT_CLASS structure. It is
implementation-dependent.

¨ CK_KEY_TYPE

CK_KEY_TYPE is a value that identifies a key type. It is defined as follows:
typedef CK_ULONG CK_KEY_TYPE;

For this version of Cryptoki, the following key types are defined:
#define CKK_RSA 0x00000000
#define CKK_DSA 0x00000001
#define CKK_DH 0x00000002
#define CKK_ECDSA 0x00000003
#define CKK_MAYFLY 0x00000004
#define CKK_KEA 0x00000005
#define CKK_GENERIC_SECRET 0x00000010
#define CKK_RC2 0x00000011
#define CKK_RC4 0x00000012
#define CKK_DES 0x00000013
#define CKK_DES2 0x00000014
#define CKK_DES3 0x00000015
#define CKK_CAST 0x00000016
#define CKK_CAST3 0x00000017
#define CKK_CAST5 0x00000018
#define CKK_RC5 0x00000019
#define CKK_IDEA 0x0000001A
#define CKK_SKIPJACK 0x0000001B
#define CKK_BATON 0x0000001C
#define CKK_JUNIPER 0x0000001D

APPENDIX B Page 38

Page 39 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

#define CKK_CDMF 0x0000001E
#define CKK_VENDOR_DEFINED 0x80000000

Key types CKK_VENDOR_DEFINED and above are permanently reserved for
token vendors. For interoperability, vendors should register their key types
through the PKCS process.

¨ CK_CERTIFICATE_TYPE

CK_CERTIFICATE_TYPE is a value that identifies a certificate type. It is defined
as follows:

typedef CK_ULONG CK_CERTIFICATE_TYPE;

For this version of Cryptoki, the following certificate types are defined:
#define CKC_X_509 0x00000000
#define CKC_VENDOR_DEFINED 0x80000000

Certificate types CKC_VENDOR_DEFINED and above are permanently reserved
for token vendors. For interoperability, vendors should register their certificate
types through the PKCS process.

¨ CK_ATTRIBUTE_TYPE

CK_ATTRIBUTE_TYPE is a value that identifies an attribute type. It is defined as
follows:

typedef CK_ULONG CK_ATTRIBUTE_TYPE;

For this version of Cryptoki, the following attribute types are defined:
#define CKA_CLASS 0x00000000
#define CKA_TOKEN 0x00000001
#define CKA_PRIVATE 0x00000002
#define CKA_LABEL 0x00000003
#define CKA_APPLICATION 0x00000010
#define CKA_VALUE 0x00000011
#define CKA_CERTIFICATE_TYPE 0x00000080
#define CKA_ISSUER 0x00000081
#define CKA_SERIAL_NUMBER 0x00000082
#define CKA_KEY_TYPE 0x00000100
#define CKA_SUBJECT 0x00000101
#define CKA_ID 0x00000102
#define CKA_SENSITIVE 0x00000103
#define CKA_ENCRYPT 0x00000104
#define CKA_DECRYPT 0x00000105
#define CKA_WRAP 0x00000106
#define CKA_UNWRAP 0x00000107
#define CKA_SIGN 0x00000108
#define CKA_SIGN_RECOVER 0x00000109
#define CKA_VERIFY 0x0000010A
#define CKA_VERIFY_RECOVER 0x0000010B

#define CKA_DERIVE 0x0000010C
#define CKA_START_DATE 0x00000110
#define CKA_END_DATE 0x00000111
#define CKA_MODULUS 0x00000120
#define CKA_MODULUS_BITS 0x00000121
#define CKA_PUBLIC_EXPONENT 0x00000122
#define CKA_PRIVATE_EXPONENT 0x00000123
#define CKA_PRIME_1 0x00000124
#define CKA_PRIME_2 0x00000125
#define CKA_EXPONENT_1 0x00000126
#define CKA_EXPONENT_2 0x00000127
#define CKA_COEFFICIENT 0x00000128
#define CKA_PRIME 0x00000130
#define CKA_SUBPRIME 0x00000131
#define CKA_BASE 0x00000132
#define CKA_VALUE_BITS 0x00000160
#define CKA_VALUE_LEN 0x00000161
#define CKA_EXTRACTABLE 0x00000162
#define CKA_LOCAL 0x00000163
#define CKA_NEVER_EXTRACTABLE 0x00000164
#define CKA_ALWAYS_SENSITIVE 0x00000165
#define CKA_MODIFIABLE 0x00000170
#define CKA_VENDOR_DEFINED 0x80000000

Section 8 defines the attributes for each object class. Attribute types
CKA_VENDOR_DEFINED and above are permanently reserved for token vendors.
For interoperability, vendors should register their attribute types through the PKCS
process.

¨ CK_ATTRIBUTE

CK_ATTRIBUTE is a structure that includes the type, length and value of an
attribute. It is defined as follows:

typedef struct CK_ATTRIBUTE {
CK_ATTRIBUTE_TYPE type;
CK_VOID_PTR pValue;
CK_ULONG ulValueLen;

} CK_ATTRIBUTE;

The fields of the structure have the following meanings:

type the attribute type

pValue pointer to the value of the attribute

ulValueLen length in bytes of the value

If an attribute has no value, then pValue = NULL_PTR, and ulValueLen = 0. An
array of CK_ATTRIBUTEs is called a “template” and is used for creating,
manipulating and searching for objects. Note that pValue is an “void” pointer,
facilitating the passing of arbitrary values. Both the application and Cryptoki

APPENDIX B Page 40

Page 41 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

library must ensure that the pointer can be safely cast to the expected type (e.g.,
without word-alignment errors).

¨ CK_ATTRIBUTE_PTR

CK_ATTRIBUTE_PTR points to a CK_ATTRIBUTE structure. It is
implementation-dependent.

¨ CK_DATE

CK_DATE is a structure that defines a date. It is defined as follows:
typedef struct CK_DATE {

CK_CHAR year[4];
CK_CHAR month[2];
CK_CHAR day[2];

} CK_DATE;

The fields of the structure have the following meanings:

year the year (“1900” - “9999”)

month the month (“01” - “12”)

day the day (“01” - “31”)

The fields hold numeric characters from the character set in Table 4-3, not the
literal byte values.

7.5Data types for mechanisms

Cryptoki supports the following types for describing mechanisms and parameters to
them:

¨ CK_MECHANISM_TYPE

CK_MECHANISM_TYPE is a value that identifies a mechanism type. It is defined
as follows:

typedef CK_ULONG CK_MECHANISM_TYPE;

For Cryptoki v2.0, the following mechanism types are defined:
#define CKM_RSA_PKCS_KEY_PAIR_GEN 0x00000000
#define CKM_RSA_PKCS 0x00000001
#define CKM_RSA_9796 0x00000002
#define CKM_RSA_X_509 0x00000003
#define CKM_MD2_RSA_PKCS 0x00000004
#define CKM_MD5_RSA_PKCS 0x00000005
#define CKM_SHA1_RSA_PKCS 0x00000006

#define CKM_DSA_KEY_PAIR_GEN 0x00000010
#define CKM_DSA 0x00000011
#define CKM_DSA_SHA1 0x00000012
#define CKM_DH_PKCS_KEY_PAIR_GEN 0x00000020
#define CKM_DH_PKCS_DERIVE 0x00000021
#define CKM_RC2_KEY_GEN 0x00000100
#define CKM_RC2_ECB 0x00000101
#define CKM_RC2_CBC 0x00000102
#define CKM_RC2_MAC 0x00000103
#define CKM_RC2_MAC_GENERAL 0x00000104
#define CKM_RC2_CBC_PAD 0x00000105
#define CKM_RC4_KEY_GEN 0x00000110
#define CKM_RC4 0x00000111
#define CKM_DES_KEY_GEN 0x00000120
#define CKM_DES_ECB 0x00000121
#define CKM_DES_CBC 0x00000122
#define CKM_DES_MAC 0x00000123
#define CKM_DES_MAC_GENERAL 0x00000124
#define CKM_DES_CBC_PAD 0x00000125
#define CKM_DES2_KEY_GEN 0x00000130
#define CKM_DES3_KEY_GEN 0x00000131
#define CKM_DES3_ECB 0x00000132
#define CKM_DES3_CBC 0x00000133
#define CKM_DES3_MAC 0x00000134
#define CKM_DES3_MAC_GENERAL 0x00000135
#define CKM_DES3_CBC_PAD 0x00000136
#define CKM_CDMF_KEY_GEN 0x00000140
#define CKM_CDMF_ECB 0x00000141
#define CKM_CDMF_CBC 0x00000142
#define CKM_CDMF_MAC 0x00000143
#define CKM_CDMF_MAC_GENERAL 0x00000144
#define CKM_CDMF_CBC_PAD 0x00000145
#define CKM_MD2 0x00000200
#define CKM_MD2_HMAC 0x00000201
#define CKM_MD2_HMAC_GENERAL 0x00000202
#define CKM_MD5 0x00000210
#define CKM_MD5_HMAC 0x00000211
#define CKM_MD5_HMAC_GENERAL 0x00000212
#define CKM_SHA_1 0x00000220
#define CKM_SHA_1_HMAC 0x00000221
#define CKM_SHA_1_HMAC_GENERAL 0x00000222
#define CKM_CAST_KEY_GEN 0x00000300
#define CKM_CAST_ECB 0x00000301
#define CKM_CAST_CBC 0x00000302
#define CKM_CAST_MAC 0x00000303
#define CKM_CAST_MAC_GENERAL 0x00000304
#define CKM_CAST_CBC_PAD 0x00000305
#define CKM_CAST3_KEY_GEN 0x00000310
#define CKM_CAST3_ECB 0x00000311
#define CKM_CAST3_CBC 0x00000312
#define CKM_CAST3_MAC 0x00000313
#define CKM_CAST3_MAC_GENERAL 0x00000314
#define CKM_CAST3_CBC_PAD 0x00000315
#define CKM_CAST5_KEY_GEN 0x00000320
#define CKM_CAST5_ECB 0x00000321
#define CKM_CAST5_CBC 0x00000322

APPENDIX B Page 42

Page 43 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

#define CKM_CAST5_MAC 0x00000323
#define CKM_CAST5_MAC_GENERAL 0x00000324
#define CKM_CAST5_CBC_PAD 0x00000325
#define CKM_RC5_KEY_GEN 0x00000330
#define CKM_RC5_ECB 0x00000331
#define CKM_RC5_CBC 0x00000332
#define CKM_RC5_MAC 0x00000333
#define CKM_RC5_MAC_GENERAL 0x00000334
#define CKM_RC5_CBC_PAD 0x00000335
#define CKM_IDEA_KEY_GEN 0x00000340
#define CKM_IDEA_ECB 0x00000341
#define CKM_IDEA_CBC 0x00000342
#define CKM_IDEA_MAC 0x00000343
#define CKM_IDEA_MAC_GENERAL 0x00000344
#define CKM_IDEA_CBC_PAD 0x00000345
#define CKM_GENERIC_SECRET_KEY_GEN 0x00000350
#define CKM_CONCATENATE_BASE_AND_KEY 0x00000360
#define CKM_CONCATENATE_BASE_AND_DATA 0x00000362
#define CKM_CONCATENATE_DATA_AND_BASE 0x00000363
#define CKM_XOR_BASE_AND_DATA 0x00000364
#define CKM_EXTRACT_KEY_FROM_KEY 0x00000365
#define CKM_SSL3_PRE_MASTER_KEY_GEN 0x00000370
#define CKM_SSL3_MASTER_KEY_DERIVE 0x00000371
#define CKM_SSL3_KEY_AND_MAC_DERIVE 0x00000372
#define CKM_SSL3_MD5_MAC 0x00000380
#define CKM_SSL3_SHA1_MAC 0x00000381
#define CKM_MD5_KEY_DERIVATION 0x00000390
#define CKM_MD2_KEY_DERIVATION 0x00000391
#define CKM_SHA1_KEY_DERIVATION 0x00000392
#define CKM_PBE_MD2_DES_CBC 0x000003A0
#define CKM_PBE_MD5_DES_CBC 0x000003A1
#define CKM_PBE_MD5_CAST_CBC 0x000003A2
#define CKM_PBE_MD5_CAST3_CBC 0x000003A3
#define CKM_PBE_MD5_CAST5_CBC 0x000003A4
#define CKM_PBE_SHA1_CAST5_CBC 0x000003A5
#define CKM_KEY_WRAP_LYNKS 0x00000400
#define CKM_KEY_WRAP_SET_OAEP 0x00000401
#define CKM_SKIPJACK_KEY_GEN 0x00001000
#define CKM_SKIPJACK_ECB64 0x00001001
#define CKM_SKIPJACK_CBC64 0x00001002
#define CKM_SKIPJACK_OFB64 0x00001003
#define CKM_SKIPJACK_CFB64 0x00001004
#define CKM_SKIPJACK_CFB32 0x00001005
#define CKM_SKIPJACK_CFB16 0x00001006
#define CKM_SKIPJACK_CFB8 0x00001007
#define CKM_SKIPJACK_WRAP 0x00001008
#define CKM_SKIPJACK_PRIVATE_WRAP 0x00001009
#define CKM_SKIPJACK_RELAYX 0x0000100a
#define CKM_KEA_KEY_PAIR_GEN 0x00001010
#define CKM_KEA_KEY_DERIVE 0x00001011
#define CKM_FORTEZZA_TIMESTAMP 0x00001020
#define CKM_BATON_KEY_GEN 0x00001030
#define CKM_BATON_ECB128 0x00001031
#define CKM_BATON_ECB96 0x00001032
#define CKM_BATON_CBC128 0x00001033
#define CKM_BATON_COUNTER 0x00001034

#define CKM_BATON_SHUFFLE 0x00001035
#define CKM_BATON_WRAP 0x00001036
#define CKM_ECDSA_KEY_PAIR_GEN 0x00001040
#define CKM_ECDSA 0x00001041
#define CKM_ECDSA_SHA1 0x00001042
#define CKM_MAYFLY_KEY_PAIR_GEN 0x00001050
#define CKM_MAYFLY_KEY_DERIVE 0x00001051
#define CKM_JUNIPER_KEY_GEN 0x00001060
#define CKM_JUNIPER_ECB128 0x00001061
#define CKM_JUNIPER_CBC128 0x00001062
#define CKM_JUNIPER_COUNTER 0x00001063
#define CKM_JUNIPER_SHUFFLE 0x00001064
#define CKM_JUNIPER_WRAP 0x00001065
#define CKM_FASTHASH 0x00001070
#define CKM_VENDOR_DEFINED 0x80000000

Mechanism types CKM_VENDOR_DEFINED and above are permanently reserved
for token vendors. For interoperability, vendors should register their mechanism
types through the PKCS process.

¨ CK_MECHANISM_TYPE_PTR

CK_MECHANISM_TYPE_PTR points to a CK_MECHANISM_TYPE structure. It
is implementation-dependent.

¨ CK_MECHANISM

CK_MECHANISM is a structure that specifies a particular mechanism. It is
defined as follows:

typedef struct CK_MECHANISM {
CK_MECHANISM_TYPE mechanism;
CK_VOID_PTR pParameter;
CK_ULONG ulParameterLen;

} CK_MECHANISM;

The fields of the structure have the following meanings:

mechanism the type of mechanism

pParameter pointer to the parameter if required by the
mechanism

usParameterLen length in bytes of the parameter

Note that pParameter is a “void” pointer, facilitating the passing of arbitrary values.
Both the application and Cryptoki library must ensure that the pointer can be safely
cast to the expected type (e.g., without word-alignment errors).

APPENDIX B Page 44

Page 45 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

¨ CK_MECHANISM_PTR

CK_MECHANISM_PTR points to a CK_MECHANISM structure. It is
implementation-dependent.

¨ CK_MECHANISM_INFO

CK_MECHANISM_INFO is a structure that provides information about a
particular mechanism. It is defined as follows:

typedef struct CK_MECHANISM_INFO {
CK_ULONG ulMinKeySize;
CK_ULONG ulMaxKeySize;
CK_FLAGS flags;

} CK_MECHANISM_INFO;

The fields of the structure have the following meanings:

ulMinKeySize the minimum size of the key for the mechanism

ulMaxKeySize the maximum size of the key for the mechanism

flags bit flags specifying mechanism capabilities

For some mechanisms, the ulMinKeySize and ulMaxKeySize fields have
meaningless values.

The following table defines the flags parameter:

Table 77-4, Mechanism Information Flags

Bit Flag Mask Meaning
CKF_HW 0x000000

01
TRUE if the mechanism is performed by
the device; FALSE if the mechanism is
performed in software

CKF_ENCRYPT 0x000001
00

TRUE if the mechanism can be used with
C_EncryptInit

CKF_DECRYPT 0x000002
00

TRUE if the mechanism can be used with
C_DecryptInit

CKF_DIGEST 0x000004
00

TRUE if the mechanism can be used with
C_DigestInit

CKF_SIGN 0x000008
00

TRUE if the mechanism can be used with
C_SignInit

CKF_SIGN_RECOVER 0x000010
00

TRUE if the mechanism can be used with
C_SignRecoverInit

CKF_VERIFY 0x000020
00

TRUE if the mechanism can be used with
C_VerifyInit

CKF_VERIFY_RECOVER 0x000040
00

TRUE if the mechanism can be used with
C_VerifyRecoverInit

CKF_GENERATE 0x000080
00

TRUE if the mechanism can be used with
C_GenerateKey

CKF_GENERATE_KEY_PA
IR

0x000100
00

TRUE if the mechanism can be used with
C_GenerateKeyPair

CKF_WRAP 0x000200
00

TRUE if the mechanism can be used with
C_WrapKey

CKF_UNWRAP 0x000400
00

TRUE if the mechanism can be used with
C_UnwrapKey

CKF_DERIVE 0x000800
00

TRUE if the mechanism can be used with
C_DeriveKey

CKF_EXTENSION 0x800000
00

TRUE if an extension to the flags; FALSE
if no extensions. Must be FALSE for this
version.

¨ CK_MECHANISM_INFO_PTR

CK_MECHANISM_INFO_PTR points to a CK_MECHANISM_INFO structure. It
is implementation-dependent.

7.6Function types

Cryptoki represents information about functions with the following data types:

¨ CK_ENTRY

CK_ENTRY is not really a type. Rather, it is a string used which is provided to a C
compiler in a given environment to produce an entry into Cryptoki (i.e., a Cryptoki
function). It is implementation-dependent. For a Win32 Cryptoki .dll, it might be

APPENDIX B Page 46

Page 47 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

“__declspec(dllexport)”. For a Win16 Cryptoki .dll, it might be “_export _far
_pascal”. For a Unix library, it might be “”.

¨ CK_RV

CK_RV is a value that identifies the return value of a Cryptoki function. It is defined
as follows:

typedef CK_ULONG CK_RV;

For this version of Cryptoki, the following return values are defined:
#define CKR_OK 0x00000000
#define CKR_CANCEL 0x00000001
#define CKR_HOST_MEMORY 0x00000002
#define CKR_SLOT_ID_INVALID 0x00000003
#define CKR_GENERAL_ERROR 0x00000005
#define CKR_FUNCTION_FAILED 0x00000006
#define CKR_ATTRIBUTE_READ_ONLY 0x00000010
#define CKR_ATTRIBUTE_SENSITIVE 0x00000011
#define CKR_ATTRIBUTE_TYPE_INVALID 0x00000012
#define CKR_ATTRIBUTE_VALUE_INVALID 0x00000013
#define CKR_DATA_INVALID 0x00000020
#define CKR_DATA_LEN_RANGE 0x00000021
#define CKR_DEVICE_ERROR 0x00000030
#define CKR_DEVICE_MEMORY 0x00000031
#define CKR_DEVICE_REMOVED 0x00000032
#define CKR_ENCRYPTED_DATA_INVALID 0x00000040
#define CKR_ENCRYPTED_DATA_LEN_RANGE 0x00000041
#define CKR_FUNCTION_CANCELED 0x00000050
#define CKR_FUNCTION_NOT_PARALLEL 0x00000051
#define CKR_FUNCTION_PARALLEL 0x00000052
#define CKR_FUNCTION_NOT_SUPPORTED 0x00000054
#define CKR_KEY_HANDLE_INVALID 0x00000060
#define CKR_KEY_SIZE_RANGE 0x00000062
#define CKR_KEY_TYPE_INCONSISTENT 0x00000063
#define CKR_KEY_NOT_NEEDED 0x00000064
#define CKR_KEY_CHANGED 0x00000065
#define CKR_KEY_NEEDED 0x00000066
#define CKR_KEY_INDIGESTIBLE 0x00000067
#define CKR_KEY_FUNCTION_NOT_PERMITTED 0x00000068
#define CKR_KEY_NOT_WRAPPABLE 0x00000069
#define CKR_KEY_UNEXTRACTABLE 0x0000006A
#define CKR_MECHANISM_INVALID 0x00000070
#define CKR_MECHANISM_PARAM_INVALID 0x00000071
#define CKR_OBJECT_HANDLE_INVALID 0x00000082
#define CKR_OPERATION_ACTIVE 0x00000090
#define CKR_OPERATION_NOT_INITIALIZED 0x00000091
#define CKR_PIN_INCORRECT 0x000000A0
#define CKR_PIN_INVALID 0x000000A1
#define CKR_PIN_LEN_RANGE 0x000000A2
#define CKR_PIN_EXPIRED 0x000000A3
#define CKR_PIN_LOCKED 0x000000A4
#define CKR_SESSION_CLOSED 0x000000B0
#define CKR_SESSION_COUNT 0x000000B1

#define CKR_SESSION_EXCLUSIVE_EXISTS 0x000000B2
#define CKR_SESSION_HANDLE_INVALID 0x000000B3
#define CKR_SESSION_PARALLEL_NOT_SUPPORTED 0x000000B4
#define CKR_SESSION_READ_ONLY 0x000000B5
#define CKR_SESSION_EXISTS 0x000000B6
#define CKR_SESSION_READ_ONLY_EXISTS 0x000000B7
#define CKR_SESSION_READ_WRITE_SO_EXISTS 0x000000B8
#define CKR_SIGNATURE_INVALID 0x000000C0
#define CKR_SIGNATURE_LEN_RANGE 0x000000C1
#define CKR_TEMPLATE_INCOMPLETE 0x000000D0
#define CKR_TEMPLATE_INCONSISTENT 0x000000D1
#define CKR_TOKEN_NOT_PRESENT 0x000000E0
#define CKR_TOKEN_NOT_RECOGNIZED 0x000000E1
#define CKR_TOKEN_WRITE_PROTECTED 0x000000E2
#define CKR_UNWRAPPING_KEY_HANDLE_INVALID 0x000000F0
#define CKR_UNWRAPPING_KEY_SIZE_RANGE 0x000000F1
#define CKR_UNWRAPPING_KEY_TYPE_INCONSISTENT 0x000000F2
#define CKR_USER_ALREADY_LOGGED_IN 0x00000100
#define CKR_USER_NOT_LOGGED_IN 0x00000101
#define CKR_USER_PIN_NOT_INITIALIZED 0x00000102
#define CKR_USER_TYPE_INVALID 0x00000103
#define CKR_WRAPPED_KEY_INVALID 0x00000110
#define CKR_WRAPPED_KEY_LEN_RANGE 0x00000112
#define CKR_WRAPPING_KEY_HANDLE_INVALID 0x00000113
#define CKR_WRAPPING_KEY_SIZE_RANGE 0x00000114
#define CKR_WRAPPING_KEY_TYPE_INCONSISTENT 0x00000115
#define CKR_RANDOM_SEED_NOT_SUPPORTED 0x00000120
#define CKR_RANDOM_NO_RNG 0x00000121
#define CKR_INSERTION_CALLBACK_NOT_SUPPORTED 0x00000141
#define CKR_BUFFER_TOO_SMALL 0x00000150
#define CKR_SAVED_STATE_INVALID 0x00000160
#define CKR_INFORMATION_SENSITIVE 0x00000170
#define CKR_STATE_UNSAVEABLE 0x00000180
#define CKR_VENDOR_DEFINED 0x80000000

Section 9.1 defines the meaning of each CK_RV value. Return values
CKR_VENDOR_DEFINED and above are permanently reserved for token vendors.
For interoperability, vendors should register their return values through the PKCS
process.

¨ CK_NOTIFY

CK_NOTIFY is the type of a pointer to a function used by Cryptoki to perform
notification callbacks. It is implementation-dependent, but it is typically defined as
follows, where CK_PTR is the C string used to create function pointers (e.g., “*”):

typedef CK_RV (CK_ENTRY CK_PTR CK_NOTIFY)(
 CK_SESSION_HANDLE hSession,
 CK_NOTIFICATION event,
 CK_VOID_PTR pApplication
);

The arguments to a notification callback function have the following meanings:

APPENDIX B Page 48

Page 49 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

hSession The handle of the session performing the callback

event The type of notification callback

pApplication An application-defined value. This is the same
value as was passed to C_OpenSession to open
the session performing the callback

Cryptoki also defines an entire family of other function pointer types. For each
function C_XXX in the Cryptoki API (there are 67 such functions in Cryptoki v2.0;
see Section 9 for detailed information about each of them), Cryptoki defines a type
CK_C_XXX, which is a pointer to a function of C_XXX’s type.

¨ CK_FUNCTION_LIST

CK_FUNCTION_LIST is a structure which contains a Cryptoki version and a
function pointer to each function in the Cryptoki API. It is defined as follows:

typedef struct CK_FUNCTION_LIST {
CK_VERSION version;
CK_C_Initialize C_Initialize;
CK_C_Finalize C_Finalize;
CK_C_GetInfo C_GetInfo;
CK_C_GetFunctionList C_GetFunctionList;
CK_C_GetSlotList C_GetSlotList;
CK_C_GetSlotInfo C_GetSlotInfo;
CK_C_GetTokenInfo C_GetTokenInfo;
CK_C_GetMechanismList C_GetMechanismList;
CK_C_GetMechanismInfo C_GetMechanismInfo;
CK_C_InitToken C_InitToken;
CK_C_InitPIN C_InitPIN;
CK_C_SetPIN C_SetPIN;
CK_C_OpenSession C_OpenSession;
CK_C_CloseSession C_CloseSession;
CK_C_CloseAllSessions C_CloseAllSessions;
CK_C_GetSessionInfo C_GetSessionInfo;
CK_C_GetOperationState C_GetOperationState;
CK_C_SetOperationState C_SetOperationState;
CK_C_Login C_Login;
CK_C_Logout C_Logout;
CK_C_CreateObject C_CreateObject;
CK_C_CopyObject C_CopyObject;
CK_C_DestroyObject C_DestroyObject;
CK_C_GetObjectSize C_GetObjectSize;
CK_C_GetAttributeValue C_GetAttributeValue;
CK_C_SetAttributeValue C_SetAttributeValue;
CK_C_FindObjectsInit C_FindObjectsInit;
CK_C_FindObjects C_FindObjects;
CK_C_FindObjectsFinal C_FindObjectsFinal;
CK_C_EncryptInit C_EncryptInit;
CK_C_Encrypt C_Encrypt;
CK_C_EncryptUpdate C_EncryptUpdate;
CK_C_EncryptFinal C_EncryptFinal;
CK_C_DecryptInit C_DecryptInit;
CK_C_Decrypt C_Decrypt;

CK_C_DecryptUpdate C_DecryptUpdate;
CK_C_DecryptFinal C_DecryptFinal;
CK_C_DigestInit C_DigestInit;
CK_C_Digest C_Digest;
CK_C_DigestUpdate C_DigestUpdate;
CK_C_DigestKey C_DigestKey;
CK_C_DigestFinal C_DigestFinal;
CK_C_SignInit C_SignInit;
CK_C_Sign C_Sign;
CK_C_SignUpdate C_SignUpdate;
CK_C_SignFinal C_SignFinal;
CK_C_SignRecoverInit C_SignRecoverInit;
CK_C_SignRecover C_SignRecover;
CK_C_VerifyInit C_VerifyInit;
CK_C_Verify C_Verify;
CK_C_VerifyUpdate C_VerifyUpdate;
CK_C_VerifyFinal C_VerifyFinal;
CK_C_VerifyRecoverInit C_VerifyRecoverInit;
CK_C_VerifyRecover C_VerifyRecover;
CK_C_DigestEncryptUpdate C_DigestEncryptUpdate;
CK_C_DecryptDigestUpdate C_DecryptDigestUpdate;
CK_C_SignEncryptUpdate C_SignEncryptUpdate;
CK_C_DecryptVerifyUpdate C_DecryptVerifyUpdate;
CK_C_GenerateKey C_GenerateKey;
CK_C_GenerateKeyPair C_GenerateKeyPair;
CK_C_WrapKey C_WrapKey;
CK_C_UnwrapKey C_UnwrapKey;
CK_C_DeriveKey C_DeriveKey;
CK_C_SeedRandom C_SeedRandom;
CK_C_GenerateRandom C_GenerateRandom;
CK_C_GetFunctionStatus C_GetFunctionStatus;
CK_C_CancelFunction C_CancelFunction;

} CK_FUNCTION_LIST;

Each Cryptoki library has a CK_FUNCTION_LIST structure, and a pointer to it
may be obtained by the C_GetFunctionList function (see Section 9.2). The value
that this pointer points to can be used by an application to quickly and easily find
out which Cryptoki functions the library supports (and where the code for those
functions is located). If afind out where the code for each function in the Cryptoki
API is located. Every function in the Cryptoki API must have an entry Cryptoki
library does not support a particular Cryptoki function, then the entrydefined in the
Cryptoki library’s CK_FUNCTION_LIST structure. If a particular function in the
Cryptoki API is not supported by a library, then the function pointer for that
function in the library’s CK_FUNCTION_LIST structure should be NULL_PTRpoint
to a function which simply returns CKR_FUNCTION_NOT_SUPPORTED.

¨ CK_FUNCTION_LIST_PTR

CK_FUNCTION_LIST_PTR points to a CK_FUNCTION_LIST. It is
implementation-dependent.

APPENDIX B Page 50

Page 51 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

¨ CK_FUNCTION_LIST_PTR_PTR

CK_FUNCTION_LIST_PTR_PTR points to a CK_FUNCTION_LIST_PTR. It is
implementation-dependent.

8Objects

Cryptoki recognizes a number of classes of objects, as defined in the
CK_OBJECT_CLASS data type. Objects consist of a set of attributes, each of
which has a given value. The following figure illustrates the high-level hierarchy of
the Cryptoki objects and the attributes they support:

Key
Application
Value

Data

Object Type

Subject
ID
Value

Certificate

Class
Token
Private
Label

Object

Modifiable

Figure 88-1, Cryptoki Object Hierarchy

Cryptoki provides functions for creating and destroying objects, and for obtaining
and modifying the values of attributes. Some of the cryptographic functions (e.g.,
key generation) also create objects to hold their results.

Objects are always “well-formed” in Cryptoki—that is, an object always contains
required attributes, and the attributes are always consistent with one another, from
the time the object is created. This is in contrast with some object-based
paradigms, where an object has no attributes other than perhaps a class when it is
created, and is “uninitialized” for some time. In Cryptoki, objects are always
initialized.

To ensure that the required attributes are defined, the functions that create objects
take a “template” as an argument, where the template specifies initial attribute
values. The template can also provide input to cryptographic functions that create
objects (e.g., it can specify a key size). Cryptographic functions that create objects
may also contribute some of the initial attribute values (see Section 9 for details). In
any case, all the attributes supported by an object class that do not have default
values must be specified when an object is created, either in the template, or by the
function.

APPENDIX B Page 52

Page 53 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

Tables in this section define attributes in terms of the data type of the attribute
value and the meaning of the attribute, which may include a default initial value.
Some of the data types are defined explicitly by Cryptoki (e.g.,
CK_OBJECT_CLASS). Attributes may also take the following types:

Byte array an arbitrary string (array) of CK_BYTEs

Big integer a string of CK_BYTEs representing an unsigned
integer of arbitrary size, most-significant byte first
(e.g., the integer 32768 is represented as the 2-
byte string 0x80 0x00)

Local string a string of CK_CHARs (see Table 4-3)

A token can hold several identical objects, i.e., it is permissible for two or more
objects to have exactly the same values for all their attributes.

With the exception of RSA private key objects (see Section 8.6.1), each type of
object possesses a completely well-defined set of attributes. For example, an X.509
certificate (see Section 8.3.1) has precisely the following attributes: CKA_CLASS,
CKA_TOKEN, CKA_PRIVATE, CKA_MODIFIABLE, CKA_LABEL,
CKA_CERTIFICATE_TYPE, CKA_SUBJECT, CKA_ID, CKA_ISSUER,
CKA_SERIAL_NUMBER, CKA_VALUE. Some of these attributes possess default
values, and need not be specified when creating an object; some of these default
values may even be the empty string (“”). Nonetheless, the object possesses these
attributes.

8.1Common attributes

The following table defines the attributes common to all objects:

Table 88-1, Common Object Attributes

Attribute Data Type Meaning
CKA_CLASS1 CK_OBJECT_CLA

SS
Object class (type)

CKA_TOKEN CK_BBOOL TRUE if object is a token object; FALSE if
object is a session object (default FALSE)

CKA_PRIVATE CK_BBOOL TRUE if object is a private object; FALSE
if object is a public object (default FALSE)

CKA_MODIFIABL
E

CK_BBOOL TRUE if object can be modified (default
TRUE)

CKA_LABEL Local string Description of the object (default empty)
1Must be specified when object is created

Only the CKA_LABEL attribute can be modified after the object is created. (The
CKA_TOKEN, CKA_PRIVATE, and CKA_MODIFIABLE attributes can be changed
in the process of copying an object.)

Cryptoki v2.0 supports the following values for CKA_CLASS (i.e., the following
classes (types) of objects): CKO_DATA, CKO_CERTIFICATE, CKO_PUBLIC_KEY,
CKO_PRIVATE_KEY, and CKO_SECRET_KEY.

When the CKA_PRIVATE attribute is TRUE, a user may not access the object until
the user has been authenticated to the token.

The value of the CKA_MODIFIABLE attribute determines whether or not an object
is read-only. It may or may not be the case that an unmodifiable object can be
deleted.

The CKA_LABEL attribute is intended to assist users in browsing.

Additional attributes for each object type are described in the following sections.
Note that only attributes visible to applications using Cryptoki are listed. Objects
may well carry other useful information on a token which is not visible to the
application via Cryptoki.

8.2Data objects

Data objects (object class CKO_DATA) hold information defined by an application.
Other than providing access to a data objects, Cryptoki does not attach any special
meaning to a data object. The following table lists the attributes supported by data
objects, in addition to the common attributes listed in Table 8-1:

Table 88-2, Data Object Attributes

Attribute Data type Meaning
CKA_APPLICATION Local

string
Description of the application that manages
the object (default empty)

CKA_VALUE Byte array Value of the object (default empty)

Both of these attributes may be modified after the object is created.

The CKA_APPLICATION attribute provides a means for applications to indicate
ownership of the objects they manage. Cryptoki does not provide a means of
ensuring that only a particular application has access to a data object, however.

The following is a sample template containing attributes for creating a data object:
CK_OBJECT_CLASS class = CKO_DATA;
CK_CHAR label[] = “A data object”;
CK_CHAR application[] = “An application”;
CK_BYTE data[] = “Sample data”;
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)},
 {CKA_APPLICATION, application, sizeof(application)},
 {CKA_VALUE, data, sizeof(data)}
};

APPENDIX B Page 54

Page 55 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

8.3Certificate objects

Certificate objects (object class CKO_CERTIFICATE) hold public-key certificates.
Other than providing access to certificate objects, Cryptoki does not attach any
special meaning to certificates. The following table defines the common certificate
object attributes, in addition to the common attributes listed in Table 8-1:

Table 88-3, Common Certificate Object Attributes

Attribute Data type Meaning
CKA_CERTIFICATE_TYP
E1

CK_CERTIFICATE_TY
PE

Type of certificate

1Must be specified when the object is created.

The CKA_CERTIFICATE_TYPE attribute may not be modified after an object is
created.

8.3.1X.509 certificate objects

X.509 certificate objects (certificate type CKC_X_509) hold X.509 certificates. The
following table defines the X.509 certificate object attributes, in addition to the
common attributes listed in Table 8-1 and Table 8-3:

Table 88-4, X.509 Certificate Object Attributes

Attribute Data
type

Meaning

CKA_SUBJECT1 Byte
array

DER encoding of the certificate subject
name

CKA_ID Byte
array

Key identifier for public/private key pair
(default empty)

CKA_ISSUER Byte
array

DER encoding of the certificate issuer
name (default empty)

CKA_SERIAL_NUMBE
R

Byte
array

DER encoding of the certificate serial
number (default empty)

CKA_VALUE1 Byte
array

BER encoding of the certificate

1Must be specified when the object is created.

Only the CKA_ID, CKA_ISSUER, and CKA_SERIAL_NUMBER attributes may be
modified after the object is created.

The CKA_ID attribute is intended as a means of distinguishing multiple public-
key/private-key pairs held by the same subject (whether stored in the same token or
not). (Since the keys are distinguished by subject name as well as identifier, it is
possible that keys for different subjects may have the same CKA_ID value without
introducing any ambiguity.)

It is intended in the interests of interoperability that the subject name and key
identifier for a certificate will be the same as those for the corresponding public
and private keys (though it is not required that all be stored in the same token).

However, Cryptoki does not enforce this association, or even the uniqueness of the
key identifier for a given subject; in particular, an application may leave the key
identifier empty.

The CKA_ISSUER and CKA_SERIAL_NUMBER attributes are for compatibility
with PKCS #7 and Privacy Enhanced Mail (RFC1421). Note that with the version 3
extensions to X.509 certificates, the key identifier may be carried in the certificate.
It is intended that the CKA_ID value be identical to the key identifier in such a
certificate extension, although this will not be enforced by Cryptoki.

The following is a sample template for creating a certificate object:
CK_OBJECT_CLASS class = CKO_CERTIFICATE;
CK_CERTIFICATE_TYPE certType = CKC_X_509;
CK_CHAR label[] = “A certificate object”;
CK_BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK_BYTE certificate[] = {...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_CERTIFICATE_TYPE, &certType, sizeof(certType)};
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)},
 {CKA_SUBJECT, subject, sizeof(subject)},
 {CKA_ID, id, sizeof(id)},
 {CKA_VALUE, certificate, sizeof(certificate)}
};

8.4Key objects

The following figure illustrates the details of key objects:

APPENDIX B Page 56

Page 57 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

Figure 88-2, Key Object Detail

Key objects hold encryption or authentication keys, which can be public keys,
private keys, or secret keys. The following common footnotes apply to all the tables
describing attributes of keys:

Table 88-5, Common footnotes for key attribute tables

1 Must be specified when object is created.

2 Must not be specified when object is created.

3 Must be specified when object is generated.

4 Must not be speficied when object is generated.

5 Must be specified when object is unwrapped.

6 Must not be specified when object is unwrapped.

7 Cannot be revealed if object has its CKA_SENSITIVE attribute set to TRUE or its
CKA_EXTRACTABLE attribute set to FALSE.

8 May be modified after object is created.

9 Default is up to the token. The application can specify an explicit value in the
template, and Cryptoki will reject it if it cannot be supported by the library or token.

S u b je c t
E n c ry p t
V e r ify
V e r ify R e c o v e r
W ra p

P u b lic K e y

K e y T y p e
ID
S ta r t
D a teE n d D a te
D e r iv e

K e y

L o c a l

S u b je c t
S e n s it iv e
D e c ry p t
S ig n
S ig n R e c o v e r
U n w ra p

P riv a te K e y

E x t ra c ta b le
A lw a y s S e n s it iv e
N e v e r E x tra c ta b le

S e n s it iv e
E n c ry p t
D e c ry p t
S ig n
V e r ify
W ra p
U n w ra p

S e c re t K e y

E x tra c ta b le
A lw a y s S e n s it iv e
N e v e r E x tra c ta b le

The following table defines the attributes common to public key, private key and
secret key classes, in addition to the common attributes listed in Table 8-1:

Table 88-6, Common Key Attributes

Attribute Data Type Meaning
CKA_KEY_TYPE1,3,5 CK_KEY_TYP

E
Type of key

CKA_ID8 Byte array Key identifier for key (default empty)
CKA_START_DATE
8

CK_DATE Start date for the key (default empty)

CKA_END_DATE8 CK_DATE End date for the key (default empty)
CKA_DERIVE8 CK_BBOOL TRUE if key supports key derivation (default

FALSE)
CKA_LOCAL2,4,6 CK_BBOOL TRUE if key was generated locally (i.e., on

token)

The CKA_ID field is intended to distinguish among multiple keys. In the case of
public and private keys, this is for multiple keys held by the same subject; the key
identifier for a public key and its corresponding private key should be the same. The
key identifier should also be the same as for the corresponding certificate. Cryptoki
does not enforce this association, however. (See Section 8.38.3 for further
commentary.)

In the case of secret keys, the meaning of the CKA_ID attribute is up to the
application.

Note that the CKA_START_DATE and CKA_END_DATE attributes are for
reference only; Cryptoki does not attach any special meaning to them. In particular,
it does not restrict usage of a key according to the dates; doing this is up to the
application.

The CKA_DERIVE attribute has the value TRUE if and only if it is possible to derive
other keys from the key.

8.5Public key objects

Public key objects (object class CKO_PUBLIC_KEY) hold public keys. This version
of Cryptoki recognizes six types of public keys: RSA, DSA, ECDSA, Diffie-Hellman,
KEA, and MAYFLY. The following table defines the attributes common to all public
keys, in addition to the common attributes listed in Table 8-1 and Table 8-6:

APPENDIX B Page 58

Page 59 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

Table 88-7, Common Public Key Attributes

Attribute Data type Meaning
CKA_SUBJECT8 Byte array DER encoding of the key subject name

(default empty)
CKA_ENCRYPT8 CK_BBOOL TRUE if key supports encryption9

CKA_VERIFY8 CK_BBOOL TRUE if key supports verification9

CKA_VERIFY_RECOVE
R8

CK_BBOOL TRUE if key supports verification where
the data is recovered from the signature9

CKA_WRAP8 CK_BBOOL TRUE if key supports wrapping9

It is intended in the interests of interoperability that the subject name and key
identifier for a public key will be the same as those for the corresponding certificate
and private key. However, Cryptoki does not enforce this, and it is not required
that the certificate and private key also be stored on the token.

8.5.1RSA public key objects

RSA public key objects (object class CKO_PUBLIC_KEY, key type CKK_RSA) hold
RSA public keys. The following table defines the RSA public key object attributes,
in addition to the common attributes listed in Table 8-1, Table 8-6, and Table 8-7:

Table 88-8, RSA Public Key Object Attributes

Attribute Data type Meaning
CKA_MODULUS1,4,6 Big integer Modulus n
CKA_MODULUS_BITS2,3,6 CK_ULONG Length in bits of modulus n
CKA_PUBLIC_EXPONENT
1,3,6

Big integer Public exponent e

Depending on the token, there may be limits on the length of key components. See
PKCS #1 for more information on RSA keys.

The following is a sample template for creating an RSA public key object:
CK_OBJECT_CLASS class = CKO_PUBLIC_KEY;
CK_KEY_TYPE keyType = CKK_RSA;
CK_CHAR label[] = “An RSA public key object”;
CK_BYTE modulus[] = {...};
CK_BYTE exponent[] = {...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)},
 {CKA_WRAP, &true, sizeof(true)},
 {CKA_ENCRYPT, &true, sizeof(true)},
 {CKA_MODULUS, modulus, sizeof(modulus)},

 {CKA_PUBLIC_EXPONENT, exponent, sizeof(exponent)}
};

8.5.2DSA public key objects

DSA public key objects (object class CKO_PUBLIC_KEY, key type CKK_DSA) hold
DSA public keys. The following table defines the DSA public key object attributes,
in addition to the common attributes listed in Table 8-1, Table 8-6, and Table 8-7:

Table 88-9, DSA Public Key Object Attributes

Attribute Data type Meaning
CKA_PRIME1,3,6 Big integer Prime p (512 to 1024 bits, in steps of

64 bits)
CKA_SUBPRIME1,3,6 Big integer Subprime q (160 bits)
CKA_BASE1,3,6 Big integer Base g
CKA_VALUE1,4,6 Big integer Public value y

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are
collectively the “DSA parameters”. See FIPS PUB 186 for more information on DSA
keys.

The following is a sample template for creating a DSA public key object:
CK_OBJECT_CLASS class = CKO_PUBLIC_KEY;
CK_KEY_TYPE keyType = CKK_DSA;
CK_CHAR label[] = “A DSA public key object”;
CK_BYTE prime[] = {...};
CK_BYTE subprime[] = {...};
CK_BYTE base[] = {...};
CK_BYTE value[] = {...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)},
 {CKA_PRIME, prime, sizeof(prime)},
 {CKA_SUBPRIME, subprime, sizeof(subprime)},
 {CKA_BASE, base, sizeof(base)},
 {CKA_VALUE, value, sizeof(value)}
};

8.5.3ECDSA public key objects

ECDSA public key objects (object class CKO_PUBLIC_KEY, key type
CKK_ECDSA) hold ECDSA public keys. The following table defines the ECDSA
public key object attributes, in addition to the common attributes listed in Table 8-
1Table 8-6, and Table 8-7:

APPENDIX B Page 60

Page 61 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

Table 88-10, ECDSA Public Key Object Attributes

Attribute Data type Meaning
CKA_PRIME1,3,6 Big integer Prime p (512 to 1024 bits, in steps of

64 bits)
CKA_SUBPRIME1,3,6 Big integer Subprime q (160 bits)
CKA_BASE1,3,6 Big integer Base g (512 to 1024 bits, in steps of 64

bits)
CKA_VALUE1,4,6 Big integer Public value W

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are
collectively the “ECDSA parameters”.

The following is a sample template for creating an ECDSA public key object:
CK_OBJECT_CLASS class = CKO_PUBLIC_KEY;
CK_KEY_TYPE keyType = CKK_ECDSA;
CK_CHAR label[] = “An ECDSA public key object”;
CK_BYTE prime[] = {...};
CK_BYTE subprime[] = {...};
CK_BYTE base[] = {...};
CK_BYTE value[] = {...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)},
 {CKA_PRIME, prime, sizeof(prime)},
 {CKA_SUBPRIME, subprime, sizeof(subprime)},
 {CKA_BASE, base, sizeof(base)},
 {CKA_VALUE, value, sizeof(value)}
};

8.5.4Diffie-Hellman public key objects

Diffie-Hellman public key objects (object class CKO_PUBLIC_KEY, key type
CKK_DH) hold Diffie-Hellman public keys. The following table defines the RSA
public key object attributes, in addition to the common attributes listed in Table 8-1,
Table 8-6, and Table 8-7:

Table 88-11, Diffie-Hellman Public Key Object Attributes

Attribute Data type Meaning
CKA_PRIME1,3,6 Big integer Prime p
CKA_BASE1,3,6 Big integer Base g
CKA_VALUE1,4,6 Big integer Public value y

The CKA_PRIME and CKA_BASE attribute values are collectively the “Diffie-
Hellman parameters”. Depending on the token, there may be limits on the length of
the key components. See PKCS #3 for more information on Diffie-Hellman keys.

