RSA

LABORATORIES

A CryptoAPI Profile for One-Time Password Tokens

V1.0 Draft 3
RSA Security
August 17, 2005
Editor’s note: This is the 2" draft of this document, available for a 30-day public review

period. Please send comments to: otps-editor@rsasecurity.com or to the otps mailing
list: otps@rsasecurity.com

TABLE OF CONTENTS
1 INTRODUCTION 3
1.1 SCOPE ...ttt ettt ettt ettt sttt a bt ettt nee 3
1.2 BACKGROUNDc..eittitiiiteitiieteste sttt ettt et ettt sb e st ea ettt et e be sae bt eaeeae et estenbeseesbesueeseeneennennens 3
1.3 DOCUMENT ORGANIZATIONouuiiiiiniieitenrentenienteniesteeseestessessessessesaeeuesseessesessessessessesueeseeseensennens 3
2 ACRONYMS AND DEFINITIONS 4
2.1 ACRONYMS .ottt sttt ettt sttt sttt et et et ae et e bt st oot et e saesaeebesueebeeseennennens 4
2.2 DEFINITIONS ..ottt sttt st sttt s e b ettt sae e e b sae st enaennens 4
3 CSP DEFINITIONS AND USAGE 4
3.1 INTRODUCTION.......cuiiiiiiiiiiiieteie sttt st sttt sttt be e b s et nens 4
32 CSP IDENTIFICATIONoiiuiiiiiiiiiitiiiiiiieiieie ettt sttt st s 4
33 OTP ALGORITHM IDENTIFICATIONcuutireeiurieeesereeesireeeasssseesssseeessseesssssseessssessssssesssssssesssssseeans 4
34 CSP USAGE ...ttt sttt ettt sttt sttt et bt et be et e ae et et enaese e e bt sueebe et ennennens 5
340 IREHQLIZATION ...ttt ettt ettt 5
3.4.2 OTP GENEFALION ..ottt ettt et e bt et e nee e enees 5
3:4.3 OTP VALIAQEION..........cc.iieiieee ettt ettt 6
344 Provider PArametersccccoeuaoiaiiiiesie ettt 6
3.4.5 KeY MANGZEMENL ...ttt ettt ettt 6
3.4.60 K@Y PAVATNEIETS ...ttt sttt e st e st e e sabeeenbeesebeeenseesabeennsee e 7
3:4.7 HGASH PAVAMELEFS ...ttt ettt 9
4 OTP ALGORITHM DEFINITIONS 11
4.1 RSA SECURID ...ttt st sttt e sttt st 11
411 AIGOFithm IAeNtIfICATION.ceeeeiiiiiiiiiiet ettt e 11
4.1.2 KEY PAVAMELETS ...ttt 11
4.1.3 OTP PAFAMEIEES ..ottt ettt ettt et e eeneeneens 11

Copyright © 2005 RSA Security Inc. All rights reserved. License to copy this document and furnish the
copies to others is granted provided that the above copyright notice is included on all such copies. This
document should be identified as “RSA Security Inc. One-Time Password Specifications (OTPS)” in all
material mentioning or referencing this document.

2 A CRYPTOAPI PROFILE FOR ONE-TIME PASSWORD TOKENS

4.2 5 (0 1 USSR 11
4.2.1 AlGorithm IAentifiCAtioN.c.occceiiuiiiiii ittt 11

4.2.2 K@Y PAFAMNELEES ..ottt et 11

4.2.3 OTP PATAIMELEESoceeeee et eeiteeeite et eestte et e atae e taeetaeetse e saeesaeesseensaeenseeensee s 12

A. MANIFEST CONSTANTS 13
Al PROVIDER TYPEciiiiiiiiiiiiiiiiie sttt sttt s s 13
A2 ALGORITHM IDENTIFIERS ..ottt sttt st sttt st s 13
A3 OTP PARAMETERSooiuiiiiiiiiiiiiitiiiieit ettt s st s s 13
A4 OTP FLAGS ..ttt ettt et ettt et et st sat et e bt et e eanesanenaeenneen 13
A5 KEY PARAMETERSooiuiiiiiiiiiii ittt sttt s 14
A.6 KEY PARAMETER CONSTANTScutietteiteutententetentenienteeeteseensensessesteseesseestensensensensensessesuesneensensenne 14
A7 HASH PARAMETERScutiutitintintentieieeit ettt st st sttt et sae st e be et ebe et et et eaentesaeebesaeeueeneennenee 14
A8 PROVIDER PARAMETERSoootiitirtiniiriteuteteteniesteete ettt et eatenteste st saeebe st ensentetenteseesuesueeneeneensenne 14

