
Copyright © 2006 RSA Security Inc. All rights reserved. License to copy this document and furnish the
copies to others is granted provided that this copyright notice is included on all such copies. This document
should be identified as “RSA Security Inc. One-Time Password Specifications (OTPS)” in all material
mentioning or referencing this document.

Extensions to CT-KIP to support one- and two-pass key
initialization

Draft 2
RSA Laboratories
March 27, 2006

Editor’s note: This is the second draft of this document. Please send comments and
suggestions to: otps@rsasecurity.com or otps-editor@rsasecurity.com.

TABLE OF CONTENTS

1 INTRODUCTION... 3
1.1 SCOPE .. 3
1.2 BACKGROUND .. 3
1.3 DOCUMENT ORGANIZATION... 3

2 ACRONYMS AND NOTATION .. 3
2.1 ACRONYMS... 3
2.2 NOTATION .. 3

3 ONE- AND TWO-PASS CT-KIP.. 4
3.1 PROTOCOL FLOW... 4

3.1.1 One-pass CT-KIP .. 4
3.1.2 Two-pass CT-KIP .. 4

3.2 EXTENSIONS TO THE <CLIENTHELLO> MESSAGE.. 4
3.3 EXTENSIONS TO THE <SERVERFINISHED> MESSAGE ... 5
3.4 MAC CALCULATIONS ... 6

3.4.1 One-pass CT-KIP .. 6
3.4.2 Two-pass CT-KIP .. 6

4 SECURITY CONSIDERATIONS .. 7
4.1 APPLICABILITY OF 4-PASS CT-KIP SECURITY CONSIDERATIONS.. 7
4.2 SECURITY CONSIDERATIONS SPECIFIC TO 1- AND 2-PASS CT-KIP.. 7

4.2.1 Client contributions to KTOKEN entropy.. 7
4.2.2 Replay protection... 7
4.2.3 Key confirmation ... 8
4.2.4 Key protection in the passphrase profile... 8

XML SCHEMA.. 9

2 EXTENSIONS TO CT-KIP TO SUPPORT ONE- AND TWO-PASS KEY INITIALIZATION

Copyright © 2006 RSA Security Inc. All rights reserved. Draft 2, 2006-03-27

A. KEY INITIALIZATION PROFILES OF CT-KIP... 10
A.1 INTRODUCTION ... 10
A.2 KEY TRANSPORT PROFILE .. 10
A.2.1 INTRODUCTION ... 10
A.2.2 IDENTIFICATION.. 10
A.2.3 PAYLOADS.. 10
A.3 KEY WRAP PROFILE ... 11
A.3.1 INTRODUCTION ... 11
A.3.2 IDENTIFICATION.. 11
A.3.3 PAYLOADS.. 11
A.4 PASSPHRASE-BASED KEY WRAP PROFILE .. 12
A.4.1 INTRODUCTION ... 12
A.4.2 IDENTIFICATION.. 12
A.4.3 PAYLOADS.. 12

B. EXAMPLE MESSAGES... 13
B.1 NOTE REGARDING THE EXAMPLES.. 13
B.2 EXAMPLE OF A <CLIENTHELLO> MESSAGE INDICATING SUPPORT FOR TWO-PASS CT-KIP........ 13
B.3 EXAMPLE OF A <SERVERFINISHED> MESSAGE USING THE KEY TRANSPORT PROFILE 14
B.4 EXAMPLE OF A <SERVERFINISHED> MESSAGE USING THE KEY WRAP PROFILE 15
B.5 EXAMPLE OF A <SERVERFINISHED> MESSAGE USING THE PASSPHRASE-BASED KEY WRAP
PROFILE 15

C. INTEGRATION WITH PKCS #11... 16
C.1 THE 2-PASS VARIANT .. 16
C.2 THE 1-PASS VARIANT .. 18

D. INTELLECTUAL PROPERTY CONSIDERATIONS.. 20
E. REFERENCES.. 21
F. ABOUT OTPS... 21

EXTENSIONS TO CT-KIP TO SUPPORT ONE- AND TWO-PASS KEY INITIALIZATION 3

Copyright © 2006 RSA Security Inc. Draft 2, 2006-03-27

1 Introduction

1.1 Scope
This document describes extensions to the Cryptographic Token Key Initialization
Protocol (CT-KIP) [1] to support one-pass (i.e. one message) and two-pass (i.e. one
round-trip) cryptographic token key initialization.

1.2 Background
There are several deployment scenarios where it would be beneficial to have one- or two-
pass versions of CT-KIP. These include situations where a direct communication between
the OTP token and the CT-KIP server is not possible, where work-flow constraints
otherwise would limit real-time communications (e.g. needs for administrators to
authorize processes), or where network latency or other design constraints makes a four-
pass version less suitable.

This document tries to meet the needs of these scenarios by describing extensions to CT-
KIP for the initialization of cryptographic tokens in one round-trip or less.

1.3 Document organization
The organization of this document is as follows:

− Section 1 is an introduction.

− Section 2 defines acronyms and notation used in this document.

− Section 3 defines extensions to CT-KIP.

− Section 4 discusses security considerations.

− Appendix A contains two profiles of CT-KIP.

− Appendix B provides example messages.

− Appendix C discusses integration with PKCS #11 [5].

− Appendices D, E, and F cover intellectual property issues, give references to other
publications and standards, and provide general information about the One-Time
Password Specifications.

2 Acronyms and notation

2.1 Acronyms
CT-KIP Cryptographic Token Key Initialization Protocol

2.2 Notation
|| String concatenation
IDC Identifier for CT-KIP client

4 EXTENSIONS TO CT-KIP TO SUPPORT ONE- AND TWO-PASS KEY INITIALIZATION

Copyright © 2006 RSA Security Inc. All rights reserved. Draft 2, 2006-03-27

IDS Identifier for CT-KIP server
KAUTH Secret key used for authentication purposes

KTOKEN Secret key used for token computations, generated in CT-KIP
KCLIENT Public key of CT-KIP client (token)

KSHARED Secret key shared between the cryptographic token and the CT-KIP server
KDERIVED Secret key derived from a passphrase that is known to both the

cryptographic token or user and the CT-KIP server
R Pseudorandom value chosen by the cryptographic token and used for

MAC computations
The following typographical conventions are used in the body of the text: <XML Element>,
XMLAttribute, XMLType.

3 One- and two-pass CT-KIP

3.1 Protocol flow

3.1.1 One-pass CT-KIP
In one-pass CT-KIP, the server simply sends a <ServerFinished> message to the CT-KIP
client. In this case, there is no exchange of the <ClientHello>, <ServerHello>, and
<ClientNonce> CT-KIP messages, and hence there is no way for the client to express
supported algorithms etc. Before attempting one-pass CT-KIP, the server must therefore
have prior knowledge not only that the client is able and willing to accept this variant of
CT-KIP, but also of algorithms and key types supported by the client.
Outside the specific cases where one-pass CT-KIP is desired, clients should be
constructed and configured to only accept CT-KIP server messages in response to client-
initiated transactions.

