
PKCS #11 Mechanisms for One-Time Password Tokens

V1.0 DRAFT 1
RSA Security

February 15, 2005

TABLE OF CONTENTS

1 INTRODUCTION... 2
1.1 SCOPE .. 2
1.2 BACKGROUND.. 2
1.3 DOCUMENT ORGANIZATION ... 2

2 USAGE OVERVIEW ... 3
2.1 CASE 1: GENERATION OF OTP VALUES.. 3
2.2 CASE 2: VERIFICATION OF PROVIDED OTP VALUES ... 4
2.3 CASE 3: GENERATION OF OTP KEYS.. 5

3 OTP KEYS .. 5
4 OTP MECHANISMS ... 7

4.1 RSA SECURID ... 7
4.1.1 RSA SecurID secret key objects .. 7
4.1.2 RSA SecurID mechanism parameters ... 8
♦ CK_SECURID_PARAMS; CK_SECURID_PARAMS_PTR.. 8
4.1.3 RSA SecurID key generation .. 10
4.1.4 RSA SecurID OTP generation and validation .. 11
4.1.5 Return values .. 11

A. MANIFEST CONSTANTS .. 12
A.1 KEY TYPES ... 12
A.2 MECHANISMS... 12
A.3 ATTRIBUTES... 12
A.4 RETURN VALUES .. 12

B. EXAMPLES OF OTP RETRIEVAL AND VERIFICATION.. 12
B.1 OTP RETRIEVAL... 12
B.2 OTP VERIFICATION .. 14

C. INTELLECTUAL PROPERTY CONSIDERATIONS... 15
D. REFERENCES.. 16

Copyright © 2005 RSA Security Inc. All rights reserved. License to copy this document and furnish the
copies to others is granted provided that the above copyright notice is included on all such copies. This
document should be identified as “RSA Security Inc. One-Time Password Specifications (OTPS)” in all
material mentioning or referencing this document.

2 PKCS #11 MECHANISMS FOR ONE-TIME PASSWORD TOKENS

E. ABOUT OTPS... 16

1 Introduction

1.1 Scope
This document describes general PKCS #11 [1] objects, procedures and mechanisms that
can be used to retrieve and verify one-time passwords (OTPs) generated by OTP tokens.

1.2 Background
A One-Time Password (OTP) token may be a handheld hardware device, a hardware
device connected to a personal computer through an electronic interface such as USB, or
a software module resident on a personal computer, which generates one-time passwords
that may be used to authenticate a user towards some service. Increasingly, these tokens
work in a connected fashion, enabling programmatic retrieval of their OTP values. To
meet the needs of applications wishing to access these connected OTP tokens in an
interoperable manner, this document extends PKCS #11 [1] to better support these
tokens, easing the task for vendors of OTP-consuming applications, and enabling a better
user experience.

This document adds basic support of One-Time Password (OTP) tokens to PKCS #11 by
defining a common OTP key type with an extensible set of attributes and by describing
how PKCS #11 functions can be used to retrieve and verify OTP values generated by an
OTP token. It also describes an OTP key generation mechanism that may be used to
execute on-token key generation.

Building on the OTP framework, the document specifies the PKCS #11 RSA SecurID™
OTP mechanisms1. Additional mechanisms may be defined separately to support other
types of OTP tokens.

1.3 Document organization
The organization of this document is as follows:

− Section 1 is an introduction.

− Section 2 provides an overview description of the support for OTP tokens in
PKCS #11 defined herein.

− Section 3 defines the new OTP key object type and its attributes.

− Section 4 defines specific OTP mechanisms.

− Appendix A collects defined PKCS #11 constants.

− Appendix B provides example usages of the OTP mechanisms.

1 RSA SecurID® two-factor authentication is a symmetric authentication method which is patented by RSA
Security. A user authenticates by submitting a one-time password (OTP), or PASSCODE value generated
by an RSA SecurID token. The RSA SecurID token may be a handheld hardware device, a hardware device
connected to a personal computer through an electronic interface such as USB, or a software module
resident on the personal computer

Copyright © 2005 RSA Security Inc. All rights reserved. V1.0 DRAFT 1, 2005-02-14

PKCS #11 MECHANISMS FOR ONE-TIME PASSWORD TOKENS 3

− Appendices C, D, and E cover intellectual property issues, give references to

other publications and standards, and provide general information about the One-
Time Password Specifications.

