

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 2

Copyright © 1996, 1998 RSA Data Security, Inc. All rights reserved.

RSA BSAFE Crypto-C, RSA BSAFE Crypto-J, PKCS, S/WAN, RC2, RC4, RC5, MD2, MD4, and MD5 are trade-
marks or registered trademarks of RSA Data Security, Inc. Other products and names are trademarks or regis-
tered trademarks of their respective owners.

For permission to reprint or redistribute in part or in whole, send e-mail to pubs@rsa.com or contact your RSA
representative.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 3

Table of Contents
Table of Contents.. 3

Foreword ... 8

Section 1: Introduction .. 9
Question 1.1. What is the RSA Laboratories’ Frequently Asked Questions About

Today’s Cryptography? .. 9
Question 1.2. What is cryptography? .. 10
Question 1.3. What are some of the more popular techniques in cryptography? 11
Question 1.4. How is cryptography applied? ... 12
Question 1.5. What are cryptography standards? ... 14
Question 1.6. What is the role of the United States government in cryptography? 15
Question 1.7. Why is cryptography important? ... 16

Section 2: Cryptography.. 18
Section 2.1: Cryptographic Tools ...18

Question 2.1.1. What is public-key cryptography?.. 18
Question 2.1.2. What is secret-key cryptography?... 19
Question 2.1.3. What are the advantages and disadvantages of public-key

cryptography compared with secret-key cryptography? .. 20
Question 2.1.4. What is a block cipher? ... 21
Question 2.1.5. What is a stream cipher? .. 25
Question 2.1.6. What is a hash function? .. 27
Question 2.1.7. What are Message Authentication Codes (MACs)? ... 28
Question 2.1.8. What are interactive proofs and zero-knowledge proofs? 29
Question 2.1.9. What are secret sharing schemes? ... 30

Section 2.2: Simple Applications of Cryptography ... 31
Question 2.2.1. What is privacy? .. 31
Question 2.2.2. What is a digital signature and what is authentication? 32
Question 2.2.3. What is a key agreement protocol? ... 33
Question 2.2.4. What is a digital envelope? .. 34
Question 2.2.5. What is identification? .. 35

Section 2.3: Hard Problems ...36
Question 2.3.1. What is a hard problem? .. 36
Question 2.3.2. What is a one-way function? ... 37
Question 2.3.3. What is the factoring problem? ... 38
Question 2.3.4. What are the best factoring methods in use today? ... 39
Question 2.3.5. What improvements are likely in factoring capability?................................... 40
Question 2.3.7. What is the discrete logarithm problem? ... 42
Question 2.3.8. What are the best discrete logarithm methods in use today? 43
Question 2.3.9. What are the prospects for a theoretical breakthrough in the

discrete log problem? ... 44
Question 2.3.10. What are elliptic curves? .. 45
Question 2.3.11. What are lattice-based cryptosystems? .. 46
Question 2.3.12. What are some other hard problems?... 47

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 4

Section 2.4: Cryptanalysis ..48
Question 2.4.1. What is cryptanalysis? .. 48
Question 2.4.2. What are some of the basic types of cryptanalytic attack? 49
Question 2.4.3. What is exhaustive key search? ... 50
Question 2.4.4. What is the RSA Secret Key Challenge? ... 51
Question 2.4.5. What are the most important attacks on symmetric block ciphers? 52
Question 2.4.7. What are the most important attacks on stream ciphers? 54
Question 2.4.8. What are the most important attacks on MACs? .. 55
Question 2.4.9. At what point does an attack become practical? ... 56

Section 2.5: Supporting Tools in Cryptography ...57
Question 2.5.1. What is primality testing? ... 57
Question 2.5.2. What is random number generation? ... 58

Section 3.1: RSA ..59
Question 3.1.1. What is RSA? .. 59

Section 3: Techniques in Cryptography.. 60
Question 3.1.2. How fast is RSA? .. 60
Question 3.1.3. What would it take to break RSA? .. 61
Question 3.1.4. What are strong primes and are they necessary for RSA?............................... 62
Question 3.1.5. How large a key should be used in RSA? .. 63
Question 3.1.6. Could users of RSA run out of distinct primes? ... 64
Question 3.1.7. How is RSA used for privacy in practice? ... 65
Question 3.1.8. How is RSA used for authentication and digital signatures in practice? 66
Question 3.1.9. Is RSA currently in use? .. 67
Question 3.1.10. Is RSA an official standard today? .. 68
Question 3.1.11. Is RSA a de facto standard? .. 69

Section 3.2: DES ..70
Question 3.2.1. What is DES? .. 70
Question 3.2.2. Has DES been broken? .. 71
Question 3.2.3. How does one use DES securely? ... 72
Question 3.2.4. Should one test for weak keys in DES? .. 73
Question 3.2.5. Is DES a group? .. 74
Question 3.2.6. What is triple-DES? ... 75
Question 3.2.7. What is DES-X? .. 76
Question 3.2.8. What are some other DES variants? ... 77

Section 3.3: AES ...78
Question 3.3.1. What is the AES?.. 78
Question 3.3.2. What are some candidates for the AES? .. 79
Question 3.3.3. What is the schedule for the AES? .. 80

Section 3.4: DSA ..81
Question 3.4.1. What are DSA and DSS? ... 81
Question 3.4.2. Is DSA secure? .. 82

Section 3.5: Elliptic Curve Cryptosystems... 83
Question 3.5.1. What are elliptic curve cryptosystems? ... 83
Question 3.5.2. Are elliptic curve cryptosystems secure? ... 84
Question 3.5.3. Are elliptic curve cryptosystems widely used? .. 85
Question 3.5.4. How do elliptic curve cryptosystems compare with other cryptosystems? . 86

Section 3.6: Other Cryptographic Techniques ... 87
Question 3.6.1. What is Diffie-Hellman? ... 87

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 5

Question 3.6.2. What is RC2? .. 88
Question 3.6.3. What is RC4? .. 89
Question 3.6.4. What is RC5? .. 90
Question 3.6.5. What are SHA and SHA-1? .. 91
Question 3.6.6. What are MD2, MD4, and MD5? ... 92
Question 3.6.7. What are some other block ciphers? ... 93
Question 3.6.8. What are some other public-key cryptosystems? ... 95
Question 3.6.9. What are some other signature schemes? .. 97
Question 3.6.10. What are some other stream ciphers? ... 98
Question 3.6.11. What other hash functions are there? ... 99
Question 3.6.12. What are some secret sharing schemes? .. 100

Section 4: Applications of Cryptography.. 102
Section 4.1: Key Management ..102

Question 4.1.1. What is key management? ... 102

Section 4.1.2: General ..103
Question 4.1.2.1. What key size should be used? .. 103
Question 4.1.2.2. How does one find random numbers for keys?... 104
Question 4.1.2.3. What is the life cycle of a key? .. 105

Section 4.1.3: Public Key Issues ...106
Question 4.1.3.1. What is a PKI? ... 106
Question 4.1.3.2. Who needs a key pair? ... 107
Question 4.1.3.3. How does one get a key pair? ... 108
Question 4.1.3.4. Should a key pair be shared among users? .. 109
Question 4.1.3.5. What happens when a key expires? .. 110
Question 4.1.3.6. What happens if my key is lost? .. 111
Question 4.1.3.7. What happens if my private key is compromised? 112
Question 4.1.3.8. How should I store my private key? ... 113
Question 4.1.3.9. How do I find someone else’s public key? ... 114
Question 4.1.3.10. What are certificates? ... 115
Question 4.1.3.11. How are certificates used?... 116
Question 4.1.3.12. Who issues certificates and how? .. 117
Question 4.1.3.13. How do certifying authorities store their private keys? 118
Question 4.1.3.14. How are certifying authorities susceptible to attack? 119
Question 4.1.3.15. What if a certifying authority’s key is lost or compromised? 120
Question 4.1.3.16. What are Certificate Revocation Lists (CRLs)? .. 121

Section 4.2: Electronic Commerce ..122
Question 4.2.1. What is electronic money? .. 122
Question 4.2.2. What is iKP? ... 123
Question 4.2.3. What is SET? ... 124
Question 4.2.4. What is Mondex? ... 125
Question 4.2.5. What are micropayments? ... 126

Section 5: Cryptography in the Real World .. 127
Section 5.1: Security on the Internet ..127

Question 5.1.1. What is S/MIME? .. 127
Question 5.1.2. What is SSL? ... 128
Question 5.1.3. What is S/WAN? ... 129
Question 5.1.4. What is IPSec? .. 130
Question 5.1.5. What is SSH? .. 131

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 6

Question 5.1.6. What is Kerberos? .. 132

Section 5.2: Development Security Products ...133
Question 5.2.1. What are CAPIs? .. 133
Question 5.2.2. What is the GSS-API? .. 134
Question 5.2.3. What are RSA BSAFE CRYPTO-C and RSA BSAFE CRYPTO-J? 135
Question 5.2.4. What is SecurPC?... 136
Question 5.2.5. What is SecurID? ... 137
Question 5.2.6. What is PGP? .. 138

Section 5.3: Cryptography Standards ...139
Question 5.3.1. What are ANSI X9 standards? ... 139
Question 5.3.2. What are the ITU-T (CCITT) Standards? ... 141
Question 5.3.3. What is PKCS? ... 143
Question 5.3.4. What are ISO standards? .. 144
Question 5.3.5. What is IEEE P1363?.. 145
Question 5.3.6. What are some other cryptography specifications? 146

Section 6: Laws Concerning Cryptography .. 147
Section 6.1. Legal Disclaimer. ...147

Section 6.2: Government Involvement ...148
Question 6.2.1. What is NIST? .. 148
Question 6.2.2. What is the NSA?... 149
Question 6.2.3. What is Capstone? ... 150
Question 6.2.4. What is Clipper? .. 151
Question 6.2.5. What is the Current Status of Clipper? .. 152
Question 6.2.6. What is Fortezza? .. 153

Section 6.3: Patents on Cryptography ..154
Question 6.3.1. Is RSA patented? .. 154
Question 6.3.2. Is DSA patented? ... 155
Question 6.3.3. Is DES patented? .. 156
Question 6.3.4. Are elliptic curve cryptosystems patented? .. 157
Question 6.3.5. What are the important patents in cryptography? ... 158

Section 6.4: United States Cryptography Export/Import Laws ...159
Question 6.4.1. Can RSA be exported from the United States? .. 159
Question 6.4.2. Can DES be exported from the United States? .. 160
Question 6.4.3. Why is cryptography export-controlled? ... 161
Question 6.4.4. Are digital signature applications exportable from the United States? 162

Section 6.5: Cryptography Export/Import Laws in Other Countries ..163
Question 6.5.1. Which major countries have import restrictions on cryptography? 163

Section 7: Miscellaneous Topics .. 164
Question 7.1. What is probabilistic encryption? .. 164
Question 7.2. What are special signature schemes? .. 165
Question 7.3. What is a blind signature scheme?... 166
Question 7.4. What is a designated confirmer signature? .. 167
Question 7.5. What is a fail-stop signature scheme? ... 168
Question 7.6. What is a group signature? ... 169
Question 7.7. What is a one-time signature scheme? .. 170
Question 7.8. What is an undeniable signature scheme? .. 171
Question 7.9. What are on-line/off-line signatures? ... 172
Question 7.10. What is OAEP? ... 173

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 7

Question 7.11. What is digital timestamping? .. 174
Question 7.12. What is key recovery? .. 176
Question 7.13. What are LEAFs? .. 177
Question 7.14. What is PSS/PSS-R? ... 178
Question 7.15. What are covert channels? .. 179
Question 7.16. What are proactive security techniques? .. 180
Question 7.17. What is quantum computing? .. 181
Question 7.18. What is quantum cryptography? .. 182
Question 7.19. What is DNA computing? ... 183
Question 7.20. What are biometric techniques? ... 184
Question 7.21. What is tamper-resistant hardware? .. 185
Question 7.22. How are hardware devices made tamper-resistant? 186

Section 8: Further Reading .. 187
Question 8.1. Where can I learn more about cryptography? .. 187
Question 8.2. Where can I learn more about cryptographic protocols and architecture? 188
Question 8.3. Where can I learn more about recent advances in cryptography? 189
Question 8.4. Where can I learn more about electronic commerce? .. 190
Question 8.5. Where can I learn more about cryptography standards? 191
Question 8.6. Where can I learn more about laws concerning cryptography? 192

Glossary .. 193

References .. 203

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 8

Foreword
This document is the fourth version of RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography.
Completely revised, restructured, and updated, it covers many more questions than the previous version, which
was published in September 1995.

The FAQ represents the contributions of numerous individuals. Particular appreciation is due to Paul Fahn, who
wrote the first and second versions while an RSA Laboratories research assistant in 1992 and 1993, to Sambasivam
Valliappan, who drafted the third version as an RSA Laboratories research assistant in Summer 1995.

Other contributors to the fourth version include Jim Bidzos, John Brainard, Victor Chang, Scott Contini, Dana
Ellingen, James Gray, Ari Juels, Burt Kaliski, Patrick Lee, John Linn, Paul Livesay, Hoa Ly, Tim Matthews, Mat-
thew Robshaw, Ray Sidney, Bob Silverman, Jessica Staddon, Jeff Stapleton, Kurt Stammberger, and Yiqun Lisa Yin
from RSA Data Security, Michael Baum from VeriSign, Mathew Butler, Stuart Haber from Bellcore, Bart Preneel
from Katholieke Universiteit, and Scott Stornetta from Surety Technologies.

Special thanks to Patrick Lee, Eliza Sachs, Michael Girdley, Jason Gillis, and Clint Chan for carefully reading
through the final draft and providing many helpful suggestions. Special thanks also to Jason Thompson and
Brandon Richards for converting the FAQ to the web. Finally, special thanks to Jeff Ylvisaker, who helped with the
editing throughout.

The technical editors are RSA Laboratories research assistants Moses Liskov and Beverly Schmoock.

Comments on the FAQ are encouraged. Address correspondence to:

FAQ Editor
RSA Laboratories
2955 Campus Drive, Suite 400
San Mateo, CA 94403-2507 USA
Tel: 650-295-7600
Fax: 650-295-7700

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 9

Section 1: Introduction

Question 1.1. What is the RSA Laboratories� Frequently Asked Questions About Today�s

Cryptography?

The RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography is a large collection of questions about
modern cryptography, cryptanalysis, and issues related to them. The information is presented in question and
answer form. Version 4.0 of the FAQ is markedly different from previous versions, primarily in the general
structure of the document.

Section 1: Introduction.
This section is intended for those who are interested in learning about cryptography but don’t know very much
about it. The introduction gives a brief overview of the field of cryptography and related issues.

Section 2: Cryptography.
This section expands on the overview of the field of cryptography and related issues, providing more detail about
the concepts involved in cryptography. It lays the conceptual groundwork for the next section.

Section 3: Techniques in Cryptography.
Cryptographic algorithms are the basic building blocks of cryptographic applications and protocols. This section
presents most of the important encryption algorithms, hash functions, stream ciphers, and other basic crypto-
graphic algorithms.

Section 4: Applications of Cryptography.
This section is an overview of the most important protocols and systems made possible by cryptography. In
particular, it discusses the issues involved in establishing a cryptographic infrastructure, and it gives a brief
overview of some of the electronic commerce techniques available today.

Section 5: Cryptography in the Real World.
This section goes over some of the most important cryptographic systems in place around the world today,
including secure Internet communications, and some of the more popular cryptographic products. It also gives an
overview of the major groups of cryptographic standards.

Section 6: Laws Concerning Cryptography.
This section deals with the legal and political issues associated with cryptography, including government involve-
ment, patent issues, and import and export regulations. Note that while this section includes legal information, it
should not be used as a substitute for consulting an attorney.

Section 7: Miscellaneous Topics.
This section contains additional applications of cryptography, including new technologies and techniques as well
as some of the more important older techniques and applications.