3.1.2 Two-pass CT-KIP
In two-pass CT-KIP, the client’s initial <ClientHello> message is directly followed by a
<ServerFinished> message. There is no exchange of the <ServerHello> message or the
<ClientNonce> message. Essentially, two-pass CT-KIP is a transport of key material from
the CT-KIP server to the CT-KIP client. However, as the two-pass variant of CT-KIP
consists of one round trip to the server, the client is still able to specify algorithm
preferences, etc. in the <ClientHello> message.

3.2 Extensions to the <ClientHello> message
A new extension is defined for this message. The extension signals client support for the
two-pass version of CT-KIP, informs the server of supported two-pass variants, and
provides optional payload data to the CT-KIP server. The payload is sent in an
opportunistic fashion, and may be discarded by the CT-KIP server if the server does not
support the two-pass variant the payload is associated with. Depending on the client’s
policy, this extension may or may not have the Critical attribute set to true. If Critical ≠

EXTENSIONS TO CT-KIP TO SUPPORT ONE- AND TWO-PASS KEY INITIALIZATION 5

Copyright © 2006 RSA Security Inc. Draft 2, 2006-03-27

"true" then a CT-KIP server may ignore the extension and proceed with ordinary 4-pass
CT-KIP. Otherwise, the server must find a suitable two-pass variant or else the protocol
run will fail.
<xs:complexType name="TwoPassSupportType">
 <xs:annotation>
 <xs:documentation xml:lang="en">
 This extension is only valid in ClientHello PDUs. It informs the server of the client’s support for
 the two-pass version of CT-KIP, and carries optional payload data associated with each
 supported two-pass key initialization method
 </xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:extension base="AbstractExtensionType">
 <xs:sequence maxOccurs="unbounded">
 <xs:element name="SupportedKeyInitializationMethod" type="xs:anyURI"/>
 <xs:element name=”Payload" minOccurs="0"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

The elements of this type have the following meaning:

- <SupportedKeyInitializationMethod>: A two-pass key initialization method supported
by the CT-KIP client. Multiple supported methods may be present, in which case
they shall be listed in order of precedence.

- <Payload>: An optional payload associated with each supported key initialization
method.

A CT-KIP client that indicates support for two-pass CT-KIP must also include the nonce
R in its <ClientHello> message (this will enable the client to verify that the CT-KIP server
it is communicating with is alive).

3.3 Extensions to the <ServerFinished> message
A new extension is defined for this message. It carries an identifier for the selected key
initialization method as well as key initialization method-dependent payload data.

Servers may include this extension in a <ServerFinished> message that is being sent in
response to a received <ClientHello> message if and only if that <ClientHello> message
contained a TwoPassSupportType extension and the client indicated support for the selected
key initialization method. Servers must include this extension in a <ServerFinished>
message that is sent as a 1-pass CT-KIP.
<xs:complexType name="KeyInitializationDataType">
 <xs:annotation>
 <xs:documentation xml:lang="en">
 This extension is only valid in ServerFinished PDUs. It contains key initialization data and its
 presence results in a two-pass (or one-pass, if no ClientHello was sent) CT-KIP exchange.
 </xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:extension base="AbstractExtensionType">
 <xs:sequence>
 <xs:element name="KeyInitializationMethod" type="xs:anyURI"/>

6 EXTENSIONS TO CT-KIP TO SUPPORT ONE- AND TWO-PASS KEY INITIALIZATION

Copyright © 2006 RSA Security Inc. All rights reserved. Draft 2, 2006-03-27

 <xs:element name="Payload"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

3.4 MAC calculations

3.4.1 One-pass CT-KIP
In[A1] one-pass CT-KIP, the server is required to include an identifier, IDS, for itself (in
the <ServerID> element) in the <ServerFinished> message. The MAC value in the
<ServerFinished> message shall be computed on the (ASCII) string “MAC 2 computation”,
the server identifier IDS, and a monotonically increasing, unsigned integer value I
guaranteed not to be used again by this server1, using a MAC key KMAC. In contrast to [1],
this key shall be provided together with KTOKEN to the client, and hence there is no need
for a KAUTH for key confirmation purposes2.

If CT-KIP-PRF is used as the MAC algorithm, then the input parameter s shall consist of
the concatenation of the (ASCII) string “MAC 2 computation” IDS, and I. The parameter
dsLen shall be set to at least 16 (i.e. the length of the MAC shall be at least 16 octets):

dsLen ≥ 16

MAC = CT-KIP-PRF (KMAC, “MAC 2 computation” || IDS || I, dsLen)
The server shall provide I to the client in the Nonce attribute of the <MAC> element of the
<ServerFinished> message using the following extension of the CT-KIP MacType:
xs:complexType name="ExtendedMacType">
 <xs:simpleContent>
 <xs:extension base="ct-kip:MacType">
 <xs:attribute name="Nonce" type="xs:nonNegativeInteger" use="required"/>
 </xs:extension>
 </xs:simpleContent>
</xs:complexType>

3.4.2 Two-pass CT-KIP
In two-pass CT-KIP, the client is required to include a nonce R in the <ClientHello>
message. Further, the server is required to include an identifier, IDS, for itself (in the
<ServerID> element) in the <ServerFinished> message. The MAC value in the
<ServerFinished> message shall be computed on the (ASCII) string “MAC 2 computation”,
the server identifier IDS, and R using a MAC key KMAC. Again, in contrast with [1], this
key shall be provided together with KTOKEN to the client, and hence there is no need for a
KAUTH for key confirmation purposes.

1 This could be a the number of seconds since some point in time with sufficient granularity, a counter
value, or a combination of the two where the counter value is reset for each new time value.
2 An extension is planned to [1] to allow for generation of a KMAC in addition to KTOKEN in 4-pass CT-KIP.

EXTENSIONS TO CT-KIP TO SUPPORT ONE- AND TWO-PASS KEY INITIALIZATION 7

Copyright © 2006 RSA Security Inc. Draft 2, 2006-03-27

If CT-KIP-PRF is used as the MAC algorithm, then the input parameter s shall consist of
the concatenation of the (ASCII) string “MAC 2 computation” and R, and the parameter
dsLen shall be set to the length of R:

dsLen = len(R)

MAC = CT-KIP-PRF (KMAC, “MAC 2 computation” || IDS || R, dsLen)

4 Security considerations

4.1 Applicability of 4-pass CT-KIP security considerations
This document extends [1], and the security considerations discussed in [1] therefore
applies here as well, but with some exceptions:

- Message re-ordering attacks cannot occur since in the CT-KIP variants described
in this document each party sends at most one message each.