2 Usage overview
OTP tokens represented as PKCS #11 mechanisms may be used in a variety of ways. The
usage cases can be categorized according to the type of sought functionality.

2.1 Case 1: Generation of OTP values

.

Figure 1: Retrieving OTP values through C_Sign
Figure 1 shows an integration of PKCS #11 into an application that needs to authenticate
users holding OTP tokens. In this particular example, a connected hardware token is
used, but a software token is equally possible. The application invokes C_Sign to retrieve
the OTP value from the token. In the example, the application then passes the retrieved
OTP value to a client API that sends it via the network to an authentication server. The
client API may implement a standard authentication protocol such as RADIUS [2] or
EAP [3], or a proprietary protocol such as that used by RSA Security's ACE/Agent®
software.

Copyright © 2005 RSA Security Inc. V1.0 DRAFT 1, 2005-02-14

4 PKCS #11 MECHANISMS FOR ONE-TIME PASSWORD TOKENS

2.2 Case 2: Verification of provided OTP values

Server Application

PKCS #11 Library

C_Verify()

Internal Token API

Token (or query to
authentication

server)

Figure 2: Server-side verification of OTP values

Figure 2 illustrates the server-side equivalent of the scenario depicted in Figure 1. In this
case, a server application invokes C_Verify with the received OTP value as the signature
value to be verified.

Copyright © 2005 RSA Security Inc. All rights reserved. V1.0 DRAFT 1, 2005-02-14

PKCS #11 MECHANISMS FOR ONE-TIME PASSWORD TOKENS 5

2.3 Case 3: Generation of OTP keys

Client Application

PKCS #11 Library

C_GenerateKey()

Internal Token API

Token (or software
version thereof)

Figure 3: Generation of an OTP key

Figure 3 shows an integration of PKCS #11 into an application that generates OTP keys.
The application invokes C_GenerateKey to generate an OTP key of a particular type on
the token. The key may subsequently be used as a basis to generate OTP values.

3 OTP keys
OTP key objects (object class CKO_SECRET_KEY) hold secret keys used by OTP
tokens. The following table defines the attributes common to all OTP keys, in addition to
the common attributes defined for this object class:

Table 1: Common OTP key attributes

Attribute Data type Meaning

CKA_SERIAL_NUMBER1, 3 Byte array Serial number of key

CKA_OTP_FORMAT CK_ULONG Format of OTP values produced with this
key:
0 = Decimal (default)
1 = Hexadecimal
2 = Alphanumeric

CKA_OTP_LENGTH1, 9 CK_ULONG Length of OTP values (in the
CKA_OTP_FORMAT) produced with this
key.

Copyright © 2005 RSA Security Inc. V1.0 DRAFT 1, 2005-02-14

6 PKCS #11 MECHANISMS FOR ONE-TIME PASSWORD TOKENS

Attribute Data type Meaning

CKA_OTP_ PINPAD9 CK_BBOOL CK_TRUE if the token will mix in a user-
supplied PIN into OTP computations made
with this key.

CKA_ OTP_APP_BASED CK_BBOOL CK_TRUE if the token will mix in
application information into OTP
computations made with this key (see
below). Default is CK_FALSE.

CKA_OTP CHALLENGE_MODE CK_BBOOL CK_TRUE if the token supports calculation
of OTPs based on a provided challenge for
this key. Default is CK_FALSE.

CKA_OTP_TIME_MODE CK_BBOOL True if the token supports calculation of
OTPs based on the current time for this key.
Default is CK_TRUE.

CKA_OTP_COUNTER_MODE CK_BBOOL True if the token supports calculation of
OTPs based on a counter value for this key.
Default is CK_FALSE.

CKA_OTP_ACCEPT_TIME CK_BBOOL True if the token supports verification of
OTPs based on a provided timestamp rather
than the internal, current time for this key.
Default is CK_FALSE. This attribute
carries no meaning when
CKA_OTP_TIME_MODE is CK_FALSE.

