
PKCS #1: RSA Encryption
Standard
An RSA Laboratories Technical Note
Version 1.5
Revised November 1, 1993*

1. Scope

This standard describes a method for encrypting data using the RSA public-key
cryptosystem. Its intended use is in the construction of digital signatures and digital
envelopes, as described in PKCS #7:

· For digital signatures, the content to be signed is first reduced to a
message digest with a message-digest algorithm (such as MD5), and then
an octet string containing the message digest is encrypted with the RSA
private key of the signer of the content. The content and the encrypted
message digest are represented together according to the syntax in PKCS
#7 to yield a digital signature. This application is compatible with
Privacy-Enhanced Mail (PEM) methods.

· For digital envelopes, the content to be enveloped is first encrypted under
a content-encryption key with a content-encryption algorithm (such as
DES), and then the content-encryption key is encrypted with the RSA
public keys of the recipients of the content. The encrypted content and the
encrypted content-encryption key are represented together according to
the syntax in PKCS #7 to yield a digital envelope. This application is also
compatible with PEM methods.

The standard also describes a syntax for RSA public keys and private keys. The public-
key syntax would be used in certificates; the private-key syntax would be used typically
in PKCS #8 private-key information. The public-key syntax is identical to that in both
X.509 and Privacy-Enhanced Mail. Thus X.509/PEM RSA keys can be used in this
standard.

The standard also defines three signature algorithms for use in signing X.509/PEM

*Supersedes June 3, 1991 version, which was also published as NIST/OSI Implementors' Workshop document SEC-
SIG-91-18. PKCS documents are available by electronic mail to <pkcs@rsa.com>.
Copyright Ó 1991–1993 RSA Laboratories, a division of RSA Data Security, Inc. License to copy this
document is granted provided that it is identified as "RSA Data Security, Inc. Public-Key Cryptography
Standards (PKCS)" in all material mentioning or referencing this document.
003-903018-150-000-000

Page 2 PKCS #1: RSA Encryption Standard§

certificates and certificate-revocation lists, PKCS #6 extended certificates, and other
objects employing digital signatures such as X.401 message tokens.

Details on message-digest and content-encryption algorithms are outside the scope of this
standard, as are details on sources of the pseudorandom bits required by certain methods
in this standard.

2. References

FIPS PUB 46–1 National Bureau of Standards. FIPS PUB 46–1: Data Encryption Standard. January
1988.

PKCS #6 RSA Laboratories. PKCS #6: Extended-Certificate Syntax Standard. Version 1.5,
November 1993.

PKCS #7 RSA Laboratories. PKCS #7: Cryptographic Message Syntax Standard. Version 1.5,
November 1993.

PKCS #8 RSA Laboratories. PKCS #8: Private-Key Information Syntax Standard. Version 1.2,
November 1993.

RFC 1319 B. Kaliski. RFC 1319: The MD2 Message-Digest Algorithm. April 1992.

RFC 1320 R. Rivest. RFC 1320: The MD4 Message-Digest Algorithm. April 1992.

RFC 1321 R. Rivest. RFC 1321: The MD5 Message-Digest Algorithm. April 1992.

RFC 1423 D. Balenson. RFC 1423: Privacy Enhancement for Internet Electronic Mail: Part III:
Algorithms, Modes, and Identifiers. February 1993.

X.208 CCITT. Recommendation X.208: Specification of Abstract Syntax Notation One
(ASN.1). 1988.

X.209 CCITT. Recommendation X.209: Specification of Basic Encoding Rules for Abstract
Syntax Notation One (ASN.1). 1988.

X.411 CCITT. Recommendation X.411: Message Handling Systems: Message Transfer
System: Abstract Service Definition and Procedures.1988.

X.509 CCITT. Recommendation X.509: The Directory—Authentication Framework. 1988.