- The attack described in Section 5.5 of [1] where the attacker replaces a client-
provided RC with his own R’C does not apply as the client does not provide any
entropy to KTOKEN in the 1- and 2-pass variants discussed here. The attack as such
(and its countermeasures) still applies, however, as it essentially is a man-in-the-
middle attack.

In addition, the 1- and 2-pass CT-KIP variants described in this document warrant some
further security considerations that are discussed in the following.

4.2 Security considerations specific to 1- and 2-pass CT-KIP

4.2.1 Client contributions to KTOKEN entropy
In 4-pass CT-KIP, both the client and the server provide randomizing material to KTOKEN ,
in a manner that allows both parties to verify that they did contribute to the resulting key.
In the 1- and 2-pass CT-KIP versions defined herein, only the server contributes to the
entropy of KTOKEN. This means that a broken or compromised (pseudo-)random number
generator in the server may cause more damage than it would in the 4-pass variant.
Server implementations should therefore take extreme care to ensure that this situation
does not occur.

4.2.2 Replay protection
A 4-pass CT-KIP client knows that a server it is communicating with is “live” since the
server must create a MAC on information sent by the client. The same is true for 2-pass
CT-KIP thanks to the requirement that the client sends R in the Client Hello message and
that the server includes R in the MAC computation. In 1-pass CT-KIP clients .(tokens)

3 In this case, implementations must protect against attacks where KTOKEN is used to pre-compute MAC
values, see further [1].
4 See footnote Error! Bookmark not defined..

8 EXTENSIONS TO CT-KIP TO SUPPORT ONE- AND TWO-PASS KEY INITIALIZATION

Copyright © 2006 RSA Security Inc. All rights reserved. Draft 2, 2006-03-27

that record the latest I used by a particular server (as identified by IDS) will be able to
detect replays.

4.2.3 Key confirmation
4-pass CT-KIP servers provide key confirmation through the MAC on RC in the Server
Finished message. In the 1- and 2-pass CT-KIP variants described herein, key
confirmation is provided when the MAC is made using the newly delivered KTOKEN as
KAUTH. It should be noted that even when the MAC is calculated using a separate KAUTH, it
still allows the client to verify that it is talking with a trusted and authenticated server,
however.

4.2.4 Key protection in the passphrase profile

The passphrase-based key wrap profile uses the PBKDF2 function from [3] to generate
an encryption key from a passphrase and salt string. The derived key, KDERIVED is used by
the server to encrypt KTOKEN and by the token to decrypt the newly delivered KTOKEN. It is
important to note that password-based encryption is generally limited in the security that
it provides and despite the use of use of salt and iteration count in PBKDF2 to increase
the complexity of attack; Implementations should take additional measures to strengthen
the security of the passphrase-based key wrap profile. The following measures should be
considered where applicable:

- The passphrase should be selected well, and usage guidelines such as the ones in
[9] should be taken into account.

- A different passphrase should be used for every key initialization wherever
possible. (E.g. the use of a global passphrase for a batch of tokens should be
avoided). One way to achieve this is to use randomly-generated passphrases.

- The passphrase should be protected well if stored on the server and/or on the
token and should be delivered to the token’s user using secure methods.

- User pre-authentication should be implemented to ensure that KTOKEN is not
delivered to a rogue workstation.

- The iteration count in PBKDF2 should be high to impose more work for an
attacker using brute-force methods (see [3] for recommendations). However, it
must be noted that the higher the count, the more work is required on the
legitimate token to decrypt the newly delivered KTOKEN. Servers may use
relatively low iteration counts to accommodate tokens with limited processing
power such as some PDA and cell phones when other security measures are taken
and the security of the password-based key wrap method is not weakened.

- Transport level security (e.g. TLS) should be used where possible to protect a 2-
pass or 1-pass protocol run. Transport level security provides a second layer of
protection for the newly generated KTOKEN.

EXTENSIONS TO CT-KIP TO SUPPORT ONE- AND TWO-PASS KEY INITIALIZATION 9

Copyright © 2006 RSA Security Inc. Draft 2, 2006-03-27

XML Schema
<?xml version="1.0" encoding="UTF-8"?>
<!-- Copyright (c) RSA Security Inc. 2006. All rights reserved. -->

<xs:schema
 targetNamespace="http://www.rsasecurity.com/rsalabs/otps/schemas/2006/03/ct-kip-two-pass#"
 xmlns:ct-kip-two-pass="http://www.rsasecurity.com/rsalabs/otps/schemas/2006/03/ct-kip-two-
pass#"
 xmlns:ct-kip="http://www.rsasecurity.com/rsalabs/otps/schemas/2005/12/ct-kip#"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns="http://www.rsasecurity.com/rsalabs/otps/schemas/2006/03/ct-kip-two-pass#">

<!--
<xs:import namespace="http://www.w3.org/2000/09/xmldsig#"
 schemaLocation="http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/xmldsig-core-
schema.xsd"/>
-->
<xs:import namespace="http://www.w3.org/2000/09/xmldsig#"
 schemaLocation="../W3C/xmldsig-core-schema.xsd"/>

<xs:import namespace="http://www.rsasecurity.com/rsalabs/otps/schemas/2005/12/ct-kip#"
 schemaLocation="ct-kip.xsd"/>

<!—Extended core types -->
<xs:complexType name="ExtendedMacType">
 <xs:simpleContent>
 <xs:extension base="ct-kip:MacType">
 <xs:attribute name="Nonce" type="xs:nonNegativeInteger" use="required"/>
 </xs:extension>
 </xs:simpleContent>
</xs:complexType>

<!—2- and 1-pass extensions -->
<xs:complexType name="TwoPassSupportType">
 <xs:annotation>
 <xs:documentation xml:lang="en">
 This extension is only valid in ClientHello PDUs. It informs the
 server of the client's support for the two-pass version of
 CT-KIP, and carries optional payload data associated with each
 supported two-pass key initialization method.
 </xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:extension base="ct-kip:AbstractExtensionType">
 <xs:sequence maxOccurs="unbounded">
 <xs:element name="SupportedKeyInitializationMethod" type="xs:anyURI"/>
 <xs:element name="Payload" minOccurs="0"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<xs:complexType name="KeyInitializationDataType">
 <xs:annotation>
 <xs:documentation xml:lang="en">
 This extension is only valid in ServerFinished PDUs. It contains

10 EXTENSIONS TO CT-KIP TO SUPPORT ONE- AND TWO-PASS KEY INITIALIZATION

Copyright © 2006 RSA Security Inc. All rights reserved. Draft 2, 2006-03-27

 key initialization data and its presence results in a two-pass
 (or one-pass, if no ClientHello was sent) CT-KIP exchange.
 </xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:extension base="ct-kip:AbstractExtensionType">
 <xs:sequence>
 <xs:element name="KeyInitializationMethod" type="xs:anyURI"/>
 <xs:element name="Payload"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

</xs:schema>

A. Key initialization profiles of CT-KIP

A.1 Introduction
This appendix introduces two profiles of CT-KIP for key initialization. They may both be
used for two- as well as one-pass initialization of cryptographic tokens. Further profiles
may be defined by external identities or through the OTPS process.