B. EXAMPLES USING OTP KEYS 14
B.1 OTP RETRIEVAL ...ttt sttt sttt ettt st sttt et et st 14

C. INTELLECTUAL PROPERTY CONSIDERATIONS 18
D. REFERENCES 18
E. ABOUT OTPS 18

Copyright © 2005 RSA Security Inc. All rights reserved. V1.0 Draft 3, 2005-08-17

A CRYPTOAPI PROFILE FOR ONE-TIME PASSWORD TOKENS 3

1 Introduction

1.1 Scope

This document describes general Microsoft CryptoAPI ([1]) procedures and algorithms
that can be used to retrieve and verify one-time passwords (OTPs) generated by OTP
tokens. It also describes an OTP key import mechanism as well as a key generation
mechanism that may be used to execute on-token OTP key generation.

1.2 Background

A One-Time Password token may be a handheld hardware device, a hardware device
connected to a personal computer through an electronic interface such as USB, or a
software module resident on a personal computer, which generates one-time passwords
that may be used to authenticate a user towards some service. Increasingly, these tokens
work in a connected fashion, enabling programmatic retrieval of their OTP values.

To meet the needs of applications wishing to access these connected OTP tokens in an
interoperable manner, this document describes a method to support One-Time Password
tokens in CryptoAPI v2.0 by defining a common OTP key type with an extensible set of
attributes and by describing how CryptoAPI functions can be used to retrieve and verify
OTP values generated by OTP tokens. It also describes an OTP key generation
mechanism that may be used to execute on-token key generation.

Building on the OTP framework, the document specifies the RSA SecurID® OTP
algorithm' and the OATH HOTP algorithm®. Additional algorithms may be defined
separately to support other types of OTP tokens.

1.3 Document organization
The organization of this document is as follows:
— Section 1 is an introduction.
— Section 2 defines some notation used in this document.

— Section 3 defines a framework for recognizing CSPs supporting OTP algorithms
and describes their usage.

" RSA SecurID” two-factor authentication is a symmetric authentication method which is patented by RSA
Security. A user authenticates by submitting a one-time password (OTP), or PASSCODE value generated
by an RSA SecurlID token. The RSA SecurID token may be a handheld hardware device, a hardware device
connected to a personal computer through an electronic interface such as USB, or a software module
resident on the personal computer

2 The HOTP algorithm is work in progress, currently defined in the IETF draft http://www.ietf.org/internet-
drafts/draft-mraihi-oath-hmac-otp-04.txt ~ developed by the Open Authentication initiative
(http://www.openauthentication.org)

Copyright © 2005 RSA Security Inc. V1.0 Draft 3, 2005-08-18

4 A CRYPTOAPI PROFILE FOR ONE-TIME PASSWORD TOKENS

— Section 4 uses the framework to define specific OTP algorithm types and describe
their usage.

— Appendix A collects the definition of constants defined herein.
— Appendix B contains example usage.

— Appendices C, D and E cover intellectual property issues, give references to other
publications and standards, and provide general information about the One-Time
Password Specifications.

2 Acronyms and definitions

2.1 Acronyms
CSP Cryptographic Service Provider
OTP One-Time Password

2.2 Definitions
For the purposes of this document, the following definitions apply:

Cryptographic Device =~ A device storing OTP keys and possibly performing
cryptographic functions.

Token A logical cryptographic device.

3 CSP definitions and usage

3.1 Introduction

An OTP CSP manages OTP keys and allows applications to retrieve and validate OTP
codes. This section defines the identification, usage, and external behavior of such a CSP.
3.2 CSP identification

The type of a CSP that supports the algorithms and procedures described herein shall be
as follows:

PROV_OTP
Vendors of CSPs of type PROV_OTP will use vendor-specific CSP names.

3.3 OTP algorithm identification

All OTP algorithms shall be of the type ALG_TYPE_OTP. All OTP generation shall be
represented as a keyed hash algorithm of type CALG_OTP with the actual algorithm
used being represented by the type of the secret key.

