
Amendments Proposals to
PKCS#11

for support of

WTLS and TLS PRF

This document extends

Title Document No
PKCS#11 v2.11: Cryptographic
Token Interface Standard

RSA Laboratories November 2001
http://www.rsasecurity.com/rsalabs/PKCS/pkcs-

Filename: /in/in.doc Create Date: 02-10-11 10:10 Print Date: 02-09-25 16:40

http://www.rsasecurity.com/rsalabs/PKCS/pkcs-11/index.html

11/index.html

Filename: /in/in.doc Create Date: 02-10-11 10:10 Print Date: 02-09-25 16:40

http://www.rsasecurity.com/rsalabs/PKCS/pkcs-11/index.html

TABLE OF CONTENTS:

1 INTRODUCTION..4

1.1 Terminology..4
1.2 References...4
1.3 Yet to do..4

2 NEW GENERAL DATA TYPES..5

2.1 New object types...5
2.2 New data types for mechanisms...5

3 NEW OBJECTS..5

3.1 New certificate objects..5
3.1.1 WTLS public key certificate objects...5

4 NEW MECHANISMS..6

4.1 TLS mechanism parameters..6
4.1.1 CK_TLS_PRF_PARAMS..6

4.2 TLS mechanisms...7
4.2.1 PRF (pseudo random function)..7

4.3 WTLS mechanism parameters..7
4.3.1 CK_WTLS_RANDOM_DATA..7
4.3.2 CK_WTLS_MASTER_KEY_DERIVE_PARAMS...8
4.3.3 CK_WTLS_PRF_PARAMS..8
4.3.4 CK_WTLS_KEY_MAT_OUT...9
4.3.5 CK_WTLS_KEY_MAT_PARAMS..9

4.4 WTLS mechanisms...10
4.4.1 Pre master secret key generation for RSA key exchange suite..10
4.4.2 Master secret key derivation..11
4.4.3 Master secret key derivation for Diffie-Hellman and Elliptic Curve Cryptography...........11
4.4.4 PRF (pseudo random function)..12
4.4.5 Server Key and MAC derivation..13
4.4.6 Client key and MAC derivation...14

Filename: /in/in.doc Create Date: 02-10-11 10:10 Print Date: 02-09-25 16:40

1 Introduction
This document contains proposals for amendments to the PKCS#11 Cryptographic Token
Interface Standard. The purpose of these amendments is to provide support through a
standardized PKCS#11 interface for better secondary PIN handling and to provide support for
WTLS. We also propose an amendment for TLS support. New data types and mechanisms are
described.

We suggest a standardized way to support WTLS a TLS derived transport security layer that is
used in WAP environments.

1.1 Terminology
Definition/Abbreviation Explanation
IV Initialization vector
PKCS Public-Key Cryptography Standards
PRF Pseudo random function
RSA The RSA public key crypto system
SW Software
TBD To be defined
TLS Transport Layer Security
WIM Wireless Identification Module
WTLS Wireless Transport Layer Security

1.2 References
No Title Document No
1 PKCS#11 v2.11: Cryptographic Token Interface

Standard
RSA Laboratories November 2001
http://www.rsasecurity.com/rsalabs/
PKCS/pkcs-11/index.html

2 Wireless Transport Layer Security
Version 06-Apr-2001

Wireless Application Protocol
WAP-261-WTLS-20010406-a
http://www.wapforum.org/

3 The TLS Protocol Version 1.0 RFC 2246
The Internet Engineering Task
Force, January 1999
http://www.ietf.org/

1.3 Yet to do
 -

Filename: /in/in.doc Create Date: 02-10-11 10:10 Print Date: 02-09-25 16:40

http://www.ietf.org/
http://www.wapforum.org/
http://www.rsasecurity.com/rsalabs/PKCS/pkcs-11/index.html
http://www.rsasecurity.com/rsalabs/PKCS/pkcs-11/index.html

2 New general data types
This chapter contains additions to chapter 9 of [1].

2.1 New object types
This chapter contains additions to Chapter 9.4 of [1].

The following additional certificate type is defined.
#define CKC_WTLS TBD

2.2 New data types for mechanisms
This chapter contains additions to Chapter 9.5 of [1].

The following additional mechanism types are defined.
#define CKM_WTLS_PRE_MASTER_KEY_GEN TBD
#define CKM_WTLS_MASTER_KEY_DERIVE TBD
#define CKM_WTLS_MASTER_KEY_DERVIE_DH_ECC TBD
#define CKM_WTLS_PRF TBD
#define CKM_WTLS_SERVER_KEY_AND_MAC_DERIVE TBD
#define CKM_WTLS_CLIENT_KEY_AND_MAC_DERIVE TBD
#define CKM_TLS_PRF TBD