A.2 Key transport profile

A.2.1 Introduction
This profile initializes the cryptographic token with a symmetric key, KTOKEN, through
key transport, using a public key, KCLIENT, whose private key part resides in the token as
the transport key.

A.2.2 Identification
This profile shall be identified with the following URI:
 http://www.rsasecurity.com/rsalabs/otps/schemas/2006/03/ct-kip#transport

A.2.3 Payloads
The client shall send a payload associated with this key initialization method. The
payload shall be of type ds:KeyInfoType ([7]), and only those choices of the ds:KeyInfoType
that identify a public key are allowed. The ds:X509Certificate option of the ds:X509Data
alternative is recommended when the public key corresponding to the private key on the
cryptographic token has been certified.

The server payload associated with this key initialization method shall be of type
xenc:EncryptedKeyType ([8]), and only those encryption methods utilizing a public key that
are supported by the CT-KIP client (as indicated in the <SupportedEncryptionAlgorithms>
element of the <ClientHello> message) are allowed as values for the
<xenc:EncryptionMethod> element. Further, the <ds:KeyInfo> element shall contain the same
value (i.e. identify the same public key) as the <Payload> of the corresponding supported
key initialization method in the <ClientHello> message that triggered the response. The
<xenc:CarriedKeyName> element may be present, but shall, when present, contain the same

EXTENSIONS TO CT-KIP TO SUPPORT ONE- AND TWO-PASS KEY INITIALIZATION 11

Copyright © 2006 RSA Security Inc. Draft 2, 2006-03-27

value as the <KeyID> element of the <ServerFinished> message. The Type attribute of the
xenc:EncryptedKeyType shall be present and shall identify the type of the wrapped key. The
type shall be one of the types supported by the CT-KIP client (as reported in the
<SupportedKeyTypes> of the preceding <ClientHello> message). The transported key shall
consist of two parts of equal length. The first half constitutes KMAC and the second half
constitutes KTOKEN. The length of KTOKEN (and hence also the length of KMAC) is
determined by the type of KTOKEN.
CT-KIP servers and tokens supporting this profile must support the
http://www.w3.org/2001/04/xmlenc#rsa-1_5 key-wrapping mechanism defined in [8].
When this profile is used, the MacAlgorithm attribute of the <Mac> element of the
<ServerFinished> message must be present and must identify the selected MAC algorithm.
The selected MAC algorithm must be one of the MAC algorithms supported by the CT-
KIP client (as indicated in the <SupportedMACAlgorithms> element of the <ClientHello>
message). The MAC shall be calculated as described in Section 3.4.

A.3 Key wrap profile

A.3.1 Introduction
This profile initializes the cryptographic token with a symmetric key, KTOKEN, through
key wrap, using a (symmetric) key-wrapping key, KSHARED, known in advance by both the
token and the CT-KIP server.

A.3.2 Identification
This profile shall be identified with the following URI:
 http://www.rsasecurity.com/rsalabs/otps/schemas/2006/03/ct-kip#wrap

A.3.3 Payloads
The client shall send a payload associated with this key initialization method. The
payload shall be of type ds:KeyInfoType ([7]), and only those choices of the ds:KeyInfoType
that identify a symmetric key are allowed. The ds:KeyName alternative is recommended.

The server payload associated with this key initialization method shall be of type
xenc:EncryptedKeyType ([8]), and only those encryption methods utilizing a symmetric key
that are supported by the CT-KIP client (as indicated in the
<SupportedEncryptionAlgorithms> element of the <ClientHello> message) are allowed as
values for the <xenc:EncryptionMethod> element. Further, the <ds:KeyInfo> element shall
contain the same value (i.e. identify the same symmetric key) as the <Payload> of the
corresponding supported key initialization method in the <ClientHello> message that
triggered the response. The <xenc:CarriedKeyName> element may be present, and shall,
when present, contain the same value as the <KeyID> element of the <ServerFinished>
message. The Type attribute of the xenc:EncryptedKeyType shall be present and shall
identify the type of the wrapped key. The type shall be one of the types supported by the
CT-KIP client (as reported in the <SupportedKeyTypes> of the preceding <ClientHello>
message). The wrapped key shall consist of two parts of equal length. The first half

12 EXTENSIONS TO CT-KIP TO SUPPORT ONE- AND TWO-PASS KEY INITIALIZATION

Copyright © 2006 RSA Security Inc. All rights reserved. Draft 2, 2006-03-27

constitutes KMAC and the second half constitutes KTOKEN. The length of KTOKEN (and hence
also the length of KMAC) is determined by the type of KTOKEN.

CT-KIP servers and tokens supporting this profile must support the
http://www.w3.org/2001/04/xmlenc#kw-aes128 key-wrapping mechanism defined in [8].

When this profile is used, the MacAlgorithm attribute of the <Mac> element of the
<ServerFinished> message must be present and must identify the selected MAC algorithm.
The selected MAC algorithm must be one of the MAC algorithms supported by the CT-
KIP client (as indicated in the <SupportedMACAlgorithms> element of the <ClientHello>
message). The MAC shall be calculated as described in Section 3.4.

A.4 Passphrase-based key wrap profile

A.4.1 Introduction
This profile is a variation of the key wrap profile. It initializes the cryptographic token
with a symmetric key, KTOKEN, through key wrap, using a passphrase-derived key-
wrapping key, KDERIVED. The passphrase is known in advance by both the token user and
the CT-KIP server. To preserve the property of not exposing KTOKEN to any other entity
than the CT_KIP server and the token itself, the method should be employed only when
the token contains facilities (e.g. a keypad) for direct entry of the passphrase.

A.4.2 Identification
This profile shall be identified with the following URI:
 http://www.rsasecurity.com/rsalabs/otps/schemas/2006/03/ct-kip#passphrase-wrap

A.4.3 Payloads
The client shall send a payload associated with this key initialization method. The
payload shall be of type ds:KeyInfoType ([7]). The ds:KeyName option shall be used and the
key name shall identify the passphrase that will be used by the server to generate the key-
wrapping key. As an example, the identifier could be a user identifier or a registration
identifier issued by the server to the user during a session preceding the CT-KIP protocol
run.