The following is a sample template for creating a Diffie-Hellman public key object:
CK_OBJECT_CLASS class = CKO_PUBLIC_KEY;
CK_KEY_TYPE keyType = CKK_DH;
CK_CHAR label[] = “A Diffie-Hellman public key object”;
CK_BYTE prime[] = {...};
CK_BYTE base[] = {...};
CK_BYTE value[] = {...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)},
 {CKA_PRIME, prime, sizeof(prime)},
 {CKA_BASE, base, sizeof(base)},
 {CKA_VALUE, value, sizeof(value)}
};

8.5.5KEA public key objects

KEA public key objects (object class CKO_PUBLIC_KEY, key type CKK_KEA) hold
KEA public keys. The following table defines the KEA public key object attributes,
in addition to the common attributes listed in Table 8-1, Table 8-6, and Table 8-7:

Table 88-12, KEA Public Key Object Attributes

Attribute Data type Meaning
CKA_PRIME1,3,6 Big integer Prime p (512 to 1024 bits, in steps of

64 bits)
CKA_SUBPRIME1,3,6 Big integer Subprime q (160 bits)
CKA_BASE1,3,6 Big integer Base g (512 to 1024 bits, in steps of 64

bits)
CKA_VALUE1,4,6 Big integer Public value y

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are
collectively the “KEA parameters”.

The following is a sample template for creating a KEA public key object:
CK_OBJECT_CLASS class = CKO_PUBLIC_KEY;
CK_KEY_TYPE keyType = CKK_KEA;
CK_CHAR label[] = “A KEA public key object”;
CK_BYTE prime[] = {...};
CK_BYTE subprime[] = {...};
CK_BYTE base[] = {...};
CK_BYTE value[] = {...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)},
 {CKA_PRIME, prime, sizeof(prime)},

APPENDIX B Page 62

Page 63 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

 {CKA_SUBPRIME, subprime, sizeof(subprime)},
 {CKA_BASE, base, sizeof(base)},
 {CKA_VALUE, value, sizeof(value)}
};

8.5.6MAYFLY public key objects

MAYFLY public key objects (object class CKO_PUBLIC_KEY, key type
CKK_MAYFLY) hold MAYFLY public keys. The following table defines the MAYFLY
public key object attributes, in addition to the common attributes listed in Table 8-1,
Table 8-6, and Table 8-7:

Table 88-13, MAYFLY Public Key Object Attributes

Attribute Data type Meaning
CKA_PRIME1,3,6 Big integer Prime p (512 to 1024 bits, in steps of

64 bits)
CKA_SUBPRIME1,3,6 Big integer Subprime q (160 bits)
CKA_BASE1,3,6 Big integer Base g (512 to 1024 bits, in steps of 64

bits)
CKA_VALUE1,4,6 Big integer Public value W

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are
collectively the “MAYFLY parameters”.

The following is a sample template for creating a MAYFLY public key object:
CK_OBJECT_CLASS class = CKO_PUBLIC_KEY;
CK_KEY_TYPE keyType = CKK_MAYFLY;
CK_CHAR label[] = “A MAYFLY public key object”;
CK_BYTE prime[] = {...};
CK_BYTE subprime[] = {...};
CK_BYTE base[] = {...};
CK_BYTE value[] = {...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)},
 {CKA_PRIME, prime, sizeof(prime)},
 {CKA_SUBPRIME, subprime, sizeof(subprime)},
 {CKA_BASE, base, sizeof(base)},
 {CKA_VALUE, value, sizeof(value)}
};

8.6Private key objects

Private key objects (object class CKO_PRIVATE_KEY) hold private keys. This
version of Cryptoki recognizes six types of private key: RSA, DSA, ECDSA, Diffie-
Hellman, KEA, and MAYFLY. The following table defines the attributes common to
all private keys, in addition to the common attributes listed in Table 8-1 and Table
8-6:

Table 88-14, Common Private Key Attributes

Attribute Data type Meaning
CKA_SUBJECT8 Byte array DER encoding of certificate subject

name (default empty)
CKA_SENSITIVE8 CK_BBOO

L
TRUE if key is sensitive9

CKA_DECRYPT8 CK_BBOO
L

TRUE if key supports decryption9

CKA_SIGN8 CK_BBOO
L

TRUE if key supports signatures
where the signature is an appendix
to the data9

CKA_SIGN_RECOVER8 CK_BBOO
L

TRUE if key supports signatures
where the data can be recovered
from the signature9

CKA_UNWRAP8 CK_BBOO
L

TRUE if key supports unwrapping9

CKA_EXTRACTABLE8 CK_BBOO
L

TRUE if key is extractable9

CKA_ALWAYS_SENSITIVE2,4,6 CK_BBOO
L

TRUE if key has always had the
CKA_SENSITIVE attribute set to
TRUE

CKA_NEVER_EXTRACTABLE2

,4,6
CK_BBOO
L

TRUE if key has never had the
CKA_EXTRACTABLE attribute set to
TRUE

After an object is created, the CKA_SENSITIVE attribute may only be set to TRUE.
Similarly, after an object is created, the CKA_EXTRACTABLE attribute may only
be set to FALSE.

If the CKA_SENSITIVE attribute is TRUE, or if the CKA_EXTRACTABLE attribute
is false, then certain attributes of the private key cannot be revealed off the token.
Which attributes these are is specified for each type of private key in the attribute
table in the section describing that type of key.

If the CKA_EXTRACTABLE attribute is false, then the key cannot be wrapped.

It is intended in the interests of interoperability that the subject name and key
identifier for a private key will be the same as those for the corresponding
certificate and public key. However, this is not enforced by Cryptoki, and it is not
required that the certificate and public key also be stored on the token.

APPENDIX B Page 64

Page 65 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

8.6.1RSA private key objects

RSA private key objects (object class CKO_PRIVATE_KEY, key type CKK_RSA)
hold RSA private keys. The following table defines the RSA private key object
attributes, in addition to the common attributes listed in Table 8-1, Table 8-6, and
Table 8-14:

Table 88-15, RSA Private Key Object Attributes

Attribute Data
type

Meaning

CKA_MODULUS1,4,6 Big
integer

Modulus n

CKA_PUBLIC_EXPONENT4,6 Big
integer

Public exponent e

CKA_PRIVATE_EXPONENT1,4

,6,7
Big
integer

Private exponent d

CKA_PRIME_14,6,7 Big
integer

Prime p

CKA_PRIME_24,6,7 Big
integer

Prime q

CKA_EXPONENT_14,6,7 Big
integer

Private exponent d modulo p-1

CKA_EXPONENT_24,6,7 Big
integer

Private exponent d modulo q-1

CKA_COEFFICIENT4,6,7 Big
integer

CRT coefficient q-1 mod p

Depending on the token, there may be limits on the length of the key components.
See PKCS #1 for more information on RSA keys.

Tokens vary in what they actually store for RSA private keys. Some tokens store all
of the above attributes, which can assist in performing rapid RSA computations.
Other tokens might store only the CKA_MODULUS and
CKA_PRIVATE_EXPONENT values.

Because of this, Cryptoki is flexible in dealing with RSA private key objects. When a
token generates an RSA private key, it stores whichever of the fields in Table 8-15 it
keeps track of. Later, if an application asks for the values of the key’s various
attributes, Cryptoki supplies values only for attributes whose values it can obtain
(i.e., if Cryptoki is asked for the value of an attribute it cannot obtain, the request
fails). Note that a Cryptoki implementation may or may not be able and/or willing
to supply various attributes of RSA private keys which are not actually stored on the
token. E.g., if a particular token stores values only for the
CKA_PRIVATE_EXPONENT, CKA_PRIME_1, and CKA_PRIME_2 attributes,
then Cryptoki is certainly able to report values for all the attributes above (since
they can all be computed from these three values). However, a Cryptoki
implementation may or may not actually do this extra computation. The only
attributes from Table 8-15 that a Cryptoki implementation is required to be able to
return values for are CKA_MODULUS and CKA_PRIVATE_EXPONENT.

If an RSA private key object is created on a token, and more attributes from Table
8-15 are supplied to the object creation call than are supported by the token, the
extra attributes are likely to be thrown away. If an attempt is made to create an
RSA private key object on a token with insufficient attributes for that particular
token, then the object creation call fails.

Note that when generating an RSA private key, there is no CKA_MODULUS_BITS
attribute specified. This is because RSA private keys are only generated as part of
an RSA key pair, and the CKA_MODULUS_BITS attribute for the pair is specified
in the template for the RSA public key.

The following is a sample template for creating an RSA private key object:
CK_OBJECT_CLASS class = CKO_PRIVATE_KEY;
CK_KEY_TYPE keyType = CKK_RSA;
CK_CHAR label[] = “An RSA private key object”;
CK_BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK_BYTE modulus[] = {...};
CK_BYTE publicExponent[] = {...};
CK_BYTE privateExponent[] = {...};
CK_BYTE prime1[] = {...};
CK_BYTE prime2[] = {...};
CK_BYTE exponent1[] = {...};
CK_BYTE exponent2[] = {...};
CK_BYTE coefficient[] = {...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)},
 {CKA_SUBJECT, subject, sizeof(subject)},
 {CKA_ID, id, sizeof(id)},
 {CKA_SENSITIVE, &true, sizeof(true)},
 {CKA_DECRYPT, &true, sizeof(true)},
 {CKA_SIGN, &true, sizeof(true)},
 {CKA_MODULUS, modulus, sizeof(modulus)},
 {CKA_PUBLIC_EXPONENT, publicExponent, sizeof(publicExponent)},
 {CKA_PRIVATE_EXPONENT, privateExponent, sizeof(privateExponent)},
 {CKA_PRIME_1, prime1, sizeof(prime1)},
 {CKA_PRIME_2, prime2, sizeof(prime2)},
 {CKA_EXPONENT_1, exponent1, sizeof(exponent1)},
 {CKA_EXPONENT_2, exponent2, sizeof(exponent2)},
 {CKA_COEFFICIENT, coefficient, sizeof(coefficient)}
};

8.6.2DSA private key objects

DSA private key objects (object class CKO_PRIVATE_KEY, key type CKK_DSA)
hold DSA private keys. The following table defines the DSA private key object
attributes, in addition to the common attributes listed in Table 8-1, Table 8-6, and
Table 8-14:

APPENDIX B Page 66

Page 67 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

Table 88-16, DSA Private Key Object Attributes

Attribute Data
type

Meaning

CKA_PRIME1,4,6 Big
integer

Prime p (512 to 1024 bits, in steps of
64 bits)

CKA_SUBPRIME1,4,6 Big
integer

Subprime q (160 bits)

CKA_BASE1,4,6 Big
integer

Base g

CKA_VALUE1,4,6,7 Big
integer

Private value x

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are
collectively the “DSA parameters”. See FIPS PUB 186 for more information on DSA
keys.

Note that when generating a DSA private key, the DSA parameters are not
specified in the key’s template. This is because DSA private keys are only
generated as part of a DSA key pair, and the DSA parameters for the pair are
specified in the template for the DSA public key.

The following is a sample template for creating a DSA private key object:
CK_OBJECT_CLASS class = CKO_PRIVATE_KEY;
CK_KEY_TYPE keyType = CKK_DSA;
CK_CHAR label[] = “A DSA private key object”;
CK_BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK_BYTE prime[] = {...};
CK_BYTE subprime[] = {...};
CK_BYTE base[] = {...};
CK_BYTE value[] = {...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)},
 {CKA_SUBJECT, subject, sizeof(subject)},
 {CKA_ID, id, sizeof(id)},
 {CKA_SENSITIVE, &true, sizeof(true)},
 {CKA_SIGN, &true, sizeof(true)},
 {CKA_PRIME, prime, sizeof(prime)},
 {CKA_SUBPRIME, subprime, sizeof(subprime)},
 {CKA_BASE, base, sizeof(base)},
 {CKA_VALUE, value, sizeof(value)}
};

8.6.3ECDSA private key objects

ECDSA private key objects (object class CKO_PRIVATE_KEY, key type
CKK_ECDSA) hold ECDSA private keys. The following table defines the ECDSA
private key object attributes, in addition to the common attributes listed in Table 8-
1, Table 8-6, and Table 8-14:

Table 88-17, ECDSA Private Key Object Attributes

Attribute Data
type

Meaning

CKA_PRIME1,4,6 Big
integer

Prime p (512 to 1024 bits, in steps of 64
bits)

CKA_SUBPRIME1,4,6 Big
integer

Subprime q (160 bits)

CKA_BASE1,4,6 Big
integer

Base g (512 to 1024 bits, in steps of 64
bits)

CKA_VALUE1,4,6,7 Big
integer

Private value w

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are
collectively the “ECDSA parameters”.

Note that when generating an ECDSA private key, the ECDSA parameters are not
specified in the key’s template. This is because ECDSA private keys are only
generated as part of an ECDSA key pair, and the ECDSA parameters for the pair
are specified in the template for the ECDSA public key.

The following is a sample template for creating an ECDSA private key object:
CK_OBJECT_CLASS class = CKO_PRIVATE_KEY;
CK_KEY_TYPE keyType = CKK_ECDSA;
CK_CHAR label[] = “An ECDSA private key object”;
CK_BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK_BYTE prime[] = {...};
CK_BYTE subprime[] = {...};
CK_BYTE base[] = {...};
CK_BYTE value[] = {...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)},
 {CKA_SUBJECT, subject, sizeof(subject)},
 {CKA_ID, id, sizeof(id)},
 {CKA_SENSITIVE, &true, sizeof(true)},
 {CKA_DERIVE, &true, sizeof(true)},
 {CKA_PRIME, prime, sizeof(prime)},
 {CKA_SUBPRIME, subprime, sizeof(subprime)},
 {CKA_BASE, base, sizeof(base)},
 {CKA_VALUE, value, sizeof(value)}
};

APPENDIX B Page 68

Page 69 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

8.6.4Diffie-Hellman private key objects

Diffie-Hellman private key objects (object class CKO_PRIVATE_KEY, key type
CKK_DH) hold Diffie-Hellman private keys. The following table defines the Diffie-
Hellman private key object attributes, in addition to the common attributes listed in
Table 8-1, Table 8-6, and Table 8-14:

Table 88-18, Diffie-Hellman Private Key Object Attributes

Attribute Data type Meaning
CKA_PRIME1,4,6 Big integer Prime p
CKA_BASE1,4,6 Big integer Base g
CKA_VALUE1,4,6,7 Big integer Private value x
CKA_VALUE_BITS
2,6

CK_ULONG Length in bits of private value x

The CKA_PRIME and CKA_BASE attribute values are collectively the “Diffie-
Hellman parameters”. Depending on the token, there may be limits on the length of
the key components. See PKCS #3 for more information on Diffie-Hellman keys.

Note that when generating an Diffie-Hellman private key, the Diffie-Hellman
parameters are not specified in the key’s template. This is because Diffie-Hellman
private keys are only generated as part of a Diffie-Hellman key pair, and the Diffie-
Hellman parameters for the pair are specified in the template for the Diffie-Hellman
public key.

The following is a sample template for creating a Diffie-Hellman private key object:
CK_OBJECT_CLASS class = CKO_PRIVATE_KEY;
CK_KEY_TYPE keyType = CKK_DH;
CK_CHAR label[] = “A Diffie-Hellman private key object”;
CK_BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK_BYTE prime[] = {...};
CK_BYTE base[] = {...};
CK_BYTE value[] = {...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)},
 {CKA_SUBJECT, subject, sizeof(subject)},
 {CKA_ID, id, sizeof(id)},
 {CKA_SENSITIVE, &true, sizeof(true)},
 {CKA_DERIVE, &true, sizeof(true)},
 {CKA_PRIME, prime, sizeof(prime)},
 {CKA_BASE, base, sizeof(base)},
 {CKA_VALUE, value, sizeof(value)}
};

8.6.5KEA private key objects

KEA private key objects (object class CKO_PRIVATE_KEY, key type CKK_KEA)
hold KEA private keys. The following table defines the KEA private key object
attributes, in addition to the common attributes listed in Table 8-1, Table 8-6, and
Table 8-14:

Table 88-19, KEA Private Key Object Attributes

Attribute Data type Meaning
CKA_PRIME1,4,6 Big integer Prime p (512 to 1024 bits, in steps

of 64 bits)
CKA_SUBPRIME1,4

,6
Big integer Subprime q (160 bits)

CKA_BASE1,4,6 Big integer Base g (512 to 1024 bits, in steps of
64 bits)

CKA_VALUE1,4,6,7 Big integer Private value x

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are
collectively the “KEA parameters”.

Note that when generating a KEA private key, the KEA parameters are not specified
in the key’s template. This is because KEA private keys are only generated as part
of a KEA key pair, and the KEA parameters for the pair are specified in the template
for the KEA public key.

The following is a sample template for creating a KEA private key object:
CK_OBJECT_CLASS class = CKO_PRIVATE_KEY;
CK_KEY_TYPE keyType = CKK_KEA;
CK_CHAR label[] = “A KEA private key object”;
CK_BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK_BYTE prime[] = {...};
CK_BYTE subprime[] = {...};
CK_BYTE base[] = {...};
CK_BYTE value[] = {...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)},
 {CKA_SUBJECT, subject, sizeof(subject)},
 {CKA_ID, id, sizeof(id)},
 {CKA_SENSITIVE, &true, sizeof(true)},
 {CKA_DERIVE, &true, sizeof(true)},
 {CKA_PRIME, prime, sizeof(prime)},
 {CKA_SUBPRIME, subprime, sizeof(subprime)},
 {CKA_BASE, base, sizeof(base)},
 {CKA_VALUE, value, sizeof(value)}
};

APPENDIX B Page 70

Page 71 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

8.6.6MAYFLY private key objects

MAYFLY private key objects (object class CKO_PRIVATE_KEY, key type
CKK_MAYFLY) hold MAYFLY private keys. The following table defines the
MAYFLY private key object attributes, in addition to the common attributes listed in
Table 8-1, Table 8-6, and Table 8-14:

Table 88-20, MAYFLY Private Key Object Attributes

Attribute Data type Meaning
CKA_PRIME1,4,6 Big integer Prime p (512 to 1024 bits, in steps

of 64 bits)
CKA_SUBPRIME1,4

,6
Big integer Subprime q (160 bits)

CKA_BASE1,4,6 Big integer Base g (512 to 1024 bits, in steps of
64 bits)

CKA_VALUE1,4,6,7 Big integer Private value w

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are
collectively the “MAYFLY parameters”.

Note that when generating a MAYFLY private key, the MAYFLY parameters are not
specified in the key’s template. This is because MAYFLY private keys are only
generated as part of a MAYFLY key pair, and the MAYFLY parameters for the pair
are specified in the template for the MAYFLY public key.

The following is a sample template for creating a MAYFLY private key object:
CK_OBJECT_CLASS class = CKO_PRIVATE_KEY;
CK_KEY_TYPE keyType = CKK_MAYFLY;
CK_CHAR label[] = “A MAYFLY private key object”;
CK_BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK_BYTE prime[] = {...};
CK_BYTE subprime[] = {...};
CK_BYTE base[] = {...};
CK_BYTE value[] = {...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)},
 {CKA_SUBJECT, subject, sizeof(subject)},
 {CKA_ID, id, sizeof(id)},
 {CKA_SENSITIVE, &true, sizeof(true)},
 {CKA_DERIVE, &true, sizeof(true)},
 {CKA_PRIME, prime, sizeof(prime)},
 {CKA_SUBPRIME, subprime, sizeof(subprime)},
 {CKA_BASE, base, sizeof(base)},
 {CKA_VALUE, value, sizeof(value)}
};

8.7Secret key objects

Secret key objects (object class CKO_SECRET_KEY) hold secret keys. This version
of Cryptoki recognizes the following types of secret key: generic, RC2, RC4, RC5,
DES, DES2, DES3, CAST, CAST3, CAST5, IDEA, SKIPJACK, BATON, JUNIPER, and
CDMF. The following table defines the attributes common to all secret keys, in
addition to the common attributes listed in Table 8-1 and Table 8-6:

Table 88-21, Common Secret Key Attributes

Attribute Data type Meaning
CKA_SENSITIVE8 CK_BBOO

L
TRUE if object is sensitive (default
FALSE)

CKA_ENCRYPT8 CK_BBOO
L

TRUE if key supports encryption9

CKA_DECRYPT8 CK_BBOO
L

TRUE if key supports decryption9

CKA_SIGN8 CK_BBOO
L

TRUE if key supports signatures
(i.e., authentication codes) where the
signature is an appendix to the data9

CKA_VERIFY8 CK_BBOO
L

TRUE if key supports verification
(i.e., of authentication codes) where
the signature is an appendix to the
data9

CKA_WRAP8 CK_BBOO
L

TRUE if key supports wrapping9

CKA_UNWRAP8 CK_BBOO
L

TRUE if key supports unwrapping9

CKA_EXTRACTABLE8 CK_BBOO
L

TRUE if key is extractable9

CKA_ALWAYS_SENSITIVE2,4,6 CK_BBOO
L

TRUE if key has always had the
CKA_SENSITIVE attribute set to
TRUE

CKA_NEVER_EXTRACTABLE2

,4,6
CK_BBOO
L

TRUE if key has never had the
CKA_EXTRACTABLE attribute set to
TRUE

After an object is created, the CKA_SENSITIVE attribute may only be set to TRUE.
Similarly, after an object is created, the CKA_EXTRACTABLE attribute may only
be set to FALSE.

If the CKA_SENSITIVE attribute is TRUE, or if the CKA_EXTRACTABLE attribute
is false, then certain attributes of the private key cannot be revealed in plaintext
outside the token. These attributes are specified for each type of private key in the
attribute table in the section describing that type of key.

If the CKA_EXTRACTABLE attribute is false, then the key cannot be wrapped.

APPENDIX B Page 72

Page 73 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

8.7.1Generic secret key objects

Generic secret key objects (object class CKO_SECRET_KEY, key type
CKK_GENERIC_SECRET) hold generic secret keys. These keys do not support
encryption, decryption, signatures or verification; however, other keys can be
derived from them. The following table defines the generic secret key object
attributes, in addition to the common attributes listed in Table 8-1, Table 8-6, and
Table 8-21:

Table 88-22, Generic Secret Key Object Attributes

Attribute Data type Meaning
CKA_VALUE1,4,6,7 Byte array Key value (arbitrary

length)
CKA_VALUE_LEN2,3

,6
CK_ULONG Length in bytes of key

value

The following is a sample template for creating a generic secret key object:
CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_GENERIC_SECRET;
CK_CHAR label[] = “A generic secret key object”;
CK_BYTE value[] = {...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)},
 {CKA_DERIVE, &true, sizeof(true)},
 {CKA_VALUE, value, sizeof(value)}
};

8.7.2RC2 secret key objects

RC2 secret key objects (object class CKO_SECRET_KEY, key type CKK_RC2) hold
RC2 keys. The following table defines the RC2 secret key object attributes, in
addition to the common attributes listed in Table 8-1, Table 8-6, and Table 8-21:

Table 88-23, RC2 Secret Key Object Attributes

Attribute Data type Meaning
CKA_VALUE1,4,6,7 Byte array Key value (1 to 128 bytes)
CKA_VALUE_LEN2,3

,6
CK_ULONG Length in bytes of key

value

The following is a sample template for creating an RC2 secret key object:
CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_RC2;
CK_CHAR label[] = “An RC2 secret key object”;

CK_BYTE value[] = {...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)},
 {CKA_ENCRYPT, &true, sizeof(true)},
 {CKA_VALUE, value, sizeof(value)}
};

8.7.3RC4 secret key objects

RC4 secret key objects (object class CKO_SECRET_KEY, key type CKK_RC4) hold
RC4 keys. The following table defines the RC4 secret key object attributes, in
addition to the common attributes listed in Table 8-1, Table 8-6, and Table 8-21:

Table 88-24, RC4 Secret Key Object

Attribute Data type Meaning
CKA_VALUE1,4,6,7 Byte array Key value (1 to 256 bytes)
CKA_VALUE_LEN2,3

,6
CK_ULONG Length in bytes of key

value

The following is a sample template for creating an RC4 secret key object:
CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_RC4;
CK_CHAR label[] = “An RC4 secret key object”;
CK_BYTE value[] = {...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)},
 {CKA_ENCRYPT, &true, sizeof(true)},
 {CKA_VALUE, value, sizeof(value)}
};

APPENDIX B Page 74

Page 75 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

8.7.4RC5 secret key objects

RC5 secret key objects (object class CKO_SECRET_KEY, key type CKK_RC5) hold
RC5 keys. The following table defines the RC5 secret key object attributes, in
addition to the common attributes listed in Table 8-1, Table 8-6, and Table 8-21:

Table 88-25, RC4 Secret Key Object

Attribute Data type Meaning
CKA_VALUE1,4,6,7 Byte array Key value (0 to 255 bytes)
CKA_VALUE_LEN2,3

,6
CK_ULONG Length in bytes of key

value

The following is a sample template for creating an RC5 secret key object:
CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_RC5;
CK_CHAR label[] = “An RC5 secret key object”;
CK_BYTE value[] = {...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)},
 {CKA_ENCRYPT, &true, sizeof(true)},
 {CKA_VALUE, value, sizeof(value)}
};

8.7.5DES secret key objects

DES secret key objects (object class CKO_SECRET_KEY, key type CKK_DES) hold
single-length DES keys. The following table defines the DES secret key object
attributes, in addition to the common attributes listed in Table 8-1, Table 8-6, and
Table 8-21:

Table 88-26, DES Secret Key Object

Attribute Data type Meaning
CKA_VALUE1,4,6,7 Byte array Key value (always 8 bytes

long)

DES keys must always have their parity bits properly set, as described in FIPS PUB
46-2. Attempting to create or unwrap a DES key with incorrect parity will return an
error.

The following is a sample template for creating a DES secret key object:
CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES;
CK_CHAR label[] = “A DES secret key object”;

CK_BYTE value[8] = {...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)},
 {CKA_ENCRYPT, &true, sizeof(true)},
 {CKA_VALUE, value, sizeof(value)}
};

8.7.6DES2 secret key objects

DES2 secret key objects (object class CKO_SECRET_KEY, key type CKK_DES2)
hold double-length DES keys. The following table defines the DES2 secret key
object attributes, in addition to the common attributes listed in Table 8-1, Table 8-6,
and Table 8-21:

Table 88-27, DES2 Secret Key Object Attributes

Attribute Data type Meaning
CKA_VALUE1,4,6,7 Byte array Key value (always 16 bytes

long)

DES2 keys must always have their parity bits properly set, as described in FIPS
PUB 46-2 (i.e., each of the DES keys comprising a DES2 key must have its parity
bits properly set). Attempting to create or unwrap a DES2 key with incorrect parity
will return an error.

The following is a sample template for creating a double-length DES secret key
object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES2;
CK_CHAR label[] = “A DES2 secret key object”;
CK_BYTE value[16] = {...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)},
 {CKA_ENCRYPT, &true, sizeof(true)},
 {CKA_VALUE, value, sizeof(value)}
};

APPENDIX B Page 76

Page 77 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

8.7.7DES3 secret key objects

DES3 secret key objects (object class CKO_SECRET_KEY, key type CKK_DES3)
hold triple-length DES keys. The following table defines the DES3 secret key object
attributes, in addition to the common attributes listed in Table 8-1, Table 8-6, and
Table 8-21:

Table 88-28, DES3 Secret Key Object Attributes

Attribute Data type Meaning
CKA_VALUE1,4,6,7 Byte array Key value (always 24 bytes

long)

DES3 keys must always have their parity bits properly set, as described in FIPS
PUB 46-2 (i.e., each of the DES keys comprising a DES3 key must have its parity
bits properly set). Attempting to create or unwrap a DES3 key with incorrect parity
will return an error.

The following is a sample template for creating a triple-length DES secret key
object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES3;
CK_CHAR label[] = “A DES3 secret key object”;
CK_BYTE value[24] = {...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)},
 {CKA_ENCRYPT, &true, sizeof(true)},
 {CKA_VALUE, value, sizeof(value)}
};

8.7.8CAST secret key objects

CAST secret key objects (object class CKO_SECRET_KEY, key type CKK_CAST)
hold CAST keys. The following table defines the CAST secret key object attributes,
in addition to the common attributes listed in Table 8-1, Table 8-6, and Table 8-21:

Table 88-29, CAST Secret Key Object Attributes

Attribute Data type Meaning
CKA_VALUE1,4,6,7 Byte array Key value (1 to 8 bytes)
CKA_VALUE_LEN2,3

,6
CK_ULONG Length in bytes of key

value

The following is a sample template for creating an CAST secret key object:
CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_CAST;

CK_CHAR label[] = “A CAST secret key object”;
CK_BYTE value[] = {...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)},
 {CKA_ENCRYPT, &true, sizeof(true)},
 {CKA_VALUE, value, sizeof(value)}
};

8.7.9CAST3 secret key objects

CAST3 secret key objects (object class CKO_SECRET_KEY, key type
CKK_CAST3) hold CAST3 keys. The following table defines the CAST3 secret key
object attributes, in addition to the common attributes listed in Table 8-1, Table 8-6,
and Table 8-21:

Table 88-30, CAST3 Secret Key Object Attributes

Attribute Data type Meaning
CKA_VALUE1,4,6,7 Byte array Key value (1 to 8 bytes)
CKA_VALUE_LEN2,3

,6
CK_ULONG Length in bytes of key

value

The following is a sample template for creating an CAST3 secret key object:
CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_CAST3;
CK_CHAR label[] = “A CAST3 secret key object”;
CK_BYTE value[] = {...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},

APPENDIX B Page 78

Page 79 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)},
 {CKA_ENCRYPT, &true, sizeof(true)},
 {CKA_VALUE, value, sizeof(value)}
};

8.7.10CAST5 secret key objects

CAST5 secret key objects (object class CKO_SECRET_KEY, key type
CKK_CAST5) hold CAST5 keys. The following table defines the CAST5 secret key
object attributes, in addition to the common attributes listed in Table 8-1, Table 8-6,
and Table 8-21:

Table 88-31, CAST5 Secret Key Object Attributes

Attribute Data type Meaning
CKA_VALUE1,4,6,7 Byte array Key value (1 to 16 bytes)
CKA_VALUE_LEN2,3

,6
CK_ULONG Length in bytes of key

value

The following is a sample template for creating an CAST5 secret key object:
CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_CAST5;
CK_CHAR label[] = “A CAST5 secret key object”;
CK_BYTE value[] = {...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)},
 {CKA_ENCRYPT, &true, sizeof(true)},
 {CKA_VALUE, value, sizeof(value)}
};

8.7.11IDEA secret key objects

IDEA secret key objects (object class CKO_SECRET_KEY, key type CKK_IDEA)
hold IDEA keys. The following table defines the IDEA secret key object attributes,
in addition to the common attributes listed in Table 8-1, Table 8-6, and Table 8-21:

Table 88-32, IDEA Secret Key Object

Attribute Data type Meaning
CKA_VALUE1,4,6,7 Byte array Key value (always 16 bytes

long)

The following is a sample template for creating an IDEA secret key object:
CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_IDEA;

CK_CHAR label[] = “An IDEA secret key object”;
CK_BYTE value[16] = {...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)},
 {CKA_ENCRYPT, &true, sizeof(true)},
 {CKA_VALUE, value, sizeof(value)}
};

8.7.12CDMF secret key objects

CDMF secret key objects (object class CKO_SECRET_KEY, key type CKK_CDMF)
hold single-length CDMF keys. The following table defines the CDMF secret key
object attributes, in addition to the common attributes listed in Table 8-1, Table 8-6,
and Table 8-21:

Table 88-33, CDMF Secret Key Object

Attribute Data type Meaning
CKA_VALUE1,4,6,7 Byte array Key value (always 8 bytes

long)

CDMF keys must always have their parity bits properly set in exactly the same
fashion described for DES keys in FIPS PUB 46-2. Attempting to create or unwrap
a CDMF key with incorrect parity will return an error.

The following is a sample template for creating a CDMF secret key object:
CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_CDMF;
CK_CHAR label[] = “A CDMF secret key object”;
CK_BYTE value[8] = {...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)},
 {CKA_ENCRYPT, &true, sizeof(true)},
 {CKA_VALUE, value, sizeof(value)}
};

APPENDIX B Page 80

Page 81 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

8.7.13SKIPJACK secret key objects

SKIPJACK secret key objects (object class CKO_SECRET_KEY, key type
CKK_SKIPJACK) holds a single-length MEK or a TEK. The following table defines
the SKIPJACK secret key object attributes, in addition to the common attributes
listed in Table 8-1, Table 8-6, and Table 8-21:

Table 88-34, SKIPJACK Secret Key Object

Attribute Data type Meaning
CKA_VALUE1,4,6,7 Byte array Key value (always 10 bytes

long)

The following is a sample template for creating a SKIPJACK MEK secret key object:
CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_SKIPJACK;
CK_CHAR label[] = “A SKIPJACK MEK secret key object”;
CK_BYTE value[12] = {...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)},
 {CKA_ENCRYPT, &true, sizeof(true)},
 {CKA_VALUE, value, sizeof(value)}
};

The following is a sample template for creating a SKIPJACK TEK secret key object:
CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_SKIPJACK;
CK_CHAR label[] = “A SKIPJACK TEK secret key object”;
CK_BYTE value[12] = {...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)},
 {CKA_ENCRYPT, &true, sizeof(true)},
 {CKA_WRAP, &true, sizeof(true)},
 {CKA_VALUE, value, sizeof(value)}
};

8.7.14BATON secret key objects

BATON secret key objects (object class CKO_SECRET_KEY, key type
CKK_BATON) hold single-length BATON keys. The following table defines the
BATON secret key object attributes, in addition to the common attributes listed in
Table 8-1, Table 8-6, and Table 8-21:

Table 88-35, BATON Secret Key Object

Attribute Data type Meaning
CKA_VALUE1,4,6,7 Byte array Key value (always 20 bytes

long)

The following is a sample template for creating a BATON MEK secret key object:
CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_BATON;
CK_CHAR label[] = “A BATON MEK secret key object”;
CK_BYTE value[12] = {...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)},
 {CKA_ENCRYPT, &true, sizeof(true)},
 {CKA_VALUE, value, sizeof(value)}
};

The following is a sample template for creating a BATON TEK secret key object:
CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_BATON;
CK_CHAR label[] = “A BATON TEK secret key object”;
CK_BYTE value[12] = {...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)},
 {CKA_ENCRYPT, &true, sizeof(true)},
 {CKA_WRAP, &true, sizeof(true)},
 {CKA_VALUE, value, sizeof(value)}
};

APPENDIX B Page 82

Page 83 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

8.7.15JUNIPER secret key objects

JUNIPER secret key objects (object class CKO_SECRET_KEY, key type
CKK_JUNIPER) hold single-length JUNIPER keys. The following table defines the
JUNIPER secret key object attributes, in addition to the common attributes listed in
Table 8-1, Table 8-6, Table 8-21:

Table 88-36, JUNIPER Secret Key Object

Attribute Data type Meaning
CKA_VALUE1,4,6,7 Byte array Key value (always 20 bytes

long)

The following is a sample template for creating a JUNIPER MEK secret key object:
CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_JUNIPER;
CK_CHAR label[] = “A JUNIPER MEK secret key object”;
CK_BYTE value[12] = {...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)},
 {CKA_ENCRYPT, &true, sizeof(true)},
 {CKA_VALUE, value, sizeof(value)}
};

The following is a sample template for creating a JUNIPER TEK secret key object:
CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_JUNIPER;
CK_CHAR label[] = “A JUNIPER TEK secret key object”;
CK_BYTE value[12] = {...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)},
 {CKA_ENCRYPT, &true, sizeof(true)},
 {CKA_WRAP, &true, sizeof(true)},
 {CKA_VALUE, value, sizeof(value)}
};

9Functions

Cryptoki's functions are organized into the following categories:

· general-purpose functions (4 functions)

· slot and token management functions (8 functions)

· session management functions (8 functions)

· object management functions (9 functions)

· encryption functions (4 functions)

· decryption functions (4 functions)

· message digesting functions (5 functions)

· signing and MACing functions (6 functions)

· functions for verifying signatures and MACs (6 functions)

· dual-purpose cryptographic functions (4 functions)

· key management functions (5 functions)

· random number generation functions (2 functions)

· parallel function management functions (2 functions)

In addition to these 67 functions in the Cryptoki v2.0 API proper, Cryptoki makes
use of application-supplied callback functions to notify an application of certain
events.

A Cryptoki library need not support every function in the Cryptoki API. However,
even an unsupported function should have a “stub” in the library which simply
returns the value CKR_FUNCTION_NOT_SUPPORTED. If a Cryptoki API function is
unsupported, its pointerThe function’s entry in the library’s CK_FUNCTION_LIST
structure (as obtained by C_GetFunctionList) should point to this stub should be
NULL_PTRfunction (see Section 7.6).

9.1Function return values

9.1.1Universal Cryptoki function return values

Any Cryptoki function can return any of the following values:

APPENDIX B Page 84

Page 85 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

· CKR_GENERAL_ERROR: Some horrible, unrecoverable error has occurred. In
the worst case, it is possible that the function only partially succeeded, and
that the computer and/or token is in an inconsistent state.

· CKR_HOST_MEMORY: The computer that the Cryptoki library is running on has
insufficient memory to perform the requested function. In the worst case, it
is possible that the function only partially succeeded, and that the computer
and/or token is in an inconsistent state.

· CKR_FUNCTION_FAILED: The requested function could not be performed, but
detailed information about why not is not available in this error return. If
the failed function uses a session, it is possible that the CK_SESSION_INFO
that can be obtained by calling C_GetSessionInfo holds useful information
about what happened in its ulDeviceError field. In any event, although the
function call failed, the situation is not necessarily totally hopeless, as it is
likely to be when CKR_GENERAL_ERROR is returned.

· CKR_OK: The function executed successfully.

The relative priorities of these errors are in the order listed above, e.g., if either of
CKR_GENERAL_ERROR or CKR_HOST_MEMORY would be an appropriate error
return, then CKR_GENERAL_ERROR should be returned.

Because the above values can be returned by any Cryptoki function, they will never
explicitly be mentioned as possible returns when the Cryptoki functions are
described. All other return values are more specific to particular functions, and will
be listed with all relevant functions.

9.1.2Cryptoki function return values for functions that use a
session handle

Any Cryptoki function that takes a session handle as one of its arguments (i.e., any
Cryptoki function except for C_Initialize, C_Finalize, C_GetInfo,
C_GetFunctionList, C_GetSlotList, C_GetSlotInfo, C_GetTokenInfo,
C_GetMechanismList, C_GetMechanismInfo, C_InitToken, C_OpenSession,
and C_CloseAllSessions) can return the following values:

· CKR_SESSION_HANDLE_INVALID: The specified session handle was invalid at
the time that the function was invoked. Note that this can happen if the
session’s token is removed before the function invokcation, since removing a
token closes all sessions with it.

· CKR_DEVICE_REMOVED: The token was removed from its slot during the
execution of the function.

· CKR_SESSION_CLOSED: The session was closed during the execution of the
function.

The relative priorities of these errors are in the order listed above, e.g., if either of
CKR_SESSION_HANDLE_INVALID or CKR_DEVICE_REMOVED would be an
appropriate error return, then CKR_SESSION_HANDLE_INVALID should be
returned.

In practice, it is often not crucial (or possible) for a Cryptoki library to be able to
make a distinction between a token being removed before a function invokation and
a token being removed during a function execution.

9.1.3Cryptoki function return values for functions that use a
token

Any Cryptoki function that uses a token (i.e., any Cryptoki function except for
C_Initialize, C_Finalize, C_GetInfo, C_GetFunctionList, C_GetSlotList, or
C_GetSlotInfo) can return any of the following values:

· CKR_DEVICE_MEMORY: The token does not have sufficient memory to perform
the requested function.

· CKR_DEVICE_ERROR: Some problem has occurred with the token and/or slot.

· CKR_TOKEN_NOT_PRESENT: The token was not present in its slot at the time
that the function was invoked.

· CKR_DEVICE_REMOVED: The token was removed from its slot during the
execution of the function.

The relative priorities of these errors are in the order listed above, e.g., if either of
CKR_DEVICE_MEMORY or CKR_DEVICE_ERROR would be an appropriate error
return, then CKR_DEVICE_MEMORY should be returned.

In practice, it is often not crucial (or possible) for a Cryptoki library to be able to
make a distinction between a token being removed before a function invokation and
a token being removed during a function execution.

9.1.4All the other Cryptoki function return values

The other Cryptoki function returns follow. Except as mentioned in the descriptions
of particular error codes, there are in general no particular priorities among the
errors listed below, i.e., if more than one error code might apply to a function’s
execution, the function may return any applicable error code.

· CKR_ATTRIBUTE_READ_ONLY: An attempt was made to set a value for an
attribute which may not be set, or which may not be modified.

· CKR_ATTRIBUTE_SENSITIVE: An attempt was made to obtain the value of an
attribute of an object which cannot be satisfied because the object is either
sensitive or unextractable.

· CKR_ATTRIBUTE_TYPE_INVALID: An invalid attribute type was specified in a
template.

· CKR_ATTRIBUTE_VALUE_INVALID: An invalid value was specified for an
attribute in a template.

· CKR_BUFFER_TOO_SMALL: The output of the function does not fit in the
supplied buffer.

APPENDIX B Page 86

Page 87 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

· CKR_CANCEL: This is a value for an application callback to return. When a
function executing in serial with an application decides to give the
application a chance to do some work, it calls an application-supplied
function with a CKN_SURRENDER callback. If the callback returns the
value CKR_CANCEL, then the function aborts (see
CKR_FUNCTION_CANCELED).

· CKR_DATA_INVALID: The plaintext input data to a cryptographic operation is
invalid. This error only applies to the CKM_RSA_X_509 mechanism, when
plaintext is supplied that has the same number of bytes as the RSA modulus
and is numerically at least as large as the modulus. This return value has
lower priority than CKR_DATA_LEN_RANGE.

· CKR_DATA_LEN_RANGE: The plaintext input data to a cryptographic operation
has a bad length. Depending on the operation’s mechanism, this could mean
that the plaintext data is too short, too long, or is not a multiple of some
particular blocksize. This return value has higher priority than
CKR_DATA_INVALID.

· CKR_ENCRYPTED_DATA_INVALID: The encrypted input to a decryption
operation has been determined to be invalid ciphertext. This return value
has lower priority than CKR_ENCRYPTED_DATA_LEN_RANGE.

· CKR_ENCRYPTED_DATA_LEN_RANGE: The ciphertext input to a decryption
operation has been determined to be invalid ciphertext solely on the basis of
its length. Depending on the operation’s mechanism, this could mean that
the ciphertext is too short, too long, or is not a multiple of some particular
blocksize. This return value has higher priority than
CKR_ENCRYPTED_DATA_INVALID.

· CKR_FUNCTION_CANCELED: The function was canceled in mid-execution.
This can happen to a function executing in parallel with an application, if the
application calls C_CancelFunction; it can also happen to a function
executing in serial with an application, if the function makes a
CKN_SURRENDER application callback, and the callback returns
CKR_CANCEL (see CKR_CANCEL).

· CKR_FUNCTION_NOT_PARALLEL: There is currently no function executing in
parallel in the specified session.

· CKR_FUNCTION_NOT_SUPPORTED: The requested function is not supported
by this Cryptoki library. Even unsupported functions in the Cryptoki API
should have a “stub” in the library which simply returns the value
CKR_FUNCTION_NOT_SUPPORTED.

· CKR_FUNCTION_PARALLEL: There is currently a function executing in parallel
in the specified session. CKR_FUNCTION_PARALLEL is also returned
whenever a Cryptoki function call is made that executes in parallel.

· CKR_INFORMATION_SENSITIVE: The information requested could not be
obtained because the token considers it sensitive, and is not able or willing
to reveal it.

· CKR_INSERTION_CALLBACK_NOT_SUPPORTED: The specified slot does not
support setting an application callback for token insertion.

· CKR_KEY_CHANGED: One of the keys specified in a C_SetOperationState
operation is not the same key that was being used in the original saved
session.

· CKR_KEY_FUNCTION_NOT_PERMITTED: An attempt has been made to use a
key for a cryptographic purpose that the key’s attributes are not set to allow
it to do. For example, to use a key for performing encryption, that key must
have its CKA_ENCRYPT attribute set to TRUE (the fact that the key must
have a CKA_ENCRYPT attribute implies that the key cannot be a private
key). This return value has lower priority than
CKR_KEY_TYPE_INCONSISTENT.

· CKR_KEY_HANDLE_INVALID: The specified key handle is not valid. It may be
the case that the specified handle is a valid handle for an object which is not
a key. We reiterate here that 0 is never a valid key handle.

· CKR_KEY_INDIGESTIBLE: The value of the specified key cannot be digested for
some reason (perhaps the key isn’t a secret key, or perhaps the token simply
can’t digest this kind of key).

· CKR_KEY_NEEDED: The C_SetOperationState operation cannot be carried out
because it needs to be supplied with a key that was being used in the
original saved session.

· CKR_KEY_NOT_NEEDED: An extraneous key was supplied to
C_SetOperationState. For example, an attempt was made to restore a
session that had been performing a message digesting operation, and an
encryption key was supplied.

· CKR_KEY_NOT_WRAPPABLE: Although the specified private or secret key does
not have its CKA_UNEXTRACTABLE attribute set to TRUE, Cryptoki (or the
token) is unable to wrap the key as requested (possibly the token simply
won’t support it).

· CKR_KEY_SIZE_RANGE: Although the requested keyed cryptographic operation
could in principal be carried out, this Cryptoki library (or the token) is unable
to actually do it because the supplied key ‘s size is outside the range of key
sizes that it can handle.

· CKR_KEY_TYPE_INCONSISTENT: The specified key is not the correct type of
key to use with the specified mechanism. This return value has a higher
priority than CKR_KEY_FUNCTION_NOT_PERMITTED.

· CKR_KEY_UNEXTRACTABLE: The specified private or secret key can’t be
wrapped because its CKA_UNEXTRACTABLE attribute is set to TRUE.

· CKR_MECHANISM_INVALID: An invalid mechanism was specified to the
cryptographic operation.

· CKR_MECHANISM_PARAM_INVALID: Invalid parameters were supplied to the
mechanism specified to the cryptographic operation.

APPENDIX B Page 88

Page 89 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

· CKR_OBJECT_HANDLE_INVALID: The specified object handle is not valid. We
reiterate here that 0 is never a valid object handle.

· CKR_OPERATION_ACTIVE: There is already an active operation (or combination
of active operations) which prevents Cryptoki from activating the specified
operation. For example, an active object-searching operation would prevent
Cryptoki from activating an encryption operation with C_EncryptInit. Or,
an active digesting operation and an active encryption operation would
prevent Cryptoki from activating a signature operation. Or, on a token
which doesn’t support dual cryptographic operations (see the description of
the CKF_DUAL_CRYPTO_OPERATIONS flag in the CK_TOKEN_INFO
structure), an active signature operation would prevent Cryptoki from
activating an encryption operation.

· CKR_OPERATION_NOT_INITIALIZED: There is no active operation of an
appropriate type in the specified session. For example, an application
cannot call C_Encrypt in a session without having called C_EncryptInit first
to activate an encryption operation.

· CKR_PIN_EXPIRED: The specified PIN has expired (on a given token, the
normal user’s PIN may or may not expire).

· CKR_PIN_INCORRECT: The specified PIN is wrong, and does not match the PIN
stored on the token. More generally, the attempt to authenticate the user
has failed.

· CKR_PIN_INVALID: The specified PIN has invalid characters in it. This return
code only applies to functions which attempt to set a PIN.