3 New objects
This chapter contains additions to Chapter 10 of [1].

3.1 New certificate objects
This chapter contains additions to Chapter 10.6 of [1].

The following figure illustrates details of certificate objects and replaces figure 7 of [1]:

Figure 1, Certificate Object Attribute Hierarchy

3.1.1 WTLS public key certificate objects
Details can be found in [2].

Filename: /in/in.doc Create Date: 02-10-11 10:10 Print Date: 02-09-25 16:40

WTLS certificate objects (certificate type CKC_WTLS) hold WTLS public key certificates. The
following table defines the WTLS certificate object attributes, in addition to the common
attributes listed in Table 15 of [1], Table19 of [1] and Table 21of [1]:

Table: WTLS Certificate Object Attributes

Attribute Data type Meaning
CKA_SUBJECT1 Byte array WTLS-encoding of the certificate

subject name.
CKA_ISSUER Byte array WTLS-encoding of the certificate

issuer name. (default empty)
CKA_VALUE1 Byte array WTLS-encoding of the certificate.

1Must be specified when the object is created.

Only the CKA_ISSUER attribute may be modified after the object is created.

The following is a sample template for creating a certificate object:
CK_OBJECT_CLASS class = CKO_CERTIFICATE;
CK_CERTIFICATE_TYPE certType = CKC_WTLS;
CK_UTF8CHAR label[] = “A certificate object”;
CK_BYTE subject[] = {...};
CK_BYTE certificate[] = {...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] =
{
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_CERTIFICATE_TYPE, &certType, sizeof(certType)};
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)-1},
 {CKA_SUBJECT, subject, sizeof(subject)},
 {CKA_VALUE, certificate, sizeof(certificate)}
};

4 New mechanisms
This chapter contains additions to Chapter 12 of [1].

4.1 TLS mechanism parameters
Details can be found in [3].

4.1.1 CK_TLS_PRF_PARAMS
CK_TLS_PRF_PARAMS is a structure, which provides the parameters to the
CKM_TLS_PRF mechanism. It is defined as follows:
typedef struct
{
 CK_BYTE_PTR pSeed;
 CK_ULONG ulSeedLen;
 CK_BYTE_PTR pLabel;
 CK_ULONG ulLabelLen;
 CK_BYTE_PTR pOutput
 CK_ULONG_PTR pulOutputLen;
} CK_TLS_PRF_PARAMS;

Filename: /in/in.doc Create Date: 02-10-11 10:10 Print Date: 02-09-25 16:40

The fields of the structure have the following meanings:
pSeed pointer to the input seed

ulSeedLen length in bytes of the input seed

pLabel pointer to the identifying label

ulLabelLen length in bytes of the identifying label

pOutput pointer receiving the output of the operation

pulOutputLen pointer to the length in bytes that the output to be
created shall have, has to hold the desired length
as input and will receive the calculated length as
output

CK_TLS_PRF_PARAMS_PTR is a pointer to a CK_TLS_PRF_PARAMS.

4.2 TLS mechanisms
Details can be found in [3].

4.2.1 PRF (pseudo random function)
PRF (pseudo random function) in TLS, denoted CKM_TLS_PRF, is a mechanism used to
produce a secure digest protected by a secret key. It is used to produce a securely generated
random output of arbitrary length. The keys it uses are generic secret keys.

It has a parameter, a CK_TLS_PRF_PARAMS structure, which allows for the passing of the
input seed and its length, the passing of an identifying label and its length and the passing of the
length of the output to the token and for receiving the output.

This mechanism produces securely generated random output of the length specified in the
parameter.

This mechanism departs from the other key derivation mechanisms in Cryptoki in not using the
template sent along with this mechanism during a C_DeriveKey function call, which means the
template shall be a NULL_PTR, and its returned information. For most key-derivation
mechanisms, C_DeriveKey returns a single key handle as a result of a successful completion.
However, since the CKM_TLS_PRF mechanism returns the requested number of output bytes
in the CK_TLS_PRF_PARAMS structure specified as the mechanism parameter, the parameter
phKey passed to C_DeriveKey is unnecessary, and should be a NULL_PTR.

If a call to C_DeriveKey with this mechanism fails, then no output will be generated.