[dBB92] B. den Boer and A. Bosselaers. An attack on the last two rounds of MD4. In J.
Feigenbaum, editor, Advances in Cryptology—CRYPTO '91 Proceedings, volume 576
of Lecture Notes in Computer Science, pages 194–203. Springer-Verlag, New York,
1992.

[dBB93] B. den Boer and A. Bosselaers. Collisions for the compression function of MD5.
Presented at EUROCRYPT '93 (Lofthus, Norway, May 24–27, 1993).

[DO86] Y. Desmedt and A.M. Odlyzko. A chosen text attack on the RSA cryptosystem and
some discrete logarithm schemes. In H.C. Williams, editor, Advances in Cryptology—

2. References Page 3

CRYPTO '85 Proceedings, volume 218 of Lecture Notes in Computer Science, pages
516–521. Springer-Verlag, New York, 1986.

[Has88] Johan Hastad. Solving simultaneous modular equations. SIAM Journal on Computing,
17(2):336–341, April 1988.

[IM90] Colin I'Anson and Chris Mitchell. Security defects in CCITT Recommendation X.509
—The directory authentication framework. Computer Communications Review, :30–34,
April 1990.

[Mer90] R.C. Merkle. Note on MD4. Unpublished manuscript, 1990.

[Mil76] G.L. Miller. Riemann's hypothesis and tests for primality. Journal of Computer and
Systems Sciences, 13(3):300–307, 1976.

[QC82] J.-J. Quisquater and C. Couvreur. Fast decipherment algorithm for RSA public-key
cryptosystem. Electronics Letters, 18(21):905–907, October 1982.

[RSA78] R.L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM, 21(2):120–126, February 1978.

3. Definitions

For the purposes of this standard, the following definitions apply.

AlgorithmIdentifier: A type that identifies an algorithm (by object identifier) and
associated parameters. This type is defined in X.509.

ASN.1: Abstract Syntax Notation One, as defined in X.208.

BER: Basic Encoding Rules, as defined in X.209.

DES: Data Encryption Standard, as defined in FIPS PUB 46-1.

MD2: RSA Data Security, Inc.'s MD2 message-digest algorithm, as defined in RFC
1319.

MD4: RSA Data Security, Inc.'s MD4 message-digest algorithm, as defined in RFC
1320.

MD5: RSA Data Security, Inc.'s MD5 message-digest algorithm, as defined in RFC
1321.

modulus: Integer constructed as the product of two primes.

PEM: Internet Privacy-Enhanced Mail, as defined in RFC 1423 and related documents.

RSA: The RSA public-key cryptosystem, as defined in [RSA78].

Page 4 PKCS #1: RSA Encryption Standard§

private key: Modulus and private exponent.

public key: Modulus and public exponent.

4. Symbols and abbreviations

Upper-case italic symbols (e.g., BT) denote octet strings and bit strings (in the case of the
signature S); lower-case italic symbols (e.g., c) denote integers.

ab hexadecimal octet value c exponent

BT block type d private exponent

D data e public exponent

EB encryption block k length of modulus in octets

ED encrypted data n modulus

M message p, q prime factors of modulus

MD message digest x integer encryption block

MD' comparative message digest y integer encrypted data

PS padding string mod n modulo n

S signature X || Y concatenation of X, Y

4. Symbols and abbreviations Page 5

||X|| length in octets of X

5. General overview

The next six sections specify key generation, key syntax, the encryption process, the
decryption process, signature algorithms, and object identifiers.

Each entity shall generate a pair of keys: a public key and a private key. The encryption
process shall be performed with one of the keys and the decryption process shall be
performed with the other key. Thus the encryption process can be either a public-key
operation or a private-key operation, and so can the decryption process. Both processes
transform an octet string to another octet string. The processes are inverses of each other
if one process uses an entity's public key and the other process uses the same entity's
private key.

The encryption and decryption processes can implement either the classic RSA
transformations, or variations with padding.

6. Key generation

This section describes RSA key generation.

Each entity shall select a positive integer e as its public exponent.