Section 8: Further Reading.
This section lists suggestions for further information about cryptography and related issues.

Glossary.
Contains a brief definition of most of the terms in this document.

Note: We have not attempted to be, nor could we be, exhaustive in answering every possible question. We hope
that this document will be both a useful introductory text and a useful reference for those interested in the field of
cryptography.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 10

Question 1.2. What is cryptography?

As the field of cryptography has advanced, the dividing lines for what is and what is not cryptography have
become blurred. Cryptography today might be summed up as the study of techniques and applications that
depend on the existence of difficult problems. Cryptanalysis is the study of how to compromise (defeat) crypto-
graphic mechanisms, and cryptology (from the Greek kryptós lógos, meaning “hidden word”) is the discipline of
cryptography and cryptanalysis combined. To most people, cryptography is concerned with keeping communica-
tions private. Indeed, the protection of sensitive communications has been the emphasis of cryptography through-
out much of its history [Kah67]. However, this is only one part of today’s cryptography.

Encryption is the transformation of data into a form that is as close to impossible as possible to read with out the
appropriate knowledge (a key). Its purpose is to ensure privacy by keeping information hidden from anyone for
whom it is not intended, even those who have access to the encrypted data. Decryption is the reverse of encryp-
tion; it is the transformation of encrypted data back into an intelligible form.

Encryption and decryption generally require the use of some secret information, referred to as a key. For some
encryption mechanisms, the same key is used for both encryption and decryption; for other mechanisms, the keys
used for encryption and decryption are different (see Question 2.1.1).

Today’s cryptography is more than encryption and decryption. Authentication is as fundamentally a part of our
lives as privacy. We use authentication throughout our everyday lives -when we sign our name to some document
for instance and, as we move to a world where our decisions and agreements are communicated electronically, we
need to have electronic techniques for providing authentication.

Cryptography provides mechanisms for such procedures. A digital signature (see Question 2.2.2) binds a docu-
ment to the possessor of a particular key, while a digital timestamp (see Question 7.11) binds a document to its
creation at a particular time. These cryptographic mechanisms can be used to control access to a shared disk drive,
a high security installation, or a pay-per-view TV channel.

The field of cryptography encompasses other uses as well. With just a few basic cryptographic tools, it is possible
to build elaborate schemes and protocols that allow us to pay using electronic money (see Question 4.2.1), to
prove we know certain information without revealing the information itself (see Question 2.1.8), and to share a
secret quantity in such a way that a subset of the shares can reconstruct the secret (see Question 2.1.9).

While modern cryptography is growing increasingly diverse, cryptography is fundamentally based on problems
that are difficult to solve. A problem may be difficult because its solution requires some secret knowledge, such as
decrypting an encrypted message or signing some digital document. The problem may also be hard because it is
intrinsically difficult to complete, such as finding a message that produces a given hash value.

Surveys by Rivest [Riv90] and Brassard [Bra88] form an excellent introduction to modern cryptography. Some
textbook treatments are provided by Stinson [Sti95] and Stallings [Sta95], while Simmons provides an in-depth
coverage of the technical aspects of cryptography [Sim92]. A comprehensive review of modern cryptography can
also be found in Applied Cryptography [Sch96b]; Ford [For94] provides detailed coverage of issues such as
cryptography standards and secure communication.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 11

Question 1.3. What are some of the more popular techniques in cryptography?

There are two types of cryptosystems: secret key and public key (see Questions 2.1.2 and 2.1.1). In secret-key
cryptography, also referred to as symmetric cryptography, the same key is used for both encryption and
decryption. The most popular secret-key cryptosystem in use today is known as DES, the Data Encryption Stan-
dard. IBM developed DES in the middle 1970’s and it has been a Federal Standard ever since 1976.

In public-key cryptography, each user has a public key and a private key. The public key is made public while the
private key remains secret. Encryption is performed with the public key while decryption is done with the private
key. The RSA public-key cryptosystem is the most popular form of public-key cryptography. RSA stands for
Rivest, Shamir, and Adleman, the inventors of the RSA cryptosystem.

The Digital Signature Algorithm (DSA) is also a popular public-key technique, though it can only be used only for
signatures, not encryption. Elliptic curve cryptosystems (ECCs) are cryptosystems based on mathematical objects
known as Elliptic Curves (see Question 2.3.10.). Elliptic curve cryptography has been gaining in popularity
recently. Lastly, the Diffie-Hellman key agreement protocol is a popular public-key technique for establishing
secret keys over an insecure channel.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 12

Question 1.4. How is cryptography applied?

Cryptography is extremely useful; there is a multitude of applications, many of which are currently in use.
A typical application of cryptography is a system built out of the basic techniques. Such systems can be of various
levels of complexity. Some of the more simple applications are secure communication, identification, authentica-
tion, and secret sharing. More complicated applications include systems for electronic commerce, certification,
secure electronic mail, key recovery, and secure computer access. In general, the less complex the application, the
more quickly it becomes a reality. Identification and authentication schemes exist widely, while electronic com-
merce systems are just beginning to be established.

Secure Communication
Secure communication is the most straightforward use of cryptography. Two people may communicate securely
by encrypting the messages sent between them. This can be done in such a way that a third party eavesdropping
may never be able to decipher the messages. While secure communication has existed for centuries, the key
management problem has prevented it from becoming commonplace. Thanks to the development of public-key
cryptography, the tools exist to create a large-scale network of people who can communicate securely with one
another even if they had never communicated before.

Identification and Authentication
Identification and authentication are two widely used applications of cryptography. Identification is the process of
verifying someone’s or something’s identity. For example, when withdrawing money from a bank, a teller asks to
see identification (e.g. a driver’s license) to verify the identity of the owner of the account. This same process can
be done electronically using cryptography. Every automatic teller machine (ATM) card is associated with a
“secret” personal identification number (PIN), which binds the owner to the card and thus to the account. When
the card is inserted into the ATM, the machine prompts the cardholder for the PIN. If the correct PIN is entered,
the machine identifies that person as the rightful owner and grants access. Another important application of
cryptography is authentication. Authentication is similar to identification, in that both allow an entity access to
resources (such as an Internet account), but authentication is broader because it does not necessarily involve
identifying a person or entity. Authentication merely determines whether that person or entity is authorized for
whatever is in question. For more information on authentication and identification, see Question 2.2.5.

Secret Sharing
Another application of cryptography, called secret sharing, allows the trust of a secret to be distributed among a
group of people. For example, in a (K, N)-threshold scheme, information about a secret is distributed in such a
way that any K out of the N people (K<N) have enough information to determine the secret, but any set of K-1
people do not. In any secret sharing scheme, there are designated sets of people whose cumulative information
suffices to determine the secret. In some implementations of secret sharing schemes, each participant receives the
secret after it has been generated. In other implementations, the actual secret is never made visible to the partici-
pants, although the purpose for which they sought the secret (e.g. access to a building or permission to execute a
process) is allowed. See Question 2.1.9 for more information on secret sharing.

Electronic Commerce
Over the past few years there has been a growing amount of business conducted over the Internet - this form of
business is called electronic commerce or e-commerce. E-commerce is comprised of online banking, online broker-
age accounts, and Internet shopping, to name a few of the many applications. One can book plane tickets, make
hotel reservations, rent a car, transfer money from one account to another, buy compact disks (CDs), clothes,
books and so on all while sitting in front of a computer. However, simply entering a credit card number on the
Internet leaves one open to fraud. One cryptographic solution to this problem is to encrypt the credit card number
(or other private information) when it is entered on-line, another is to secure the entire session (see Question
5.1.2.) When a computer encrypts this information and sends it out on the Internet, it is incomprehensible to a
third party viewer. The web-server (“Internet shopping center”) receives the encrypted information, decrypts it,
and proceeds with the sale without fear that the credit card number (or other personal information) slipped into
the wrong hands. As more and more business is conducted over the Internet, the need for protection against
fraud, theft and corruption of vital information increases.

Certification

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 13

Another application of cryptography is certification; certification is a scheme by which trusted agents such as
certifying authorities vouch for unknown agents, such as users. The trusted agents issue vouchers called certifi-
cates which each have some inherent meaning. Certification technology was developed to make identification and
authentication possible on a large scale. See Question 4.1.3.10 for more information on certification.

Key Recovery
Key recovery is a technology that allows a key to be revealed under certain circumstances without the owner of
the key revealing it. This is useful for two main reasons: first of all, if a user loses or accidentally deletes their key,
key recovery could prevent a disaster. Secondly, if a law enforcement agency wishes to eavesdrop on a suspected
criminal without their knowledge (akin to a wiretap), they must be able to recover the key. Key recovery tech-
niques are in use in some instances; however, the use of key recovery as a law enforcement technique is somewhat
controversial. See Question 7.12 for more on key recovery.

Remote Access
Secure remote access is another important application of cryptography. The basic system of passwords certainly
gives a level of security for secure access, but it may not be enough in some cases. For instance, passwords can be
eavesdropped, forgotten, stolen, or guessed. Many products supply cryptographic methods for remote access with
a higher degree of security.

Other Applications
Cryptography is not confined to the world of computers. Cryptography is also used in cellular phones as a means
of authentication; that is, it can be used to verify that a particular phone has the right to bill to a particular phone
number. This prevents people from stealing (“cloning”) cellular phone numbers and access codes.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 14

Question 1.5. What are cryptography standards?

Cryptography standards are needed to create interoperability in the information security world. Essentially they
are conditions and protocols set forth to allow uniformity within communication, transactions and virtually all
computer activity. The continual evolution of information technology motivates the development of more stan-
dards, which in turn helps guide this evolution.

The main motivation behind standards is to allow technology from different manufacturers to “speak the same
language”, that is, to interact effectively. Perhaps this is best seen in the familiar standard VHS for VCRs. A few
years ago there were two competing standards in the VCR industry, VHS and BETA. A VHS tape could not be
played in a BETA machine and vice versa; they were incompatible formats. Imagine the chaos if every VCR
manufacturer had their own format. People could only rent movies that were available on the format compatible
with their VCR. Standards are necessary to insure that products from different companies are compatible.

In cryptography, standardization serves an additional purpose; it can serve as a proving ground for cryptographic
techniques because complex protocols are prone to design flaws. By establishing a well-examined standard, the
industry can produce a trustworthier product. Even a safe protocol is more trusted by customers after it becomes
a standard, because of the ratification process involved.

The government, private industry, and other organizations contribute to the vast collection of standards on
cryptography. A few of these are ISO, ANSI, IEEE, NIST, and IETF (see Section 5.3). There are many types of
standards, some used within the banking industry, some internationally and others within the government.
Standardization helps developers design new products. Instead of spending time developing a new standard they
can follow a pre-existing standard throughout the development process. With this process in place consumers
have the chance to choose among competing products or services.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 15

Question 1.6. What is the role of the United States government in cryptography?

The U.S. government plays many roles in cryptography, ranging from use to export control to standardization
efforts to the development of new cryptosystems. Recently the government has taken an even bigger interest in
cryptography due to its ever-increasing use outside of the military. The U.S. government plays a much larger role
in cryptography than any other government in the world.

One obvious reason the U.S. government is interested in cryptography stems from the crucial role of secure
communication during wartime. Because the enemy may have access to the communication medium, messages
must be encrypted. With certain cryptosystems, the receiver can determine whether or not the message was
tampered with during transmission, and whether the message really came from who claims to have sent it.

In the past, the government has not only used cryptography itself, but has cracked other country’s codes as well.
A notable example of this occurred in 1940 when a group of Navy cryptanalysts, led by William F. Friedman,
succeeded in breaking the Japanese diplomatic cipher known as Purple.

In 1952, the U.S. government established the NSA, The National Security Agency (see Question 6.2.2), whose job is
to handle military and government data security as well as gather information about other countries’ communica-
tions. Also established was NIST, The National Institute of Standards and Technology (see Question 6.2.1), which
plays a major role in developing cryptography standards.

During the 1970’s, IBM and the U.S. Department of Commerce - more precisely NIST (then known as NBS, The
National Bureau of Standards) - developed along with NSA the Data Encryption Standard, DES. This algorithm
has been a standard since 1977, with reviews leading to renewals every few years. The general consensus is that
DES will not be strong enough for the future’s encryption needs. During the next few years, NIST will be working
on a new standard, AES, the Advanced Encryption Standard (see Question 3.3.1), to replace DES. It is expected
that AES will remain a standard well into the 21st century.

Currently there are no restrictions on the use or strength of domestic encryption (encryption where the sender and
recipient are in the U.S.). However, the government regulates the export of cryptography from the U.S. by setting
restrictions (see Section 6.4) on how strong such encryption may be. Cryptography is dealt with as an item in the
International Trade in Arms (ITAR) bill, and is considered for those purposes to be munitions.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 16

Question 1.7. Why is cryptography important?

Cryptography allows people to carry over the confidence found in the physical world to the electronic world, thus
allowing people to do business electronically without worries of deceit and deception. Every day hundreds of
thousands of people interact electronically, whether it is through e-mail, e-commerce (business conducted over the
Internet), ATM machines, or cellular phones. The perpetual increase of information transmitted electronically has
lead to an increased reliance on cryptography.

Cryptography on the Internet
The Internet, comprised of millions of interconnected computers, allows nearly instantaneous communication and
transfer of information, around the world. People use e-mail to correspond with one another. The World Wide
Web is used for online business, data distribution, marketing, research, learning, and a myriad of other activities.

Cryptography makes secure websites (see Question 5.1.2) and electronic safe transmissions possible. For a
website to be secure all of the data transmitted between the computers where the data is kept and where it is
received must be encrypted. This allows people to do online banking, online trading, and make online purchases
with their credit cards, without worrying that any of their account information is being compromised. Cryptogra-
phy is very important to the continued growth of the Internet and electronic commerce.

E-commerce (see Section 4.2) is increasing at a very rapid rate. By the turn of the century, commercial transactions
on the Internet are expected to total hundreds of billions of dollars a year. This level of activity could not be
supported without cryptographic security. It has been said that one is safer using a credit card over the Internet
than within a store or restaurant. It requires much more work to seize credit card numbers over computer net-
works than it does to simply walk by a table in a restaurant and lay hold of a credit card receipt. These levels of
security, though not yet widely used, give the means to strengthen the foundation with which e-commerce can
grow.

People use e-mail to conduct personal and business matters on a daily basis. E-mail has no physical form and may
exist electronically in more than one place at a time. This poses a potential problem as it increases the opportunity
for an eavesdropper to get a hold of the transmission. Encryption protects e-mail by rendering it very difficult to
read by any unintended party. Digital signatures can also be used to authenticate the origin and the content of an
e-mail message.

Authentication
In some cases cryptography allows you to have more confidence in your electronic transactions than you do in
real life transactions. For example, signing documents in real life still leaves one vulnerable to the following
scenario. After signing your will, agreeing to what is put forth in the document, someone can change that docu-
ment and your signature is still attached. In the electronic world this type of falsification is much more difficult
because digital signatures (see Question 2.2.2) are built using the contents of the document being signed.

Access Control
Cryptography is also used to regulate access to satellite and cable TV. Cable TV is set up so people can watch only
the channels they pay for. Since there is a direct line from the cable company to each individual subscriber’s
home, the Cable Company will only send those channels that are paid for. Many companies offer pay-per-view
channels to their subscribers. Pay-per-view cable allows cable subscribers to “rent” a movie directly through the
cable box. What the cable box does is decode the incoming movie, but not until the movie has been “rented.” If a
person wants to watch a pay-per-view movie, he/she calls the cable company and requests it. In return, the Cable
Company sends out a signal to the subscriber’s cable box which unscrambles (decrypts) the requested movie.