As with standard keys, OTP keys may be stored in a key container but there may only be
one key of each type in such a container.

Copyright © 2005 RSA Security Inc. All rights reserved. V1.0 Draft 3, 2005-08-17

A CRYPTOAPI PROFILE FOR ONE-TIME PASSWORD TOKENS 5

3.4 CSP Usage

3.4.1 Initialization

The application selects an OTP-supporting CSP and optionally a suitable key container if
there are several. If several tokens supported by the same CSP are connected, it is up to
the provider to choose the proper token based on passed container name.

3.4.2 OTP Generation

To generate actual OTPs, the application proceeds as follows:

1.

Call CryptAcquireContext to get a handle to a key container containing the
required keys. The name of the key container may be given in the pszContainer
parameter in order to explicitly specify the container to use. If the container name
is omitted then the default container shall be used. Selection of the default
container is CSP specific.

Optionally call CryptGetUserKey to obtain a handle to the desired OTP key.
hProv Shall be set to the provider handle.

AlgID Either set to an explicit OTP algorithm identifier or to AT _OTP
if the default key is wanted.

Optionally call CryptGetKeyParam to retrieve key parameters of the key giving
properties of the key.

Call CryptCreateHash to create an OTP hash object to generate the OTP.

hProv Shall be set to the provider handle.
AlgID Shall be set to CALG_OTP.
hKey If this parameter is NULL then the default OTP key of the

specified container will be used otherwise the specified OTP key
will be used.

dwFlags Shall be set to 0.

5. Optionally call CryptSetHashParam to set the values to be used in the OTP

calculation associated with the selected OTP key.
hHash Shall be set to the hash handle created above.
dwParam Shall be set to HP_OTP_PARAMS.

pbData Pointer to an OTP_PARAMETERS structure containing the
values.

dwFlags Shall be set to 0.

6. Call CryptHashData.

pbData Shall be set to NULL.

Copyright © 2005 RSA Security Inc. V1.0 Draft 3, 2005-08-18

6 A CRYPTOAPI PROFILE FOR ONE-TIME PASSWORD TOKENS

dwDataLen Shall be set to 0.

dwFlags This parameter may contain flag values specific to the OTP
algorithm.

7. Call CryptGetHashParam.
dwParam Shall be set to HP. HASHVAL.
pbData Shall point to a buffer area that will receive the OTP value.
pdwDataLenIndicates the size of this data buffer.

8. Optionally call CryptGetHashParam to retrieve parameter values associated
with the generated OTP.

Shall be set to the hash handle created above.
dwParam Shall be set to HP_ OTP_PARAMS.

pbData Pointer to an OTP_PARAMETERS structure that will receive
the values.

dwFlags Shall be set to 0.

3.4.3 OTP Validation

To validate a given OTP, an application proceeds as described above and compares the
given and generated OTP codes.

3.4.4 Provider Parameters

Providers of type PROV OTP will support the following additional parameters.

Value Meaning
PP OTP ALG AlgID of OTP algorithm mapped to AT _OTP.
PP _OTP_PINPAD A BOOL indicating whether the device has a PIN-pad.

Table 1: Common OTP Provider Parameters
3.4.5 Key Management

3.4.5.1 Key Containers

As with any key, OTP keys will be contained within key containers with any single
container containing at most one OTP key of a given algorithm. A provider may
associate one of these keys with AT_OTP.

Applications may assign a label to a key container to contain the keys about to be created
by setting the pszContainer parameter of CryptAcquireContext, when the dwFlags
parameter is set to CRYPT _NEW_KEYSET.

Copyright © 2005 RSA Security Inc. All rights reserved. V1.0 Draft 3, 2005-08-17

A CRYPTOAPI PROFILE FOR ONE-TIME PASSWORD TOKENS 7

3.4.5.2 Importing Keys

If supported by the CSP, OTP keys shall be imported using CryptImportKey either in
plain form as a PLAINTEXTBLOB or wrapped in a SIMPLEBLOB. The blob content
is the value of OTP key with the ALG_ID of the BLOBHEADER set to the OTP
algorithm.

Once the key has been imported, it will be configured by setting key parameters using
CryptSetKeyParam but the key will not be available for use until KP_ALGID has been
set to the same value as contained in the BLOBHEADER. The setting of KP_ALGID is
therefore mandatory and will signal to the provider that the generation of the key is
complete.