Each entity shall privately and randomly select two distinct odd primes p and q such that
(p-1) and e have no common divisors, and (q-1) and e have no common divisors.

The public modulus n shall be the product of the private prime factors p and q:

n = pq .
The private exponent shall be a positive integer d such that de-1 is divisible by both p-1
and q-1.

The length of the modulus n in octets is the integer k satisfying

28(k-1) £ n < 28k .
The length k of the modulus must be at least 12 octets to accommodate the block formats
in this standard (see Section 8).

Page 6 PKCS #1: RSA Encryption Standard§

Notes.
1. The public exponent may be standardized in specific applications. The

values 3 and F4 (65537) may have some practical advantages, as noted in
X.509 Annex C.

2. Some additional conditions on the choice of primes may well be taken
into account in order to deter factorization of the modulus. These security
conditions fall outside the scope of this standard. The lower bound on the
length k is to accommodate the block formats, not for security.

7. Key syntax

This section gives the syntax for RSA public and private keys.

7.1 Public-key syntax

An RSA public key shall have ASN.1 type RSAPublicKey:

RSAPublicKey ::= SEQUENCE {
 modulus INTEGER, -- n
 publicExponent INTEGER -- e }
(This type is specified in X.509 and is retained here for compatibility.)

The fields of type RSAPublicKey have the following meanings:

· modulus is the modulus n.
· publicExponent is the public exponent e.

7.2 Private-key syntax

An RSA private key shall have ASN.1 type RSAPrivateKey:

RSAPrivateKey ::= SEQUENCE {
 version Version,
 modulus INTEGER, -- n
 publicExponent INTEGER, -- e
 privateExponent INTEGER, -- d
 prime1 INTEGER, -- p
 prime2 INTEGER, -- q
 exponent1 INTEGER, -- d mod (p-1)
 exponent2 INTEGER, -- d mod (q-1)
 coefficient INTEGER -- (inverse of q) mod p }
Version ::= INTEGER
The fields of type RSAPrivateKey have the following meanings:

· version is the version number, for compatibility with future revisions of

7. Key syntax Page 7

this standard. It shall be 0 for this version of the standard.
· modulus is the modulus n.
· publicExponent is the public exponent e.
· privateExponent is the private exponent d.
· prime1 is the prime factor p of n.
· prime2 is the prime factor q of n.
· exponent1 is d mod (p-1).
· exponent2 is d mod (q-1).
· coefficient is the Chinese Remainder Theorem coefficient q-1 mod p.

Notes.
1. An RSA private key logically consists of only the modulus n and the

private exponent d. The presence of the values p, q, d mod (p-1), d mod
(p-1), and q-1 mod p is intended for efficiency, as Quisquater and
Couvreur have shown [QC82]. A private-key syntax that does not include
all the extra values can be converted readily to the syntax defined here,
provided the public key is known, according to a result by Miller [Mil76].

2. The presence of the public exponent e is intended to make it
straightforward to derive a public key from the private key.

8. Encryption process

This section describes the RSA encryption process.

The encryption process consists of four steps: encryption-block formatting, octet-string-
to-integer conversion, RSA computation, and integer-to-octet-string conversion. The
input to the encryption process shall be an octet string D, the data; an integer n, the
modulus; and an integer c, the exponent. For a public-key operation, the integer c shall
be an entity's public exponent e; for a private-key operation, it shall be an entity's private
exponent d. The output from the encryption process shall be an octet string ED, the
encrypted data.

The length of the data D shall not be more than k-11 octets, which is positive since the
length k of the modulus is at least 12 octets. This limitation guarantees that the length of
the padding string PS is at least eight octets, which is a security condition.

Notes.
1. In typical applications of this standard to encrypt content-encryption keys

and message digests, one would have ||D|| £ 30. Thus the length of the
RSA modulus will need to be at least 328 bits (41 octets), which is
reasonable and consistent with security recommendations.