4.3 WTLS mechanism parameters
Details can be found in [2].

4.3.1 CK_WTLS_RANDOM_DATA
CK_WTLS_RANDOM_DATA is a structure, which provides information about the random
data of a client and a server in a WTLS context. This structure is used by the
CKM_WTLS_MASTER_KEY_DERIVE mechanism. It is defined as follows:
typedef struct
{
 CK_BYTE_PTR pClientRandom;
 CK_ULONG ulClientRandomLen;

Filename: /in/in.doc Create Date: 02-10-11 10:10 Print Date: 02-09-25 16:40

 CK_BYTE_PTR pServerRandom;
 CK_ULONG ulServerRandomLen;
} CK_WTLS_RANDOM_DATA;

The fields of the structure have the following meanings:
pClientRandom pointer to the clients random data

ulClientRandomLen length in bytes of the clients random data

pServerRandom pointer to the servers random data

ulServerRandomLen length in bytes of the servers random data

4.3.2 CK_WTLS_MASTER_KEY_DERIVE_PARAMS
CK_WTLS_MASTER_KEY_DERIVE_PARAMS is a structure, which provides the
parameters to the CKM_WTLS_MASTER_KEY_DERIVE mechanism. It is defined as
follows:
typedef struct
{
 CK_MECHANISM_TYPE DigestMechansim;
 CK_WTLS_RANDOM_DATA RandomInfo;
 CK_BYTE_PTR pVersion;
} CK_WTLS_MASTER_KEY_DERIVE_PARAMS;

The fields of the structure have the following meanings:
DigestMechanism the mechanism type of the digest mechanism to

be used (possible types can be found in [2])

RandomInfo clients and servers random data information

pVersion pointer to a CK_BYTE which receives the
WTLS protocol version information

CK_WTLS_MASTER_KEY_DERIVE_PARAMS_PTR is a pointer to a
CK_WTLS_MASTER_KEY_DERIVE_PARAMS.

4.3.3 CK_WTLS_PRF_PARAMS
CK_WTLS_PRF_PARAMS is a structure, which provides the parameters to the
CKM_WTLS_PRF mechanism. It is defined as follows:
typedef struct
{
 CK_MECHANISM_TYPE DigestMechanism;
 CK_BYTE_PTR pSeed;
 CK_ULONG ulSeedLen;
 CK_BYTE_PTR pLabel;
 CK_ULONG ulLabelLen;
 CK_BYTE_PTR pOutput
 CK_ULONG_PTR pulOutputLen;
} CK_WTLS_PRF_PARAMS;

The fields of the structure have the following meanings:
DigestMechanism the mechanism type of the digest mechanism to

Filename: /in/in.doc Create Date: 02-10-11 10:10 Print Date: 02-09-25 16:40

be used (possible types can be found in [2])

pSeed pointer to the input seed

ulSeedLen length in bytes of the input seed

pLabel pointer to the identifying label

ulLabelLen length in bytes of the identifying label

pOutput pointer receiving the output of the operation

pulOutputLen pointer to the length in bytes that the output to be
created shall have, has to hold the desired length
as input and will receive the calculated length as
output

CK_WTLS_PRF_PARAMS_PTR is a pointer to a CK_WTLS_PRF_PARAMS.

4.3.4 CK_WTLS_KEY_MAT_OUT
CK_WTLS_KEY_MAT_OUT is a structure that contains the resulting key handles and
initialization vectors after performing a C_DeriveKey function with the
CKM_WTLS_SEVER_KEY_AND_MAC_DERIVE or with the
CKM_WTLS_CLIENT_KEY_AND_MAC_DERIVE mechanism. It is defined as follows:
typedef struct
{
 CK_OBJECT_HANDLE hMacSecret;
 CK_OBJECT_HANDLE hKey;
 CK_BYTE_PTR pIV;
} CK_WTLS_KEY_MAT_OUT;

The fields of the structure have the following meanings:
hMacSecret Key handle for the resulting MAC secret key

hKey Key handle for the resulting secret key

pIV Pointer to a location which receives the
initialisation vector (IV) created (if any)

CK_WTLS_KEY_MAT_OUT _PTR is a pointer to a CK_WTLS_KEY_MAT_OUT.