CKA_
OTP_DEFAULT_PIN_ALLOWED

CK_BBOOL CK_TRUE if successful login to the token
will allow a token-resident PIN to be
included in OTP computations made with
this key (i.e. user will not have to supply a
separate PIN when requesting OTP
computations). Default is CK_FALSE.

CKA_OTP_DEFAULT_PIN_SET CK_BBOOL CK_TRUE it the default PIN is set for this
key. Default is CK_FALSE.

CKA_OTP_DEFAULT_PIN6, 7 RFC 2279
string

Default PIN for this key. Default value is
empty (i.e. ulValueLen = 0).

CKA_OTP_SERVICE_IDENTIFIER RFC 2279
string

Identifies a service that may validate OTPs
generated by this key. Default value is
empty (i.e. ulValueLen = 0).

CKA_VALUE1, 4, 6, 7 Byte array Value of the key.

CKA_VALUE_LEN2, 3 CK_ULONG Length in bytes of key value.

Refer to Table 15 in [1] for table footnotes

An application may find out if a default PIN is supported for a given OTP key by calling
C_GetAttributeValue and querying for CKA_DEFAULT_PIN_ALLOWED. An
application may find out if a default PIN has been set for a given OTP key by calling

Copyright © 2005 RSA Security Inc. All rights reserved. V1.0 DRAFT 1, 2005-02-14

PKCS #11 MECHANISMS FOR ONE-TIME PASSWORD TOKENS 7

C_GetAttributeValue and querying for CKA_DEFAULT_PIN_SET. An application
may set the default PIN by calling C_SetAttributeValue with CKA_DEFAULT_PIN.
The value of the CKA_DEFAULT_PIN_ALLOWED attribute cannot be set by an
application. The value of the CKA_DEFAULT_PIN_SET attribute can only be set
indirectly by an application (by setting the PIN).

For OTP tokens with multiple keys, the keys may be enumerated using C_FindObjects.
The CKA_OTP_SERVICE_IDENTIFIER attribute may be used to distinguish between
keys. The actual choice of key for a particular operation is however application-specific
and beyond the scope of this document.

4 OTP mechanisms
The following table shows, for the OTP mechanisms defined in this document, their
support by different cryptographic operations. For any particular token, of course, a
particular operation may well support only a subset of the mechanisms listed. There is
also no guarantee that a token that supports one mechanism for some operation supports
any other mechanism for any other operation (or even supports that same mechanism for
any other operation).

Table 2: OTP mechanisms vs. applicable functions

 Functions

Mechanism

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR1

Digest

Gen.

 Key/

Key

Pair

Wrap

&

Unwrap

Derive

CKM_SECURID_KEY_GEN

CKM_SECURID_TRADITIONAL

CKM_SECURID

The remainder of this section will present in detail the OTP mechanisms and the
parameters that are supplied to them.

4.1 RSA SecurID

4.1.1 RSA SecurID secret key objects

RSA SecurID key objects (object class CKO_SECRET_KEY, key type
CKK_SECURID) hold RSA SecurID secret keys. The following table defines the RSA
SecurID secret key object attributes, in addition to the common attributes defined for this
object class, and in addition to the common OTP key attributes defined above:

Table 1, RSA SecurID secret key object attributes

Copyright © 2005 RSA Security Inc. V1.0 DRAFT 1, 2005-02-14

8 PKCS #11 MECHANISMS FOR ONE-TIME PASSWORD TOKENS

Attribute Data type Meaning

CKA_OTP_TIME_INTERVAL1 CK_ULONG Interval between OTP values produced with
this key, in seconds. Default is 60.

Refer to Table 15 in [1] for table footnotes

The following is a sample template for creating an RSA SecurID secret key object:
CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_SECURID;
CK_UTF8CHAR label[] = “RSA SecurID secret key object”;
CK_BYTE serialNumber[]= {...};
CK_ULONG outputFormat = 0;
CK_ULONG outputLength = 6;
CK_ULONG timeInterval = 60;
CK_DATE endDate = {...};
CK_BYTE value[] = {...};

 CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_END_DATE, &endDate, sizeof(endDate)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_SENSITIVE, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)-1},
 {CKA_SIGN, &true, sizeof(true)},
 {CKA_VERIFY, &true, sizeof(true)},
 {CKA_SERIAL_NUMBER, serialNumber},
 {CKA_OTP_FORMAT, &outputFormat,

sizeof(outputFormat)},
 {CKA_OTP_LENGTH, &outputLength,

sizeof(outputLength)},
 {CKA_OTP_TIME_INTERVAL, &timeInterval,

sizeof(timeInterval)},
 {CKA_VALUE, value, sizeof(value)}
};

4.1.2 RSA SecurID mechanism parameters

♦ CK_SECURID_PARAMS; CK_SECURID_PARAMS_PTR
CK_SECURID_PARAMS is a structure that provides the parameters to the RSA
SecurID OTP retrieval mechanisms.

typedef struct CK_SECURID_PARAMS {
 CK_CHAR utcTime[14];
 CK_FLAGS flags;
 CK_UTF8CHAR_PTR pPIN;

 CK_UTF8CHAR_PTR pApplicationID;

Copyright © 2005 RSA Security Inc. All rights reserved. V1.0 DRAFT 1, 2005-02-14

PKCS #11 MECHANISMS FOR ONE-TIME PASSWORD TOKENS 9

 CK_VOID_PTR pReserved;
} CK_SECURID_PARAMS;

The fields of the structure have the following meanings:

 utcTime UTC time value in the form YYYYMMDDhhmmss
used as the input for computing or verifying time-
based OTP values. This value will be ignored for OTP
values based only on a challenge. It will also be
ignored if the token has its own clock, unless the
CKA_OTP_ACCEPT_TIME attribute is set to
CK_TRUE for the key in question and the operation is
an OTP value verification.

 flags bit flags indicating characteristics of the sought OTP
value as defined below.

 pPIN a NULL-terminated UTF8 string containing a UTF8-
encoded RSA SecurID PIN. The parameter can be set
to NULL_PTR when the key's CKA_
DEFAULT_PIN_SET attribute is CK_TRUE, if use of
the default PIN is desired.

 pApplicationID a NULL-terminated UTF8 string containing a UTF8-
encoded application-specific identifier, which for some
keys and tokens may be used to influence the OTP
calculation on a per application basis. Any supplied
parameter value will be ignored unless the key's
CKA_OTP_ APP_BASED attribute is set to CK_TRUE.
The value may be provided to the calling application
through configuration, external protocol interaction, or
by other means. For a client-server based application,
this would typically be the IP address (in "numerical
dot-notation" and as seen by the client) of the server
requesting user authentication. This parameter carries
no meaning and shall be set to NULL when the
mechanism is CKM_SECURID_TRADITIONAL.

 pReserved reserved for future use. Should be NULL_PTR for this
version. Cryptoki libraries shall ignore this parameter.

Copyright © 2005 RSA Security Inc. V1.0 DRAFT 1, 2005-02-14

10 PKCS #11 MECHANISMS FOR ONE-TIME PASSWORD TOKENS

The following table defines the flags field:

Table 2, RSA SecurID OTP Mechanism Flags

Bit Flag Mask Meaning

CKF_NEXT_OTP 0x00000001 True if the token shall return the next
OTP, rather than the current one. Does
not carry any meaning if
CKF_CHALLENGE_ONLY (see below)
is set.

CKF_CHALLENGE_ONLY 0x00000002 True if the OTP value shall be computed
on a provided challenge without using
the current time (assuming that both
CKA_OTP_CHALLENGE_MODE and
CKA_OTP_TIME_MODE are
CK_TRUE for the key in question, if a
challenge is provided, the default
behavior is to include both the challenge
and the current time in the OTP
computation. This flag carries no
meaning and shall not be set when the
mechanism is
CKM_SECURID_TRADITIONAL.

CKF_TOKEN_CODE 0x00000004 True if the RSA SecurID OTP returned
by C_Sign shall be a tokencode, rather
than a PASSCODE™. When this flag is
set, any provided PIN information will be
ignored (whether provided by default or
not).

CK_SECURID_PARAMS_PTR is a pointer to a CK_SECURID_PARAMS.

4.1.3 RSA SecurID key generation

The RSA SecurID key generation mechanism, denoted CKM_SECURID_KEY_GEN,
is a key generation mechanism for the RSA SecurID algorithm.