Satellite TV works slightly differently since the satellite TV companies do not have a direct connection to each
individual subscriber’s home. This means that anyone with a satellite dish can pick up the signals.
To alleviate the problem of people getting free TV, they use cryptography. The trick is to allow only those who
have paid for their service to unscramble the transmission, this is done with receivers (unscramblers). Each
subscriber is given a receiver; the satellite transmits signals that can only be unscrambled by their receivers
(ideally). Pay-per-view works in essentially the same way as it does for regular cable TV.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 17

As seen, cryptography is widely used. Not only is it used over the Internet, but also it is used in phones, televi-
sions, and a variety of other common household items. Without cryptography, hackers could get into our e-mail,
listen in on our phone conversations, tap into our cable companies and acquire free cable service, or break into our
bank/brokerage accounts.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 18

Section 2.1: Cryptographic Tools

Question 2.1.1. What is public-key cryptography?

In traditional cryptography, the sender and receiver of a message know and use the same secret key: the sender
uses the secret key to encrypt the message, and the receiver uses the same secret key to decrypt the message. This
method is known as secret key or symmetric cryptography. The main challenge is getting the sender and receiver
to agree on the secret key without anyone else finding out. If they are in separate physical locations, they must
trust a courier, a phone system, or some other transmission medium to prevent the disclosure of the secret key.
Anyone who overhears or intercepts the key in transit can later read, modify, and forge all messages encrypted or
authenticated using that key. The generation, transmission and storage of keys is called key management; all
cryptosystems must deal with key management issues. Because all keys in a secret-key cryptosystem must remain
secret, secret-key cryptography often has difficulty providing secure key management, especially in open systems
with a large number of users.

In order to solve the key management problem, Whitfield Diffie and Martin Hellman [DH76] introduced the
concept of public-key cryptography in 1976. Public-key cryptosystems have two primary uses, encryption and
digital signatures. In their system, each person gets a pair of keys, one called the public key and the other called
the private key. The public key is published, while the private key is kept secret. The need for the sender and
receiver to share secret information is eliminated; all communications involve only public keys, and no private
key is ever transmitted or shared. In this system, it is no longer necessary to trust the security of some means of
communications. The only requirement is that public keys be associated with their users in a trusted (authenti-
cated) manner (for instance, in a trusted directory). Anyone can send a confidential message by just using public
information, but the message can only be decrypted with a private key, which is in the sole possession of the
intended recipient. Furthermore, public-key cryptography can be used not only for privacy (encryption), but also
for authentication (digital signatures) and other various techniques.

In a public-key cryptosystem, the private key is always linked mathematically to the public key. Therefore, it is
always possible to attack a public key system by deriving the private key from the public key. Typically, the
defense against this is to make the problem of deriving the private key from the public key as difficult as possible.
For instance, some public-key cryptosystem are designed such that deriving the private key from the public key
requires the attacker to factor a large number, it this case it is computationally infeasible to perform the derivation.
This is the idea behind the RSA public-key cryptosystem.

Encryption
When Alice wishes to send a secret message to Bob, she looks up Bob’s public key in a directory, uses it to encrypt
the message and sends it off. Bob then uses his private key to decrypt the message and read it. No one listening in
can decrypt the message. Anyone can send an encrypted message to Bob, but only Bob can read it (because only
Bob knows Bob’s private key).

Digital Signatures
To sign a message, Alice does a computation involving both her private key and the message itself. The output is
called a digital signature and is attached to the message. To verify the signature, Bob does a computation involv-
ing the message, the purported signature, and Alice’s public key. If the result is correct according to a simple,
prescribed mathematical relation, the signature is verified to be genuine; otherwise, the signature is fraudulent, or
the message may have been altered.

A good history of public-key cryptography is given by Diffie [Dif88].

Section 2: Cryptography

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 19

Question 2.1.2. What is secret-key cryptography?

Secret-key cryptography is sometimes referred to as symmetric cryptography. It is the more traditional form of
cryptography, in which a single key can be used to encrypt and decrypt a message. Secret-key cryptography not
only deals with encryption, but it also deals with authentication. One such technique is called message authentica-
tion codes, MACs (see Question 2.1.7).

The main problem with secret-key cryptosystems is getting the sender and receiver to agree on the secret key
without anyone else finding out. This requires a method by which the two parties can communicate without fear
of eavesdropping. However, the advantage of secret-key cryptography is that it is generally faster than public-key
cryptography.

The most common techniques in secret-key cryptography are block ciphers (see Question 2.1.4), stream ciphers
(see Question 2.1.5), and message authentication codes.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 20

Question 2.1.3. What are the advantages and disadvantages of public-key cryptography

compared with secret-key cryptography?

The primary advantage of public-key cryptography is increased security and convenience: private keys never
need to be transmitted or revealed to anyone. In a secret key system, by contrast, the secret keys must be transmit-
ted (either manually or through a communication channel) since the same key is used for encryption and
decryption. A serious concern is that there may be a chance that an enemy can discover the secret key during
transmission.

Another major advantage of public key systems is they can provide digital signatures that cannot be repudiated.
Authentication via secret key systems requires the sharing of some secret and sometimes requires trust of a third
party as well. As a result, a sender can repudiate a previously authenticated message by claiming the shared
secret was somehow compromised (see Question 4.1.2.3) by one of the parties sharing the secret. For example, the
Kerberos secret key authentication system (see Question 5.1.6) involves a central database that keeps copies of the
secret keys of all users; an attack on the database would allow widespread forgery. Public key authentication, on
the other hand, prevents this type of repudiation; each user has sole responsibility for protecting his or her private
key. This property of public key authentication is often called non-repudiation.

A disadvantage of using public-key cryptography for encryption is speed. There are many secret key encryption
methods that are significantly faster than any currently available public key encryption method. Nevertheless,
public-key cryptography can be used with secret-key cryptography to get the best of both worlds. For encryption,
the best solution is to combine public- and secret key systems in order to get both the security advantages of
public key systems and the speed advantages of secret key systems. Such a protocol is called a digital envelope,
which is explained in more detail in Question 2.2.4.

Public-key cryptography may be vulnerable to impersonation, even if users’ private keys are not available. A
successful attack on a certification authority (see Question 4.1.3.14) will allow an adversary to impersonate
whomever he or she chooses by using a public key certificate from the compromised authority to bind a key of the
adversary’s choice to the name of another user.

In some situations, public-key cryptography is not necessary and secret-key cryptography alone is sufficient.
These include environments where secure secret key distribution can take place, for example, by users meeting in
private. It also includes environments where a single authority knows and manages all the keys, e.g., a closed
banking system. Since the authority knows everyone’s keys already, there is not much advantage for some to be
“public” and others “private.” Also, public-key cryptography is usually not necessary in a single-user environ-
ment. For example, if you want to keep your personal files encrypted, you can do so with any secret key encryp-
tion algorithm using, say, your personal password as the secret key. In general, public-key cryptography is best
suited for an open multi-user environment.

Public-key cryptography is not meant to replace secret-key cryptography, but rather to supplement it, to make it
more secure. The first use of public-key techniques was for secure key establishment in a secret key system
[DH76]; this is still one of its primary functions. Secret-key cryptography remains extremely important and is the
subject of much ongoing study and research. Some secret-key cryptosystems are discussed in the sections on block
ciphers and stream ciphers.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 21

Question 2.1.4. What is a block cipher?

A block cipher is a type of symmetric-key encryption algorithm that transforms a fixed-length block of plaintext
(unencrypted text) data into a block of ciphertext (encrypted text) data of the same length. This transformation
takes place under the action of a user-provided secret key. Decryption is performed by applying the reverse
transformation to the ciphertext block using the same secret key. The fixed length is called the block size, and for
many block ciphers, the block size is 64 bits. In the coming years the block size will increase to 128 bits as proces-
sors become more sophisticated.

For those with a mathematical background: Since different plaintext blocks are mapped to different ciphertext
blocks (to allow unique decryption), a block cipher effectively provides a permutation (one to one reversible
correspondence) of the set of all possible messages. The permutation effected during any particular encryption is
of course secret, since it is a function of the secret key.

More information about block ciphers and the various available algorithms can be found in almost any book on
contemporary cryptography and in RSA Laboratories Technical Report [Rob95a]. The remainder of this answer
deals with the structure of typical block ciphers and their modes of operation, and gets rather technical.

Iterated block ciphers encrypt a plaintext block by a process that has several rounds. In each round, the same
transformation (also known as a round function) is applied to the data using a subkey. The set of subkeys is
usually derived from the user-provided secret key by a special function. The set of subkeys is called the key
schedule.

The number of rounds in an iterated cipher depends on the desired security level and the consequent trade-off
with performance. In most cases, an increased number of rounds will improve the security offered by a block
cipher, but for some ciphers the number of rounds required to achieve adequate security will be too large for the
cipher to be practical or desirable.

Figure 1. Feistel Cipher

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 22

Feistel ciphers [Fei73] are a special class of iterated block ciphers where the ciphertext is calculated from the
plaintext by repeated application of the same transformation or round function. Feistel ciphers are sometimes
called DES-like ciphers (see Question 3.2.1).

In a Feistel cipher (see Figure 1), the text being encrypted is split into two halves. The round function f is applied
to one half using a subkey and the output of f is exclusive-ORed with the other half. The two halves are then
swapped. Each round follows the same pattern except for the last round where there is no swap.

A nice feature of a Feistel cipher is encryption and decryption are structurally identical, though the subkeys used
during encryption at each round are taken in reverse order during decryption.

It is possible to design iterative ciphers that are not Feistel ciphers, yet whose encryption and decryption (after a
certain re-ordering or re-calculation of variables) are structurally the same. One such example is IDEA (see
Question 3.6.7).

Modes of Operation
When we use a block cipher to encrypt a message of arbitrary length, we use techniques known as modes of
operation for the block cipher. To be useful a mode must be at least as secure and as efficient as the underlying
cipher. Modes may have properties in addition to those inherent in the basic cipher. The standard DES modes (see
Question 3.2.3) have been published in FIPS PUB 81 [NIS80] and as ANSI X3.106 [ANS83]. A more general version
of the standard [ISO92b] generalized the four modes of DES to be applicable to a block cipher of any block size.
The standard modes are Electronic Code Book (ECB), Cipher Block Chaining (CBC), Cipher Feedback (CFB), and
Output Feedback (OFB).

In ECB mode (see Figure 2), each plaintext block is encrypted independently with the block cipher.

Figure 2. Electronic Code Book Mode

ECB mode is as secure as the underlying block cipher. However, plaintext patterns are not concealed. Each
identical block of plaintext gives an identical block of ciphertext. The plaintext can be easily manipulated by
removing, repeating, or interchanging blocks. The speed of each encryption operation is identical to that of the
block cipher. ECB allows easy parallelization to yield higher performance. Unfortunately, no processing is possible
before a block is seen (except for key setup).

In CBC mode (see Figure 3), each plaintext block is exclusive-ORed with previous ciphertext block, then en-
crypted. An initialization vector or value c

0
 is used as a “seed” for the process.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 23

Figure 3. Cipher Block Chaining Mode

CBC mode is as secure as the underlying block cipher against standard attacks. In addition, any patterns in the
plaintext are concealed by the exclusive-ORing of the previous ciphertext block with the plaintext block. Security
of the ciphertext is enhanced, as the plaintext cannot be directly manipulated except by removal of blocks from
the beginning or the end of the ciphertext. The speed of encryption is identical to that of the block cipher, but the
encryption process cannot be easily parallelized, although the decryption process can be.

In CFB mode (see Figure 4), the previous ciphertext block is encrypted and the output produced is combined with
the plaintext block using exclusive-OR to produce the current ciphertext block. It is possible to define CFB mode
so it uses feedback that is less than one full data block. An initialization vector or value c

0
 is used as a “seed” for

the process.

Figure 4. Cipher Feedback Mode

CFB mode is as secure as the underlying cipher and plaintext patterns are concealed in the ciphertext by the use of
the exclusive-or operation. Plaintext cannot be manipulated directly except by the removal of blocks from the
beginning or the end of the ciphertext. With CFB mode and full feedback, when two ciphertext blocks are identi-
cal, the outputs from the block cipher operation at the next step are also identical. This allows information about
plaintext blocks to leak. When using full feedback, the speed of encryption is identical to that of the block cipher,
but the encryption process cannot be easily parallelized.

OFB mode (see Figure 5) is similar to CFB mode except the quantity exclusive-ORed with each plaintext block is
generated independently of both the plaintext and ciphertext. An initialization vector s

0
 is used as a “seed” for a

sequence of data blocks s
i
, and each data block s

i
 is derived from the encryption of the previous data block s

i-1
. The

encryption of a plaintext block is derived by taking the exclusive-OR of the plaintext block with the relevant data
block.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 24

Figure 5. Output Feedback Mode

Feedback widths less than a full block are not recommended for security [DP83] [Jue83]. OFB mode has an
advantage over CFB mode in that any bit errors that might occur during transmission are not propagated to affect
the decryption of subsequent blocks. However, by changing the ciphertext, the plaintext can be easily manipu-
lated. The speed of encryption is identical to that of the block cipher. Even though the process cannot easily
parallelized, time can be saved by generating the key stream before the data is available for encryption.

Due to shortcomings in OFB mode, Diffie has proposed [Bra88] an additional mode of operation, termed the
counter mode. It differs from OFB mode in the way the successive data blocks are generated for subsequent
encryptions. Instead of deriving one data block as the encryption of the previous data block, Diffie proposed
encrypting the quantity i + IV (mod 264) for the ith data block, where IV is some initialization vector.

The Propagating Cipher Block Chaining (PCBC) mode of encryption is another mode of operation using block
ciphers. It is used in protocols such as Kerberos version 4. The PCBC mode of encryption has not been formally
published as a federal or national standard, and it does not have widespread general support. The PCBC mode is
a variation on the CBC mode of operation and is designed to extend or propagate a single bit error in the
ciphertext. This allows errors in transmission to be captured and the resultant plaintext to be rejected. The method
of encryption is given by

c
i
 = E

k
 (m

i
 ⊕ m

i-1
 ⊕ c

i-1
)

and decryption is achieved by computing

m
i
 = D

k
(c

i
) ⊕ c

i-1
 ⊕ m

i-1

where m
0
 ⊕ c

0
 is the initialization vector.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 25

Question 2.1.5. What is a stream cipher?

A stream cipher is a type of symmetric encryption algorithm. Stream ciphers can be designed to be exceptionally
fast, much faster than any block cipher (see Question 2.1.4). While block ciphers operate on large blocks of data,
stream ciphers typically operate on smaller units of plaintext, usually bits. The encryption of any particular
plaintext with a block cipher will result in the same ciphertext when the same key is used. With a stream cipher,
the transformation of these smaller plaintext units will vary, depending on when they are encountered during the
encryption process.

A stream cipher generates what is called a keystream (a sequence of bits used as a key). Encryption is accomplished
by combining the keystream with the plaintext, usually with the bitwise exclusive-OR operation. The generation
of the keystream can be independent of the plaintext and ciphertext (yielding what is termed a synchronous stream
cipher) or it can depend on the data and its encryption (in which case the stream cipher is said to be self-synchro-
nizing). Most stream cipher designs are for synchronous stream ciphers.

One-time Pads
Current interest in stream ciphers is most commonly attributed to the appealing theoretical properties of the one-
time pad. A one-time pad, sometimes called the Vernam cipher [Ver26], uses a string of bits that is generated com-
pletely at random. The keystream is the same length as the plaintext message and the random string is combined
using bitwise exclusive-OR with the plaintext to produce the ciphertext. Since the entire keystream is random,
even an opponent with infinite computational resources can only guess the plaintext if he or she sees the
ciphertext. Such a cipher is said to offer perfect secrecy, and the analysis of the one-time pad is seen as one of the
cornerstones of modern cryptography [Sha49]. While the one-time pad saw use during wartime over diplomatic
channels requiring exceptionally high security, the fact that the secret key (which can be used only once) is as long
as the message introduces severe key-management problems. While perfectly secure, the one-time pad is in
general impractical.