4.3.5 CK_WTLS_KEY_MAT_PARAMS
CK_WTLS_KEY_MAT_PARAMS is a structure that provides the parameters to the
CKM_WTLS_SEVER_KEY_AND_MAC_DERIVE and the
CKM_WTLS_CLIENT_KEY_AND_MAC_DERIVE mechanisms. It is defined as follows:
typedef struct
{
 CK_MECHANISM_TYPE DigestMechanism;
 CK_ULONG ulMacSizeInBits;
 CK_ULONG ulKeySizeInBits;
 CK_ULONG ulIVSizeInBits;
 CK_ULONG ulSequenceNumber;
 CK_BBOOL bIsExport;

Filename: /in/in.doc Create Date: 02-10-11 10:10 Print Date: 02-09-25 16:40

 CK_WTLS_RANDOM_DATA RandomInfo;
 CK_WTLS_KEY_MAT_OUT_PTR pReturnedKeyMaterial;
} CK_WTLS_KEY_MAT_PARAMS;

The fields of the structure have the following meanings:
DigestMechanism the mechanism type of the digest mechanism to

be used (possible types can be found in [2])

ulMacSizeInBits the length (in bits) of the MACing keys agreed
upon during the protocol handshake phase

ulKeySizeInBits the length (in bits) of the secret keys agreed upon
during the handshake phase

ulIVSizeInBits the length (in bits) of the IV agreed upon during
the handshake phase. If no IV is required, the
length should be set to 0.

ulSequenceNumber The current sequence number used for records
sent by the client and server respectively

bIsExport a boolean value which indicates whether the keys
have to be derived for an export version of the
protocol. If this value is true (i.e. the keys are
exportable) then ulKeySizeInBits is the length of
the key in bits before expansion. The length of
the key after expansion is determined by the
information found in the template sent along
with this mechanism during a C_DeriveKey
function call (either the CKA_KEY_TYPE or
the CKA_VALUE_LEN attribute).

RandomInfo client’s and server’s random data information

pReturnedKeyMaterial points to a CK_WTLS_KEY_MAT_OUT
structure which receives the handles for the keys
generated and the IVs

CK_WTLS_KEY_MAT_PARAMS_PTR is a pointer to a
CK_WTLS_KEY_MAT_PARAMS.

4.4 WTLS mechanisms
Details can be found in [2].

4.4.1 Pre master secret key generation for RSA key exchange suite
Pre master secret key generation for the RSA key exchange suite in WTLS denoted
CKM_WTLS_PRE_MASTER_KEY_GEN, is a mechanism, which generates a variable length
secret key. It is used to produce the pre master secret key for RSA key exchange suite used in
WTLS. This mechanism returns a handle to the pre master secret key.

It has one parameter, a CK_BYTE, which provides the client’s WTLS version.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE and CKA_VALUE
attributes to the new key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the
template). Other attributes may be specified in the template, or else are assigned default values.

Filename: /in/in.doc Create Date: 02-10-11 10:10 Print Date: 02-09-25 16:40

The template sent along with this mechanism during a C_GenerateKey call may indicate that the
object class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the
CKA_VALUE_LEN attribute indicates the length of the pre master secret key.

For this mechanism, the ulMinKeySize field of the CK_MECHANISM_INFO structure
indicate 20 bytes.

4.4.2 Master secret key derivation
Master secret derivation in WTLS, denoted CKM_WTLS_MASTER_KEY_DERIVE, is a
mechanism used to derive a 20 byte generic secret key from variable length secret key. It is used
to produce the master secret key used in WTLS from the pre master secret key. This mechanism
returns the value of the client version, which is built into the pre master secret key as well as a
handle to the derived master secret key.

It has a parameter, a CK_WTLS_MASTER_KEY_DERIVE_PARAMS structure, which
allows for passing the mechanism type of the digest mechanism to be used as well as the passing
of random data to the token as well as the returning of the protocol version number which is part
of the pre master secret key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the
template). Other attributes may be specified in the template, or else are assigned default values.

The template sent along with this mechanism during a C_DeriveKey call may indicate that the
object class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the
CKA_VALUE_LEN attribute has value 20. However, since these facts are all implicit in the
mechanism, there is no need to specify any of them.

This mechanism has the following rules about key sensitivity and extractability:

The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key
can both be specified to be either TRUE or FALSE. If omitted, these attributes each take on some
default value.

If the base key has its CKA_ALWAYS_SENSITIVE attribute set to FALSE, then the derived
key will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to TRUE,
then the derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to FALSE, then
the derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set
to TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the
opposite value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure both indicate 20 bytes.

Note that the CK_BYTE pointed to by the CK_WTLS_MASTER_KEY_DERIVE_PARAMS
structure’s pVersion field will be modified by the C_DeriveKey call. In particular, when the call
returns, this byte will hold the WTLS version associated with the supplied pre master secret key.