It does not have a parameter.

The mechanism generates RSA SecurID keys with a particular set of attributes as
specified in the template for the key.

The mechanism contributes at least the CKA_CLASS, CKA_KEY_TYPE,
CKA_VALUE_LEN, and CKA_VALUE attributes to the new key. Other attributes
supported by the RSA SecurID key type may be specified in the template for the key, or
else are assigned default initial values

Copyright © 2005 RSA Security Inc. All rights reserved. V1.0 DRAFT 1, 2005-02-14

PKCS #11 MECHANISMS FOR ONE-TIME PASSWORD TOKENS 11

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of SecurID key sizes,
in bytes.

4.1.4 RSA SecurID OTP generation and validation

CKM_SECURID_TRADITIONAL and CKM_SECURID are the mechanisms for the
retrieval and verification of RSA SecurID OTP values based on the current time, a
provided challenge, or the current time and a provided challenge. As indicated above,
other information may also be included in the OTP computation.
CKM_SECURID_TRADITIONAL is the mechanism used by most existing RSA
SecurID tokens, while CKM_SECURID is the mechanism supported by newer tokens.

These mechanisms take a pointer to a CK_SECURID_PARAMS structure as a
parameter. The utcTime value in the structure may be NULL if the token has an internal
clock. For tokens with an internal clock, any provided utcTime values will be ignored,
unless the CKA_OTP_ACCEPT_TIME attribute for the key in question is CK_TRUE
and the operation is a verification of an OTP value (this allows for verification of old
OTP values). Likewise, any provided utcTime values will be ignored if
CKF_CHALLENGE_ONLY is set to true in the CK_SECURID_PARAMS structure.

When signing using the CKM_SECURID mechanism, the data to be signed, pData, is the
challenge. Note that providing a challenge when the mechanism is
CKM_SECURID_TRADITIONAL or the attribute CKA_OTP_CHALLENGE_MODE
is CK_FALSE for the key in question will result in an error
(CKR_ARGUMENTS_BAD). Similarly, it is an error (CKR_ARGUMENTS_BAD) to
set the CKF_CHALLENGE_ONLY flag and not provide a challenge. When no challenge
is provided, pData shall be set to NULL_PTR.

4.1.5 Return values
Support for any of the CKM_SECURID_TRADITIONAL and CKM_SECURID
mechanisms extends the set of return values for C_Verify with the following values:

• CKR_SECURID_NEW_PIN_MODE: The supplied OTP was not accepted and the
library requests a new OTP computed using a new PIN. The new PIN is set through
means out of scope for this document.

• CKR_SECURID_NEXT_TOKEN_CODE: The supplied OTP was correct but
indicated a larger than normal drift in the token's internal clock. To ensure this was
not due to a temporary problem, the application should provide the next one-time
tokencode (not one-time PASSCODE, see above) to the library for verification.

Copyright © 2005 RSA Security Inc. V1.0 DRAFT 1, 2005-02-14

12 PKCS #11 MECHANISMS FOR ONE-TIME PASSWORD TOKENS

A. Manifest constants

A.1 Key types
#define CKK_SECURID 0x00000022

A.2 Mechanisms

#define CKM_SECURID_KEY_GEN 0x00000280
#define CKM_SECURID_TRADITIONAL 0x00000281
#define CKM_SECURID 0x00000282

A.3 Attributes
#define CKA_OTP_FORMAT 0x00000220
#define CKA_OTP_LENGTH 0x00000221
#define CKA_OTP_TIME_INTERVAL 0x00000222
#define CKA_OTP_PINPAD 0x00000223
#define CKA_OTP_APP_BASED 0x00000224
#define CKA_OTP_CHALLENGE_MODE 0x00000225
#define CKA_OTP_TIME_MODE 0x00000226
#define CKA_OTP_ACCEPT_TIME 0x00000227
#define CKA_OTP_DEFAULT_PIN_ALLOWED 0x00000228
#define CKA_OTP_DEFAULT_PIN_SET 0x00000229
#define CKA_OTP_DEFAULT_PIN 0x0000022A
#define CKA_OTP_SERVICE_IDENTIFIER 0x0000022B
#define CKA_OTP_COUNTER_MODE 0x0000022C

A.4 Return values
#define CKR_SECURID_NEW_PIN_MODE 0x000001B0
#define CKR_SECURID_NEXT_TOKEN_CODE 0x000001B1

B. Examples of OTP retrieval and verification

B.1 OTP retrieval
The following sample code snippet illustrates the retrieval of an OTP value from an RSA
SecurID token using the C_Sign function. The data to be signed is in the example
NULL_PTR, since an OTP value only based on the current time is sought. The current
UTC time, if a time is specified, is supplied in the CK_SECURID_PARAMS structure.