The server payload associated with this key initialization method shall be of type
xenc:EncryptedKeyType ([8]), and only those encryption methods utilizing a passphrase to
derive the key-wrapping key that are supported by the CT-KIP client (as indicated in the
<SupportedEncryptionAlgorithms> element of the <ClientHello> message) are allowed as
values for the <xenc:EncryptionMethod> element. Further, the <ds:KeyInfo> element shall
contain the same value (i.e. identify the same passphrase) as the <Payload> of the
corresponding supported key initialization method in the <ClientHello> message that
triggered the response. The <xenc:CarriedKeyName> element may be present, and shall,
when present, contain the same value as the <KeyID> element of the <ServerFinished>
message. The Type attribute of the xenc:EncryptedKeyType shall be present and shall
identify the type of the wrapped key. The type shall be one of the types supported by the
CT-KIP client (as reported in the <SupportedKeyTypes> of the preceding <ClientHello>
message). The wrapped key shall consist of two parts of equal length. The first half

EXTENSIONS TO CT-KIP TO SUPPORT ONE- AND TWO-PASS KEY INITIALIZATION 13

Copyright © 2006 RSA Security Inc. Draft 2, 2006-03-27

constitutes KMAC and the second half constitutes KTOKEN. The length of KTOKEN (and hence
also the length of KMAC) is determined by the type of KTOKEN.

CT-KIP servers and tokens supporting this profile must support the PBES2 password
based encryption scheme defined in [3] (and identified as
http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-5#pbes2 in [4]), the PBKDF2 password-
based key derivation function also defined in [3] (and identified as
http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-5#pbkdf2 in [4]), and the
http://www.w3.org/2001/04/xmlenc#kw-aes128 key-wrapping mechanism defined in [8].

When this profile is used, the MacAlgorithm attribute of the <Mac> element of the
<ServerFinished> message must be present and must identify the selected MAC algorithm.
The selected MAC algorithm must be one of the MAC algorithms supported by the CT-
KIP client (as indicated in the <SupportedMACAlgorithms> element of the <ClientHello>
message). The MAC shall be calculated as described in Section 3.4.

B. Example messages

B.1 Note regarding the examples
All examples are syntactically correct. MAC and cipher values are fictitious however.
The examples illustrate a complete two-pass CT-KIP exchange. The server messages may
also constitute the only messages in a one-pass CT-KIP exchange.

B.2 Example of a <ClientHello> message indicating support for two-pass CT-KIP
The client indicates support both for the two-pass key transport variant as well as the
two-pass key wrap variant.
<?xml version="1.0" encoding="UTF-8"?>
<ClientHello
 xmlns:ct-kip="http://www.rsasecurity.com/rsalabs/otps/schemas/2005/12/ct-kip#"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 Version="1.0">
 <TokenID>12345678</TokenID>
 <TriggerNonce>112dsdfwf312asder394jw==</TriggerNonce>
 <SupportedKeyTypes>
 <Algorithm>http://www.rsasecurity.com/rsalabs/otps/schemas/2005/09/otps-wst#SecurID-
AES</Algorithm>
 </SupportedKeyTypes>
 <SupportedEncryptionAlgorithms>
 <Algorithm>http://www.w3.org/2001/04/xmlenc#rsa-1_5</Algorithm>
 <Algorithm>http://www.w3.org/2001/04/xmlenc#kw-aes128</Algorithm>
 <Algorithm>http://www.rsasecurity.com/rsalabs/otps/schemas/2005/12/ct-kip#ct-kip-prf-
aes</Algorithm>
 </SupportedEncryptionAlgorithms>
 <SupportedMACAlgorithms>
 <Algorithm>http://www.rsasecurity.com/rsalabs/otps/schemas/2005/12/ct-kip#ct-kip-prf-
aes</Algorithm>
 </SupportedMACAlgorithms>
 <Extensions>
 <Extension xsi:type="ct-kip:TwoPassSupportType">
 <SupportedKeyInitializationMethod>http://www.rsasecurity.com/rsalabs/otps/schemas/2006/03/ct-
kip#wrap

14 EXTENSIONS TO CT-KIP TO SUPPORT ONE- AND TWO-PASS KEY INITIALIZATION

Copyright © 2006 RSA Security Inc. All rights reserved. Draft 2, 2006-03-27

</SupportedKeyInitializationMethod>
 <Payload xsi:type="ds:KeyInfoType">
 <ds:KeyName>Key-001</ds:KeyName>
 </Payload>
 <SupportedKeyInitializationMethod>http://www.rsasecurity.com/rsalabs/otps/schemas/2005/12/ct-
kip#transport</SupportedKeyInitializationMethod>
 <Payload xsi:type="ds:KeyInfoType">
 <ds:X509Data>
 <ds:X509Certificate>miib</ds:X509Certificate>
 </ds:X509Data>
 </Payload>
 </Extension>
 </Extensions>
</ClientHello>

B.3 Example of a <ServerFinished> message using the key transport profile
In this example, the server responds to the previous request using the key transport
profile.
<?xml version="1.0" encoding="UTF-8"?>
<ServerFinished
 xmlns:ct-kip="http://www.rsasecurity.com/rsalabs/otps/schemas/2005/12/ct-kip#"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"
 Version="1.0" SessionID="4114" Status="Success">
 <TokenID>12345678</TokenID>
 <KeyID>43212093</KeyID>
 <KeyExpiryDate>2009-09-16T03:02:00Z</KeyExpiryDate>
 <ServiceID>Example Enterprise Name</ServiceID>
 <UserID>exampleLoginName</UserID>
 <Extensions>
 <Extension xsi:type="ct-kip:KeyInitializationDataType">
 <KeyInitializationMethod>http://www.rsasecurity.com/rsalabs/otps/schemas/2006/03/ct-
kip#transport</KeyInitializationMethod>
 <Payload xsi:type="xenc:EncryptedKeyType"
 Type="http://www.rsasecurity.com/rsalabs/otps/schemas/2005/09/otps-wst#SecurID-AES">
 <xenc:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>
 <ds:KeyInfo>
 <ds:X509Data>
 <ds:X509Certificate>miib</ds:X509Certificate>
 </ds:X509Data>
 </ds:KeyInfo>
 <xenc:CipherData>
 <xenc:CipherValue>abcd</xenc:CipherValue>
 </xenc:CipherData>
 <xenc:CarriedKeyName>43212093</xenc:CarriedKeyName>
 </Payload>
 </Extension>
 <Extension xsi:type="ct-kip:OTPKeyConfigurationDataType">
 <OTPFormat>Decimal</OTPFormat>
 <OTPLength>6</OTPLength>
 <OTPMode><Time/></OTPMode>
 </Extension>
 </Extensions>
 <Mac MacAlgorithm="http://www.rsasecurity.com/rsalabs/otps/schemas/2005/11/ct-kip#ct-kip-prf-
aes">miidfasde312asder394jw==</Mac>
</ServerFinished>