2. The encryption process does not provide an explicit integrity check to
facilitate error detection should the encrypted data be corrupted in

Page 8 PKCS #1: RSA Encryption Standard§

transmission. However, the structure of the encryption block guarantees
that the probability that corruption is undetected is less than 2-16, which is
an upper bound on the probability that a random encryption block looks
like block type 02.

3. Application of private-key operations as defined here to data other than an
octet string containing a message digest is not recommended and is subject
to further study.

4. This standard may be extended to handle data of length more than k-11
octets.

8.1 Encryption-block formatting

A block type BT, a padding string PS, and the data D shall be formatted into an octet
string EB, the encryption block.

EB = 00 || BT || PS || 00 || D . (1)
The block type BT shall be a single octet indicating the structure of the encryption block.
For this version of the standard it shall have value 00, 01, or 02. For a private-key
operation, the block type shall be 00 or 01. For a public-key operation, it shall be 02.

The padding string PS shall consist of k-3-||D|| octets. For block type 00, the octets shall
have value 00; for block type 01, they shall have value FF; and for block type 02, they
shall be pseudorandomly generated and nonzero. This makes the length of the encryption
block EB equal to k.

Notes.
1. The leading 00 octet ensures that the encryption block, converted to an

integer, is less than the modulus.
2. For block type 00, the data D must begin with a nonzero octet or have

known length so that the encryption block can be parsed unambiguously.
For block types 01 and 02, the encryption block can be parsed
unambiguously since the padding string PS contains no octets with value
00 and the padding string is separated from the data D by an octet with
value 00.

3. Block type 01 is recommended for private-key operations. Block type 01
has the property that the encryption block, converted to an integer, is
guaranteed to be large, which prevents certain attacks of the kind
proposed by Desmedt and Odlyzko [DO86].

4. Block types 01 and 02 are compatible with PEM RSA encryption of
content-encryption keys and message digests as described in RFC 1423.

5. For block type 02, it is recommended that the pseudorandom octets be
generated independently for each encryption process, especially if the
same data is input to more than one encryption process. Hastad's results
[Has88] motivate this recommendation.

6. For block type 02, the padding string is at least eight octets long, which is

8. Encryption process Page 9

a security condition for public-key operations that prevents an attacker
from recoving data by trying all possible encryption blocks. For
simplicity, the minimum length is the same for block type 01.

7. This standard may be extended in the future to include other block types.

8.2 Octet-string-to-integer conversion

The encryption block EB shall be converted to an integer x, the integer encryption block.
Let EB1, ¼, EBk be the octets of EB from first to last. Then the integer x shall satisfy

x = . (2)
In other words, the first octet of EB has the most significance in the integer and the last
octet of EB has the least significance.

Note. The integer encryption block x satisfies 0 £ x < n since EB1 = 00 and 28(k-1) £ n.

8.3 RSA computation

The integer encryption block x shall be raised to the power c modulo n to give an integer
y, the integer encrypted data.

y = xc mod n, 0 £ y < n .
This is the classic RSA computation.

8.4 Integer-to-octet-string conversion

The integer encrypted data y shall be converted to an octet string ED of length k, the
encrypted data. The encrypted data ED shall satisfy

y = . (3)
where ED1, ¼, EDk are the octets of ED from first to last.

In other words, the first octet of ED has the most significance in the integer and the last
octet of ED has the least significance.

9. Decryption process

This section describes the RSA decryption process.

The decryption process consists of four steps: octet-string-to-integer conversion, RSA
computation, integer-to-octet-string conversion, and encryption-block parsing. The input
to the decryption process shall be an octet string ED, the encrypted data; an integer n, the
modulus; and an integer c, the exponent. For a public-key operation, the integer c shall

Page 10 PKCS #1: RSA Encryption Standard§

be an entity's public exponent e; for a private-key operation, it shall be an entity's private
exponent d. The output from the decryption process shall be an octet string D, the data.