· CKR_PIN_LEN_RANGE: The specified PIN is too long or too short. This return
code only applies to functions which attempt to set a PIN.

· CKR_PIN_LOCKED: The specified PIN is “locked”, and cannot be used. That is,
because some particular number of failed authentication attempts has been
reached, the token is unwilling to permit further attempts at authentication.

· CKR_RANDOM_NO_RNG: The specified token doesn’t have a random number
generator.

· CKR_RANDOM_SEED_NOT_SUPPORTED: The token’s random number
generator does not accept seeding from an application.

· CKR_SAVED_STATE_INVALID: The supplied saved cryptographic operations
state is invalid, and so it cannot be restored to the specified session.

· CKR_SESSION_COUNT: The attempt to open a session failed, either because
the token has too many sessions already open, or because the token has too
many read/write sessions already open.

· CKR_SESSION_EXCLUSIVE_EXISTS: The attempt to open a session failed
because there already exists an exclusive session.

· CKR_SESSION_EXISTS: A session with the token is already open.

· CKR_SESSION_PARALLEL_NOT_SUPPORTED: The specified token does not
support parallel sessions.

· CKR_SESSION_READ_ONLY: The specified session was unable to accomplish
the desired action because it is a read-only session. This return value has
higher priority than CKR_TOKEN_WRITE_PROTECTED.

· CKR_SESSION_READ_ONLY_EXISTS: A read-only session already exists, and so
the SO cannot be logged in.

· CKR_SESSION_READ_WRITE_SO_EXISTS: A read/write SO session already
exists, and so a read-only session cannot be opened.

· CKR_SIGNATURE_LEN_RANGE: The provided signature/MAC can be seen to be
invalid, solely on the basis of its length. This return value has higher priority
than CKR_SIGNATURE_INVALID.

· CKR_SIGNATURE_INVALID: The provided signature/MAC is invalid. This
return value has lower priority than CKR_SIGNATURE_LEN_RANGE.

· CKR_SLOT_ID_INVALID: The specified slot ID is not valid.

· CKR_STATE_UNSAVEABLE: The cryptographic operations state of the specified
session cannot be saved for some reason (possibly the token is simply unable
to save the current state). This return value has lower priority than
CKR_FUNCTION_PARALLEL and CKR_OPERATION_NOT_INITIALIZED.

· CKR_TEMPLATE_INCOMPLETE: The template specified for creating an object
is incomplete, and lacks some necessary attributes.

· CKR_TEMPLATE_INCONSISTENT: The template specified for creating an
object has conflicting attributes.

· CKR_TOKEN_NOT_RECOGNIZED: The Cryptoki library and/or slot does not
recognize the token in the slot.

· CKR_TOKEN_WRITE_PROTECTED: The requested action could not be
performed because the token is write-protected. This return value has
higher priority than CKR_SESSION_READ_ONLY.

· CKR_UNWRAPPING_KEY_HANDLE_INVALID: The key handle specified to be
used to unwrap another key is not valid.

· CKR_UNWRAPPING_KEY_SIZE_RANGE: Although the requested unwrapping
operation could in principal be carried out, this Cryptoki library (or the
token) is unable to actually do it because the supplied key’s size is outside
the range of key sizes that it can handle.

· CKR_UNWRAPPING_KEY_TYPE_INCONSISTENT: The type of the key specified
to unwrap another key is not consistent with the mechanism specified for
unwrapping.

· CKR_USER_ALREADY_LOGGED_IN: The session cannot be logged in, because it
is already logged in.

APPENDIX B Page 90

Page 91 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

· CKR_USER_NOT_LOGGED_IN: The desired action cannot be performed
because the appropriate user (or an appropriate user) is not logged in. One
example is that a session cannot be logged out unless it is logged in.
Another example is that a private object cannot be created on a token unless
the session attempting to create it is logged in as the normal user. A final
example is that cryptographic operations on certain tokens cannot be
performed unless the normal user is logged in.

· CKR_USER_PIN_NOT_INITIALIZED: The normal user’s PIN has not been
initialized with C_InitPIN.

· CKR_USER_TYPE_INVALID: An invalid value was specified as a
CK_USER_TYPE. Valid types are CKU_SO and CKU_USER.

· CKR_WRAPPED_KEY_INVALID: The wrapped key is not valid. This return value
has lower priority than CKR_WRAPPED_KEY_LEN_RANGE.

· CKR_WRAPPED_KEY_LEN_RANGE: The provided wrapped key can be seen to
be invalid, solely on the basis of its length. This return value has higher
priority than CKR_WRAPPED_KEY_INVALID.

· CKR_WRAPPING_KEY_HANDLE_INVALID: The key handle specified to be used
to wrap another key is not valid.

· CKR_WRAPPING_KEY_SIZE_RANGE: Although the requested wrapping
operation could in principal be carried out, this Cryptoki library (or the
token) is unable to actually do it because the supplied wrapping key’s size is
outside the range of key sizes that it can handle.

· CKR_WRAPPING_KEY_TYPE_INCONSISTENT: The type of the key specified to
wrap another key is not consistent with the mechanism specified for wrapping.

9.1.5More on relative priorities of Cryptoki errors

In general, error codes from Section 9.1.1 take precedence over error codes from
Section 9.1.2, which take precedence over error codes from Section 9.1.3, which
take precedence over error codes from Section 9.1.4. One minor implication of this
is that functions that use a session handle never return the error code
CKR_TOKEN_NOT_PRESENT (they return CKR_SESSION_HANDLE_INVALID
instead). Other than these precedences, if more than one error code might apply to
a Cryptoki call, any of the applicable error codes may be returned. Exceptions to
this rule will be explicitly mentioned.

9.2Conventions for functions which return output in a variable-
length buffer

A number of the functions defined in Cryptoki return output produced by some
cryptographic mechanism. The amount of output returned by these functions is
returned in a variable-length application-supplied buffer. An example of a function
of this sort is C_Encrypt, which takes some plaintext as an argument, and outputs a
buffer full of ciphertext.

These functions have some common calling conventions, which we describe here.
Two of the arguments to the function are a pointer to the output buffer (say pBuf)
and a pointer to a location which will hold the length of the output produced (say
pulBufLen). There are two ways for an application to call such a function:

1. If pBuf is NULL_PTR, then all that the function does is return (in *pulBufLen) a
number of bytes which would suffice to hold the cryptographic output
produced from the input to the function. This number may somewhat
exceed the precise number of bytes needed, but should not exceed it by a
large amount. CKR_OK is returned by the function.

2. If pBuf is not NULL_PTR, then *pulBufLen must contain the size in bytes of the
buffer pointed to by pBuf. If that buffer is large enough to hold the
cryptographic output produced from the input to the function, then that
cryptographic output is placed there, and CKR_OK is returned by the function.
If the buffer is not large enough, then CKR_BUFFER_TOO_SMALL is returned.
In either case, *pulBufLen is set to hold the exact number of bytes needed to
hold the cryptographic output produced from the input to the function.

All functions which use the above convention will explicitly say so.

Cryptographic functions which return output in a variable-length buffer should
always return as much output as can be computed from what has been passed in to
them thus far. As an example, consider a session which is performing a multiple-
part decryption operation with DES in cipher-block chaining mode with PKCS
padding. Suppose that, initially, 8 bytes of ciphertext are passed to the
C_DecryptUpdate function. The blocksize of DES is 8 bytes, but the PKCS padding
makes it unclear at this stage whether the ciphertext was produced from
encrypting a 0-byte string, or from encrypting some string of length at least 8
bytes. Hence the call to C_DecryptUpdate should return 0 bytes of plaintext. If a
single additional byte of ciphertext is subsequently supplied by C_DecryptUpdate,
the call to C_DecryptUpdate should return 8 bytes of plaintext (one full DES
block).

9.3Disclaimer concerning sample code

For the remainder of Section 9, we enumerate the various functions defined in
Cryptoki. Most functions will be shown in use in at least one sample code snippet.
For the sake of brevity, sample code will frequently be somewhat incomplete. In
particular, sample code will generally ignore possible error returns from C library
functions, and also will not deal with Cryptoki error returns in a realistic fashion.

9.4General-purpose functions

Cryptoki provides the following general-purpose functions. These functions do not
run in parallel with the application.

¨ C_Initialize

CK_RV CK_ENTRY C_Initialize(

APPENDIX B Page 92

Page 93 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

CK_VOID_PTR pReserved
);

C_Initialize initializes the Cryptoki library. C_Initialize should be the first
Cryptoki call made by an application, except for calls to C_GetFunctionList. What
this function actually does is implementation-dependent: for example, it may cause
Cryptoki to initialize its internal memory buffers, or any other resources it requires;
or it may perform no action. The pReserved parameter is reserved for future
versions; for this version, it should be set to NULL_PTR.

If several applications are using Cryptoki, each one should call C_Initialize. Every
call to C_Initialize should (eventually) be succeeded by a single call to C_Finalize.

Return values: none other than the “universal” return values.

Example: see C_GetInfo.

¨ C_Finalize

CK_RV CK_ENTRY C_Finalize(
CK_VOID_PTR pReserved

);

C_Finalize is called to indicate that an application is finished with the Cryptoki
library. It should be the last Cryptoki call made by an application. The pReserved
parameter is reserved for future versions; for this version, it should be set to
NULL_PTR.

If several applications are using Cryptoki, each one should call C_Finalize. Every
call to C_Finalize should be preceded by a single call to C_Initialize; in between
the two calls, an application makes calls to other Cryptoki functions.

Return values: none other than the “universal” return values.

Example: see C_GetInfo.

¨ C_GetInfo

CK_RV CK_ENTRY C_GetInfo(
CK_INFO_PTR pInfo

);

C_GetInfo returns general information about Cryptoki. pInfo points to the location
that receives the information.

Return values: none other than the “universal” return values.

Example:

CK_INFO info;
CK_RV rv;

rv = C_Initialize(NULL_PTR);
assert(rv == CKR_OK);

rv = C_GetInfo(&info);
assert(rv == CKR_OK);
if(info.version.major == 2) {
 /* Do lots of interesting cryptographic things with the token */
 .
 .
 .
}

rv = C_Finalize(NULL_PTR);
assert(rv == CKR_OK);

¨ C_GetFunctionList

CK_RV CK_ENTRY C_GetFunctionList(
CK_FUNCTION_LIST_PTR_PTR ppFunctionList

);

C_GetFunctionList obtains a pointer to the Cryptoki library’s list of function
pointers. ppFunctionList points to a value which will receive a pointer to the
library’s CK_FUNCTION_LIST structure, which contains function pointers for all
the Cryptoki API routines in the library. The pointer obtained may point into
memory which is owned by the Cryptoki library, and which may or may not be
writable. In any case, no attempt should be made to write to this memory.

C_GetFunctionList is the only Cryptoki function which an application may call
before calling C_Initialize. It is provided to make it easier and faster for
applications to use shared Cryptoki libraries and to use more than one Cryptoki
library simultaneously.

Return values: none other than the “universal” return values.

Example:
CK_FUNCTION_LIST_PTR pFunctionList;
CK_C_Initialize pC_Initialize;
CK_RV rv;

/* It’s OK to call C_GetFunctionList before calling C_Initialize */
rv = C_GetFunctionList(&pFunctionList);
assert(rv == CKR_OK);
pC_Initialize = pFunctionList -> C_Initialize;

/* Call the C_Initialize function in the library */
rv = (*pC_Initialize)(NULL_PTR);

APPENDIX B Page 94

Page 95 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

9.5Slot and token management functions

Cryptoki provides the following functions for slot and token management. These
functions do not run in parallel with the application.

¨ C_GetSlotList

CK_RV CK_ENTRY C_GetSlotList(
CK_BBOOL tokenPresent,
CK_SLOT_ID_PTR pSlotList,
CK_ULONG_PTR pulCount

);

C_GetSlotList is used to obtain a list of slots in the system. tokenPresent indicates
whether the list obtained includes only those slots with a token present (TRUE), or
all slots (FALSE); pulCount points to the location that receives the number of slots.

There are two ways for an application to call C_GetSlotList:

1. If pSlotList is NULL_PTR, then all that C_GetSlotList does is return (in
*pulCount) the number of slots, without actually returning a list of slots. The
contents of the buffer pointed to by pulCount on entry to C_GetSlotList has
no meaning in this case, and the call returns the value CKR_OK.

2. If pSlotList is not NULL_PTR, then *pulCount must contain the size (in terms of
CK_SLOT_ID elements) of the buffer pointed to by pSlotList. If that buffer
is large enough to hold the list of slots, then the list is returned in it, and
CKR_OK is returned. If not, then the call to C_GetSlotList returns the value
CKR_BUFFER_TOO_SMALL. In either case, the value *pulCount is set to
hold the number of slots.

Because C_GetSlotList does not allocate any space of its own, an application
will often call C_GetSlotList twice (or sometimes even more times—if an
application is trying to get a list of all slots with a token present, then the
number of such slots can change between when the application asks for how
many such slots there are, and when the application asks for the slots
themselves). However, this is by no means required.

Return values: CKR_BUFFER_TOO_SMALL.

Example:
CK_ULONG ulSlotCount, ulSlotWithTokenCount;
CK_SLOT_ID_PTR pSlotList, pSlotWithTokenList;
CK_RV rv;

/* Get list of all slots */
rv = C_GetSlotList(FALSE, NULL_PTR, &ulSlotCount);
if (rv == CKR_OK) {
 pSlotList =
 (CK_SLOT_ID_PTR) malloc(ulSlotCount*sizeof(CK_SLOT_ID));
 rv = C_GetSlotList(FALSE, pSlotList, &ulSlotCount);
 if (rv == CKR_OK) {

 /* Now use that list of all slots */
 .
 .
 .
 }

 free(pSlotList);
}

/* Get list of all slots with a token present */
pSlotWithTokenList = (CK_SLOT_ID_PTR) malloc(0);
ulSlotWithTokenCount = 0;
while (1) {
 rv = C_GetSlotList(
 TRUE, pSlotWithTokenList, ulSlotWithTokenCount);
 if (rv != CKR_BUFFER_TOO_SMALL)
 break;
 pSlotWithTokenList = realloc(
 pSlotWithTokenList,
 ulSlotWithTokenList*sizeof(CK_SLOT_ID));
}

if (rv == CKR_OK) {
 /* Now use that list of all slots with a token present */
 .
 .
 .
}

free(pSlotWithTokenList);

¨ C_GetSlotInfo

CK_RV CK_ENTRY C_GetSlotInfo(
CK_SLOT_ID slotID,
CK_SLOT_INFO_PTR pInfo

);

C_GetSlotInfo obtains information about a particular slot in the system. slotID is
the ID of the slot; pInfo points to the location that receives the slot information.

Return values: CKR_DEVICE_ERROR, CKR_SLOT_ID_INVALID.

Example: see C_GetTokenInfo.

APPENDIX B Page 96

Page 97 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

¨ C_GetTokenInfo

CK_RV CK_ENTRY C_GetTokenInfo(
CK_SLOT_ID slotID,
CK_TOKEN_INFO_PTR pInfo

);

C_GetTokenInfo obtains information about a particular token in the system.
slotID is the ID of the token’s slot; pInfo points to the location that receives the
token information.

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT,
CKR_TOKEN_NOT_RECOGNIZED.

Example:
CK_ULONG ulCount;
CK_SLOT_ID_PTR pSlotList;
CK_SLOT_INFO slotInfo;
CK_TOKEN_INFO tokenInfo;
CK_RV rv;

rv = C_GetSlotList(FALSE, NULL_PTR, &ulCount);
if ((rv == CKR_OK) && (ulCount > 0)) {
 pSlotList = (CK_SLOT_ID_PTR) malloc(ulCount*sizeof(CK_SLOT_ID));
 rv = C_GetSlotList(FALSE, pSlotList, &ulCount);
 assert(rv == CKR_OK);

 /* Get slot information for first slot */
 rv = C_GetSlotInfo(pSlotList[0], &slotInfo);
 assert(rv == CKR_OK);

 /* Get token information for first slot */
 rv = C_GetTokenInfo(pSlotList[0], &tokenInfo);
 if (rv == CKR_TOKEN_NOT_PRESENT) {
 .
 .
 .
 }
 .
 .
 .
 free(pSlotList);
}

¨ C_GetMechanismList

CK_RV CK_ENTRY C_GetMechanismList(
CK_SLOT_ID slotID,
CK_MECHANISM_TYPE_PTR pMechanismList,
CK_ULONG_PTR pulCount

);

C_GetMechanismList is used to obtain a list of mechanism types supported by a
token. SlotID is the ID of the token’s slot; pulCount points to the location that
receives the number of mechanisms.

There are two ways for an application to call C_GetMechanismList:

1. If pMechanismList is NULL_PTR, then all that C_GetMechanismList does is
return (in *pulCount) the number of mechanisms, without actually returning
a list of mechanisms. The contents of *pulCount on entry to
C_GetMechanismList has no meaning in this case, and the call returns the
value CKR_OK.

2. If pMechanismList is not NULL_PTR, then *pulCount must contain the size (in
terms of CK_MECHANISM_TYPE elements) of the buffer pointed to by
pMechanismList. If that buffer is large enough to hold the list of
mechanisms, then the list is returned in it, and CKR_OK is returned. If not,
then the call to C_GetMechanismList returns the value
CKR_BUFFER_TOO_SMALL. In either case, the value *pulCount is set to
hold the number of mechanisms.

Because C_GetMechanismList does not allocate any space of its own, an
application will often call C_GetMechanismList twice. However, this is by no
means required.

Return values: CKR_BUFFER_TOO_SMALL, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_SLOT_ID_INVALID,
CKR_TOKEN_NOT_PRESENT, CKR_TOKEN_NOT_RECOGNIZED.

Example:
CK_SLOT_ID slotID;
CK_ULONG ulCount;
CK_MECHANISM_TYPE_PTR pMechanismList;
CK_RV rv;

.

.

.
rv = C_GetMechanismList(slotID, NULL_PTR, &ulCount);
if ((rv == CKR_OK) && (ulCount > 0)) {
 pMechanismList =
 (CK_MECHANISM_TYPE_PTR)
 malloc(ulCount*sizeof(CK_MECHANISM_TYPE));
 rv = C_GetMechanismList(slotID, pMechanismList, &ulCount);
 if (rv == CKR_OK) {
 .
 .
 .
 }
 free(pMechanismList);
}

APPENDIX B Page 98

Page 99 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

¨ C_GetMechanismInfo

CK_RV CK_ENTRY C_GetMechanismInfo(
CK_SLOT_ID slotID,
CK_MECHANISM_TYPE type,
CK_MECHANISM_INFO_PTR pInfo

);

C_GetMechanismInfo obtains information about a particular mechanism possibly
supported by a token. slotID is the ID of the token’s slot; type is the type of
mechanism; pInfo points to the location that receives the mechanism information.

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_MECHANISM_INVALID, CKR_SLOT_ID_INVALID,
CKR_TOKEN_NOT_PRESENT, CKR_TOKEN_NOT_RECOGNIZED.

Example:
CK_SLOT_ID slotID;
CK_MECHANISM_INFO info;
CK_RV rv;

.

.

.
/* Get information about the CKM_MD2 mechanism for this token */
rv = C_GetMechanismInfo(slotID, CKM_MD2, &info);
if (rv == CKR_OK) {
 if (info.flags & CKF_DIGEST) {
 .
 .
 .
 }
}

¨ C_InitToken

CK_RV CK_ENTRY C_InitToken(
CK_SLOT_ID slotID,
CK_CHAR_PTR pPin,
CK_ULONG ulPinLen,
CK_CHAR_PTR pLabel

);

C_InitToken initializes a token. slotID is the ID of the token’s slot; pPin points to
the SO’s initial PIN; ulPinLen is the length in bytes of the PIN; pLabel points to the
32-byte label of the token (must be padded with blank characters).

When a token is initialized, all objects that can be destroyed are destroyed (i.e., all
except for “indestructible” objects such as keys built into the token). Also, access
by the normal user is disabled until the SO sets the normal user’s PIN. Depending

on the token, some “default” objects may be created, and attributes of some objects
may be set to default values.

If the token has a “protected authentication path”, as indicated by the
CKR_PROTECTED_AUTHENTICATION_PATH flag in its CK_TOKEN_INFO being
set, then that means that there is some way for a user to be authenticated to the
token without having the application send a PIN through the Cryptoki library. One
such possibility is that the user enters a PIN on a PINpad on the token itself, or on
the slot device. To initialize a token with such a protected authentication path, the
pPin parameter to C_InitToken should be NULL_PTR. During the execution of
C_InitToken, the SO’s PIN will be entered through the protected authentication
path.

If the token has a protected authentication path other than a PINpad, then it is
token-dependent whether or not C_InitToken can be used to initialize the token.

A token cannot be initialized if Cryptoki detects that an application has an open
session with it; when a call to C_InitToken is made under such circumstances, the
call fails with error CKR_SESSION_EXISTS. It may happen that some other
application does have an open session with the token, but Cryptoki cannot detect
this, because it cannot detect anything about other applications using the token. If
this is the case, then what happens as a result of the C_InitToken call is undefined.

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_PIN_INCORRECT, CKR_PIN_LOCKED,
CKR_SESSION_EXISTS, CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT,
CKR_TOKEN_NOT_RECOGNIZED, CKR_TOKEN_WRITE_PROTECTED.

Example:
CK_SLOT_ID slotID;
CK_CHAR pin[] = {“MyPIN”};
CK_CHAR label[32];
CK_RV rv;

.

.

.
memset(label, ‘ ’, sizeof(label));
memcpy(label, “My first token”, sizeof(“My first token”));
rv = C_InitToken(slotID, pin, sizeof(pin), label);
if (rv == CKR_OK) {
 .
 .
 .
}

APPENDIX B Page 100

Page 101 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

¨ C_InitPIN

CK_RV CK_ENTRY C_InitPIN(
CK_SESSION_HANDLE hSession,
CK_CHAR_PTR pPin,
CK_ULONG ulPinLen

);

C_InitPIN initializes the normal user’s PIN. hSession is the session’s handle; pPin
points to the normal user’s PIN; ulPinLen is the length in bytes of the PIN.

C_InitPIN can only be called in the “R/W SO Functions” state. An attempt to call it
from a session in any other state fails with error CKR_USER_NOT_LOGGED_IN.

If the token has a “protected authentication path”, as indicated by the
CKR_PROTECTED_AUTHENTICATION_PATH flag in its CK_TOKEN_INFO being
set, then that means that there is some way for a user to be authenticated to the
token without having the application send a PIN through the Cryptoki library. One
such possibility is that the user enters a PIN on a PINpad on the token itself, or on
the slot device. To initialize the normal user’s PIN on a token with such a protected
authentication path, the pPin parameter to C_InitPIN should be NULL_PTR.
During the execution of C_InitPIN, the SO will enter the new PIN through the
protected authentication path.

If the token has a protected authentication path other than a PINpad, then it is
token-dependent whether or not C_InitPIN can be used to initialize the normal
user’s token access.

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_PIN_INVALID, CKR_PIN_LEN_RANGE,
CKR_SESSION_CLOSED, CKR_SESSION_READ_ONLY,
CKR_SESSION_HANDLE_INVALID, CKR_TOKEN_WRITE_PROTECTED,
CKR_USER_NOT_LOGGED_IN.

Example:
CK_SESSION_HANDLE hSession;
CK_CHAR newPin[]= {“NewPIN”};
CK_RV rv;

rv = C_InitPIN(hSession, newPin, sizeof(newPin));
if (rv == CKR_OK) {
 .
 .
 .
}

¨ C_SetPIN

CK_RV CK_ENTRY C_SetPIN(
CK_SESSION_HANDLE hSession,
CK_CHAR_PTR pOldPin,
CK_ULONG ulOldLen,
CK_CHAR_PTR pNewPin,
CK_ULONG ulNewLen

);

C_SetPIN modifies the PIN of the user that is currently logged in. hSession is the
session’s handle; pOldPin points to the old PIN; ulOldLen is the length in bytes of
the old PIN; pNewPin points to the new PIN; ulNewLen is the length in bytes of the
new PIN.

C_SetPIN can only be called in the “R/W SO Functions” state or “R/W User
Functions” state. An attempt to call it from a session in any other state fails with
error CKR_SESSION_READ_ONLY.

If the token has a “protected authentication path”, as indicated by the
CKR_PROTECTED_AUTHENTICATION_PATH flag in its CK_TOKEN_INFO being
set, then that means that there is some way for a user to be authenticated to the
token without having the application send a PIN through the Cryptoki library. One
such possibility is that the user enters a PIN on a PINpad on the token itself, or on
the slot device. To modify the current user’s PIN on a token with such a protected
authentication path, the pOldPin and pNewPin parameters to C_SetPIN should be
NULL_PTR. During the execution of C_SetPIN, the current user will enter the old
PIN and the new PIN through the protected authentication path. It is not specified
how the PINpad should be used to enter two PINs; this varies.

If the token has a protected authentication path other than a PINpad, then it is
token-dependent whether or not C_SetPIN can be used to modify the current
user’s PIN.

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_PIN_INCORRECT, CKR_PIN_INVALID,
CKR_PIN_LEN_RANGE, CKR_PIN_LOCKED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_TOKEN_WRITE_PROTECTED.

Example:
CK_SESSION_HANDLE hSession;
CK_CHAR oldPin[] = {“OldPIN”};
CK_CHAR newPin[] = {“NewPIN”};
CK_RV rv;

rv = C_SetPIN(
 hSession, oldPin, sizeof(oldPin), newPin, sizeof(newPin));
if (rv == CKR_OK) {
 .
 .
 .
}

APPENDIX B Page 102

Page 103 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

9.6Session management functions

Cryptoki provides the following functions for session management. These functions
do not run in parallel with the application.

A typical application might perform the following series of steps to make use of a
token:

1. Select a token.

2. Make one or more calls to C_OpenSession to obtain sessions with the token.

3. Call C_Login to log the user into the token. Since all sessions an application
has with a token have a shared login state, C_Login only needs to be called
for one session.

4. Perform cryptographic operations using the sessions with the token.

5. Call C_CloseSession once for each session that the application has with the
token.

An application should not normally call C_CloseAllSessions or C_Logout to close
its sessions with a token. This is because these functions can affect the sessions
“owned” by other applications (see the discussion in Section for more information).
Therefore, an application should call these functions only under exceptional
circumstances, unless the application somehow “knows” that no other applications
have sessions open with the token.

An application may have concurrent sessions with more than one token. It is also
possible for a token to have concurrent sessions with more than one application.

¨ C_OpenSession

CK_RV CK_ENTRY C_OpenSession(
CK_SLOT_ID slotID,
CK_FLAGS flags,
CK_VOID_PTR pApplication,
CK_NOTIFY Notify,
CK_SESSION_HANDLE_PTR phSession

);

C_OpenSession has two distinct functions: it can set up an application callback so
that an application will be notified when a token is inserted into a particular slot, or
it can open a session between an application and a token in a particular slot. slotID
is the slot’s ID; flags indicates the type of session; pApplication is an application-
defined pointer to be passed to the notification callback; Notify is the address of the
notification callback function (see Section 9.17); phSession points to the location
that receives the handle for the new session.

To set up a token insertion callback (instead of actually opening a session), the
CKF_INSERTION_CALLBACK bit in the flags parameter should be set. As a
result of setting up this callback, when a token is inserted into the specified slot,

the application-supplied callback Notify will be called with parameters (0,
CKN_TOKEN_INSERTION, pApplication). If a token is already present when
C_OpenSession is called, then Notify will be called immediately (conceivably even
before C_OpenSession returns).

When C_OpenSession is called to set up a token insertion callback, the return code
is either CKR_INSERTION_CALLBACK_NOT_SUPPORTED (if the token doesn’t
support insertion callbacks) or CKR_OK (if the token does support insertion
callbacks).

When opening a session with C_OpenSession, the flags parameter consists of the
logical OR of zero or more bit flags defined in the CK_SESSION_INFO data type.
For example, if no bits are set in the flags parameter, then C_OpenSession
attempts to open a shared, read-only session, with certain cryptographic functions
being performed in parallel with the application. Any or all of the
CKF_EXCLUSIVE_SESSION, CKF_RW_SESSION, and CKF_SERIAL_SESSION
bits can be set in the flags parameter to modify the type of session requested.

If an exclusive session is requested (by setting the CKF_EXCLUSIVE_SESSION
bit), but is not available (because there is already a session open), C_OpenSession
returns CKR_SESSION_EXISTS. If a parallel session is requested (by not setting
the CKR_SERIAL_SESSION bit), but is not supported on this token, then
C_OpenSession returns CKR_PARALLEL_NOT_SUPPORTED. These two error
returns have equal priorities.

In a parallel session, cryptographic functions may return control to the application
before completing (the return value CKR_FUNCTION_PARALLEL indicates that this
condition applies). The application may then call C_GetFunctionStatus to obtain
an updated status of the function’s execution, which will continue to be
CKR_FUNCTION_PARALLEL until the function completes, and CKR_OK or some
other return value when the function completes. Alternatively, the application can
wait until Cryptoki sends notification that the function has completed through the
Notify callback. The application may also call C_CancelFunction to cancel the
function before it completes.

Note that even in a parallel session, there is no guarantee that a particular function
will execute in parallel. Therefore, an application should always check
cryptographic functions’ return codes to see whether the function is running in
parallel, or whether it ran in serial [and is already finished].

If an application calls another function (cryptographic or otherwise) before one that
is executing in parallel in the same session completes, Cryptoki will wait until the
one that is executing completes. Thus, an application can run only one function at
any given time in a given session. To achieve parallel execution of multiple
functions, the application should open additional sessions.

Cryptographic functions running in serial with the application may periodically
surrender control to the application by calling Notify with a CKN_SURRENDER
callback so that the application may perform other operations or cancel the
function.

Non-cryptographic functions always run in serial with the application, and do not
surrender control. A function in a parallel session will never surrender control back

APPENDIX B Page 104

Page 105 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

to the application via a CKN_SURRENDER application callback, even if that
particular function is actually executing in serial with the application.

There may be a limit on the number of concurrent sessions with the token, which
may depend on whether the session is “read-only” or “read/write”. An attempt to
open a session which does not succeed because there are too many existing
sessions of some type should return CKR_SESSION_COUNT.

If the token is write-protected (as indicated in the CK_TOKEN_INFO structure),
then only read-only sessions may be opened with it.

If the application calling C_OpenSession already has a R/W SO session open with
the token, then any attempt to open a R/O session with the token fails with error
code CKR_SESSION_READ_WRITE_SO_EXISTS (see Section 5.5.8).

The Notify callback function is used by Cryptoki to notify the application of certain
events. If the application does not wish to support callbacks, it should pass a value
of NULL_PTR as the Notify parameter. See Section 9.17 for more information
about application callbacks.

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_INSERTION_CALLBACK_NOT_SUPPORTED,
CKR_SESSION_COUNT, CKR_SESSION_EXISTS,
CKR_SESSION_EXCLUSIVE_EXISTS,
CKR_SESSION_PARALLEL_NOT_SUPPORTED,
CKR_SESSION_READ_WRITE_SO_EXISTS, CKR_SLOT_ID_INVALID,
CKR_TOKEN_NOT_PRESENT, CKR_TOKEN_NOT_RECOGNIZED,
CKR_TOKEN_WRITE_PROTECTED.

Example: see C_CloseSession.

¨ C_CloseSession

CK_RV CK_ENTRY C_CloseSession(
CK_SESSION_HANDLE hSession

);

C_CloseSession closes a session between an application and a token. hSession is
the session’s handle.

When a session is closed, all session objects created by the session are destroyed
automatically, even if the application has other sessions “using” the objects (see
Sections 5.5.5-5.5.8 for more details). If a function is running in parallel with the
session, it is canceled.

Depending on the token, when the last open session any application has with the
token is closed, the token may be “ejected” from its reader (if this capability exists).

Despite the fact this C_CloseSession is supposed to close a session, the return
value CKR_SESSION_CLOSED is an error return. It indicates the (probably
somewhat unlikely) event that while this function call was executing, another call
was made to C_CloseSession to close this particular session, and that call finished

executing first. Such uses of sessions are a bad idea, and Cryptoki makes little
promise of what will occur in general if an application indulges in this sort of
behavior.

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:
CK_SLOT_ID slotID;
CK_BYTE application;
CK_NOTIFY MyNotify;
CK_SESSION_HANDLE hSession;
CK_RV rv;

.

.

.
application = 17;
MyNotify = &EncryptionSessionCallback;
rv = C_OpenSession(
 slotID, CKF_RW_SESSION,(CK_VOID_PTR) &application, MyNotify,
 &hSession);
if (rv == CKR_OK) {
 .
 .
 .
 C_CloseSession(hSession);
}

¨ C_CloseAllSessions

CK_RV CK_ENTRY C_CloseAllSessions(
CK_SLOT_ID slotID

);

C_CloseAllSessions closes all sessions an application has with a token. slotID
specifies the token’s slot.

Because an application may have access to sessions “owned” by another application
(see Section), this function should only be called under special circumstances. In
general, an application should close all its sessions one at a time with
C_CloseSession, rather than calling C_CloseAllSessions.

Depending on the token, when the last open session any application has with the
token is closed, the token may be “ejected” from its reader (if this capability exists).

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT.

Example:
CK_SLOT_ID slotID;

APPENDIX B Page 106

Page 107 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

CK_RV rv;

.

.

.
rv = C_CloseAllSessions(slotID);

¨ C_GetSessionInfo

CK_RV CK_ENTRY C_GetSessionInfo(
CK_SESSION_HANDLE hSession,
CK_SESSION_INFO_PTR pInfo

);

C_GetSessionInfo obtains information about a session. hSession is the session’s
handle; pInfo points to the location that receives the session information.

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:
CK_SESSION_HANDLE hSession;
CK_SESSION_INFO info;
CK_RV rv;

.

.

.
rv = C_GetSessionInfo(hSession, &info);
if (rv == CKR_OK) {
 if (info.state == CKS_RW_USER_FUNCTIONS) {
 .
 .
 .
 }
 .
 .
 .
}

¨ C_GetOperationState

CK_RV CK_ENTRY C_GetOperationState(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pOperationState,
CK_ULONG_PTR pulOperationStateLen

);

C_GetOperationState obtains the cryptographic operations state of a session,
encoded as a string of bytes. hSession is the session’s handle; pOperationState
points to the location that receives the state; pulOperationStateLen points to the
location that receives the length in bytes of the state.

Although the saved state output by C_GetOperationState is not really produced by
a “cryptographic mechanism”, C_GetOperationState nonetheless uses the
convention described in Section 9.2 on producing output.

Precisely what the “cryptographic operations state” this function saves is varies
from token to token; however, this state is what is provided as input to
C_SetOperationState to restore the cryptographic activities of a session.

Consider a session which is performing a message digest operation using SHA-1
(i.e., the session is using the CKM_SHA_1 mechanism). Suppose that the message
digest operation was initialized properly, and that precisely 80 bytes of data have
been supplied so far as input to SHA-1. The application now wants to “save the
state” of this digest operation, so that it can continue it later. In this particular
case, since SHA-1 processes 512 bits (64 bytes) of input at a time, the
cryptographic operations state of the session most likely consists of three distinct
parts: the state of SHA-1’s 160-bit internal chaining variable; the 16 bytes of
unprocessed input data; and some administrative data indicating that this saved
state comes from a session which was performing SHA-1 hashing. Taken together,
these three pieces of information suffice to continue the current hashing operation
at a later time.

Consider next a session which is performing an encryption operation with DES (a
block cipher with a block size of 64 bits) in CBC (cipher-block chaining) mode (i.e.,
the session is using the CKM_RC2DES_CBC mechanism). Suppose that precisely
22 bytes of data (in addition to an IV for the CBC mode) have been supplied so far
as input to DES, which means that the first two 8-byte blocks of ciphertext have
already been produced and output. In this case, the cryptographic operations state
of the session most likely consists of three or four distinct parts: the second 8-byte
block of ciphertext (this will be used for cipher-block chaining to produce the next
block of ciphertext); the 6 bytes of data still awaiting encryption; some
administrative data indicating that this saved state comes from a session which was
performing DES encryption in CBC mode; and possibly the DES key being used for
encryption (see C_SetOperationState for more information on whether or not the
key is present in the saved state).

If a session is performing two cryptographic operations simultaneously (see Section
9.13), then the cryptographic operations state of the session will contain all the
necessary information to restore both operations.

APPENDIX B Page 108

Page 109 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

A session which is in the middle of executing a Cryptoki function cannot have its
cryptographic operations state saved. An attempt to do so returns the error
CKR_FUNCTION_PARALLEL.

An attempt to save the cryptographic operations state of a session which does not
currently have some active saveable cryptographic operation(s) (encryption,
decryption, digesting, signing without message recovery, verification without
message recovery, or some legal combination of two of these) should fail with the
error CKR_OPERATION_NOT_INITIALIZED.

An attempt to save the cryptographic operations state of a session which is
performing an appropriate cryptographic operation (or two), but which cannot be
satisfied for any of various reasons (certain necessary state information and/or key
information can’t leave the token, for example) should fail with the error
CKR_STATE_UNSAVEABLE.

Return values: CKR_BUFFER_TOO_SMALL, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_PARALLEL,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_STATE_UNSAVEABLE.

Example: see C_SetOperationState.

¨ C_SetOperationState

CK_RV CK_ENTRY C_SetOperationState(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pOperationState,
CK_ULONG ulOperationStateLen,
CK_OBJECT_HANDLE hEncryptionKey,
CK_OBJECT_HANDLE hAuthenticationKey

);

C_SetOperationState restores the cryptographic operations state of a session
from a string of bytes obtained with C_GetOperationState. hSession is the
session’s handle; pOperationState points to the location holding the saved state;
ulOperationStateLen holds the length of the saved state; hEncryptionKey holds a
handle to the key which will be used for an ongoing encryption or decryption
operation in the restored session (or 0 if no encryption or decryption key is needed,
either because no such operation is ongoing in the stored session or because all the
necessary key information is present in the saved state); hAuthenticationKey holds
a handle to the key which will be used for an ongoing signature, MACing, or
verification operation in the restored session (or 0 if no such key is needed, either
because no such operation is ongoing in the stored session or because all the
necessary key information is present in the saved state).

The state need not have been obtained from the same session (the “source session”)
as it is being restored to (the “destination session”). However, the source session
and destination session should have a common session state (e.g.,
CKS_RW_USER_FUNCTIONS), and should be with a common token. There is also

no guarantee that cryptographic operations state may be carried across logins, or
across different Cryptoki implementations.

If C_SetOperationState is supplied with alleged saved cryptographic operations
state which it can determine is not valid saved state (or is cryptographic operations
state from a session with a different session state, or is cryptographic operations
state from a different token), it fails with the error CKR_SAVED_STATE_INVALID.

Saved state obtained from calls to C_GetOperationState may or may not contain
information about keys in use for ongoing cryptographic operations. If a saved
cryptographic operations state has an ongoing encryption or decryption operation,
and the key in use for the operation is not saved in the state, then it must be
supplied to C_SetOperationState in the hEncryptionKey argument. If it is not,
then C_SetOperationState will fail and return the error CKR_KEY_NEEDED. If
the key in use for the operation is saved in the state, then it can be supplied in the
hEncryptionKey argument, but this is not required.

Similarly, if a saved cryptographic operations state has an ongoing signature,
MACing, or verification operation, and the key in use for the operation is not saved
in the state, then it must be supplied to C_SetOperationState in the
hAuthenticationKey argument. If it is not, then C_SetOperationState will fail with
the error CKR_KEY_NEEDED. If the key in use for the operation is saved in the
state, then it can be supplied in the hAuthenticationKey argument, but this is not
required.

If an irrelevant key is supplied to C_SetOperationState call (e.g., a nonzero key
handle is submitted in the hEncryptionKey argument, but the saved cryptographic
operations state supplied does not have an ongoing encryption or decryption
operation, then C_SetOperationState fails with the error
CKR_KEY_NOT_NEEDED.

If a key is supplied as an argument to C_SetOperationState, and
C_SetOperationState can somehow detect that this key was not the key being
used in the source session for the supplied cryptographic operations state (it may
be able to detect this if the key or a hash of the key is present in the saved state, for
example), then C_SetOperationState fails with the error CKR_KEY_CHANGED.

An application can look at the CKF_RESTORE_KEY_NOT_NEEDED flag in the flags
field of the CK_TOKEN_INFO field for a token to determine whether or not it
needs to supply key handles to C_SetOperationState calls. If this flag is TRUE,
then a call to C_SetOperationState never needs a key handle to be supplied to it.
If this flag is FALSE, then at least some of the time, C_SetOperationState requires
a key handle, and so the application should probably always pass in any relevant
key handles when restoring cryptographic operations state to a session.

C_SetOperationState can successfully restore cryptographic operations state to a
session even if that session has active cryptographic or object search operations
when C_SetOperationState is called (the ongoing operations are abruptly
cancelled).

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_KEY_CHANGED, CKR_KEY_NEEDED,
CKR_KEY_NOT_NEEDED, CKR_SAVED_STATE_INVALID, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

APPENDIX B Page 110

Page 111 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

Example:
CK_SESSION_HANDLE hSession;
CK_MECHANISM digestMechanism;
CK_ULONG ulStateLen;
CK_BYTE data1[] = {0x01, 0x03, 0x05, 0x07};
CK_BYTE data2[] = {0x02, 0x04, 0x08};
CK_BYTE data3[] = {0x10, 0x0F, 0x0E, 0x0D, 0x0C};
CK_BYTE pDigest[20];
CK_ULONG ulDigestLen;
CK_RV rv;

.

.

.
/* Initialize hash operation */
rv = C_DigestInit(hSession, &digestMechanism);
assert(rv == CKR_OK);

/* Start hashing */
rv = C_DigestUpdate(hSession, data1, sizeof(data1));
assert(rv == CKR_OK);

/* Find out how big the state might be */
rv = C_GetOperationState(hSession, NULL_PTR, &ulStateLen);
assert(rv == CKR_OK);

/* Allocate some memory and then get the state */
pState = (CK_BYTE_PTR) malloc(ulStateLen);
rv = C_GetOperationState(hSession, pState, &ulStateLen);

/* Continue hashing */
rv = C_DigestUpdate(hSession, data2, sizeof(data2));
assert(rv == CKR_OK);

/* Restore state. No key handles needed */
rv = C_SetOperationState(hSession, pState, ulStateLen, 0, 0);
assert(rv == CKR_OK);

/* Continue hashing from where we saved state */
rv = C_DigestUpdate(hSession, data3, sizeof(data3));
assert(rv == CKR_OK);

/* Conclude hashing operation */
ulDigestLen = sizeof(pDigest);
rv = C_DigestFinal(hSession, pDigest, &ulDigestLen);
if (rv == CKR_OK) {
 /* pDigest[] now contains the hash of 0x01030507100F0E0D0C */
 .
 .
 .
}

¨ C_Login

CK_RV CK_ENTRY C_Login(
CK_SESSION_HANDLE hSession,
CK_USER_TYPE userType,
CK_CHAR_PTR pPin,
CK_ULONG ulPinLen

);

C_Login logs a user into a token. hSession is a session handle; userType is the
user type; pPin points to the user’s PIN; ulPinLen is the length of the PIN.

Depending on the user type, if the call succeeds, each of the application’s sessions
will enter either the “R/W SO Functions” state, the “R/W User Functions” state, or
the “R/O User Functions” state.

If the token has a “protected authentication path”, as indicated by the
CKR_PROTECTED_AUTHENTICATION_PATH flag in its CK_TOKEN_INFO
being set, then that means that there is some way for a user to be authenticated to
the token without having the application send a PIN through the Cryptoki library.
One such possibility is that the user enters a PIN on a PINpad on the token itself, or
on the slot device. Or the user might not even use a PIN—authentication could be
achieved by some fingerprint-reading device, for example. To log into a token with
a protected authentication path, the pPin parameter to C_Login should be
NULL_PTR. When C_Login returns, whatever authentication method supported by
the token will have been performed; a return value of CKR_OK means that the user
was successfully authenticated, and a return value of CKR_PIN_INCORRECT means
that the user was denied access.

If there are any active cryptographic or object finding operations in a session, and
then C_Login is successfully executed, it may or may not be the case that those
operations are still active. Therefore, before logging in, any active operations
should be finished.

If the application calling C_Login has a R/O session open with the token, then it will
be unable to log the SO into a session (see Section 5.5.8). An attempt to do this will
result in the error code CKR_SESSION_READ_ONLY_EXISTS.

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_PIN_EXPIRED, CKR_PIN_INCORRECT,
CKR_PIN_LOCKED, CKR_SESSION_READ_ONLY_EXISTS,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_USER_ALREADY_LOGGED_IN, CKR_USER_PIN_NOT_INITIALIZED,
CKR_USER_TYPE_INVALID.

Example: see C_Logout.

APPENDIX B Page 112

Page 113 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

¨ C_Logout

CK_RV CK_ENTRY C_Logout(
CK_SESSION_HANDLE hSession

);

C_Logout logs a user out from a token. hSession is the session’s handle.

Depending on the current user type, if the call succeeds, each of the application’s
sessions will enter either the “R/W Public Session” state or the “R/O Public Session”
state.

When C_Logout successfully executes, any of the application’s handles to private
objects become invalid (even if a user is later logged back into the token, those
handles remain invalid). In addition, all private session objects are destroyed.

If there are any active cryptographic or object finding operations in a session, and
then C_Logout is successfully executed, it may or may not be the case that those
operations are still active. Therefore, before logging out, any active operations
should be finished.

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.

Example:
CK_SESSION_HANDLE hSession;
CK_CHAR userPIN[] = {“MyPIN”};
CK_RV rv;

rv = C_Login(hSession, CKU_USER, userPIN, sizeof(userPIN));
if (rv == CKR_OK) {
 .
 .
 .
 rv == C_Logout(hSession);
 if (rv == CKR_OK) {
 .
 .
 .
 }
}

9.7Object management functions

Cryptoki provides the following functions for managing objects. These functions do
not run in parallel with the application. Additional functions provided specifically
for managing key objects are described in Section 9.14.

¨ C_CreateObject

CK_RV CK_ENTRY C_CreateObject(
CK_SESSION_HANDLE hSession,
CK_ATTRIBUTE_PTR pTemplate,
CK_ULONG ulCount,
CK_OBJECT_HANDLE_PTR phObject

);

C_CreateObject creates a new object. hSession is the session’s handle; pTemplate
points to the object’s template; ulCount is the number of attributes in the template;
phObject points to the location that receives the new object’s handle.

If C_CreateObject is used to create a key object, the key object will have its
CKA_LOCAL attribute set to FALSE.

Only session object can be created during a read-only session. Only public objects
can be created unless the normal user is logged in.

Return values: CKR_ATTRIBUTE_READ_ONLY, CKR_ATTRIBUTE_TYPE_INVALID,
CKR_ATTRIBUTE_VALUE_INVALID, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_TEMPLATE_INCOMPLETE, CKR_TEMPLATE_INCONSISTENT,
CKR_TOKEN_WRITE_PROTECTED, CKR_USER_NOT_LOGGED_IN.