3.4.5.3 Exporting Keys

If supported by the CSP, OTP keys shall be exported using CryptExportKey in wrapped
form as a SIMPLEBLOB or unwrapped as a PLAINTEXTBLOB.

3.4.5.4 Generating Keys

The CryptGenKey function shall be called with the Algid parameter set to the OTP
algorithm or to AT_OTP to generate a key of the default type.

Once the key has been generated, it will be configured by setting key parameters using
CryptSetKeyParam but the key will not be available for use until KP_ALGID has been
set to the same value as the algorithm of the key being generated. The setting of
KP_ALGID is therefore mandatory and will signal to the provider that the generation of
the key is complete.

3.4.5.5 Getting handle to existing key

The handle to the existing OTP key is obtained using CryptGetUserKey with the
dwKeySpec parameter set to the required algorithm identifier.

Alternatively, a handle for the default OTP key of the key container may be obtained
using the AT_OTP key identifier.

3.4.6 Key parameters

OTP keys may have various parameters such as serial number, service identifier etc.
Generally speaking these parameters are available via CryptGetKeyParam function and
depending on provider policy, may be changed via CryptSetKeyParam function.
However, vendors may restrict the ability of applications to change key attributes after
the key has been created.

The following parameters are defined for all OTP keys.

Value Meaning
KP OTP END DATE A SYSTEMTIME giving the expiry date of the key.
KP OTP SERIAL NUMBER A BYTE array containing an issuer specific serial number of key.

Copyright © 2005 RSA Security Inc. V1.0 Draft 3, 2005-08-18

A CRYPTOAPI PROFILE FOR ONE-TIME PASSWORD TOKENS

If being set using CryptSetKeyParam then the array must be
passed in a CRYPTOAPI_BLOB. If being retrieved using
CryptGetKeyParam then the array will be returned directly.

KP_OTP_FORMAT

A DWORD giving the format of OTP values produced with this
key.

This can be one of:

CRYPT OTP_FORMAT DECIMAL
CRYPT OTP_FORMAT HEXADECIMAL
CRYPT OTP FORMAT ALPHANUMERIC

KP_OTP_LENGTH

A DWORD value giving the default length of OTP values
produced by the key.

KP_OTP_COUNTER

A BYTE array containing the current value of the counter for the
key.

KP_OTP TIME

A SYSTEMTIME giving the keys time value.

KP OTP USER IDENTIFIER

A UTF8 encoded CHAR string that identifies a user associated
with the OTP key (may be used to enhance the user experience).

KP OTP_SERVICE IDENTIFIER

An identifier in the form of a null-terminated UTF8 encoded
CHAR string of a service that may validate OTPs generated by this
key.

KP_OTP_SERVICE_LOGO

Logotype image that identifies a service that may validate OTPs
generated by this key.

KP_OTP_SERVICE_LOGO TYPE

MIME type of the KP_OTP_SERVICE_LOGO attribute value as
a UTF encoded CHAR string.

KP_OTP_ID

A BYTE array containing a globally unique identifier of the key.

The value for the parameter will be initialized by the provider
whenever a key is created but may be modified once the object is
created.

KP_OTP_LENGTH_MIN

A DWORD value giving the minimum length of OTP values
supported by the key or mandated by security policy.

KP_OTP_LENGTH_MAX

A DWORD value giving the maximum length of OTP values
supported by the key or mandated by security policy.

Table 2: Common OTP Key Parameters

Calculations of OTPs can be based on different types of information. The following
parameters define the information that is or may be used by a particular key when
generating an OTP value. The actual values used in the calculation are taken from the

corresponding OTP parameter.

Value

Meaning

KP_OTP_PIN REQUIREMENT

Requirements on providing a PIN.

KP OTP CHALLENGE REQUIREMENT

Requirements on providing a challenge.

KP_OTP_TIME REQUIREMENT

Requirements on providing a time value.

Copyright © 2005 RSA Security Inc. All rights reserved.

V1.0 Draft 3, 2005-08-17

A CRYPTOAPI PROFILE FOR ONE-TIME PASSWORD TOKENS 9

KP OTP COUNTER REQUIREMENT Requirements on providing a counter value.

Table 3: Common OTP Requirement Key Parameters

The above mode parameters are all DWORD values that can contain one of the following
values.