It is an error if the length of the encrypted data ED is not k.

For brevity, the decryption process is described in terms of the encryption process.

9.1 Octet-string-to-integer conversion

The encrypted data ED shall be converted to an integer y, the integer encrypted data,
according to Equation (3).

It is an error if the integer encrypted data y does not satisfy 0 £ y < n.

9.2 RSA computation

The integer encrypted data y shall be raised to the power c modulo n to give an integer x,
the integer encryption block.

x = yc mod n, 0 £ x < n .
This is the classic RSA computation.

9.3 Integer-to-octet-string conversion

The integer encryption block x shall be converted to an octet string EB of length k, the
encryption block, according to Equation (2).

9.4 Encryption-block parsing

The encryption block EB shall be parsed into a block type BT, a padding string PS, and
the data D according to Equation (1).

It is an error if any of the following conditions occurs:

· The encryption block EB cannot be parsed unambiguously (see notes to
Section 8.1).

· The padding string PS consists of fewer than eight octets, or is
inconsistent with the block type BT.

· The decryption process is a public-key operation and the block type BT is
not 00 or 01, or the decryption process is a private-key operation and the
block type is not 02.

10. Signature algorithms Page 11

10. Signature algorithms

This section defines three signature algorithms based on the RSA encryption process
described in Sections 8 and 9. The intended use of the signature algorithms is in signing
X.509/PEM certificates and certificate-revocation lists, PKCS #6 extended certificates,
and other objects employing digital signatures such as X.401 message tokens. The
algorithms are not intended for use in constructing digital signatures in PKCS #7. The
first signature algorithm (informally, "MD2 with RSA") combines the MD2 message-
digest algorithm with RSA, the second (informally, "MD4 with RSA") combines the
MD4 message-digest algorithm with RSA, and the third (informally, "MD5 with RSA")
combines the MD5 message-digest algorithm with RSA.

This section describes the signature process and the verification process for the two
algorithms. The "selected" message-digest algorithm shall be either MD2 or MD5,
depending on the signature algorithm. The signature process shall be performed with an
entity's private key and the verification process shall be performed with an entity's public
key. The signature process transforms an octet string (the message) to a bit string (the
signature); the verification process determines whether a bit string (the signature) is the
signature of an octet string (the message).

Note. The only difference between the signature algorithms defined here and one of the
the methods by which signatures (encrypted message digests) are constructed in PKCS
#7 is that signatures here are represented here as bit strings, for consistency with the
X.509 SIGNED macro. In PKCS #7 encrypted message digests are octet strings.

10.1 Signature process

The signature process consists of four steps: message digesting, data encoding, RSA
encryption, and octet-string-to-bit-string conversion. The input to the signature process
shall be an octet string M, the message; and a signer's private key. The output from the
signature process shall be a bit string S, the signature.

10.1.1 Message digesting
The message M shall be digested with the selected message-digest algorithm to give an
octet string MD, the message digest.

10.1.2 Data encoding
The message digest MD and a message-digest algorithm identifier shall be combined into
an ASN.1 value of type DigestInfo, described below, which shall be BER-encoded to
give an octet string D, the data.

DigestInfo ::= SEQUENCE {

Page 12 PKCS #1: RSA Encryption Standard§

 digestAlgorithm DigestAlgorithmIdentifier,
 digest Digest }
DigestAlgorithmIdentifier ::= AlgorithmIdentifier
Digest ::= OCTET STRING
The fields of type DigestInfo have the following meanings:

· digestAlgorithm identifies the message-digest algorithm (and any
associated parameters). For this application, it should identify the selected
message-digest algorithm, MD2, MD4 or MD5. For reference, the
relevant object identifiers are the following:

md2 OBJECT IDENTIFIER ::=
 { iso(1) member-body(2) US(840) rsadsi(113549)
 digestAlgorithm(2) 2 }
md4 OBJECT IDENTIFIER ::=
 { iso(1) member-body(2) US(840) rsadsi(113549)
 digestAlgorithm(2) 4 }
md5 OBJECT IDENTIFIER ::=
 { iso(1) member-body(2) US(840) rsadsi(113549)
 digestAlgorithm(2) 5 }

For these object identifiers, the parameters field of the digestAlgorithm
value should be NULL.

