
14 Sept 00

PKCS#11
Interoperability/Conformance Testing

John Hughes
PKIForum meeting

Montreal - 14 September 00

14 Sept 00 PKCS#11 Interoperability Testing 22

Application

PKCS#11PKCS#11

PKCS#11 Library

“Device”

Status
Info

Init
Card

Login/logout
setPIN

Read/Write
Data

Enc/Dec
Sign/Verify

Typical PKCS#11 Architecture

14 Sept 00 PKCS#11 Interoperability Testing 33

Application

PKCS#11PKCS#11

PKCS#11 Library

Status
Info

Init
Card

Login/logout
setPIN

Read/Write
Data

Enc/Dec
Sign/Verify

PKCS#11
Device
Library

PKCS#11
Device
Library

PKCS#11
Device
Library

PKCS#11
Device
Library

Common Approach

14 Sept 00 PKCS#11 Interoperability Testing 44

Why are we feeling pain - 1?

PKI/Crypto
Platform

Supplier
PKCS#11 DLL

Driver

Application

PKCS#11

We do not want device specific changes to our code base

14 Sept 00 PKCS#11 Interoperability Testing 55

Why are we feeling pain - 2?

 We have a relativity sophisticated use - our full PSE
“profile” is:
– support for data objects - varying size
– mechanisms

• CKM_RSA_PKCS_KEY_PAIR_GEN
• single part CKM_RSA_PKCS decryption
• CKM_RSA_PKCS verification SIGN/SIGN_RECOVER

– C_GenerateRandom
– 2 key pairs stored on card
– optional storage of certificates

 Our Universal Token Support (UTS) uses a subset of
this for existing Tokens (e.g iD2 tokens with PKCS#15)

14 Sept 00 PKCS#11 Interoperability Testing 66

What did we do?

 Created a PKCS#11 workbench that simulated how
our PKI/Crypto engine used PKCS#11. (“Entegrity
PKCS#11 Workbench”)

 Provided it as source (under license) to PKCS#11
device supplier

14 Sept 00 PKCS#11 Interoperability Testing 77

Qualification Process (simplified)
Entegrity Supplier

Provide Workbench source Ran tests

Provided resultsExamined results

Passed?

Run PKI/Crypto
platform Tests

Qualified Device

Aim of workbench to resolve “most” of errors prior to full tests

14 Sept 00 PKCS#11 Interoperability Testing 88

Evolution

 As we test more and more devices we are adding in
extra “nuances” and tests

14 Sept 00 PKCS#11 Interoperability Testing 99

Status

 We have/are testing 13 PKCS#11devices from 6
suppliers working on either Wintel or Solaris
platforms

 Total of 20 implementations
 Statistics:

– only 6 implementations have fully passed our tests
– we are waiting for patches from 4 of the suppliers

14 Sept 00 PKCS#11 Interoperability Testing 1010

Common problems - 1

 Inverted parameters for public and private keys in
C_GenerateKeyPair:
– a change occurred between PKCS#11 1.x and 2.x,

Netscape did not change and several vendors decided to
be compatible with them rather than following the standard.

 Version of PKCS#1 padding.
– Most use 1.5 - but 1 started to use 2.0

 Incomplete or wrong mechanism lists and key usage
attributes

14 Sept 00 PKCS#11 Interoperability Testing 1111

Common problems - 2

 Disallowing of generating keys with a given usage if
the library does not support a mechanism.
– Some vendors refuse to allow CKA_ENCRYPT attribute if

they don't support decryption on the card. Our view is that if
they don't support encryption, they just shouldn't list the
mechanism as available, this will prevent us from using the
key for that purpose even if the key itself is marked as
supporting encryption.

 Device supplier being more lenient on the Attributes
assigned when an object is being created.

 No support for Data Objects
 PIN problems (min, max sizes and changing values)

14 Sept 00 PKCS#11 Interoperability Testing 1212

Entegrity PKCS#11 Workbench tests

 Login/logout/session
– successful/unsuccessful logins
– changing passwords, min password size

 Data Objects
– object creation/search/read/modify/deletion (small and large)

within a session and across sessions (public and private)
 Status Information

– version, manufacturer, status flags
– mechanism list

 Cryptographic operations
– key generation, random no generation
– asymmetric - sign/verify/encrypt/decrypt tests (RSA)
– symmetric - encrypt/decrypt (DES)

14 Sept 00 PKCS#11 Interoperability Testing 1313

Workbench principles - 1

 Designed to be extensible. Although focused on RSA and
3DES relatively easy to change to use other algos:

cout << "Starting BASIC CRYPTO: simple sign, verify, encrypt and decrypt" << endl;
SHOULD_NOT_THROW(openSession(theSelectedSlotID, &s1), true);
SHOULD_NOT_THROW(login(s1, "1111"), true);
SHOULD_NOT_THROW(destroyAllObjects(s1), true);
SHOULD_NOT_THROW(openSession(theSelectedSlotID, &s2, true), true);
SHOULD_NOT_THROW(testAsymm(s1, s2,
 CKM_RSA_PKCS_KEY_PAIR_GEN, CKM_RSA_PKCS, 1024, 2), true);
SHOULD_NOT_THROW(destroyAllObjects(s1), true);
SHOULD_NOT_THROW(testSymm(s1, s2, CKM_DES3_KEY_GEN,
 CKM_DES3_ECB, 64, 2), true);
SHOULD_NOT_THROW(closeSession(s2), false);
SHOULD_NOT_THROW(logout(s1), false);
SHOULD_NOT_THROW(closeSession(s1), false);
cout << "Ended BASIC CRYPTO: simple sign, verify, encrypt and decrypt" << endl;}

14 Sept 00 PKCS#11 Interoperability Testing 1414

Workbench principles - 2

 Error handling
rv = (*theFunctionList->C_GetMechanismInfo)(theSelectedSlotID, aMechId, &info);
errorCheck(rv, "C_GetMechanismInfo");

// Error handling routine
void errorCheck(CK_RV rv, string funcName, CK_RV expectedResponse) {

if(rv == CKR_FUNCTION_NOT_SUPPORTED)
throw Pkcs11_Exc_FNS(funcName);
else if(rv != expectedResponse) {
cout << "Expected " << hex << expectedResponse << " ("
 << getErrorDescription(expectedResponse) << ") from " << funcName
 << ", received rv = " << hex << rv
 << " (" << getErrorDescription(rv) << ")" << endl;
throw Pkcs11_Exc(funcName, rv);
}

}

14 Sept 00 PKCS#11 Interoperability Testing 1515

So how can we progress?

 In discussion with RSA concerning making the
Entegrity PKCS#11 Workbench “open source”

 How this can be accomplished and successfully
managed is going to be discussed at the PKCS
workshop in Boston

 Issues:
– who maintains and develops the source?
– do we need an accreditation scheme for the emerging

profiles - and who does the testing?

It’s in all our interests that PKCS#11 devices become as “plug and play” as possible

	PKCS#11 Interoperability/Conformance Testing
	Typical PKCS#11 Architecture
	Common Approach
	Why are we feeling pain - 1?
	Why are we feeling pain - 2?
	What did we do?
	Qualification Process (simplified)
	Evolution
	Status
	Common problems - 1
	Common problems - 2
	Entegrity PKCS#11 Workbench tests
	Workbench principles - 1
	Workbench principles - 2
	So how can we progress?

