Errata to "High-Speed RSA Implementation"

November 14, 2005
This note updates RSA Laboratories’ Technical Note TR-201, "High-Speed RSA Implementation," by Çetin Kaya Koç, Version 2.0, November 1994.

- Issue: On page 4 , the proof that $C^{d}=\left(M^{e}\right)^{d}(\bmod n)$ when $\operatorname{gcd}(M, n)>1$ is incorrect. In particular, the claim that $M^{\lambda(n)}=1(\bmod n)$ in this case is incorrect.
- Resolution: Replace the text from "The exception ..." through the end of the paragraph with the following:

The exception $\operatorname{gcd}(M, n)>1$ can be dealt with as follows. Let $g=\operatorname{gcd}(M$, n) and let $h=n / g$. Since n is a product of distinct primes, g and h will be relatively prime. Now consider the values

$$
\begin{aligned}
& C_{1}=\left(M^{e}\right)^{d} \bmod g, \\
& C_{2}=\left(M^{e}\right)^{d} \bmod h .
\end{aligned}
$$

Since M is divisible by g, we have $C_{1} \equiv 0 \bmod g$.
Since M is relatively prime to h, we can apply the general case recursively to show that $C_{2} \equiv M \bmod h$.

It follows by the Chinese Remainder Theorem that $\left(M^{e}\right)^{d} \equiv M \bmod n$.