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_CHAR szTime = {. . .};
/* UTC time value for OTP, or NULL */
CK_UTF8CHAR szPIN[] = "...";
CK_SECURID_PARAMS params = {szTime, 0, szPIN, NULL_PTR,

NULL_PTR};

Copyright © 2005 RSA Security Inc. All rights reserved. V1.0 DRAFT 1, 2005-02-14

PKCS #11 MECHANISMS FOR ONE-TIME PASSWORD TOKENS 13

CK_MECHANISM mechanism = {CKM_SECURID, ¶ms,

sizeof(params)};
CK_ULONG ulOTPLen, ulKeyCount;
CK_BYTE *pOTP; /* Storage for OTP result */
CK_RV rv;
CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_SECURID;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
};

/* Find the RSA SecurID key on the token. */
rv = C_FindObjectsInit(hSession, template, 2);
if (rv == CKR_OK) {
 rv = C_FindObjects(hSession, &hKey, 1, &ulKeyCount);
 rv = C_FindObjectsFinal(hSession);
}

if ((rv != CKR_OK) || (ulKeyCount == 0)) {
 printf(“\nError: unable to find RSA SecurID key on

token.\n”);
 return(rv);
}

/* Initialize the signing mechanism. */
rv = C_SignInit(hSession, &mechanism, hKey);
if (rv == CKR_OK) {
 ulOTPLen = sizeof(OTP);
 /* Get the buffer length needed for the OTP Value.

*/
 rv = C_Sign(hSession, NULL_PTR, 0, NULL_PTR,

&ulOTPLen);
 if (rv == CKR_OK) {
 pOTP = malloc(ulOTPLen);
 if (pOTP != NULL_PTR) {
 /* Get the actual OTP value. */

 rv = C_Sign(hSession, NULL_PTR, 0, pOTP,
&ulOTPLen);

 }
 }
}

if ((rv != CKR_OK) || (pOTP == NULL_PTR)) {
 printf(“\nError retrieving OTP Value.\n”);
 return(rv);
}

Copyright © 2005 RSA Security Inc. V1.0 DRAFT 1, 2005-02-14

14 PKCS #11 MECHANISMS FOR ONE-TIME PASSWORD TOKENS

printf(“\nReturned OTP Value is %s.\n”, pOTP);

 return(rv);

B.2 OTP verification

The following sample code snippet illustrates the verification of an OTP value from an
RSA SecurID token, using the C_Verify function. The data to be verified is in the
example NULL_PTR, since the OTP value was computed on the current time and not a
challenge. The current UTC time, if a time is specified, is supplied in the
CK_SECURID_PARAMS structure.

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_CHAR szTime = {. . .};
/* UTC time value for OTP, or NULL */
CK_UTF8CHAR szPIN[] = "..."; /* PIN, from app. */
CK_SECURID_PARAMS params = {szTime, 0, szPIN, NULL_PTR,

NULL_PTR};
CK_MECHANISM mechanism = {CKM_SECURID, ¶ms,

sizeof(params)};
CK_ULONG ulKeyCount;
CK_RV rv;
CK_BYTE OTP = {. . .}; /* Supplied OTP value. */
CK_ULONG ulOTPLen = strlen((CK_CHAR_PTR)OTP);
CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_SECURID;

CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
};

/* Find the RSA SecurID key on the token. */
rv = C_FindObjectsInit(hSession, template, 2);
if (rv == CKR_OK) {
 rv = C_FindObjects(hSession, &hKey, 1, &ulKeyCount);
 rv = C_FindObjectsFinal(hSession);
}

if ((rv != CKR_OK) || (ulKeyCount == 0)) {
 printf(“\nError: unable to find RSA SecurID key on

token.\n”);
 return(rv);

