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1.  Introduction

This  document  provides  recommendations  for  the  implementation  of  public-key
cryptography based on the RSA algorithm [18], covering the following aspects:

 cryptographic primitives

 encryption schemes

 signature schemes with appendix

 ASN.1 syntax for representing keys and for identifying the schemes

The  recommendations  are  intended  for  general  application  within  computer  and
communications systems, and as such include a fair amount of flexibility. It is expected
that  application  standards  based  on  these  specifications  may  include  additional
constraints.  The recommendations are intended to be compatible  with draft  standards
currently being developed by the ANSI X9F1 [1] and IEEE P1363 working groups [14].

This document supersedes PKCS #1 version 1.5 [20].

Editor’s  note.  It  is  expected  that  subsequent  versions  of  PKCS #1 may  cover  other
aspects  of  the  RSA algorithm such  as  key size,  key  generation,  key  validation,  and
signature schemes with message recovery.
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1.1 Overview

The organization of this document is as follows:

 Section 1 is an introduction.
 Section 2 defines some notation used in this document.
 Section 3 defines the RSA public and private key types.
 Sections  4 and  5 define several primitives, or basic mathematical operations. Data

conversion  primitives  are  in  Section  4,  and cryptographic  primitives  (encryption-
decryption, signature-verification) are in Section 5.

 Section 6, 7 and 8 deal with the encryption and signature schemes in this document.
Section  6 gives  an  overview.  Section  7 defines  an  OAEP-based  [2] encryption
scheme along with the method found in PKCS #1 v1.5. Section 8 defines a signature
scheme with appendix; the method is identical to that of PKCS #1 v1.5.

 Section 9 defines the encoding methods for the encryption and signature schemes in
Sections 7 and 8.

 Section 10 defines the hash functions and the mask generation function used in this
document.

 Section  11  defines  the  ASN.1  syntax  for  the  keys  defined  in  Section  3 and  the
schemes in Sections 7 and 8.

 Section 12 outlines the revision history of PKCS #1.
 Section 13 contains references to other publications and standards. 

2. Notation

(n, e) RSA public key

c ciphertext representative, an integer between 0 and n-1

C ciphertext, an octet string

d private exponent

dP p’s exponent, a positive integer such that: 
e · dP  1 (mod p-1))

dQ q’s exponent, a positive integer such that: 
e · dQ  1 (mod q-1))

e public exponent

EM encoded message, an octet string

emLen intended length in octets of an encoded message

H hash value, an output of Hash
Hash hash function

hLen output length in octets of hash function Hash
K RSA private key

Copyright © 1991-1998 RSA Laboratories.
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k length in octets of the modulus 

l intended length of octet string

lcm( . , .) least common multiple of two nonnegative integers

m message representative, an integer between 0 and n-1

M message, an octet string

MGF mask generation function

n modulus

P encoding parameters, an octet string

p, q prime factors of the modulus

qInv CRT coefficient, a positive integer less than p such that: 
q · qInv  1 (mod p)

s signature representative, an integer between 0 and n-1

S signature, an octet string

x a nonnegative integer

X an octet string corresponding to x

\xor bitwise exclusive-or of two octet strings

(n) lcm(p-1, q-1), where n = pq

|| concatenation operator

|| . || octet length operator

3. Key types

Two key types are employed in the primitives and schemes defined in this document:
RSA public key and RSA private key. Together, an RSA public key and an RSA private
key form an RSA key pair.

3.1 RSA public key

For the purposes of this document, an RSA public key consists of two components:

— n, the modulus, a nonnegative integer

— e, the public exponent, a nonnegative integer

In a valid RSA public key, the modulus n is a product of two odd primes p and q, and the
public exponent e is an integer between 3 and n-1 satisfying gcd (e, (n)) = 1, where (n)
= lcm (p-1,q-1).

Copyright © 1991-1998 RSA Laboratories.
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A recommended syntax for interchanging RSA public keys between implementations is
given in Section 11.1.1; an implementation’s internal representation may differ.

3.2 RSA private key

For  the  purposes  of  this  document,  an  RSA  private  key  may  have  either  of  two
representations. 

1. The first representation consists of the pair  (n,  d),  where the components have the
following meanings:

— n, the modulus, a nonnegative integer

— d, the private exponent, a nonnegative integer

2.  The second representation  consists of  a quintuple (p,  q,  dP,  dQ,  qInv),  where the
components have the following meanings:

— p, the first factor, a nonnegative integer

— q, the second factor, a nonnegative integer

— dP, the first factor’s exponent, a nonnegative integer

— dQ, the second factor’s exponent, a nonnegative integer

— qInv, the CRT coefficient, a nonnegative integer

In a valid RSA private key with the first representation, the modulus n is the same as in
the corresponding public key and is the product of two odd primes  p and  q,  and the
private exponent d is a positive integer less than n satisfying

e · d  1 (mod (n))

where e is the corresponding public exponent and (n) is as defined above. 

In a valid RSA private key with the second representation, the two factors p and q are the
prime factors of the modulus n, the exponents dP and dQ are positive integers less than p
and q respectively satisfying

e · dP  1 (mod p-1))
 e · dQ  1 (mod q-1)),

and the CRT coefficient qInv is a positive integer less than p satisfying

q · qInv  1 (mod p).

Copyright © 1991-1998 RSA Laboratories.
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A recommended syntax for interchanging RSA private keys between implementations,
which includes  components from both representations,  is  given in  Section  11.1.2;  an
implementation’s internal representation may differ.

4. Data conversion primitives

Two data conversion primitives are employed in the schemes defined in this document:

 I2OSP – Integer-to-Octet-String primitive

 OS2IP – Octet-String-to-Integer primitive

For the purposes of this document, and consistent with ASN.1 syntax, an octet string is
an  ordered  sequence  of  octets  (eight-bit  bytes).  The  sequence  is  indexed  from  first
(conventionally,  leftmost)  to last (rightmost).  For purposes of conversion to and from
integers,  the first  octet  is considered the most significant  in the following conversion
primitives

4.1 I2OSP

I2OSP converts a nonnegative integer to an octet string of a specified length.

I2OSP (x, l)

Input: x nonnegative integer to be converted

l intended length of the resulting octet string

Output: X corresponding octet string of length l; or “integer too large”

Steps:

1. If x  256l, output “integer too large” and stop.

2. Write the integer x in its unique l-digit representation base 256:

x = xl–1 256 l–1 + xl–2 256 l–2 + … + x1 256 + x0

where 0  xi < 256 (note that one or more leading digits will be zero if 

x < 256 l–1). 