Example:
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE
 hData,
 hCertificate,
 hKey;
CK_OBJECT_CLASS
 dataClass = CKO_DATA,
 certificateClass = CKO_CERTIFICATE,
 keyClass = CKO_PUBLIC_KEY;
CK_KEY_TYPE keyType = CKK_RSA;
CK_CHAR application[] = {“My Application”};
CK_BYTE dataValue[] = {...};
CK_BYTE subject[] = {...};
CK_BYTE id[] = {...};
CK_BYTE certificateValue[] = {...};
CK_BYTE modulus[] = {...};
CK_BYTE exponent[] = {...};
CK_BYTE true = TRUE;
CK_ATTRIBUTE dataTemplate[] = {
 {CKA_CLASS, &dataClass, sizeof(dataClass)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_APPLICATION, application, sizeof(application)},
 {CKA_VALUE, dataValue, sizeof(dataValue)}
};
CK_ATTRIBUTE certificateTemplate[] = {
 {CKA_CLASS, &certificateClass, sizeof(certificateClass)},

APPENDIX B Page 114

Page 115 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_SUBJECT, subject, sizeof(subject)},
 {CKA_ID, id, sizeof(id)},
 {CKA_VALUE, certificateValue, sizeof(certificateValue)}
};
CK_ATTRIBUTE keyTemplate[] = {
 {CKA_CLASS, &keyClass, sizeof(keyClass)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_WRAP, &true, sizeof(true)},
 {CKA_MODULUS, modulus, sizeof(modulus)},
 {CKA_PUBLIC_EXPONENT, exponent, sizeof(exponent)}
};
CK_RV rv;

.

.

.
/* Create a data object */
rv = C_CreateObject(hSession, &dataTemplate, 4, &hData);
if (rv == CKR_OK) {
 .
 .
 .
}

/* Create a certificate object */
rv = C_CreateObject(
 hSession, &certificateTemplate, 5, &hCertificate);
if (rv == CKR_OK) {
 .
 .
 .
}

/* Create an RSA private key object */
rv = C_CreateObject(hSession, &keyTemplate, 5, &hKey);
if (rv == CKR_OK) {
 .
 .
 .
}

¨ C_CopyObject

CK_RV CK_ENTRY C_CopyObject(
CK_SESSION_HANDLE hSession,
CK_OBJECT_HANDLE hObject,
CK_ATTRIBUTE_PTR pTemplate,
CK_ULONG ulCount,
CK_OBJECT_HANDLE_PTR phNewObject

);

C_CopyObject copies an object, creating a new object for the copy. hSession is the
session’s handle; hObject is the object’s handle; pTemplate points to the template

for the new object; ulCount is the number of attributes in the template;
phNewObject points to the location that receives the handle for the copy of the
object.

The template may specify new values for any attributes of the object that can
ordinarily be modified (e.g., in the course of copying a secret key, a key’s
CKA_EXTRACTABLE attribute may be changed from TRUE to FALSE, but not the
other way around. If this change is made, the new key’s
CKA_NEVER_EXTRACTABLE attribute will have the value FALSE. Similarly, the
template may specify that the new key’s CKA_SENSITIVE attribute be TRUE; the
new key will have the same value for its CKA_ALWAYS_SENSITIVE attribute as
the original key). It may also specify new values of the CKA_TOKEN and
CKA_PRIVATE attributes (e.g., to copy a session object to a token object). If the
template specifies a value of an attribute which is incompatible with other existing
attributes of the object, the call fails with the return code
CKR_TEMPLATE_INCONSISTENT.

Only session objects can be created during a read-only session. Only public objects
can be created unless the normal user is logged in.

Return values: CKR_ATTRIBUTE_READ_ONLY, CKR_ATTRIBUTE_TYPE_INVALID,
CKR_ATTRIBUTE_VALUE_INVALID, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_OBJECT_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED,
CKR_USER_NOT_LOGGED_IN.

Example:
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey, hNewKey;
CK_OBJECT_CLASS keyClass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES;
CK_BYTE id[] = {...};
CK_BYTE keyValue[] = {...};
CK_BYTE false = FALSE;
CK_BYTE true = TRUE;
CK_ATTRIBUTE keyTemplate[] = {
 {CKA_CLASS, &keyClass, sizeof(keyClass)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &false, sizeof(false)},
 {CKA_ID, id, sizeof(id)},
 {CKA_VALUE, keyValue, sizeof(keyValue)}
};
CK_ATTRIBUTE copyTemplate[] = {
 {CKA_TOKEN, &true, sizeof(true)}
};
CK_RV rv;

.

.

.
/* Create a DES secret key session object */
rv = C_CreateObject(hSession, &keyTemplate, 5, &hKey);
if (rv == CKR_OK) {

APPENDIX B Page 116

Page 117 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

 /* Create a copy which is a token object */
 rv = C_CopyObject(hSession, hKey, ©Template, 1, &hNewKey);
 .
 .
 .
}

¨ C_DestroyObject

CK_RV CK_ENTRY C_DestroyObject(
CK_SESSION_HANDLE hSession,
CK_OBJECT_HANDLE hObject

);

C_DestroyObject destroys an object. hSession is the session’s handle; and
hObject is the object’s handle.

Only session objects can be destroyed during a read-only session. Only public
objects can be destroyed unless the normal user is logged in.

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_OBJECT_HANDLE_INVALID,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_READ_ONLY, CKR_TOKEN_WRITE_PROTECTED.

Example: see C_GetObjectSize.

¨ C_GetObjectSize

CK_RV CK_ENTRY C_GetObjectSize(
CK_SESSION_HANDLE hSession,
CK_OBJECT_HANDLE hObject,
CK_ULONG_PTR pulSize

);

C_GetObjectSize gets the size of an object in bytes. hSession is the session’s
handle; hObject is the object’s handle; pulSize points to the location that receives
the size in bytes of the object.

Cryptoki does not specify what the meaning of an object’s size is. Intuitively, it is
some measure of how much token memory the object takes up. If an application
deletes (say) a private object of size S, it might be reasonable to assume that the
ulFreePrivateMemory field of the token’s CK_TOKEN_INFO structure increases by
approximately S.

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_INFORMATION_SENSITIVE,
CKR_OBJECT_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hObject;
CK_OBJECT_CLASS dataClass = CKO_DATA;
CK_CHAR application[] = {“My Application”};
CK_BYTE dataValue[] = {...};
CK_BYTE value[] = {...};
CK_BYTE true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &dataClass, sizeof(dataClass)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_APPLICATION, application, sizeof(application)},
 {CKA_VALUE, value, sizeof(value)}
};
CK_ULONG ulSize;
CK_RV rv;

.

.

.
rv = C_CreateObject(hSession, &template, 4, &hObject);
if (rv == CKR_OK) {
 rv = C_GetObjectSize(hSession, hObject, &ulSize);
 if (rv != CKR_INFORMATION_SENSITIVE) {
 .
 .
 .
 }

 rv = C_DestroyObject(hSession, hObject);
 .
 .
 .
}

¨ C_GetAttributeValue

CK_RV CK_ENTRY C_GetAttributeValue(
CK_SESSION_HANDLE hSession,
CK_OBJECT_HANDLE hObject,
CK_ATTRIBUTE_PTR pTemplate,
CK_ULONG ulCount

);

C_GetAttributeValue obtains the value of one or more attributes of an object.
hSession is the session’s handle; hObject is the object’s handle; pTemplate points to
a template that specifies which attribute values are to be obtained, and receives the
attribute values; ulCount is the number of attributes in the template.

For each (type, pValue, ulValueLen) triple in the template, C_GetAttributeValue
performs the following algorithm:

APPENDIX B Page 118

Page 119 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

1. If the specified attribute (i.e., the attribute specified by the type field) for the
object cannot be revealed because the object is sensitive or nounextractable,
then the ulValueLen field in that triple is modified to hold the value -1 (i.e.,
when it is cast to a CK_LONG, it holds -1).

2. Otherwise, if the specified attribute for the object is invalid (the object does not
possess such an attribute), then the ulValueLen field in that triple is modified
to hold the value -1.

3. Otherwise, if the pValue field has the value NULL_PTR, then the ulValueLen
field is modified to hold the exact length of the specified attribute for the
object.

4. Otherwise, if the length specified in ulValueLen is large enough to hold the
value of the specified attribute for the object, then that attribute is copied
into the buffer located at pValue, and the ulValueLen field is modified to hold
the exact length of the attribute.

5. Otherwise, the ulValueLen field is modified to hold the value -1.

If case 1 applies to any of the requested attributes, then the call should return the
value CKR_ATTRIBUTE_SENSITIVE. If case 2 applies to any of the requested
attributes, then the call should return the value CKR_ATTRIBUTE_TYPE_INVALID.
If case 5 applies to any of the requested attributes, then the call should return the
value CKR_BUFFER_TOO_SMALL. As usual, if more than one of these error codes
is applicable, Cryptoki may return any of them. Only if none of them applies to any
of the requested attributes will CKR_OK be returned.

Note that the error codes CKR_ATTRIBUTE_SENSITIVE,
CKR_ATTRIBUTE_TYPE_INVALID, and CKR_BUFFER_TOO_SMALL do not denote
true errors for C_GetAttributeValue. If a call to C_GetAttributeValue returns
any of these three values, then the call must nonetheless have processed every
attribute in the template supplied to C_GetAttributeValue. Each attribute in the
template whose value can be returned by the call to C_GetAttributeValue will be
returned by the call to C_GetAttributeValue.

Return values: CKR_ATTRIBUTE_SENSITIVE, CKR_ATTRIBUTE_TYPE_INVALID,
CKR_BUFFER_TOO_SMALL, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_OBJECT_HANDLE_INVALID,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example:
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hObject;
CK_BYTE_PTR pModulus, pExponent;
CK_ATTRIBUTE template[] = {
 {CKA_MODULUS, NULL_PTR, 0},
 {CKA_PUBLIC_EXPONENT, NULL_PTR, 0}
};
CK_RV rv;

.

.

.

rv = C_GetAttributeValue(hSession, hObject, &template, 2);
if (rv == CKR_OK) {
 pModulus = (CK_BYTE_PTR) malloc(template[0].ulValueLen);
 template[0].pValue = pModulus;
 /* template[0].ulValueLen was set by C_GetAttributeValue */

 pExponent = (CK_BYTE_PTR) malloc(template[1].ulValueLen);
 template[1].pValue = pExponent;
 /* template[1].ulValueLen was set by C_GetAttributeValue */

 rv = C_GetAttributeValue(hSession, hObject, &template, 2);
 if (rv == CKR_OK) {
 .
 .
 .
 }
 free(pModulus);
 free(pExponent);
}

¨ C_SetAttributeValue

CK_RV CK_ENTRY C_SetAttributeValue(
CK_SESSION_HANDLE hSession,
CK_OBJECT_HANDLE hObject,
CK_ATTRIBUTE_PTR pTemplate,
CK_ULONG ulCount

);

C_SetAttributeValue modifies the value of one or more attributes of an object.
hSession is the session’s handle; hObject is the object’s handle; pTemplate points to
a template that specifies which attribute values are to be modified and their new
values; ulCount is the number of attributes in the template.

Only session objects can be modified during a read-only session.

The template may specify new values for any attributes of the object that can be
modified. If the template specifies a value of an attribute which is incompatible
with other existing attributes of the object, the call fails with the return code
CKR_TEMPLATE_INCONSISTENT.

Not all attributes can be modified; see Section 8 for more details.

Return values: CKR_ATTRIBUTE_READ_ONLY, CKR_ATTRIBUTE_TYPE_INVALID,
CKR_ATTRIBUTE_VALUE_INVALID, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_OBJECT_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED.

Example:
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hObject;

APPENDIX B Page 120

Page 121 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

CK_CHAR label[] = {“New label”};
CK_ATTRIBUTE template[] = {
 CKA_LABEL, label, sizeof(label)
};
CK_RV rv;

.

.

.
rv = C_SetAttributeValue(hSession, hObject, &template, 1);
if (rv == CKR_OK) {
 .
 .
 .
}

¨ C_FindObjectsInit

CK_RV CK_ENTRY C_FindObjectsInit(
CK_SESSION_HANDLE hSession,
CK_ATTRIBUTE_PTR pTemplate,
CK_ULONG ulCount

);

C_FindObjectsInit initializes a search for token and session objects that match a
template. hSession is the session’s handle; pTemplate points to a search template
that specifies the attribute values to match; ulCount is the number of attributes in
the search template. The matching criterion is an exact byte-for-byte match with all
attributes in the template. To find all objects, set ulCount to 0.

After calling C_FindObjectsInit, the application may call C_FindObjects one or
more times to obtain handles for objects matching the template, and then
eventually call C_FindObjectsFinal to finish the active search operation. At most
one search operation may be active at a given time in a given session.

The object search operation will only find objects that the session can view. For
example, an object search in an “R/W Public Session” will not find any private
objects (even if one of the attributes in the search template specifies that the
search is for private objects).

If a search operation is active, and objects are created or destroyed which fit the
search template for the active search operation, then those objects may or may not
be found by the search operation. Note that this means that, under these
circumstances, the search operation may return invalid object handles.

Even though C_FindObjectsInit can return the values
CKR_ATTRIBUTE_TYPE_INVALID and CKR_ATTRIBUTE_VALUE_INVALID, it is not
required to. For example, if it is given a search template with nonexistent
attributes in it, it can return CKR_ATTRIBUTE_TYPE_INVALID, or it can return
CKR_OK and initialize a search operation which will match no objects.

Return values: CKR_ATTRIBUTE_TYPE_INVALID,
CKR_ATTRIBUTE_VALUE_INVALID, CKR_DEVICE_ERROR,

CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_OPERATION_ACTIVE,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example: see C_FindObjectsFinal.

¨ C_FindObjects

CK_RV CK_ENTRY C_FindObjects(
CK_SESSION_HANDLE hSession,
CK_OBJECT_HANDLE_PTR phObject,
CK_ULONG ulMaxObjectCount,
CK_ULONG_PTR pulObjectCount

);

C_FindObjects continues a search for token and session objects that match a
template, obtaining additional object handles. hSession is the session’s handle;
phObject points to the location that receives the list (array) of additional object
handles; ulMaxObjectCount is the maximum number of object handles to be
returned; pulObjectCount points to the location that receives the actual number of
object handles returned.

If there are no more objects matching the template, then the location that
pulObjectCount points to receives the value 0.

The search must have been initialized with C_FindObjectsInit.

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example: see C_FindObjectsFinal.

¨ C_FindObjectsFinal

CK_RV CK_ENTRY C_FindObjectsFinal(
CK_SESSION_HANDLE hSession

);

C_FindObjectsFinal terminates a search for token and session objects. hSession
is the session’s handle.

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example:
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hObject;
CK_ULONG ulObjectCount;

APPENDIX B Page 122

Page 123 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

CK_RV rv;

.

.

.
rv = C_FindObjectsInit(hSession, NULL_PTR, 0);
assert(rv == CKR_OK);
while (1) {
 rv = C_FindObjects(hSession, &hObject, 1, &ulObjectCount);
 if (rv != CKR_OK || ulObjectCount == 0)
 break;
 .
 .
 .
}

rv = C_FindObjectsFinal(hSession);
assert(rv == CKR_OK);

9.8Encryption functions

Cryptoki provides the following functions for encrypting data. All these functions
may run in parallel with the application if the session was opened with the
CKF_SERIAL_SESSION flag set to FALSE (check the return code of the function
call to see if the function is running in parallel).

¨ C_EncryptInit

CK_RV CK_ENTRY C_EncryptInit(
CK_SESSION_HANDLE hSession,
CK_MECHANISM_PTR pMechanism,
CK_OBJECT_HANDLE hKey

);

C_EncryptInit initializes an encryption operation. hSession is the session’s handle;
pMechanism points to the encryption mechanism; hKey is the handle of the
encryption key.

The CKA_ENCRYPT attribute of the encryption key, which indicates whether the
key supports encryption, must be TRUE.

After calling C_EncryptInit, the application can either call C_Encrypt to encrypt
data in a single part; or call C_EncryptUpdate zero or more times, followed by
C_EncryptFinal, to encrypt data in multiple parts. The encryption operation is
active until the application uses a call to C_Encrypt or C_EncryptFinal to actually
obtain the final piece of ciphertext. To process additional data (in single or multiple
parts), the application must call C_EncryptInit again.

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_PARALLEL, CKR_KEY_FUNCTION_NOT_PERMITTED,
CKR_KEY_HANDLE_INVALID, CKR_KEY_SIZE_RANGE,

CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OPERATION_ACTIVE,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_USER_NOT_LOGGED_IN.

Example: see C_EncryptFinal.

¨ C_Encrypt

CK_RV CK_ENTRY C_Encrypt(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pData,
CK_ULONG ulDataLen,
CK_BYTE_PTR pEncryptedData,
CK_ULONG_PTR pulEncryptedDataLen

);

C_Encrypt encrypts single-part data. hSession is the session’s handle; pData points
to the data; ulDataLen is the length in bytes of the data; pEncryptedData points to
the location that receives the encrypted data; pulEncryptedDataLen points to the
location that holds the length in bytes of the encrypted data.

C_Encrypt uses the convention described in Section 9.2 on producing output.

The encryption operation must have been initialized with C_EncryptInit. A call to
C_Encrypt always terminates the active encryption operation unless it returns
CKR_BUFFER_TOO_SMALL or is a successful call (i.e., one which returns CKR_OK)
to determine the length of the buffer needed to hold the ciphertext.

For some encryption mechanisms, the input plaintext data has certain length
constraints (either because the mechanism can only encrypt relatively short pieces
of plaintext, or because the mechanism’s input data must consist of an integral
number of blocks). If these constraints are not satisfied, then C_Encrypt will fail
with return code CKR_DATA_LEN_RANGE.

The plaintext and ciphertext can be in the same place, i.e., it is OK if pData and
pEncryptedData point to the same location.

C_Encrypt is equivalent to a sequence of C_EncryptUpdate and C_EncryptFinal.

Return values: CKR_BUFFER_TOO_SMALL, CKR_DATA_INVALID,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_PARALLEL, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example: see C_EncryptFinal for an example of similar functions.

APPENDIX B Page 124

Page 125 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

¨ C_EncryptUpdate

CK_RV CK_ENTRY C_EncryptUpdate(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pPart,
CK_ULONG ulPartLen,
CK_BYTE_PTR pEncryptedPart,
CK_ULONG_PTR pulEncryptedPartLen

);

C_EncryptUpdate continues a multiple-part encryption operation, processing
another data part. hSession is the session’s handle; pPart points to the data part;
ulPartLen is the length of the data part; pEncryptedPart points to the location that
receives the encrypted data part; pulEncryptedPartLen points to the location that
holds the length in bytes of the encrypted data part.

C_EncryptUpdate uses the convention described in Section 9.2 on producing
output.

The encryption operation must have been initialized with C_EncryptInit. This
function may be called any number of times in succession. A call to
C_EncryptUpdate which results in an error other than CKR_BUFFER_TOO_SMALL
terminates the current encryption operation.

The encryption operation must have been initialized with C_EncryptInit. A call to
C_Encrypt always terminates the active encryption operation unless it returns
CKR_BUFFER_TOO_SMALL or is a successful call (i.e., one which returns CKR_OK)
to determine the length of the buffer needed to hold the ciphertext.

The plaintext and ciphertext can be in the same place, i.e., it is OK if pPart and
pEncryptedPart point to the same location.

Return values: CKR_BUFFER_TOO_SMALL, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_PARALLEL,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example: see C_EncryptFinal.

¨ C_EncryptFinal

CK_RV CK_ENTRY C_EncryptFinal(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pLastEncryptedPart,
CK_ULONG_PTR pulLastEncryptedPartLen

);

C_EncryptFinal finishes a multiple-part encryption operation. hSession is the
session’s handle; pLastEncryptedPart points to the location that receives the last

encrypted data part, if any; pulLastEncryptedPartLen points to the location that
holds the length of the last encrypted data part.

C_EncryptFinal uses the convention described in Section 9.2 on producing output.

The encryption operation must have been initialized with C_EncryptInit. A call to
C_EncryptFinal always terminates the active encryption operation unless it
returns CKR_BUFFER_TOO_SMALL or is a successful call (i.e., one which returns
CKR_OK) to determine the length of the buffer needed to hold the ciphertext.

For some multi-part encryption mechanisms, the input plaintext data has certain
length constraints, because the mechanism’s input data must consist of an integral
number of blocks. If these constraints are not satisfied, then C_EncryptFinal will
fail with return code CKR_DATA_LEN_RANGE.

Return values: CKR_BUFFER_TOO_SMALL, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_PARALLEL,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:
#define PLAINTEXT_BUF_SZ 200
#define CIPHERTEXT_BUF_SZ 256

CK_ULONG firstPieceLen, secondPieceLen;
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_BYTE iv[8];
CK_MECHANISM mechanism = {
 CKM_DES_CBC_PAD, iv, sizeof(iv)
};
CK_BYTE data[PLAINTEXT_BUF_SZ];
CK_BYTE encryptedData[CIPHERTEXT_BUF_SZ];
CK_ULONG ulEncryptedData1Len;
CK_ULONG ulEncryptedData2Len;
CK_ULONG ulEncryptedData3Len;
CK_RV rv;

.

.

.
firstPieceLen = 90;
secondPieceLen = PLAINTEXT_BUF_SZ-firstPieceLen;
rv = C_EncryptInit(hSession, &mechanism, hKey);
if (rv == CKR_OK) {
 /* Encrypt first piece */
 ulEncryptedData1Len = sizeof(encryptedData);
 rv = C_EncryptUpdate(
 hSession,
 &data[0], firstPieceLen,
 &encryptedData[0], &ulEncryptedData1Len);
 if (rv != CKR_OK) {
 .
 .

APPENDIX B Page 126

Page 127 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

 .
 }

 /* Encrypt second piece */
 ulEncryptedData2Len = sizeof(encryptedData)-ulEncryptedData1Len;
 rv = C_EncryptUpdate(
 hSession,
 &data[firstPieceLen], secondPieceLen,
 &encryptedData[ulEncryptedData1Len], &ulEncryptedData2Len);
 if (rv != CKR_OK) {
 .
 .
 .
 }

 /* Get last little encrypted bit */
 ulEncryptedData3Len =
 sizeof(encryptedData)
 -ulEncryptedData1Len-ulEncryptedData2Len;
 rv = C_EncryptFinal(
 hSession,
 &encryptedData[ulEncryptedData1Len+ulEncryptedData2Len],
 &ulEncryptedData3Len);
 if (rv != CKR_OK) {
 .
 .
 .
 }
}

9.9Decryption functions

Cryptoki provides the following functions for decrypting data. All these functions
may run in parallel with the application if the session was opened with the
CKF_SERIAL_SESSION flag set to FALSE (check the return code of the function
call to see if the function is running in parallel).

¨ C_DecryptInit

CK_RV CK_ENTRY C_DecryptInit(
CK_SESSION_HANDLE hSession,
CK_MECHANISM_PTR pMechanism,
CK_OBJECT_HANDLE hKey

);

C_DecryptInit initializes a decryption operation. hSession is the session’s handle;
pMechanism points to the decryption mechanism; hKey is the handle of the
decryption key.

The CKA_DECRYPT attribute of the decryption key, which indicates whether the
key supports decryption, must be TRUE.

After calling C_DecryptInit, the application can either call C_Decrypt to decrypt
data in a single part; or call C_DecryptUpdate zero or more times, followed by
C_DecryptFinal, to decrypt data in multiple parts. The decryption operation is
active until the application uses a call to C_Decrypt or C_DecryptFinal to actually
obtain the final piece of plaintext. To process additional data (in single or multiple
parts), the application must call C_DecryptInit again

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_PARALLEL, CKR_KEY_FUNCTION_NOT_PERMITTED,
CKR_KEY_HANDLE_INVALID, CKR_KEY_SIZE_RANGE,
CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OPERATION_ACTIVE,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_USER_NOT_LOGGED_IN.

Example: see C_DecryptFinal.

¨ C_Decrypt

CK_RV CK_ENTRY C_Decrypt(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pEncryptedData,
CK_ULONG ulEncryptedDataLen,
CK_BYTE_PTR pData,
CK_ULONG_PTR pulDataLen

);

C_Decrypt decrypts encrypted data in a single part. hSession is the session’s
handle; pEncryptedData points to the encrypted data; ulEncryptedDataLen is the
length of the encrypted data; pData points to the location that receives the
recovered data; pulDataLen points to the location that holds the length of the
recovered data.

C_Decrypt uses the convention described in Section 9.2 on producing output.

The decryption operation must have been initialized with C_DecryptInit. A call to
C_Decrypt always terminates the active decryption operation unless it returns
CKR_BUFFER_TOO_SMALL or is a successful call (i.e., one which returns CKR_OK)
to determine the length of the buffer needed to hold the plaintext.

The ciphertext and plaintext can be in the same place, i.e., it is OK if
pEncryptedData and pData point to the same location.

If the input ciphertext data cannot be decrypted because it has an inappropriate
length, then either CKR_ENCRYPTED_DATA_INVALID or
CKR_ENCRYPTED_DATA_LEN_RANGE may be returned.

C_Decrypt is equivalent to a sequence of C_DecryptUpdate and C_DecryptFinal.

Return values: CKR_BUFFER_TOO_SMALL, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,

APPENDIX B Page 128

Page 129 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

CKR_ENCRYPTED_DATA_INVALID, CKR_ENCRYPTED_DATA_LEN_RANGE,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_PARALLEL,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example: see C_DecryptFinal for an example of similar functions.

¨ C_DecryptUpdate

CK_RV CK_ENTRY C_DecryptUpdate(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pEncryptedPart,
CK_ULONG ulEncryptedPartLen,
CK_BYTE_PTR pPart,
CK_ULONG_PTR pulPartLen

);

C_DecryptUpdate continues a multiple-part decryption operation, processing
another encrypted data part. hSession is the session’s handle; pEncryptedPart
points to the encrypted data part; ulEncryptedPartLen is the length of the
encrypted data part; pPart points to the location that receives the recovered data
part; pulPartLen points to the location that holds the length of the recovered data
part.

C_DecryptUpdate uses the convention described in Section 9.2 on producing
output.

The decryption operation must have been initialized with C_DecryptInit. This
function may be called any number of times in succession. A call to
C_DecryptUpdate which results in an error other than CKR_BUFFER_TOO_SMALL
terminates the current decryption operation.

The ciphertext and plaintext can be in the same place, i.e., it is OK if
pEncryptedPart and pPart point to the same location.

Return values: CKR_BUFFER_TOO_SMALL, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_ENCRYPTED_DATA_INVALID, CKR_ENCRYPTED_DATA_LEN_RANGE,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_PARALLEL,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example: See C_DecryptFinal.

¨ C_DecryptFinal

CK_RV CK_ENTRY C_DecryptFinal(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pLastPart,
CK_ULONG_PTR pulLastPartLen

);

C_DecryptFinal finishes a multiple-part decryption operation. hSession is the
session’s handle; pLastPart points to the location that receives the last recovered
data part, if any; pulLastPartLen points to the location that holds the length of the
last recovered data part.

C_DecryptFinal uses the convention described in Section 9.2 on producing output.

The decryption operation must have been initialized with C_DecryptInit. A call to
C_DecryptFinal always terminates the active decryption operation unless it
returns CKR_BUFFER_TOO_SMALL or is a successful call (i.e., one which returns
CKR_OK) to determine the length of the buffer needed to hold the plaintext.

If the input ciphertext data cannot be decrypted because it has an inappropriate
length, then either CKR_ENCRYPTED_DATA_INVALID or
CKR_ENCRYPTED_DATA_LEN_RANGE may be returned.

Return values: CKR_BUFFER_TOO_SMALL, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_ENCRYPTED_DATA_INVALID, CKR_ENCRYPTED_DATA_LEN_RANGE,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_PARALLEL,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:
#define CIPHERTEXT_BUF_SZ 256
#define PLAINTEXT_BUF_SZ 256

CK_ULONG firstEncryptedPieceLen, secondEncryptedPieceLen;
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_BYTE iv[8];
CK_MECHANISM mechanism = {
 CKM_DES_CBC_PAD, iv, sizeof(iv)
};
CK_BYTE data[PLAINTEXT_BUF_SZ];
CK_BYTE encryptedData[CIPHERTEXT_BUF_SZ];
CK_ULONG ulData1Len, ulData2Len, ulData3Len;
CK_RV rv;

.

.

.
firstEncryptedPieceLen = 90;
secondEncryptedPieceLen = CIPHERTEXT_BUF_SZ-firstEncryptedPieceLen;
rv = C_DecryptInit(hSession, &mechanism, hKey);

APPENDIX B Page 130

Page 131 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

if (rv == CKR_OK) {
 /* Decrypt first piece */
 ulData1Len = sizeof(data);
 rv = C_DecryptUpdate(
 hSession,
 &encryptedData[0], firstEncryptedPieceLen,
 &data[0], &ulData1Len);
 if (rv != CKR_OK) {
 .
 .
 .
 }

 /* Decrypt second piece */
 ulData2Len = sizeof(data)-ulData1Len;
 rv = C_DecryptUpdate(
 hSession,
 &encryptedData[firstEncryptedPieceLen],
 secondEncryptedPieceLen,
 &data[ulData1Len], &ulData2Len);
 if (rv != CKR_OK) {
 .
 .
 .
 }

 /* Get last little decrypted bit */
 ulData3Len = sizeof(data)-ulData1Len-ulData2Len;
 rv = C_DecryptFinal(
 hSession,
 &data[ulData1Len+ulData2Len], &ulData3Len);
 if (rv != CKR_OK) {
 .
 .
 .
 }
}

9.10Message digesting functions

Cryptoki provides the following functions for digesting data. All these functions
may run in parallel with the application if the session was opened with the
CKF_SERIAL_SESSION flag set to FALSE (check the return code of the function
call to see if the function is running in parallel).

¨ C_DigestInit

CK_RV CK_ENTRY C_DigestInit(
CK_SESSION_HANDLE hSession,
CK_MECHANISM_PTR pMechanism

);

C_DigestInit initializes a message-digesting operation. hSession is the session’s
handle; pMechanism points to the digesting mechanism.

After calling C_DigestInit, the application can either call C_Digest to digest data
in a single part; or call C_DigestUpdate zero or more times, followed by
C_DigestFinal, to digest data in multiple parts. The message-digesting operation
is active until the application uses a call to C_Digest or C_DigestFinal to actually
obtain the final piece of ciphertext. To process additional data (in single or multiple
parts), the application must call C_DigestInit again.

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_PARALLEL, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OPERATION_ACTIVE,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_USER_NOT_LOGGED_IN.

Example: see C_DigestFinal.

¨ C_Digest

CK_RV CK_ENTRY C_Digest(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pData,
CK_ULONG ulDataLen,
CK_BYTE_PTR pDigest,
CK_ULONG_PTR pulDigestLen

);

C_Digest digests data in a single part. hSession is the session’s handle, pData
points to the data; ulDataLen is the length of the data; pDigest points to the
location that receives the message digest; pulDigestLen points to the location that
holds the length of the message digest.

C_Digest uses the convention described in Section 9.2 on producing output.

The digest operation must have been initialized with C_DigestInit. A call to
C_Digest always terminates the active digest operation unless it returns
CKR_BUFFER_TOO_SMALL or is a successful call (i.e., one which returns CKR_OK)
to determine the length of the buffer needed to hold the message digest.

The input data and digest output can be in the same place, i.e., it is OK if pData and
pDigest point to the same location.

C_Digest is equivalent to a sequence of C_DigestUpdate and C_DigestFinal.

Return values: CKR_BUFFER_TOO_SMALL, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_PARALLEL,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

APPENDIX B Page 132

Page 133 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

Example: see C_DigestFinal for an example of similar functions.

¨ C_DigestUpdate

CK_RV CK_ENTRY C_DigestUpdate(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pPart,
CK_ULONG ulPartLen

);

C_DigestUpdate continues a multiple-part message-digesting operation,
processing another data part. hSession is the session’s handle, pPart points to the
data part; ulPartLen is the length of the data part.

The message-digesting operation must have been initialized with C_DigestInit.
Calls to this function and C_DigestKey may be interspersed any number of times in
any order. A call to C_DigestUpdate which results in an error terminates the
current digest operation.

Return values: CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_PARALLEL, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example: see C_DigestFinal.

¨ C_DigestKey

CK_RV CK_ENTRY C_DigestKey(
CK_SESSION_HANDLE hSession,
CK_OBJECT_HANDLE hKey

);

C_DigestKey continues a multiple-part message-digesting operation by digesting
the value of a secret key. hSession is the session’s handle; hKey is the handle of the
secret key to be digested.

The message-digesting operation must have been initialized with C_DigestInit.
Calls to this function and C_DigestUpdate may be interspersed any number of
times in any order.

If the value of the supplied key cannot be digested purely for some reason related
to its length, C_DigestKey should return the error code CKR_KEY_SIZE_RANGE.

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_PARALLEL, CKR_KEY_HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_INDIGESTIBLE,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example: see C_DigestFinal.

¨ C_DigestFinal

CK_RV CK_ENTRY C_DigestFinal(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pDigest,
CK_ULONG_PTR pulDigestLen

);

C_DigestFinal finishes a multiple-part message-digesting operation, returning the
message digest. hSession is the session’s handle; pDigest points to the location that
receives the message digest; pulDigestLen points to the location that holds the
length of the message digest.

C_DigestFinal uses the convention described in Section 9.2 on producing output.

The digest operation must have been initialized with C_DigestInit. A call to
C_DigestFinal always terminates the active digest operation unless it returns
CKR_BUFFER_TOO_SMALL or is a successful call (i.e., one which returns CKR_OK)
to determine the length of the buffer needed to hold the message digest.

Return values: CKR_BUFFER_TOO_SMALL, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_PARALLEL,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:
CK_SESSION_HANDLE hSession;
CK_MECHANISM mechanism = {
 CKM_MD5, NULL_PTR, 0
};
CK_BYTE data[] = {...};
CK_BYTE digest[16];
CK_ULONG ulDigestLen;
CK_RV rv;

.

.

.
rv = C_DigestInit(hSession, &mechanism);
if (rv != CKR_OK) {
 .
 .
 .
}

rv = C_DigestUpdate(hSession, data, sizeof(data));
if (rv != CKR_OK) {
 .
 .

APPENDIX B Page 134

Page 135 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

 .
}

rv = C_DigestKey(hSession, hKey);
if (rv != CKR_OK) {
 .
 .
 .
}

ulDigestLen = sizeof(digest);
rv = C_DigestFinal(hSession, digest, &ulDigestLen);
.
.
.

9.11Signing and MACing functions

Cryptoki provides the following functions for signing data (for the purposes of
Cryptoki, these operations also encompass message authentication codes). All
these functions may run in parallel with the application if the session was opened
with the CKF_SERIAL_SESSION flag set to FALSE (check the return code of the
function call to see if the function is running in parallel).

¨ C_SignInit

CK_RV CK_ENTRY C_SignInit(
CK_SESSION_HANDLE hSession,
CK_MECHANISM_PTR pMechanism,
CK_OBJECT_HANDLE hKey

);

C_SignInit initializes a signature operation, where the signature is an appendix to
the data. hSession is the session’s handle; pMechanism points to the signature
mechanism; hKey is the handle of the signature key.

The CKA_SIGN attribute of the signature key, which indicates whether the key
supports signatures with appendix, must be TRUE.

After calling C_SignInit, the application can either call C_Sign to sign in a single
part; or call C_SignUpdate one or more times, followed by C_SignFinal, to sign
data in multiple parts. The signature operation is active until the application uses a
call to C_Sign or C_SignFinal to actually obtain the signature. To process
additional data (in single or multiple parts), the application must call C_SignInit
again.

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_PARALLEL, CKR_KEY_FUNCTION_NOT_PERMITTED,
CKR_KEY_HANDLE_INVALID, CKR_KEY_SIZE_RANGE,
CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OPERATION_ACTIVE,

CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_USER_NOT_LOGGED_IN.

Example: see C_SignFinal.

¨ C_Sign

CK_RV CK_ENTRY C_Sign(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pData,
CK_ULONG ulDataLen,
CK_BYTE_PTR pSignature,
CK_ULONG_PTR pulSignatureLen

);

C_Sign signs data in a single part, where the signature is an appendix to the data.
hSession is the session’s handle; pData points to the data; ulDataLen is the length
of the data; pSignature points to the location that receives the signature;
pulSignatureLen points to the location that holds the length of the signature.

C_Sign uses the convention described in Section 9.2 on producing output.

The signing operation must have been initialized with C_SignInit. A call to C_Sign
always terminates the active signing operation unless it returns
CKR_BUFFER_TOO_SMALL or is a successful call (i.e., one which returns CKR_OK)
to determine the length of the buffer needed to hold the signature.

C_Sign is equivalent to a sequence of C_SignUpdate and C_SignFinal.

Return values: CKR_BUFFER_TOO_SMALL, CKR_DATA_INVALID,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_PARALLEL, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example: see C_SignFinal for an example of similar functions.

¨ C_SignUpdate

CK_RV CK_ENTRY C_SignUpdate(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pPart,
CK_ULONG ulPartLen

);

C_SignUpdate continues a multiple-part signature operation, processing another
data part. hSession is the session’s handle, pPart points to the data part; ulPartLen
is the length of the data part.

APPENDIX B Page 136

Page 137 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

The signature operation must have been initialized with C_SignInit. This function
may be called any number of times in succession. A call to C_SignUpdate which
results in an error terminates the current signature operation.

Return values: CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_PARALLEL, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example: see C_SignFinal.

¨ C_SignFinal

CK_RV CK_ENTRY C_SignFinal(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pSignature,
CK_ULONG_PTR pulSignatureLen

);

C_SignFinal finishes a multiple-part signature operation, returning the signature.
hSession is the session’s handle; pSignature points to the location that receives the
signature; pulSignatureLen points to the location that holds the length of the
signature.

C_SignFinal uses the convention described in Section 9.2 on producing output.

The signing operation must have been initialized with C_SignInit. A call to
C_SignFinal always terminates the active signing operation unless it returns
CKR_BUFFER_TOO_SMALL or is a successful call (i.e., one which returns CKR_OK)
to determine the length of the buffer needed to hold the signature.

Return values: CKR_BUFFER_TOO_SMALL, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_PARALLEL,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_MECHANISM mechanism = {
 CKM_DES_MAC, NULL_PTR, 0
};
CK_BYTE data[] = {...};
CK_BYTE mac[4];
CK_ULONG ulMacLen;
CK_RV rv;

.

.

.
rv = C_SignInit(hSession, &mechanism, hKey);

if (rv == CKR_OK) {
 rv = C_SignUpdate(hSession, data, sizeof(data));
 .
 .
 .
 ulMacLen = sizeof(mac);
 rv = C_SignFinal(hSession, mac, &ulMacLen);
 .
 .
 .

}

¨ C_SignRecoverInit

CK_RV CK_ENTRY C_SignRecoverInit(
CK_SESSION_HANDLE hSession,
CK_MECHANISM_PTR pMechanism,
CK_OBJECT_HANDLE hKey

);

C_SignRecoverInit initializes a signature operation, where the data can be
recovered from the signature. hSession is the session’s handle; pMechanism points
to the structure that specifies the signature mechanism; hKey is the handle of the
signature key.

The CKA_SIGN_RECOVER attribute of the signature key, which indicates whether
the key supports signatures where the data can be recovered from the signature,
must be TRUE.

After calling C_SignRecoverInit, the application may call C_SignRecover to sign
in a single part. The signature operation is active until the application uses a call to
C_SignRecover to actually obtain the signature. To process additional data in a
single part, the application must call C_SignRecoverInit again.

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_PARALLEL, CKR_KEY_FUNCTION_NOT_PERMITTED,
CKR_KEY_HANDLE_INVALID, CKR_KEY_SIZE_RANGE,
CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OPERATION_ACTIVE,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_ACTIVE,
CKR_USER_NOT_LOGGED_IN.

Example: see C_SignRecover.

APPENDIX B Page 138

Page 139 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

¨ C_SignRecover

CK_RV CK_ENTRY C_SignRecover(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pData,
CK_ULONG ulDataLen,
CK_BYTE_PTR pSignature,
CK_ULONG_PTR pulSignatureLen

);

C_SignRecover signs data in a single operation, where the data can be recovered
from the signature. hSession is the session’s handle; pData points to the data;
uLDataLen is the length of the data; pSignature points to the location that receives
the signature; pulSignatureLen points to the location that holds the length of the
signature.

C_SignRecover uses the convention described in Section 9.2 on producing output.

The signing operation must have been initialized with C_SignRecoverInit. A call
to C_SignRecover always terminates the active signing operation unless it returns
CKR_BUFFER_TOO_SMALL or is a successful call (i.e., one which returns CKR_OK)
to determine the length of the buffer needed to hold the signature.

Return values: CKR_BUFFER_TOO_SMALL, CKR_DATA_INVALID,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_PARALLEL, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_ACTIVE.

Example:
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_MECHANISM mechanism = {
 CKM_RSA_9796, NULL_PTR, 0
};
CK_BYTE data[] = {...};
CK_BYTE signature[128];
CK_ULONG ulSignatureLen;
CK_RV rv;

.

.

.
rv = C_SignRecoverInit(hSession, &mechanism, hKey);
if (rv == CKR_OK) {
 usSignatureLen = sizeof(signature);
 rv = C_SignRecover(
 hSession, data, sizeof(data), signature, &usSignatureLen);
 if (rv == CKR_OK) {
 .
 .
 .
 }

}

9.12Functions for verifying signatures and MACs

Cryptoki provides the following functions for verifying signatures on data (for the
purposes of Cryptoki, these operations also encompass message authentication
codes). All these functions may run in parallel with the application if the session
was opened with the CKF_SERIAL_SESSION flag set to FALSE (check the return
code of the function call to see if the function is running in parallel).

¨ C_VerifyInit

CK_RV CK_ENTRY C_VerifyInit(
CK_SESSION_HANDLE hSession,
CK_MECHANISM_PTR pMechanism,
CK_OBJECT_HANDLE hKey

);

C_VerifyInit initializes a verification operation, where the signature is an appendix
to the data. hSession is the session’s handle; pMechanism points to the structure
that specifies the verification mechanism; hKey is the handle of the verification key.

The CKA_VERIFY attribute of the verification key, which indicates whether the key
supports verification where the signature is an appendix to the data, must be TRUE.

After calling C_VerifyInit, the application can either call C_Verify to verify a
signature on data in a single part; or call C_VerifyUpdate one or more times,
followed by C_VerifyFinal, to verify a signature on data in multiple parts. The
verification operation is active until the application calls C_Verify or
C_VerifyFinal. To process additional data (in single or multiple parts), the
application must call C_VerifyInit again.

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_PARALLEL, CKR_KEY_FUNCTION_NOT_PERMITTED,
CKR_KEY_HANDLE_INVALID, CKR_KEY_SIZE_RANGE,
CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OPERATION_ACTIVE,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_USER_NOT_LOGGED_IN.

Example: see C_VerifyFinal.

¨ C_Verify

CK_RV CK_ENTRY C_Verify(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pData,
CK_ULONG ulDataLen,

APPENDIX B Page 140

Page 141 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

CK_BYTE_PTR pSignature,
CK_ULONG ulSignatureLen

);

C_Verify verifies a signature in a single-part operation, where the signature is an
appendix to the data. hSession is the session’s handle; pData points to the data;
ulDataLen is the length of the data; pSignature points to the signature;
ulSignatureLen is the length of the signature.

The verification operation must have been initialized with C_VerifyInit. A call to
C_Verify always terminates the active verification operation.

A successful call to C_Verify should return either the value CKR_OK (indicating
that the supplied signature is valid) or CKR_SIGNATURE_INVALID (indicating that
the supplied signature is invalid). If the signature can be seen to be invalid purely
on the basis of its length, then CKR_SIGNATURE_LEN_RANGE should be returned.
In any of these cases, the active signing operation is terminated.

C_Verify is equivalent to a sequence of C_VerifyUpdate and C_VerifyFinal.

Return values: CKR_DATA_INVALID, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_PARALLEL,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SIGNATURE_INVALID,
CKR_SIGNATURE_LEN_RANGE.

Example: see C_VerifyFinal for an example of similar functions.

¨ C_VerifyUpdate

CK_RV CK_ENTRY C_VerifyUpdate(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pPart,
CK_ULONG ulPartLen

);

C_VerifyUpdate continues a multiple-part verification operation, processing
another data part. hSession is the session’s handle, pPart points to the data part;
ulPartLen is the length of the data part.

The verification operation must have been initialized with C_VerifyInit. This
function may be called any number of times in succession. A call to
C_VerifyUpdate which results in an error terminates the current verification
operation.

Return values: CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_PARALLEL, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example: see C_VerifyFinal.

¨ C_VerifyFinal

CK_RV CK_ENTRY C_VerifyFinal(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pSignature,
CK_ULONG ulSignatureLen

);

C_VerifyFinal finishes a multiple-part verification operation, checking the
signature. hSession is the session’s handle; pSignature points to the signature;
ulSignatureLen is the length of the signature.

The verification operation must have been initialized with C_VerifyInit. A call to
C_VerifyFinal always terminates the active verification operation.

A successful call to C_VerifyFinal should return either the value CKR_OK
(indicating that the supplied signature is valid) or CKR_SIGNATURE_INVALID
(indicating that the supplied signature is invalid). If the signature can be seen to be
invalid purely on the basis of its length, then CKR_SIGNATURE_LEN_RANGE
should be returned. In any of these cases, the active verifying operation is
terminated.

Return values: CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_PARALLEL, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_SIGNATURE_INVALID, CKR_SIGNATURE_LEN_RANGE.

Example:
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_MECHANISM mechanism = {
 CKM_DES_MAC, NULL_PTR, 0
};
CK_BYTE data[] = {...};
CK_BYTE mac[4];
CK_RV rv;

.

.

.
rv = C_VerifyInit(hSession, &mechanism, hKey);
if (rv == CKR_OK) {
 rv = C_VerifyUpdate(hSession, data, sizeof(data));
 .
 .
 .
 rv = C_VerifyFinal(hSession, mac, sizeof(mac));
 .
 .

APPENDIX B Page 142

Page 143 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

 .
}

¨ C_VerifyRecoverInit

CK_RV CK_ENTRY C_VerifyRecoverInit(
CK_SESSION_HANDLE hSession,
CK_MECHANISM_PTR pMechanism,
CK_OBJECT_HANDLE hKey

);

C_VerifyRecoverInit initializes a signature verification operation, where the data
is recovered from the signature. hSession is the session’s handle; pMechanism
points to the structure that specifies the verification mechanism; hKey is the handle
of the verification key.

The CKA_VERIFY_RECOVER attribute of the verification key, which indicates
whether the key supports verification where the data is recovered from the
signature, must be TRUE.

After calling C_VerifyRecoverInit, the application may call C_VerifyRecover to
verify a signature on data in a single part. The verification operation is active until
the application uses a call to C_VerifyRecover to actually obtain the recovered
message.

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_PARALLEL, CKR_KEY_FUNCTION_NOT_PERMITTED,
CKR_KEY_HANDLE_INVALID, CKR_KEY_SIZE_RANGE,
CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OPERATION_ACTIVE,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_USER_NOT_LOGGED_IN.

Example: see C_VerifyRecover.

¨ C_VerifyRecover

CK_RV CK_ENTRY C_VerifyRecover(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pSignature,
CK_ULONG ulSignatureLen,
CK_BYTE_PTR pData,
CK_ULONG_PTR pulDataLen

);

C_VerifyRecover verifies a signature in a single-part operation, where the data is
recovered from the signature. hSession is the session’s handle; pSignature points to
the signature; ulSignatureLen is the length of the signature; pData points to the

location that receives the recovered data; and pulDataLen points to the location
that holds the length of the recovered data.