OTP Calculation Mode Description

CRYPT OTP VALUE NOT USED The value will be ignored if it is provided.

CRYPT _OTP_VALUE NOT REQUIRED | The provider will provide a value if it is not given by the
caller.

CRYPT _OTP_VALUE REQUIRED Value must be provided in order to carry out the OTP
calculation.

Table 4: OTP Requirement Key Parameter Values

3.4.7 Hash Parameters

As described above, an OTP is generated using CryptHashData on an OTP hash object.
The parameters used to generate the OTP will depend on the algorithm of the key used
and will be given by the requirements attributes of that key as shown in Table 3.

This information is passed to the provider using CryptSetHashParam to set the
HP_OTP_PARAMS hash parameter with the pbData value set to a pointer to an
OTP_PARAMETERS structure. This structure contains an array of
OTP_PARAMETER structures containing the values to be set.

This structure is defined as follows:

typedef struct _OTP_PARAMETERS

{
DWORD cPar ans;

POTP_PARAMETER pPar ans;
} OTP_PARAMETERS, *POTP_PARANMETERS;

The fields of the structure have the following meanings:
cParam The number of elements in the pParams array.
pParams Array of OTP_PARAMETER structures

Each element in the parameters array will be one of the following structures.

t ypedef struct _OTP_PARAMETER

{
DWORD par ani D,

CRYPT_DATA BLOB par anVal ue;
} OIP_PARAMETER, *POTP_PARAMETER;

The fields in the above structure have the following meaning:

paramID The identifier of the type of data contained in the paramValue
element.

Copyright © 2005 RSA Security Inc. V1.0 Draft 3, 2005-08-18

10 A CRYPTOAPI PROFILE FOR ONE-TIME PASSWORD TOKENS

paramValue The value of the parameter. The cbhbData member of the
CRYPT_DATA_BLOB structure indicates the length of the
pbData member. The pbData member contains the attribute
information.

The actual values used to generate an OTP can be retrieved by an application using
CryptGetHashParam to retrieve the HP_OTP_PARAMS hash parameter. The
returned information will be stored contiguously in the returned buffer with all pointers
set to point within the allocated block of memory. As with any other hash parameter, the
caller should first call with pbData set to NULL to determine the size of the required
buffer.

The following parameters are defined.

Value Meaning
CRYPT _OTP_PIN A UTF8 encoded CHAR string containing the PIN to use in the OTP
calculation.

Setting of this parameter is controlled by
KP_OTP_PIN_REQUIREMENT.

CRYPT _OTP_CHALLENGE | A BYTE array containing a challenge to use in the OTP calculation.

Setting of this parameter is controlled by
KP OTP CHALLENGE REQUIREMENT.

CRYPT _OTP_TIME A SYSTEMTIME giving the time to use in the OTP calculation.

Setting of this parameter is controlled by
KP_OTP_TIME REQUIREMENT.

CRYPT _OTP_COUNTER A BYTE array containing the current value of the counter for the key.

Setting of this parameter is controlled by
KP_OTP_COUNTER_REQUIREMENT.

CRYPT OTP_FLAGS A DWORD containing bit flags indicating the characteristics of the
sought OTP as defined below.

CRYPT OTP FORMAT A DWORD giving the desired format of OTP values produced.

CRYPT OTP LENGTH A DWORD giving the desired OTP length.

Table S: Common OTP Parameters

The parameters CRYPT _OTP_PIN, CRYPT_OTP_CHALLENGE,

CRYPT_OTP_TIME and CRYPT_OTP_COUNTER correspond to OTP key
parameters in Table 3 and are used to set the value to be used in the OTP calculation.

— If the key parameter has the value CRYPT _OTP_PARAM_ REQUIRED then
the corresponding hash parameter must be set before the OTP is calculated.

— If the key parameter has the value
CRYPT_OTP_PARAM_NOT_REQUIRED then the corresponding hash
parameter may be set. If a value is not provided then the provider may collect it
during the call to CryptHashData.

Copyright © 2005 RSA Security Inc. All rights reserved. V1.0 Draft 3, 2005-08-17

A CRYPTOAPI PROFILE FOR ONE-TIME PASSWORD TOKENS 11

— If the key parameter has the value CRYPT _OTP_PARAM_ NOT_USED then
any value assigned to the corresponding hash parameter will be ignored.

The following table defines the flag values for CRYPT _OTP_FLAGS.