3. Let the octet Xi have the value xl–i for 1  i  l.  Output the octet string 
X = X1 X2 … Xl.

Copyright © 1991-1998 RSA Laboratories.
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4.2 OS2IP

OS2IP converts an octet string to a nonnegative integer.

OS2IP (X)

Input: X octet string to be converted

Output: x corresponding nonnegative integer

Steps:

1. Let X1 X2 … Xl  be the octets of X from first to last, and let xl-i have value Xi for 1
i  l.

2. Let x = xl–1 256 l–1 + xl–2 256 l–2 + … + x1 256 + x0.

3. Output x.

5. Cryptographic primitives

Cryptographic  primitives  are  basic  mathematical  operations  on  which  cryptographic
schemes can be built. They are intended for implementation in hardware or as software
modules, and are not intended to provide security apart from a scheme.

Four types of primitive are specified in this document, organized in pairs: encryption and
decryption; and signature and verification.

The specifications of the primitives assume that certain conditions are met by the inputs,
in particular that public and private keys are valid. 

5.1 Encryption and decryption primitives

An  encryption  primitive  produces  a  ciphertext  representative  from  a  message
representative under the control of a public key, and a decryption primitive recovers the
message  representative  from  the  ciphertext  representative  under  the  control  of  the
corresponding private key.

One pair of encryption and decryption primitives is employed in the encryption schemes
defined in this document and is specified here: RSAEP/RSADP. RSAEP and RSADP
involve the same mathematical operation, with different keys as input.

The primitives defined here are the same as in the draft IEEE P1363 and are compatible
with PKCS #1 v1.5.

The main mathematical operation in each primitive is exponentiation.

Copyright © 1991-1998 RSA Laboratories.
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5.1.1 RSAEP

RSAEP ((n, e), m)

Input: (n, e) RSA public key

m message representative, an integer between 0 and n-1

Output: c ciphertext  representative,  an  integer  between  0  and  n-1;  or
“message representative out of range”

Assumptions: public key (n, e) is valid

Steps:

1. If  the  message  representative  m is  not  between  0  and  n-1,  output  “message
representative out of range” and stop.

2. Let c = me mod n.

3. Output c.

5.1.2 RSADP

RSADP (K, c)

Input: K RSA private key, where K has one of the following forms:

— a pair (n, d)

— a quintuple (p, q, dP, dQ, qInv)

c ciphertext representative, an integer between 0 and n-1

Output: m message  representative,  an  integer  between  0  and  n-1;  or
“ciphertext representative out of range”

Assumptions: private key K is valid

Steps:

1. If  the ciphertext  representative  c is  not between 0 and  n-1,  output  “ciphertext
representative out of range” and stop.

2. If the first form (n, d) of K is used:

2.1 Let m = cd mod n. 

Copyright © 1991-1998 RSA Laboratories.
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Else, if the second form (p, q, dP, dQ, qInv) of K is used:

2.2 Let m1 = cdP mod p.

2.3 Let m2 = cdQ mod q.

2.4 Let h = qInv ( m1 – m2 ) mod p.

2.5 Let m = m2 + h q.

3. Output m.

5.2 Signature and verification primitives

A signature primitive produces a signature representative from a message representative
under the control  of  a private  key,  and a verification  primitive recovers the message
representative from the signature representative under the control of the corresponding
public key. One pair of signature and verification primitives is employed in the signature
schemes defined in this document and is specified here: RSASP1/RSAVP1.

The primitives defined here are the same as in the draft IEEE P1363 and are compatible
with PKCS #1 v1.5.

The  main  mathematical  operation  in  each  primitive  is  exponentiation,  as  in  the
encryption and decryption primitives of Section 5.1. RSASP1 and RSAVP1 are the same
as RSADP and RSAEP except for the names of their input and output arguments; they
are distinguished as they are intended for different purposes.

5.2.1 RSASP1

RSASP1 (K, m)

Input: K RSA private key, where K has one of the following forms:

— a pair (n, d)

— a quintuple (p, q, dP, dQ, qInv)

m message representative, an integer between 0 and n-1

Output: s signature representative, an integer between  0 and n-1; or    
“message representative out of range”

Assumptions: private key K is valid

Steps:

Copyright © 1991-1998 RSA Laboratories.
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1. If  the  message  representative  m is  not  between  0  and  n-1,  output  “message
representative out of range” and stop.

2. If the first form (n, d) of K is used:

2.1 Let s = md mod n. 

Else, if the second form (p, q, dP, dQ, qInv) of K is used:

2.2 Let s1 = mdP mod p.

2.3 Let s2 = mdQ mod q.

2.4 Let h = qInv ( s1 – s2 ) mod p.

2.5 Let s = s2 + h q.

3.         Output s.

5.2.2 RSAVP1

RSAVP1 ((n, e), s)

Input: (n, e) RSA public key

s          signature representative, an integer between 0 and n-1

Output: m message representative, an integer between 0 and n-1; or “invalid”

Assumptions: public key (n, e) is valid

Steps:

1. If the signature representative  s is not between 0 and  n-1, output “invalid” and
stop.

2. Let m = se mod n.

3. Output m.

6. Overview of schemes

A scheme combines cryptographic primitives and other techniques to achieve a particular
security goal. Two types of scheme are specified in this document: encryption schemes
and signature schemes with appendix.

Copyright © 1991-1998 RSA Laboratories.
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The schemes specified  in  this  document are limited  in  scope in  that  their  operations
consist only of steps to process data with a key, and do not include steps for obtaining or
validating  the  key.  Thus,  in  addition  to  the  scheme  operations,  an  application  will
typically  include key management  operations by which parties may select public  and
private keys for a scheme operation. The specific additional operations and other details
are outside the scope of this document.

As was the case for the cryptographic primitives (Section 5), the specifications of scheme
operations assume that certain conditions are met by the inputs, in particular that public
and private keys are valid. The behavior of an implementation is thus unspecified when a
key is  invalid.  The  impact  of  such unspecified  behavior  depends on the  application.
Possible  means  of  addressing  key  validation  include  explicit  key  validation  by  the
application;  key  validation  within  the  public-key  infrastructure;  and  assignment  of
liability for operations performed with an invalid key to the party who generated the key.