C_VerifyRecover uses the convention described in Section 9.2 on producing
output.

The verification operation must have been initialized with C_VerifyRecoverInit. A
call to C_VerifyRecover always terminates the active verification operation unless
it returns CKR_BUFFER_TOO_SMALL or is a successful call (i.e., one which returns
CKR_OK) to determine the length of the buffer needed to hold the recovered data.

A successful call to C_VerifyRecover should return either the value CKR_OK
(indicating that the supplied signature is valid) or CKR_SIGNATURE_INVALID
(indicating that the supplied signature is invalid). If the signature can be seen to be
invalid purely on the basis of its length, then CKR_SIGNATURE_LEN_RANGE
should be returned. The return codes CKR_SIGNATURE_INVALID and
CKR_SIGNATURE_LEN_RANGE have a higher priority than the return code
CKR_BUFFER_TOO_SMALL, i.e., if C_VerifyRecover is supplied with an invalid
signature, it will never return CKR_BUFFER_TOO_SMALL.

Return values: CKR_BUFFER_TOO_SMALL, CKR_DATA_INVALID,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_PARALLEL, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_SIGNATURE_LEN_RANGE, CKR_SIGNATURE_INVALID.

Example:
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_MECHANISM mechanism = {

CKM_RSA_9796, NULL_PTR, 0
};
CK_BYTE data[] = {...};
CK_ULONG ulDataLen;
CK_BYTE signature[128];
CK_RV rv;

.

.

.
rv = C_VerifyRecoverInit(hSession, &mechanism, hKey);
if (rv == CKR_OK) {
 ulDataLen = sizeof(data);
 rv = C_VerifyRecover(
 hSession, signature, sizeof(signature), data, &ulDataLen);
 .
 .
 .
}

APPENDIX B Page 144

Page 145 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

9.13Dual-function cryptographic functions

Cryptoki provides the following functions to perform two cryptographic operations
“simultaneously” within a session. These functions are provided so as to avoid
unnecessarily passing data back and forth to and from a token. All these functions
may run in parallel with the application if the session was opened with the
CKF_SERIAL_SESSION flag set to FALSE (check the return code of the function
call to see if the function is running in parallel).

¨ C_DigestEncryptUpdate

CK_RV CK_ENTRY C_DigestEncryptUpdate(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pPart,
CK_ULONG ulPartLen,
CK_BYTE_PTR pEncryptedPart,
CK_ULONG_PTR pulEncryptedPartLen

);

C_DigestEncryptUpdate continues multiple-part digest and encryption operations,
processing another data part. hSession is the session’s handle; pPart points to the
data part; ulPartLen is the length of the data part; pEncryptedPart points to the
location that receives the digested and encrypted data part; pulEncryptedPart
points to the location that holds the length of the encrypted data part.

C_DigestEncryptUpdate uses the convention described in Section 9.2 on
producing output.

Digest and encryption operations must both be active (they must have been
initialized with C_DigestInit and C_EncryptInit, respectively). This function may
be called any number of times in succession, and may be interspersed with
C_DigestUpdate, C_DigestKey, and C_EncryptUpdate calls (it would be
somewhat unusual to intersperse calls to C_DigestEncryptUpdate with calls to
C_DigestKey, however).

Return values: CKR_BUFFER_TOO_SMALL, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_PARALLEL,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:
#define BUF_SZ 512

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_BYTE iv[8];
CK_MECHANISM digestMechanism = {
 CKM_MD5, NULL_PTR, 0
};

CK_MECHANISM encryptionMechanism = {
 CKM_DES_ECB, iv, sizeof(iv)
};
CK_BYTE encryptedData[BUF_SZ];
CK_ULONG ulEncryptedDataLen;
CK_BYTE digest[16];
CK_ULONG ulDigestLen;
CK_BYTE data[(2*BUF_SZ)+8];
CK_RV rv;
int i;

.

.

.
memset(iv, 0, sizeof(iv));
memset(data, ‘A’, ((2*BUF_SZ)+5));
rv = C_EncryptInit(hSession, &encryptionMechanism, hKey);
if (rv != CKR_OK) {
 .
 .
 .
}
rv = C_DigestInit(hSession, &digestMechanism);
if (rv != CKR_OK) {
 .
 .
 .
}

ulEncryptedDataLen = sizeof(encryptedData);
rv = C_DigestEncryptUpdate(
 hSession,
 &data[0], BUF_SZ,
 encryptedData, &ulEncryptedDataLen);
.
.
.
ulEncryptedDataLen = sizeof(encryptedData);
rv = C_DigestEncryptUpdate(
 hSession,
 &data[BUF_SZ], BUF_SZ,
 encryptedData, &ulEncryptedDataLen);
.
.
.

/*
 * The last portion of the buffer needs to be handled with
 * separate calls to deal with padding issues in ECB mode
 */

/* First, complete the digest on the buffer */
rv = C_DigestUpdate(hSession, &data[BUF_SZ*2], 5);
.
.
.

APPENDIX B Page 146

Page 147 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

ulDigestLen = sizeof(digest);
rv = C_DigestFinal(hSession, digest, &ulDigestLen);
.
.
.

/* Then, pad last part with 3 0x00 bytes, and complete encryption */
for(i=0;i<3;i++)
 data[((BUF_SZ*2)+5)+i] = 0x00;

/* Now, get second-to-last piece of ciphertext */
ulEncryptedDataLen = sizeof(encryptedData);
rv = C_EncryptUpdate(
 hSession,
 &data[BUF_SZ*2], 8,
 encryptedData, &ulEncryptedDataLen);
.
.
.

/* Get last piece of ciphertext (should have length 0, here) */
ulEncryptedDataLen = sizeof(encryptedData);
rv = C_EncryptFinal(hSession, encryptedData, &ulEncryptedDataLen);
.
.
.

¨ C_DecryptDigestUpdate

CK_RV CK_ENTRY C_DecryptDigestUpdate(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pEncryptedPart,
CK_ULONG ulEncryptedPartLen,
CK_BYTE_PTR pPart,
CK_ULONG_PTR pulPartLen

);

C_DecryptDigestUpdate continues a multiple-part combined decryption and
digest operation, processing another data part. hSession is the session’s handle;
pEncryptedData points to the encrypted data; ulEncryptedDataLen is the length of
the encrypted data; pData points to the location that receives the recovered data;
pulDataLen points to the location that holds the length of the recovered data.

C_DecryptDigestUpdate uses the convention described in Section 9.2 on
producing output.

Decryption and digesting operations must both be active (they must have been
initialized with C_DecryptInit and C_DigestInit, respectively). This function may
be called any number of times in succession, and may be interspersed with
C_DecryptUpdate, C_DigestUpdate, and C_DigestKey calls (it would be
somewhat unusual to intersperse calls to C_DigestEncryptUpdate with calls to
C_DigestKey, however).

Use of C_DecryptDigestUpdate involves a pipelining issue that does not arise
when using C_DigestEncryptUpdate, the “inverse function” of
C_DecryptDigestUpdate. This is because when C_DigestEncryptUpdate is
called, precisely the same input is passed to both the active digesting operation and
the active encryption operation; however, when C_DecryptDigestUpdate is called,
the input passed to the active digesting operation is the output of the active
decryption operation. This issue comes up only when the mechanism used for
decryption performs padding.

In particular, envision a 24-byte ciphertext which was obtained by encrypting an
18-byte plaintext with DES in CBC mode with PKCS padding. Consider an
application which will simultaneously decrypt this ciphertext and digest the original
plaintext thereby obtained.

After initializing decryption and digesting operations, the application passes the 24-
byte ciphertext (3 DES blocks) into C_DecryptDigestUpdate.
C_DecryptDigestUpdate returns exactly 16 bytes of plaintext, since at this point,
Cryptoki doesn’t know if there’s more ciphertext coming, or if the last block of
ciphertext held any padding. These 16 bytes of plaintext are passed into the active
digesting operation.

Since there is no more ciphertext, the application calls C_DecryptFinal. This tells
Cryptoki that there’s no more ciphertext coming, and the call returns the last 2
bytes of plaintext. However, since the active decryption and digesting operations
are linked only through the C_DecryptDigestUpdate call, these 2 bytes of
plaintext are not passed on to be digested.

A call to C_DigestFinal, therefore, would compute the message digest of the first
16 bytes of the plaintext, not the message digest of the entire plaintext. It is crucial
that, before C_DigestFinal is called, the last 2 bytes of plaintext get passed into
the active digesting operation.

Because of this, it is critical that when an application uses a padded decryption
mechanism with C_DecryptDigestUpdate, it knows exactly how much plaintext
has been passed into the active digesting operation. Extreme caution is warranted
when using a padded decryption mechanism with C_DecryptDigestUpdate.

Return values: CKR_BUFFER_TOO_SMALL, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_ENCRYPTED_DATA_INVALID, CKR_ENCRYPTED_DATA_LEN_RANGE,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_PARALLEL,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:
#define BUF_SZ 512

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_BYTE iv[8];
CK_MECHANISM decryptionMechanism = {
 CKM_DES_ECB, iv, sizeof(iv)
};
CK_MECHANISM digestMechanism = {

APPENDIX B Page 148

Page 149 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

 CKM_MD5, NULL_PTR, 0
};
CK_BYTE encryptedData[(2*BUF_SZ)+8];
CK_BYTE digest[16];
CK_ULONG ulDigestLen;
CK_BYTE data[BUF_SZ];
CK_ULONG ulDataLen, ulLastUpdateSize;
CK_RV rv;

.

.

.
memset(iv, 0, sizeof(iv));
memset(encryptedData, ‘A’, ((2*BUF_SZ)+8));
rv = C_DecryptInit(hSession, &decryptionMechanism, hKey);
if (rv != CKR_OK) {
 .
 .
 .
}
rv = C_DigestInit(hSession, &digestMechanism);
if (rv != CKR_OK){
 .
 .
 .
}

ulDataLen = sizeof(data);
rv = C_DecryptDigestUpdate(
 hSession,
 &encryptedData[0], BUF_SZ,
 data, &ulDataLen);
.
.
.
ulDataLen = sizeof(data);
rv = C_DecryptDigestUpdate(
 hSession,
 &encryptedData[BUF_SZ], BUF_SZ,
 data, &uldataLen);
.
.
.

/*
 * The last portion of the buffer needs to be handled with
 * separate calls to deal with padding issues in ECB mode
 */

/* First, complete the decryption of the buffer */
ulLastUpdateSize = sizeof(data);
rv = C_DecryptUpdate(
 hSession,
 &encryptedData[BUF_SZ*2], 8,
 data, &ulLastUpdateSize);
.

.

.
/* Get last piece of plaintext (should have length 0, here) */
ulDataLen = sizeof(data)-ulLastUpdateSize;
rv = C_DecryptFinal(hSession, &data[ulLastUpdateSize], &ulDataLen);
if (rv != CKR_OK) {
 .
 .
 .
}

/* Digest last bit of plaintext */
rv = C_DigestUpdate(hSession, &data[BUF_SZ*2], 5);
if (rv != CKR_OK) {
 .
 .
 .
}
ulDigestLen = sizeof(digest);
rv = C_DigestFinal(hSession, digest, &ulDigestLen);
if (rv != CKR_OK) {
 .
 .
 .
}

¨ C_SignEncryptUpdate

CK_RV CK_ENTRY C_SignEncryptUpdate(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pPart,
CK_ULONG ulPartLen,
CK_BYTE_PTR pEncryptedPart,
CK_ULONG_PTR pulEncryptedPartLen

);

C_SignEncryptUpdate continues a multiple-part combined signature and
encryption operation, processing another data part. hSession is the session’s
handle; pPart points to the data part; usPartLen is the length of the data part;
pEncryptedPart points to the location that receives the digested and encrypted data
part; and pusEncryptedPart points to the location that holds the length of the
encrypted data part.

C_SignEncryptUpdate uses the convention described in Section 9.2 on producing
output.

Signature and encryption operations must both be active (they must have been
initialized with C_SigntInit and C_EncryptInit, respectively). This function may
be called any number of times in succession, and may be interspersed with
C_SignUpdate and C_EncryptUpdate calls.

Return values: CKR_BUFFER_TOO_SMALL, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,

APPENDIX B Page 150

Page 151 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

CKR_FUNCTION_CANCELED, CKR_FUNCTION_PARALLEL,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:
#define BUF_SZ 512

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hEncryptionKey, hMacKey;
CK_BYTE iv[8];
CK_MECHANISM signMechanism = {
 CKM_DES_MAC, NULL_PTR, 0
};
CK_MECHANISM encryptionMechanism = {
 CKM_DES_ECB, iv, sizeof(iv)
};
CK_BYTE encryptedData[BUF_SZ];
CK_ULONG ulEncryptedDataLen;
CK_BYTE MAC[4];
CK_ULONG ulMacLen;
CK_BYTE data[(2*BUF_SZ)+8];
CK_RV rv;
int i;

.

.

.
memset(iv, 0, sizeof(iv));
memset(data, ‘A’, ((2*BUF_SZ)+5));
rv = C_EncryptInit(hSession, &encryptionMechanism, hEncryptionKey);
if (rv != CKR_OK) {
 .
 .
 .
}
rv = C_SignInit(hSession, &signMechanism, hMacKey);
if (rv != CKR_OK) {
 .
 .
 .
}

ulEncryptedDataLen = sizeof(encryptedData);
rv = C_SignEncryptUpdate(
 hSession,
 &data[0], BUF_SZ,
 encryptedData, &ulEncryptedDataLen);
.
.
.
ulEncryptedDataLen = sizeof(encryptedData);
rv = C_SignEncryptUpdate(
 hSession,
 &data[BUF_SZ], BUF_SZ,
 encryptedData, &ulEncryptedDataLen);

.

.

.

/*
 * The last portion of the buffer needs to be handled with
 * separate calls to deal with padding issues in ECB mode
 */

/* First, complete the signature on the buffer */
rv = C_SignUpdate(hSession, &data[BUF_SZ*2], 5);
.
.
.
ulMacLen = sizeof(MAC);
rv = C_DigestFinal(hSession, MAC, &ulMacLen);
.
.
.

/* Then pad last part with 3 0x00 bytes, and complete encryption */
for(i=0;i<3;i++)
 data[((BUF_SZ*2)+5)+i] = 0x00;

/* Now, get second-to-last piece of ciphertext */
ulEncryptedDataLen = sizeof(encryptedData);
rv = C_EncryptUpdate(
 hSession,
 &data[BUF_SZ*2], 8,
 encryptedData, &ulEncryptedDataLen);
.
.
.

/* Get last piece of ciphertext (should have length 0, here) */
ulEncryptedDataLen = sizeof(encryptedData);
rv = C_EncryptFinal(hSession, encryptedData, &ulEncryptedDataLen);
.
.
.

¨ C_DecryptVerifyUpdate

CK_RV CK_ENTRY C_DecryptVerifyUpdate(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pEncryptedPart,
CK_ULONG ulEncryptedPartLen,
CK_BYTE_PTR pPart,
CK_ULONG_PTR pulPartLen

);

C_DecryptVerifyUpdate continues a multiple-part combined decryption and
verification operation, processing another data part. hSession is the session’s
handle; pEncryptedData points to the encrypted data; ulEncryptedDataLen is the

APPENDIX B Page 152

Page 153 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

length of the encrypted data; pData points to the location that receives the
recovered data; and pulDataLen points to the location that holds the length of the
recovered data.

C_DecryptVerifyUpdate uses the convention described in Section 9.2 on
producing output.

Decryption and signature operations must both be active (they must have been
initialized with C_DecryptInit and C_VerifyInit, respectively). This function may
be called any number of times in succession, and may be interspersed with
C_DecryptUpdate and C_VerifyUpdate calls.

Use of C_DecryptVerifyUpdate involves a pipelining issue that does not arise
when using C_SignEncryptUpdate, the “inverse function” of
C_DecryptVerifyUpdate. This is because when C_SignEncryptUpdate is called,
precisely the same input is passed to both the active signing operation and the
active encryption operation; however, when C_DecryptVerifyUpdate is called, the
input passed to the active verifying operation is the output of the active decryption
operation. This issue comes up only when the mechanism used for decryption
performs padding.

In particular, envision a 24-byte ciphertext which was obtained by encrypting an
18-byte plaintext with DES in CBC mode with PKCS padding. Consider an
application which will simultaneously decrypt this ciphertext and verify a signature
on the original plaintext thereby obtained.

After initializing decryption and verification operations, the application passes the
24-byte ciphertext (3 DES blocks) into C_DecryptVerifyUpdate.
C_DecryptVerifyUpdate returns exactly 16 bytes of plaintext, since at this point,
Cryptoki doesn’t know if there’s more ciphertext coming, or if the last block of
ciphertext held any padding. These 16 bytes of plaintext are passed into the active
verification operation.

Since there is no more ciphertext, the application calls C_DecryptFinal. This tells
Cryptoki that there’s no more ciphertext coming, and the call returns the last 2
bytes of plaintext. However, since the active decryption and verification operations
are linked only through the C_DecryptVerifyUpdate call, these 2 bytes of plaintext
are not passed on to the verification mechanism.

A call to C_VerifyFinal, therefore, would verify whether or not the signature
supplied is a valid signature on the first 16 bytes of the plaintext, not on the entire
plaintext. It is crucial that, before C_VerifyFinal is called, the last 2 bytes of
plaintext get passed into the active verification operation.

Because of this, it is critical that when an application uses a padded decryption
mechanism with C_DecryptVerifyUpdate, it knows exactly how much plaintext has
been passed into the active verification operation. Extreme caution is warranted
when using a padded decryption mechanism with C_DecryptVerifyUpdate.

Return values: CKR_BUFFER_TOO_SMALL, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_ENCRYPTED_DATA_INVALID, CKR_ENCRYPTED_DATA_LEN_RANGE,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_PARALLEL,

CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:
#define BUF_SZ 512

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hDecryptionKey, hMacKey;
CK_BYTE iv[8];
CK_MECHANISM decryptionMechanism = {
 CKM_DES_ECB, iv, sizeof(iv)
};
CK_MECHANISM verifyMechanism = {
 CKM_DES_MAC, NULL_PTR, 0
};
CK_BYTE encryptedData[(2*BUF_SZ)+8];
CK_BYTE MAC[4];
CK_ULONG ulMacLen;
CK_BYTE data[BUF_SZ];
CK_ULONG ulDataLen, ulLastUpdateSize;
CK_RV rv;

.

.

.
memset(iv, 0, sizeof(iv));
memset(encryptedData, ‘A’, ((2*BUF_SZ)+8));
rv = C_DecryptInit(hSession, &decryptionMechanism, hDecryptionKey);
if (rv != CKR_OK) {
 .
 .
 .
}
rv = C_VerifyInit(hSession, &verifyMechanism, hMacKey);
if (rv != CKR_OK){
 .
 .
 .
}

ulDataLen = sizeof(data);
rv = C_DecryptVerifyUpdate(
 hSession,
 &encryptedData[0], BUF_SZ,
 data, &ulDataLen);
.
.
.
ulDataLen = sizeof(data);
rv = C_DecryptVerifyUpdate(
 hSession,
 &encryptedData[BUF_SZ], BUF_SZ,
 data, &uldataLen);
.
.

APPENDIX B Page 154

Page 155 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

.

/*
 * The last portion of the buffer needs to be handled with
 * separate calls to deal with padding issues in ECB mode
 */

/* First, complete the decryption of the buffer */
ulLastUpdateSize = sizeof(data);
rv = C_DecryptUpdate(
 hSession,
 &encryptedData[BUF_SZ*2], 8,
 data, &ulLastUpdateSize);
.
.
.
/* Get last little piece of plaintext. Should have length 0 */
ulDataLen = sizeof(data)-ulLastUpdateSize;
rv = C_DecryptFinal(hSession, &data[ulLastUpdateSize], &ulDataLen);
if (rv != CKR_OK) {
 .
 .
 .
}

/* Send last bit of plaintext to verification operation */
rv = C_VerifyUpdate(hSession, &data[BUF_SZ*2], 5);
if (rv != CKR_OK) {
 .
 .
 .
}
rv = C_VerifyFinal(hSession, MAC, ulMacLen);
if (rv == CKR_SIGNATURE_INVALID) {
 .
 .
 .
}

9.14Key management functions

Cryptoki provides the following functions for key management. All these functions
may run in parallel with the application if the session was opened with the
CKF_SERIAL_SESSION flag set to FALSE (check the return code of the function
call to see if the function is running in parallel).

¨ C_GenerateKey

CK_RV CK_ENTRY C_GenerateKey(
CK_SESSION_HANDLE hSession,
CK_MECHANISM_PTR pMechanism,
CK_ATTRIBUTE_PTR pTemplate,
CK_ULONG ulCount,
CK_OBJECT_HANDLE_PTR phKey

);

C_GenerateKey generates a secret key, creating a new key object. hSession is the
session’s handle; pMechanism points to the key generation mechanism; pTemplate
points to the template for the new key; ulCount is the number of attributes in the
template; phKey points to the location that receives the handle of the new key.

Since the type of key to be generated is implicit in the key generation mechanism,
the template does not need to supply a key type. If it does supply a key type which
is inconsistent with the key generation mechanism, C_GenerateKey fails and
returns the error code CKR_TEMPLATE_INCONSISTENT. The CKA_CLASS
attribute is treated similarly.

The key object created by a successful call to C_GenerateKey will have its
CKA_LOCAL attribute set to TRUE.

Return values: CKR_ATTRIBUTE_READ_ONLY, CKR_ATTRIBUTE_TYPE_INVALID,
CKR_ATTRIBUTE_VALUE_INVALID, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_PARALLEL, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, OPERATION_ACTIVE,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_READ_ONLY, CKR_TEMPLATE_INCOMPLETE,
CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED,
CKR_USER_NOT_LOGGED_IN.

Example:
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_MECHANISM mechanism = {
 CKM_DES_KEY_GEN, NULL_PTR, 0
};
CK_RV rv;

.

.

.
rv = C_GenerateKey(hSession, &mechanism, NULL_PTR, 0, &hKey);
if (rv == CKR_OK) {
 .
 .
 .
}

APPENDIX B Page 156

Page 157 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

¨ C_GenerateKeyPair

CK_RV CK_ENTRY C_GenerateKeyPair(
CK_SESSION_HANDLE hSession,
CK_MECHANISM_PTR pMechanism,
CK_ATTRIBUTE_PTR pPublicKeyTemplate,
CK_ULONG ulPublicKeyAttributeCount,
CK_ATTRIBUTE_PTR pPrivateKeyTemplate,
CK_ULONG ulPrivateKeyAttributeCount,
CK_OBJECT_HANDLE_PTR phPublicKey,
CK_OBJECT_HANDLE_PTR phPrivateKey

);

C_GenerateKeyPair generates a public/private key pair, creating new key objects.
hSession is the session’s handle; pMechanism points to the key generation
mechanism; pPublicKeyTemplate points to the template for the public key;
ulPublicKeyAttributeCount is the number of attributes in the public-key template;
pPrivateKeyTemplate points to the template for the private key;
ulPrivateKeyAttributeCount is the number of attributes in the private-key template;
phPublicKey points to the location that receives the handle of the new public key;
phPrivateKey points to the location that receives the handle of the new private key.

Since the types of keys to be generated are implicit in the key pair generation
mechanism, the templates do not need to supply key types. If one of the templates
does supply a key type which is inconsistent with the key generation mechanism,
C_GenerateKeyPair fails and returns the error code
CKR_TEMPLATE_INCONSISTENT. The CKA_CLASS attribute is treated similarly.

The key objects created by a successful call to C_GenerateKeyPair will have their
CKA_LOCAL attributes set to TRUE.

Return values: CKR_ATTRIBUTE_READ_ONLY, CKR_ATTRIBUTE_TYPE_INVALID,
CKR_ATTRIBUTE_VALUE_INVALID, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_PARALLEL, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, OPERATION_ACTIVE,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_READ_ONLY, CKR_TEMPLATE_INCOMPLETE,
CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED,
CKR_USER_NOT_LOGGED_IN.

Example:
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hPublicKey, hPrivateKey;
CK_MECHANISM mechanism = {
 CKM_RSA_PKCS_KEY_PAIR_GEN, NULL_PTR, 0
};
CK_ULONG modulusBits = 768;
CK_BYTE publicExponent[] = { 3 };
CK_BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE publicKeyTemplate[] = {

 {CKA_ENCRYPT, &true, sizeof(true)},
 {CKA_VERIFY, &true, sizeof(true)},
 {CKA_WRAP, &true, sizeof(true)},
 {CKA_MODULUS_BITS, &modulusBits, sizeof(modulusBits)},
 {CKA_PUBLIC_EXPONENT, publicExponent, sizeof (publicExponent)}
};
CK_ATTRIBUTE privateKeyTemplate[] = {
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_PRIVATE, &true, sizeof(true)},
 {CKA_SUBJECT, subject, sizeof(subject)},
 {CKA_ID, id, sizeof(id)},
 {CKA_SENSITIVE, &true, sizeof(true)},
 {CKA_DECRYPT, &true, sizeof(true)},
 {CKA_SIGN, &true, sizeof(true)},
 {CKA_UNWRAP, &true, sizeof(true)}
};
CK_RV rv;

rv = C_GenerateKeyPair(
 hSession, &mechanism,
 publicKeyTemplate, 5,
 privateKeyTemplate, 8,
 &hPublicKey, &hPrivateKey);
if (rv == CKR_OK) {
 .
 .
 .
}

¨ C_WrapKey

CK_RV CK_ENTRY C_WrapKey(
CK_SESSION_HANDLE hSession,
CK_MECHANISM_PTR pMechanism,
CK_OBJECT_HANDLE hWrappingKey,
CK_OBJECT_HANDLE hKey,
CK_BYTE_PTR pWrappedKey,
CK_ULONG_PTR pulWrappedKeyLen

);

C_WrapKey wraps (i.e., encrypts) a private or secret key. hSession is the session’s
handle; pMechanism points to the wrapping mechanism; hWrappingKey is the
handle of the wrapping key; hKey is the handle of the key to be wrapped;
pWrappedKey points to the location that receives the wrapped key; and
pulWrappedKeyLen points to the location that receives the length of the wrapped
key.

C_WrapKey uses the convention described in Section 9.2 on producing output.

The CKA_WRAP attribute of the wrapping key, which indicates whether the key
supports wrapping, must be TRUE. The CKA_EXTRACTABLE attribute of the key
to be wrapped must also be TRUE.

APPENDIX B Page 158

Page 159 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

If the key to be wrapped cannot be wrapped for some token-specific reason, despite
its having its CKA_EXTRACTABLE attribute set to TRUE, then C_WrapKey fails
with error code CKR_KEY_NOT_WRAPPABLE. If it cannot be wrapped with the
specified wrapping key and mechanism solely because of its length, then
C_WrapKey fails with error code CKR_KEY_SIZE_RANGE.

C_WrapKey can a priori be used in the following situations:

· To wrap any secret key with an RSA public key.

· To wrap any secret key with any other secret key which is not a SKIPJACK,
BATON, or JUNIPER key.

· To wrap a SKIPJACK, BATON, or JUNIPER key with another SKIPJACK, BATON,
or JUNIPER key (the two keys need not be the same type of key).

· To wrap an RSA, Diffie-Hellman, or DSA private key with any secret key which is
not a SKIPJACK, BATON, or JUNIPER key.

· To wrap a KEA or DSA private key with a SKIPJACK key.

Of course, tokens vary in which specified types of keys can actually be wrapped
with which mechanisms.

Return Values: CKR_BUFFER_TOO_SMALL, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_PARALLEL, CKR_KEY_HANDLE_INVALID,
CKR_KEY_NOT_WRAPPABLE, CKR_KEY_SIZE_RANGE,
CKR_KEY_UNEXTRACTABLE, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OPERATION_ACTIVE,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_USER_NOT_LOGGED_IN, CKR_WRAPPING_KEY_HANDLE_INVALID,
CKR_WRAPPING_KEY_SIZE_RANGE,
CKR_WRAPPING_KEY_TYPE_INCONSISTENT.

Example:
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hWrappingKey, hKey;
CK_MECHANISM mechanism = {
 CKM_DES3_ECB, NULL_PTR, 0
};
CK_BYTE wrappedKey[8];
CK_ULONG ulWrappedKeyLen;
CK_RV rv;

.

.

.
ulWrappedKeyLen = sizeof(wrappedKey);
rv = C_WrapKey(
 hSession, &mechanism,
 hWrappingKey, hKey,
 wrappedKey, &ulWrappedKeyLen);
if (rv == CKR_OK) {

 .
 .
 .
}

¨ C_UnwrapKey

CK_RV CK_ENTRY C_UnwrapKey(
CK_SESSION_HANDLE hSession,
CK_MECHANISM_PTR pMechanism,
CK_OBJECT_HANDLE hUnwrappingKey,
CK_BYTE_PTR pWrappedKey,
CK_ULONG ulWrappedKeyLen,
CK_ATTRIBUTE_PTR pTemplate,
CK_ULONG ulAttributeCount,
CK_OBJECT_HANDLE_PTR phKey

);

C_UnwrapKey unwraps (i.e. decrypts) a wrapped key, creating a new private key
or secret key object. hSession is the session’s handle; pMechanism points to the
unwrapping mechanism; hUnwrappingKey is the handle of the unwrapping key;
pWrappedKey points to the wrapped key; ulWrappedKeyLen is the length of the
wrapped key; pTemplate points to the template for the new key; ulAttributeCount is
the number of attributes in the template; phKey points to the location that receives
the handle of the recovered key.

The CKA_UNWRAP attribute of the unwrapping key, which indicates whether the
key supports unwrapping, must be TRUE.

The new key will have the CKA_ALWAYS_SENSITIVE attribute set to FALSE, and
the CKA_EXTRACTABLE attribute set to TRUE. If the template for the new key
has the CKA_EXTRACTABLE attribute set to FALSE, C_UnwrapKey fails with the
error CKR_TEMPLATE_INCONSISTENT.

When C_UnwrapKey is used to unwrap a key with the
CKM_KEY_WRAP_SET_OAEP mechanism (see Section 10.32.1), additional “extra
data” is decrypted at the same time that the key is unwrapped. The return of this
data follows the convention in Section 9.2 on producing output. If the extra data is
not returned from a call to C_UnwrapKey (either because the call was only to find
out how large the extra data is, or because the buffer provided for the extra data
was too small), then C_UnwrapKey will not create a new key, either.

The key object created by a successful call to C_UnwrapKey will have its
CKA_LOCAL attribute set to FALSE.

Return values: CKR_ATTRIBUTE_TYPE_INVALID,
CKR_ATTRIBUTE_VALUE_INVALID, CKR_BUFFER_TOO_SMALL,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_PARALLEL,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID,
CKR_OPERATION_ACTIVE, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_TEMPLATE_INCOMPLETE, CKR_TEMPLATE_INCONSISTENT,

APPENDIX B Page 160

Page 161 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

CKR_TOKEN_WRITE_PROTECTED, CKR_UNWRAPPING_KEY_HANDLE_INVALID,
CKR_UNWRAPPING_KEY_SIZE_RANGE,
CKR_UNWRAPPING_KEY_TYPE_INCONSISTENT, CKR_USER_NOT_LOGGED_IN,
CKR_WRAPPED_KEY_INVALID, CKR_WRAPPED_KEY_LEN_RANGE.

Example:
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hUnwrappingKey, hKey;
CK_MECHANISM mechanism = {
 CKM_DES3_ECB, NULL_PTR, 0
};
CK_BYTE wrappedKey[8] = {...};
CK_OBJECT_CLASS keyClass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES;
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &keyClass, sizeof(keyClass)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_ENCRYPT, &true, sizeof(true)},
 {CKA_DECRYPT, &true, sizeof(true)}
};
CK_RV rv;

.

.

.
rv = C_UnwrapKey(
 hSession, &mechanism, hUnwrappingKey,
 wrappedKey, sizeof(wrappedKey), template, 4, &hKey);
if (rv == CKR_OK) {
 .
 .
 .
}

¨ C_DeriveKey

CK_RV CK_ENTRY C_DeriveKey(
CK_SESSION_HANDLE hSession,
CK_MECHANISM_PTR pMechanism,
CK_OBJECT_HANDLE hBaseKey,
CK_ATTRIBUTE_PTR pTemplate,
CK_ULONG ulAttributeCount,
CK_OBJECT_HANDLE_PTR phKey

);

C_DeriveKey derives a key from a base key, creating a new key object. hSession is
the session’s handle; pMechanism points to a structure that specifies the key
derivation mechanism; hBaseKey is the handle of the base key; pTemplate points to
the template for the new key; ulAttributeCount is the number of attributes in the
template; and phKey points to the location that receives the handle of the derived
key.

The values of the CK_SENSITIVE, CK_ALWAYS_SENSITIVE,
CK_EXTRACTABLE, and CK_NEVER_EXTRACTABLE attributes for the base key
affect the values that these attributes can hold for the newly-derived key. See the
description of each particular key-derivation mechanism in Section 10 for any
constraints of this type.

The key object created by a successful call to C_DeriveKey will have its
CKA_LOCAL attribute set to FALSE.

Return values: CKR_ATTRIBUTE_TYPE_INVALID,
CKR_ATTRIBUTE_VALUE_INVALUE, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_PARALLEL, CKR_KEY_HANDLE_INVALID,
CKR_KEY_TYPE_INCONSISTENT, CKR_KEY_SIZE_RANGE,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID,
CKR_OPERATION_ACTIVE, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_TEMPLATE_INCOMPLETE, CKR_TEMPLATE_INCONSISTENT,
CKR_TOKEN_WRITE_PROTECTED, CKR_USER_NOT_LOGGED_IN.

Example:
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hPublicKey, hPrivateKey, hKey;
CK_MECHANISM keyPairMechanism = {
 CKM_DH_PKCS_KEY_PAIR_GEN, NULL_PTR, 0
};
CK_BYTE prime[] = {...};
CK_BYTE base[] = {...};
CK_BYTE publicValue[128];
CK_BYTE otherPublicValue[128];
CK_MECHANISM mechanism = {
 CKM_DH_PKCS_DERIVE, otherPublicValue, sizeof(otherPublicValue)
};
CK_ATTRIBUTE pTemplate[] = {
 CKA_VALUE, &publicValue, sizeof(publicValue)}
};
CK_OBJECT_CLASS keyClass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES;
CK_BBOOL true = TRUE;
CK_ATTRIBUTE publicKeyTemplate[] = {
 {CKA_PRIME, prime, sizeof(prime)},
 {CKA_BASE, base, sizeof(base)}
};
CK_ATTRIBUTE privateKeyTemplate[] = {
 {CKA_DERIVE, &true, sizeof(true)}
};
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &keyClass, sizeof(keyClass)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_ENCRYPT, &true, sizeof(true)},
 {CKA_DECRYPT, &true, sizeof(true)}
};
CK_RV rv;

.

APPENDIX B Page 162

Page 163 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

.

.
rv = C_GenerateKeyPair(
 hSession, &keyPairMechanism,
 publicKeyTemplate, 2,
 privateKeyTemplate, 1,
 &hPublicKey, &hPrivateKey);
if (rv == CKR_OK) {
 rv = C_GetAttributeValue(hSession, hPublicKey, &pTemplate, 1);
 if (rv == CKR_OK) {
 /* Put other guy’s public value in otherPublicValue */
 .
 .
 .
 rv = C_DeriveKey(
 hSession, &mechanism,
 hPrivateKey, template, 4, &hKey);
 if (rv == CKR_OK) {
 .
 .
 .
 }
 }
}

9.15Random number generation functions

Cryptoki provides the following functions for generating random numbers. All
these functions may run in parallel with the application if the session was opened
with the CKF_SERIAL_SESSION flag set to FALSE (check the return code of the
function call to see if the function is running in parallel).

¨ C_SeedRandom

CK_RV CK_ENTRY C_SeedRandom(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pSeed,
CK_ULONG ulSeedLen

);

C_SeedRandom mixes additional seed material into the token’s random number
generator. hSession is the session’s handle; pSeed points to the seed material; and
ulSeedLen is the length in bytes of the seed material.

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_PARALLEL, CKR_OPERATION_ACTIVE,
CKR_RANDOM_SEED_NOT_SUPPORTED, CKR_RANDOM_NO_RNG,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_USER_NOT_LOGGED_IN.

The return code CKR_RANDOM_NO_RNG has a higher priority than the return
code CKR_RANDOM_SEED_NOT_SUPPORTED. That is, if the token doesn’t have a
random number generator, then C_SeedRandom will return the value
CKR_RANDOM_NO_RNG.

Example: see C_GenerateRandom.

¨ C_GenerateRandom

CK_RV CK_ENTRY C_GenerateRandom(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pRandomData,
CK_ULONG ulRandomLen

);

C_GenerateRandom generates random data. hSession is the session’s handle;
pRandomData points to the location that receives the random data; and
ulRandomLen is the length in bytes of the random data to be generated.

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_PARALLEL, CKR_OPERATION_ACTIVE,
CKR_RANDOM_NO_RNG, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.

Example:
CK_SESSION_HANDLE hSession;
CK_BYTE seed[] = {...};
CK_BYTE randomData[] = {...};
CK_RV rv;

.

.

.
rv = C_SeedRandom(hSession, seed, sizeof(seed));
if (rv != CKR_OK) {
 .
 .
 .
}
rv = C_GenerateRandom(hSession, randomData, sizeof(randomData));
if (rv == CKR_OK) {
 .
 .
 .
}

9.16Parallel function management functions

Cryptoki provides the following functions for managing parallel execution of
cryptographic functions:

APPENDIX B Page 164

Page 165 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

¨ C_GetFunctionStatus

CK_RV CK_ENTRY C_GetFunctionStatus(
CK_SESSION_HANDLE hSession

);

C_GetFunctionStatus obtains the status of a function running in parallel with an
application. hSession is the session’s handle.

If there is currently a function running in parallel in the specified session,
C_GetFunctionStatus returns CK_FUNCTION_PARALLEL. If the most recently-
executed Cryptoki function other than C_GetFunctionStatus that was called in the
specified session was not executed in parallel (or if no Cryptoki function other than
C_GetFunctionState has been called in the specified session), then
C_GetFunctionStatus returns CK_FUNCTION_NOT_PARALLEL. Otherwise,
C_GetFunctionState returns the return value of whatever the last parallel function
executed in the specified session was.

Typically, an application might call this function repeatedly when a function is
executing in parallel. Eventually, once the function has finished its execution, the
return value of C_GetFunctionStatus will no longer be
CKR_FUNCTION_PARALLEL; instead, it will be the return code of the function.
Because of the way C_GetFunctionState’s behavior is defined above, repeated
calls to C_GetFunctionStatus will all yield the same return code of the function
(until some other Cryptoki function is called in the specified session).

Note that the application will also receive a CKN_COMPLETE notification callback
when the function completes its parallel execution, assuming that the session the
function is running in was opened with callbacks.

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_NOT_PARALLEL,
CKR_FUNCTION_PARALLEL, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

In addition to the return values listed above, once the function executing in parallel
is finished executing, calls to C_GetFunctionStatus will return whatever the error
return of the parallel function was.

Example: see C_CancelFunction.

¨ C_CancelFunction

CK_RV CK_ENTRY C_CancelFunction(
CK_SESSION_HANDLE hSession

);

C_CancelFunction cancels a function running in parallel with an application.
hSession is the session’s handle.

Note that C_CancelFunction cannot be used to cancel a function which is not
running in parallel. For example, consider an application which consists of two
threads, one of which is executing a (slow) C_GenerateKeyPair in session 1, which
is a serial session. If the other thread attempts to cancel the C_GenerateKeyPair
call with C_CancelFunction, the C_CancelFunction call may block until the
C_GenerateKeyPair call is done, and then return the value
CKR_FUNCTION_NOT_PARALLEL.

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_NOT_PARALLEL,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example:
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hPublicKey, hPrivateKey;
CK_MECHANISM mechanism = {
 CKM_RSA_PKCS_KEY_PAIR_GEN, NULL_PTR, 0
};
CK_ULONG modulusBits = 768;
CK_BYTE publicExponent[] = {...};
CK_BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE publicKeyTemplate[] = {
 {CKA_ENCRYPT, &true, sizeof(true)},
 {CKA_VERIFY, &true, sizeof(true)},
 {CKA_WRAP, &true, sizeof(true)},
 {CKA_MODULUS_BITS, &modulusBits, sizeof(modulusBits)},
 {CKA_PUBLIC_EXPONENT, publicExponent, sizeof(publicExponent)}
};
CK_ATTRIBUTE privateKeyTemplate[] = {
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_PRIVATE, &true, sizeof(true)},
 {CKA_SUBJECT, subject, sizeof(subject)},
 {CKA_ID, id, sizeof(id)},
 {CKA_SENSITIVE, &true, sizeof(true)},
 {CKA_DECRYPT, &true, sizeof(true)},
 {CKA_SIGN, &true, sizeof(true)},
 {CKA_UNWRAP, &true, sizeof(true)}
};
CK_RV rv;

.

.

.
rv = C_GenerateKeyPair(
 hSession, &mechanism,
 publicKeyTemplate, 5,
 privateKeyTemplate, 8,
 &hPublicKey, &hPrivateKey);
while (rv == CKR_FUNCTION_PARALLEL) {
 /* Check if user wants to cancel function */
 if (kbhit()) {
 if (getch() == 27) { /* If user hit ESCape key */
 rv = C_CancelFunction(hSession);

APPENDIX B Page 166

Page 167 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

 .
 .
 .
 }
 }

 /* Perform other tasks or delay */
 .
 .
 .
 rv = C_GetFunctionStatus(hSession);
}

9.17Callback functions

Cryptoki uses function pointers of type CK_NOTIFY to notify the application of
certain events. There are four different types of application callbacks.

9.17.1Token insertion callbacks

An application can use C_OpenSession to set up a token insertion callback
function (assuming insertion callbacks are supported for that slot). When a token is
inserted into the specified slot, the application callback function that was supplied
to C_OpenSession is called with the arguments (0, CKN_TOKEN_INSERTION,
pApplication), where pApplication was supplied to C_OpenSession. Token
insertion callbacks should return the value CKR_OK.

9.17.2Token removal callbacks

When a token is removed from its slot, each open session which had a callback
function specified when it was opened receives a callback. Each session’s callback
is called with the arguments (hSession, CKN_DEVICE_REMOVED, pApplication),
where hSession is the session’s handle (although when the callback occurs, the
session has just been closed because of the token removal) and pApplication was
supplied to C_OpenSession. It is not necessarily the case that all slots/tokens will
support token removal callbacks. Token removal callbacks should return the value
CKR_OK.

9.17.3Parallel function completion callbacks

When a function executing in parallel finishes execution, the callback for the
session that function was running in (if there is such a callback) is executed with
arguments (hSession, CKN_COMPLETE, pApplication), where hSession is the
session’s handle and pApplication was supplied to C_OpenSession. Parallel
function completion callbacks should return the value CKR_OK.

9.17.4Serial function surrender callbacks

Functions executing in serial sessions can periodically surrender control to the
application who called them, if the session they are executing in has a callback
function. They do this by calling their session’s callback with arguments
(hSession, CKN_SURRENDER, pApplication), where hSession is the session’s
handle and pApplication was supplied to C_OpenSession. Serial function
surrender callbacks should return either the value CKR_OK (to indicate that
Cryptoki should continue executing the function) or the value CKR_CANCEL (to
indicate that Cryptoki should abort execution of the function). Of course, before
returning one of these values, the callback function can perform some computation.

Note that this type of callback is somewhat different from the other three types of
callbacks, because it doesn’t require a spontaneous generation of a thread or
process to execute the callback.

APPENDIX B Page 168

Page 169 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

10Mechanisms

A mechanism specifies precisely how a certain cryptographic process is to be
performed.

The following table shows which Cryptoki mechanisms are supported by different
cryptographic operations. For any particular token, of course, a particular
operation may well support only a subset of the mechanisms listed. There is also no
guarantee that a token which supports one mechanism for some operation supports
any other mechanism for any other operation (or even supports that same
mechanism for any other operation). For example, even if a token is able to create
RSA digital signatures with the CKM_RSA_PKCS mechanism, it may or may not be
the case that the same token can also perform RSA encryption.

Table 1010-1, Mechanisms vs. Functions

APPENDIX B Page 170

Page 171 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

Functions

Mechanism
Encry

pt
&

Decry
pt

Sign
&

Verif
y

SR
&

VR1
Dige

st

Gen
.