Note that this mechanism is only useable for key exchange suites that use a 20-byte pre master
secret key with an embedded version number. This includes the RSA key exchange suites, but
excludes the Diffie-Hellman and Elliptic Curve Cryptography key exchange suites.

4.4.3 Master secret key derivation for Diffie-Hellman and Elliptic Curve Cryptography

Filename: /in/in.doc Create Date: 02-10-11 10:10 Print Date: 02-09-25 16:40

Master secret derivation for Diffie-Hellman and Elliptic Curve Cryptography in WTLS, denoted
CKM_WTLS_MASTER_KEY_DERIVE_DH_ECC, is a mechanism used to derive a 20 byte
generic secret key from variable length secret key. It is used to produce the master secret key
used in WTLS from the pre master secret key. This mechanism returns a handle to the derived
master secret key.

It has a parameter, a CK_WTLS_MASTER_KEY_DERIVE_PARAMS structure, which
allows for the passing of the mechanism type of the digest mechanism to be used as well as
random data to the token. The pVersion field of the structure must be set to NULL_PTR since the
version number is not embedded in the pre master secret key as it is for RSA-like key exchange
suites.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the
template). Other attributes may be specified in the template, or else are assigned default values.

The template sent along with this mechanism during a C_DeriveKey call may indicate that the
object class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the
CKA_VALUE_LEN attribute has value 20. However, since these facts are all implicit in the
mechanism, there is no need to specify any of them.

This mechanism has the following rules about key sensitivity and extractability:

The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key
can both be specified to be either TRUE or FALSE. If omitted, these attributes each take on some
default value.

If the base key has its CKA_ALWAYS_SENSITIVE attribute set to FALSE, then the derived
key will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to TRUE,
then the derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to FALSE, then
the derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set
to TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the
opposite value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure both indicate 20 bytes.

Note that this mechanism is only useable for key exchange suites that do not use a fixed length
20-byte pre master secret key with an embedded version number. This includes the Diffie-
Hellman and Elliptic Curve Cryptography key exchange suites, but excludes the RSA key
exchange suites.

4.4.4 PRF (pseudo random function)
PRF (pseudo random function) in WTLS, denoted CKM_WTLS_PRF, is a mechanism used to
produce a secure digest protected by a secret key. It is used to produce a securely generated
random output of arbitrary length. The keys it uses are generic secret keys.

It has a parameter, a CK_WTLS_PRF_PARAMS structure, which allows for passing the
mechanism type of the digest mechanism to be used, the passing of the input seed and its length,
the passing of an identifying label and its length and the passing of the length of the output to the
token and for receiving the output.

This mechanism produces securely generated random output of the length specified in the
parameter.

Filename: /in/in.doc Create Date: 02-10-11 10:10 Print Date: 02-09-25 16:40

This mechanism departs from the other key derivation mechanisms in Cryptoki in not using the
template sent along with this mechanism during a C_DeriveKey function call, which means the
template shall be a NULL_PTR, and its returned information. For most key-derivation
mechanisms, C_DeriveKey returns a single key handle as a result of a successful completion.
However, since the CKM_WTLS_PRF mechanism returns the requested number of output bytes
in the CK_WTLS_PRF_PARAMS structure specified as the mechanism parameter, the
parameter phKey passed to C_DeriveKey is unnecessary, and should be a NULL_PTR.

If a call to C_DeriveKey with this mechanism fails, then no output will be generated.

4.4.5 Server Key and MAC derivation
Server key, MAC and IV derivation in WTLS, denoted
CKM_WTLS_SERVER_KEY_AND_MAC_DERIVE, is a mechanism used to derive the
appropriate cryptographic keying material used by a cipher suite from the master secret key and
random data. This mechanism returns the key handles for the keys generated in the process, as
well as the IV created.

It has a parameter, a CK_WTLS_KEY_MAT_PARAMS structure, which allows for the
passing of the mechanism type of the digest mechanism to be used as well as random data as well
as the characteristic of the cryptographic material for the given cipher suite and a pointer to a
structure which receives the handles and IV which were generated. This structure is defined in
Section 4.3.4

This mechanism contributes to the creation of two distinct keys on the token and returns one IV
(if an IV is requested by the caller) back to the caller. The keys are all given an object class of
CKO_SECRET_KEY.