Stream ciphers were developed as an approximation to the action of the one-time pad. While contemporary
stream ciphers are unable to provide the satisfying theoretical security of the one-time pad, they are at least
practical.

As of now there is no stream cipher that has emerged as a de facto standard. The most widely used stream cipher
is RC4 (see Question 3.6.3). Interestingly, certain modes of operation of a block cipher effectively transform it into
a keystream generator and in this way, any block cipher can be used as a stream cipher; as in DES in CFB or OFB
modes (see Questions 2.1.4 and 3.2.1). However, stream ciphers with a dedicated design are typically much faster.

Figure 6. Linear Feedback Shift Register (LFSR)

A Linear Feedback Shift Register (LFSR) is a mechanism for generating a sequence of binary bits. The register (see
Figure 6) consists of a series of cells that are set by an initialization vector that is, most often, the secret key. The
behavior of the register is regulated by a clock and at each clocking instant, the contents of the cells of the register
are shifted right by one position, and the exclusive-or of a subset of the cell contents is placed in the leftmost cell.
One bit of output is usually derived during this update procedure.

LFSRs are fast and easy to implement in both hardware and software. With a judicious choice of feedback taps (the
particular bits that are used, in Figure 6, the 2nd and 5th bits are “tapped”) the sequences that are generated can

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 26

have a good statistical appearance. However, the sequences generated by a single LFSR are not secure because a
powerful mathematical framework has been developed over the years which allows for their straightforward
analysis. However, LFSRs are useful as building blocks in more secure systems.

A shift register cascade is a set of LFSRs connected together in such a way that the behavior of one particular LFSR
depends on the behavior of the previous LFSRs in the cascade. This dependent behavior is usually achieved by
using one LFSR to control the clock of the following LFSR. For instance, one register might be advanced by one
step if the preceding register output is 1 and advanced by two steps otherwise. Many different configurations are
possible and certain parameter choices appear to offer very good security. For more detail, see an excellent survey
article by Gollman and Chambers [GC89].

The shrinking generator was developed by Coppersmith, Krawczyk, and Mansour [CKM94]. It is a stream cipher
based on the simple interaction between the outputs from two LFSRs. The bits of one output are used to deter-
mine whether the corresponding bits of the second output will be used as part of the overall keystream. The
shrinking generator is simple and scaleable, and has good security properties. One drawback of the shrinking
generator is that the output rate of the keystream will not be constant unless precautions are taken. A variant of
the shrinking generator is the self-shrinking generator [MS95b], where instead of using one output from one LFSR to
“shrink” the output of another (as in the shrinking generator), the output of a single LFSR is used to extract bits
from the same output. There are as yet no results on the cryptanalysis of either technique.

More information about stream ciphers and the various available algorithms can be found in almost any book on
contemporary cryptography and in RSA Laboratories Technical Report TR801 [Rob95b].

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 27

Question 2.1.6. What is a hash function?

A hash function H is a transformation that takes an input m and returns a fixed-size string, which is called the hash
value h (that is, h = H(m)). Hash functions with just this property have a variety of general computational uses, but
when employed in cryptography, the hash functions are usually chosen to have some additional properties.

The basic requirements for a cryptographic hash function are:
• the input can be of any length,
• the output has a fixed length,
• H(x) is relatively easy to compute for any given x ,
• H(x) is one-way,
• H(x) is collision-free.

A hash function H is said to be one-way if it is hard to invert, where “hard to invert” means that given a hash value
h, it is computationally infeasible to find some input x such that H(x) = h. If, given a message x, it is
computationally infeasible to find a message y not equal to x such that H(x) = H(y) then H is said to be a weakly
collision-free hash function. A strongly collision-free hash function H is one for which it is computationally infeasible
to find any two messages x and y such that H(x) = H(y).

For more information and a particularly thorough study of hash functions, see Preneel [Pre93].

The hash value represents concisely the longer message or document from which it was computed; this value is
called the message digest. One can think of a message digest as a “digital fingerprint” of the larger document.
Examples of well-known hash functions are MD2 and MD5 (see Question 3.6.6) and SHA (see Question 3.6.5).

Perhaps the main role of a cryptographic hash function is in the provision of message integrity checks and digital
signatures. Since hash functions are generally faster than encryption or digital signature algorithms, it is typical to
compute the digital signature or integrity check to some document by applying cryptographic processing to the
document’s hash value, which is small compared to the document itself. Additionally, a digest can be made public
without revealing the contents of the document from which it is derived. This is important in digital
timestamping (see Question 7.11) where, using hash functions, one can get a document timestamped without
revealing its contents to the timestamping service.

Damgård and Merkle [Dam90] [Mer90a] greatly influenced cryptographic hash function design by defining a
hash function in terms of what is called a compression function. A compression function takes a fixed length input
and returns a shorter, fixed-length output. Given a compression function, a hash function can be defined by
repeated applications of the compression function until the entire message has been processed. In this process, a
message of arbitrary length is broken into blocks whose length depends on the compression function, and “pad-
ded” (for security reasons) so the size of the message is a multiple of the block size. The blocks are then processed
sequentially, taking as input the result of the hash so far and the current message block, with the final output
being the hash value for the message (see Figure 7).

Figure 7. Damgård/Merkle iterative structure for hash functions

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 28

Question 2.1.7. What are Message Authentication Codes (MACs)?

A message authentication code (MAC) is an authentication tag (also called a checksum) derived by appying an
authentication scheme, together with a secret key, to a message. Unlike digital signatures, MACs are computed
and verified with the same key, so that they can only be verified by the intended recipient. There are four types of
MACs: (1) unconditionally secure, (2) hash function-based, (3) stream cipher-based, or (4) block cipher-based.

Simmons and Stinson [Sti95] proposed an unconditionally secure MAC based on encryption with a one-time pad.
The ciphertext of the message authenticates itself, as nobody else has access to the one-time pad. However, there
has to be some redundancy in the message. An unconditionally secure MAC can also be obtained by use of a one-
time secret key.

Hash function-based MACs (often called HMACs) use a key or keys in conjunction with a hash function (see
Question 2.1.6) to produce a checksum that is appended to the message. An example is the keyed-MD5 (see
Question 3.6.6) method of message authentication [KR95b].

Lai, Rueppel, and Woolven [LRW92] proposed a MAC based on stream ciphers (see Question 2.1.5). In their
algorithm, a provably secure stream cipher is used to split a message into two substreams and each substream is
fed into a LFSR (see Question 2.1.5); the checksum is the final state of the two LFSRs.

MACs can also be derived from block ciphers (see Question 2.1.4). The DES-CBC MAC is a widely used US and
international standard [NIS85]. The basic idea is to encrypt the message blocks using DES CBC (see Question
2.1.4) and output the final block in the ciphertext as the checksum. Bellare et al. give an analysis of the security of
this MAC [BKR94].

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 29

Question 2.1.8. What are interactive proofs and zero-knowledge proofs?

Informally, an interactive proof is a protocol between two parties in which one party, called the prover, tries to
prove a certain fact to the other party, called the verifier. An interactive proof usually takes the form of a chal-
lenge-response protocol, in which the prover and the verifier exchange messages and the verifier outputs either
“accept” or “reject” at the end of the protocol. Apart from their theoretical interest, interactive proofs have found
applications in cryptography and computer security such as identification and authentication. In these situations,
the fact to be proved is usually related to the prover’s identity, such as the prover’s private key.

It is useful for interactive proofs to have the following properties, especially in cryptographic applications:

• Completeness: The verifier always accepts the proof if the fact is true and both the prover and the verifier
follow the protocol.

• Soundness: The verifier always rejects the proof if the fact is false, as long as the verifier follows the protocol.
• Zero knowledge: The verifier learns nothing about the fact being proved (except that it is correct) from the

prover that he could not already learn without the prover, even if the verifier does not follow the protocol (as
long as the prover does). In a zero-knowledge proof, the verifier cannot even later prove the fact to anyone
else. (Not all interactive proofs have this property.)

A typical round in a zero-knowledge proof consists of a “commitment” message from the prover, followed by a
challenge from the verifier, and then a response to the challenge from the prover. The protocol may be repeated
for many rounds. Based on the prover’s responses in all the rounds, the verifier decides whether to accept or reject
the proof.

Figure 8. Ali Baba�s Cave

Let us consider an intuitive example called Ali Baba’s Cave [QG90] (see Figure 8). Alice wants to prove to Bob she
knows the secret words that will open the portal at C-D in the cave, but she does not wish to reveal the secret to
Bob. In this scenario, Alice’s commitment is to go to C or D. A typical round in the proof proceeds as follows: Bob
goes to A and waits there while Alice goes to C or D. Bob then goes to B and shouts to ask Alice to appear from
either the right side or the left side of the tunnel. If Alice does not know the secret words (e.g., “Open Sesame”),
there is only a 50 percent chance she will come out from the right tunnel. Bob will repeat this round as many times
as he desires until he is certain Alice knows the secret words. No matter how many times the proof repeats, Bob
does not learn the secret words.

There are a number of zero-knowledge and interactive proof protocols in use today as identification schemes. The
Fiat-Shamir protocol [FS87] is the first practical zero-knowledge protocol with cryptographic applications and is
based on the difficulty of factoring. A more common variation of the Fiat-Shamir protocol is the Feige-Fiat-Shamir
scheme [FFS88]. Guillou and Quisquater [GQ88] further improved Fiat-Shamir’s protocol in terms of memory
requirements and interaction (the number of rounds in the protocol).

Identification schemes based on interactive proofs can usually be transformed into digital signature schemes (see
Question 2.2.2 and [FS87]).

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 30

Question 2.1.9. What are secret sharing schemes?

Secret sharing schemes were discovered independently by Blakley [Bla79] and Shamir [Sha79]. The motivation for
secret sharing is secure key management. In some situations, there is usually one secret key that provides access to
many important files. If such a key is lost (for example, the person who knows the key becomes unavailable, or
the computer which stores the key is destroyed), then all the important files become inaccessible. The basic idea in
secret sharing is to divide the secret key into pieces and distribute the pieces to different persons so that certain
subsets of the persons can get together to recover the key.

A general secret sharing scheme specifies the minimal sets of users who are able to recover the secret by sharing
their secret information.

A common example of secret sharing is an m-out-of-n scheme (or (m,n)-threshold scheme) for integers
1 ≤ m ≤ n. In such a scheme, there is a sender (or dealer) and n participants. The sender divides the secret into n
parts and gives each participant one part so that any m parts can be put together to recover the secret, but any
m - 1 parts do not suffice to determine the secret. The pieces are usually called shares or shadows. Different
choices for the values of m and n reflect the tradeoff between security and reliability. An m-out-of-n secret sharing
scheme is perfect if any group of at most m - 1 participants (insiders) cannot determine any information about the
secret.

Both Shamir’s scheme and Blakley’s scheme (see Question 3.6.12) are m-out-of-n secret sharing schemes (Shamir’s
scheme is perfect). They represent two different ways of constructing such schemes, based on which more ad-
vanced secret sharing schemes can be designed. The study of the combination of proactive techniques (see Ques-
tion 7.16) with secret sharing schemes is an active area of research. For further information on secret sharing
schemes, see [Sim92].

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 31

Section 2.2: Simple Applications of Cryptography

Question 2.2.1. What is privacy?

Privacy is perhaps the most obvious application of cryptography. Cryptography can be used to implement
privacy simply by encrypting the information intended to remain private. In order for someone to read this
private data, one must first decrypt it. Note that sometimes information is not supposed to be accessed by anyone,
and in these cases, the information may be stored in such a way that reversing the process is virtually impossible.
For instance, on a typical multi-user system, no one is supposed to know the list of passwords of everyone on the
system. Often hash values of passwords are stored instead of the passwords themselves. This allows the users of
the system to be confident their private information is actually kept private while still enabling an entered pass-
word to be verified (by computing its hash and comparing that result against a stored hash value).

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 32

Question 2.2.2. What is a digital signature and what is authentication?

Authentication is any process through which one proves and verifies certain information. Sometimes one may want
to verify the origin of a document, the identity of the sender, the time and date a document was sent and/or signed,
the identity of a computer or user, and so on. A digital signature is a cryptographic means through which many of
these may be verified. The digital signature of a document is a piece of information based on both the document and
the signer’s private key. It is typically created through the use of a hash function (see Question 2.1.6) and a private
signing function (encrypting with the signer’s private key), but there are other methods.

Every day, people sign their names to letters, credit card receipts, and other documents, demonstrating they are in
agreement with the contents. That is, they authenticate that they are in fact the sender or originator of the item.
This allows others to verify that a particular message did indeed originate from the signer. However, this is not
foolproof, since people can ‘lift’ signatures off one document and place them on another, thereby creating fraudu-
lent documents. Written signatures are also vulnerable to forgery because it is possible to reproduce a signature on
other documents as well as to alter documents after they have been signed.

Digital signatures and hand-written signatures both rely on the fact that it is very hard to find two people with the
same signature. People use public-key cryptography to compute digital signatures by associating something
unique with each person. When public-key cryptography is used to encrypt a message, the sender encrypts the
message with the public key of the intended recipient. When public-key cryptography is used to calculate a digital
signature, the sender encrypts the “digital fingerprint” of the document with his or her own private key. Anyone
with access to the public key of the signer may verify the signature.

Suppose Alice wants to send a signed document or message to Bob. The first step is generally to apply a hash
function to the message, creating what is called a message digest. The message digest is usually considerably
shorter than the original message. In fact, the job of the hash function is to take a message of arbitrary length and
shrink it down to a fixed length. To create a digital signature, one usually signs (encrypts) the message digest as
opposed to the message itself. This saves a considerable amount of time, though it does create a slight insecurity
(addressed below). Alice sends Bob the encrypted message digest and the message, which she may or may not
encrypt. In order for Bob to authenticate the signature he must apply the same hash function as Alice to the
message she sent him, decrypt the encrypted message digest using Alice’s public key and compare the two. If the
two are the same he has successfully authenticated the signature. If the two do not match there are a few possible
explanations. Either someone is trying to impersonate Alice, the message itself has been altered since Alice signed
it or an error occurred during transmission.

There is a potential problem with this type of digital signature. Alice not only signed the message she intended to
but also signed all other messages that happen to hash to the same message digest. When two messages hash to the
same message digest it is called a collision; the collision-free properties of hash functions (see Question 2.1.6) are a
necessary security requirement for most digital signature schemes. A hash function is secure if it is very time
consuming, if at all possible, to figure out the original message given its digest. However, there is an attack called
the Birthday Attack that relies on the fact that it is easier to find two messages that hash to the same value than to
find a message that hashes to a particular value. Its name arises from the fact that for a group of 23 or more people
the probability that two or more people share the same birthday is better than 50%.

In addition someone could pretend to be Alice and sign documents with a key pair they claim is Alice’s. To avoid
scenarios such as this, there are digital documents called certificates that associate a person with a specific public
key. For more information on certificates, see Question 4.1.3.10.

Digital time stamps may be used in connection with digital signatures to bind a document to a particular time of
origin. It is not sufficient to just note the date in the message, since dates on computers can be easily manipulated.
It is better that timestamping is done by someone everyone trusts, such as a certifying authority (see Question
4.1.3.12).

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 33

Question 2.2.3. What is a key agreement protocol?

A key agreement protocol, also called a key exchange protocol, is a series of steps used when two or more parties
need to agree upon a key to use for a secret-key cryptosystem. These protocols allow people to share keys freely
and securely over any insecure medium, without the need for a previously-established shared secret.