7. Encryption schemes

An encryption scheme consists of an  encryption operation and a  decryption operation,
where the encryption operation produces a ciphertext from a message with a recipient’s
public key, and the decryption operation recovers the message from the ciphertext with
the recipient’s corresponding private key.

An encryption scheme can be employed in a variety of applications. A typical application
is a key establishment protocol, where the message contains key material to be delivered
confidentially from one party to another. For instance, PKCS #7  [21] employs such a
protocol to deliver a content-encryption key from a sender to a recipient; the encryption
schemes defined here would be suitable key-encryption algorithms in that context.

Two encryption schemes are specified in this document:  RSAES-OAEP and RSAES-
PKCS1-v1_5.  RSAES-OAEP is  recommended for  new applications;  RSAES-PKCS1-
v1_5  is  included  only  for  compatibility  with  existing  applications,  and  is  not
recommended for new applications.

The encryption schemes given here follow a general model similar to that employed in
IEEE  P1363,  by  combining  encryption  and  decryption  primitives  with  an  encoding
method for encryption. The encryption operations apply a message encoding operation to
a message to produce an encoded message, which is then converted to an integer message
representative.  An  encryption  primitive  is  applied  to  the  message  representative  to
produce  the  ciphertext.  Reversing  this,  the  decryption  operations  apply  a  decryption
primitive to the ciphertext to recover a message representative, which is then converted
to an octet  string  encoded message.  A message decoding operation  is  applied  to  the
encoded message to recover the message and verify the correctness of the decryption.

Copyright © 1991-1998 RSA Laboratories.
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7.1 RSAES-OAEP

RSAES-OAEP combines the RSAEP and RSADP primitives (Sections 5.1.1 and 5.1.2)
with  the  EME-OAEP encoding  method  (Section  9.1.1)  EME-OAEP  is  based  on  the
method found in [2]. It is compatible with the IFES scheme defined in the draft P1363
where the encryption and decryption primitives are IFEP-RSA and IFDP-RSA and the
message encoding method is EME-OAEP. RSAES-OAEP can operate on messages of
length up to k-2-2hLen octets, where hLen is the length of the hash function output for
EME-OAEP and k is the length in octets of the recipient’s RSA modulus.

Assuming that the hash function in EME-OAEP has appropriate properties, and the key
size is sufficiently large, RSAEP-OAEP provides “plaintext-aware encryption,” meaning
that it is computationally infeasible to obtain full or partial information about a message
from a ciphertext, and computationally infeasible to generate a valid ciphertext without
knowing the corresponding message. Therefore, a chosen ciphertext attack is ineffective
against a plaintext-aware encryption scheme such as RSAES-OAEP. We briefly note that
to receive the full security benefit of RSAES-OAEP, it should not be used in a protocol
involving RSAES-PKCS1-v1_5. It is possible that in a protocol in which both encryption
schemes are present, an adaptive chosen ciphertext attack such as [4] would be useful. 

Both the encryption and the decryption operations of RSAES-OAEP take the value of the
parameter  string  P  as input.  In  this  version of  PKCS #1,  P is  an octet  string that  is
specified explicitly. See Section 11.2.1 for the relevant ASN.1 syntax.

7.1.1 Encryption operation

RSAES-OAEP-ENCRYPT ((n, e), M, P)

Input: (n, e) recipient’s RSA public key

M message to be encrypted,  an octet  string of  length at  most  k-2-
2hLen, where k is the length in octets of the modulus n and hLen is
the length in octets of the hash function output for EME-OAEP

P encoding parameters, an octet string that may be empty

Output: C ciphertext, an octet string of length k; or “message too long”

Assumptions: public key (n, e) is valid

Steps:

1. Apply the EME-OAEP encoding operation (Section  9.1.1.2) to the message  M
and the encoding parameters P to produce an encoded message EM of length k-1
octets:

EM = EME-OAEP-ENCODE (M, P, k-1)

Copyright © 1991-1998 RSA Laboratories.
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If the encoding operation outputs “message too long,” then output “message too
long” and stop.

2. Convert the encoded message EM to an integer message representative m:

m = OS2IP (EM)

3. Apply the RSAEP encryption primitive (Section  5.1.1) to the public key (n,  e)
and the message representative m to produce an integer ciphertext representative
c:

c = RSAEP ((n, e), m)

4. Convert the ciphertext representative c to a ciphertext C of length k octets:

C = I2OSP (c, k)

5. Output the ciphertext C.

7.1.2 Decryption operation

RSAES-OAEP-DECRYPT (K, C, P)

Input: K recipient’s RSA private key 

C ciphertext to be decrypted, an octet string of length  k, where  k is
the length in octets of the modulus n

P encoding parameters, an octet string that may be empty

Output: M message, an octet string of length at most k-2-2hLen, where hLen
is the length in octets of the hash function output for EME-OAEP;
or “decryption error”

Steps:

1. If the length of the ciphertext  C is not  k octets, output “decryption error” and
stop.

2. Convert the ciphertext C to an integer ciphertext representative c:

c = OS2IP (C)

3. Apply the RSADP decryption primitive (Section 5.1.2) to the private key K and
the ciphertext representative c to produce an integer message representative m:

m = RSADP (K, c)

Copyright © 1991-1998 RSA Laboratories.
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If RSADP outputs “ciphertext out of range,” then output “decryption error” and
stop.

4. Convert the message representative  m to an encoded message EM of length  k-1
octets:

EM = I2OSP (m, k-1)

If I2OSP outputs “integer too large,” then output “decryption error” and stop.

5. Apply the EME-OAEP decoding operation to the encoded message EM and the
encoding parameters P to recover a message M:

M = EME-OAEP-DECODE (EM, P)

If  the  decoding  operation  outputs  “decoding  error,”  then  output  “decryption
error” and stop.

6. Output the message M.

Note.  It  is  important  that  the  error  messages  output  in  steps  4  and  5  be  the  same,
otherwise an adversary may be able to extract useful information from the type of error
message received. Error message information is used to mount a chosen ciphertext attack
on PKCS #1 v1.5 encrypted messages in [4].