· digest is the result of the message-digesting process, i.e., the message
digest MD.

Notes.
1. A message-digest algorithm identifier is included in the DigestInfo value

to limit the damage resulting from the compromise of one message-digest
algorithm. For instance, suppose an adversary were able to find messages
with a given MD2 message digest. That adversary might try to forge a
signature on a message by finding an innocuous-looking message with the
same MD2 message digest, and coercing a signer to sign the innocuous-
looking message. This attack would succeed only if the signer used MD2.
If the DigestInfo value contained only the message digest, however, an
adversary could attack signers that use any message digest.

2. Although it may be claimed that the use of a SEQUENCE type violates
the literal statement in the X.509 SIGNED and SIGNATURE macros that
a signature is an ENCRYPTED OCTET STRING (as opposed to
ENCRYPTED SEQUENCE), such a literal interpretation need not be
required, as I'Anson and Mitchell point out [IM90].

3. No reason is known that MD4 would not be sufficient for very high
security digital signature schemes, but because MD4 was designed to be
exceptionally fast, it is "at the edge" in terms of risking successful
cryptanalytic attack. A message-digest algorithm can be considered
"broken" if someone can find a collision: two messages with the same
digest. While collisions have been found in variants of MD4 with only

10. Signature algorithms Page 13

two digesting "rounds" [Mer90][dBB92], none have been found in MD4
itself, which has three rounds. After further critical review, it may be
appropriate to consider MD4 for very high security applications.
MD5, which has four rounds and is proportionally slower than MD4, is
recommended until the completion of MD4's review. The reported
"pseudocollisions" in MD5's internal compression function [dBB93] do
not appear to have any practical impact on MD5's security.
MD2, the slowest of the three, has the most conservative design. No
attacks on MD2 have been published.

10.1.3 RSA encryption
The data D shall be encrypted with the signer's RSA private key as described in Section 7
to give an octet string ED, the encrypted data. The block type shall be 01. (See Section
8.1.)

10.1.4 Octet-string-to-bit-string conversion
The encrypted data ED shall be converted into a bit string S, the signature. Specifically,
the most significant bit of the first octet of the encrypted data shall become the first bit of
the signature, and so on through the least significant bit of the last octet of the encrypted
data, which shall become the last bit of the signature.

Note. The length in bits of the signature S is a multiple of eight.

10.2 Verification process

The verification process for both signature algorithms consists of four steps: bit-string-to-
octet-string conversion, RSA decryption, data decoding, and message digesting and
comparison. The input to the verification process shall be an octet string M, the message;
a signer's public key; and a bit string S, the signature. The output from the verification
process shall be an indication of success or failure.

10.2.1 Bit-string-to-octet-string conversion
The signature S shall be converted into an octet string ED, the encrypted data.
Specifically, assuming that the length in bits of the signature S is a multiple of eight, the
first bit of the signature shall become the most significant bit of the first octet of the
encrypted data, and so on through the last bit of the signature, which shall become the
least significant bit of the last octet of the encrypted data.

It is an error if the length in bits of the signature S is not a multiple of eight.

Page 14 PKCS #1: RSA Encryption Standard§

10.2.2 RSA decryption
The encrypted data ED shall be decrypted with the signer's RSA public key as described
in Section 8 to give an octet string D, the data.

It is an error if the block type recovered in the decryption process is not 01. (See Section
9.4.)

10.2.3 Data decoding
The data D shall be BER-decoded to give an ASN.1 value of type DigestInfo, which
shall be separated into a message digest MD and a message-digest algorithm identifier.
The message-digest algorithm identifier shall determine the "selected" message-digest
algorithm for the next step.

