
N U M B E R 7 — J U N E 2 6 , 1 9 9 8

News and advice on data security and cryptography

BulletinRSA
Laboratories’

Recent Results on PKCS #1:
RSA Encryption Standard

RSA Laboratories
A Division of RSA Data Security

®

Daniel Bleichenbacher
Bell Laboratories

700 Mountain Ave., Murray Hill, NJ 07974

Burt Kaliski
RSA Laboratories

20 Crosby Drive, Bedford, MA 01730

Jessica Staddon
RSA Laboratories

2955 Campus Drive, Suite 400, San Mateo, CA 94403

This bulletin describes a recently devised attack on
PKCS #1 v1.5, the RSA Encryption Standard [3].
This attack affects only the digital envelope por-
tion of PKCS #1. In the following sections we de-
scribe the digital enveloping method in PKCS #1
and the new attack. We also describe a variety of
countermeasures that successfully thwart the attack,
in particular, we describe the countermeasure to be
found in PKCS #1 v2.

Background
PKCS #1, the first of RSA Laboratories’ Public-Key
Cryptography Standards, defines an encoding
method for RSA encryption, where a data value D
(often a key) is converted to an integer prior to en-
cryption with an RSA public key. Let k be the
length in bytes of the recipient’s RSA modulus. The
encoding method produces a k-byte string from D
of the form

EB = 00 02 || PS || 00 || D

where 00 and 02 are bytes with value 0 and 2,
PS is a padding string consisting of k–||D||–3
pseudorandomly generated nonzero bytes, || de-
notes concatenation, and ||D|| is the length in
bytes of the data value D. The second 00 byte sepa-
rates PS from D.

The sender converts the string EB to an integer m,
most significant byte first, and encrypts the result
with RSA by the usual exponentiation, c = me mod
n where (n,e) is the recipient’s public key, and sends
the ciphertext c to the recipient.

The recipient decrypts the ciphertext c with RSA
as m = cd mod n, converts the integer m to a string
EB, checks that the result has the expected form,
and if so, recovers the data value D. The recipient
may then check that the data value D has some
expected length or form, although this is not re-
quired by PKCS #1.

A discussion of the security properties of this en-
coding method can be found in [7].

The PKCS #1 encoding format for RSA encryption
is intended primarily to provide confidentiality, typi-
cally for distribution of symmetric encryption keys.
It is not intended to provide integrity. In particular,
it is not “plaintext-aware”. Informally, an encryp-
tion scheme is said to be plaintext-aware if it is in-
feasible to construct a valid ciphertext without
actually knowing the corresponding plaintext. In
PKCS #1, whereas it is difficult to recover a data
value D from a ciphertext c, it is not difficult to
construct a ciphertext c, without knowing the cor-
responding data value D, that will be decrypted suc-
cessfully by a recipient. Integrity can be assured by

Daniel Bleichenbacher is a member of the technical staff at Bell
Laboratories; he can be reached at bleichen@research.bell-
labs.com. Burt Kaliski is chief scientist and Jessica Staddon is a
research scientist at RSA Laboratories; they can be reached at
burt@rsa.com and jstaddon@rsa.com, respectively.

2

R S A L A B O R A T O R I E S B U L L E T I N # 7 — J U N E 2 6 , 1 9 9 8

other means than PKCS #1 RSA encryption; how-
ever, PKCS #1 does not give any guidance as to what
these “other means” might be.

New Result
Assuming “other means” for any security service has
its pitfalls, and in the case of PKCS #1, leaving those
other means to the implementation can introduce a
potential vulnerability if integrity is not properly
provided.

Suppose that a recipient, after performing the PKCS
#1 decryption operation, outputs an error message if
it finds that the result does not have the expected
form, but otherwise continues processing. An oppo-
nent can then determine from the recipient’s behav-
ior some information about the decryption of an
arbitrary ciphertext. Indeed, with the PKCS #1 en-
coding method, the opponent can determine an
entire byte and possibly more, when the recipient
does not output an error message indicating that the
decryption has the wrong form, because the oppo-
nent will know that the decryption starts with bytes
00 02. The recipient thus becomes an “oracle” in
the theoretical sense for determining particular bits
of the decryption of an arbitrary ciphertext.

The ability to predict certain bits of an RSA decryp-
tion has previously been shown to provide a means for
computing all bits of a decryption [1]. Recently, the
first author of this bulletin showed that one can also
compute all bits of a decryption from the bits revealed
by successful PKCS #1 decryptions of adaptively cho-
sen ciphertexts [3]. Thus the “oracle” just mentioned
enables an opponent to compute the decryption of a
selected ciphertext with a chosen-ciphertext attack.

The attack has following general form:

1. An opponent has a ciphertext c and wishes to
determine its decryption m.

2. The opponent generates a series of related
ciphertexts c1, c2, ... where

ci = c ri
e mod n,

r1, r2, ... are values between 1 and n–1, and (n,e)
is the recipient’s public key. The opponent
chooses the values ri in an adaptive way. In par-
ticular, the opponent may try to optimize the
probability of getting “good” ciphertexts by

choosing ri in a way that’s dependent on previ-
ous “good” ciphertexts. A ciphertext is “good” if
the recipient does not output an error message
indicating that the format of corresponding
plaintext does not conform with PKCS #1.