EXTENSIONS TO CT-KIP TO SUPPORT ONE- AND TWO-PASS KEY INITIALIZATION 15

Copyright © 2006 RSA Security Inc. Draft 2, 2006-03-27

B.4 Example of a <ServerFinished> message using the key wrap profile
In this example, the server responds to the previous request using the key wrap profile.
<?xml version="1.0" encoding="UTF-8"?>
<ServerFinished
 xmlns:ct-kip="http://www.rsasecurity.com/rsalabs/otps/schemas/2005/12/ct-kip#"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"
 Version="1.0" SessionID="4114" Status="Success">
 <TokenID>12345678</TokenID>
 <KeyID>43212093</KeyID>
 <KeyExpiryDate>2009-09-16T03:02:00Z</KeyExpiryDate>
 <ServiceID>Example Enterprise Name</ServiceID>
 <UserID>exampleLoginName</UserID>
 <Extensions>
 <Extension xsi:type="ct-kip:KeyInitializationDataType">
 <KeyInitializationMethod>http://www.rsasecurity.com/rsalabs/otps/schemas/2006/03/ct-
kip#wrap</KeyInitializationMethod>
 <Payload xsi:type="xenc:EncryptedKeyType"
 Type="http://www.rsasecurity.com/rsalabs/otps/schemas/2005/09/otps-wst#SecurID-AES">
 <xenc:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#kw-aes128"/>
 <ds:KeyInfo>
 <ds:KeyName>Key-001</ds:KeyName>
 </ds:KeyInfo>
 <xenc:CipherData>
 <xenc:CipherValue>abcd</xenc:CipherValue>
 </xenc:CipherData>
 <xenc:CarriedKeyName>43212093</xenc:CarriedKeyName>
 </Payload>
 </Extension>
 <Extension xsi:type="ct-kip:OTPKeyConfigurationDataType">
 <OTPFormat>Decimal</OTPFormat>
 <OTPLength>6</OTPLength>
 <OTPMode><Time/></OTPMode>
 </Extension>
 </Extensions>
 <Mac MacAlgorithm="http://www.rsasecurity.com/rsalabs/otps/schemas/2005/12/ct-kip#ct-kip-prf-
aes">miidfasde312asder394jw==</Mac>
</ServerFinished>

B.5 Example of a <ServerFinished> message using the passphrase-based key wrap
profile

In this example, the server responds to the previous request using the passphrase-based
key wrap profile.
<?xml version="1.0" encoding="UTF-8"?>
<ServerFinished
 xmlns:ct-kip="http://www.rsasecurity.com/rsalabs/otps/schemas/2005/12/ct-kip#"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:xenc=http://www.w3.org/2001/04/xmlenc#
 xmlns:pkcs-5="http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-5#"
 Version="1.0" SessionID="4114" Status="Success">
 <TokenID>12345678</TokenID>
 <KeyID>43212093</KeyID>
 <KeyExpiryDate>2009-09-16T03:02:00Z</KeyExpiryDate>

16 EXTENSIONS TO CT-KIP TO SUPPORT ONE- AND TWO-PASS KEY INITIALIZATION

Copyright © 2006 RSA Security Inc. All rights reserved. Draft 2, 2006-03-27

 <ServiceID>Example Enterprise Name</ServiceID>
 <UserID>exampleLoginName</UserID>
 <Extensions>
 <Extension xsi:type="ct-kip-two-pass:KeyInitializationDataType">
 <KeyInitializationMethod>http://www.rsasecurity.com/rsalabs/otps/schemas/2006/03/ct-
kip#passphrase-wrap</KeyInitializationMethod>
 <Payload xsi:type="xenc:EncryptedKeyType"
 Type="http://www.rsasecurity.com/rsalabs/otps/schemas/2005/09/otps-wst#SecurID-AES">

 <xenc:EncryptionMethod
 Algorithm="http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-5#pbes2">
 <pkcs-5:PBES2-params>
 <KeyDerivationFunc
 Algorithm="http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-5#pbkdf2">
 <pkcs-5:PBKDF2-params>
 <Salt>
 <Specified>32113435</Specified>
 </Salt>
 <IterationCount>1024</IterationCount>
 <PRF/>
 </pkcs-5:PBKDF2-params>
 </KeyDerivationFunc>
 <EncryptionScheme
 Algorithm="http://www.w3.org/2001/04/xmlenc#kw-aes128-cbc">
 </EncryptionScheme>
 </pkcs-5:PBES2-params>
 </xenc:EncryptionMethod>
 <ds:KeyInfo>
 <ds:KeyName>Passphrase1</ds:KeyName>
 </ds:KeyInfo>
 <xenc:CipherData>
 <xenc:CipherValue>ZWcLvpFoXNHAG+lx3+Rww/Sic+o</xenc:CipherValue>
 </xenc:CipherData>
 <xenc:CarriedKeyName>43212093</xenc:CarriedKeyName>

 </Payload>
 </Extension>
 <Extension xsi:type="ct-kip:OTPKeyConfigurationDataType">
 <OTPFormat>Decimal</OTPFormat>
 <OTPLength>6</OTPLength>
 <OTPMode><Time/></OTPMode>
 </Extension>
 </Extensions>
 <Mac MacAlgorithm="http://www.rsasecurity.com/rsalabs/otps/schemas/2005/12/ct-kip#ct-kip-prf-
aes">miidfasde312asder394jw==</Mac>
</ServerFinished>

C. Integration with PKCS #11

C.1 The 2-pass variant
A suggested procedure to perform 2-pass CT-KIP with a cryptographic token through the
PKCS #11 interface using the mechanisms defined in [6] is as follows (see also [1]):

a. On the client side,
I. The client selects a suitable slot and token (e.g. through use of the <TokenID>

or the <PlatformInfo> element of the CT-KIP trigger message).

EXTENSIONS TO CT-KIP TO SUPPORT ONE- AND TWO-PASS KEY INITIALIZATION 17

Copyright © 2006 RSA Security Inc. Draft 2, 2006-03-27

II. A nonce R is generated, e.g. by calling C_SeedRandom and
C_GenerateRandom.

III. The client sends its first message to the server, including the nonce R.
b. On the server side,

I. A token key KTOKEN of suitable type is generated, e.g. by calling
C_GenerateKey. Likewise, a MAC key KMAC is generated, e.g. by calling
C_GenerateKey. The template for these keys shall allow the keys to be
exported but only in wrapped form (i.e. CKA_SENSITIVE shall be set to
CK_TRUE and CKA_EXTRACTABLE shall also be set to CK_TRUE).