 Key
/

Key
Pair

Wrap
&

Unwra
p

Derive

CKM_RSA_PKCS_KEY_PAIR_GEN ü

CKM_RSA_PKCS ü2 ü2 ü ü

CKM_RSA_9796 ü2 ü

CKM_RSA_X_509 ü2 ü2 ü ü

CKM_MD2_RSA_PKCS ü ü

CKM_MD5_RSA_PKCS ü ü

CKM_SHA1_RSA_PKCS ü ü

CKM_DSA_KEY_PAIR_GEN ü

CKM_DSA ü2

CKM_DSA_SHA1 ü

CKM_FORTEZZA_TIMESTAMP ü2

CKM_ECDSA_KEY_PAIR_GEN ü

CKM_ECDSA ü2

CKM_ECDSA_SHA1 ü

CKM_DH_PKCS_KEY_PAIR_GEN ü

CKM_DH_PKCS_DERIVE ü

CKM_KEA_KEY_PAIR_GEN ü

CKM_KEA_KEY_DERIVE ü

CKM_MAYFLY_KEY_PAIR_GEN ü

CKM_MAYFLY_KEY_DERIVE ü

CKM_GENERIC_SECRET_KEY_GEN ü

CKM_RC2_KEY_GEN ü

CKM_RC2_ECB ü ü

CKM_RC2_CBC ü ü

CKM_RC2_CBC_PAD ü ü

CKM_RC2_MAC_GENERAL ü

CKM_RC2_MAC ü

CKM_RC4_KEY_GEN ü

CKM_RC4 ü

CKM_RC5_KEY_GEN ü

CKM_RC5_ECB ü ü

CKM_RC5_CBC ü ü

CKM_RC5_CBC_PAD ü ü

CKM_RC5_MAC_GENERAL ü

CKM_RC5_MAC ü

CKM_DES_KEY_GEN ü

CKM_DES_ECB ü ü

CKM_DES_CBC ü ü

CKM_DES_CBC_PAD ü ü

CKM_DES_MAC_GENERAL ü

CKM_DES_MAC ü

CKM_DES2_KEY_GEN ü

CKM_DES3_KEY_GEN ü

CKM_DES3_ECB ü ü

CKM_DES3_CBC ü ü

CKM_DES3_CBC_PAD ü ü

CKM_DES3_MAC_GENERAL ü

CKM_DES3_MAC ü

CKM_CAST_KEY_GEN ü

CKM_CAST_ECB ü ü

CKM_CAST_CBC ü ü

CKM_CAST_CBC_PAD ü ü

CKM_CAST_MAC_GENERAL ü

CKM_CAST_MAC ü

CKM_CAST3_KEY_GEN ü

CKM_CAST3_ECB ü ü

CKM_CAST3_CBC ü ü

CKM_CAST3_CBC_PAD ü ü

CKM_CAST3_MAC_GENERAL ü

CKM_CAST3_MAC ü

CKM_CAST5_KEY_GEN ü

CKM_CAST5_ECB ü ü

CKM_CAST5_CBC ü ü

CKM_CAST5_CBC_PAD ü ü

CKM_CAST5_MAC_GENERAL ü

CKM_CAST5_MAC ü

CKM_IDEA_KEY_GEN ü

CKM_IDEA_ECB ü ü

CKM_IDEA_CBC ü ü

CKM_IDEA_CBC_PAD ü ü

CKM_IDEA_MAC_GENERAL ü

CKM_IDEA_MAC ü

CKM_CDMF_KEY_GEN ü

CKM_CDMF_ECB ü ü

CKM_CDMF_CBC ü ü

CKM_CDMF_CBC_PAD ü ü

CKM_CDMF_MAC_GENERAL ü

CKM_CDMF_MAC ü

CKM_SKIPJACK_KEY_GEN ü

CKM_SKIPJACK_ECB64 ü

CKM_SKIPJACK_CBC64 ü

CKM_SKIPJACK_OFB64 ü

CKM_SKIPJACK_CFB64 ü

CKM_SKIPJACK_CFB32 ü

CKM_SKIPJACK_CFB16 ü

CKM_SKIPJACK_CFB8 ü

CKM_SKIPJACK_WRAP ü

CKM_SKIPJACK_PRIVATE_WRAP ü

CKM_SKIPJACK_RELAYX ü3

CKM_BATON_KEY_GEN ü

CKM_BATON_ECB128 ü

CKM_BATON_ECB96 ü

CKM_BATON_CBC128 ü

CKM_BATON_COUNTER ü

CKM_BATON_SHUFFLE ü

CKM_BATON_WRAP ü

CKM_JUNIPER_KEY_GEN ü

CKM_JUNIPER_ECB128 ü

CKM_JUNIPER_CBC128 ü

CKM_JUNIPER_COUNTER ü

APPENDIX B Page 172

Page 173 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

CKM_JUNIPER_SHUFFLE ü

CKM_JUNIPER_WRAP ü

CKM_MD2 ü

CKM_MD2_HMAC_GENERAL ü

CKM_MD2_HMAC ü

CKM_MD2_KEY_DERIVATION ü

CKM_MD5 ü

CKM_MD5_HMAC_GENERAL ü

CKM_MD5_HMAC ü

CKM_MD5_KEY_DERIVATION ü

CKM_SHA_1 ü

CKM_SHA_1_HMAC_GENERAL ü

CKM_SHA_1_HMAC ü

CKM_SHA1_KEY_DERIVATION ü

CKM_FASTHASH ü

CKM_PBE_MD2_DES_CBC ü

CKM_PBE_MD5_DES_CBC ü

CKM_PBE_MD5_CAST_CBC ü

CKM_PBE_MD5_CAST3_CBC ü

CKM_PBE_MD5_CAST5_CBC ü

CKM_PBE_SHA1_CAST5_CBC ü

CKM_KEY_WRAP_SET_OAEP ü

CKM_KEY_WRAP_LYNKS ü

CKM_SSL3_PRE_MASTER_KEY_GEN ü

CKM_SSL3_MASTER_KEY_DERIVE ü

CKM_SSL3_KEY_AND_MAC_DERIVE ü

CKM_SSL3_MD5_MAC ü

CKM_SSL3_SHA1_MAC ü

CKM_CONCATENATE_BASE_AND_KEY ü

CKM_CONCATENATE_BASE_AND_DAT
A

ü

CKM_CONCATENATE_DATA_AND_BAS
E

ü

CKM_XOR_BASE_AND_DATA ü

CKM_EXTRACT_KEY_FROM_KEY ü

1 SR = SignRecover, VR = VerifyRecover.

2 Single-part operations only.

3 Mechanism can only be used for wrapping, not unwrapping.

The remainder of Section 10 will present in detail the mechanisms supported by
Cryptoki v2.0 and the parameters which are supplied to them.

In general, if a mechanism makes no mention of the ulMinKeyLen and ulMaxKeyLen
fields of the CK_MECHANISM_INFO structure, then those fields have no meaning
for that particular mechanism.

10.1RSA mechanisms

10.1.1PKCS #1 RSA key pair generation

The PKCS #1 RSA key pair generation mechanism, denoted
CKM_RSA_PKCS_KEY_PAIR_GEN, is a key pair generation mechanism based on
the RSA public-key cryptosystem, as defined in PKCS #1.

It does not have a parameter.

The mechanism generates RSA public/private key pairs with a particular modulus
length in bits and public exponent, as specified in the CKA_MODULUS_BITS and
CKA_PUBLIC_EXPONENT attributes of the template for the public key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_MODULUS,
and CKA_PUBLIC_EXPONENT attributes to the new public key. It contributes
the CKA_CLASS and CKA_KEY_TYPE attributes to the new private key; it may
also contribute some of the following attributes to the new private key:
CKA_MODULUS, CKA_PUBLIC_EXPONENT, CKA_PRIVATE_EXPONENT,
CKA_PRIME_1, CKA_PRIME_2, CKA_EXPONENT_1, CKA_EXPONENT_2,
CKA_COEFFICIENT (see Section 8.6.1). Other attributes supported by the RSA
public and private key types (specifically, the flags indicating which functions the
keys support) may also be specified in the templates for the keys, or else are
assigned default initial values.

Keys generated with this mechanism can be used with the following mechanisms:
PKCS #1 RSA; ISO/IEC 9796 RSA; X.509 (raw) RSA; PKCS #1 RSA with MD2;
PKCS #1 RSA with MD5; PKCS #1 RSA with SHA-1; and OAEP key wrapping for
SET.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of RSA modulus
sizes, in bits.

10.1.2PKCS #1 RSA

The PKCS #1 RSA mechanism, denoted CKM_RSA_PKCS, is a multi-purpose
mechanism based on the RSA public-key cryptosystem and the block formats
defined in PKCS #1. It supports single-part encryption and decryption; single-part
signatures and verification with and without message recovery; key wrapping; and
key unwrapping. This mechanism corresponds only to the part of PKCS #1 that
involves RSA; it does not compute a message digest or a DigestInfo encoding as
specified for the md2withRSAEncryption and md5withRSAEncryption algorithms in
PKCS #1.

This mechanism does not have a parameter.

This mechanism can wrap and unwrap any secret key of appropriate length. Of
course, a particular token may not be able to wrap/unwrap every appropriate-length
secret key that it supports. For wrapping, the “input” to the encryption operation is
the value of the CKA_VALUE attribute of the key that is wrapped; similarly for
unwrapping. The mechanism does not wrap the key type or any other information

APPENDIX B Page 174

Page 175 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

about the key, except the key length; the application must convey these separately.
In particular, the mechanism contributes only the CKA_CLASS and CKA_VALUE
(and CKA_VALUE_LEN, if the key has it) attributes to the recovered key during
unwrapping; other attributes must be specified in the template.

Constraints on key types and the length of the data are summarized in the following
table. For encryption, decryption, signatures and signature verification, the input
and output data may begin at the same location in memory. In the table, k is the
length in bytes of the RSA modulus.

Table 1010-2, PKCS #1 RSA: Key And Data Length Constraints

Function Key type Input
length

Output
length

Comments

C_Encrypt1 RSA public key £ k-11 k block type
02

C_Decrypt1 RSA private
key

k £ k-11 block type
02

C_Sign1 RSA private
key

£ k-11 k block type
01

C_SignRecover RSA private
key

£ k-11 k block type
01

C_Verify1 RSA public key £ k-11, k2 N/A block type
01

C_VerifyRecove
r

RSA public key k £ k-11 block type
01

C_WrapKey RSA public key £ k-11 k block type
02

C_UnwrapKey RSA private
key

k £ k-11 block type
02

1 Single-part operations only.

2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of RSA modulus
sizes, in bits.

10.1.3ISO/IEC 9796 RSA

The ISO/IEC 9796 RSA mechanism, denoted CKM_RSA_9796, is a mechanism for
single-part signatures and verification with and without message recovery based on
the RSA public-key cryptosystem and the block formats defined in ISO/IEC 9796
and its annex A. This mechanism is compatible with the draft ANSI X9.31
(assuming the length in bits of the X9.31 hash value is a multiple of 8).

This mechanism processes only byte strings, whereas ISO/IEC 9796 operates on bit
strings. Accordingly, the following transformations are performed:

· Data is converted between byte and bit string formats by interpreting the most-
significant bit of the leading byte of the byte string as the leftmost bit of the

bit string, and the least-significant bit of the trailing byte of the byte string
as the rightmost bit of the bit string (this assumes the length in bits of the
data is a multiple of 8).

· A signature is converted from a bit string to a byte string by padding the bit
string on the left with 0 to 7 zero bits so that the resulting length in bits is a
multiple of 8, and converting the resulting bit string as above; it is converted
from a byte string to a bit string by converting the byte string as above, and
removing bits from the left so that the resulting length in bits is the same as
that of the RSA modulus.

This mechanism does not have a parameter.

Constraints on key types and the length of input and output data are
summarized in the following table. In the table, k is the length in bytes of the
RSA modulus.

Table 1010-3, ISO/IEC 9796 RSA: Key And Data Length Constraints

Function Key type Input
length

Output
length

C_Sign1 RSA private
key

£ ëk/2û k

C_SignRecover RSA private
key

£ ëk/2û k

C_Verify1 RSA public key £ ëk/2û, k2 N/A
C_VerifyRecove
r

RSA public key k £ ëk/2û

1 Single-part operations only.

2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of RSA modulus
sizes, in bits.

10.1.4X.509 (raw) RSA

The X.509 (raw) RSA mechanism, denoted CKM_RSA_X_509, is a multi-purpose
mechanism based on the RSA public-key cryptosystem. It supports single-part
encryption and decryption; single-part signatures and verification with and without
message recovery; key wrapping; and key unwrapping. All these operations are
based on so-called “raw” RSA, as assumed in X.509.

“Raw” RSA as defined here encrypts a byte string by converting it to an integer,
most-significant byte first, applying “raw” RSA exponentiation, and converting the
result to a byte string, most-significant byte first. The input string, considered as
an integer, must be less than the modulus; the output string is also less than the
modulus.

This mechanism does not have a parameter.

APPENDIX B Page 176

Page 177 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

This mechanism can wrap and unwrap any secret key of appropriate length. Of
course, a particular token may not be able to wrap/unwrap every appropriate-length
secret key that it supports. For wrapping, the “input” to the encryption operation is
the value of the CKA_VALUE attribute of the key that is wrapped; similarly for
unwrapping. The mechanism does not wrap the key type, key length, or any other
information about the key; the application must convey these separately, and supply
them when unwrapping the key.

Unfortunately, X.509 does not specify how to perform padding for RSA encryption.
For this mechanism, padding should be performed by prepending plaintext data
with 0 bytes. In effect, to encrypt the sequence of plaintext bytes b1 b2 … bn (n £ k),
Cryptoki forms P=2n-1b1+2n-2b2+…+bn. This number must be less than the RSA
modulus. The k-byte ciphertext (k is the length in bytes of the RSA modulus) is
produced by raising P to the RSA public exponent modulo the RSA modulus.
Decryption of a k-byte ciphertext C is accomplished by raising C to the RSA private
exponent modulo the RSA modulus, and returning the resulting value as a sequence
of exactly k bytes. If the resulting plaintext is to be used to produce an unwrapped
key, then however many bytes are specified in the template for the length of the key
are taken from the end of this sequence of bytes.

Technically, the above procedures may differ very slightly from certain details of
what is specified in X.509.

Executing cryptographic operations using this mechanism can result in the error
returns CKR_DATA_INVALID (if plaintext is supplied which has the same length as
the RSA modulus and is numerically at least as large as the modulus) and
CKR_ENCRYPTED_DATA_INVALID (if ciphertext is supplied which has the same
length as the RSA modulus and is numerically at least as large as the modulus).

Constraints on key types and the length of input and output data are summarized in
the following table. In the table, k is the length in bytes of the RSA modulus.

Table 1010-4, X.509 (Raw) RSA: Key And Data Length Constraints

Function Key type Input
length

Output length

C_Encrypt1 RSA public key £ k k
C_Decrypt1 RSA private

key
k k

C_Sign1 RSA private
key

£ k k

C_SignRecover RSA private
key

£ k k

C_Verify1 RSA public key £ k, k2 N/A
C_VerifyRecove
r

RSA public key k k

C_WrapKey RSA public key £ k k
C_UnwrapKey RSA private

key
k £ k (specified in

template)
1 Single-part operations only.

2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of RSA modulus
sizes, in bits.

This mechanism is intended for compatibility with applications that do not follow
the PKCS #1 or ISO/IEC 9796 block formats.

10.1.5PKCS #1 RSA signature with MD2, MD5, or SHA-1

The PKCS #1 RSA signature with MD2 mechanism, denoted
CKM_MD2_RSA_PKCS, performs single- and multiple-part digital signatures and
verification operations without message recovery. The operations performed are as
described in PKCS #1 with the object identifier md2WithRSAEncryption.

Similarly, the PKCS #1 RSA signature with MD5 mechanism, denoted
CKM_MD5_RSA_PKCS, performs the same operations described in PKCS #1 with
the object identifier md5WithRSAEncryption. The PKCS #1 RSA signature with
SHA-1 mechanism, denoted CKM_SHA1_RSA_PKCS, performs the same
operations, except that it uses the hash function SHA-1, instead of MD2 or MD5.

None of these mechanisms has a parameter.

Constraints on key types and the length of the data for these mechanisms are
summarized in the following table. In the table, k is the length in bytes of the RSA
modulus. For the PKCS #1 RSA signature with MD2 and PKCS #1 RSA signature
with MD5 mechanisms, k must be at least 27; for the PKCS #1 RSA signature with
SHA-1 mechanism, k must be at least 31.

Table 1010-5, PKCS #1 RSA Signatures with MD2, MD5, or SHA-1: Key And
Data Length Constraints

Function Key type Input
length

Output
length

Comments

C_Sign RSA private
key

any k block type
01

C_Verify RSA public key any, k2 N/A block type
01

2 Data length, signature length.

For these mechanisms, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of RSA modulus
sizes, in bits.

10.2DSA mechanisms

10.2.1DSA key pair generation

The DSA key pair generation mechanism, denoted CKM_DSA_KEY_PAIR_GEN, is
a key pair generation mechanism based on the Digital Signature Algorithm defined
in FIPS PUB 186.

APPENDIX B Page 178

Page 179 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

This mechanism does not have a parameter.

The mechanism generates DSA public/private key pairs with a particular prime,
subprime and base, as specified in the CKA_PRIME, CKA_SUBPRIME, and
CKA_BASE attributes of the template for the public key. Note that this version of
Cryptoki does not include a mechanism for generating these DSA parameters.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new public key and the CKA_CLASS, CKA_KEY_TYPE,
CKA_PRIME, CKA_SUBPRIME, CKA_BASE, and CKA_VALUE attributes to the
new private key. Other attributes supported by the DSA public and private key
types (specifically, the flags indicating which functions the keys support) may also
be specified in the templates for the keys, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of DSA prime
sizes, in bits.

10.2.2DSA

The DSA mechanism, denoted CKM_DSA, is a mechanism for single-part signatures
and verification based on the Digital Signature Algorithm defined in FIPS PUB 186.
(This mechanism corresponds only to the part of DSA that processes the 20-byte
hash value; it does not compute the hash value.)

For the purposes of this mechanism, a DSA signature is a 40-byte string,
corresponding to the concatenation of the DSA values r and s, each represented
most-significant byte first.

It does not have a parameter.

Constraints on key types and the length of data are summarized in the following
table:

Table 1010-6, DSA: Key And Data Length Constraints

Function Key type Input
length

Output
length

C_Sign1 DSA private
key

20 40

C_Verify1 DSA public key 20, 402 N/A
1 Single-part operations only.

2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of DSA prime
sizes, in bits.

10.2.3DSA with SHA-1

The DSA with SHA-1 mechanism, denoted CKM_DSA_SHA1, is a mechanism for
single- and multiple-part signatures and verification based on the Digital Signature
Algorithm defined in FIPS PUB 186. This mechanism computes the entire DSA
specification, including the hashing with SHA-1.

For the purposes of this mechanism, a DSA signature is a 40-byte string,
corresponding to the concatenation of the DSA values r and s, each represented
most-significant byte first.

This mechanism does not have a parameter.

Constraints on key types and the length of data are summarized in the following
table:

Table 1010-7, DSA with SHA-1: Key And Data Length Constraints

Function Key type Input
length

Output
length

C_Sign DSA private
key

any 40

C_Verify DSA public key any, 402 N/A
2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of DSA prime
sizes, in bits.

10.2.4FORTEZZA timestamp

The FORTEZZA timestamp mechanism, denoted CKM_FORTEZZA_TIMESTAMP,
is a mechanism for single-part signatures and verification. The signatures it
produces and verifies are DSA digital signatures over the provided hash value and
the current time.

It has no parameters.

Constraints on key types and the length of data are summarized in the following
table. The input and output data may begin at the same location in memory.

Table 1010-8, FORTEZZA timestamp: Key And Data Length Constraints

Function Key type Input
length

Output
length

C_Sign1 DSA private
key

20 40

C_Verify1 DSA public key 20, 402 N/A
1 Single-part operations only.

2 Data length, signature length.

APPENDIX B Page 180

Page 181 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of DSA prime
sizes, in bits.

10.3ECDSA mechanisms

10.3.1ECDSA key pair generation

The ECDSA key pair generation mechanism, denoted CKM_DSA_KEY_PAIR_GEN,
is a key pair generation mechanism based on the Elliptic Curve Digital Signature
Algorithm defined in IEEE P1363.

This mechanism does not have a parameter.

The mechanism generates ECDSA public/private key pairs with a particular prime,
subprime and base, as specified in the CKA_PRIME, CKA_SUBPRIME, and
CKA_BASE attributes of the template for the public key. Note that this version of
Cryptoki does not include a mechanism for generating these ECDSA parameters.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new public key and the CKA_CLASS, CKA_KEY_TYPE,
CKA_PRIME, CKA_SUBPRIME, CKA_BASE, and CKA_VALUE attributes to the
new private key. Other attributes supported by the ECDSA public and private key
types (specifically, the flags indicating which functions the keys support) may also
be specified in the templates for the keys, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of ECDSA prime
sizes, in bits.

10.3.2ECDSA

The ECDSA mechanism, denoted CKM_ECDSA, is a mechanism for single-part
signatures and verification based on the Elliptic Curve Digital Signature Algorithm
defined in IEEE P1363. (This mechanism corresponds only to the part of ECDSA
that processes the 20-byte hash value; it does not compute the hash value.)

For the purposes of this mechanism, an ECDSA signature is a 40-byte string,
corresponding to the concatenation of the ECDSA values r and s, each represented
most-significant byte first.

This mechanism does not have a parameter.

Constraints on key types and the length of data are summarized in the following
table:

Table 1010-9, ECDSA: Key And Data Length Constraints

Function Key type Input
length

Output
length

C_Sign1 ECDSA private
key

20 40

C_Verify1 ECDSA public
key

20, 402 N/A

1 Single-part operations only.

2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of ECDSA prime
sizes, in bits.

10.3.3ECDSA with SHA-1

The ECDSA with SHA-1 mechanism, denoted CKM_ECDSA_SHA1, is a mechanism
for single- and multiple-part signatures and verification based on the Elliptic Curve
Digital Signature Algorithm defined in IEEE P1363. This mechanism computes the
entire ECDSA specification, including the hashing with SHA-1.

For the purposes of this mechanism, a ECDSA signature is a 40-byte string,
corresponding to the concatenation of the ECDSA values r and s, each represented
most-significant byte first.

This mechanism does not have a parameter.

Constraints on key types and the length of data are summarized in the following
table:

Table 1010-10, ECDSA with SHA-1: Key And Data Length Constraints

Function Key type Input
length

Output
length

C_Sign ECDSA private
key

any 40

C_Verify ECDSA public
key

any, 402 N/A

2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of ECDSA prime
sizes, in bits.

APPENDIX B Page 182

Page 183 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

10.4Diffie-Hellman mechanisms

10.4.1PKCS #3 Diffie-Hellman key pair generation

The PKCS #3 Diffie-Hellman key pair generation mechanism, denoted
CKM_DH_PKCS_KEY_PAIR_GEN, is a key pair generation mechanism based on
Diffie-Hellman key agreement, as defined in PKCS #3. (This is analogous to what
PKCS #3 calls “phase I”.)

It does not have a parameter.

The mechanism generates Diffie-Hellman public/private key pairs with a particular
prime and base, as specified in the CKA_PRIME and CKA_BASE attributes of the
template for the public key. If the CKA_VALUE_BITS attribute of the private key is
specified, the mechanism limits the length in bits of the private value, as described
in PKCS #3. Note that this version of Cryptoki does not include a mechanism for
generating a prime and base.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new public key and the CKA_CLASS, CKA_KEY_TYPE,
CKA_PRIME, CKA_BASE, and CKA_VALUE (and the CKA_VALUE_BITS
attribute, if it is not already provided in the template) attributes to the new private
key; other attributes required by the Diffie-Hellman public and private key types
must be specified in the templates.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of Diffie-Hellman
prime sizes, in bits.

10.4.2PKCS #3 Diffie-Hellman key derivation

The PKCS #3 Diffie-Hellman key derivation mechanism, denoted
CKM_DH_PKCS_DERIVE, is a mechanism for key derivation based on Diffie-
Hellman key agreement, as defined in PKCS #3. (This is analogous to what PKCS
#3 calls “phase II”.)

It has a parameter, which is the public value of the other party in the key
agreement protocol, represented as a Cryptoki “Big integer” (i.e., a sequence of
bytes, most-significant byte first).

This mechanism derives a secret key from a Diffie-Hellman private key and the
public value of the other party. It computes a Diffie-Hellman secret value from the
public value and private key according to PKCS #3, and truncates the result
according to the CKA_KEY_TYPE attribute of the template and, if it has one and
the key type supports it, the CKA_VALUE_LEN attribute of the template. (The
truncation removes bytes from the leading end of the secret value.) The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes
required by the key type must be specified in the template.

The derived key inherits the values of the CKA_SENSITIVE,
CKA_ALWAYS_SENSITIVE, CKA_EXTRACTABLE, and
CKA_NEVER_EXTRACTABLE attributes from the base key. The values of the

CKA_SENSITIVE and CKA_EXTRACTABLE attributes may be overridden in the
template for the derived key, however. Of course, if the base key has the
CKA_ALWAYS_SENSITIVE attribute set to TRUE, then the template may not
specify that the derived key should have the CKA_SENSITIVE attribute set to
FALSE; similarly, if the base key has the CKA_NEVER_EXTRACTABLE attribute
set to TRUE, then the template may not specify that the derived key should have
the CKA_EXTRACTABLE attribute set to TRUE.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of Diffie-Hellman
prime sizes, in bits.

10.5KEA mechanism parameters

¨ CK_KEA_DERIVE_PARAMS

CK_KEA_DERIVE_PARAMS is a structure that provides the parameters to the
CKM_KEA_DERIVE mechanism. It is defined as follows:

typedef struct CK_KEA_DERIVE_PARAMS {
CK_BBOOL isSender;
CK_ULONG ulRandomLen;
CK_BYTE_PTR pRandomA;
CK_BYTE_PTR pRandomB;
CK_ULONG ulPublicDataLen;
CK_BYTE_PTR pPublicData;

} CK_KEA_DERIVE;

The fields of the structure have the following meanings:

isSender Option for generating the key (called a TEK). The
value is TRUE if the sender (originator) generates
the TEK, FALSE if the recipient is regenerating the
TEK.

ulRandomLen size of random Ra and Rb, in bytes

pRandomA pointer to Ra data

pRandomB pointer to Rb data

ulPublicDataLen other party’s KEA public key size

pPublicData pointer to other party’s KEA public key value

¨ CK_KEA_DERIVE_PARAMS_PTR

CK_KEA_DERIVE_PARAMS_PTR points to a CK_KEA_DERIVE_PARAMS
structure. It is implementation-dependent.

APPENDIX B Page 184

Page 185 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

10.6KEA mechanisms

10.6.1KEA key pair generation

The KEA key pair generation mechanism, denoted CKM_KEA_KEY_PAIR_GEN, is
a key pair generation mechanism

It does not have a parameter.

The mechanism generates KEA public/private key pairs with a particular prime,
subprime and base, as specified in the CKA_PRIME, CKA_SUBPRIME, and
CKA_BASE attributes of the template for the public key. Note that this version of
Cryptoki does not include a mechanism for generating these KEA parameters.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE and CKA_VALUE
attributes to the new public key and the CKA_CLASS, CKA_KEY_TYPE,
CKA_PRIME, CKA_SUBPRIME, CKA_BASE, and CKA_VALUE attributes to the
new private key. Other attributes supported by the KEA public and private key
types (specifically, the flags indicating which functions the keys support) may also
be specified in the templates for the keys, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of KEA prime
sizes, in bits.

10.6.2 KEA key derivation

The KEA key derivation mechanism, denoted CKM_KEA_DERIVE, is a mechanism
for key derivation based on KEA, the Key Exchange Algorithm.

It has a parameter, a CK_KEA_DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one and the key type
supports it, the CKA_VALUE_LEN attribute of the template. (The truncation
removes bytes from the leading end of the secret value.) The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes
required by the key type must be specified in the template.

The derived key inherits the values of the CKA_SENSITIVE,
CKA_ALWAYS_SENSITIVE, CKA_EXTRACTABLE, and
CKA_NEVER_EXTRACTABLE attributes from the base key. The values of the
CKA_SENSITIVE and CKA_EXTRACTABLE attributes may be overridden in the
template for the derived key, however. Of course, if the base key has the
CKA_ALWAYS_SENSITIVE attribute set to TRUE, then the template may not
specify that the derived key should have the CKA_SENSITIVE attribute set to
FALSE; similarly, if the base key has the CKA_NEVER_EXTRACTABLE attribute
set to TRUE, then the template may not specify that the derived key should have
the CKA_EXTRACTABLE attribute set to TRUE.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of KEA prime
sizes, in bits.

10.7MAYFLY mechanism parameters

¨ CK_MAYFLY_DERIVE_PARAMS

CK_MAYFLY_DERIVE_PARAMS is a structure that provides the parameters to the
CKM_MAYFLY_DERIVE mechanism. It is defined as follows:

typedef struct CK_MAYFLY_DERIVE_PARAMS {
CK_BBOOL isSender;
CK_ULONG ulRandomLen;
CK_BYTE_PTR pRandomA;
CK_BYTE_PTR pRandomB;
CK_ULONG ulPublicDataLen;
CK_BYTE_PTR pPublicData;

} CK_MAYFLY_DERIVE;

The fields of the structure have the following meanings:

isSender Option for generating the key (called a TEK). The
value is TRUE if the sender (originator) generates
the TEK, FALSE if the recipient is regenerating the
TEK.

ulRandomLen size of random Ra and Rb, in bytes

pRandomA pointer to Ra data

pRandomB pointer to Rb data

ulPublicDataLen other party’s MAYFLY public key size

 pPublicData pointer to other party’s MAYFLY public key value

¨ CK_MAYFLY_DERIVE_PARAMS_PTR

CK_MAYFLY_DERIVE_PARAMS_PTR points to a
CK_MAYFLY_DERIVE_PARAMS structure. It is implementation-dependent.

10.8MAYFLY mechanisms

10.8.1MAYFLY key pair generation

The MAYFLY key pair generation mechanism, called CKM_KEA_KEY_PAIR_GEN,
is a key pair generation mechanism for the MAYFLY key exchange key pair.

APPENDIX B Page 186

Page 187 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

It does not have a parameter.

The mechanism generates MAYFLY public/private key pairs with a particular
prime, subprime and base, as specified in the CKA_PRIME, CKA_SUBPRIME, and
CKA_BASE attributes of the template for the public key. Note that this version of
Cryptoki does not include a mechanism for generating these MAYFLY parameters.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new public key and the CKA_CLASS, CKA_KEY_TYPE,
CKA_PRIME, CKA_SUBPRIME, CKA_BASE, and CKA_VALUE attributes to the
new private key. Other attributes supported by the MAYFLY public and private key
types (specifically, the flags indicating which functions the keys support) may also
be specified in the templates for the keys or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of MAYFLY prime
sizes, in bits.

10.8.2MAYFLY key derivation

The MAYFLY key derivation mechanism, denoted CKM_MAYFLY_DERIVE, is a
mechanism for key derivation based on MAYFLY.

It has a parameter, a CK_MAYFLY_DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one and the key type
supports it, the CKA_VALUE_LEN attribute of the template. (The truncation
removes bytes from the leading end of the secret value.) The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes
required by the key type must be specified in the template.

The derived key inherits the values of the CKA_SENSITIVE,
CKA_ALWAYS_SENSITIVE, CKA_EXTRACTABLE, and
CKA_NEVER_EXTRACTABLE attributes from the base key. The values of the
CKA_SENSITIVE and CKA_EXTRACTABLE attributes may be overridden in the
template for the derived key, however. Of course, if the base key has the
CKA_ALWAYS_SENSITIVE attribute set to TRUE, then the template may not
specify that the derived key should have the CKA_SENSITIVE attribute set to
FALSE; similarly, if the base key has the CKA_NEVER_EXTRACTABLE attribute
set to TRUE, then the template may not specify that the derived key should have
the CKA_EXTRACTABLE attribute set to TRUE.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of MAYFLY prime
sizes, in bits.

10.9Generic secret key mechanisms

10.9.1Generic secret key generation

The generic secret key generation mechanism, denoted
CKM_GENERIC_SECRET_KEY_GEN, is used to generate generic secret keys. The
generated keys take on any attributes provided in the template passed to the
C_GenerateKey call, and the CKA_VALUE_LEN attribute specifies the length of
the key to be generated.

It does not have a parameter.

The template supplied must specify a value for the CKA_VALUE_LEN attribute. If
the template specifies an object type and a class, they must have the following
values:

CK_OBJECT_CLASS = CKO_SECRET_KEY;

CK_KEY_TYPE = CKK_GENERIC_SECRET;

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of key sizes, in
bits.

10.10Wrapping/unwrapping private keys (RSA, Diffie-Hellman,
and DSA)

Cryptoki v2.0 allows the use of secret keys for wrapping and unwrapping RSA
private keys, Diffie-Hellman private keys, and DSA private keys. For wrapping, a
private key is BER-encoded according to PKCS #8’s PrivateKeyInfo ASN.1 type.
PKCS #8 requires an algorithm identifier for the type of the secret key. The object
identifiers for the needed algorithm identifiers are as follows:

rsaEncryption OBJECT IDENTIFIER ::= { pkcs-1 1 }

dhKeyAgreement OBJECT IDENTIFIER ::= { pkcs-3 1}

DSA OBJECT IDENTIFIER ::= { iso(1) identifier-organization(3)
oiw(14) secsig(3) algorithm(2) 12 }

where
pkcs-1 OBJECT IDENTIFIER ::= { iso(1) member-body(2) US(840)

rsadsi(113549) pkcs(1) 1 }

pkcs-3 OBJECT IDENTIFIER ::= { iso(1) member-body(2) US(840)
rsadsi(113549) pkcs(1) 3 }

These object identifiers have the following parameters, respectively:
NULL

DHParameter ::= SEQUENCE {

APPENDIX B Page 188

Page 189 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

prime INTEGER, -- p
base INTEGER, -- g
privateValueLength INTEGER OPTIONAL

}

DSAParameters ::= SEQUENCE {
modulusLength INTEGER, -- length of p in bits
prime1 INTEGER, -- modulus p
prime2 INTEGER, -- modulus q
base INTEGER -- base g

}

Within the PrivateKeyInfo type:

· RSA private keys are BER-encoded according to PKCS #1’s RSAPrivateKey
ASN.1 type. This type requires particular values for all the attributes
specific to Cryptoki’s RSA private key objects. In other words, if a Cryptoki
library does not have values for an RSA private key’s CKA_MODULUS,
CKA_PUBLIC_EXPONENT, CKA_PRIVATE_EXPONENT, CKA_PRIME_1,
CKA_PRIME_2, CKA_EXPONENT_1, CKA_EXPONENT2, and
CKA_COEFFICIENT values, it cannot create an RSAPrivateKey BER-
encoding of the key, and so it cannot prepare it for wrapping.

· Diffie-Hellman private keys are encoded by expressing the private value as a
sequence of bytes, most-significant byte first, and then BER-encoding that
sequence of bytes as an OCTET STRINGrepresented as BER-encoded ASN.1
type INTEGER.

· DSA private keys are encoded by expressing the private value as a sequence of
of bytes, most-significant byte first, and then BER-encoding that sequence of
bytes as an OCTET STRINGrepresented as BER-encoded ASN.1 type INTEGER.

Once a private key has been BER-encoded as a PrivateKeyInfo type, the resulting
string of bytes can be encrypted with the secret key. This encryption must be done
in CBC mode with PKCS padding.

Unwrapping a wrapped private key undoes the above procedure. The CBC-
encrypted ciphertext is decrypted, and the PKCS padding is removed. The data
thereby obtained are parsed as a PrivateKeyInfo type, and the wrapped key is
produced. An error will result if the original wrapped key does not decrypt
properly, or if the decrypted unpadded data does not parse properly, or its type
does not match the key type specified in the template for the new key. The
unwrapping mechanism contributes only those attributes specified in the
PrivateKeyInfo type to the newly-unwrapped key; other attributes must be specified
in the template, or will take their default values.

10.11The RC2 cipher

RC2 is a proprietary block cipher which is trademarked by RSA Data Security. It
has a variable keysize and an additional parameter, the “effective number of bits in
the RC2 search space”, which can take on values in the range 1-1024, inclusive.

10.12RC2 mechanism parameters

¨ CK_RC2_PARAMS

CK_RC2_PARAMS provides the parameters to the CKM_RC2_ECB and
CKM_RC2_MAC mechanisms. It holds the effective number of bits in the RC2
search space. It is defined as follows:

typdef CK_ULONG CK_RC2_PARAMS;

¨ CK_RC2_PARAMS_PTR

CK_RC2_PARAMS_PTR points to a CK_RC2_PARAMS structure. It is
implementation-dependent.

¨ CK_RC2_CBC_PARAMS

CK_RC2_CBC_PARAMS is a structure that provides the parameters to the
CKM_RC2_CBC and CKM_RC2_CBC_PAD mechanisms. It is defined as follows:

typedef struct CK_RC2_CBC_PARAMS {
CK_ULONG ulEffectiveBits;
CK_BYTE iv[8];

} CK_RC2_CBC_PARAMS;

The fields of the structure have the following meanings:

ulEffectiveBits the effective number of bits in the RC2 search
space

iv the initialization vector (IV) for cipher block
chaining mode

¨ CK_RC2_CBC_PARAMS_PTR

CK_RC2_CBC_PARAMS_PTR points to a CK_RC2_CBC_PARAMS structure. It is
implementation-dependent.

¨ CK_RC2_MAC_GENERAL_PARAMS

CK_RC2_MAC_GENERAL_PARAMS is a structure that provides the parameters to
the CKM_RC2_MAC_GENERAL mechanism. It is defined as follows:

typedef struct CK_RC2_MAC_GENERAL_PARAMS {
CK_ULONG ulEffectiveBits;
CK_ULONG ulMacLength;

} CK_RC2_MAC_GENERAL_PARAMS;

The fields of the structure have the following meanings:

APPENDIX B Page 190

Page 191 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

ulEffectiveBits the effective number of bits in the RC2 search
space

ulMacLength length of the MAC produced, in bytes

¨ CK_RC2_MAC_GENERAL_PARAMS_PTR

CK_RC2_MAC_GENERAL_PARAMS_PTR points to a
CK_RC2_MAC_GENERAL_PARAMS structure. It is implementation-dependent.

10.13RC2 mechanisms

10.13.1RC2 key generation

The RC2 key generation mechanism, denoted CKM_RC2_KEY_GEN, is a key
generation mechanism for RSA Data Security’s proprietary block cipher RC2.

It does not have a parameter.

The mechanism generates RC2 keys with a particular length in bytes, as specified
in the CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key. Other attributes supported by the RC2 key type
(specifically, the flags indicating which functions the key supports) may be specified
in the template for the key, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of RC2 key sizes,
in bits.

10.13.2RC2-ECB

RC2-ECB, denoted CKM_RC2_ECB, is a mechanism for single- and multiple-part
encryption and decryption; key wrapping; and key unwrapping, based on RSA Data
Security’s proprietary block cipher RC2 and electronic codebook mode as defined in
FIPS PUB 81.

It has a parameter, a CK_RC2_PARAMS, which indicates the effective number of
bits in the RC2 search space.

This mechanism can wrap and unwrap any secret key. Of course, a particular token
may not be able to wrap/unwrap every secret key that it supports. For wrapping,
the mechanism encrypts the value of the CKA_VALUE attribute of the key that is
wrapped, padded on the trailing end with up to seven null bytes so that the
resulting length is a multiple of eight. The output data is the same length as the
padded input data. It does not wrap the key type, key length, or any other
information about the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the
result according to the CKA_KEY_TYPE attribute of the template and, if it has one,
and the key type supports it, the CKA_VALUE_LEN attribute of the template. The
mechanism contributes the result as the CKA_VALUE attribute of the new key;
other attributes required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following
table:

Table 1010-11, RC2-ECB: Key And Data Length Constraints

Function Key
type

Input
length

Output length Comments

C_Encrypt RC2 multiple of
8

same as input length no final
part

C_Decrypt RC2 multiple of
8

same as input length no final
part

C_WrapKey RC2 any input length rounded up to
multiple of 8

C_UnwrapKe
y

RC2 multiple of
8

determined by type of key
being unwrapped or
CKA_VALUE_LEN

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of RC2 effective
number of bits.

10.13.3RC2-CBC

RC2-CBC, denoted CKM_RC2_CBC, is a mechanism for single- and multiple-part
encryption and decryption; key wrapping; and key unwrapping, based on RSA Data
Security’s proprietary block cipher RC2 and cipher-block chaining mode as defined
in FIPS PUB 81.

It has a parameter, a CK_RC2_CBC_PARAMS structure, where the first field
indicates the effective number of bits in the RC2 search space, and the next field is
the initialization vector for cipher block chaining mode.

This mechanism can wrap and unwrap any secret key. Of course, a particular token
may not be able to wrap/unwrap every secret key that it supports. For wrapping,
the mechanism encrypts the value of the CKA_VALUE attribute of the key that is
wrapped, padded on the trailing end with up to seven null bytes so that the
resulting length is a multiple of eight. The output data is the same length as the
padded input data. It does not wrap the key type, key length, or any other
information about the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the
result according to the CKA_KEY_TYPE attribute of the template and, if it has one,
and the key type supports it, the CKA_VALUE_LEN attribute of the template. The
mechanism contributes the result as the CKA_VALUE attribute of the new key;
other attributes required by the key type must be specified in the template.

APPENDIX B Page 192

Page 193 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

Constraints on key types and the length of data are summarized in the following
table:

Table 1010-12, RC2-CBC: Key And Data Length Constraints

Function Key
type

Input
length

Output length Comments

C_Encrypt RC2 multiple of
8

same as input length no final
part

C_Decrypt RC2 multiple of
8

same as input length no final
part

C_WrapKey RC2 any input length rounded up to
multiple of 8

C_UnwrapKe
y

RC2 multiple of
8

determined by type of key
being unwrapped or
CKA_VALUE_LEN

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of RC2 effective
number of bits.

10.13.4RC2-CBC with PKCS padding

RC2-CBC with PKCS padding, denoted CKM_RC2_CBC_PAD, is a mechanism for
single- and multiple-part encryption and decryption; key wrapping; and key
unwrapping, based on RSA Data Security’s proprietary block cipher RC2; cipher-
block chaining mode as defined in FIPS PUB 81; and the block cipher padding
method detailed in PKCS #7.

It has a parameter, a CK_RC2_CBC_PARAMS structure, where the first field
indicates the effective number of bits in the RC2 search space, and the next field is
the initialization vector.

The PKCS padding in this mechanism allows the length of the plaintext value to be
recovered from the ciphertext value. Therefore, when unwrapping keys with this
mechanism, no value should be specified for the CKA_VALUE_LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap
and unwrap RSA, Diffie-Hellman, and DSA private keys (see Section 10.10 for
details). The entries in table Table 10-13 for data length constraints when
wrapping and unwrapping keys do not apply to wrapping and unwrapping private
keys.

Constraints on key types and the length of data are summarized in the following
table:

Table 1010-13, RC2-CBC with PKCS padding: Key And Data Length
Constraints

Function Key
type

Input
length

Output length

C_Encrypt RC2 any input length rounded up to
multiple of 8

C_Decrypt RC2 multiple of
8

between 1 and 8 bytes
shorter than input length

C_WrapKey RC2 any input length rounded up to
multiple of 8

C_UnwrapKe
y

RC2 multiple of
8

between 1 and 8 bytes
shorter than input length

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of RC2 effective
number of bits.

10.13.5General-length RC2-MAC

General-length RC2-MAC, denoted CKM_RC2_MAC_GENERAL, is a mechanism
for single- and multiple-part signatures and verification, based on RSA Data
Security’s proprietary block cipher RC2 and data authentication as defined in FIPS
PUB 113.

It has a parameter, a CK_RC2_MAC_GENERAL_PARAMS structure, which
specifies the effective number of bits in the RC2 search space and the output length
desired from the mechanism.

The output bytes from this mechanism are taken from the start of the final RC2
cipher block produced in the MACing process.

Constraints on key types and the length of data are summarized in the following
table:

Table 1010-14, General-length RC2-MAC: Key And Data Length Constraints

Function Key
type

Data
length

Signature length

C_Sign RC2 any 0-8, as specified in
parameters

C_Verify RC2 any 0-8, as specified in
parameters

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of RC2 effective
number of bits.

APPENDIX B Page 194

Page 195 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

10.13.6RC2-MAC

RC2-MAC, denoted by CKM_RC2_MAC, is a special case of the general-length
RC2-MAC mechanism (see Section 10.13.5). Instead of taking a
CK_RC2_MAC_GENERAL_PARAMS parameter, it takes a CK_RC2_PARAMS
parameter, which only contains the effective number of bits in the RC2 search
space. RC2-MAC always produces and verifies 4-byte MACs.

Constraints on key types and the length of data are summarized in the following
table:

Table 1010-15, RC2-MAC: Key And Data Length Constraints

Function Key
type

Data
length

Signature length

C_Sign RC2 any 4
C_Verify RC2 any 4

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of RC2 effective
number of bits.

10.14RC4 mechanisms

10.14.1RC4 key generation

The RC4 key generation mechanism, denoted CKM_RC4_KEY_GEN, is a key
generation mechanism for RSA Data Security’s proprietary stream cipher RC4.

It does not have a parameter.

The mechanism generates RC4 keys with a particular length in bytes, as specified
in the CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key. Other attributes supported by the RC4 key type
(specifically, the flags indicating which functions the key supports) may be specified
in the template for the key, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of RC4 key sizes,
in bits.

10.14.2RC4

RC4, denoted CKM_RC4, is a mechanism for single- and multiple-part encryption
and decryption based on RSA Data Security’s proprietary stream cipher RC4.

It does not have a parameter.

Constraints on key types and the length of input and output data are summarized in
the following table:

Table 1010-16, RC4 Key And Data Length Constraints

Function Key
type

Input
length

Output length Comments

C_Encrypt RC4 any same as input
length

no final
part

C_Decrypt RC4 any same as input
length

no final
part

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of RC4 key sizes,
in bits.

10.15The RC5 cipher

RC5 is a parametrizable block cipher for which RSA Data Security has applied for a
patent. It has a variable wordsize, a variable keysize, and a variable number of
rounds. The blocksize of RC5 is always equal to twice its wordsize.

10.16RC5 mechanism parameters

¨ CK_RC5_PARAMS

CK_RC5_PARAMS provides the parameters to the CKM_RC5_ECB and
CKM_RC5_MAC mechanisms. It is defined as follows:

typdef struct CK_RC5_PARAMS {
CK_ULONG ulWordsize;
CK_ULONG ulRounds;

} CK_RC5_PARAMS;

The fields of the structure have the following meanings:

ulWordsize wordsize of RC5 cipher in bytes

ulRounds number of rounds of RC5 encipherment

¨ CK_RC5_PARAMS_PTR

CK_RC5_PARAMS_PTR points to a CK_RC5_PARAMS structure. It is
implementation-dependent.

APPENDIX B Page 196

Page 197 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

¨ CK_RC5_CBC_PARAMS

CK_RC5_CBC_PARAMS is a structure that provides the parameters to the
CKM_RC5_CBC and CKM_RC5_CBC_PAD mechanisms. It is defined as follows:

typedef struct CK_RC5_CBC_PARAMS {
CK_ULONG ulWordsize;
CK_ULONG ulRounds;
CK_BYTE_PTR pIv;
CK_ULONG ulIvLen;

} CK_RC5_CBC_PARAMS;

The fields of the structure have the following meanings:

ulWordsize wordsize of RC5 cipher in bytes

ulRounds number of rounds of RC5 encipherment

pIv pointer to initialization vector (IV) for CBC
encryption

ulIvLen length of initialization vector (must be same as
blocksize)

¨ CK_RC5_CBC_PARAMS_PTR

CK_RC5_CBC_PARAMS_PTR points to a CK_RC5_CBC_PARAMS structure. It is
implementation-dependent.

¨ CK_RC5_MAC_GENERAL_PARAMS

CK_RC5_MAC_GENERAL_PARAMS is a structure that provides the parameters to
the CKM_RC5_MAC_GENERAL mechanism. It is defined as follows:

typedef struct CK_RC5_MAC_GENERAL_PARAMS {
CK_ULONG ulWordsize;
CK_ULONG ulRounds;
CK_ULONG ulMacLength;

} CK_RC5_MAC_GENERAL_PARAMS;

The fields of the structure have the following meanings:

ulWordsize wordsize of RC5 cipher in bytes

ulRounds number of rounds of RC5 encipherment

ulMacLength length of the MAC produced, in bytes

¨ CK_RC5_MAC_GENERAL_PARAMS_PTR

CK_RC5_MAC_GENERAL_PARAMS_PTR points to a
CK_RC5_MAC_GENERAL_PARAMS structure. It is implementation-dependent.

10.17RC5 mechanisms

10.17.1RC5 key generation

The RC5 key generation mechanism, denoted CKM_RC5_KEY_GEN, is a key
generation mechanism for RSA Data Security’s block cipher RC5.

It does not have a parameter.

The mechanism generates RC5 keys with a particular length in bytes, as specified
in the CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key. Other attributes supported by the RC5 key type
(specifically, the flags indicating which functions the key supports) may be specified
in the template for the key, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of RC5 key sizes,
in bytes.

10.17.2RC5-ECB

RC5-ECB, denoted CKM_RC5_ECB, is a mechanism for single- and multiple-part
encryption and decryption; key wrapping; and key unwrapping, based on RSA Data
Security’s block cipher RC5 and electronic codebook mode as defined in FIPS PUB
81.

It has a parameter, a CK_RC5_PARAMS, which indicates the wordsize and number
of rounds of encryption to use.

