
PKCS #5 v2.0:
Password-Based Cryptography
Standard
Burt Kaliski, RSA Laboratories
PKCS Workshop, 29 September 1999

Outline

• Background

• PKCS #5 v1.5

• PKCS #5 v2.0

• Generating salt

• Possible future work

Background

• Cryptography with a password ...
– encryption
– message authentication
– identification, key establishment

• … has some peculiar problems:
– passwords are not conventional keys
– nor are they very “random”

General Model

• Password-based key derivation:
key = PBKDF (password, salt, count)

• salt prevents dictionary attack

• count complicates search

• key is applied to conventional cryptosystem

PKCS #5 v1.5

• Password-Based Encryption Standard
– published November 1993

• Two encryption schemes:
– MD2 with DES-CBC
– MD5 with DES-CBC

PKCS #5 v1.5 Encryption Scheme

Encryption operation

1. Generate salt S

2. Hash with password to derive key, IV:
K || IV = Hashcount (P || S)

3. Pad message and encrypt:
EM = M || pad

C = DES-CBC (K, IV, EM)

• S, count, C sent to recipient

Decryption is similar

Limitations of v1.5 Scheme

• Algorithm restrictions:
– only two hash functions
– only one underlying encryption scheme

• includes padding, assumes CBC mode

• Theoretical deficiencies:
– no formal model or security proof for KDF
– construction has “entropy bottleneck”

• Fixed maximum length for keys

Enhancements Before v2.0

• RSA Data Security extensions:
– SHA-1 hash function
– RC2-CBC encryption

• PKCS #12 password-based schemes

PKCS Workshops ’97, ’98

• Discussion of PKCS #5 improvements, proposed
draft

• Conclusions:
1. New key derivation function to be specified
2. Modular encryption, message authentication schemes

• parameters for underlying scheme (e.g., IV)
managed separately

PKCS #5 v2.0

• Password-Based Cryptography Standard
– published March 1999

• Several techniques:
– extended v1.5 and new KDF
– extended v1.5 and new modular encryption schemes
– new modular message authentication scheme

• New schemes are recommended for new
applications

New Key Derivation Function

PBKDF2 (P, S, c, dkLen)

1. Compute blocks T1,…,Tl by iterated construction:

U1 = G (P, S || Int (i)) , U2 = G (P, U1) , …, Uc = G (P, Uc-1)
Ti = U1 \xor U2 \xor  \xor Uc

2. Output first dkLen octets of T1 ||  || Tl

G is underlying pseudorandom function

Motivation for PBKDF2

• “Belt-and-suspenders” approach:
– Ui values are computed recursively to remove a degree of

parallelism
• different than PKCS ’98 proposal, which computed

them independently as Uj = G (P, S || Int (i) || Int (j))
– XOR reduces concerns about the recursion degenerating

into a small set of values

• (Potentially) provably secure under reasonable
assumptions on pseudorandom function G

• Variable length through varying i

New Encryption Scheme

Encryption operation

1. Select salt S, iteration count c, key length dkLen

2. Apply KDF to derive key

DK = KDF (P, S, c, dkLen)

3. Apply underlying encryption scheme

C = EncDK (M)
– parameters such as IV selected as part of underlying scheme

Decryption is similar

Message Authentication Scheme

MAC generation operation

1. Select salt S, iteration count c, key length dkLen

2. Apply KDF to derive key

DK = KDF (P, S, c, dkLen)

3. Apply underlying message authentication scheme

T = MACDK (M)

MAC verification is similar

Addressing the Limitations

• Algorithm restrictions:
– arbitrary (iterated) pseudorandom function
– arbitrary underlying encryption scheme

• Theoretical deficiencies:
– formal model / (potential) security proof for KDF
– construction still has “entropy bottleneck”