II. The server wraps KMAC and KTOKEN with either the client’s public key or the
shared secret key by calling C_WrapKey. If use of the CT-KIP key
wrapping algorithm has been negotiated, then the
CKM_KIP_TWO_WRAP [ISSUE: This mechanism not yet defined. An
alternative could be to wrap K = KMAC | KTOKEN] mechanism shall be used
to wrap KMAC and KTOKEN. When calling C_WrapKey, the hKey handle in
the CK_KIP_PARAMS structure shall be set to NULL_PTR. The pSeed
parameter in the CK_KIP_PARAMS structure shall point to the nonce R
provided by the CT-KIP client, and the ulSeedLen parameter shall indicate
the length of R. The hWrappingKey parameter in the call to C_WrapKey
shall be set to refer to the wrapping key.

III. Next, the server needs to calculate a MAC using KMAC. If use of the CT-KIP
MAC algorithm has been negotiated, then the MAC is calculated by calling
C_SignInit with the CKM_KIP_MAC mechanism followed by a call to
C_Sign. In the call to C_SignInit, KMAC shall be the signature key, the hKey
parameter in the CK_KIP_PARAMS structure shall be a handle to the key
KTOKEN, the pSeed parameter of the CT_KIP_PARAMS structure shall be
set to NULL_PTR, and the ulSeedLen parameter shall be set to zero. In the
call to C_Sign, the pData parameter shall be set to the concatenation of the
string IDS and the nonce R, and the ulDataLen parameter shall be set to the
length of the concatenated string. The desired length of the MAC shall be
specified through the pulSignatureLen parameter and shall be set to the
length of R.

IV. If the server also needs to authenticate its message (due to an existing
KTOKEN being replaced), the server calculates a second MAC [ISSUE: How
to transport this second MAC?]. Again, if use of the CT-KIP MAC
algorithm has been negotiated, then the MAC is calculated by calling
C_SignInit with the CKM_KIP_MAC mechanism followed by a call to
C_Sign. In this call to C_SignInit, KAUTH (or the KMAC existing before the
protocol run) shall be the signature key, the hKey parameter in the
CK_KIP_PARAMS structure shall be a handle to the key KTOKEN, the
pSeed parameter of the CT_KIP_PARAMS structure shall be set to
NULL_PTR, and the ulSeeidLen parameter shall be set to zero. In the call to
C_Sign, the pData parameter shall be set to the concatenation of the string
IDS and the nonce R, and the ulDataLen parameter shall be set to the length

18 EXTENSIONS TO CT-KIP TO SUPPORT ONE- AND TWO-PASS KEY INITIALIZATION

Copyright © 2006 RSA Security Inc. All rights reserved. Draft 2, 2006-03-27

of concatenated string. The desired length of the MAC shall be specified
through the pulSignatureLen parameter and shall be set to the length of R.

V. The server sends its second message to the client, including the two wrapped
keys, the MAC and possibly also the authenticating MAC.

c. On the client side,
I. The client calls C_UnwrapKey to receive a handle to KTOKEN and KMAC.

[ISSUE: Maybe call C_DeriveKey twice if K = KMAC | KTOKEN ?] When
calling C_UnwrapKey, the pTemplate parameter shall be used to set
additional key attributes in accordance with local policy and as negotiated
and expressed in the protocol. In particular, the value of the <KeyID> element
in the server’s response message may be used as CKA_ID for KTOKEN.

II. The MAC is verified in a reciprocal fashion as it was generated by the
server. If use of the CKM_KIP_MAC mechanism has been negotiated,
then in the call to C_VerifyInit, the hKey parameter in the
CK_KIP_PARAMS structure shall refer to KTOKEN, the pSeed parameter
shall be set to NULL_PTR, and ulSeedLen shall be set to 0. The hKey
parameter of C_VerifyInit shall refer to KMAC. In the call to C_Verify,
pData shall be set to the concatenation of the string IDS and the nonce R,
and the ulDataLen parameter shall be set to the length of the concatenated
string, pSignature to the MAC value received from the server, and
ulSignatureLen to the length of the MAC. If the MAC does not verify the
protocol session ends with a failure. The token shall be constructed to not
“commit” to the new KTOKEN or the new KMAC unless the MAC verifies.

III. If an authenticating MAC was received (required if the new KTOKEN will
replace an existing key on the token), then it is verified in a similar vein.
Again, if the MAC does not verify the protocol session ends with a failure,
and the token must be constructed no to “commit” to the new KTOKEN or the
new KMAC unless the MAC verifies.

C.2 The 1-pass variant
A suggested procedure to perform 1-pass CT-KIP with a cryptographic token through the
PKCS #11 interface using the mechanisms defined in [6] is as follows (see also [1]):

a. On the server side,

I. A token key KTOKEN of suitable type is generated, e.g. by calling
C_GenerateKey. Likewise, a MAC key KMAC is generated, e.g. by calling
C_GenerateKey.

IV. The server wraps KMAC and KTOKEN with either the client’s public key or the
shared secret key by calling C_WrapKey. If use of the CT-KIP key
wrapping algorithm has been negotiated, then the
CKM_KIP_TWO_WRAP mechanism [ISSUE: See above] shall be used
to wrap KTOKEN. When calling C_WrapKey, the hKey handle in the
CK_KIP_PARAMS structure shall be set to NULL_PTR. The pSeed

EXTENSIONS TO CT-KIP TO SUPPORT ONE- AND TWO-PASS KEY INITIALIZATION 19

Copyright © 2006 RSA Security Inc. Draft 2, 2006-03-27

parameter in the CK_KIP_PARAMS structure shall point to the octet-
string representation5 of an integer I whose value shall be incremented
before each protocol run, and the ulSeedLen parameter shall indicate the
length of the octet-string representation of I. The hWrappingKey parameter
in the call to C_WrapKey shall be set to refer to the wrapping key.

II. For the server’s message to the client, if use of the CT-KIP MAC algorithm
has been negotiated, then the MAC is calculated by calling C_SignInit with
the CKM_KIP_MAC mechanism followed by a call to C_Sign. In the call
to C_SignInit, KMAC shall be the signature key, the hKey parameter in the
CK_KIP_PARAMS structure shall be a handle to the key KTOKEN, the
pSeed parameter of the CT_KIP_PARAMS structure shall be set to
NULL_PTR, and the ulSeedLen parameter shall be set to zero. In the call to
C_Sign, the pData parameter shall be set to the concatenation of the string
IDS and the octet-string representation of the integer I, and the ulDataLen
parameter shall be set to the length of concatenated string. The desired
length of the MAC shall be specified through the pulSignatureLen
parameter as usual, and shall be equal to, or greater than, sixteen (16).