Flag Meaning

CRYPT OTP NEXT OTP Set if the hash shall return the next OTP rather than the current one.
CRYPT OTP NO PIN Set if the OTP calculation shall not include the PIN value.

CRYPT OTP NO CHALLENGE | Set if the OTP calculation shall not include the challenge value.
CRYPT OTP NO TIME Set if the OTP calculation shall not include the time value.

CRYPT OTP NO COUNTER Set if the OTP calculation shall not include the counter value.

Table 6: Common OTP Flags
4 OTP algorithm definitions
4.1 RSA SecurIlD

4.1.1 Algorithm Identification

The RSA SecurID algorithm is defined as:
CALG_SECURI D

4.1.2 Key Parameters
These keys support the following key parameters in addition to those in Table 3.

Value Meaning

KP OTP_TIME INTERVAL A DWORD containing the interval, in seconds, between OTP
values produced by the key.

Table 7: SecurID OTP Key Parameters

4.1.3 OTP Parameters

Secur[D OTP values are not counter based and so any value assigned to
CRYPT_OTP_COUNTER will be ignored.

4.2 HOTP

4.2.1 Algorithm Identification

The HOTP algorithm is defined as:
CALG HOTP

4.2.2 Key Parameters

For HOTP keys the KP_OTP_COUNTER and CRYPT_OTP_COUNTER value shall
be an 8 bytes unsigned integer in big endian (i.e. network byte order) form.

Copyright © 2005 RSA Security Inc. V1.0 Draft 3, 2005-08-18

12 A CRYPTOAPI PROFILE FOR ONE-TIME PASSWORD TOKENS

The KP_OTP_COUNTER value may be set at key generation; however, some tokens
may set it to a fixed initial value. Depending on the token’s security policy, this
parameter may not be modified and/or may not be revealed

4.2.3 OTP Parameters

HOTP OTP wvalues are not time based and so any value assigned to
CRYPT_OTP_TIME will be ignored.

Copyright © 2005 RSA Security Inc. All rights reserved. V1.0 Draft 3, 2005-08-17

A CRYPTOAPI PROFILE FOR ONE-TIME PASSWORD TOKENS

A. Manifest constants

A.1 Provider Type

#def i ne

PROV_OTP

A.2 Algorithm Identifiers

#defi ne
#defi ne
#def i ne
#def i ne

#def i ne

(ALG CLASS HASH |

#def i ne

(ALG _CLASS_HASH |

#defi ne

(ALG CLASS_HASH |

#defi ne

ALG TYPE OTP

ALG SI D_OTP_HVAC
ALG S| D_OTP_SECURI D
ALG S| D_OTP_HOTP

CALG OTP \
CALG SECURI D \

CALG HOTP \

AT _OTP

A.3 OTP Parameters

#def i ne
#defi ne

#def i ne
#defi ne
#defi ne
#def i ne
#defi ne

CRYPT_OTP_PI N
CRYPT_OTP_CHALLENGE

CRYPT_OTP_TI ME
CRYPT_OTP_COUNTER
CRYPT_OTP_FLAGS
CRYPT_OTP_FORVAT
CRYPT_OTP_LENGTH

A4 OTP Flags

#defi ne
#def i ne
#defi ne
#def i ne
#def i ne

CRYPT_OTP_NEXT_OT
CRYPT_OTP_NO_TI ME
CRYPT_OTP_NO_COUNTER
CRYPT_OTP_NO_CHALLENGE
CRYPT_OTP_NO PI N

P

Copyright © 2005 RSA Security Inc.

ALG TYPE OTP |
ALG TYPE OTP |

ALG TYPE OTP |

OxTBD

OxTBD
OxTBD

OxTBD
OxTBD

TBD

~N oo OB~ W NP

0x00000001
0x00000002
0x00000004
0x00000008
0x00000010

13

ALG_SI D_OTP_HVAC)
ALG_SI D_OTP_SECURI D)

ALG SI D_OTP_HOTP)