It is an error if the message-digest algorithm identifier does not identify the MD2, MD4
or MD5 message-digest algorithm.

10.2.4 Message digesting and comparison
The message M shall be digested with the selected message-digest algorithm to give an
octet string MD', the comparative message digest. The verification process shall succeed
if the comparative message digest MD' is the same as the message digest MD, and the
verification process shall fail otherwise.

11. Object identifiers

This standard defines five object identifiers: pkcs-1, rsaEncryption,
md2WithRSAEncryption, md4WithRSAEncryption, and md5WithRSAEncryption.

The object identifier pkcs-1 identifies this standard.

pkcs-1 OBJECT IDENTIFIER ::=
 { iso(1) member-body(2) US(840) rsadsi(113549)
 pkcs(1) 1 }
The object identifier rsaEncryption identifies RSA public and private keys as defined in
Section 7 and the RSA encryption and decryption processes defined in Sections 8 and 9.

rsaEncryption OBJECT IDENTIFIER ::= { pkcs-1 1 }
The rsaEncryption object identifier is intended to be used in the algorithm field of a
value of type AlgorithmIdentifier. The parameters field of that type, which has the
algorithm-specific syntax ANY DEFINED BY algorithm, would have ASN.1 type
NULL for this algorithm.

The object identifiers md2WithRSAEncryption, md4WithRSAEncryption,

11. Object identifiers Page 15

md5WithRSAEncryption, identify, respectively, the "MD2 with RSA," "MD4 with
RSA," and "MD5 with RSA" signature and verification processes defined in Section 10.

md2WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 2 }
md4WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 3 }
md5WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 4 }
These object identifiers are intended to be used in the algorithm field of a value of type
AlgorithmIdentifier. The parameters field of that type, which has the algorithm-specific
syntax ANY DEFINED BY algorithm, would have ASN.1 type NULL for these
algorithms.

Note. X.509's object identifier rsa also identifies RSA public keys as defined in Section
7, but does not identify private keys, and identifies different encryption and decryption
processes. It is expected that some applications will identify public keys by rsa. Such
public keys are compatible with this standard; an rsaEncryption process under an rsa
public key is the same as the rsaEncryption process under an rsaEncryption public key .

Page 16 PKCS #1: RSA Encryption Standard§

Revision history

Versions 1.0–1.3

Versions 1.0–1.3 were distributed to participants in RSA Data Security, Inc.'s Public-Key
Cryptography Standards meetings in February and March 1991.

Version 1.4

Version 1.4 is part of the June 3, 1991 initial public release of PKCS. Version 1.4 was
published as NIST/OSI Implementors' Workshop document SEC-SIG-91-18.

Version 1.5

Version 1.5 incorporates several editorial changes, including updates to the references
and the addition of a revision history. The following substantive changes were made:

· Section 10: "MD4 with RSA" signature and verification processes are
added.

· Section 11: md4WithRSAEncryption object identifier is added.

Author's address

RSA Laboratories (415) 595-7703
100 Marine Parkway (415) 595-4126 (fax)
Redwood City, CA 94065 USA pkcs-editor@rsa.com