3. The opponent submits ciphertexts c1, c2, ... to the
recipient for decryption in a protocol involving
PKCS #1, and observes the recipient’s behavior.

4. From the “good” ciphertexts, the opponent in-
fers certain bits of the corresponding message
mi = ci

d = mri mod n, based on the PKCS #1
encoding method.

5. From the inferred bits of mri mod n for sufficiently
many ri values, the opponent is able to reduce
the size of the interval that must contain the un-
known message m (each “good” ciphertext es-
sentially halves the interval in question). With
enough good ciphertexts, then, the opponent is
able to determine m.

With the present PKCS #1 encoding method,
roughly one in every 216 to 218 randomly chosen
ciphertexts will be “good”. This assumes that the
bitlength of the public modulus n is as usual a mul-
tiple of 8 and that the length of data value D is not
checked after decryption. A public modulus n with a
bitlength not divisible by 8 would increase this prob-
ability, while the probability would be somewhat
lower when the recipient also verifies the length of
the data block D (in addition to checking only the
first two bytes of EB).

Typically, for a 1024-bit modulus, the total number
of ciphertexts required is about 220, and this is also
the number of queries to the recipient.

Were the encoding method plaintext-aware, of
course, the probability that a ciphertext is “good”
would be negligible, thereby defeating the attack.

The practical impact of the attack depends on the
protocol of interest. Against an electronic mail en-
cryption protocol, the impact is not significant, since
a recipient is unlikely to be willing to process 220

messages, and is unlikely to reveal consistently
whether a decryption operation has succeeded or
failed. Against an interactive key establishment pro-
tocol such as SSL, however, the impact is signifi-
cant, since a recipient, in this case a server, is willing

... leaving
those other
means to the
implementation
can introduce
a potential
vulnerability
if integrity is
not properly
provided.

... the “oracle”
[...] enables an
opponent to
compute the
decryption
of a selected
ciphertext
with a chosen-
ciphertext
attack.

3

R S A L A B O R A T O R I E S B U L L E T I N # 7 — J U N E 2 6 , 1 9 9 8

to process many messages, and may reveal the suc-
cess or failure of an operation. Moreover, a protocol
such as SSL may not require client authentication,
so the opponent can easily remain anonymous.

Countermeasures
A number of countermeasures are available for the
attack just described, most of which are readily
implemented.

First we note that good key management practices
can be helpful in thwarting this attack (especially
when employed with other countermeasures). For
example, if a server’s key pair is changed frequently
then ciphertexts encrypted using old keys are
protected from this attack. In addition, it is a good
practice to use different key pairs for different
servers, since otherwise an attacker may be able to
benefit from using the attack in parallel on many
different servers.

Another effective countermeasure relies on the fact
that it is often possible to reduce the probability of
getting “good” ciphertexts by rigorously checking the
format of the message after decryption. In particular
if the data block has a fixed length then the length
should be checked by the receiver. Other redundancy,
such as the version number included in SSL should
be checked as well. An identical error message should
be sent by the receiver for every possible type of fail-
ure in the same amount of time, so that it is not pos-
sible to extract information from either the type of
error message or by a timing analysis on the receiver’s
response time. Checking the length of the data block
for a 1024-bit key in SSL would increase the number
of chosen messages from approximately 1 million to
about 20 million. More than 240 chosen messages
might be required for an attack if the version number
is also checked. These changes are easy to imple-
ment, since they do not change the protocol.

Yet another option is for the recipient to require the
sender to demonstrate knowledge of the data value
D before the recipient indicates whether a decryp-
tion operation is successful. This countermeasure in-
volves no changes to the PKCS #1 encoding method
or to the data value D, and requiring such demon-
stration of knowledge is a prudent measure against
other potential attacks.

In its key establishment phase, SSL [5] already re-
quires that the client demonstrate knowledge of the

session key that the client has sent to the server in
encrypted form. However, some implementations of
SSL (e.g., Netscape’s [8]) will return one of two er-
ror messages after a failed decryption, and an attacker
can obtain useful information by distinguishing be-
tween the two errors. A simple patch to such imple-
mentations of SSL, therefore, is to consolidate the
two error messages into one, as mentioned above;
such patches are in the process of being deployed and
are available through RSA Data Security’s web page,
www.rsa.com, or from the various SSL server vendors.

Almost as simple as any of the previous options is to
add structure to the data value D, for instance to
concatenate a hash of D to the original data value.
The probability that a ciphertext is “good” is thus
significantly reduced. This involves changes to the
data value D but not to the PKCS #1 encoding
method. However, it should be done carefully, so as
to avoid introducing too much similarity in the case
that the same data value is encrypted on more than
one occasion with the same recipient’s public key,
which could lead to a vulnerability against an attack
due to Coppersmith [4].