V1.0 Draft 3, 2005-08-18

14

A CRYPTOAPI PROFILE FOR ONE-TIME PASSWORD TOKENS

A.5 Key Parameters

#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i

ne
ne
ne
ne

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne

KP_OTP_PI N_REQUI RENMENT 0xTBD
KP_OTP_CHALLENGE REQUI REVMENT OxTBD
KP_OTP_TI ME_REQUI REVENT 0xTBD
KP_OTP_COUNTER REQUI REMENT ~ OxTBD
KP_OTP_END DATE 0xTBD
KP_OTP_SERI AL_NUVBER 0xTBD
KP_OTP_FORMAT 0xTBD
KP_OTP_LENGTH 0xTBD
KP_OTP_COUNTER 0xTBD
KP_OTP_TI ME 0xTBD
KP_OTP_USER | DENTI FI ER 0xTBD
KP_OTP_SERVI CE_| DENTI FIER OxTBD
KP_OTP_SERVI CE_LOGO 0xTBD
KP_OTP_SERVI CE_LOGO TYPE 0xTBD
KP_OTP_I D 0xTBD
KP_OTP_LENGTH M N 0xTBD
KP_OTP_LENGTH_MAX 0xTBD
KP_OTP_TI ME_| NTERVAL 0xTBD

A.6 Key Parameter Constants

#def i ne CRYPT_OTP_PARAM NOT_USED 0

#defi ne CRYPT_OTP_PARAM NOT_ REQUI RED 1

#def i ne CRYPT_OTP_PARAM REQUI RED 2

#def i ne CRYPT_OTP_FORVAT_ DECI MAL 0

#def i ne CRYPT_OTP_FORVAT_ HEXADECI MAL 1

#def i ne CRYPT_OTP_FORVAT_ ALPHANUMERI C 2
A.7 Hash Parameters

#def i ne HP_OTP_PARANMS OxTBD
A.8 Provider Parameters

#define PP_OTP_ALA D OxTBD

#defi ne PP_OTP_PI NPAD OxTBD

B. Examples Using OTP Keys

B.1 OTP Retrieval

The following code sample illustrates the retrieval of an OTP value from an RSA
SecurID token using CryptHashData.

Copyright © 2005 RSA Security Inc. All rights reserved.

V1.0 Draft 3, 2005-08-17

A CRYPTOAPI PROFILE FOR ONE-TIME PASSWORD TOKENS

HCRYPTPROV hPr ov
HCRYPTHASH hHash
HCRYPTKEY hKey =

= (HCRYPTPROV) NULL;
= (HCRYPTHASH) NULL
(HCRYPTKEY) NULL;

DWORD pi nReq;
DWORD pi nReqLen = si zeof (pi nReq) ;

CHAR *pPIN = "...";

DWORD | en = O;

DWORD OTPLen = O;

BYTE *pbOTP = NULL;

DWORD ret = ERROR GEN FAI LURE

__try
{

15

/* Acquire context to default container of default

OTP provider. */

if (!Crypt AcquireContext (&hProv,
PROV_OTP, 0))

{
ret = CGetLastError();
printf("Error: Failed to open key
container.\n");
__leave;

}

NULL, NULL,

/* Get a handle to the default OTP key of the

contai ner. */

if (!CryptCGetUserKey(hProv, AT _OIP, &hKey))

{
ret = GetlLastError();
printf("Error: Unable to find OTP key in
container.\n");
__| eave;
}

/* Create the OTP hash object. */

if (!CryptCreateHash(hProv, CALG OTP, hKey, 0,

ghHash))

{
ret = GetlLastError();

printf("Error: Failed to create the OTP hash

object.\n");

Copyright © 2005 RSA Security Inc.

V1.0 Draft 3, 2005-08-18

16 A CRYPTOAPI PROFILE FOR ONE-TIME PASSWORD TOKENS

__leave;

}

/* Find out the PIN requirements of the key. */
if (!Crypt Get KeyPar an{ hKey, KP_OTP_PI N REQUI REMENT,
(BYTE *) &pi nReq, &pi nReqLen, 0))

{
ret = GetlLastError();
printf("Error: Failed to retrieve
KP_OTP_PI N_REQUI REMENTS. \ n");
__| eave;

}

/* Set the PINif one is required. */

if ((pinReq == CRYPT_OTP_PARAM REQUI RED) ||
(pi nReq == CRYPT_OTP_PARAM NOT_REQUI RED))