Suppose Alice and Bob want to use a secret-key cryptosystem (see Question 2.1.2) to communicate securely. They
first must decide on a shared key. Instead of Bob calling Alice on the phone and discussing what the key will be,
which would leave them vulnerable to an eavesdropper, they decide to use a key agreement protocol. By using a
key agreement protocol, Alice and Bob may securely exchange a key in an insecure environment. One example of
such a protocol is called the Diffie-Hellman key agreement (see Question 3.6.1). In many cases, public-key cryp-
tography is used in a key agreement protocol. Another example is the use of digital envelopes (see Question 2.2.4)
for key agreement.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 34

Question 2.2.4. What is a digital envelope?

When using secret-key cryptosystems, users must first agree on a session key, that is, a secret key to be used for
the duration of one message or communication session. In completing this task there is a risk the key will be
intercepted during transmission. This is part of the key management problem. Public-key cryptography offers an
attractive solution to this problem within a framework called a digital envelope.

The digital envelope consists of a message encrypted using secret-key cryptography and an encrypted secret key.
While digital envelopes usually use public-key cryptography to encrypt the secret key, this is not necessary. If
Alice and Bob have an established secret key, they could use this to encrypt the secret key in the digital envelope.

Suppose Alice wants to send a message to Bob using secret-key cryptography for message encryption and public-
key cryptography to transfer the message encryption key. Alice chooses a secret key and encrypts the message
with it, then encrypts the secret key using Bob’s public key. She sends Bob both the encrypted secret key and the
encrypted message. When Bob wants to read the message he decrypts the secret key, using his private key, and
then decrypts the message, using the secret key. In a multi-addressed communications environment such as e-
mail, this can be extended directly and usefully. If Alice’s message is intended for both Bob and Carol, the mes-
sage encryption key can be represented concisely in encrypted forms for Bob and for Carol, along with a single
copy of the message’s content encrypted under that message encryption key.

Alice and Bob may use this key to encrypt just one message or they may use it for an extended communication.
One of the nice features about this technique is they may switch secret keys as frequently as they would like.
Switching keys often is beneficial because it is more difficult for an adversary to find a key that is only used for a
short period of time (see Question 4.1.2.3 for more information on the life cycle of a key).

Not only do digital envelopes help solve the key management problem, they increase performance (relative to
using a public key system for direct encryption of message data) without sacrificing security. The increase in
performance is obtained by using a secret-key cryptosystem to encrypt the large and variably sized amount of
message data, reserving public-key cryptography for encryption of short-length keys. In general, secret-key
cryptosystems are much faster than public-key cryptosystems.

The digital envelope technique is a method of key exchange, but not all key exchange protocols use digital enve-
lopes (see Question 2.2.3).

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 35

Question 2.2.5. What is identification?

Identification is a process through which one ascertains the identity of another person or entity. In our daily lives,
we identify our family members, friends, and coworkers by their physical properties, such as voice, face or other
characteristics. These characteristics, called biometrics (see Question 7.20), can only be used on computer net-
works with special hardware. Entities on a network may also identify one another using cryptographic methods.

An identification scheme allows Alice to identify herself to Bob in such a way that someone listening in cannot
pose as Alice later. One example of an identification scheme is a zero-knowledge proof (see Question 2.1.8). Zero
knowledge proofs allow a person (or a server, website, etc.) to demonstrate they have a certain piece information
without giving it away to the person (or entity) they are convincing. Suppose Alice knows how to solve the
Rubik’s cube and wants to convince Bob she can without giving away the solution. They could proceed as follows.
Alice gives Bob a Rubik’s cube which he thoroughly messes up and then gives back to Alice. Alice turns away
from Bob, solves the puzzle and hands it back to Bob. This works because Bob saw that Alice solved the puzzle,
but he did not see the solution.

This idea may be adapted to an identification scheme if each person involved is given a “puzzle” and its answer.
The security of the system relies on the difficulty of solving the puzzles. In the case above, if Alice were the only
person who could solve a Rubik’s cube, then that could be her puzzle. In this scenario Bob is the verifier and is
identifying Alice, the prover.

The idea is to associate with each person something unique; something only that person can reproduce. This in
effect takes the place of a face or a voice, which are unique factors allowing people to identify one another in the
physical world.

Authentication and identification are different. Identification requires that the verifier check the information
presented against all the entities it knows about, while authentication requires that the information be checked for
a single, previously identified, entity. In addition, while identification must, by definition, uniquely identify a
given entity, authentication does not necessarily require uniqueness. For instance, someone logging into a shared
account is not uniquely identified, but by knowing the shared password, they are authenticated as one of the users
of the account. Furthermore, identification does not necessarily authenticate the user for a particular purpose.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 36

Section 2.3: Hard Problems

Question 2.3.1. What is a hard problem?

Public-key cryptosystems (see Question 2.1.1) are based on a problem that is in some sense difficult to solve.
Difficult in this case refers more to the computational requirements in finding a solution than the conception of the
problem. These problems are called hard problems. Some of the most well known examples are factoring, theorem-
proving, and the “traveling salesman problem” - finding the route through a given collection of cities which
minimizes the total length of the path.

There are two major classes of problems which interest cryptographers - P and NP. Put simply, problems in P can
be solved in polynomial time, and problems not known to be in P, problems that currently cannot be solved in
polynomial time are in NP. We know that all problems in P are also in NP, but we do not know whether or not all
problems in NP are in P. However, NP problems are abundant.

The question of whether or not P = NP is one of the most important unsolved problems in all of mathematics and
computer science. So far, there has been very little progress towards its solution. One thing we do have is the
concept of an NP-complete problem. Certain NP problems are said to be NP-complete. A problem is called NP-
complete if it can be reduced (transformed) into any other NP problem in polynomial time . If any NP-complete
problem is solved in polynomial time, then all NP problems can be solved in polynomial time. “The traveling
salesman problem is NP-complete. Thus, to prove that P = NP, it would suffice to find a polynomial-time algo-
rithm for one of the NP-complete problems. However, it is commonly thought that P ≠ NP. If it were to be proved
that P = NP, we could theoretically solve an enormous variety of complex problems quickly without a significant
advance in computing technology. For more on the theory of computation, we recommend [GJ79] and [LP98].

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 37

Question 2.3.2. What is a one-way function?

A one-way function is a mathematical function that is significantly easier to compute in one direction (the forward
direction) than in the opposite direction (the inverse direction). It might be possible, for example, to compute the
function in the forward direction in seconds but to compute its inverse could take months or years. A trap-door
one-way function is a one-way function for which the inverse direction is easy given a certain piece of information
(the trap door), but difficult otherwise.

Public-key cryptosystems are based on (presumed) trap-door one-way functions. The public key gives informa-
tion about the particular instance of the function; the private key gives information about the trap door. Whoever
knows the trap door can compute the function easily in both directions, but anyone lacking the trap door can only
perform the function easily in the forward direction. The forward direction is used for encryption and signature
verification; the inverse direction is used for decryption and signature generation.

In almost all public key systems, the size of the key corresponds to the size of the inputs to the one-way function;
the larger the key, the greater the difference between the efforts necessary to compute the function in the forward
and inverse directions (for someone lacking the trap door). For a digital signature to be secure for years, for
example, it is necessary to use a trap-door one-way function with inputs large enough that someone without the
trap door would need many years to compute the inverse function (i.e., to generate a legitimate signature) .

All practical public-key cryptosystems are based on functions that are believed to be one-way, but no function has
been proven to be so. This means it is theoretically possible to discover algorithms that can compute the inverse
direction easily without a trap door for some of the one-way functions; this development would render any
cryptosystem based on these one-way functions insecure and useless. On the other hand, further research in
theoretical computer science may result in concrete lower bounds on the difficulty of inverting certain functions;
this would be a landmark event with significant positive ramifications for cryptography.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 38

Question 2.3.3. What is the factoring problem?

Factoring is the act of splitting an integer into a set of smaller integers (factors) which, when multiplied together,
form the original integer. For example, the factors of 15 are 3 and 5; the factoring problem is to find 3 and 5 when
given 15. Prime factorization requires splitting an integer into factors that are prime numbers; every integer has a
unique prime factorization. Multiplying two prime integers together is easy, but as far as we know, factoring the
product of two (or more) prime numbers is much more difficult.

Factoring is the underlying, presumably hard problem upon which several public-key cryptosystems are based,
including the RSA algorithm. Factoring an RSA modulus (see Question 3.1.1) would allow an attacker to figure
out the private key; thus, anyone who can factor the modulus can decrypt messages and forge signatures. The
security of the RSA algorithm depends on the factoring problem being difficult and the presence of no other types
of attack. There has been some recent evidence that breaking RSA is not equivalent to factoring (see Dan Boneh’s
recent paper on low exponent RSA in the proceedings from EUROCRYPT ’98). It has not been proven that factor-
ing must be difficult, and there remains a possibility that a quick and easy factoring method might be discovered
(see Question 2.3.5), though factoring researchers consider this possibility remote.

In general the larger the number the more time it takes to factor it. Of course if you have a number like 2^100 it is
easier to factor than say, a number with half as many digits but the product of two primes of about the same
length. This is why the size of the modulus in RSA determines how secure an actual use of RSA is; the larger the
modulus, the longer it would take an attacker to factor, and thus the more resistant the RSA modulus is to an
attack.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 39

Question 2.3.4. What are the best factoring methods in use today?

Factoring is a very active field of research among mathematicians and computer scientists; the best factoring
algorithms are mentioned below with some references and their big-O asymptotic efficiencies (see Question 2.3.1).
(O-notation refers to the upper bound on the asymptotic running time of an algorithm [CLR90]). For textbook
treatment of factoring algorithms, see [Knu81] [Kob94] [LL90] [Bre89]; for a detailed explanation of big-O nota-
tion, see [CLR90].

Factoring algorithms come in two flavors, special purpose and general purpose; the efficiency of the former
depends on the unknown factors, whereas the efficiency of the latter depends on the number to be factored.
Special-purpose algorithms are best for factoring numbers with small factors, but the numbers used for the
modulus in the RSA system do not have any small factors. Therefore, general-purpose factoring algorithms are the
more important ones in the context of cryptographic systems and their security.

Special-purpose factoring algorithms include the Pollard rho method [Pol75], with expected running time O(√p),
and the Pollard p - 1 method [Pol74], with running time O(p’), where p’ is the largest prime factor of p - 1. The
Pollard p + 1 method is also a special purpose factoring algorithm, with running time O(p’), where p’ is the largest
prime factor of p+1. All of these take an amount of time that is exponential in the size of p, the prime factor that
they find; thus these algorithms are too slow for most factoring jobs. The elliptic curve method (ECM) [Len87] is
superior to these; its asymptotic running time is O(e(√2ln p ln ln p)). The ECM is often used in practice to find factors of
randomly generated numbers; it is not fast enough to factor a large RSA modulus.

The best general-purpose factoring algorithm today is the Number Field Sieve (NFS) [BLP94] [BLZ94], which runs
in time approximately O(e1.9223(ln n1/3)(ln ln n2/3)). Previously, the most widely used general-purpose algorithm was the
Multiple Polynomial Quadratic Sieve (MPQS) [Sil87], which has running time
O(e√(ln n ln ln n)). Recent improvements to the Number Field Sieve make the NFS more efficient than MPQS in factor-
ing numbers larger than about 115 digits [DL95]; MPQS is better for small integers. RSA-129 (see Question 2.3.6)
was factored using a variation of MPQS. It is now estimated that if the NFS had been used, it would have taken
one quarter of the time.

Clearly, NFS will overtake MPQS as the most widely used factoring algorithm, as the size of the numbers being
factored increases from about 130 digits (the current threshold of general numbers which can be factored) to 140
or 150 digits. A “general number” is one with no special form that might make it easier to factor; RSA moduli are
created to be general numbers. Note that a 512-bit number has about 155 digits.

Numbers with up to 155 digits or more that have a special form are easier to factor than general numbers
[LLM93]. The Cunningham Project [BLS88] keeps track of the factorizations of numbers with these special forms
and maintains a “10 Most Wanted” list of desired factorizations. Also, a good way to survey current factoring
capability is to look at recent results of the RSA Factoring Challenge (see Question 2.3.6).

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 40

Question 2.3.5. What improvements are likely in factoring capability?

Factoring (see Question 2.3.3) has become easier over the last 15 years for three reasons: computer hardware has
become more powerful, computers have become more plentiful and inexpensive, and better factoring algorithms
have emerged.

Hardware improvement will continue inexorably, but it is important to realize hardware improvements make
RSA more secure, not less. This is because a hardware improvement that allows an attacker to factor a number
two digits longer than before will at the same time allow a legitimate RSA user to use a key dozens of digits
longer than before. Therefore, although the hardware improvement does help the attacker, it helps the legitimate
user much more. However, there is a danger that in the future factoring will take place using faster machines than
are currently available, and these machines may be used to attack RSA keys generated in the past. In this scenario,
the attacker alone benefits from the hardware improvement. This consideration argues for using a larger key size
today than one might otherwise consider warranted. It also argues for replacing one’s RSA key with a longer key
every few years, in order to take advantage of the extra security offered by hardware improvements. This point
holds for other public key systems as well.

Recently, the number of computers has increased dramatically. While the computers have become steadily more
powerful, the increase in their power has not compared to their increase in number. Since some factoring algo-
rithms can be done with multiple computers working together, the more computers devoted to a problem, the
faster the problem can be solved. Unlike the hardware improvement factor, prevalence of computers does not
make RSA more secure.

Better factoring algorithms have been more help to the RSA attacker than have hardware improvements. As the
RSA system and cryptography in general have attracted much attention, so has the factoring problem, and many
researchers have found new factoring methods or improved upon others. This has made factoring easier for
numbers of any size, irrespective of the speed of the hardware. However, factoring is still a very difficult problem.

Increasing the key size can offset any decrease in security due to algorithm improvements. In fact, between
general computer hardware improvements and special-purpose RSA hardware improvements, increases in key
size (maintaining a constant speed of RSA operations) have kept pace or exceeded increases in algorithm effi-
ciency, resulting in no net loss of security. As long as hardware continues to improve at a faster rate than the rate
at which the complexity of factoring algorithms decreases, the security of RSA will increase, assuming RSA users
regularly increase their key sizes by appropriate amounts. The open question is how much faster factoring algo-
rithms can get; there could be some intrinsic limit to factoring speed, but this limit remains unknown. However, if
an “easy” solution to the factoring problem can be found, the associated increase in key sizes will render the RSA
system impractical.

Factoring is widely believed to be a hard problem (see Question 2.3.1), but this has not yet been proven. Therefore,
there remains a possibility that an easy factoring algorithm will be discovered. This development, which could
seriously weaken RSA, would be highly surprising and the possibility is considered remote by the researchers
most active in factoring research.

There is also the possibility someone will prove factoring is difficult. Such a development, while unexpected at the
current state of theoretical factoring research, would guarantee the security of RSA beyond a certain key size.

Even if no breakthroughs are discovered in factoring algorithms, both factoring and discrete logarithm problems
can be solved efficiently on a quantum computer (see Question 7.17) if one is ever developed.
Question 2.3.6. What is the RSA Factoring Challenge and what is RSA-129?

The RSA Factoring Challenge was started in March 1991 by RSA Data Security, Inc. to keep abreast of the state of
the art in factoring. Since its inception, well over a thousand numbers have been factored, with the factorers
returning valuable information on the methods they used to complete the factorizations. The Factoring Challenge
provides one of the largest test-beds for factoring implementations and provides one of the largest collections of
factoring results from many different experts worldwide. In short, this vast pool of information gives us an
excellent opportunity to compare the effectiveness of different factoring techniques as they are implemented and

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 41

used in practice. Since the security of the RSA public-key cryptosystem relies on the inability to factor large
numbers of a special type, the cryptographic significance of these results is self-evident.

The challenge is administered by RSA Data Security with quarterly cash awards. Send e-mail to challenge-
info@rsa.com for more information. For an analysis of results from the factoring challenge, see [FR95].