The MACing key (server write MAC secret) is always given a type of
CKK_GENERIC_SECRET. It is flagged as valid for signing, verification and derivation
operations.

The other key (server write key) is typed according to information found in the template sent
along with this mechanism during a C_DeriveKey function call. By default, it is flagged as valid
for encryption, decryption, and derivation operations.

An IV (server write IV) will be generated and returned if the ulIVSizeInBits field of the
CK_WTLS_KEY_MAT_PARAMS field has a nonzero value. If it is generated, its length in
bits will agree with the value in the ulIVSizeInBits field

Both keys inherit the values of the CKA_SENSITIVE, CKA_ALWAYS_SENSITIVE,
CKA_EXTRACTABLE, and CKA_NEVER_EXTRACTABLE attributes from the base key.
The template provided to C_DeriveKey may not specify values for any of these attributes that
differ from those held by the base key.

Note that the CK_WTLS_KEY_MAT_OUT structure pointed to by the
CK_WTLS_KEY_MAT_PARAMS structure’s pReturnedKeyMaterial field will be modified
by the C_DeriveKey call. In particular, the two key handle fields in the
CK_WTLS_KEY_MAT_OUT structure will be modified to hold handles to the newly-created
keys; in addition, the buffer pointed to by the CK_WTLS_KEY_MAT_OUT structure’s pIV
field will have the IV returned in them (if an IV is requested by the caller). Therefore, this field
must point to a buffer with sufficient space to hold any IV that will be returned.

This mechanism departs from the other key derivation mechanisms in Cryptoki in its returned
information. For most key-derivation mechanisms, C_DeriveKey returns a single key handle as a
result of a successful completion. However, since the
CKM_WTLS_SERVER_KEY_AND_MAC_DERIVE mechanism returns all of its key
handles in the CK_WTLS_KEY_MAT_OUT structure pointed to by the
CK_WTLS_KEY_MAT_PARAMS structure specified as the mechanism parameter, the
parameter phKey passed to C_DeriveKey is unnecessary, and should be a NULL_PTR.

Filename: /in/in.doc Create Date: 02-10-11 10:10 Print Date: 02-09-25 16:40

If a call to C_DeriveKey with this mechanism fails, then none of the two keys will be created on
the token.

4.4.6 Client key and MAC derivation
Client key, MAC and IV derivation in WTLS, denoted
CKM_WTLS_CLIENT_KEY_AND_MAC_DERIVE, is a mechanism used to derive the
appropriate cryptographic keying material used by a cipher suite from the master secret key and
random data. This mechanism returns the key handles for the keys generated in the process, as
well as the IV created.

For this mechanism all applies as described in the Chapter except for that the names server write
MAC secret, server write key and server write IV have to be replaced by client write MAC
secret, client write key and client write IV.

REMARK: When comparing the existing TLS mechanisms in Cryptoki with these extensions to
support WTLS one could argue that there would be no need to have distinct handling of the client
and server side of the handshake. However since in WTLS the server and client have different
sequence numbers for the server and the client. There could be instances where WTLS is used to
protect asynchronous protocols and where sequence numbers on the client and server side
therefore would not be necessarily aligned, and hence this motivates the introduced split..

Filename: /in/in.doc Create Date: 02-10-11 10:10 Print Date: 02-09-25 16:40

	1 Introduction
	1.1 Terminology
	1.2 References
	1.3 Yet to do

	2 New general data types
	2.1 New object types
	2.2 New data types for mechanisms

	3 New objects
	3.1 New certificate objects
	3.1.1 WTLS public key certificate objects

	4 New mechanisms
	4.1 TLS mechanism parameters
	4.1.1 CK_TLS_PRF_PARAMS

	4.2 TLS mechanisms
	4.2.1 PRF (pseudo random function)

	4.3 WTLS mechanism parameters
	4.3.1 CK_WTLS_RANDOM_DATA
	4.3.2 CK_WTLS_MASTER_KEY_DERIVE_PARAMS
	4.3.3 CK_WTLS_PRF_PARAMS
	4.3.4 CK_WTLS_KEY_MAT_OUT
	4.3.5 CK_WTLS_KEY_MAT_PARAMS

	4.4 WTLS mechanisms
	4.4.1 Pre master secret key generation for RSA key exchange suite
	4.4.2 Master secret key derivation
	4.4.3 Master secret key derivation for Diffie-Hellman and Elliptic Curve Cryptography
	4.4.4 PRF (pseudo random function)
	4.4.5 Server Key and MAC derivation
	4.4.6 Client key and MAC derivation

