
Entegrity PKCS#11 Workbench

Description
Version 1.4 – 9 Oct 2000

Overview

The Entegrity PKCS#11 Workbench is a C/C++ program. Source is provided. The workbench has
been used in both Wintel and Solaris environments.

The program is executed from the command line with a single parameter, the pathname of the
appropriate PKCS#11 DLL/SO.

The program outputs a log as it performs the tests, with detailed error reports should an error be
detected.

Test Descriptions

The functionality of the workbench is split into 4 sets of tests:

• Basic Tests – these test the data object handling, sessions and PIN functionality

• Cryptographic Tests – these test key generation and asymmetric and symmetric cryptographic
functions

• Status and Information Tests

• Advanced Test – this tests the C_WaitForSlotEvent function

Basic tests

The following table summarizes the basic tests that are performed.

Test Step PKCS#11 functions called

Initialise the token using 1111 as SO password
and 1111 as user password

C_InitToken (set SO PIN = 1111)

C_OpenSession

C_login (as SO PIN =1111)

C_InitPin (set user PIN=1111)

C_logout (of SO session)

C_CloseSession

Open a Session; C_OpenSession (as a public session)

Create small Public Object hObj1 C_CreateObject(class = CKO_DATA, private=FALSE)

Without the CKA_APPLICATION set.

Check that hObj1 and values exist on Token C_GetAttributeValue should give an empty string for
CKA_APPLICATION.

Destroy the public data object hObj1 C_DestroyObject

Create small Public Object hObj1 C_CreateObject(class = CKO_DATA, private=FALSE)

Page 2

Unsuccessful attempt to create a small private
data object during a public session

C_CreateObject(class = CKO_DATA, private=TRUE)

Unsuccessful attempt to login as a regular user
with wrong password

C_login (as User PIN =blah)

Login as normal user with password 1111 C_login (as User PIN =1111)

Create a large private data object - hObj2 C_CreateObject(class = CKO_DATA, private=TRUE)

Check that hObj1 and values exist on Token C_GetAttributeValue

Check that hObj2 and values exist on Token C_GetAttributeValue

search for private data objects should return
hObj2

C_FindObjectsInit (for private objects)

C_FindObjects

C_FindObjectsFinal

logout the normal user session C_Logout

check can access the public data object hObj1 C_FindObjectsInit

C_FindObjects

C_FindObjectsFinal

Unsuccessful attempt to checking for private data
object hObj2 (as not logged on);

C_FindObjectsInit

C_FindObjects

C_FindObjectsFinal

Destroy the public data object hObj1 C_DestroyObject

Unsuccessful attempt to destroy the public data
object hObj1 again

C_DestroyObject

A search for public data objects should return
none – hObj1 having been deleted

C_FindObjectsInit

C_FindObjects

C_FindObjectsFinal

Unsuccessful attempt to destroy the private data
object hObj2 (as not logged in as a user)

C_DestroyObject

login as regular user with password 1111 C_login (as User PIN =1111)

fetch the token info C_GetTokenInfo

Unsuccessful try to change password with the
wrong old password

C_SetPin(old = Blah, new = something)

IF SUPPORTS MIN SIZE PASSWORD THEN
unsuccessful try to change password with too
small new password

C_SetPin

IF SUPPORTS MIN SIZE PASSWORD THEN
Unsuccessful try to change password with too big
new password

C_SetPin

Finally, change the password to new value C_SetPin(old = 1111, new = something)

Search for private data objects should still return
hObj2

C_FindObjectsInit

C_FindObjects

C_FindObjectsFinal

Logout C_logout

Page 3

Unsuccessful try to login with the wrong
password (in fact the previous password)

C_Login(as User PIN = 1111)

Login with the correct password C_Login(as User PIN = something)

A search for private data objects should still
return hObj2

C_FindObjectsInit

C_FindObjects

C_FindObjectsFinal

Modify the private data object hObj2 C_SetAttributeValue

Check the modifications were applied C_GetAttributeValue

Destroy the private data object hObj2 C_DestroyObject

Change the password to the initial one allocated
1111

C_Login(as User PIN = 1111)

Logout C_Logout

Close session C_CloseSession

Cryptographic tests

In these series of tests the workbench tries to generate two RSA and triple DES keys, if the keys are
supported.

Test Step PKCS#11 functions called

Open a R/W session s1 C_OpenSession, session for key generation.

Login C_Login, PIN=1111

Remove all objects C_DestroyObject, first destroy all public token objects,
then all private token objects

Open a R/O session s2 C_OpenSession, sign/verify/encrypt/decrypt are
performed on a separate R/O session.