RSA-129 is a 129-digit (426-bit) integer published in Martin Gardner’s column in Scientific American in 1977, and
was not part of the RSA Factoring Challenge. A prize of $100 was offered to anybody able to factor the number.
The number was factored in March 1994 by Atkins et al. [AGL95] using the resources of 1600 computers (which
included two fax machines) from the Internet. The factoring took about 4000 to 6000 MIPS years of computation
over an eight-month period. It was factored using the quadratic sieve factoring method and, according to Lenstra,
will perhaps be the last large number to be factored using the quadratic sieve, since the general Number Field
Sieve is now more efficient for numbers of this size and larger (see Question 2.3.4).

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 42

Question 2.3.7. What is the discrete logarithm problem?

The discrete logarithm problem applies to mathematical entities called groups. A group is a collection of elements,
together with an operation defined on them that is usually referred to as composition or multiplication and which
obey certain rules. If the group has a finite number of elements, each element in the group has what is called an
order, the minimum number of times it must be multiplied by itself to get back to the identity, which is usually
one. The discrete logarithm problem is as follows: given an element g in a group G of order t, and another element
y of G, the problem is to find x, where 0 (x (t - 1, such that y is the result of composing g with itself x times. In
some groups there exist elements that can generate all the elements of G by exponentiating (i.e., applying the
group operation repeatedly) with all the integers from 0 to t - 1. When this occurs, the element is called a genera-
tor and the group is called cyclic.

Like the factoring problem, the discrete logarithm problem is believed to be difficult and also to be the hard
direction of a one-way function. For this reason, it has been the basis of several public-key cryptosystems, includ-
ing the ElGamal system and DSS (see Question 3.6.8 and Question 3.4.1). The discrete logarithm problem bears
the same relation to these systems as factoring does to RSA: the security of these systems rests on the assumption
that discrete logarithms are difficult to compute. Although the discrete logarithm problem exists in any group,
when used for cryptographic purposes the group is usually Z

p
*.

The discrete logarithm problem has received much attention in recent years; descriptions of some of the most
efficient algorithms for discrete logarithms over finite fields can be found in [Odl84] [LL90] [COS86] [Gor93]
[GM93]. The best discrete logarithm algorithms have expected running times similar to those of the best factoring
algorithms. Rivest [Riv92a] has analyzed the expected time to solve the discrete logarithm problem both in terms
of computing power and cost.

In general, the discrete log in an arbitrary group can be computed in running time O(√p) [Pol74], though in many
groups it can be done faster.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 43

Question 2.3.8. What are the best discrete logarithm methods in use today?

Currently, the best algorithms to solve the discrete logarithm problem (see Question 2.3.7) are broken into two
classes: index-calculus methods and collision search methods. The two classes of algorithms differ in the ways they
are applied. Index calculus methods generally require certain arithmetic properties to be present in order to be
successful, whereas collision search algorithms can be applied much more generally. The absence of mere proper-
ties in elliptic curve groups prevents the more powerful index-calculus techniques from being used to attack the
elliptic curve analogues of the more traditional discrete logarithm based cryptosystems (see Question 3.5.1).

Index calculus methods are very similar to the fastest current methods for integer factoring and they run in what
is termed sub-exponential time. They are not as fast as polynomial time algorithms, yet they are considerably
faster than exponential time methods. There are two basic index calculus methods closely related to the quadratic
sieve and number field sieve factoring algorithms (see Question 2.3.4).

As of this time, the largest discrete log problem that has been solved was over GF(2503).

Collision search algorithms have purely exponential run time. The best general method is known as the Pollard
rho method, so-called because the algorithm produces a trail of numbers that when graphically represented with a
line connecting successive elements of the trail looks like the Greek letter rho. There is a tail and a loop; the
objective is basically to find where the tail meets the loop. This method runs in time (π/

2
 p where p is the size of the

group. The largest such problem that has been publicly solved has p ~ 279. This is the best known method of attack
for the general elliptic curve discrete log problem.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 44

Question 2.3.9. What are the prospects for a theoretical breakthrough in the discrete log

problem?

It is impossible to predict when a mathematical breakthrough might occur; this is why they are called break-
throughs. Factoring algorithms have been studied for hundreds of years, general discrete log algorithms have
been extensively studied since the early 1970s, and elliptic curve discrete logs have been studied since the mid-
1980s. Each time a new algorithm has been announced it has come more or less as a surprise to the research
community.

It should be noted that for integer factoring and general discrete logs, a ‘breakthrough’ means finding a polyno-
mial time algorithm. However, for elliptic curve discrete logs, a breakthrough would consist of just finding a sub-
exponential time method. If the latter were found it would mean that elliptic curve discrete logs would no longer
be competitive with integer factoring and general discrete logs as a public-key method. Elliptic curve
cryptosystems (see Question 3.5.1) derive their current advantage because they currently allow smaller keys. If a
sub-exponential time method were found, key sizes would have to increase greatly, and at equivalent key. Elliptic
curve cryptosystems are much slower than other public-key methods

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 45

Question 2.3.10. What are elliptic curves?

Elliptic curves are mathematical constructions from number theory and algebraic geometry, which in recent years
have found numerous applications in cryptography.

Figure 9. Elliptic curve addition.

An elliptic curve can be defined over any field (e.g., real, rational, complex), though elliptic curves used in cryp-
tography are mainly defined over finite fields. An elliptic curve consists of elements (x, y) satisfying the equation

y2 = x3 + ax + b

together with a single element denoted O called the “point at infinity,” which can be visualized as the point at the
top and bottom of every vertical line. (The elliptic curve formula is slightly different for some fields.)

Addition of two points on a elliptic curve is defined according to a set of simple rules (e.g., in Figure 9, point p
1

plus point p
2
 is equal to point -p

3
). The addition operation in an elliptic curve is the counterpart to modular

multiplication in common public-key cryptosystems, and multiple addition is the counterpart to modular expo-
nentiation. Elliptic curves are covered in more recent texts on cryptography, including an informative text by
Koblitz [Kob94].

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 46

Question 2.3.11. What are lattice-based cryptosystems?

Lattice-based cryptosystems are based upon NP-complete problems (see Question 2.3.1) involving lattices. A
lattice can be viewed as a linear combination of vectors in an N-dimensional vector space. An example of a lattice
is the infinite square grid in two-dimensional space consisting of all points with integral coordinates. This lattice is
generated by linear combinations of the pair of vectors <0,1> and <1,0>.

Lattice-based methods fall into two basic classes, although the solution methods for both are identical. In fact,
there are efficient transformations between the two classes. The first class is based on the so-called subset sum
problem: Given a set of numbers S = {a

1
, a

2
, ... a

t
} and another number K, find a subset of S whose values sum to K.

The knapsack problem of Merkle and Hellman is an example of this [MH78].

Other lattice-based methods require finding short vectors embedded in a lattice or finding points in the vector
space close to vertices of the lattice or close to vectors embedded in the lattice. The method of Ajtai and Dwork is
an example of this type of method.

So far lattice-based methods have not proven effective as a foundation for public-key methods. In order for a
lattice-based cryptosystem to be secure, the dimension of the underlying problem has to be large. This results in a
large key size, rendering encryption and decryption quite slow. Ongoing research aims to improve the efficiency
of these cryptosystems.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 47

Question 2.3.12. What are some other hard problems?

There are many other kinds of hard problems (see Question 2.3.1). The list of NP-complete problems (see Question
2.3.1) is extensive and growing. So far, none of these has been effectively applied towards producing a public-key
cryptosystem. A few examples of hard problems are the Traveling Salesman Problem, Integer and Mixed Integer
Programming, Graph Coloring, the Hamiltonian Path problem and the Satisfiability Problem for Boolean Expres-
sions. A good introduction to this topic may be found in [AHU74].

The Traveling Salesman problem is to find a minimal length tour among a set of cities, while visiting each one
only once.

The Integer Programming problem is to solve a Linear Programming problem where some or all of the variables
are restricted to being integers.

The Graph Coloring problem is to determine whether a graph can be colored with a fixed set of colors such that
no two adjacent vertices have the same color, and to produce such a coloring.

The Hamiltonian path problem is to decide if one can traverse a graph by using each edge exactly once.

The Satisfiability Problem is to determine whether a Boolean expression in several variables has a solution.

Another hard problem is the Knapsack problem, a narrow case of the subset sum problem (see Question 2.3.11).
Attempts have been made to make public-key cryptosystems based on the knapsack problem, but none have
yielded strong results. The Knapsack problem is to determine which subset of a set of objects weighing different
amounts has maximal total weight, but still has total weight less than the capacity of the “Knapsack.”

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 48

Section 2.4: Cryptanalysis

Question 2.4.1. What is cryptanalysis?

Cryptanalysis is the flip-side of cryptography: it is the science of cracking codes, decoding secrets, violating authen-
tication schemes, and in general, breaking cryptographic protocols.

In order to design a robust encryption algorithm or cryptographic protocol, one should use cryptanalysis to find
and correct any weaknesses. This is precisely the reason why the best (most trusted) encryption algorithms are
ones that have been made available to public scrutiny. For example, DES (see Question 3.2.1) has been exposed to
public scrutiny for years, and is therefore well-trusted, while Skipjack (see Question 3.6.7) is secret and less well-
trusted. It is a basic tenet of cryptology that the security of an algorithm should not rely on its secrecy. Inevitably,
the algorithm will be discovered and its weaknesses (if any) will be exploited.

The various techniques in cryptanalysis attempting to compromise cryptosystems are referred to as attacks. Some
attacks are general, whereas others apply only to certain types of cryptosystems. Some of the better-known
attacks are mentioned in Question 2.4.2.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 49

Question 2.4.2. What are some of the basic types of cryptanalytic attack?

Cryptanalytic attacks are generally classified into six categories that distinguish the kind of information the
cryptanalyst has available to mount an attack. The categories of attack are listed here roughly in increasing order
of the quality of information available to the cryptanalyst, or, equivalently, in decreasing order of the level of
difficulty to the cryptanalyst. The objective of the cryptanalyst in all cases is to be able to decrypt new pieces of
ciphertext without additional information. The ideal for a cryptanalyst is to extract the secret key.

A ciphertext-only attack is one in which the cryptanalyst obtains a sample of ciphertext, without the plaintext
associated with it. This data is relatively easy to obtain in many scenarios, but a successful ciphertext-only attack
is generally difficult, and requires a very large ciphertext sample.

A known-plaintext attack is one in which the cryptanalyst obtains a sample of ciphertext and the corresponding
plaintext as well.

A chosen-plaintext attack is one in which the cryptanalyst is able to choose a quantity of plaintext and then obtain
the corresponding encrypted ciphertext.

An adaptive-chosen-plaintext attack is a special case of chosen-plaintext attack in which the cryptanalyst is able to
choose plaintext samples dynamically, and alter his or her choices based on the results of previous encryptions.

A chosen-ciphertext attack is one in which cryptanalyst may choose a piece of ciphertext and attempt to obtain the
corresponding decrypted plaintext. This type of attack is generally most applicable to public-key cryptosystems.

An adaptive-chosen-ciphertext is the adaptive version of the above attack. A cryptanalyst can mount an attack of this
type in a scenario in which he has free use of a piece of decryption hardware, but is unable to extract the
decryption key from it.

Note that cryptanalytic attacks can be mounted not only against encryption algorithms, but also, analogously,
against digital signature algorithms (see Question 2.2.2), MACing algorithms (see Question 2.1.7), and pseudo-
random number generators (see Question 2.5.2).

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 50

Question 2.4.3. What is exhaustive key search?

Exhaustive key search, or brute-force search, is the basic technique of trying every possible key in turn until the
correct key is identified. To identify the correct key it may be necessary to possess a plaintext and its correspond-
ing ciphertext, or if the plaintext has some recognizable characteristic, ciphertext alone might suffice. Exhaustive
key search can be mounted on any cipher and sometimes a weakness in the key schedule (see Question 2.1.4) of
the cipher can help improve the efficiency of an exhaustive key search attack.
Advances in technology and computing performance will always make exhaustive key search an increasingly
practical attack against keys of a fixed length. When DES (see Question 3.2.1) was designed, it was generally
considered secure against exhaustive key search without a vast financial investment in hardware [DH77]. To date,
there is no public evidence that such hardware has been constructed. Over the years, however, this line of attack
will become increasingly attractive to a potential adversary [Wie94]. Another useful article on exhaustive key
search can be found in the Winter 1997 issue of CryptoBytes available online at the following URL: (http://
www.rsa.com/rsalabs/pubs/cryptobytes/html/article_index.html).

Exhaustive key search may also be performed in software running on standard desktop workstations and per-
sonal computers. While exhaustive search of DES’s 56-bit key space would take hundreds of years on the fastest
general purpose computer available today, the growth of the Internet has made it possible to utilize thousands of
such machines in a distributed search by partitioning the key space and distributing small portions to each of a
large number of computers. Recently, a group called distributed.net solved RSA’s DES Challenge II, using an
estimated 50,000 processors to search 85% of the possible keys, in 39 days.

While the 56-bit key in DES now only offers a few hours of protection against exhaustive search by a modern
dedicated machine [Wie94], the current rate of increase in computing power is such that an 80-bit key as used by
Skipjack (see Question 3.6.7) can be expected to offer the same level of protection against exhaustive key search in
18 years time as DES does today [BDK93]. Absent a major breakthrough in quantum computing (see Question
7.17), it is unlikely that 128-bit keys, such as those used in IDEA (see Question 3.6.7) or RC5-32/12/16 (see Ques-
tion 3.6.4), will be broken by exhaustive search in the foreseeable future.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 51

Question 2.4.4. What is the RSA Secret Key Challenge?

RSA Laboratories started the RSA Secret Key Challenge in January 1997. The goal of the challenges is to quantify
the security offered by secret key ciphers (see Question 2.1.2) with keys of various sizes. The information obtained
from these contests is anticipated to be of value to researchers and developers alike as they estimate the strength
of an algorithm or application against exhaustive key-search.

Initially, thirteen challenges were issued, of which four have been solved as of January 1, 1998. There were twelve
RC5 challenges and one DES challenge, with key sizes ranging from 40 bits to 128 bits. The 56-bit DES challenge
and the 40, 48, and 56 bit RC5 challenges have all been solved.

In January 1998, RSA Laboratories launched the DES challenge II, which consists of a series of DES challenges to
be released twice per year. It is expected that each time the amount of time needed to solve the challenge will
decrease substantially.

The first DES challenge II was solved by a coordinated team of computer programmers and enthusiasts known as
distributed.net in 39 days, which is less than half the 90 days of computing time it took the original challenge to be
solved by a university team.

For more information, send email to challenge-info@rsa.com or visit the web site at http://www.rsa.com/
rsalabs/97challenge/. For more information on the DES II Challenge, visit the web at http://www.rsa.com/
rsalabs/des2.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 52

Question 2.4.5. What are the most important attacks on symmetric block ciphers?

There are several attacks which are specific to block ciphers (see Question 2.1.4). Four such attacks are differential
cryptanalysis, linear cryptanalysis, the exploitation of weak keys, and algebraic attacks.

Differential cryptanalysis is a type of attack that can be mounted on iterative block ciphers. These techniques were
first introduced by Murphy [Mur90] in an attack on FEAL-4 (see Question 3.6.7), but they were later improved
and perfected by Biham and Shamir [BS91a] [BS93b] who used them to attack DES (see Question 3.2.1). Differen-
tial cryptanalysis is basically a chosen plaintext attack (see Question 2.4.2); it relies on an analysis of the evolution
of the differences between two related plaintexts as they are encrypted under the same key. By careful analysis of
the available data, probabilities can be assigned to each of the possible keys, and eventually the most probable key
is identified as the correct one.

Differential cryptanalysis has been used against a great many ciphers with varying degrees of success. In attacks
against DES, its effectiveness is limited by very careful design of the S-boxes during the design of DES in the mid-
1970s [Cop92]. Studies on protecting ciphers against differential cryptanalysis have been conducted by Nyberg
and Knudsen [NK95] as well as Lai, Massey, and Murphy [LMM92]. Differential cryptanalysis has also been
useful in attacking other cryptographic primitives such as hash functions.

