
PKCS#11 Extensions Proposal

Bruno Couillard, CTO
Chrysalis-ITS

bcouillard@chrysalis-its.com
www.chrysalis-its.com

Agenda
 PKCS#11 Amendment for Elliptic Curve

Cryptography (ECC)
 Trusted Keys
 Mechanism Proliferation
 ASN.1 encoding/decoding
 New Functions

Amendment for ECC
 Generalizes the definition of Public/Private key objects:

CKK_EC = CKK_ECDSA
 Generalizes the mechanism for key generation:

CKM_EC_KEY_PAIR_GEN = CKM_ECDSA_KEY_PAIR_GEN
 Generalizes the public key parameters:

CKA_EC_PARAMS = CKA_ECDSA_PARAMS
 Extends the definition of public key parameters:

Parameters ::= CHOICE {
 ecParameters ECParameters,
 namedCurve CURVES.&id({CurveNames}),
 implicitlyCA NULL}
 Defines one new return value:

CKR_KEY_PARAMS_INVALID

Amendment for ECC (cont’d)
 Defines three new key derivation mechanisms :

 CKM_ECDH1_DERIVE is a mechanism for key derivation based
on the Diffie-Hellman version of the elliptic curve key agreement
scheme, where each party contributes one key pair.

 CKM_ECDH1_COFACTOR_DERIVE is a mechanism for key
derivation based on the cofactor Diffie-Hellman version of the
elliptic curve key agreement scheme, where each party
contributes one key pair.

 CKM_ECMQV_DERIVE is a mechanism for key derivation
based the MQV version of the elliptic curve key agreement
scheme, where each party contributes two key pairs.

Amendment for ECC (cont’d)
 Defines three new mechanism parameters:

 CK_EC_KDF_TYPE is used to indicate the Key Derivation
Function (KDF) applied to derive keying data from a shared
secret.

 CK_ECDH1_DERIVE_PARAMS is a structure that provides the
parameters to elliptic curve Diffie-Hellman (ECDH) key
derivation mechanisms, where each party contributes one key
pair.

 CK_ECMQV_DERIVE_PARAMS is a structure that provides the
parameters to elliptic curve Menezes-Qu-Vanstone (ECMQV)
key derivation mechanisms, where each party contributes two
key pairs.

 Adds the support for the wrapping/unwrapping of EC private
keys.

Trusted Keys
 Who needs this?
 How:

 New key attribute – CKA_TRUSTED
 New semantic for certain operations with trusted keys
 Need for an authenticated public key wrapping of symmetric

keys
 Need to address initial setup of trust anchor

Mechanisms Proliferation
 Currently, each new schemes requires new mechanisms

 CKM_MD2_RSA_PKCS, CKM_MD5_RSA_PKCS …
 Should we define “Primitive” mechanisms like:

 CKM_RSA_PKCS, CKM_MD5
 And allow for “Schemes” to be constructed like:

 CKS_SIGN_AND_DIGEST
 Where the “Schemes” would have as parameters “Primitive”

mechanisms.
 PRO:

 Allows new “schemes” to be added without changes to the spec.
 CON:

 Harder to test conformance
 “Scheme” discovery an issue.

ASN.1 Encoding/Decoding
 More and more crypto functionality requires ASN.1 handling
 Should we allow for PKCS#11 to offer ASN.1

encoding/decoding

New Functions
 Single function call (for use in hardware accelerators):

 C_SignOnePass
 Could be used in OCSP responders
 Could be used for SSL

 C_DecryptOnePass
 Could be used in SSL

	PKCS#11 Extensions Proposal
	Agenda
	Amendment for ECC
	Amendment for ECC (cont’d)
	Slide 5
	Trusted Keys
	Mechanisms Proliferation
	ASN.1 Encoding/Decoding
	New Functions