7.2 RSAES-PKCS1-v1_5

RSAES-PKCS1-v1_5  combines  the  RSAEP  and  RSADP  primitives  with  the  EME-
PKCS1-v1_5 encoding method. It  is the same as the encryption scheme in PKCS #1
v1.5. RSAES-PKCS1-v1_5 can operate on messages of length up to k-11 octets, although
care should be taken to avoid certain attacks on low-exponent RSA due to Coppersmith,
et al. when long messages are encrypted (see the third bullet in the notes below and [7]). 

RSAES-PKCS1-v1_5 does not provide “plaintext aware” encryption. In particular, it is
possible to generate valid ciphertexts without knowing the corresponding plaintexts, with
a reasonable probability of success. This ability can be exploited in a chosen ciphertext
attack as shown in  [4]. Therefore, if RSAES-PKCS1-v1_5 is to be used, certain easily
implemented countermeasures should be taken to thwart  the attack found in  [4].  The
addition  of  structure  to  the data  to  be encoded,  rigorous checking of  PKCS #1 v1.5
conformance and other redundancy in decrypted messages, and the consolidation of error
messages  in  a  client-server  protocol  based  on  PKCS  #1  v1.5  can  all  be  effective
countermeasures and don’t involve changes to a PKCS #1 v1.5-based protocol.  These
and other countermeasures are discussed in [5].

Notes. The following passages describe some security recommendations pertaining to the
use of RSAES-PKCS1-v1_5. Recommendations from version 1.5 of this document are
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included as well as new recommendations motivated by cryptanalytic advances made in
the intervening years.

 It is recommended that the pseudorandom octets in EME-PKCS1-v1_5 be generated
independently for  each encryption process,  especially  if  the same data is input to
more than one encryption process. Hastad's results  [13] are one motivation for this
recommendation. 

 The padding string PS in EME-PKCS1-v1_5 is at least eight octets long, which is a
security condition for public-key operations that prevents an attacker from recovering
data by trying all possible encryption blocks. 

 The pseudorandom octets can also help thwart an attack due to Coppersmith et al. [7]
when the size of the message to be encrypted is kept small. The attack works on low-
exponent RSA when similar messages are encrypted with the same public key. More
specifically, in one flavor of the attack, when two inputs to RSAEP agree on a large
fraction of bits (8/9) and low-exponent RSA (e = 3) is used to encrypt both of them,
it may be possible to recover both inputs with the attack. Another flavor of the attack
is successful in decrypting a single ciphertext when a large fraction (2/3) of the input
to RSAEP is already known. For typical applications, the message to be encrypted is
short (e.g.,  a 128-bit symmetric key) so not enough information will be known or
common between two messages to enable the attack. However, if a long message is
encrypted, or if part of a message is known, then the attack may be a concern. In any
case, the RSAEP-OAEP scheme overcomes the attack.

7.2.1 Encryption operation

RSAES-PKCS1-V1_5-ENCRYPT ((n, e), M)

Input: (n, e) recipient’s RSA public key

M message to be encrypted,  an octet  string of length at most  k-11
octets, where k is the length in octets of the modulus n

Output: C ciphertext, an octet string of length k; or “message too long”

Steps:

1. Apply  the  EME-PKCS1-v1_5  encoding  operation  (Section  9.1.2.1)  to  the
message M to produce an encoded message EM of length k-1 octets:

EM = EME-PKCS1-V1_5-ENCODE (M, k-1)

If the encoding operation outputs “message too long,” then output “message too
long” and stop.

2. Convert the encoded message EM to an integer message representative m:
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m = OS2IP (EM)

3. Apply the RSAEP encryption primitive (Section  5.1.1) to the public key (n,  e)
and the message representative m to produce an integer ciphertext representative
c:

c = RSAEP ((n, e), m)

4. Convert the ciphertext representative c to a ciphertext C of length k octets:

C = I2OSP (c, k)

5. Output the ciphertext C.

7.2.2 Decryption operation

RSAES-PKCS1-V1_5-DECRYPT (K, C)

Input: K recipient’s RSA private key

C ciphertext to be decrypted, an octet string of length  k, where  k is
the length in octets of the modulus n

Output: M message,  an octet  string  of  length  at  most  k-11;  or  “decryption
error”

Steps:

1. If the length of the ciphertext  C is not  k octets, output “decryption error” and
stop.

2. Convert the ciphertext C to an integer ciphertext representative c:

c = OS2IP (C)

3. Apply  the  RSADP  decryption  primitive  to  the  private  key  (n,  d)  and  the
ciphertext representative c to produce an integer message representative m:

m = RSADP ((n, d), c)

If RSADP outputs “ciphertext out of range,” then output “decryption error” and
stop.

4. Convert the message representative  m to an encoded message EM of length  k-1
octets:

EM = I2OSP (m, k-1)
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If I2OSP outputs “integer too large,” then output “decryption error” and stop.

5. Apply the EME-PKCS1-v1_5 decoding operation to the encoded message EM to
recover a message M:

M = EME-PKCS1-V1_5-DECODE (EM)

If  the  decoding  operation  outputs  “decoding  error,”  then  output  “decryption
error” and stop.

6. Output the message M.

Note. It is important that only one type of error message is output by EME-PKCS1-v1_5,
as ensured by steps 4 and 5. If this is not done, then an adversary may be able to use
information  extracted  form  the  type  of  error  message  received  to  mount  a  chosen
ciphertext attack such as the one found in [4].

8. Signature schemes with appendix

A  signature scheme with appendix consists of a  signature generation operation and a
signature verification  operation,  where  the  signature  generation  operation  produces  a
signature  from a  message  with  a  signer's  private  key,  and  the  signature  verification
operation verifies the signature on the message with the signer's corresponding public
key. To verify a signature constructed with this type of scheme it is necessary to have the
message itself.  In  this  way,  signature  schemes with  appendix  are  distinguished from
signature schemes with message recovery, which are not supported in this document.

A signature scheme with appendix can be employed in a variety of applications.  For
instance, X.509 [6] employs such a scheme to authenticate the content of a certificate; the
signature scheme with appendix defined here would be a suitable signature algorithm in
that context. A related signature scheme could be employed in PKCS #7 [21], although
for technical reasons, the current version of PKCS #7 separates a hash function from a
signature scheme, which is different than what is done here.

One signature scheme with appendix is specified in this document: RSASSA-PKCS1-
v1_5.