• but can support wider hash function
• not a practical problem for passwords

• Large maximum length for keys

Supporting Techniques

• Pseudorandom functions:
– HMAC-SHA-1 where message is index

• Encryption schemes:
– DES, DES-EDE3, RC2, RC5

• all in CBC mode with PKCS #5 v1.5 padding
– DES-EDE2, DESX, RC4 could potentially be added

• Message authentication schemes:
– HMAC-SHA-1

ASN.1 Syntax

• Key derivation functions
– only PBKDF2

• Encryption schemes
– PBES1 and PBES2

• Message authentication scheme (and
pseudorandom function)
– PBMAC1

PBKDF2

• Generic OID:
– id-pbkdf2 ::= pkcs-5.12

• Parameters:
– PBKDF2-params ::= SEQUENCE {

 salt CHOICE {
 specified OCTET STRING,
 otherSource AlgID {{PBKDF2-SaltSources}} },
 iterationCount INTEGER (1..MAX),
 keyLength INTEGER (1..MAX) OPTIONAL,
 prf AlgID {{PBKDF2-PRFs}}
 DEFAULT algid-hmacWithSHA1 }

PBES1

• Specific OIDs as in v1.5:
– pbeWithMD2AndDES-CBC ::= pkcs-5.1
– pbeWithMD5AndDES-CBC ::= pkcs-5.3
– …
– pbeWithSHA1AndRC2-CBC ::= pkcs-5.11

• Parameters:
– PBEParameter ::= SEQUENCE {

 salt OCTET STRING SIZE (8),
 iterationCount INTEGER }

PBES2

• Generic OID:
– id-pbes2 ::= pkcs-5.13

• Parameters:
– PBES2-params ::= SEQUENCE {

 kdf AlgID {{PBES2-KDFs}},
 enc AlgID {{PBES2-Encs}} }

PBMAC1

• Generic OID:
– id-pbmac1 ::= pkcs-5.14

• Parameters:
– PBMAC1-params ::= SEQUENCE {

 kdf AlgID {{PBMAC1-KDFs}},
 mac AlgID {{PBMAC1-MACs}} }

Generating Salt

• Primary purpose of salt is to increase difficulty of
precomputation attacks

• Secondary purpose is to separate keys generated
at different times

• A random salt assures the one who generated it
that these goals are achieved, but not necessarily
the one who receives it
– i.e., the party decrypting a ciphertext or verifying a MAC

is not assured that separate keys were employed

Exploiting Ambiguity

• Suppose a password is employed for two algorithms with
different key lengths, and the salt does not distinguish
between them

• Then for a given salt, the key for one algorithm will be a
prefix of the key for the other

• Suppose also that an opponent can solve for the shorter
key by a chosen ciphertext attack

• Then the opponent can also solve for the longer key by
guessing the rest of it: “divide-and-conquer”

• Similar concerns for other kinds of interaction

Salt Recommendations

• If interactions are not a concern (e.g., password is
always employed with the same algorithm), then a
random salt is sufficient
– at least 64 bits recommended

• If they are, then the salt should also contain some
structure, e.g., an algorithm identifier and/or a
sequence number that can be checked by the
party receiving the key

Possible Future Work

• Structure for salt value
– basically, key derivation parameters for KDF

• “Pepper” variants where part of salt is secret
– several references in literature

• Public-key password-based techniques
– password-based entity authentication and key

establishment
– password-based private-key downloading

	PKCS #5 v2.0: Password-Based Cryptography Standard
	Outline
	Background
	General Model
	PKCS #5 v1.5
	PKCS #5 v1.5 Encryption Scheme
	Limitations of v1.5 Scheme
	Enhancements Before v2.0
	PKCS Workshops ’97, ’98
	PKCS #5 v2.0
	New Key Derivation Function
	Motivation for PBKDF2
	New Encryption Scheme
	Message Authentication Scheme
	Addressing the Limitations
	Supporting Techniques
	ASN.1 Syntax
	PBKDF2
	PBES1
	PBES2
	PBMAC1
	Generating Salt
	Exploiting Ambiguity
	Salt Recommendations
	Possible Future Work