Preferable to the previous approaches is a change in
the encoding method itself, and this is the approach
RSA Laboratories is taking in its current revisions to
PKCS #1, which were announced late last year in
CryptoBytes. PKCS #1 v2 will support Optimal Asym-
metric Encryption Padding (OAEP) [2], which is
plaintext-aware and has other desirable security at-
tributes. RSA Laboratories is pursuing similar improve-
ments to public-key standards in IEEE and ANSI. In
the interests of interoperability, a single general OAEP
encoding method is desirable; the revised PKCS #1,
which is intended to be aligned with the IEEE and
ANSI X9 standards, will provide a common reference.

OAEP uses a padding of the data to be encoded and a
“mixing” process to achieve plaintext-awareness. The
data is first padded (for specific ways in which this is
done, see [2] and [6]) to give it distinct structure. A
masking function, which ideally is a pseudorandom
function, is then applied to a seed and the exclusive-
or of the output from this function and the padded
data is taken, creating the “masked data”. The masked
data is then input to another masking function and
the exclusive-or of this output and the seed is taken,
creating the “masked seed”. The concatenation of the
masked data and the masked seed forms the OAEP
encoding (see Figure 1, on the next page).

... Optimal
Asymmetric
Encryption
Padding (OAEP)
[...] is plaintext-
aware and has
other desirable
security
attributes.

4

R S A L A B O R A T O R I E S B U L L E T I N # 7 — J U N E 2 6 , 1 9 9 8

tion: evolution and enhancements. RSA Laboratories’

CryptoBytes, 2:3, pages 1-6, Spring 1996.

7. B. Kaliski and M. Robshaw. The secure use of RSA. RSA

Laboratories’ CryptoBytes, 1:3, pages 7-13, Autumn 1995.

8. SSLRef, a reference implementation from Netscape Com-

munications of the SSL protocol, is available at http://

home.netscape.com/newsref/std/sslref.html.

To decode the data, the masked data is input to the
masking function and the exclusive-or of the output
and the masked seed is taken to recover the seed.
The seed is then input to the masking function and
the exclusive-or of the output and the masked data
is taken to recover the padded data. The padding is
then checked for the expected structure, and if the
structure is present, the data is output.

Because of the random nature of the masking func-
tion and the structure of the padding, it is infeasible
to create a message that is a valid OAEP encoding
of some data string, without knowing the data string
beforehand. Therefore if data is OAEP-encoded prior
to being encrypted a chosen-ciphertext attack such
as the one described above is ineffective: an oppo-
nent cannot construct “good” ciphertexts.

Finally, a recipient may keep track of the number of
“bad” ciphertexts. A large number may indicate that
an attack is in progress, and that the recipient should
determine their source.

Conclusions
The PKCS #1 encoding method is not broken, nor
is the RSA algorithm, but certain protocols based
on PKCS #1 have been shown to be vulnerable to
attack.

The practical impact of the attack, which has not
yet been carried out on an actual system, remains to
be determined. The main impact is on interactive
protocols, such as SSL. The relatively large message
requirement remains a deterrent, and there are sev-
eral countermeasures.

References
1. W. Alexi, B. Chor, O. Goldreich and C. P. Schnorr. RSA

and Rabin functions: certain parts are as hard as the whole.

SIAM Journal on Computing, 17(2):194-209, April 1988.

2. M. Bellare and P. Rogaway. Optimal asymmetric encryp-

tion. In A. de Santis, editor, Advances in Cryptology-

Eurocrypt ‘94, pages 92-111, Springer-Verlag, 1995.

3. D. Bleichenbacher. Chosen ciphertext attacks against

protocols based on the RSA encryption standard PKCS

#1. To appear in Advances in Cryptology-Crypto ‘98.

4. D. Coppersmith. Low-exponent RSA with related mes-

sages. In Ueli Maurer, editor, Advances in Cryptology-

Eurocrypt ‘96, pages 1-9, Springer-Verlag, 1996.

5. A. O. Freier, P. Karlton, and P. C. Kocher. The SSL Pro-

tocol, Version 3.0. Netscape, March 1996.

6. D. B. Johnson and S. M. Matyas. Asymmetric encryp-

Developers are encouraged to adopt the new encod-
ing method forthcoming in PKCS #1 v2, and to con-
sider some of the other countermeasures mentioned
above. For more information on the new result and
on the revisions to PKCS #1, readers are welcome
to contact RSA Laboratories at the address below.

RSA Laboratories
2955 Campus Drive, Suite 400
San Mateo, CA 94403-2507, USA
Tel (650) 295-7600
Fax (650) 295-7599
rsa-labs@rsa.com
http://www.rsa.com/rsalabs/

Copyright © 1998 RSA Laboratories, a division of RSA Data Security, Inc., a Security Dynamics Company. All rights reserved.

Data Seed

Padding operation
(introduces

redundancy)

Padded Data

XOR Masking Function

Masked Data Masking Function XOR

Masked SeedMasked Data

Figure 1.
OAEP encoding