The signature scheme with appendix given here follows a general model similar to that
employed in IEEE P1363, by combining signature and verification primitives with an
encoding method for signatures.  The signature generation operations apply a message
encoding  operation  to  a  message  to  produce  an  encoded  message,  which  is  then
converted to an integer message representative. A signature primitive is then applied to
the message representative to produce the signature. The signature verification operations
apply  a  signature  verification  primitive  to  the  signature  to  recover  a  message
representative,  which  is  then  converted  to  an  octet  string.  The  message  encoding
operation is again applied to the message, and the result is compared to the recovered
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octet string. If there is a match, the signature is considered valid. (Note that this approach
assumes that the signature and verification primitives have the message-recovery form
and  the  encoding  method  is  deterministic,  as  is  the  case  for  RSASP1/RSAVP1 and
EMSA-PKCS1-v1_5.  The  signature  generation  and  verification  operations  have  a
different form in P1363 for other primitives and encoding methods.) 

Editor’s note. RSA Laboratories is investigating the possibility of including a scheme
based on the PSS encoding methods specified in [3], which would be recommended for
new applications.

8.1 RSASSA-PKCS1-v1_5

RSASSA-PKCS1-v1_5 combines the RSASP1 and RSAVP1 primitives with the EME-
PKCS1-v1_5 encoding method. It is compatible with the IFSSA scheme defined in the
draft P1363 where the signature and verification primitives are IFSP-RSA1 and IFVP-
RSA1 and the message encoding method is EMSA-PKCS1-v1_5 (which is not defined in
P1363). The length of messages on which RSASSA-PKCS1-v1_5 can operate is either
unrestricted  or  constrained  by a  very  large  number,  depending  on the  hash  function
underlying the message encoding method.

Assuming that the hash function in EMSA-PKCS1-v1_5 has appropriate properties and
the  key  size  is  sufficiently  large,  RSASSA-PKCS1-v1_5  provides  secure  signatures,
meaning that it is computationally infeasible to generate a signature without knowing the
private key, and computationally infeasible to find a message with a given signature or
two messages with the same signature.  Also, in the encoding method EMSA-PKCS1-
v1_5, a hash function identifier is embedded in the encoding. Because of this feature, an
adversary  must  invert  or  find  collisions  of  the  particular  hash  function  being  used;
attacking a different hash function than the one selected by the signer is not useful to the
adversary.

8.1.1 Signature generation operation

RSASSA-PKCS1-V1_5-SIGN (K, M)

Input: K signer’s RSA private key

M message to be signed, an octet string

Output: S signature, an octet string of length k, where k is the length in octets
of the modulus n; “message too long” or “modulus too short”

Steps:

1. Apply  the  EMSA-PKCS1-v1_5  encoding  operation  (Section  9.2.1)  to  the
message M to produce an encoded message EM of length k-1 octets:
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EM = EMSA-PKCS1-V1_5-ENCODE (M, k-1)

If the encoding operation outputs “message too long,” then output “message too
long” and stop.  If  the encoding operation  outputs “intended encoded message
length too short” then output “modulus too short”.

2. Convert the encoded message EM to an integer message representative m:

m = OS2IP (EM)

3. Apply the RSASP1 signature primitive (Section  5.2.1) to the private key K and
the message representative m to produce an integer signature representative s:

s = RSASP1 (K, m)

4. Convert the signature representative s to a signature S of length k octets:

S = I2OSP (s, k)

5. Output the signature S.

8.1.2 Signature verification operation

RSASSA-PKCS1-V1_5-VERIFY ((n, e), M, S)

Input: (n, e) signer’s RSA public key

M message whose signature is to be verified, an octet string

S signature to be verified, an octet string of length k, where k is the
length in octets of the modulus n

Output: “valid signature,” “invalid signature,” or “message too long”, or “modulus
too short”

Steps:

1. If the length of the signature S is not k octets, output “invalid signature” and stop.

2. Convert the signature S to an integer signature representative s:

s = OS2IP (S)

3. Apply the RSAVP1 verification primitive (Section 5.2.2) to the public key (n, e)
and the signature representative s to produce an integer message representative m:

m = RSAVP1 ((n, e), s)
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If RSAVP1 outputs “invalid” then output “invalid signature” and stop.

4. Convert the message representative  m to an encoded message EM of length  k-1
octets:

EM = I2OSP (m, k-1)

If I2OSP outputs “integer too large,” then output “invalid signature” and stop.

5. Apply  the  EMSA-PKCS1-v1_5  encoding  operation  (Section  9.2.1)  to  the
message M to produce a second encoded message EM’ of length k-1 octets:

EM’ = EMSA-PKCS1-V1_5-ENCODE (M, k-1)

If the encoding operation outputs “message too long,” then output “message too
long” and stop.  If  the encoding operation  outputs “intended encoded message
length too short” then output “modulus too short”.

6. Compare the encoded message EM and the second encoded message EM’. If they
are the same, output “valid signature”; otherwise, output “invalid signature.”

9. Encoding methods

Encoding  methods consist  of  operations  that  map between octet  string  messages and
integer message representatives.

Two types of encoding method are considered in this document: encoding methods for
encryption, encoding methods for signatures with appendix.

9.1 Encoding methods for encryption

An encoding method for encryption consists of an  encoding operation and a  decoding
operation. An encoding operation maps a message M to a message representative EM of
a specified length; the decoding operation maps a message representative EM back to a
message. The encoding and decoding operations are inverses.

The message representative EM will typically have some structure that can be verified by
the  decoding  operation;  the  decoding  operation  will  output  “decoding  error”  if  the
structure is not present. The encoding operation may also introduce some randomness, so
that different applications of the encoding operation to the same message will produce
different representatives.

Two encoding methods for encryption are employed in the encryption schemes and are
specified here: EME-OAEP and EME-PKCS1-v1_5.
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9.1.1 EME-OAEP

This  encoding  method  is  parameterized  by  the  choice  of  hash  function  and  mask
generation function. Suggested hash and mask generation functions are given in Section
10. This encoding method is based on the method found in [2]. illustrates the encoding
operation.

9.1.1.1 Encoding operation

EME-OAEP-ENCODE (M, P, emLen)

Options:  Hash hash  function  (hLen denotes  the  length  in  octets  of  the  hash
function output)

MGF    mask generation function

Input: M  message to be encoded, an octet string of length at most emLen-1-

                                     2hLen
P           encoding parameters, an octet string

emLen intended  length  in  octets  of  the  encoded  message,  at  least
2hLen+1 

Output: EM   encoded message, an octet string of length emLen; or “message 
                                      too long” or “parameter string too long”

 

Steps:

1. If the length of P is greater than the input limitation for the hash function (261-1
octets for SHA-1) then output “parameter string too long” and stop.