This mechanism can wrap and unwrap any secret key. Of course, a particular token
may not be able to wrap/unwrap every secret key that it supports. For wrapping,
the mechanism encrypts the value of the CKA_VALUE attribute of the key that is
wrapped, padded on the trailing end with null bytes so that the resulting length is a
multiple of the cipher blocksize (twice the wordsize). The output data is the same
length as the padded input data. It does not wrap the key type, key length, or any
other information about the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the
result according to the CKA_KEY_TYPE attributes of the template and, if it has
one, and the key type supports it, the CKA_VALUE_LEN attribute of the template.
The mechanism contributes the result as the CKA_VALUE attribute of the new key;
other attributes required by the key type must be specified in the template.

APPENDIX B Page 198

Page 199 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

Constraints on key types and the length of data are summarized in the following
table:

Table 1010-17, RC5-ECB: Key And Data Length Constraints

Function Key
type

Input
length

Output length Comments

C_Encrypt RC5 multiple of
blocksize

same as input length no final
part

C_Decrypt RC5 multiple of
blocksize

same as input length no final
part

C_WrapKey RC5 any input length rounded up to
multiple of blocksize

C_UnwrapKe
y

RC5 multiple of
blocksize

determined by type of key
being unwrapped or
CKA_VALUE_LEN

10.17.3RC5-CBC

RC5-CBC, denoted CKM_RC5_CBC, is a mechanism for single- and multiple-part
encryption and decryption; key wrapping; and key unwrapping, based on RSA Data
Security’s block cipher RC5 and cipher-block chaining mode as defined in FIPS PUB
81.

It has a parameter, a CK_RC5_CBC_PARAMS structure, which specifies the
wordsize and number of rounds of encryption to use, as well as the initialization
vector for cipher block chaining mode.

This mechanism can wrap and unwrap any secret key. Of course, a particular token
may not be able to wrap/unwrap every secret key that it supports. For wrapping,
the mechanism encrypts the value of the CKA_VALUE attribute of the key that is
wrapped, padded on the trailing end with up to seven null bytes so that the
resulting length is a multiple of eight. The output data is the same length as the
padded input data. It does not wrap the key type, key length, or any other
information about the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the
result according to the CKA_KEY_TYPE attribute of the template and, if it has one,
and the key type supports it, the CKA_VALUE_LEN attribute of the template. The
mechanism contributes the result as the CKA_VALUE attribute of the new key;
other attributes required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following
table:

Table 1010-18, RC5-CBC: Key And Data Length Constraints

Function Key
type

Input
length

Output length Comments

C_Encrypt RC5 multiple of
blocksize

same as input length no final
part

C_Decrypt RC5 multiple of
blocksize

same as input length no final
part

C_WrapKey RC5 any input length rounded up to
multiple of blocksize

C_UnwrapKe
y

RC5 multiple of
blocksize

determined by type of key
being unwrapped or
CKA_VALUE_LEN

10.17.4RC5-CBC with PKCS padding

RC5-CBC with PKCS padding, denoted CKM_RC5_CBC_PAD, is a mechanism for
single- and multiple-part encryption and decryption; key wrapping; and key
unwrapping, based on RSA Data Security’s block cipher RC5; cipher-block chaining
mode as defined in FIPS PUB 81; and the block cipher padding method detailed in
PKCS #7.

It has a parameter, a CK_RC5_CBC_PARAMS structure, which specifies the
wordsize and number of rounds of encryption to use, as well as the initialization
vector for cipher block chaining mode.

The PKCS padding in this mechanism allows the length of the plaintext value to be
recovered from the ciphertext value. Therefore, when unwrapping keys with this
mechanism, no value should be specified for the CKA_VALUE_LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap
and unwrap RSA, Diffie-Hellman, and DSA private keys (see Section10.10 for
details). The entries in table Table 10-19 for data length constraints when
wrapping and unwrapping keys do not apply to wrapping and unwrapping private
keys.

Constraints on key types and the length of data are summarized in the following
table:

APPENDIX B Page 200

Page 201 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

Table 1010-19, RC5-CBC with PKCS padding: Key And Data Length
Constraints

Function Key
type

Input
length

Output length

C_Encrypt RC5 any input length rounded up to
multiple of blocksize

C_Decrypt RC5 multiple of
blocksize

between 1 and blocksize
bytes shorter than input

length
C_WrapKey RC5 any input length rounded up to

multiple of blocksize
C_UnwrapKe
y

RC5 multiple of
blocksize

between 1 and blocksize
bytes shorter than input

length

10.17.5General-length RC5-MAC

General-length RC5-MAC, denoted CKM_RC5_MAC_GENERAL, is a mechanism
for single- and multiple-part signatures and verification, based on RSA Data
Security’s block cipher RC5 and data authentication as defined in FIPS PUB 113.

It has a parameter, a CK_RC5_MAC_GENERAL_PARAMS structure, which
specifies the wordsize and number of rounds of encryption to use and the output
length desired from the mechanism.

The output bytes from this mechanism are taken from the start of the final RC5
cipher block produced in the MACing process.

Constraints on key types and the length of data are summarized in the following
table:

Table 1010-20, General-length RC2-MAC: Key And Data Length Constraints

Function Key
type

Data
length

Signature length

C_Sign RC2 any 0-blocksize, as specified in
parameters

C_Verify RC2 any 0-blocksize, as specified in
parameters

10.17.6RC5-MAC

RC5-MAC, denoted by CKM_RC5_MAC, is a special case of the general-length
RC5-MAC mechanism (see Section 10.17.5). Instead of taking a
CK_RC5_MAC_GENERAL_PARAMS parameter, it takes a CK_RC5_PARAMS
parameter. RC5-MAC always produces and verifies MACs half as large as the RC5
blocksize.

Constraints on key types and the length of data are summarized in the following
table:

Table 1010-21, RC5-MAC: Key And Data Length Constraints

Function Key
type

Data
length

Signature length

C_Sign RC5 any RC5 wordsize = ëblocksize/2û
C_Verify RC5 any RC5 wordsize = ëblocksize/2û

10.18General block cipher mechanism parameters

¨ CK_MAC_GENERAL_PARAMS

CK_MAC_GENERAL_PARAMS provides the parameters to the general-length
MACing mechanisms of the DES, DES3 (triple-DES), CAST, CAST3, CAST5, IDEA,
and CDMF ciphers. It holds the length of the MAC that these mechanisms will
produce. It is defined as follows:

typedef CK_ULONG CK_MAC_GENERAL_PARAMS;

¨ CK_MAC_GENERAL_PARAMS_PTR

CK_MAC_GENERAL_PARAMS_PTR points to a CK_MAC_GENERAL_PARAMS.
It is implementation-dependent.

10.19General block cipher mechanisms

For brevity’s sake, the mechanisms for the DES, DES3 (triple-DES), CAST, CAST3,
CAST5, IDEA, and CDMF block ciphers will be described together here. Each of
these ciphers has the following mechanisms, which will be described in a
templatized form:

10.19.1General block cipher key generation

Cipher <NAME> has a key generation mechanism, “<NAME> key generation”,
denoted CKM_<NAME>_KEY_GEN.

This mechanism does not have a parameter.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key. Other attributes supported by the key type (specifically,
the flags indicating which functions the key supports) may be specified in the
template for the key, or else are assigned default initial values.

When DES keys or CDMF keys are generated, their parity bits are set properly, as
specified in FIPS PUB 46-2. Similarly, when a triple-DES key is generated, each of
the DES keys comprising it has its parity bits set properly.

When DES or CDMF keys are generated, it is token-dependent whether or not it is
possible for “weak” or “semi-weak” keys to be generated. Similarly, when triple-

APPENDIX B Page 202

Page 203 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

DES keys are generated, it is token dependent whether or not it is possible for any
of the component DES keys to be “weak” or “semi-weak” keys.

When CAST, CAST3, or CAST5 keys are generated, the template for the secret key
must specify a CKA_VALUE_LEN attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure may or may not be used. The CAST, CAST3,
and CAST5 ciphers have variable key sizes, and so for the the key generation
mechanisms for these ciphers, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of key sizes, in
bytes. For the DES, DES3 (triple-DES), IDEA, and CDMF ciphers, these fields are
not used.

10.19.2General block cipher ECB

Cipher <NAME> has an electronic codebook mechanism, “<NAME>-ECB”,
denoted CKM_<NAME>_ECB. It is a mechanism for single- and multiple-part
encryption and decryption; key wrapping; and key unwrapping with <NAME>.

It does not have a parameter.

This mechanism can wrap and unwrap any secret key. Of course, a particular token
may not be able to wrap/unwrap every secret key that it supports. For wrapping,
the mechanism encrypts the value of the CKA_VALUE attribute of the key that is
wrapped, padded on the trailing end with null bytes so that the resulting length is a
multiple of <NAME>’s blocksize. The output data is the same length as the padded
input data. It does not wrap the key type, key length or any other information about
the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the
result according to the CKA_KEY_TYPE attribute of the template and, if it has one,
and the key type supports it, the CKA_VALUE_LEN attribute of the template. The
mechanism contributes the result as the CKA_VALUE attribute of the new key;
other attributes required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following
table:

Table 1010-22, General block cipher ECB: Key And Data Length Constraints

Function Key
type

Input
length

Output length Comments

C_Encrypt <NAME
>

multiple of
blocksize

same as input length no final
part

C_Decrypt <NAME
>

multiple of
blocksize

same as input length no final
part

C_WrapKey <NAME
>

any input length rounded up to
multiple of blocksize

C_UnwrapKe
y

<NAME
>

any determined by type of key
being unwrapped or
CKA_VALUE_LEN

10.19.3General block cipher CBC

Cipher <NAME> has a cipher-block chaining mode, “<NAME>-CBC”, denoted
CKM_<NAME>_CBC. It is a mechanism for single- and multiple-part encryption
and decryption; key wrapping; and key unwrapping with <NAME>.

It has a parameter, an initialization vector for cipher block chaining mode. The
initialization vector has the same length as <NAME>’s blocksize.

Constraints on key types and the length of data are summarized in the following
table:

Table 1010-23, General block cipher CBC: Key And Data Length Constraints

Function Key
type

Input
length

Output length Comments

C_Encrypt <NAME
>

multiple of
blocksize

same as input length no final
part

C_Decrypt <NAME
>

multiple of
blocksize

same as input length no final
part

C_WrapKey <NAME
>

any input length rounded up to
multiple of blocksize

C_UnwrapKe
y

<NAME
>

any determined by type of key
being unwrapped or
CKA_VALUE_LEN

10.19.4General block cipher CBC with PKCS padding

Cipher <NAME> has a cipher-block chaining mode with PKCS padding, “<NAME>-
CBC with PKCS padding”, denoted CKM_<NAME>_CBC_PAD. It is a mechanism
for single- and multiple-part encryption and decryption; key wrapping; and key
unwrapping with <NAME>. All ciphertext is padded with PKCS padding.

It has a parameter, an initialization vector for cipher block chaining mode. The
initialization vector has the same length as <NAME>’s blocksize.

APPENDIX B Page 204

Page 205 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

The PKCS padding in this mechanism allows the length of the plaintext value to be
recovered from the ciphertext value. Therefore, when unwrapping keys with this
mechanism, no value should be specified for the CKA_VALUE_LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap
and unwrap RSA, Diffie-Hellman, and DSA private keys (see Section 10.10 for
details). The entries in table Table 10-24 for data length constraints when
wrapping and unwrapping keys do not apply to wrapping and unwrapping private
keys.

Constraints on key types and the length of data are summarized in the following
table:

Table 1010-24, General block cipher CBC with PKCS padding: Key And Data
Length Constraints

Function Key
type

Input
length

Output length

C_Encrypt <NAME
>

any input length rounded up to
multiple of blocksize

C_Decrypt <NAME
>

multiple of
blocksize

between 1 and blocksize
bytes shorter than input

length
C_WrapKey <NAME

>
any input length rounded up to

multiple of blocksize
C_UnwrapKe
y

<NAME
>

multiple of
blocksize

between 1 and blocksize
bytes shorter than input

length

10.19.5General-length general block cipher MAC

Cipher <NAME> has a general-length MACing mode, “General-length <NAME>-
MAC”, denoted CKM_<NAME>_MAC_GENERAL. It is a mechanism for single-
and multiple-part signatures and verification.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which specifies the size of
the output.

The output bytes from this mechanism are taken from the start of the final cipher
block produced in the MACing process.

Constraints on key types and the length of input and output data are summarized in
the following table:

Table 1010-25, General-length general block cipher MAC: Key And Data
Length Constraints

Function Key
type

Data
length

Signature length

C_Sign <NAME
>

any 0-blocksize, depending on
parameters

C_Verify <NAME
>

any 0-blocksize, depending on
parameters

10.19.6General block cipher MAC

Cipher <NAME> has a MACing mechanism, “<NAME>-MAC”, denoted
CKM_<NAME>_MAC. This mechanism is a special case of the
CKM_<NAME>_MAC_GENERAL mechanism described in Section 10.19.5. It
always produces an output of size half as large as <NAME>’s blocksize.

This mechanism has no parameters.

Constraints on key types and the length of data are summarized in the following
table:

Table 1010-26, General block cipher MAC: Key And Data Length
Constraints

Function Key
type

Data
length

Signature length

C_Sign <NAME
>

any ëblocksize/2û

C_Verify <NAME
>

any ëblocksize/2û

10.20Double-length DES mechanisms

10.20.1Double-length DES key generation

The double-length DES key generation mechanism, denoted
CKM_DES2_KEY_GEN, is a key generation mechanism for double-length DES
keys. The DES keys making up a double-length DES key both have their parity bits
set properly, as specified in FIPS PUB 46-2.

It does not have a parameter.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key. Other attributes supported by the double-length DES key
type (specifically, the flags indicating which functions the key supports) may be
specified in the template for the key, or else are assigned default initial values.

Double-length DES keys can be used with all the same mechanisms as triple-DES
keys: CKM_DES_ECB, CKM_DES_CBC, CKM_DES_CBC_PAD,
CKM_DES_MAC_GENERAL, and CKM_DES_MAC (these mechanisms are

APPENDIX B Page 206

Page 207 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

described in templatized form in Section 10.19). Triple-DES encryption with a
double-length DES key consists of three steps: encryption with the first DES key;
decryption with the second DES key; and encryption with the first DES key.

When double-length DES keys are generated, it is token-dependent whether or not
it is possible for either of the component DES keys to be “weak” or “semi-weak”
keys.

10.21SKIPJACK mechanism parameters

¨ CK_SKIPJACK_PRIVATE_WRAP_PARAMS

CK_SKIPJACK_PRIVATE_WRAP_PARAMS is a structure that provides the
parameters to the CKM_SKIPJACK_PRIVATE_WRAP mechanism. It is defined
as follows:

typedef struct CK_SKIPJACK_PRIVATE_WRAP_PARAMS {
CK_ULONG ulPasswordLen;
CK_BYTE_PTR pPassword;
CK_ULONG ulPublicDataLen;
CK_BYTE_PTR pPublicData;
CK_ULONG ulPandGLen;
CK_ULONG ulQLen;
CK_ULONG ulRandomLen;
CK_BYTE_PTR pRandomA;
CK_BYTE_PTR pPrimeP;
CK_BYTE_PTR pBaseG;
CK_BYTE_PTR pSubprimeQ;

} CK_SKIPJACK_PRIVATE_WRAP_PARAMS;

The fields of the structure have the following meanings:

ulPasswordLen length of the password

pPassword pointer to the buffer which contains the user-
supplied password

ulPublicDataLen other party’s key exchange public key size

pPublicData pointer to other party’s key exchange public key
value

ulPandGLen length of prime and base values

ulQLen length of subprime value

ulRandomLen size of random Ra, in bytes

pRandomA pointer to Ra data

pPrimeP pointer to Prime, p, value

pBaseG pointer to Base, g, value

pSubprimeQ pointer to Subprime, q, value

¨ CK_SKIPJACK_PRIVATE_WRAP_PARAMS_PTR

CK_SKIPJACK_PRIVATE_WRAP_PARAMS_PTR points to a
CK_PRIVATE_WRAP_PARAMS structure. It is implementation-dependent.

¨ CK_SKIPJACK_RELAYX_PARAMS

CK_SKIPJACK_RELAYX_PARAMS is a structure that provides the parameters to
the CKM_SKIPJACK_RELAYX mechanism. It is defined as follows:

typedef struct CK_SKIPJACK_RELAYX_PARAMS {
CK_ULONG ulOldWrappedXLen;
CK_BYTE_PTR pOldWrappedX;
CK_ULONG ulOldPasswordLen;
CK_BYTE_PTR pOldPassword;
CK_ULONG ulOldPublicDataLen;
CK_BYTE_PTR pOldPublicData;
CK_ULONG ulOldRandomLen;
CK_BYTE_PTR pOldRandomA;
CK_ULONG ulNewPasswordLen;
CK_BYTE_PTR pNewPassword;
CK_ULONG ulNewPublicDataLen;
CK_BYTE_PTR pNewPublicData;
CK_ULONG ulNewRandomLen;
CK_BYTE_PTR pNewRandomA;

} CK_SKIPJACK_RELAYX_PARAMS;

The fields of the structure have the following meanings:

ulOldWrappedXLen length of old wrapped key in bytes

pOldWrappedX pointer to old wrapper key

ulOldPasswordLen length of the old password

pOldPassword pointer to the buffer which contains the old user-
supplied password

ulOldPublicDataLen old key exchange public key size

 pOldPublicData pointer to old key exchange public key value

ulOldRandomLen size of old random Ra in bytes

pOldRandomA pointer to old Ra data

ulNewPasswordLen length of the new password

APPENDIX B Page 208

Page 209 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

pNewPassword pointer to the buffer which contains the new user-
supplied password

ulNewPublicDataLen new key exchange public key size

 pNewPublicData pointer to new key exchange public key value

ulNewRandomLen size of new random Ra in bytes

pNewRandomA pointer to new Ra data

¨ CK_SKIPJACK_RELAYX_PARAMS_PTR

CK_SKIPJACK_RELAYX_PARAMS_PTR points to a
CK_SKIPJACK_RELAYX_PARAMS structure. It is implementation-dependent.

10.22SKIPJACK mechanisms

10.22.1SKIPJACK key generation

The SKIPJACK key generation mechanism, denoted CKM_SKIPJACK_KEY_GEN, is
a key generation mechanism for SKIPJACK. The output of this mechanism is called
a Message Encryption Key (MEK).

It does not have a parameter.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key.

10.22.2SKIPJACK-ECB64

SKIPJACK-ECB64, denoted CKM_SKIPJACK_ECB64, is a mechanism for single-
and multiple-part encryption and decryption with SKIPJACK in 64-bit electronic
codebook mode as defined in FIPS PUB 185.

It has a parameter, a 24-byte initialization vector. During an encryption operation,
this IV is set to some value generated by the token—in other words, the application
cannot specify a particular IV when encrypting. It can, of course, specify a
particular IV when decrypting.

Constraints on key types and the length of data are summarized in the following
table:

Table 1010-27, SKIPJACK-ECB64: Data and Length Constraints

Function Key type Input
length

Output length Comment
s

C_Encrypt SKIPJACK multiple of
8

same as input
length

no final
part

C_Decrypt SKIPJACK multiple of
8

same as input
length

no final
part

10.22.3SKIPJACK-CBC64

SKIPJACK-CBC64, denoted CKM_SKIPJACK_CBC64, is a mechanism for single-
and multiple-part encryption and decryption with SKIPJACK in 64-bit cipher-block
chaining mode as defined in FIPS PUB 185.

It has a parameter, a 24-byte initialization vector. During an encryption operation,
this IV is set to some value generated by the token—in other words, the application
cannot specify a particular IV when encrypting. It can, of course, specify a
particular IV when decrypting.

Constraints on key types and the length of data are summarized in the following
table:

Table 1010-28, SKIPJACK-CBC64: Data and Length Constraints

Function Key type Input
length

Output length Comment
s

C_Encrypt SKIPJACK multiple of
8

same as input
length

no final
part

C_Decrypt SKIPJACK multiple of
8

same as input
length

no final
part

10.22.4SKIPJACK-OFB64

SKIPJACK-OFB64, denoted CKM_SKIPJACK_OFB64, is a mechanism for single-
and multiple-part encryption and decryption with SKIPJACK in 64-bit output
feedback mode as defined in FIPS PUB 185.

It has a parameter, a 24-byte initialization vector. During an encryption operation,
this IV is set to some value generated by the token—in other words, the application
cannot specify a particular IV when encrypting. It can, of course, specify a
particular IV when decrypting.

Constraints on key types and the length of data are summarized in the following
table:

APPENDIX B Page 210

Page 211 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

Table 1010-29, SKIPJACK-OFB64: Data and Length Constraints

Function Key type Input
length

Output length Comment
s

C_Encrypt SKIPJACK multiple of
8

same as input
length

no final
part

C_Decrypt SKIPJACK multiple of
8

same as input
length

no final
part

10.22.5SKIPJACK-CFB64

SKIPJACK-CFB64, denoted CKM_SKIPJACK_CFB64, is a mechanism for single-
and multiple-part encryption and decryption with SKIPJACK in 64-bit cipher
feedback mode as defined in FIPS PUB 185.

It has a parameter, a 24-byte initialization vector. During an encryption operation,
this IV is set to some value generated by the token—in other words, the application
cannot specify a particular IV when encrypting. It can, of course, specify a
particular IV when decrypting.

Constraints on key types and the length of data are summarized in the following
table:

Table 1010-30, SKIPJACK-CFB64: Data and Length Constraints

Function Key type Input
length

Output length Comment
s

C_Encrypt SKIPJACK multiple of
8

same as input
length

no final
part

C_Decrypt SKIPJACK multiple of
8

same as input
length

no final
part

10.22.6SKIPJACK-CFB32

SKIPJACK-CFB32, denoted CKM_SKIPJACK_CFB32, is a mechanism for single-
and multiple-part encryption and decryption with SKIPJACK in 32-bit cipher
feedback mode as defined in FIPS PUB 185.

It has a parameter, a 24-byte initialization vector. During an encryption operation,
this IV is set to some value generated by the token—in other words, the application
cannot specify a particular IV when encrypting. It can, of course, specify a
particular IV when decrypting.

Constraints on key types and the length of data are summarized in the following
table:

Table 1010-31, SKIPJACK-CFB32: Data and Length Constraints

Function Key type Input
length

Output length Comment
s

C_Encrypt SKIPJACK multiple of
4

same as input
length

no final
part

C_Decrypt SKIPJACK multiple of
4

same as input
length

no final
part

10.22.7SKIPJACK-CFB16

SKIPJACK-CFB16, denoted CKM_SKIPJACK_CFB16, is a mechanism for single-
and multiple-part encryption and decryption with SKIPJACK in 16-bit cipher
feedback mode as defined in FIPS PUB 185.

It has a parameter, a 24-byte initialization vector. During an encryption operation,
this IV is set to some value generated by the token—in other words, the application
cannot specify a particular IV when encrypting. It can, of course, specify a
particular IV when decrypting.

Constraints on key types and the length of data are summarized in the following
table:

Table 1010-32, SKIPJACK-CFB16: Data and Length Constraints

Function Key type Input
length

Output length Comment
s

C_Encrypt SKIPJACK multiple of
4

same as input
length

no final
part

C_Decrypt SKIPJACK multiple of
4

same as input
length

no final
part

10.22.8SKIPJACK-CFB8

SKIPJACK-CFB8, denoted CKM_SKIPJACK_CFB8, is a mechanism for single- and
multiple-part encryption and decryption with SKIPJACK in 8-bit cipher feedback
mode as defined in FIPS PUB 185.

It has a parameter, a 24-byte initialization vector. During an encryption operation,
this IV is set to some value generated by the token—in other words, the application
cannot specify a particular IV when encrypting. It can, of course, specify a
particular IV when decrypting.

Constraints on key types and the length of data are summarized in the following
table:

APPENDIX B Page 212

Page 213 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

Table 1010-33, SKIPJACK-CFB8: Data and Length Constraints

Function Key type Input
length

Output length Comment
s

C_Encrypt SKIPJACK multiple of
4

same as input
length

no final
part

C_Decrypt SKIPJACK multiple of
4

same as input
length

no final
part

10.22.9SKIPJACK-WRAP

The SKIPJACK-WRAP mechanism, denoted CKM_SKIPJACK_WRAP, is used to
wrap and unwrap a secret key (MEK). It can wrap or unwrap SKIPJACK, BATON,
and JUNIPER keys.

It does not have a parameter.

10.22.10SKIPJACK-PRIVATE-WRAP

The SKIPJACK-PRIVATE-WRAP mechanism, denoted
CKM_SKIPJACK_PRIVATE_WRAP, is used to wrap and unwrap a private key. It
can wrap KEA and DSA private keys.

It has a parameter, a CK_SKIPJACK_PRIVATE_WRAP_PARAMS structure

10.22.11SKIPJACK-RELAYX

The SKIPJACK-RELAYX mechanism, denoted CKM_SKIPJACK_RELAYX, is used
with the C_WrapKey function to “change the wrapping” on a private key which was
wrapped with the SKIPJACK-PRIVATE-WRAP mechanism (see Section 10.22.10).

It has a parameter, a CK_SKIPJACK_RELAYX_PARAMS structure.

Although the SKIPJACK-RELAYX mechanism is used with C_WrapKey, it differs
from other key-wrapping mechanisms. Other key-wrapping mechanisms take a key
handle as one of the arguments to C_WrapKey; however, for the
SKIPJACK_RELAYX mechanism, the [always invalid] value 0 should be passed as the
key handle for C_WrapKey, and the already-wrapped key isshould be passed in as
part of the CK_SKIPJACK_RELAYX_PARAMS structure.

10.23BATON mechanisms

10.23.1BATON key generation

The BATON key generation mechanism, denoted CKM_BATON_KEY_GEN, is a key
generation mechanism for BATON. The output of this mechanism is called a
Message Encryption Key (MEK).

It does not have a parameter.

This mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key.

10.23.2BATON-ECB128

BATON-ECB128, denoted CKM_BATON_ECB128, is a mechanism for single- and
multiple-part encryption and decryption with BATON in 128-bit electronic codebook
mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation,
this IV is set to some value generated by the token—in other words, the application
cannot specify a particular IV when encrypting. It can, of course, specify a
particular IV when decrypting.

Constraints on key types and the length of data are summarized in the following
table:

Table 1010-34, BATON-ECB128: Data and Length Constraints

Function Key type Input
length

Output length Comment
s

C_Encrypt BATON multiple of
16

same as input length no final
part

C_Decrypt BATON multiple of
16

same as input length no final
part

10.23.3BATON-ECB96

BATON-ECB96, denoted CKM_BATON_ECB96, is a mechanism for single- and
multiple-part encryption and decryption with BATON in 96-bit electronic codebook
mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation,
this IV is set to some value generated by the token—in other words, the application
cannot specify a particular IV when encrypting. It can, of course, specify a
particular IV when decrypting.

Constraints on key types and the length of data are summarized in the following
table:

APPENDIX B Page 214

Page 215 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

Table 1010-35, BATON-ECB96: Data and Length Constraints

Function Key type Input
length

Output length Comment
s

C_Encrypt BATON multiple of
12

same as input length no final
part

C_Decrypt BATON multiple of
12

same as input length no final
part

10.23.4BATON-CBC128

BATON-CBC128, denoted CKM_BATON_CBC128, is a mechanism for single- and
multiple-part encryption and decryption with BATON in 128-bit cipher-block
chaining mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation,
this IV is set to some value generated by the token—in other words, the application
cannot specify a particular IV when encrypting. It can, of course, specify a
particular IV when decrypting.

Constraints on key types and the length of data are summarized in the following
table:

Table 1010-36, BATON-CBC128: Data and Length Constraints

Function Key type Input
length

Output length Comment
s

C_Encrypt BATON multiple of
16

same as input length no final
part

C_Decrypt BATON multiple of
16

same as input length no final
part

10.23.5BATON-COUNTER

BATON-COUNTER, denoted CKM_BATON_COUNTER, is a mechanism for single-
and multiple-part encryption and decryption with BATON in counter mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation,
this IV is set to some value generated by the token—in other words, the application
cannot specify a particular IV when encrypting. It can, of course, specify a
particular IV when decrypting.

Constraints on key types and the length of data are summarized in the following
table:

Table 1010-37, BATON-COUNTER: Data and Length Constraints

Function Key type Input
length

Output length Comment
s

C_Encrypt BATON multiple of
16

same as input length no final
part

C_Decrypt BATON multiple of
16

same as input length no final
part

10.23.6BATON-SHUFFLE

BATON-SHUFFLE, denoted CKM_BATON_SHUFFLE, is a mechanism for single-
and multiple-part encryption and decryption with BATON in shuffle mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation,
this IV is set to some value generated by the token—in other words, the application
cannot specify a particular IV when encrypting. It can, of course, specify a
particular IV when decrypting.

Constraints on key types and the length of data are summarized in the following
table:

Table 1010-38, BATON-SHUFFLE: Data and Length Constraints

Function Key type Input
length

Output length Comment
s

C_Encrypt BATON multiple of
16

same as input length no final
part

C_Decrypt BATON multiple of
16

same as input length no final
part

10.23.7BATON WRAP

The BATON wrap and unwrap mechanism, denoted CKM_BATON_WRAP, is a
function used to wrap and unwrap a secret key (MEK). It can wrap and unwrap
SKIPJACK, BATON, and JUNIPER keys.

It has no parameters.

When used to unwrap a key, this mechanism contributes the CKA_CLASS,
CKA_KEY_TYPE, and CKA_VALUE attributes to it.

10.24JUNIPER mechanisms

10.24.1JUNIPER key generation

The JUNIPER key generation mechanism, denoted CKM_JUNIPER_KEY_GEN, is a
key generation mechanism for JUNIPER. The output of this mechanism is called a
Message Encryption Key (MEK).

APPENDIX B Page 216

Page 217 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

It does not have a parameter.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key.

10.24.2JUNIPER-ECB128

JUNIPER-ECB128, denoted CKM_JUNIPER_ECB128, is a mechanism for single-
and multiple-part encryption and decryption with JUNIPER in 128-bit electronic
codebook mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation,
this IV is set to some value generated by the token—in other words, the application
cannot specify a particular IV when encrypting. It can, of course, specify a
particular IV when decrypting.

Constraints on key types and the length of data are summarized in the following
table. For encryption and decryption, the input and output data (parts) may begin
at the same location in memory.

Table 1010-39, JUNIPER-ECB128: Data and Length Constraints

Function Key type Input
length

Output length Comment
s

C_Encrypt JUNIPER multiple of
16

same as input length no final
part

C_Decrypt JUNIPER multiple of
16

same as input length no final
part

10.24.3JUNIPER-CBC128

JUNIPER-CBC128, denoted CKM_JUNIPER_CBC128, is a mechanism for single-
and multiple-part encryption and decryption with JUNIPER in 128-bit cipher-block
chaining mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation,
this IV is set to some value generated by the token—in other words, the application
cannot specify a particular IV when encrypting. It can, of course, specify a
particular IV when decrypting.

Constraints on key types and the length of data are summarized in the following
table. For encryption and decryption, the input and output data (parts) may begin
at the same location in memory.

Table 1010-40, JUNIPER-CBC128: Data and Length Constraints

Function Key type Input
length

Output length Comment
s

C_Encrypt JUNIPER multiple of
16

same as input length no final
part

C_Decrypt JUNIPER multiple of
16

same as input length no final
part

10.24.4JUNIPER-COUNTER

JUNIPER COUNTER, denoted CKM_JUNIPER_COUNTER, is a mechanism for
single- and multiple-part encryption and decryption with JUNIPER in counter mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation,
this IV is set to some value generated by the token—in other words, the application
cannot specify a particular IV when encrypting. It can, of course, specify a
particular IV when decrypting.

Constraints on key types and the length of data are summarized in the following
table. For encryption and decryption, the input and output data (parts) may begin
at the same location in memory.

Table 1010-41, JUNIPER-COUNTER: Data and Length Constraints

Function Key type Input
length

Output length Comment
s

C_Encrypt JUNIPER multiple of
16

same as input length no final
part

C_Decrypt JUNIPER multiple of
16

same as input length no final
part

10.24.5JUNIPER-SHUFFLE

JUNIPER-SHUFFLE, denoted CKM_JUNIPER_SHUFFLE, is a mechanism for
single- and multiple-part encryption and decryption with JUNIPER in shuffle mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation,
this IV is set to some value generated by the token—in other words, the application
cannot specify a particular IV when encrypting. It can, of course, specify a
particular IV when decrypting.

Constraints on key types and the length of data are summarized in the following
table. For encryption and decryption, the input and output data (parts) may begin
at the same location in memory.

APPENDIX B Page 218

Page 219 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

Table 1010-42, JUNIPER-SHUFFLE: Data and Length Constraints

Function Key type Input
length

Output length Comment
s

C_Encrypt JUNIPER multiple of
16

same as input length no final
part

C_Decrypt JUNIPER multiple of
16

same as input length no final
part

10.24.6JUNIPER WRAP

The JUNIPER wrap and unwrap mechanism, denoted CKM_JUNIPER_WRAP, is a
function used to wrap and unwrap an MEK. It can wrap or unwrap SKIPJACK,
BATON, and JUNIPER keys.

It has no parameters.

When used to unwrap a key, this mechanism contributes the CKA_CLASS,
CKA_KEY_TYPE, and CKA_VALUE attributes to it.

10.25MD2 mechanisms

10.25.1MD2

The MD2 mechanism, denoted CKM_MD2, is a mechanism for message digesting,
following the MD2 message-digest algorithm defined in RFC 1319.

It does not have a parameter.

Constraints on the length of data are summarized in the following table:

Table 1010-43, MD2: Data Length Constraints

Functio
n

Data
length

Digest
length

C_Digest any 16

10.25.2General-length MD2-HMAC

The general-length MD2-HMAC mechanism, denoted
CKM_MD2_HMAC_GENERAL, is a mechanism for signatures and verification. It
uses the HMAC construction, based on the MD2 hash function. The keys it uses are
generic secret keys.

It has a parameter, a CKA_MAC_GENERAL_PARAMS, which holds the length in
bytes of the desired output. This length should be in the range 0-16 (the output size
of MD2 is 16 bytes). Signatures produced by this mechanism will be taken from the
start of the full 16-byte HMAC output.

Table 1010-44, General-length MD2-HMAC: Key And Data Length
Constraints

Function Key type Data
length

Signature length

C_Sign generic
secret

any 0-16, depending on
parameters

C_Verify generic
secret

any 0-16, depending on
parameters

10.25.3MD2-HMAC

The MD2-HMAC mechanism, denoted CKM_MD2_HMAC, is a special case of the
general-length MD2-HMAC mechanism in Section 10.25.2.

It has no parameter, and always produces an output of length 16.

10.25.4MD2 key derivation

MD2 key derivation, denoted CKM_MD2_KEY_DERIVATION, is a mechanism
which provides the capability of deriving a secret key by digesting the value of
another secret key with MD2.

The value of the base key is digested once, and the result is used to make the value
of derived secret key.

· If no length or key type is provided in the template, then the key produced by
this mechanism will be a generic secret key. Its length will be 16 bytes (the
output size of MD2).

· If no key type is provided in the template, but a length is, then the key produced
by this mechanism will be a generic secret key of the specified length.

· If no length was provided in the template, but a key type is, then that key type
must have a well-defined length. If it does, then the key produced by this
mechanism will be of the type specified in the template. If it doesn’t, an
error will be returned.

· If both a key type and a length are provided in the template, the length must be
compatible with that key type. The key produced by this mechanism will be of
the specified type and length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits
of the key will be set properly.

If the requested type of key requires more than 16 bytes, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

· The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for
the new key can both be specified to be either TRUE or FALSE. If omitted,
these attributes each take on some default value.

APPENDIX B Page 220

Page 221 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

· If the base key has its CKA_ALWAYS_SENSITIVE attribute set to FALSE, then
the derived key will as well. If the base key has its
CKA_ALWAYS_SENSITIVE attribute set to TRUE, then the derived key has
its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

· Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to
FALSE, then the derived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE attribute set to TRUE, then the derived key has
its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

10.26MD5 mechanisms

10.26.1MD5

The MD5 mechanism, denoted CKM_MD5, is a mechanism for message digesting,
following the MD5 message-digest algorithm defined in RFC 1321.

It does not have a parameter.

Constraints on the length of input and output data are summarized in the following
table. For single-part digesting, the data and the digest may begin at the same
location in memory.

Table 1010-45, MD5: Data Length Constraints

Functio
n

Data
length

Digest
length

C_Digest any 16

10.26.2General-length MD5-HMAC

The general-length MD5-HMAC mechanism, denoted
CKM_MD5_HMAC_GENERAL, is a mechanism for signatures and verification. It
uses the HMAC construction, based on the MD5 hash function. The keys it uses are
generic secret keys.

It has a parameter, a CKA_MAC_GENERAL_PARAMS, which holds the length in
bytes of the desired output. This length should be in the range 0-16 (the output size
of MD5 is 16 bytes). Signatures produced by this mechanism will be taken from the
start of the full 16-byte HMAC output.

Table 1010-46, General-length MD5-HMAC: Key And Data Length
Constraints

Function Key type Data
length

Signature length

C_Sign generic
secret

any 0-16, depending on
parameters

C_Verify generic
secret

any 0-16, depending on
parameters

10.26.3MD5-HMAC

The MD5-HMAC mechanism, denoted CKM_MD5_HMAC, is a special case of the
general-length MD5-HMAC mechanism in Section 10.26.2.

It has no parameter, and always produces an output of length 16.

10.26.4MD5 key derivation

MD5 key derivation, denoted CKM_MD5_KEY_DERIVATION, is a mechanism
which provides the capability of deriving a secret key by digesting the value of
another secret key with MD5.

The value of the base key is digested once, and the result is used to make the value
of derived secret key.

· If no length or key type is provided in the template, then the key produced by
this mechanism will be a generic secret key. Its length will be 16 bytes (the
output size of MD5).

· If no key type is provided in the template, but a length is, then the key produced
by this mechanism will be a generic secret key of the specified length.

· If no length was provided in the template, but a key type is, then that key type
must have a well-defined length. If it does, then the key produced by this
mechanism will be of the type specified in the template. If it doesn’t, an
error will be returned.

· If both a key type and a length are provided in the template, the length must be
compatible with that key type. The key produced by this mechanism will be of
the specified type and length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits
of the key will be set properly.

If the requested type of key requires more than 16 bytes, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

· The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for
the new key can both be specified to be either TRUE or FALSE. If omitted,
these attributes each take on some default value.

APPENDIX B Page 222

Page 223 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

· If the base key has its CKA_ALWAYS_SENSITIVE attribute set to FALSE, then
the derived key will as well. If the base key has its
CKA_ALWAYS_SENSITIVE attribute set to TRUE, then the derived key has
its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

· Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to
FALSE, then the derived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE attribute set to TRUE, then the derived key has
its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

10.27SHA-1 mechanisms

10.27.1SHA-1

The SHA-1 mechanism, denoted CKM_SHA_1, is a mechanism for message
digesting, following the Secure Hash Algorithm defined in FIPS PUB 180, as
subsequently amended by NIST-1.

 It does not have a parameter.

Constraints on the length of input and output data are summarized in the following
table. For single-part digesting, the data and the digest may begin at the same
location in memory.

Table 1010-47, SHA-1: Data Length Constraints

Functio
n

Input
length

Digest
length

C_Digest any 20

10.27.2General-length SHA-1-HMAC

The general-length SHA-1-HMAC mechanism, denoted
CKM_SHA_1_HMAC_GENERAL, is a mechanism for signatures and verification.
It uses the HMAC construction, based on the SHA-1 hash function. The keys it uses
are generic secret keys.

It has a parameter, a CKA_MAC_GENERAL_PARAMS, which holds the length in
bytes of the desired output. This length should be in the range 0-20 (the output size
of SHA-1 is 20 bytes). Signatures produced by this mechanism will be taken from
the start of the full 20-byte HMAC output.

Table 1010-48, General-length SHA-1-HMAC: Key And Data Length
Constraints

Function Key type Data
length

Signature length

C_Sign generic
secret

any 0-20, depending on
parameters

C_Verify generic
secret

any 0-20, depending on
parameters

10.27.3SHA-1-HMAC

The SHA-1-HMAC mechanism, denoted CKM_SHA_1_HMAC, is a special case of
the general-length SHA-1-HMAC mechanism in Section 10.27.2.

It has no parameter, and always produces an output of length 20.

10.27.4SHA-1 key derivation

SHA-1 key derivation, denoted CKM_SHA1_KEY_DERIVATION, is a mechanism
which provides the capability of deriving a secret key by digesting the value of
another secret key with SHA-1.

The value of the base key is digested once, and the result is used to make the value
of derived secret key.

· If no length or key type is provided in the template, then the key produced by
this mechanism will be a generic secret key. Its length will be 20 bytes (the
output size of SHA-1).

· If no key type is provided in the template, but a length is, then the key produced
by this mechanism will be a generic secret key of the specified length.

· If no length was provided in the template, but a key type is, then that key type
must have a well-defined length. If it does, then the key produced by this
mechanism will be of the type specified in the template. If it doesn’t, an
error will be returned.

· If both a key type and a length are provided in the template, the length must be
compatible with that key type. The key produced by this mechanism will be of
the specified type and length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits
of the key will be set properly.

If the requested type of key requires more than 20 bytes, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

· The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for
the new key can both be specified to be either TRUE or FALSE. If omitted,
these attributes each take on some default value.

APPENDIX B Page 224

Page 225 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

· If the base key has its CKA_ALWAYS_SENSITIVE attribute set to FALSE, then
the derived key will as well. If the base key has its
CKA_ALWAYS_SENSITIVE attribute set to TRUE, then the derived key has
its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

· Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to
FALSE, then the derived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE attribute set to TRUE, then the derived key has
its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

10.28FASTHASH mechanisms

10.28.1FASTHASH

The FASTHASH mechanism, denoted CKM_FASTHASH, is a mechanism for
message digesting, following the U. S. government’s algorithm.

 It does not have a parameter.

Constraints on the length of input and output data are summarized in the following
table:

Table 1010-49, FASTHASH: Data Length Constraints

Functio
n

Input
length

Digest
length

C_Digest any 40

10.29Password-based encryption mechanism parameters

¨ CK_PBE_PARAMS

CK_PBE_PARAMS is a structure which provides all of the necessary information
required by the CKM_PBE mechanisms (see PKCS#5 for information on the PBE
generation mechanisms). It is defined as follows:

typedef struct CK_PBE_PARAMS {
CK_CHAR_PTR pInitVector;
CK_CHAR_PTR pPassword;
CK_ULONG ulPasswordLen;
CK_CHAR_PTR pSalt;
CK_ULONG ulSaltLen;
CK_ULONG ulIteration;

} CK_PBE_PARAMS;

The fields of the structure have the following meanings:

pInitVector pointer to the location that receives the 8-byte
initialization vector (IV);

pPassword points to the password to be used in the PBE key
generation;

ulPasswordLen length in bytes of the password information;

pSalt points to the salt to be used in the PBE key
generation;

usSaltLen length in bytes of the salt information;

usIteration number of iterations required for the generation.

¨ CK_PBE_PARAMS_PTR

CK_PBE_PARAMS_PTR points to a CK_PBE_PARAMS structure. It is
implementation-dependent.

10.30Password-based encryption mechanisms

10.30.1MD2-PBE for DES-CBC

MD2-PBE for DES-CBC, denoted CKM_PBE_MD2_DES_CBC, is a mechanism used
for generating a DES secret key and an initialization vector by using a password
and a salt value and the MD2 digest algorithm. This functionality is defined in
PKCS#5.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the
input information for the key generation process and the location of the application-
supplied buffer which will receive the 8-byte IV generated by the mechanism.

10.30.2MD5-PBE for DES-CBC

MD5-PBE for DES-CBC, denoted CKM_PBE_MD5_DES_CBC, is a mechanism used
for generating a DES secret key and an initialization vector by using a password
and a salt value and the MD5 digest algorithm. This functionality is defined in
PKCS#5.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the
input information for the key generation process and the location of the application-
supplied buffer which will receive the 8-byte IV generated by the mechanism.

10.30.3MD5-PBE for CAST-CBC

MD5-PBE for CAST-CBC, denoted CKM_PBE_MD5_CAST_CBC, is a mechanism
used for generating a CAST secret key and an initialization vector by using a

APPENDIX B Page 226

Page 227 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

password and a salt value and the MD5 digest algorithm. This functionality is
essentially that defined in PKCS#5.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the
input information for the key generation process and the location of the application-
supplied buffer which will receive the 8-byte IV generated by the mechanism.

The length of the CAST key generated by this mechanism is may be specified in the
supplied template; if it is not present in the template, it defaults to 8 bytes.8 bytes
long.

10.30.4MD5-PBE for CAST3-CBC

MD5-PBE for CAST3-CBC, denoted CKM_PBE_MD5_CAST3_CBC, is a mechanism
used for generating a CAST3 secret key and an initialization vector by using a
password and a salt value and the MD5 digest algorithm. This functionality is
essentially that defined in PKCS#5.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the
input information for the key generation process and the location of the application-
supplied buffer which will receive the 8-byte IV generated by the mechanism.

The length of the CAST3 key generated by this mechanism is may be specified in
the supplied template; if it is not present in the template, it defaults to 8 bytes.8
bytes long.

10.30.5MD5-PBE for CAST5-CBC

MD5-PBE for CAST5-CBC, denoted CKM_PBE_MD5_CAST5_CBC, is a mechanism
used for generating a CAST5 secret key and an initialization vector by using a
password and a salt value and the MD5 digest algorithm. This functionality is
essentially that defined in PKCS#5.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the
input information for the key generation process and the location of the application-
supplied buffer which will receive the 8-byte IV generated by the mechanism.

The length of the CAST5 key generated by this mechanism is may be specified in
the supplied template; if it is not present in the template, it defaults to 8 bytes.8
bytes long.

10.30.6 SHA1-PBE for CAST5-CBC

SHA1-PBE for CAST5-CBC, denoted CKM_PBE_SHA1_CAST5_CBC, is a
mechanism used for generating a CAST5 secret key and an initialization vector by
using a password and a salt value and the SHA1 digest algorithm. This functionality
is essentially that defined in PKCS#5.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the
input information for the key generation process and the location of the application-
supplied buffer which will receive the 8-byte IV generated by the mechanism.

The length of the CAST5 key generated by this mechanism may be specified in the
supplied template; if it is not present in the template, it defaults to 8 bytes.

10.31SET mechanism parameters

¨ CK_KEY_WRAP_SET_OAEP_PARAMS

CK_KEY_WRAP_SET_OAEP_PARAMS is a structure that provides the parameters
to the CKM_KEY_WRAP_SET_OAEP mechanism. It is defined as follows:

typedef struct CK_KEY_WRAP_SET_OAEP_PARAMS {
CK_BYTE bBC;
CK_BYTE_PTR pX;
CK_ULONG ulXLen;

} CK_KEY_WRAP_SET_OAEP_PARAMS;

The fields of the structure have the following meanings:

bBC block contents byte

pX extra data

ulXLen length in bytes of extra data

¨ CK_KEY_WRAP_SET_OAEP_PARAMS_PTR

CK_KEY_WRAP_SET_OAEP_PARAMS_PTR points to a
CK_KEY_WRAP_SET_OAEP_PARAMS structure. It is implementation-dependent.