Matsui and Yamagishi [MY92] first devised linear cryptanalysis in an attack on FEAL (see Question 3.6.7). It was
extended by Matsui [Mat93] to attack DES (see Question 3.2.1). Linear cryptanalysis is a known plaintext attack
(see Question 2.4.2) which uses a linear approximation to describe the behavior of the block cipher. Given suffi-
cient pairs of plaintext and corresponding ciphertext, bits of information about the key can be obtained, and
increased amounts of data will usually give a higher probability of success.

There have been a variety of enhancements and improvements to the basic attack. Langford and Hellman [LH94]
introduced an attack called differential-linear cryptanalysis that combines elements of differential cryptanalysis
with those of linear cryptanalysis. Also, Kaliski and Robshaw [KR94] showed that a linear cryptanalytic attack
using multiple approximations might allow for a reduction in the amount of data required for a successful attack.
Other issues such as protecting ciphers against linear cryptanalysis have been considered by Nyberg [Nyb95],
Knudsen [Knu93], and O’Conner [Oco95].

Weak keys are secret keys with a certain value for which the block cipher in question will exhibit certain regulari-
ties in encryption or, in other cases, a poor level of encryption. For instance, with DES (see Question 3.2.1), there
are four keys for which encryption is exactly the same as decryption. This means that if one were to encrypt twice
with one of these weak keys, then the original plaintext would be recovered. For IDEA (see Question 3.6.7), there
is a class of keys for which cryptanalysis is greatly facilitated and the key can be recovered. However, in both
these cases, the number of weak keys is such a small fraction of all possible keys that the chance of picking one at
random is exceptionally slight. In such cases, they pose no significant threat to the security of the block cipher
when used for encryption.

Of course, for other block ciphers, there might well be a large set of weak keys (perhaps even with the weakness
exhibiting itself in a different way) for which the chance of picking a weak key is too large for comfort. In such a
case, the presence of weak keys would have an obvious impact on the security of the block cipher.

Algebraic attacks are a class of techniques that rely for their success on block ciphers exhibiting a high degree of
mathematical structure. For instance, it is conceivable that a block cipher might exhibit what is termed a group
structure. If this were the case, then encrypting a plaintext under one key and then encrypting the result under
another key would always be equivalent to single encryption under some other single key. If so, then the block
cipher would be considerably weaker, and the use of multiple encryption would offer no additional security over
single encryption; see [KRS88] for a more complete discussion. For most block ciphers, the question of whether
they form a group is still open. DES, however, it is known not to be a group.

There are a variety of other concerns with regards to algebraic attacks. See [Rob95a] for more details.
Question 2.4.6. What are some techniques against hash functions?

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 53

The essential cryptographic properties of a hash function are that it is both one-way and collision-free (see Ques-
tion 2.1.6). The most basic attack we might mount on a hash function is to choose inputs to the hash function at
random until either we find some input that will give us the target output value we are looking for (thereby
contradicting the one-way property), or we find two inputs that produce the same output (thereby contradicting
the collision-free property).

Suppose the hash function produces an n-bit long output. If we are trying to find some input which will produce
some target output value y, then since each output is equally likely we expect to have to try on the order of 2n

possible input values.

A birthday attack is a name used to refer to a class of brute-force attacks. It gets its name from the surprising result
that the probability that two or more people in a group of 23 share the same birthday is greater than 1/2; such a
result is called a birthday paradox. If some function, when supplied with a random input, returns one of k
equally-likely values, then by repeatedly evaluating the function for different inputs, we expect to obtain the same
output after about 1.2k1/2. For the above birthday paradox, replace k with 365.

If we are trying to find a collision, then by the birthday paradox we would expect that after trying 1.2(2n/2) pos-
sible input values we would have some collision. Van Oorschot and Wiener [VW94] showed how such a brute-
force attack might be implemented.

With regard to the use of hash functions in the provision of digital signatures, Yuval [Yuv79] proposed the follow-
ing strategy based on the birthday paradox, where n is the length of the message digest:

• The adversary selects two messages: the target message to be signed and an innocuous message that Alice is
likely to want to sign.

• The adversary generates 2n/2 variations of the innocuous message (by making, for instance, minor editorial
changes), all of which convey the same meaning, and their corresponding message digests. He then generates
an equal number of variations of the target message to be substituted.

• The probability that one of the variations of the innocuous message will match one of the variations of the
target message is greater than 1/2 according to the birthday paradox.

• The adversary then obtains Alice’s signature on the variation of the innocuous message.
• The signature from the innocuous message is removed and attached to the variation of the target message that

generates the same message digest. The adversary has successfully forged the message without discovering
the enciphering key.

Pseudo-collisions are collisions for the compression function (see Question 2.1.6) that lies at the heart of an iterative
hash function. While collisions for the compression function of a hash function might be useful in constructing
collisions for the hash function itself, this is not normally the case. While pseudo-collisions might be viewed as an
unfortunate property of a hash function, a pseudo-collision is not equivalent to a collision, and the hash function
can still be secure. MD5 (see Question 3.6.6) is an example of a hash function for which pseudo-collisions have
been discovered and yet is still considered secure.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 54

Question 2.4.7. What are the most important attacks on stream ciphers?

The most typical use of a stream cipher for encryption is to generate a keystream in a way that depends on the
secret key and then to combine this (typically using bitwise exclusive-or) with the message being encrypted.

It is imperative the keystream “looks” random; that is, after seeing increasing amounts of the keystream, an
adversary should have no additional advantage in being able to predict any of the subsequent bits of the se-
quence. While there are some attempts to guarantee this property in a provable, most stream ciphers rely on ad
hoc analysis. A necessary condition for a secure stream cipher is that it pass a battery of statistical tests which
assess (among other things) the frequencies with which individual bits or consecutive patterns of bits of different
sizes occur. Such tests might also check for correlation between bits of the sequence occurring at some time instant
and those at other points in the sequence. Clearly the amount of statistical testing will depend on the thorough-
ness of the designer. It is a very rare and very poor stream cipher that does not pass most suites of statistical tests.

A keystream might potentially have structural weaknesses that allow an adversary to deduce some of the
keystream. Most obviously, if the period of a keystream, that is, the number of bits in the keystream before it begins
to repeat again, is too short, the adversary can apply discovered parts of the keystream to help in the decryption
of other parts of the ciphertext. A stream cipher design should be accompanied by a guarantee of the minimum
period for the keystreams that might be generated or alternatively, good theoretical evidence for the value of the
lower bound to such a period. Without this, the user of the cryptosystem cannot be assured that a given keystream
will not repeat far sooner than might be required for cryptographic safety.

A more involved set of structural weaknesses might offer the opportunity of finding alternative ways to generate
part or even the whole of the keystream. Chief among these approaches might be using a linear feedback shift
register to replicate part of the sequence. The motivation to use a linear feedback shift register is due to an algo-
rithm of Berlekamp and Massey that takes as input a finite sequence of bits and generates as output the details of a
linear feedback shift register that could be used to generate that sequence. This gives rise to the measure of
security known as the linear complexity of a sequence; for a given sequence, the linear complexity is the size of the
linear feedback shift register that needs to be used to replicate the sequence. Clearly a necessary condition for the
security of a stream cipher is that the sequences it produces have a high linear complexity. RSA Laboratories
Technical Report TR-801 [Koc95] describes in more detail some of these issues and also some of the other alterna-
tive measures of complexity that might be of interest to the cryptographer and cryptanalyst.

Other attacks attempt to recover part of the secret key that was used. Apart from the most obvious attack of
searching for the key by brute force, a powerful class of attacks can be described by the term divide and conquer.
During off-line analysis the cryptanalyst identifies some part of the key that has a direct and immediate effect on
some aspect or component of the generated keystream. By performing a brute-force search over this smaller part
of the secret key and observing how well the sequences generated match the real keystream, the cryptanalyst can
potentially deduce the correct value for this smaller fraction of the secret key [Koc95]. This correlation between the
keystream produced after making some guess to part of the key and the intercepted keystream gives rise to what
are termed correlation attacks and later the more efficient fast correlation attacks [Koc95].

Finally there are some implementation considerations. A synchronous stream cipher allows an adversary to
change bits in the plaintext without any error-propagation to the rest of the message. If authentication of the
message being encrypted is required, the use of a cryptographic MAC might be advisable. As a separate imple-
mentation issue synchronization between sender and receiver might sometimes be lost with a stream cipher and
some method is required is ensure the keystreams can be put back into step. One typical way of doing this is for
the sender of the message to intersperse synchronization markers into the transmission so only that part of the
transmission which lies between synchronization markers might be lost. This process however does carry some
security implications.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 55

Question 2.4.8. What are the most important attacks on MACs?

There are a variety of threats to the security of a MAC (see Question 2.1.7). First and most obviously, the use of a
MAC should not reveal information about the secret key being used. Second, it should not be possible for an
adversary to forge the correct MAC to some message without knowing the secret key—even after seeing many
legitimate message/MAC pairs. Third, it should not be possible to replace the message in a message/MAC pair
with another message for which the MAC remains legitimate. There are a variety of threat models that depend on
different assumptions about the data that might be collected. For example, can an adversary control the messages
whose MACs are obtained, and if so, can the choice be adapted as more data is collected?

Depending on the design of the MAC there are a variety of different attacks that might apply. Perhaps the most
important class of attacks is due to Preneel and van Oorschot [PV95]. These attacks involve a sophisticated
application of the birthday paradox (see Question 2.4.6) to the analysis of message/MAC pairs and the attacks
have been particularly useful in highlighting structural faults in the design of many MACs. Some considerable
work was spent in the early to mid-1990’s on designing MACs based around the use of a hash function. The
attacks of Preneel and van Oorschot were instrumental in removing many of these flawed designs from consider-
ation.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 56

Question 2.4.9. At what point does an attack become practical?

There is no easy answer to this question as the answer depends on many distinct factors. Not only must the work
and computational resources required by the cryptanalyst be reasonable, but the amount and type of data re-
quired for the attack to be successful must also be taken into account. Furthermore, the value of the concealed
information must be taken into account—it is reasonable to spend a million dollars of effort to uncover something
worth more than a million dollars, however, any sane attacker would not, for example, invest one million dollars
to uncover a secret worth one thousand dollars.

Also, it should be noted that cryptography and security are not equivalent. If a block cipher takes seven months of
computational effort to crack, but the key can be recovered by bribery or extortion, a truly dedicated adversary
will probably attempt the latter.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 57

Section 2.5: Supporting Tools in Cryptography

Question 2.5.1. What is primality testing?

Primality testing is the process of proving a number is prime (an integer greater than 1 is prime if it is divisible
only by itself and 1). It is used in the key generation process for cryptosystems that depend on secret prime
numbers, such as RSA. Probabilistic primality testing is a process which proves a number has a high probability of
being prime.

To generate a random prime number, random numbers are generated (see Question 2.5.2) and tested for primality
until one of them is found to be prime (or very likely to be prime, if probabilistic testing is used).

It is generally recommended to use probabilistic primality testing, which is much quicker than actually proving a
number is prime. One can use a probabilistic test that determines whether a number is prime with arbitrarily
small probability of error, say, less than 2-100. For further discussion of some primality testing algorithms, see
[BBC88]. For some empirical results on the reliability of simple primality tests, see [Riv91a]; one can perform very
fast primality tests and be extremely confident in the results. A simple algorithm for choosing probable primes
was analyzed by Brandt and Damgård [BD93b].

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 58

Question 2.5.2. What is random number generation?

Random number generation is used in a wide variety of cryptographic operations, such as key generation and
challenge/response protocols. A random number generator is a function that outputs a sequence of 0s and 1s such
that at any point, the next bit cannot be predicted based on the previous bits. However, true random number
generation is difficult to do on a computer, since computers are deterministic devices. Thus, if the same random
generator is run twice, identical results are received. True random number generators are in use, but they can be
difficult to build. They typically take input from something in the physical world, such as the rate of neutron
emission from a radioactive substance or a user’s idle mouse movements.

Because of these difficulties, random number generation on a computer is usually only pseudo-random number
generation. A pseudo-random number generator produces a sequence of bits that has a random looking distribu-
tion. With each different seed (a typically random stream of bits used to generate a usually longer pseudo-random stream),
the pseudo-random number generator generates a different pseudo-random sequence. With a relatively small
random seed a pseudo-random number generator can produce a long apparently random string.

Pseudo-random number generators are often based on cryptographic functions like block ciphers or stream
ciphers. For instance, iterated DES encryption starting with a 56-bit seed produces a pseudo-random sequence.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 59

Section 3.1: RSA

Question 3.1.1. What is RSA?

RSA is a public-key cryptosystem that offers both encryption and digital signatures (authentication). Ron Rivest,
Adi Shamir, and Leonard Adleman developed RSA in 1977 [RSA78]; RSA stands for the first letter in each of its
inventors’ last names.

RSA works as follows: take two large primes, p and q, and compute their product n = pq; n is called the modulus.
Choose a number, e, less than n and relatively prime to (p-1)(q-1), which means e and (p-1)(q-1) have no common
factors except 1. Find another number d such that (ed - 1) is divisible by (p-1)(q-1). The values e and d are called the
public and private exponents, respectively. The public key is the pair (n, e); the private key is (n, d). The factors p and
q may be kept with the private key, or destroyed.

It is currently difficult to obtain the private key d from the public key (n, e). However if one could factor n into p
and q, then one could obtain the private key d. Thus the security of RSA is based on the assumption that factoring
is difficult. The discovery of an easy method of factoring would “break” RSA (see Question 3.1.3 and Question
2.3.3).

Here is how RSA can be used for encryption and digital signatures (in practice, the actual use is slightly different;
see Question 3.1.7 and Question 3.1.8):

RSA Encryption
Suppose Alice wants to send a message m to Bob. Alice creates the ciphertext c by exponentiating: c = me mod n,
where e and n are Bob’s public key. She sends c to Bob. To decrypt, Bob also exponentiates: m = cd mod n; the
relationship between e and d ensures that Bob correctly recovers m. Since only Bob knows d, only Bob can decrypt
this message.

RSA Digital Signature
Suppose Alice wants to send a message m to Bob in such a way that Bob is assured the message is both authentic,
has not been tampered with, and from Alice. Alice creates a digital signature s by exponentiating: s = md mod n,
where d and n are Alice’s private key. She sends m and s to Bob. To verify the signature, Bob exponentiates and
checks that the message m is recovered: m = se mod n, where e and n are Alice’s public key.

Thus encryption and authentication take place without any sharing of private keys: each person uses only
another’s public key or their own private key. Anyone can send an encrypted message or verify a signed message,
but only someone in possession of the correct private key can decrypt or sign a message.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 60

Question 3.1.2. How fast is RSA?

An “RSA operation,” whether encrypting, decrypting, signing, or verifying is essentially a modular exponentia-
tion. This computation is performed by a series of modular multiplications.

In practical applications, it is common to choose a small public exponent for the public key. In fact, entire groups
of users can use the same public exponent, each with a different modulus. (There are some restrictions on the
prime factors of the modulus when the public exponent is fixed.) This makes encryption faster than decryption
and verification faster than signing. With the typical modular exponentiation algorithms used to implement RSA,
public key operations take O(k2) steps, private key operations take O(k3) steps, and key generation takes O(k4)
steps, where k is the number of bits in the modulus. “Fast multiplication” techniques, such as FFT-based methods,
require asymptotically fewer steps. In practice, however, they are not as common due to their greater software
complexity and the fact that they may actually be slower for typical key sizes.