2. If ||M|| > emLen-2hLen-1 then output “message too long” and stop.

3. Generate an octet string  PS consisting of  emLen-||M||-2hLen-1 zero octets. The
length of PS may be 0. 

4. Let pHash = Hash(P), an octet string of length hLen.

5. Concatenate pHash,  PS, the message M, and other padding to form a data block
DB as

DB = pHash || PS || 01 || M

6. Generate a random octet string seed of length hLen.

7. Let dbMask = MGF(seed, emLen–hLen).
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8. Let maskedDB = DB \xor dbMask.

9. Let seedMask = MGF(maskedDB, hLen).

10. Let maskedSeed = seed \xor seedMask.

11. Let EM = maskedSeed || maskedDB.

12. Output EM.
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Figure 9-1:  EME-OAEP

 

9.1.1.2 Decoding operation

EME-OAEP-DECODE (EM, P)

Options: Hash hash  function  (hLen denotes  the  length  in  octets  of  the  hash
function output)

MGF mask generation function
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Input: EM encoded message, an octet string of length at least 2hLen+1

P encoding parameters, an octet string

Output: M recovered  message,  an  octet  string  of  length  at  most  ||EM||-1-
2hLen; or “decoding error”

Steps:

1. If the length of  P is greater than the input limitation of the hash function (261-1
octets for SHA-1) then output “decoding error” and stop.

2. If ||EM|| < 2hLen+1, then output “decoding error” and stop.

3. Let  maskedSeed be  the  first  hLen octets  of  EM and  let  maskedDB be  the
remaining ||EM|| - hLen octets.

4. Let seedMask = MGF(maskedDB, hLen).

5. Let seed = maskedSeed \xor seedMask.

6. Let dbMask = MGF(seed, ||EM|| - hLen).

7. Let DB = maskedDB \xor dbMask.

8. Let pHash = Hash(P), an octet string of length hLen.

9. Separate DB into an octet string pHash’ consisting of the first hLen octets of DB,
a (possibly empty) octet string PS consisting of consecutive zero octets following
pHash’, and a message M as 

DB = pHash’ || PS || 01 || M

If there is no 01 octet to separate PS from M, output “decoding error” and stop.

10. If pHash’ does not equal pHash, output “decoding error” and stop.

11. Output M.

9.1.2 EME-PKCS1-v1_5

This encoding method is the same as in PKCS #1 v1.5, Section 8: Encryption Process.
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9.1.2.1 Encoding operation

EME-PKCS1-V1_5-ENCODE (M, emLen)

Input: M message to be encoded, an octet string of length at most emLen-10 

emLen intended length in octets of the encoded message

Output: EM encoded message, an octet string of length emLen; or “message too
long”

Steps:

1. If the length of the message M is greater than emLen – 10 octets, output “message
too long” and stop.

2. Generate an octet string PS of length emLen-||M||-2 consisting of pseudorandomly
generated nonzero octets. The length of PS will be at least 8 octets.

3. Concatenate PS, the message M, and other padding to form the encoded message
EM as

EM = 02 || PS || 00 || M

4. Output EM.

9.1.2.2 Decoding operation

EME-PKCS1-V1_5-DECODE (EM)

Input: EM encoded message, an octet string of length at least 10

Output: M recovered message, an octet string of length at most ||EM||-10; or
“decoding error”

Steps:

1. If the length of the encoded message EM is less than 10, output “decoding error”
and stop.

2. Separate the encoded message EM into an octet string PS consisting of nonzero
octets and a message M as

EM = 02 || PS || 00 || M.

If the first octet of EM is not 02, or if there is no 00 octet to separate PS from M,
output “decoding error” and stop.
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3. If the length of PS is less than 8 octets, output “decoding error” and stop.

4. Output M.

9.2 Encoding methods for signatures with appendix

An  encoding method for signatures with appendix, for the purposes of this document,
consists  of  an  encoding  operation.  An  encoding  operation  maps  a  message  M to  a
message representative  EM of a specified length. (In future versions of this document,
encoding methods may be added that also include a decoding operation.)

One  encoding  method  for  signatures  with  appendix  is  employed  in  the  encryption
schemes and is specified here: EMSA-PKCS1-v1_5.

9.2.1 EMSA-PKCS1-v1_5

This encoding method only has an encoding operation. 

EMSA-PKCS1-v1_5-ENCODE (M, emLen)

Option: Hash hash  function  (hLen denotes  the  length  in  octets  of  the  hash
function output)

Input: M message to be encoded

emLen intended length in octets of the encoded message, at least  ||T|| +
10,  where  T is  the  DER encoding of  a certain  value computed
during the encoding operation

Output: EM encoded message, an octet string of length emLen; or “message too
long” or “intended encoded message length too short”

Steps:

1. Apply the hash function to the message M to produce a hash value H:

H = Hash(M).

If the hash function outputs “message too long,” then output “message too long”.

2. Encode the algorithm ID for the hash function and the hash value into an ASN.1
value of type  DigestInfo (see Section  11) with the Distinguished Encoding
Rules (DER), where the type DigestInfo has the syntax
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DigestInfo ::= SEQUENCE {
  digestAlgorithm AlgorithmIdentifier,
  digest OCTET STRING }

The first field identifies the hash function and the second contains the hash value.
Let T be the DER encoding.

3. If emLen is less than ||T|| + 10 then output “intended encoded message length too
short”.

4. Generate  an  octet  string  PS consisting  of  emLen-||T||-2  octets  with  value  FF
(hexadecimal). The length of PS will be at least 8 octets.

5. Concatenate  PS,  the DER encoding  T,  and other padding to form the encoded
message EM as

EM = 01 || PS || 00 || T

6. Output EM.

10. Auxiliary functions

This  section  specifies  the  hash  functions  and the  mask generation  functions  that  are
mentioned in the encoding methods (Section 9).