}

rv = C_VerifyInit(hSession, &mechanism, hKey);

Copyright © 2005 RSA Security Inc. All rights reserved. V1.0 DRAFT 1, 2005-02-14

PKCS #11 MECHANISMS FOR ONE-TIME PASSWORD TOKENS 15

if (rv == CKR_OK) {
 ulOTPLen = sizeof(OTP);
 rv = C_Verify(hSession, NULL_PTR, 0, OTP, ulOTPLen);
}

 switch(rv) {
 case CKR_OK:
 printf(“\nSupplied OTP value is correct.\n”);
 break;

 case CKR_SIGNATURE_INVALID:
 printf(“\nSupplied OTP value is incorrect.\n”);
 break;

 default:
 printf(“\nError:Unable to verify OTP value.\n”);
 break;
}

return(rv);

C. Intellectual property considerations
RSA Security makes no patent claims on the general constructions described in this
document, although specific underlying techniques may be covered. The RSA SecurID
technology is covered by a number of US patents (and foreign counterparts), in particular
US patent nos. 4,720,860, 4,856,062, 4,885,778, 5,097,505, 5,168,520, and 5,657,388.
Additional patents are pending.

Copyright © 2005 RSA Security Inc. All rights reserved. License to copy this document
and furnish the copies to others is granted provided that the above copyright notice is
included on all such copies. This document should be identified as “RSA Security Inc.
One-Time Password Specifications (OTPS)” in all material mentioning or referencing
this document.

ACE/Agent, RSA, RSA Security and SecurID are registered trademarks or trademarks of
RSA Security Inc. in the United States and/or other countries. The names of other
products or services mentioned may be the trademarks of their respective owners.

This document and the information contained herein are provided on an "AS IS" basis
and RSA SECURITY DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. RSA Security makes no representations regarding intellectual property
claims by other parties. Such determination is the responsibility of the user.

Copyright © 2005 RSA Security Inc. V1.0 DRAFT 1, 2005-02-14

16 PKCS #11 MECHANISMS FOR ONE-TIME PASSWORD TOKENS

Copyright © 2005 RSA Security Inc. All rights reserved. V1.0 DRAFT 1, 2005-02-14

D. References
[1] RSA Laboratories, PKCS #11: Cryptographic Token Interface Standard. Version

2.20, June 2004. URL: ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-11/v2-20/pkcs-
11v2-20.pdf.

[2] Rigney et al, “Remote Authentication Dial In User Service (RADIUS)”, IETF
RFC2865, June 2000. URL: http://ietf.org/rfc/rfc2865.txt.

[3] Aboba et al, “Extensible Authentication Protocol (EAP)”, IETF RFC 3748, June
2004. URL: http://ietf.org/rfc/rfc3748.txt.

E. About OTPS
The One-Time Password Specifications are documents produced by RSA Security in
cooperation with secure systems developers for the purpose of simplifying integration
and management of strong authentication technology into secure applications, and to
enhance the user experience of this technology.

RSA Security plans further development of the OTPS series through mailing list
discussions and occasional workshops, and suggestions for improvement are welcome.
As four our PKCS documents, results may also be submitted to standards forums. For
more information, contact:

OTPS Editor
RSA Security
174 Middlesex Turnpike
Bedford, MA 01730 USA
otps-editor@rsasecurity.com
http://www.rsasecurity.com/rsalabs/

ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-11/v2-20/pkcs-11v2-20.pdf
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-11/v2-20/pkcs-11v2-20.pdf
http://ietf.org/rfc/rfc2865.txt
http://ietf.org/rfc/rfc3748.txt
mailto:otps-editor@rsasecurity.com
http://www.rsasecurity.com/rsalabs/

	Introduction
	Scope
	Background
	Document organization

	Usage overview
	Case 1: Generation of OTP values
	Case 2: Verification of provided OTP values
	Case 3: Generation of OTP keys

	OTP keys
	OTP mechanisms
	RSA SecurID
	RSA SecurID secret key objects
	RSA SecurID mechanism parameters
	RSA SecurID key generation
	RSA SecurID OTP generation and validation
	Return values