10.32SET mechanisms

10.32.1OAEP key wrapping for SET

The OAEP key wrapping for SET mechanism, denoted
CKM_KEY_WRAP_SET_OAEP, is a mechanism for wrapping and unwrapping DES
keys (and possibly some extra data) with RSA keys. This mechanism is defined in
the SET protocol specifications.

It takes a parameter, a CK_KEY_WRAP_SET_OAEP_PARAMS structure. This
structure holds the “Block Contents” byte of the data, as well as any extra data. If
no extra data is present, that is indicated by the ulXLen field having the value 0.

When this mechanism is used to unwrap a key, the extra data is returned following
the convention described in Section 9.2 on producing output. If the inputs to
C_UnwrapKey are such that the extra data is not returned (e.g., the buffer
supplied in the CK_KEY_WRAP_SET_OAEP_PARAMS structure is NULL_PTR),
then the unwrapped key object will not be created, either.

APPENDIX B Page 228

Page 229 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

Note that when this mechanism is used to unwrap a key, the bBC and pX fields of
the parameter supplied to the mechanism may be modified.

If an application uses C_UnwrapKey with CKM_KEY_WRAP_SET_OAEP, it is
general preferable to simply allocate a 128-byte buffer for the extra data (the extra
data is never larger than 128 bytes), rather than calling C_UnwrapKey twice.
Each call of C_UnwrapKey with CKM_KEY_WRAP_SET_OAEP requires an RSA
decryption operation to be performed, and this overhead can be avoided by this
means.

10.33LYNKS mechanisms

10.33.1LYNKS key wrapping

The LYNKS key wrapping mechanism, denoted CKM_WRAP_LYNKS, is a
mechanism for wrapping and unwrapping secret keys with DES keys. It can wrap
any 8-byte secret key, and it produces a 10-byte wrapped key, containing a
cryptographic checksum.

It does not have a parameter.

When unwrapping a key with this mechanism, if the cryptographic checksum does
not check out properly, an error is returned. In addition, if a DES key or CDMF key
is unwrapped with this mechanism, the parity bits on the wrapped key must be set
appropriately; if they are not set properly, an error is returned.

10.34SSL mechanism parameters

¨ CK_SSL3_RANDOM_DATA

CK_SSL3_RANDOM_DATA is a structure which provides information about the
random data of a client and a server in an SSL context. This structure is used by
both the CKM_SSL3_MASTER_KEY_DERIVE and the
CKM_SSL3_KEY_AND_MAC_DERIVE mechanisms. It is defined as follows:

typedef struct CK_SSL3_RANDOM_DATA {
CK_BYTE_PTR pClientRandom;
CK_ULONG ulClientRandomLen;
CK_BYTE_PTR pServerRandom;
CK_ULONG ulServerRandomLen;

} CK_SSL3_RANDOM_DATA;

The fields of the structure have the following meanings:

pClientRandom pointer to the client’s random data. (see SSL 3.0 for
details)

ulClientRandomLen length in bytes of the client’s random data

pServerRandom pointer to the server’s random data. (see SSL 3.0
for details)

ulServerRandomLen length in bytes of the server’s random data

¨ CK_SSL3_MASTER_KEY_DERIVE_PARAMS

CK_SSL3_MASTER_KEY_DERIVE_PARAMS is a structure that provides the
parameters to the CKM_SSL3_MASTER_KEY_DERIVE mechanism. It is defined
as follows:

typedef struct CK_SSL3_MASTER_KEY_DERIVE_PARAMS {
CK_SSL3_RANDOM_DATA RandomInfo;
CK_VERSION_PTR pVersion;

} CK_SSL3_MASTER_KEY_DERIVE_PARAMS;

The fields of the structure have the following meanings:

RandomInfo client’s and server’s random data information.

pVersion pointer to a CK_VERSION structure which
receives the SSL protocol version information (see
SSL 3.0 for details)

¨ CK_SSL3_MASTER_KEY_DERIVE_PARAMS_PTR

CK_SSL3_MASTER_KEY_DERIVE_PARAMS_PTR points to a
CK_SSL3_MASTER_KEY_DERIVE_PARAMS structure. It is implementation-
dependent.

¨ CK_SSL3_KEY_MAT_OUT

CK_SSL3_KEY_MAT_OUT is a structure that contains the resulting key handles
after performing a C_DeriveKey function with the
CKM_SSL3_KEY_AND_MAC_DERIVE mechanism. It is defined as follows:

typedef struct CK_SSL3_KEY_MAT_OUT {
CK_OBJECT_HANDLE hClientMacSecret;
CK_OBJECT_HANDLE hServerMacSecret;
CK_OBJECT_HANDLE hClientKey;
CK_OBJECT_HANDLE hServerKey;
CK_BYTE_PTR pIVClient;
CK_BYTE_PTR pIVServer;

} CK_SSL3_KEY_MAT_OUT;

The fields of the structure have the following meanings:

hClientMacSecret key handle for the resulting Client MAC Secret key

hServerMacSecret key handle for the resulting Server MAC Secret key

APPENDIX B Page 230

Page 231 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

hClientKey key handle for the resulting Client Secret key

hServerKey key handle for the resulting Server Secret key

pIVClient pointer to a location which receives the
initialization vector (IV) created for the client, if
any (see SSL 3.0 for details)

pIVServer pointer to a location which receives the
initialization vector (IV) created for the server, if
any (see SSL 3.0 for details)

¨ CK_SSL3_KEY_MAT_OUT_PTR

CK_SSL3_KEY_MAT_OUT_PTR points to a CK_SSL3_KEY_MAT_OUT structure.
It is implementation-dependent.

¨ CK_SSL3_KEY_MAT_PARAMS

CK_SSL3_KEY_MAT_PARAMS is a structure that provides the parameters to the
CKM_SSL3_KEY_AND_MAC_DERIVE mechanism. It is defined as follows:

typedef struct CK_SSL3_KEY_MAT_PARAMS {
CK_ULONG ulMacSizeInBits;
CK_ULONG ulKeySizeInBits;
CK_ULONG ulIVSizeInBits;
CK_BBOOL bIsExport;
CK_SSL3_RANDOM_DATA RandomInfo;
CK_SSL3_KEY_MAT_OUT_PTR pReturnedKeyMaterial;

} CK_SSL3_KEY_MAT_PARAMS;

The fields of the structure have the following meanings:

ulMacSizeInBits establishes the length (in bits) of the MACing keys
agreed upon during the protocol handshake phase
(see SSL 3.0 for details)

ulKeySizeInBits establishes the length (in bits) of the secret keys
agreed upon during the protocol handshake phase
(see SSL 3.0 for details)

ulIVSizeInBits establishes the length (in bits) of the IV agreed
upon during the protocol handshake phase. If no IV
is required, the length should be set to 0 (see SSL
3.0 for details)

bIsExport a boolean value which indicates whether the keys
have to be derived for an export version of the
protocol (see SSL 3.0 for details)

RandomInfo client’s and server’s random data information.

pReturnedKeyMaterial points to a CK_SSL3_KEY_MAT_OUT structures
which receives the handles for the keys generated,
as well as the IVs when required (see SSL 3.0 for
details)

¨ CK_SSL3_KEY_MAT_PARAMS_PTR

CK_SSL3_KEY_MAT_PARAMS_PTR points to a CK_SSL3_KEY_MAT_PARAMS
structure. It is implementation-dependent.

10.35SSL mechanisms

10.35.1Pre_master key generation

Pre_master key generation in SSL 3.0, denoted
CKM_SSL3_PRE_MASTER_KEY_GEN, is a mechanism which generates a 48-byte
generic secret key. It is used to produce the "pre_master" key used in SSL version
3.0.

It has one parameter, a CK_VERSION structure, which provides the client’s SSL
version number.

The mechanism contributes to the CKA_CLASS, CKA_KEY_TYPE, and
CKA_VALUE attributes to the new key (as well as the CKA_VALUE_LEN attribute,
if it is not supplied in the template). Other attributes may be specified in the
template, or else are assigned default values.

The template sent along with this mechanism during a C_GenerateKey call may
indicate that the object class is CKO_SECRET_KEY, the key type is
CKK_GENERIC_SECRET, and the CKA_VALUE_LEN attribute has value 48.
However, since these facts are all implicit in the mechanism, there is no need to
specify any of them.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure both indicate 48 bytes.

10.35.2Master key derivation

Master key derivation in SSL 3.0, denoted CKM_SSL3_MASTER_KEY_DERIVE, is
a mechanism used to derive one 48-byte generic secret key from another 48-byte
generic secret key. It is used to produce the "master_secret" key used in the SSL
protocol from the "pre_master" key. This mechanism returns the value of the client
version found in the "pre_master" key as well as a handle to the derived
"master_secret" key.

It has a parameter, a CK_SSL3_MASTER_KEY_DERIVE_PARAMS structure,
which allows for the passing of random data to the token as well as the returning of
the protocol version number which is part of the pre-master key. This structure is
defined in Section 10.34.

APPENDIX B Page 232

Page 233 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

The mechanism contributes to the CKA_CLASS, CKA_KEY_TYPE, and
CKA_VALUE attributes to the new key (as well as the CKA_VALUE_LEN attribute,
if it is not supplied in the template). Other attributes may be specified in the
template, or else are assigned default values.

The template sent along with this mechanism during a C_GenerateKey call may
indicate that the object class is CKO_SECRET_KEY, the key type is
CKK_GENERIC_SECRET, and the CKA_VALUE_LEN attribute has value 48.
However, since these facts are all implicit in the mechanism, there is no need to
specify any of them.

This mechanism has the following rules about key sensitivity and extractability:

· The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for
the new key can both be specified to be either TRUE or FALSE. If omitted,
these attributes each take on some default value.

· If the base key has its CKA_ALWAYS_SENSITIVE attribute set to FALSE, then
the derived key will as well. If the base key has its
CKA_ALWAYS_SENSITIVE attribute set to TRUE, then the derived key has
its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

· Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to
FALSE, then the derived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE attribute set to TRUE, then the derived key has
its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure both indicate 48 bytes.

10.35.3Key and MAC derivation

Key, MAC and IV derivation in SSL 3.0, denoted
CKM_SSL3_KEY_AND_MAC_DERIVE, is a mechanism is used to derive the
appropriate cryptographic keying material used by a "CipherSuite" from the
"master_secret" key and random data. This mechanism returns the key handles for
the keys generated in the process, as well as the initialization vectors (IVs) created.

It has a parameter, a CK_SSL3_KEY_MAT_PARAMS structure, which allows for
the passing of random data as well as the characteristic of the cryptographic
material for the given CipherSuite and a pointer to a structure which receives the
handles and IVs which were generated. This structure is defined in Section 10.34.

This mechanism contributes to the creation of four distinct keys on the token and
returns two IVs (if IVs are requested by the caller) back to the caller. The keys are
all given an object class of CKO_SECRET_KEY.

The two MACing keys ("client_write_MAC_secret" and "server_write_MAC_secret")
are always given a type of CKK_GENERIC_SECRET. They are flagged as valid for
signing, verification (they are used for MACing), and derivation operations.

The other two keys ("client_write_key" and "server_write_key") are typed according
to information found in the template sent along with this mechanism during a
C_DeriveKey function call. By default, they are flagged as valid for encryption,
decryption, and derivation operations.

All four keys inherit the values of the CKA_SENSITIVE,
CKA_ALWAYS_SENSITIVE, CKA_EXTRACTABLE, and
CKA_NEVER_EXTRACTABLE attributes from the base key. The template
provided to C_DeriveKey may not specify values for any of these attributes which
differ from those held by the base key.

Note that the CK_SSL3_KEY_MAT_OUT structure pointed to by the
CK_SSL3_KEY_MAT_PARAMS structure’s pReturnedKeyMaterial field will by
modified by the C_DeriveKey call; in particular, the four key handle fields in the
CK_SSL3_KEY_MAT_OUT structure will be modified to hold handles to the newly-
created keys. In addition, the buffers pointed to by the CK_SSL3_KEY_MAT_OUT
structure’s pIVClient and pIVServer fields will have IVs returned in them (if IVs are
requested by the caller). Therefore, these two fields must point to buffers with
sufficient space to hold any IVs that will be returned.

This mechanism departs from the other key derivation mechanisms in Cryptoki in
its returned information. For other mechanisms, the C_DeriveKey function returns
a single key handle as a result of a successful completion. However, since the
CKM_SSL3_KEY_AND_MAC_DERIVE mechanism returns all of its key handles in
the CK_SSL3_KEY_MAT_OUT structure pointed to by the
CK_SSL3_KEY_MAT_PARAMS structure specified as the mechanism parameter,
the parameter phKey passed to C_DeriveKey is unnecessary, and should be a
NULL_PTR.

If a call to C_DeriveKey with this mechanism fails, then none of the four keys will
be created on the token.

10.35.4MD5 MACing in SSL 3.0

MD5 MACing in SSL3.0, denoted CKM_SSL3_MD5_MAC, is a mechanism for
single- and multiple-part signatures (data authentication) and verification using
MD5, based on the SSL 3.0 protocol. This technique is very similar to the HMAC
technique.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which specifies the length in
bytes of the signatures produced by this mechanism.

Constraints on key types and the length of input and output data are summarized in
the following table:

APPENDIX B Page 234

Page 235 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

Table 1010-50, MD5 MACing in SSL 3.0: Key And Data Length Constraints

Function Key type Data
length

Signature length

C_Sign generic
secret

any 4-8, depending on
parameters

C_Verify generic
secret

any 4-8, depending on
parameters

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of generic secret
key sizes, in bits.

10.35.5SHA-1 MACing in SSL 3.0

SHA-1 MACing in SSL3.0, denoted CKM_SSL3_SHA1_MAC, is a mechanism for
single- and multiple-part signatures (data authentication) and verification using
SHA-1, based on the SSL 3.0 protocol. This technique is very similar to the HMAC
technique.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which specifies the length in
bytes of the signatures produced by this mechanism.

Constraints on key types and the length of input and output data are summarized in
the following table:

Table 1010-51, SHA-1 MACing in SSL 3.0: Key And Data Length Constraints

Function Key type Data
length

Signature length

C_Sign generic
secret

any 4-8, depending on
parameters

C_Verify generic
secret

any 4-8, depending on
parameters

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of generic secret
key sizes, in bits.

10.36Parameters for miscellaneous simple key derivation
mechanisms

¨ CK_KEY_DERIVATION_STRING_DATA

CK_KEY_DERIVATION_STRING_DATA is a structure that holds a pointer to a
byte string and the byte string’s length. It provides the parameters for the
CKM_CONCATENATE_BASE_AND_DATA,

CKM_CONCATENATE_DATA_AND_BASE, and CKM_XOR_BASE_AND_DATA
mechanisms. It is defined as follows:

typedef struct CK_KEY_DERIVATION_STRING_DATA {
CK_BYTE_PTR pData;
CK_ULONG ulLen;

} CK_KEY_DERIVATION_STRING_DATA;

The fields of the structure have the following meanings:

pData pointer to the byte string

ulLen length of the byte string

¨ CK_KEY_DERIVATION_STRING_DATA_PTR

CK_KEY_DERIVATION_STRING_DATA_PTR points to a
CK_KEY_DERIVATION_STRING_DATA structure. It is implementation-
dependent.

¨ CK_EXTRACT_PARAMS

CK_KEY_EXTRACT_PARAMS provides the parameter to the
CKM_EXTRACT_KEY_FROM_KEY mechanism. It specifies which bit of the base
key should be used as the first bit of the derived key. It is defined as follows:

typedef CK_ULONG CK_EXTRACT_PARAMS;

¨ CK_EXTRACT_PARAMS_PTR

CK_EXTRACT_PARAMS_PTR points to a CK_EXTRACT_PARAMS. It is
implemenation-dependent.

10.37Miscellaneous simple key derivation mechanisms

10.37.1Concatenation of a base key and another key

This mechanism, denoted CKM_CONCATENATE_BASE_AND_KEY, derives a
secret key from the concatenation of two existing secret keys. The two keys are
specified by handles; the values of the keys specified are concatenated together in a
buffer.

This mechanism takes a parameter, a CK_OBJECT_HANDLE. This handle
produces the key value information which is appended to the end of the base key’s
value information (the base key is the key whose handle is supplied as an argument
to C_DeriveKey).

APPENDIX B Page 236

Page 237 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

For example, if the value of the base key is 0x01234567, and the value of the other
key is 0x89ABCDEF, then the value of the derived key will be taken from a buffer
containing the string 0x0123456789ABCDEF.

· If no length or key type is provided in the template, then the key produced by
this mechanism will be a generic secret key. Its length will be equal to the
sum of the lengths of the values of the two original keys.

· If no key type is provided in the template, but a length is, then the key produced
by this mechanism will be a generic secret key of the specified length.

· If no length is provided in the template, but a key type is, then that key type
must have a well-defined length. If it does, then the key produced by this
mechanism will be of the type specified in the template. If it doesn’t, an
error will be returned.

· If both a key type and a length are provided in the template, the length must be
compatible with that key type. The key produced by this mechanism will be of
the specified type and length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits
of the key will be set properly.

If the requested type of key requires more bytes than are available by
concatenating the two original keys’ values, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

· If either of the two original keys has its CKA_SENSITIVE attribute set to TRUE,
so does the derived key. If not, then the derived key’s CKA_SENSITIVE
attribute is set either from the supplied template or from a default value.

· Similarly, if either of the two original keys has its CKA_EXTRACTABLE
attribute set to FALSE, so does the derived key. If not, then the derived
key’s CKA_EXTRACTABLE attribute is set either from the supplied
template or from a default value.

· The derived key’s CKA_ALWAYS_SENSITIVE attribute is set to TRUE if and
only if both of the original keys have their CKA_ALWAYS_SENSITIVE
attributes set to TRUE.

· Similarly, the derived key’s CKA_NEVER_EXTRACTABLE attribute is set to
TRUE if and only if both of the original keys have their
CKA_NEVER_EXTRACTABLE attributes set to TRUE.

10.37.2Concatenation of a base key and data

This mechanism, denoted CKM_CONCATENATE_BASE_AND_DATA, derives a
secret key by concatenating data onto the end of a specified secret key.

This mechanism takes a parameter, a CK_KEY_DERIVATION_STRING_DATA
structure, which specifies the length and value of the data which will be appended
to the base key to derive another key.

For example, if the value of the base key is 0x01234567, and the value of the data is
0x89ABCDEF, then the value of the derived key will be taken from a buffer containing
the string 0x0123456789ABCDEF.

· If no length or key type is provided in the template, then the key produced by
this mechanism will be a generic secret key. Its length will be equal to the
sum of the lengths of the value of the original key and the data.

· If no key type is provided in the template, but a length is, then the key produced
by this mechanism will be a generic secret key of the specified length.

· If no length is provided in the template, but a key type is, then that key type
must have a well-defined length. If it does, then the key produced by this
mechanism will be of the type specified in the template. If it doesn’t, an
error will be returned.

· If both a key type and a length are provided in the template, the length must be
compatible with that key type. The key produced by this mechanism will be of
the specified type and length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits
of the key will be set properly.

If the requested type of key requires more bytes than are available by
concatenating the original key’s value and the data, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

· If the base key has its CKA_SENSITIVE attribute set to TRUE, so does the
derived key. If not, then the derived key’s CKA_SENSITIVE attribute is set
either from the supplied template or from a default value.

· Similarly, if the base key has its CKA_EXTRACTABLE attribute set to FALSE,
so does the derived key. If not, then the derived key’s
CKA_EXTRACTABLE attribute is set either from the supplied template or
from a default value.

· The derived key’s CKA_ALWAYS_SENSITIVE attribute is set to TRUE if and
only if the base key has its CKA_ALWAYS_SENSITIVE attribute set to
TRUE.

· Similarly, the derived key’s CKA_NEVER_EXTRACTABLE attribute is set to
TRUE if and only if the base key has its CKA_NEVER_EXTRACTABLE attribute
set to TRUE.

10.37.3Concatenation of data and a base key

This mechanism, denoted CKM_CONCATENATE_DATA_AND_BASE, derives a
secret key by prependting data to the start of a specified secret key.

This mechanism takes a parameter, a CK_KEY_DERIVATION_STRING_DATA
structure, which specifies the length and value of the data which will be prepended
to the base key to derive another key.

APPENDIX B Page 238

Page 239 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

For example, if the value of the base key is 0x01234567, and the value of the data is
0x89ABCDEF, then the value of the derived key will be taken from a buffer containing
the string 0x89ABCDEF01234567.

· If no length or key type is provided in the template, then the key produced by
this mechanism will be a generic secret key. Its length will be equal to the
sum of the lengths of the data and the value of the original key.

· If no key type is provided in the template, but a length is, then the key produced
by this mechanism will be a generic secret key of the specified length.

· If no length is provided in the template, but a key type is, then that key type
must have a well-defined length. If it does, then the key produced by this
mechanism will be of the type specified in the template. If it doesn’t, an
error will be returned.

· If both a key type and a length are provided in the template, the length must be
compatible with that key type. The key produced by this mechanism will be of
the specified type and length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits
of the key will be set properly.

If the requested type of key requires more bytes than are available by
concatenating the data and the original key’s value, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

· If the base key has its CKA_SENSITIVE attribute set to TRUE, so does the
derived key. If not, then the derived key’s CKA_SENSITIVE attribute is set
either from the supplied template or from a default value.

· Similarly, if the base key has its CKA_EXTRACTABLE attribute set to FALSE,
so does the derived key. If not, then the derived key’s
CKA_EXTRACTABLE attribute is set either from the supplied template or
from a default value.

· The derived key’s CKA_ALWAYS_SENSITIVE attribute is set to TRUE if and
only if the base key has its CKA_ALWAYS_SENSITIVE attribute set to
TRUE.

· Similarly, the derived key’s CKA_NEVER_EXTRACTABLE attribute is set to
TRUE if and only if the base key has its CKA_NEVER_EXTRACTABLE attribute
set to TRUE.

10.37.4XORing of a key and data

XORing key derivation, denoted CKM_XOR_BASE_AND_DATA, is a mechanism
which provides the capability of deriving a secret key by performing a bit XORing of
a key pointed to by a base key handle and some data.

This mechanism takes a parameter, a CK_KEY_DERIVATION_STRING_DATA
structure, which specifies the data with which to XOR the original key’s value.

For example, if the value of the base key is 0x01234567, and the value of the data is
0x89ABCDEF, then the value of the derived key will be taken from a buffer containing
the string 0x88888888.

· If no length or key type is provided in the template, then the key produced by
this mechanism will be a generic secret key. Its length will be equal to the
minimum of the lengths of the data and the value of the original key.

· If no key type is provided in the template, but a length is, then the key produced
by this mechanism will be a generic secret key of the specified length.

· If no length is provided in the template, but a key type is, then that key type
must have a well-defined length. If it does, then the key produced by this
mechanism will be of the type specified in the template. If it doesn’t, an
error will be returned.

· If both a key type and a length are provided in the template, the length must be
compatible with that key type. The key produced by this mechanism will be of
the specified type and length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits
of the key will be set properly.

If the requested type of key requires more bytes than are available by taking the
shorter of the data and the original key’s value, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

· If the base key has its CKA_SENSITIVE attribute set to TRUE, so does the
derived key. If not, then the derived key’s CKA_SENSITIVE attribute is set
either from the supplied template or from a default value.

· Similarly, if the base key has its CKA_EXTRACTABLE attribute set to FALSE,
so does the derived key. If not, then the derived key’s
CKA_EXTRACTABLE attribute is set either from the supplied template or
from a default value.

· The derived key’s CKA_ALWAYS_SENSITIVE attribute is set to TRUE if and
only if the base key has its CKA_ALWAYS_SENSITIVE attribute set to
TRUE.

· Similarly, the derived key’s CKA_NEVER_EXTRACTABLE attribute is set to
TRUE if and only if the base key has its CKA_NEVER_EXTRACTABLE attribute
set to TRUE.

10.37.5Extraction of one key from another key

Extraction of one key from another key, denoted
CKM_EXTRACT_KEY_FROM_KEY, is a mechanism which provides the capability
of creating one secret key from the bits of another secret key.

This mechanism has a parameter, a CK_EXTRACT_PARAMS, which specifies
which bit of the original key should be used as the first bit of the newly-derived key.

APPENDIX B Page 240

Page 241 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

We give an example of how this mechanism works. Suppose a token has a secret
key with the 4-byte value 0x329F84A9. We will derive a 2-byte secret key from this
key, starting at bit position 21 (i.e., the value of the parameter to the
CKM_EXTRACT_KEY_FROM_KEY mechanism is 21).

1. We write the key’s value in binary: 0011 0010 1001 1111 1000 0100 1010
1001. We regard this binary string as holding the 32 bits of the key, labelled
as b0, b1, …, b31.

2. We then extract 16 consecutive bits (i.e., 2 bytes) from this binary string,
starting at bit b21. We obtain the binary string 1001 0101 0010 0110.

3. The value of the new key is thus 0x9526.

Note that when constructing the value of the derived key, it is permissible to wrap
around the end of the binary string representing the original key’s value.

If the original key used in this process is sensitive, then the derived key must also
be sensitive for the derivation to succeed.

· If no length or key type is provided in the template, then an error will be
returned.

· If no key type is provided in the template, but a length is, then the key produced
by this mechanism will be a generic secret key of the specified length.

· If no length is provided in the template, but a key type is, then that key type
must have a well-defined length. If it does, then the key produced by this
mechanism will be of the type specified in the template. If it doesn’t, an
error will be returned.

· If both a key type and a length are provided in the template, the length must be
compatible with that key type. The key produced by this mechanism will be of
the specified type and length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits
of the key will be set properly.

If the requested type of key requires more bytes than the original key has, an error
is generated.

This mechanism has the following rules about key sensitivity and extractability:

· If the base key has its CKA_SENSITIVE attribute set to TRUE, so does the
derived key. If not, then the derived key’s CKA_SENSITIVE attribute is set
either from the supplied template or from a default value.

· Similarly, if the base key has its CKA_EXTRACTABLE attribute set to FALSE,
so does the derived key. If not, then the derived key’s
CKA_EXTRACTABLE attribute is set either from the supplied template or
from a default value.

· The derived key’s CKA_ALWAYS_SENSITIVE attribute is set to TRUE if and
only if the base key has its CKA_ALWAYS_SENSITIVE attribute set to
TRUE.

· Similarly, the derived key’s CKA_NEVER_EXTRACTABLE attribute is set to
TRUE if and only if the base key has its CKA_NEVER_EXTRACTABLE attribute
set to TRUE.

APPENDIX B Page 242

Page 243 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

11Cryptoki tips and reminders

In this section, we clarify, review, and/or emphasize a few odds and ends about how
Cryptoki works.

11.1Sessions

In Cryptoki, there are several different types of operations which can be “active” in
a session. An active operation is essentially one which takes more than one
Cryptoki function call to perform. The types of active operations are object
searching; encryption; decryption; message-digesting; signature with appendix;
signature with recovery; verification with appendix; and verification with recovery.

A given session can have 0, 1, or 2 operations active at a time. It can only have 2
operations active simultaneously if the token supports this; moreover, those two
operations must be one of the four following pairs of operations: digesting and
encryption; decryption and digesting; signing and encryption; decryption and
verification.

If an application attempts to initialize an operation (make it active), but this cannot
be accomplished because of some other active operation(s), the application receives
the error value CKR_OPERATION_ACTIVE. This error value can also be received if
the application attempts to perform any of various operations which do not become
“active”, but which require cryptographic processing, such as using the token’s
random number generator, or generating/wrapping/unwrapping/deriving a key.

In general, different threads/processes of an application should not share sessions,
unless they are extremely careful not to make function calls at the same time.
Sharing sessions can easily lead to trouble.

11.2Objects, attributes, and templates

In Cryptoki, every object (with the possible exception of RSA private keys) always
possesses all possible attributes for an object of its type. This means, for example,
that a Diffie-Hellman private key object always possesses a CKA_VALUE_BITS
attribute, even if that attribute wasn’t specified when the key was generated (in
such a case, the proper value for the attribute is computed during the key
generation process).

In general, a Cryptoki function which requires a template for an object needs the
template to specify any atributes that are not specified elsewhere (explicitly or
implicitly). If a template specifies a particular atttribute more than once, the
function can return CKR_TEMPLATE_INVALID; or it can choose a particular value
of the attribute from among those specified, and use that value. In any event,
object attributes are single-valued.

11.3Signing with recovery

Signing with recovery is a general alternative to ordinary digital signatures which is
supported by certain mechanisms. Recall that for ordinary digital signatures, a
signature of a message is computed as some function of the message and the
signer’s private key; this signature can then be used (together with the message
and the signer’s public key) as input to the verification process, which yields a
simple “signature valid/signature invalid” decision.

Signing with recovery also creates a signature from a message and the signer’s
private key. However, to verify this signature, no message is required as input.
Only the signature and the signer’s public key are inputs to the verification process,
and this process outputs either “signature invalid” or the original message (if the
signature was valid).

Consider a simple example with the CKM_RSA_C_509 mechanism. Here, a
message is a byte string which we will consider to be a number modulo n (the
signer’s RSA modulus). When this mechanism is used for ordinary digital
signatures (signatures with appendix), a signature is computed by raising the
message to the signer’s private exponent modulo n. To verify this signature, a
verifier raises the signature to the signer’s public exponent modulo n, and accepts
the signature as valus if and only if the result matches the original message.

If CKM_RSA_C_509 is used to create signatures with recovery, the signatures are
produced in exactly the same fashion. For this particular mechanism, any number
modulo n is a valid signature. To recover the message from a signature, the
signature is raised to the signer’s public exponent modulo n.

APPENDIX B Page 244

Page 245 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

0Appendix A, Token profiles

This appendix describes “profiles,” i.e., sets of mechanisms, which a token should
support for various common types of application. It is expected that these sets
would be standardized as parts of the various applications, for instance within a list
of requirements on the module that provides cryptographic services to the
application (which may be a Cryptoki token in some cases). Thus, these profiles are
intended for reference only at this point, and are not part of this standard.

The following table summarizes the mechanisms relevant to three common types of
application:

Table A-1, Mechanisms and profiles
Application

Mechanism
Privacy-

Enhanced Mail
Government

Authentication-
only

Cellular Digital
Packet Data

CKM_RSA_PKCS_KEY_PAIR_GE
N

ü

CKM_RSA_PKCS ü

CKM_RSA_9796
CKM_RSA_X_509
CKM_DSA_KEY_PAIR_GEN ü

CKM_DSA ü

CKM_DH_PKCS_KEY_PAIR_GEN ü

CKM_DH_PKCS_DERIVE ü

CKM_RC2_KEY_GEN
CKM_RC2_ECB
CKM_RC2_CBC
CKM_RC2_MAC
CKM_RC4_KEY_GEN ü

CKM_RC4 ü

CKM_DES_KEY_GEN ü

CKM_DES_ECB ü

CKM_DES_CBC ü

CKM_DES_MAC
CKM_DES2_KEY_GEN ü

CKM_DES3_KEY_GEN
CKM_DES3_ECB ü

CKM_DES3_CBC
CKM_DES3_MAC
CKM_MD2 ü

CKM_MD5 ü

CKM_SHA_1 ü

CKM_SHA_1_DERIVE

0A.1 Privacy-Enhanced Mail

Privacy-Enhanced Mail is a set of protocols and mechanisms providing
confidentiality and authentication for Internet electronic mail. Relevant
mechanisms include the following (see RFC 1423 for details):

PKCS #1 RSA key pair generation (508–1024 bits)

PKCS #1 RSA (508-1024 bits)

DES key generation

DES-CBC

DES-ECB

double-length DES key generation

triple-DES-ECB

MD2

MD5

Variations on this set are certainly possible. For instance, PEM applications which
make use only of asymmetric key management do not need the DES-ECB or triple-
DES-ECB mechanisms, or the double-length DES key generation mechanism.
Similarly, those which make use only of symmetric key management do not need
the PKCS #1 RSA or RSA key pair generation mechanisms.

An “authentication-only” version of PEM with asymmetric key management would
not need DES-CBC or DES key generation.

It is also possible to consider “exportable” variants of PEM which replace DES-CBC
with RC2-CBC, perhaps limited to 40 bits, and limit the RSA key size to 512 bits.

1A.2 Government authentication-only

The U.S. government has standardized on the Digital Signature Algorithm as
defined in FIPS PUB 186 for signatures and the Secure Hash Algorithm as defined
in FIPS PUB 180 and subsequently amended by NIST-1 for message digesting. The
relevant mechanisms include the following:

DSA key generation (512-1024 bits)

DSA (512-1024 bits)

SHA-1

Note that this version of Cryptoki does not have a mechanism for generating DSA
parameters.

Page 247 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

2A.3 Cellular Digital Packet Data

Cellular Digital Packet Data (CDPD) is a set of protocols for wireless
communication. The basic set of mechanisms to support CDPD applications
includes the following:

Diffie-Hellman key generation (256-1024 bits)

Diffie-Hellman key derivation (256-1024 bits)

RC4 key generation (40-128 bits)

RC4 (40-128 bits)

(The initial CDPD security specification limits the size of the Diffie-Hellman key to
256 bits, but it has been recommended that the size be increased to at least 512
bits.)

Note that this version of Cryptoki does not have a mechanism for generating Diffie-
Hellman parameters.

Page 249 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

1Appendix B, Comparison of Cryptoki and Other APIs

This appendix compares Cryptoki with the following cryptographic APIs:

· ANSI N13-94 - Guideline X9.TG-12-199X, Using Tessera in Financial Systems:
An Application Programing Interface, April 29, 1994

· X/Open GCS-API - Generic Cryptographic Service API, Draft 2, February 14,
1995

3B.1 FORTEZZA CIPG, Rev. 1.52

This document defines an API to the FORTEZZAortezza PCMCIA Crypto Card. It is
at a level similar to Cryptoki. The following table lists the FORTEZZA CIPG
functions, together with the equivalent Cryptoki functions:

Table B-1, FORTEZZA CIPG vs. Cryptoki

FORTEZZA CIPG Equivalent Cryptoki
CI_ChangePIN C_InitPIN, C_SetPIN
CI_CheckPIN C_Login
CI_Close C_CloseSession
CI_Decrypt C_DecryptInit, C_Decrypt, C_DecryptUpdate,

C_DecryptFinal
CI_DeleteCertificate C_DestroyObject
CI_DeleteKey C_DestroyObject
CI_Encrypt C_EncryptInit, C_Encrypt, C_EncryptUpdate,

C_EncryptFinal
CI_ExtractX C_WrapKey
CI_GenerateIV C_GenerateRandom
CI_GenerateMEK C_GenerateKey
CI_GenerateRa C_GenerateRandom
CI_GenerateRandom C_GenerateRandom
CI_GenerateTEK C_GenerateKey
CI_GenerateX C_GenerateKeyPair
CI_GetCertificate C_FindObjects
CI_Configuration C_GetTokenInfo
CI_GetHash C_DigestInit, C_Digest, C_DigestUpdate, and

C_DigestFinal
CI_GetIV No equivalent
CI_GetPersonalityList C_FindObjects
CI_GetState C_GetSessionInfo
CI_GetStatus C_GetTokenInfo
CI_GetTime C_GetTokenInfo
CI_Hash C_DigestInit, C_Digest, C_DigestUpdate, and

FORTEZZA CIPG Equivalent Cryptoki
C_DigestFinal

CI_Initialize C_Initialize
CI_InitializeHash C_DigestInit
CI_InstallX C_UnwrapKey
CI_LoadCertificate C_CreateObject
CI_LoadDSAParameters C_CreateObject
CI_LoadInitValues C_SeedRandom
CI_LoadIV C_EncryptInit, C_DecryptInit
CI_LoadK C_SignInit
CI_LoadPublicKeyParamet
ers

C_CreateObject

CI_LoadPIN C_SetPIN
CI_LoadX C_CreateObject
CI_Lock Implicit in session management
CI_Open C_OpenSession
CI_RelayX C_WrapKey
CI_Reset C_CloseAllSessions
CI_Restore Implicit in session management
CI_Save Implicit in session management
CI_Select C_OpenSession
CI_SetConfiguration No equivalent
CI_SetKey C_EncryptInit, C_DecryptInit
CI_SetMode C_EncryptInit, C_DecryptInit
CI_SetPersonality C_CreateObject
CI_SetTime No equivalent
CI_Sign C_SignInit, C_Sign
CI_Terminate C_CloseAllSessions
CI_Timestamp C_SignInit, C_Sign
CI_Unlock Implicit in session management
CI_UnwrapKey C_UnwrapKey
CI_VerifySignature C_VerifyInit, C_Verify
CI_VerifyTimestamp C_VerifyInit, C_Verify
CI_WrapKey C_WrapKey
CI_Zeroize C_InitToken

4B.2 GCS-API

This proposed standard defines an API to high-level security services such as
authentication of identities and data-origin, non-repudiation, and separation and
protection. It is at a higher level than Cryptoki. The following table lists the GCS-
API functions with the Cryptoki functions used to implement the functions. Note
that full support of GCS-API is left for future versions of Cryptoki.

Page 251 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

Table B-2, GCS-API vs. Cryptoki

GCS-API Cryptoki implementation
retrieve_CC
release_CC
generate_hash C_DigestInit, C_Digest
generate_random_number C_GenerateRandom
generate_checkvalue C_SignInit, C_Sign, C_SignUpdate, C_SignFinal
verify_checkvalue C_VerifyInit, C_Verify, C_VerifyUpdate,

C_VerifyFinal
data_encipher C_EncryptInit, C_Encrypt, C_EncryptUpdate,

C_EncryptFinal
data_decipher C_DecryptInit, C_Decrypt, C_DecryptUpdate,

C_DecryptFinal
create_CC
derive_key C_DeriveKey
generate_key C_GenerateKey
store_CC
delete_CC
replicate_CC
export_key C_WrapKey
import_key C_UnwrapKey
archive_CC C_WrapKey
restore_CC C_UnwrapKey
set_key_state
generate_key_pattern
verify_key_pattern
derive_clear_key C_DeriveKey
generate_clear_key C_GenerateKey
load_key_parts
clear_key_encipher C_WrapKey
clear_key_decipher C_UnwrapKey
change_key_context
load_initial_key
generate_initial_key
set_current_master_key
protect_under_new_master_key
protect_under_current_master_
key
initialise_random_number_gene
rator

C_SeedRandom

install_algorithm
de_install_algorithm
disable_algorithm
enable_algorithm
set_defaults

	1 Scope
	2 References
	3 Definitions
	4 Symbols and abbreviations
	5 General overview
	5.1 Design goals
	5.2 General model
	5.3 Logical view of a token
	5.4 Users
	5.5 Sessions
	5.5.1 Read-only session states
	5.5.2 Read/write session states
	5.5.3 Permitted object accesses by sessions
	5.5.4 Session events
	5.5.5 Session handles and object handles
	5.5.6 Capabilities of sessions
	5.5.7 Public Cryptoki libraries and private Cryptoki libraries
	5.5.8 Example of use of sessions

	5.6 Function overview

	6 Security considerations
	7 Data types
	7.1 General information
	7.2 Slot and token types
	7.3 Session types
	7.4 Object types
	7.5 Data types for mechanisms
	7.6 Function types

	8 Objects
	8.1 Common attributes
	8.2 Data objects
	8.3 Certificate objects
	8.3.1 X.509 certificate objects

	8.4 Key objects
	8.5 Public key objects
	8.5.1 RSA public key objects
	8.5.2 DSA public key objects
	8.5.3 ECDSA public key objects
	8.5.4 Diffie-Hellman public key objects
	8.5.5 KEA public key objects
	8.5.6 MAYFLY public key objects

	8.6 Private key objects
	8.6.1 RSA private key objects
	8.6.2 DSA private key objects
	8.6.3 ECDSA private key objects
	8.6.4 Diffie-Hellman private key objects
	8.6.5 KEA private key objects
	8.6.6 MAYFLY private key objects

	8.7 Secret key objects
	8.7.1 Generic secret key objects
	8.7.2 RC2 secret key objects
	8.7.3 RC4 secret key objects
	8.7.4 RC5 secret key objects
	8.7.5 DES secret key objects
	8.7.6 DES2 secret key objects
	8.7.7 DES3 secret key objects
	8.7.8 CAST secret key objects
	8.7.9 CAST3 secret key objects
	8.7.10 CAST5 secret key objects
	8.7.11 IDEA secret key objects
	8.7.12 CDMF secret key objects
	8.7.13 SKIPJACK secret key objects
	8.7.14 BATON secret key objects
	8.7.15 JUNIPER secret key objects

	9 Functions
	9.1 Function return values
	9.1.1 Universal Cryptoki function return values
	9.1.2 Cryptoki function return values for functions that use a session handle
	9.1.3 Cryptoki function return values for functions that use a token
	9.1.4 All the other Cryptoki function return values
	9.1.5 More on relative priorities of Cryptoki errors

	9.2 Conventions for functions which return output in a variable-length buffer
	9.3 Disclaimer concerning sample code
	9.4 General-purpose functions
	9.5 Slot and token management functions
	9.6 Session management functions
	9.7 Object management functions
	9.8 Encryption functions
	9.9 Decryption functions
	9.10 Message digesting functions
	9.11 Signing and MACing functions
	9.12 Functions for verifying signatures and MACs
	9.13 Dual-function cryptographic functions
	9.14 Key management functions
	9.15 Random number generation functions
	9.16 Parallel function management functions
	9.17 Callback functions
	9.17.1 Token insertion callbacks
	9.17.2 Token removal callbacks
	9.17.3 Parallel function completion callbacks
	9.17.4 Serial function surrender callbacks

	10 Mechanisms
	10.1 RSA mechanisms
	10.1.1 PKCS #1 RSA key pair generation
	10.1.2 PKCS #1 RSA
	10.1.3 ISO/IEC 9796 RSA
	10.1.4 X.509 (raw) RSA
	10.1.5 PKCS #1 RSA signature with MD2, MD5, or SHA-1

	10.2 DSA mechanisms
	10.2.1 DSA key pair generation
	10.2.2 DSA
	10.2.3 DSA with SHA-1
	10.2.4 FORTEZZA timestamp

	10.3 ECDSA mechanisms
	10.3.1 ECDSA key pair generation
	10.3.2 ECDSA
	10.3.3 ECDSA with SHA-1

	10.4 Diffie-Hellman mechanisms
	10.4.1 PKCS #3 Diffie-Hellman key pair generation
	10.4.2 PKCS #3 Diffie-Hellman key derivation

	10.5 KEA mechanism parameters
	10.6 KEA mechanisms
	10.6.1 KEA key pair generation
	10.6.2 KEA key derivation

	10.7 MAYFLY mechanism parameters
	10.8 MAYFLY mechanisms
	10.8.1 MAYFLY key pair generation
	10.8.2 MAYFLY key derivation

	10.9 Generic secret key mechanisms
	10.9.1 Generic secret key generation

	10.10 Wrapping/unwrapping private keys (RSA, Diffie-Hellman, and DSA)
	10.11 The RC2 cipher
	10.12 RC2 mechanism parameters
	10.13 RC2 mechanisms
	10.13.1 RC2 key generation
	10.13.2 RC2-ECB
	10.13.3 RC2-CBC
	10.13.4 RC2-CBC with PKCS padding
	10.13.5 General-length RC2-MAC
	10.13.6 RC2-MAC

	10.14 RC4 mechanisms
	10.14.1 RC4 key generation
	10.14.2 RC4

	10.15 The RC5 cipher
	10.16 RC5 mechanism parameters
	10.17 RC5 mechanisms
	10.17.1 RC5 key generation
	10.17.2 RC5-ECB
	10.17.3 RC5-CBC
	10.17.4 RC5-CBC with PKCS padding
	10.17.5 General-length RC5-MAC
	10.17.6 RC5-MAC

	10.18 General block cipher mechanism parameters
	10.19 General block cipher mechanisms
	10.19.1 General block cipher key generation
	10.19.2 General block cipher ECB
	10.19.3 General block cipher CBC
	10.19.4 General block cipher CBC with PKCS padding
	10.19.5 General-length general block cipher MAC
	10.19.6 General block cipher MAC

	10.20 Double-length DES mechanisms
	10.20.1 Double-length DES key generation

	10.21 SKIPJACK mechanism parameters
	10.22 SKIPJACK mechanisms
	10.22.1 SKIPJACK key generation
	10.22.2 SKIPJACK-ECB64
	10.22.3 SKIPJACK-CBC64
	10.22.4 SKIPJACK-OFB64
	10.22.5 SKIPJACK-CFB64
	10.22.6 SKIPJACK-CFB32
	10.22.7 SKIPJACK-CFB16
	10.22.8 SKIPJACK-CFB8
	10.22.9 SKIPJACK-WRAP
	10.22.10 SKIPJACK-PRIVATE-WRAP
	10.22.11 SKIPJACK-RELAYX

	10.23 BATON mechanisms
	10.23.1 BATON key generation
	10.23.2 BATON-ECB128
	10.23.3 BATON-ECB96
	10.23.4 BATON-CBC128
	10.23.5 BATON-COUNTER
	10.23.6 BATON-SHUFFLE
	10.23.7 BATON WRAP

	10.24 JUNIPER mechanisms
	10.24.1 JUNIPER key generation
	10.24.2 JUNIPER-ECB128
	10.24.3 JUNIPER-CBC128
	10.24.4 JUNIPER-COUNTER
	10.24.5 JUNIPER-SHUFFLE
	10.24.6 JUNIPER WRAP

	10.25 MD2 mechanisms
	10.25.1 MD2
	10.25.2 General-length MD2-HMAC
	10.25.3 MD2-HMAC
	10.25.4 MD2 key derivation

	10.26 MD5 mechanisms
	10.26.1 MD5
	10.26.2 General-length MD5-HMAC
	10.26.3 MD5-HMAC
	10.26.4 MD5 key derivation

	10.27 SHA-1 mechanisms
	10.27.1 SHA-1
	10.27.2 General-length SHA-1-HMAC
	10.27.3 SHA-1-HMAC
	10.27.4 SHA-1 key derivation

	10.28 FASTHASH mechanisms
	10.28.1 FASTHASH

	10.29 Password-based encryption mechanism parameters
	10.30 Password-based encryption mechanisms
	10.30.1 MD2-PBE for DES-CBC
	10.30.2 MD5-PBE for DES-CBC
	10.30.3 MD5-PBE for CAST-CBC
	10.30.4 MD5-PBE for CAST3-CBC
	10.30.5 MD5-PBE for CAST5-CBC
	10.30.6 SHA1-PBE for CAST5-CBC

	10.31 SET mechanism parameters
	10.32 SET mechanisms
	10.32.1 OAEP key wrapping for SET

	10.33 LYNKS mechanisms
	10.33.1 LYNKS key wrapping

	10.34 SSL mechanism parameters
	10.35 SSL mechanisms
	10.35.1 Pre_master key generation
	10.35.2 Master key derivation
	10.35.3 Key and MAC derivation
	10.35.4 MD5 MACing in SSL 3.0
	10.35.5 SHA-1 MACing in SSL 3.0

	10.36 Parameters for miscellaneous simple key derivation mechanisms
	10.37 Miscellaneous simple key derivation mechanisms
	10.37.1 Concatenation of a base key and another key
	10.37.2 Concatenation of a base key and data
	10.37.3 Concatenation of data and a base key
	10.37.4 XORing of a key and data
	10.37.5 Extraction of one key from another key

	11 Cryptoki tips and reminders
	11.1 Sessions
	11.2 Objects, attributes, and templates
	11.3 Signing with recovery