10.1 Hash functions

Hash  functions  are  used  in  the  operations  contained  in  Sections  7,  8 and  9.  Hash
functions  are  deterministic,  meaning that  the output  is  completely  determined by the
input. Hash functions take octet strings of variable length, and generate fixed length octet
strings. The hash functions used in the operations contained in Sections 7, 8 and 9 should
be  collision resistant. This means that it is infeasible to find two distinct inputs to the
hash function that produce the same output. A collision resistant hash function also has
the desirable property of being one-way; this means that given an output, it is infeasible
to find an input whose hash is the specified output. The property of collision resistance is
especially  desirable  for  RSASSA-PKCS1-v1_5,  as  it  makes  it  infeasible  to  forge
signatures.  In  addition  to  the  requirements,  the  hash  function  should  yield  a  mask
generation function  (Section 10.2) with pseudorandom output.

Three hash functions are recommended for the encoding methods in this document: MD2
[15], MD5 [17], and SHA-1 [16]. For the EME-OAEP encoding method, only SHA-1 is
recommended. For the EMSA-PKCS1-v1_5 encoding method, SHA-1 is recommended
for  new applications.  MD2 and  MD5 are  recommended  only  for  compatibility  with
existing applications based on PKCS #1 v1.5.
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The  hash  functions  themselves  are  not  defined  here;  readers  are  referred  to  the
appropriate references ([15], [17] and [16]).

Note. Version  1.5  of  this  document  also  allowed  for  the  use  of  MD4 in  signature
schemes. The cryptanalysis of MD4 has progressed significantly in the intervening years.
For example, Dobbertin [10] demonstrated how to find collisions for MD4 and that the
first two rounds of MD4 are not one-way [11]. Because of these results and others (e.g.
[9]), MD4 is no longer recommended. There have also been advances in the cryptanalysis
of MD2 and MD5, although not enough to warrant removal from existing applications.
Rogier and Chauvaud [19] demonstrated how to find collisions in a modified version of
MD2.  No one has  demonstrated  how to  find  collisions  for  the  full  MD5 algorithm,
although partial results have been found (e.g. [8]). For new applications, to address these
concerns, SHA-1 is preferred.

10.2 Mask generation functions

A mask generation function takes an octet string of variable length and a desired output
length  as  input,  and  outputs  an  octet  string  of  the  desired  length.  There  may  be
restrictions  on  the  length  of  the  input  and output  octet  strings,  but  such bounds are
generally very large. Mask generation functions are deterministic; the octet string output
is  completely  determined by the input  octet  string.  The output  of  a mask generation
function  should be pseudorandom,  that  is,  if  the seed to  the function  is  unknown,  it
should be infeasible to distinguish the output from a truly random string. The plaintext-
awareness of  RSAES-OAEP relies  on  the  random nature  of  the  output  of  the  mask
generation function, which in turn relies on the random nature of the underlying hash.

One  mask  generation  function  is  recommended  for  the  encoding  methods  in  this
document,  and  is  defined  here:  MGF1,  which  is  based  on  a  hash  function.  Future
versions of this document may define other mask generation functions.

10.2.1 MGF1

MGF1 is a Mask Generation Function based on a hash function.

MGF1 (Z, l)

Options:  Hash hash  function  (hLen denotes  the  length  in  octets  of  the  hash
function output)

Input: Z seed from which mask is generated, an octet string

l           intended length in octets of the mask, at most 232 hLen

Output: mask mask, an octet string of length l; or “mask too long”

Steps:
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1. If l > 232 hLen, output “mask too long” and stop.

2. Let T  be the empty octet string.

3. For counter from 0 to  l / hLen -1, do the following:

a. Convert counter to an octet string C of length 4 with the primitive I2OSP:

C = I2OSP (counter, 4)

b. Concatenate the hash of the seed Z and C to the octet string T:

T = T || Hash (Z || C)

4. Output the leading l octets of T as the octet string mask.

11. ASN.1 

11.1 Key representation

This  section  defines  ASN.1  object  identifiers  for  RSA public  and  private  keys,  and
defines the types RSAPublicKey and RSAPrivateKey. The intended application of
these definitions includes X.509 certificates, PKCS #8 [22], and PKCS #12 [23]. 

The  object  identifier  rsaEncryption identifies  RSA  public  and  private  keys  as
defined in Sections 11.1.1 and 11.1.2. The parameters field associated with this OID
in an AlgorithmIdentifier shall have type NULL.

rsaEncryption OBJECT IDENTIFIER ::= {pkcs-1 1}

All of the definitions in this section are the same as in PKCS #1 v1.5.

11.1.1 Public-key syntax

An RSA public key should be represented with the ASN.1 type RSAPublicKey:

RSAPublicKey ::= SEQUENCE {
  modulus INTEGER, -- n
  publicExponent INTEGER -- e }

(This type is specified in X.509 and is retained here for compatibility.)

The fields of type RSAPublicKey have the following meanings:

 modulus is the modulus n.
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 publicExponent is the public exponent e.

11.1.2 Private-key syntax

An RSA private key should be represented with ASN.1 type RSAPrivateKey:

RSAPrivateKey ::= SEQUENCE {
  version Version,
  modulus INTEGER, -- n
  publicExponent INTEGER, -- e
  privateExponent INTEGER, -- d
  prime1 INTEGER, -- p
  prime2 INTEGER, -- q
  exponent1 INTEGER, -- d mod (p-1)
  exponent2 INTEGER, -- d mod (q-1)
  coefficient INTEGER -- (inverse of q) mod p }

Version ::= INTEGER

The fields of type RSAPrivateKey have the following meanings:

 version is the version number, for compatibility with future revisions
of this document. It shall be 0 for this version of the document.

 modulus is the modulus n.

 publicExponent is the public exponent e.

 privateExponent is the private exponent d.

 prime1 is the prime factor p of n.

 prime2 is the prime factor q of n.

 exponent1 is d mod (p1).

 exponent2 is d mod (q1).

 coefficient is the Chinese Remainder Theorem coefficient  q-1 mod
p.
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11.2 Scheme identification

This  section  defines  object  identifiers  for  the  encryption  and signature  schemes.  The
schemes compatible with PKCS #1 v1.5 have the same definitions as in PKCS #1 v1.5.
The intended application of these definitions includes X.509 certificates and PKCS #7.