Generate two RSA key pair of 1024 size C_GetMechanismInfo to see if the 1024 RSA keygen is
supported

C_GenerateKeyPair with the following templates:

Private key:

q CKA_TOKEN, true

q CKA_PRIVATE, true

q CKA_SENSITIVE, true

q CKA_EXTRACTABLE, false

q CKA_MODIFIABLE, true

q CKA_DECRYPT, true

q CKA_SIGN, true

Public key:

q CKA_PUBLIC_EXPONENT, 0x010001

q CKA_ENCRYPT, true

Page 4

q CKA_VERIFY, true

q CKA_MODULUS_BITS, 1024

Confirm the generated key C_FindObjects, verify that the generated private key has
the desired ID

Generate the pseudo-random data C_GenerateRandom, random data for sign/verify.

Sign the data C_GetMechanismInfo, check whether the mechanism is
supported is CKF_SIGN_RECOVER.

C_SignRecoverInit, initialize the signature operation
with data recovery.

C_SignRecover, signs the data in a single operation.

C_GetMechanismInfo, check whether the mechanism is
supported is CKF_SIGN

C_SignInit, , initialize the signature operation and the
key supports signatures with appendix.

C_Sign, signs the data in a single part.

Verification of the data C_GetMechanismInfo, check whether the mechanism is
supported is CKF_VERIFY_RECOVER

C_VerifyRecoverInit, initialize the signature verification
operation with data recovery.

C_VerifyRecover, verify a signature in a single
operation.

C_GetMechanismInfo, check whether the mechanism
supported is CKF_VERIFY

C_ VerifyInit, , initialize the signature verification
operation and the signature is an appendix to the data.

C_Verify, verifies the signature in a single part.

Generate the pseudo-random data C_GenerateRandom, random data for encrypt/decrypt.

Encryption C_GetMechanismInfo, check whether the mechanism
supported is CKF_ENCRYPT

C_Encrypt, encrypts the data.

Decryption C_GetMechanismInfo, check whether the mechanism
supported is CKF_DECRYPT

C_Decrypt, decrypts the data.

Confirm the generated key C_FindObjects, make sure that all generated private
keys are still on the token.

Remove all objects C_DestroyObject , destroy all public token objects, then
all private token objects.

Generate two triple DES key of 64 bit size This keys are not store on the token.

C_GetMechanismInfo to see if the 64 bit DES keygen is
supported

C_GenerateRandom, create a keyid from a random
number.

C_GenerateKey with the following templates:

Page 5

Symmetric key:

q CKA_TOKEN, false

q CKA_SENSITIVE, true

q CKA_ENCRYPT, true

q CKA_DECRYPT, true

q CKA_SIGN, true

q CKA_VERIFY, true

q CKA_WRAP, true

q CKA_UNWRAP, true

q CKA_ID, keyid

Confirm the generated key C_FindObjects, verify that the generated secret key has
the desired ID

Generate the pseudo-random data C_GenerateRandom, random data for sign/verify.

Sign the data C_GetMechanismInfo, check whether the mechanism is
supported is CKF_SIGN_RECOVER.

C_SignRecoverInit, initialize the signature operation
with data recovery.

C_SignRecover, signs the data in a single operation.

C_GetMechanismInfo, check whether the mechanism is
supported is CKF_SIGN

C_SignInit, , initialize the signature operation and the
key supports signatures with appendix.

C_Sign, signs the data in a single part.

Verification of the data C_GetMechanismInfo, check whether the mechanism is
supported is CKF_VERIFY_RECOVER

C_VerifyRecoverInit, initialize the signature verification
operation with data recovery.

C_VerifyRecover, verify a signature in a single
operation.

C_GetMechanismInfo, check whether the mechanism
supported is CKF_VERIFY

C_ VerifyInit, , initialize the signature verification
operation and the signature is an appendix to the data.

C_Verify, verifies the signature in a single part.

Generate the pseudo-random data C_GenerateRandom, random data for encrypt/decrypt.

Encryption C_GetMechanismInfo, check whether the mechanism
supported is CKF_ENCRYPT

C_Encrypt, encrypts the data.

Decryption C_GetMechanismInfo, check whether the mechanism
supported is CKF_DECRYPT

C_Decrypt, decrypts the data.

Confirm the generated key C_FindObjects, make sure that all generated secret keys

Page 6

are still exists in the session.

Close session C_CloseSession, close the session s2.

Logout C_Logout, logout from session s1.

Close session C_CloseSession, close the session s1.

Status and Information tests

The workbench also lists the token information (version information and the manufacturer) and the list
of mechanisms supported.

Test Step PKCS#11 functions called

List the Cryptoki interface version number,
library description and the manufacture.

C_GetInfo, general information about Cryptoki.

List the token flags, pin length, total memory and
the free memory.

C_GetTokenInfo, information about a particular token.

List the supported mechanisms C_GetMechanismList, list of mechanisms supported by
a token.

Advanced Test

Finally there is an advanced test to test the C_WaitForSlotEvent which test the asynchronous
notification of token status, and is optional.

Test Step PKCS#11 functions called

Test the asynchronous notification of token status. C_WaitForSlotEvent