	1. Scope
	2. References
	FIPS PUB 46–1 National Bureau of Standards. FIPS PUB 46–1: Data Encryption Standard. January 1988.
	PKCS #6 RSA Laboratories. PKCS #6: Extended-Certificate Syntax Standard. Version 1.5, November 1993.
	PKCS #7 RSA Laboratories. PKCS #7: Cryptographic Message Syntax Standard. Version 1.5, November 1993.
	PKCS #8 RSA Laboratories. PKCS #8: Private-Key Information Syntax Standard. Version 1.2, November 1993.
	RFC 1319 B. Kaliski. RFC 1319: The MD2 Message-Digest Algorithm. April 1992.
	RFC 1320 R. Rivest. RFC 1320: The MD4 Message-Digest Algorithm. April 1992.
	RFC 1321 R. Rivest. RFC 1321: The MD5 Message-Digest Algorithm. April 1992.
	RFC 1423 D. Balenson. RFC 1423: Privacy Enhancement for Internet Electronic Mail: Part III: Algorithms, Modes, and Identifiers. February 1993.
	X.208 CCITT. Recommendation X.208: Specification of Abstract Syntax Notation One (ASN.1). 1988.
	X.209 CCITT. Recommendation X.209: Specification of Basic Encoding Rules for Abstract Syntax Notation One (ASN.1). 1988.
	X.411 CCITT. Recommendation X.411: Message Handling Systems: Message Transfer System: Abstract Service Definition and Procedures.1988.
	X.509 CCITT. Recommendation X.509: The Directory—Authentication Framework. 1988.
	[dBB92] B. den Boer and A. Bosselaers. An attack on the last two rounds of MD4. In J. Feigenbaum, editor, Advances in Cryptology—CRYPTO '91 Proceedings, volume 576 of Lecture Notes in Computer Science, pages 194–203. Springer-Verlag, New York, 1992.
	[dBB93] B. den Boer and A. Bosselaers. Collisions for the compression function of MD5. Presented at EUROCRYPT '93 (Lofthus, Norway, May 24–27, 1993).
	[DO86] Y. Desmedt and A.M. Odlyzko. A chosen text attack on the RSA cryptosystem and some discrete logarithm schemes. In H.C. Williams, editor, Advances in Cryptology—CRYPTO '85 Proceedings, volume 218 of Lecture Notes in Computer Science, pages 516–521. Springer-Verlag, New York, 1986.
	[Has88] Johan Hastad. Solving simultaneous modular equations. SIAM Journal on Computing, 17(2):336–341, April 1988.
	[IM90] Colin I'Anson and Chris Mitchell. Security defects in CCITT Recommendation X.509—The directory authentication framework. Computer Communications Review, :30–34, April 1990.
	[Mer90] R.C. Merkle. Note on MD4. Unpublished manuscript, 1990.
	[Mil76] G.L. Miller. Riemann's hypothesis and tests for primality. Journal of Computer and Systems Sciences, 13(3):300–307, 1976.
	[QC82] J.-J. Quisquater and C. Couvreur. Fast decipherment algorithm for RSA public-key cryptosystem. Electronics Letters, 18(21):905–907, October 1982.
	[RSA78] R.L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 21(2):120–126, February 1978.

	3. Definitions
	4. Symbols and abbreviations
	5. General overview
	6. Key generation
	n = pq .
	28(k-1) £ n < 28k .
	Notes.

	7. Key syntax
	7.1 Public-key syntax
	7.2 Private-key syntax
	Notes.

	8. Encryption process
	Notes.
	8.1 Encryption-block formatting
	EB = 00 || BT || PS || 00 || D . (1)
	Notes.

	8.2 Octet-string-to-integer conversion
	x = . (2)

	8.3 RSA computation
	y = xc mod n, 0 £ y < n .

	8.4 Integer-to-octet-string conversion
	y = . (3)

	9. Decryption process
	9.1 Octet-string-to-integer conversion
	9.2 RSA computation
	x = yc mod n, 0 £ x < n .

	9.3 Integer-to-octet-string conversion
	9.4 Encryption-block parsing

	10. Signature algorithms
	10.1 Signature process
	10.1.1 Message digesting
	10.1.2 Data encoding
	Notes.
	10.1.3 RSA encryption
	10.1.4 Octet-string-to-bit-string conversion

	10.2 Verification process
	10.2.1 Bit-string-to-octet-string conversion
	10.2.2 RSA decryption
	10.2.3 Data decoding
	10.2.4 Message digesting and comparison

	11. Object identifiers
	Revision history
	Versions 1.0–1.3
	Version 1.4
	Version 1.5

	Author's address