11.2.1 Syntax for RSAES-OAEP

The  object  identifier  id-RSAES-OAEP identifies  the  RSAES-OAEP  encryption
scheme. 

id-RSAES-OAEP OBJECT IDENTIFIER ::= {pkcs-1 7}

The  parameters field  associated  with  this  OID in  an  AlgorithmIdentifier
shall have type RSAEP-OAEP-params:

RSAES-OAEP-params ::=  SEQUENCE {
  hashFunc [0] AlgorithmIdentifier {{oaepDigestAlgorithms}}
    DEFAULT sha1Identifier,
  maskGenFunc [1] AlgorithmIdentifier {{pkcs1MGFAlgorithms}}
    DEFAULT mgf1SHA1Identifier,
  pSourceFunc [2] AlgorithmIdentifier 
    {{pkcs1pSourceAlgorithms}}
    DEFAULT pSpecifiedEmptyIdentifier }

The fields of type RSAES-OAEP-params have the following meanings:

 hashFunc identifies the hash function. It shall be an algorithm ID with an OID in
the set  oaepDigestAlgorithms,  which for  this  version  shall  consist  of  id-
sha1, identifying the SHA-1 hash function. The parameters field for id-sha1
shall have type NULL.

oaepDigestAlgorithms ALGORITHM-IDENTIFIER ::= {
  {NULL IDENTIFIED BY id-sha1} }

id-sha1 OBJECT IDENTIFIER ::=
  {iso(1) identified-organization(3) oiw(14) secsig(3)
    algorithms(2) 26}

The default hash function is SHA-1: 

sha1Identifier ::= AlgorithmIdentifier {id-sha1, NULL}

 maskGenFunc identifies the mask generation function. It shall be an algorithm ID
with an OID in the set pkcs1MGFAlgorithms, which for this version shall consist
of  id-mgf1, identifying the MGF1 mask generation function (see Section 10.2.1).
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The parameters field for id-mgf1 shall have type AlgorithmIdentifier,
identifying the hash function on which MGF1 is based, where the OID for the hash
function shall be in the set oaepDigestAlgorithms.

pkcs1MGFAlgorithms ALGORITHM-IDENTIFIER ::= {
  {AlgorithmIdentifier {{oaepDigestAlgorithms}} IDENTIFIED
    BY id-mgf1} }

id-mgf1 OBJECT IDENTIFIER ::= {pkcs-1 8}

The default mask generation function is MGF1 with SHA-1: 

mgf1SHA1Identifier ::= AlgorithmIdentifier {
  id-mgf1, sha1Identifier }

 pSourceFunc identifies  the  source  (and  possibly  the  value)  of  the  encoding
parameters  P.  It  shall  be  an  algorithm  ID  with  an  OID  in  the  set
pkcs1pSourceAlgorithms,  which  for  this  version  shall  consist  of  id-
pSpecified, indicating that the encoding parameters are specified explicitly. The
parameters field  for  id-pSpecified shall  have  type  OCTET STRING,
containing the encoding parameters.

pkcs1pSourceAlgorithms ALGORITHM-IDENTIFIER ::= {
  {OCTET STRING IDENTIFIED BY id-pSpecified} }

id-pSpecified OBJECT IDENTIFIER ::= {pkcs-1 9}

The default encoding parameters is an empty string (so that  pHash in  EME-OAEP
will contain the hash of the empty string): 

pSpecifiedEmptyIdentifier ::= AlgorithmIdentifier {
  id-pSpecified, OCTET STRING SIZE (0) }

If all of the default values of the fields in  RSAES-OAEP-params are used, then the
algorithm identifier will have the following value:

RSAES-OAEP-Default-Identifier ::= AlgorithmIdentifier {
  id-RSAES-OAEP,
  {sha1Identifier,
   mgf1SHA1Identifier,
   pSpecifiedEmptyIdentifier } }

11.2.2 Syntax for RSAES-PKCS1-v1_5

The object identifier  rsaEncryption (Section  11.1) identifies the RSAES-PKCS1-
v1_5  encryption  scheme.  The  parameters field  associated  with  this  OID  in  an
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AlgorithmIdentifier shall  have type  NULL. This is  the same as in  PKCS #1
v1.5.

rsaEncryption OBJECT IDENTIFIER ::= {pkcs-1 1}

11.2.3 Syntax for RSASSA-PKCS1-v1_5

The  object  identifier  for  RSASSA-PKCS1-v1_5  shall  be  one  of  the  following.  The
choice of OID depends on the choice of hash algorithm: MD2, MD5 or SHA-1. Note that
if either MD2 or MD5 is used then the OID is just as in PKCS #1 v1.5. For each OID,
the parameters field associated with this OID in an AlgorithmIdentifier shall
have type NULL.

If the hash function to be used is MD2, then the OID should be:

md2WithRSAEncryption ::= {pkcs-1 2}

If the hash function to be used is MD5, then the OID should be:

md5WithRSAEncryption ::= {pkcs-1 4}

If the hash function to be used is SHA-1, then the OID should be:

sha1WithRSAEncryption ::= {pkcs-1 5}

In the digestInfo type mentioned in Section 9.2.1 the OIDS for the digest algorithm
are the following:

id-SHA1 OBJECT IDENTIFIER ::=
{iso(1)  identified-organization(3)  oiw(14)  secsig(3)

algorithms(2) 26 }

md2 OBJECT IDENTIFIER ::=
{iso(1)  member-body(2)  us(840)  rsadsi(113549)

digestAlgorithm(2) 2}

md5 OBJECT IDENTIFIER ::=
{iso(1)  member-body(2)  us(840)  rsadsi(113549)

digestAlgorithm(2) 5} 

The parameters field of the digest algorithm has ASN.1 type NULL for these OIDs.

12. Revision history

Versions 1.0–1.3
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Versions 1.0–1.3 were distributed to participants in RSA Data Security, Inc.'s Public-Key
Cryptography Standards meetings in February and March 1991.

Version 1.4

Version 1.4 was part of the June 3, 1991 initial public release of PKCS. Version 1.4 was
published as NIST/OSI Implementors' Workshop document SEC-SIG-91-18.

Version 1.5

Version 1.5 incorporated several editorial changes, including updates to the references
and the addition of a revision history. The following substantive changes were made:

Section 10: “MD4 with RSA” signature and verification processes were added.

 Section 11: md4WithRSAEncryption object identifier was added.

Version 2.0 

Version 2.0 incorporates major editorial changes in terms of the document structure, and
introduces the RSAEP-OAEP encryption scheme. This version continues to support the
encryption and signature processes in version 1.5, although the hash algorithm MD4 is no
longer allowed due to cryptanalytic advances in the intervening years. 
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