{

OTP_PARAMETER pi nPar am
OTP_PARANMETERS ot pPar ans;

pi nParam param D = CRYPT_OTP_PI N,
pi nPar am par anVal ue. cbData = | strlen(pPIN);
pi nPar am par amval ue. pbData = (BYTE *) pPI N;

ot pPar ans. cParans = 1;
ot pPar ans. pPar ans = &pi nPar am

if (!Crypt Set HashPar am(hHash, HP_OTP_PARANS,
(const BYTE *) &ot pParans, 0))
{
ret = GetlLastError();
printf("Error: Failed to set OTP PIN.\n");
__| eave;

}

[* CGenerate the OTP. */
if (!CryptHashDat a(hHash, NULL, 0, 0))

{
ret = CGetLastError();
printf("Error: Failed to generate OTP.\n");
__leave;

}

/* Retrieve the length of the OIP */

Copyright © 2005 RSA Security Inc. All rights reserved. V1.0 Draft 3, 2005-08-17

A CRYPTOAPI PROFILE FOR ONE-TIME PASSWORD TOKENS 17

| en = sizeof (OTPLen);

i f(!Crypt Get HashPar anm(hHash, HP_HASHSI ZE, (BYTE
*)&OTPLen, & en, 0))

{

printf("Failed to retrieve |l ength of OIP.\n");
__leave;

}

/* Retrieve the OTP */
pbOTP = (BYTE*) mal | oc(OTPLenN) ;
if (!pbOTP)

printf("Error: Failed to allocate buffer for
OrP. .\ n");

ret = ERROR_OUTOFMEMORY,;

__| eave;

}

| en = OTPLen;

if (!CryptGet HashPar am(hHash, HP_HASHVAL, pbOTP
& en, 0))

{

ret = GetlLastError();
printf("Error: Failed to retrieve OTP

val ue.\n");
__leave;

}
/* Use the returned pbOTP */

ret = ERROR_SUCCESS;

f

nal |y

i f (hHash)
Crypt Dest r oyHash(hHash) ;

i f (hKey)
Crypt Dest r oyKey(hKey) ;

if (hProv)
Crypt Rel easeCont ext (hProv, 0);

I f (pbOTP)
free(pbOTP);

Copyright © 2005 RSA Security Inc. V1.0 Draft 3, 2005-08-18

18 A CRYPTOAPI PROFILE FOR ONE-TIME PASSWORD TOKENS

}

return ret;

C. Intellectual property considerations

RSA Security makes no patent claims on the general constructions described in this
document, although specific underlying techniques may be covered. The RSA SecurlD
technology is covered by a number of US patents (and foreign counterparts), in particular
US patent nos. 4,720,860, 4,856,062, 4,885,778, 5,097,505, 5,168,520, and 5,657,388.
Additional patents are pending.

Copyright © 2005 RSA Security Inc. All rights reserved. License to copy this document
and furnish the copies to others is granted provided that the above copyright notice is
included on all such copies. This document should be identified as “RSA Security Inc.
One-Time Password Specifications (OTPS)” in all material mentioning or referencing
this document.

RSA, RSA Security and SecurlD are registered trademarks or trademarks of RSA
Security Inc. in the United States and/or other countries. The names of other products or
services mentioned may be the trademarks of their respective owners.

This document and the information contained herein are provided on an "AS IS" basis
and RSA SECURITY DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. RSA Security makes no representations regarding intellectual property
claims by other parties. Such determination is the responsibility of the user.

D. References

[1] Microsoft Corporation. Microsoft Cryptographic API v2.0. URL:
http://msdn.microsoft.com/library/en-
us/seccrypto/security/cryptography portal.asp

E. About OTPS

The One-Time Password Specifications are documents produced by RSA Security in
cooperation with secure systems developers for the purpose of simplifying integration
and management of strong authentication technology into secure applications, and to
enhance the user experience of this technology.

RSA Security plans further development of the OTPS series through mailing list
discussions and occasional workshops, and suggestions for improvement are welcome.
As four our PKCS documents, results may also be submitted to standards forums. For
more information, contact:

Copyright © 2005 RSA Security Inc. All rights reserved. V1.0 Draft 3, 2005-08-17

A CRYPTOAPI PROFILE FOR ONE-TIME PASSWORD TOKENS 19

OTPS Editor

RSA Security

174 Middlesex Turnpike

Bedford, MA 01730 USA

ot ps-edi tor @sasecurity.com
http://ww.rsasecurity. conm rsal abs/

Copyright © 2005 RSA Security Inc. V1.0 Draft 3, 2005-08-18