III. If the server also needs to authenticate its message (due to an existing
KTOKEN being replaced), the server calculates a second MAC [ISSUE: How
to transfer this in the protocol?]. If the CT-KIP MAC mechanism is used,
the server does this by calling C_SignInit with the CKM_KIP_MAC
mechanism followed by a call to C_Sign. In the call to C_SignInit, KAUTH
(or the KMAC already existing on the token) shall be the signature key, the
hKey parameter in the CK_KIP_PARAMS structure shall be a handle to
the key KTOKEN, the pSeed parameter of the CT_KIP_PARAMS structure
shall be set to NULL_PTR, and the ulSeedLen parameter shall be set to zero.
In the call to C_Sign, the pData parameter shall be set to the concatenation
of the string IDS and the octet-string representation of the integer I+1 (i.e. I
shall be incremented before each use), and the ulDataLen parameter shall be
set to the length of the concatenated string. The desired length of the MAC
shall be specified through the pulSignatureLen parameter as usual, and shall
be equal to, or greater than, sixteen (16).

IV. The server sends its second message to the client, including the MAC and
possibly also the authenticating MAC.

b. On the client side,
I. The client calls C_UnwrapKey to receive a handle to KTOKEN and KMAC.

When calling C_UnwrapKey, the pTemplate parameter shall be used to set
additional key attributes in accordance with local policy and as negotiated
and expressed in the protocol. In particular, the value of the <KeyID> element
in the server’s response message may be used as CKA_ID for KTOKEN.

5 The integer-to-octet string conversion shall be made using the I2OSP primitive from [2]. There shall be
no leading zeros.

20 EXTENSIONS TO CT-KIP TO SUPPORT ONE- AND TWO-PASS KEY INITIALIZATION

Copyright © 2006 RSA Security Inc. All rights reserved. Draft 2, 2006-03-27

II. The MAC is verified in a reciprocal fashion as it was generated by the
server. If use of the CKM_KIP_MAC mechanism has been negotiated,
then in the call to C_VerifyInit, the hKey parameter in the
CK_KIP_PARAMS structure shall refer to KTOKEN, the pSeed parameter
shall be set to NULL_PTR, and ulSeedLen shall be set to 0. The hKey
parameter of C_VerifyInit shall refer to KMAC. In the call to C_Verify,
pData shall be set to the concatenation of the string IDS and the octet-string
representation of the provided value for I6, and the ulDataLen parameter
shall be set to the length of the concatenated string, pSignature to the MAC
value received from the server, and ulSignatureLen to the length of the
MAC. If the MAC does not verify the protocol session ends with a failure.
The token shall be constructed to not “commit” to the new KTOKEN or the
new KMAC unless the MAC verifies.

III. If an authenticating MAC was received (required if KTOKEN will replace an
existing key on the token), it is verified in a similar vein. Again, if the MAC
does not verify the protocol session ends with a failure, and the token must
be constructed no to “commit” to the new KTOKEN or the new KMAC unless
the MAC verifies.

D. Intellectual property considerations
RSA Security has filed one or more patent applications covering inventions described in
this document, including, but not limited to, International Application No.
PCT/US2004/021846 which has been nationalized in the United States. RSA Security
intends to make royalty-free reciprocal licenses available to implementers of the CT-KIP
described in this document for RSA Security patent claims that would be necessarily
infringed by implementation of such CT-KIP, solely for the purpose of implementing
such CT-KIP.
Copyright © 2006 RSA Security Inc. All rights reserved. License to copy this document
and furnish the copies to others is granted provided that this copyright notice is included
on all such copies. This document should be identified as “RSA Security Inc. One-Time
Password Specifications (OTPS)” in all material mentioning or referencing this
document.

RSA and RSA Security are registered trademarks of RSA Security Inc. in the United
States and/or other countries. The names of other products or services mentioned may be
the trademarks of their respective owners.
THIS DOCUMENT AND THE INFORMATION AND RECOMMENDATIONS
CONTAINED HEREIN ARE PROVIDED "AS IS", AND RSA SECURITY
DISCLAIMS ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING BUT
NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. RSA Security makes

6 This shall include a check by the token that the provided value of I is larger than any stored value IID_S for
the identified server IDS . If this is not the case, the verification shall fail. If the verification succeeds, the
token shall store the provided value of I as a new IID_S.

EXTENSIONS TO CT-KIP TO SUPPORT ONE- AND TWO-PASS KEY INITIALIZATION 21

Copyright © 2006 RSA Security Inc. Draft 2, 2006-03-27

no representations regarding intellectual property claims by other parties. Such
determination is the responsibility of the user.

E. References
[1] RSA Laboratories. Cryptographic Token Key Initialization Protocol. Version 1.0,

December 2005. URL: ftp://ftp.rsasecurity.com/pub/otps/ct-kip/ct-kip-v1-0.pdf.
[2] RSA Laboratories. PKCS #1: RSA Cryptography Standard. Version 2.1, June

2002. URL: ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf.
[3] RSA Laboratories. PKCS #5: Password-Based Cryptography Standard. Version

2.0, March 1999. URL: ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-5v2/pkcs5v2-
0.pdf.

[4] RSA Laboratories. XML Schema for PKCS #5 Version 2.0. PKCS #5 Version 2.0
Amendment 1 (Draft 1), to be published.

[5] RSA Laboratories. PKCS #11: Cryptographic Token Interface Standard. Version
2.20, June 2004. URL: ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-11/v2-20/pkcs-
11v2-20.pdf.

[6] RSA Laboratories. PKCS #11 Mechanisms for the Cryptographic Token Key
Initialization Protocol. PKCS #11 v2.20 Amendment 2, December 2005. URL:
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-11/v2-20/pkcs-11v2-20a2.pdf.

[7] W3C. XML-Signature Syntax and Processing. W3C Recommendation February,
2002. URL: http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/.

[8] W3C. XML Encryption Syntax and Processing. W3C Recommendation
December, 2002. URL: http://www.w3.org/TR/2002/REC-xmlenc-core-
20021210/.

[9] National Institute of Standards and Technology (NIST). FIPS PUB 112:
Password Usage. May 1985. URL: http://www.itl.nist.gov/fipspubs/fip112.htm.

F. About OTPS
The One-Time Password Specifications are documents produced by RSA Laboratories in
cooperation with secure systems developers for the purpose of simplifying integration
and management of strong authentication technology into secure applications, and to
enhance the user experience of this technology.
Further development of the OTPS series will occur through mailing list discussions and
occasional workshops, and suggestions for improvement are welcome. As four our PKCS
documents, results may also be submitted to standards forums. For more information,
contact:

OTPS Editor
RSA Laboratories
174 Middlesex Turnpike
Bedford, MA 01730 USA

22 EXTENSIONS TO CT-KIP TO SUPPORT ONE- AND TWO-PASS KEY INITIALIZATION

Copyright © 2006 RSA Security Inc. All rights reserved. Draft 2, 2006-03-27

otps-editor@rsasecurity.com
http://www.rsasecurity.com/rsalabs/