The speed and efficiency of the many commercially available software and hardware implementations of RSA are
increasing rapidly. On a 90 MHz Pentium, RSA Data Security’s cryptographic toolkit BSAFE 3.0 (see Question
5.2.3) has a throughput for private key operations of 21.6 kbits per second with a 512-bit modulus and 7.4 kbits
per second with a 1024-bit modulus. The fastest RSA hardware [SV93] has a throughput greater than 300 kbits per
second with a 512-bit modulus, implying that it performs over 500 RSA private key operations per second (There
is room in that hardware to execute two RSA 512-bit RSA operations in parallel [Sha95], hence the 600 kbits/s
speed reported in [SV93]. For 970-bit keys, the throughput is 185 kbits/s.). It is expected that RSA speeds will
reach 1 mbits/second in late 1999.

By comparison, DES (see Question 3.2. 1) and other block ciphers are much faster than RSA. In software, DES is
generally at least 100 times as fast as RSA. In hardware, DES is between 1,000 and 10,000 times as fast, depending
on the implementation. Implementations of RSA will probably narrow the gap a bit in coming years, due to high
demand, but DES will get faster as well.

For a detailed report on high-speed RSA implementations see [Koc94].

Section 3: Techniques in Cryptography

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 61

Question 3.1.3. What would it take to break RSA?

There are a few possible interpretations of “breaking RSA.” The most damaging would be for an attacker to
discover the private key corresponding to a given public key; this would enable the attacker both to read all
messages encrypted with the public key and to forge signatures. The obvious way to do this attack is to factor the
public modulus, n, into its two prime factors, p and q. From p, q, and e, the public exponent, the attacker can easily
get d, the private exponent. The hard part is factoring n; the security of RSA depends on factoring being difficult.
In fact, the task of recovering the private key is equivalent to the task of factoring the modulus: you can use d to
factor n, as well as use the factorization of n to find d (see Questions 2.3.4 and 2.3.5 regarding the state of the art in
factoring). It should be noted that hardware improvements alone will not weaken RSA, as long as appropriate key
lengths are used. In fact, hardware improvements should increase the security of RSA (see Question 2.3.5).

Another way to break RSA is to find a technique to compute eth roots mod n. Since c = me mod n , the eth root of c
mod n is the message m. This attack would allow someone to recover encrypted messages and forge signatures
even without knowing the private key. This attack is not known to be equivalent to factoring. No general methods
are currently known that attempt to break RSA in this way. However, in special cases where multiple related
messages are encrypted with the same small exponent, it may be possible to recover the messages.

The attacks just mentioned are the only ways to break RSA in such a way as to be able to recover all messages
encrypted under a given key. There are other methods, however, that aim to recover single messages; success
would not enable the attacker to recover other messages encrypted with the same key. Some people have also
studied whether part of the message can be recovered from an encrypted message [ACG84].

The simplest single-message attack is the guessed plaintext attack. An attacker sees a ciphertext and guesses that
the message might be, for example, “Attack at dawn,” and encrypts this guess with the public key of the recipient
and by comparison with the actual ciphertext, the attacker knows whether or not the guess was correct. Append-
ing some random bits to the message can thwart this attack. Another single-message attack can occur if someone
sends the same message m to three others, who each have public exponent e = 3. An attacker who knows this and
sees the three messages will be able to recover the message m. This attack, and ways to prevent it, are discussed by
Hastad [Has88]. Fortunately, this attack can also be defeated by padding the message before each encryption with
some random bits. There are also some chosen ciphertext attacks (or chosen message attacks for signature forg-
ery), in which the attacker creates some ciphertext and gets to see the corresponding plaintext, perhaps by tricking
a legitimate user into decrypting a fake message (Davida [Dav82] and Desmedt and Odlyzko [DO86] give some
examples).

For a survey of these and other attacks on RSA, see [KR95c].

Of course, there are also attacks that aim not at RSA itself but at a given insecure implementation of RSA; these do
not count as “breaking RSA” because it is not any weakness in the RSA algorithm that is exploited, but rather a
weakness in a specific implementation. For example, if someone stores a private key insecurely, an attacker may
discover it. One cannot emphasize strongly enough that to be truly secure, RSA requires a secure implementation;
mathematical security measures, such as choosing a long key size, are not enough. In practice, most successful
attacks will likely be aimed at insecure implementations and at the key management stages of an RSA system. See
Section 4.1.3 for discussion of secure key management in an RSA system.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 62

Question 3.1.4. What are strong primes and are they necessary for RSA?

In the literature pertaining to RSA, it has often been suggested that in choosing a key pair, one should use so-
called “strong” primes p and q to generate the modulus n. Strong primes have certain properties that make the
product n hard to factor by specific factoring methods; such properties have included, for example, the existence
of a large prime factor of p-1 and a large prime factor of p+1. The reason for these concerns is some factoring
methods (for instance, the Pollard p-1 and p+1 methods, see Question 2.3.4) are especially suited to primes p such
that p-1 or p+1 has only small factors; strong primes are resistant to these attacks.

However, advances in factoring over the last ten years appear to have obviated the advantage of strong primes;
the elliptic curve factoring algorithm is one such advance. The new factoring methods have as good a chance of
success on strong primes as on “weak” primes. Therefore, choosing traditional “strong” primes alone does not
significantly increase security. Choosing large enough primes is what matters. However, there is no danger in
using strong, large primes, though it may take slightly longer to generate a strong prime than an arbitrary prime.

It is possible new factoring algorithms may be developed in the future which once again target primes with
certain properties. If this happens, choosing strong primes may once again help to increase security.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 63

Question 3.1.5. How large a key should be used in RSA?

The size of an RSA key typically refers to the size of the modulus n. The two primes, p and q, which compose the
modulus, should be of roughly equal length; this makes the modulus harder to factor than if one of the primes is
much smaller than the other. If one chooses to use a 768-bit modulus, the primes should each have length approxi-
mately 384 bits. If the two primes are extremely close (identical except for, say, 100 - 200 bits), or more generally, if
their difference is close to any predetermined amount, then there is a potential security risk, but the probability
that two randomly chosen primes are so close is negligible.

The best size for an RSA modulus depends on one’s security needs. The larger the modulus, the greater the
security, but also the slower the RSA operations. One should choose a modulus length upon consideration, first, of
the value of the protected data and how long it needs to be protected, and, second, of how powerful one’s poten-
tial threats might be.

A good analysis of the security obtained by a given modulus length is given by Rivest [Riv92a], in the context of
discrete logarithms modulo a prime, but it applies to RSA as well. A more recent study of RSA key-size security
can be found in an article by Odlyzko [Odl95]. Odlyzko considers the security of RSA key sizes based on factoring
techniques available in 1995 and on potential future developments, and he also considers the ability to tap large
computational resources via computer networks. In 1997, a specific assessment of the security of 512-bit RSA keys
shows that one may be factored for less than $1,000,000 in cost and eight months of effort [Rob95d]. It is believed
that 512-bit keys no longer provide sufficient security for anything more than very short-term security needs. RSA
Laboratories currently recommends key sizes of 768 bits for personal use, 1024 bits for corporate use, and 2048
bits for extremely valuable keys like the root key pair used by a certifying authority (see Question 4.1.3.12).

It is typical to ensure that the key of an individual user expires after a certain time, say, two years (see Question
4.1.3.5). This gives an opportunity to change keys regularly and to maintain a given level of security. Upon
expiration, the user should generate a new key being sure to ascertain whether any changes in cryptanalytic skills
make a move to longer key lengths appropriate. . (Of course, changing a key doesn’t defend against attacks that
attempt to recover messages encrypted with an old key, so key size should always be chosen according to the
expected lifetime of the data. The opportunity to change keys allows one to adapt to new key size recommenda-
tions.) RSA Laboratories publishes recommended key lengths on a regular basis.

Users should keep in mind that the estimated times to break RSA are averages only. A large factoring effort,
attacking many thousands of RSA moduli, may succeed in factoring at least one in a reasonable time. Although
the security of any individual key is still strong, with some factoring methods there is always a small chance the
attacker may get lucky and factor some key quickly.

As for the slowdown caused by increasing the key size (see Question 3.1.2), doubling the modulus length will, on
average, increase the time required for public key operations (encryption and signature verification) by a factor of
four, and increase the time taken by private key operations (decryption and signing) by a factor of eight. The
reason public key operations are affected less than private key operations is that the public exponent can remain
fixed while the modulus is increased, whereas the length of the private exponent increases proportionally. Key
generation time would increase by a factor of 16 upon doubling the modulus, but this is a relatively infrequent
operation for most users.

It should be noted that the key sizes for RSA (and other public-key techniques) are much larger than those for
block ciphers like DES (see Question 3.2.1), but the security of an RSA key cannot be compared to the security of a
key in another system purely in terms of length.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 64

Question 3.1.6. Could users of RSA run out of distinct primes?

As Euclid proved over two thousand years ago, there are infinitely many prime numbers. Because RSA is gener-
ally implemented with a fixed key length, however, the number of primes available to a user of the algorithm is
effectively finite. Although finite, this number is nonetheless very large. The Prime Number Theorem states that
the number of primes less than or equal to n is asymptotic to n/ln n. Hence, the number of prime numbers of
length 512 bits or less is roughly 10150. This is greater than the number of atoms in the known universe.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 65

Question 3.1.7. How is RSA used for privacy in practice?

In practice, RSA is often used together with a secret-key cryptosystem, such as DES (see Question 3.2.1), to en-
crypt a message by means of an RSA digital envelope (see Question 2.2.4).

Suppose Alice wishes to send an encrypted message to Bob. She first encrypts the message with DES, using a
randomly chosen DES key. Then she looks up Bob’s public key and uses it to encrypt the DES key. The DES-
encrypted message and the RSA-encrypted DES key together form the RSA digital envelope and are sent to Bob.
Upon receiving the digital envelope, Bob decrypts the DES key with his private key, then uses the DES key to
decrypt the message itself. This combines the high speed of DES with the key-management convenience of RSA.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 66

Question 3.1.8. How is RSA used for authentication and digital signatures in practice?

The RSA Public-key cryptosystem can be used to authenticate (see Question 2.2.2) or identify another person or
entity. The reason it works well is because each entity has an associated private key which (theoretically) no one
else has access to. This allows for positive and unique identification.

Suppose Alice wishes to send a signed message to Bob. She applies a hash function (see Question 2.1.6) to the
message to create a message digest, which serves as a “digital fingerprint” of the message. She then encrypts the
message digest with her RSA private key, creating the digital signature she sends to Bob along with the message
itself. Bob, upon receiving the message and signature, decrypts the signature with Alice’s public key to recover the
message digest. He then hashes the message with the same hash function Alice used and compares the result to
the message digest decrypted from the signature. If they are exactly equal, the signature has been successfully
verified and he can be confident the message did indeed come from Alice. If they are not equal, then the message
either originated elsewhere or was altered after it was signed, and he rejects the message. Anybody who reads the
message can verify the signature. This does not satisfy situations where Alice wishes to retain the secrecy of the
document. In this case she may wish to sign the document, then encrypt it using Bob’s public key. Bob will then
need to decrypt using his private key and verify the signature on the recovered message using Alice’s public key.
Alternately, if it is necessary for intermediary third parties to validate the integrity of the message without being
able to decrypt its content, a message digest may be computed on the encrypted message, rather than on its
plaintext form.

In practice, the RSA public exponent is usually much smaller than the RSA private exponent. This means that
verification of a signature is faster than signing. This is desirable because a message will be signed by an indi-
vidual only once, but the signature may be verified many times.

It must be infeasible for anyone to either find a message that hashes to a given value or to find two messages that
hash to the same value. If either were feasible, an intruder could attach a false message onto Alice’s signature.
Hash functions such as MD5 and SHA (see Question 3.6.5 and Question 3.6.6) have been designed specifically to
have the property that finding a match is infeasible, and are therefore considered suitable for use in cryptography.

One or more certificates (see Question 4.1.3.10) may accompany a digital signature. A certificate is a signed
document that binds the public key to the identity of a party. Its purpose is to prevent someone from impersonat-
ing someone else. If a certificate is present, the recipient (or a third party) can check that the public key belongs to
a named party, assuming the certifier’s public key is itself trusted.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 67

Question 3.1.9. Is RSA currently in use?

RSA is currently used in a wide variety of products, platforms, and industries around the world. It is found in
many commercial software products and is planned to be in many more. RSA is built into current operating
systems by Microsoft, Apple, Sun, and Novell. In hardware, RSA can be found in secure telephones, on Ethernet
network cards, and on smart cards. In addition, RSA is incorporated into all of the major protocols for secure
Internet communications, including S/MIME (see Question 5.1.1), SSL (see Question 5.1.2), and S/WAN (see
Question 5.1.3). It is also used internally in many institutions, including branches of the U.S. government, major
corporations, national laboratories, and universities.

At the time of this publication, RSA technology is licensed by about 350 companies. The estimated installed base
of RSA encryption engines is around 300 million, making it by far the most widely used public-key cryptosystem
in the world. This figure is expected to grow rapidly as the Internet and the World Wide Web expand. For a list of
RSA licensees, see http://www.rsa.com/html/licensees.html.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 68

Question 3.1.10. Is RSA an official standard today?

RSA is part of many official standards worldwide. The ISO (International Standards Organization) 9796 standard
lists RSA as a compatible cryptographic algorithm, as does the ITU-T X.509 security standard (see Question 5.3.2).
RSA is part of the Society for Worldwide Interbank Financial Telecommunications (SWIFT) standard, the French
financial industry’s ETEBAC 5 standard, the ANSI X9.31 rDSA standard and the X9.44 draft standard for the U.S.
banking industry (see Question 5.3.1). The Australian key management standard, AS2805.6.5.3, also specifies RSA.

RSA is found in Internet standards and proposed protocols including S/MIME (see Question 5.1.1), IPSec (see
Question 5.1.4), and TLS, the Internet standards-track successor to SSL, as well as the PKCS standard (see Ques-
tion 5.3.3) for the software industry. The OSI Implementers’ Workshop (OIW) has issued implementers’ agree-
ments referring to PKCS (see Question 5.3.3), which includes RSA.

A number of other standards are currently being developed and will be announced over the next few years; many
are expected to include RSA as either an endorsed or a recommended system for privacy and/or authentication. A
comprehensive survey of cryptography standards can be found in publications by Kaliski [Kal93b] and Ford
[For94].

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 69

Question 3.1.11. Is RSA a de facto standard?

RSA is the most widely used public-key cryptosystem today and has often been called a de facto standard.
Regardless of the official standards, the existence of a de facto standard is extremely important for the develop-
ment of a digital economy. If one public key system is used everywhere for authentication, then signed digital
documents can be exchanged between users in different nations using different software on different platforms;
this interoperability is necessary for a true digital economy to develop. Adoption of RSA has grown to the extent
that standards are being written to accommodate RSA. When the U.S. financial industry was developing stan-
dards for digital signatures, it first developed ANSI X9.30 (see Question 5.3.1) to support the federal requirement
of using the Digital Signature Standard (see Question 3.4.1). They then modified X9.30 to X9.31 with the emphasis
on RSA digital signatures to support the de facto standard of financial institutions.

The lack of secure authentication has been a major obstacle in achieving the promise that computers would
replace paper; paper is still necessary almost everywhere for contracts, checks, official letters, legal documents,
and identification. With this core of necessary paper transaction, it has not been feasible to evolve completely into
a society based on electronic transactions. A digital signature is the exact tool necessary to convert the most
essential paper-based documents to digital electronic media. Digital signatures make it possible for passports,
college transcripts, wills, leases, checks and voter registration forms to exist in the electronic form; any paper
version would just be a “copy” of the electronic original. The accepted standard for digital signatures has enabled
all of this to happen.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 70

Section 3.2: DES

Question 3.2.1. What is DES?

DES, an acronym for the Data Encryption Standard, is the name of the Federal Information Processing Standard
(FIPS) 46-1, which describes the data encryption algorithm (DEA). The DEA is also defined in the ANSI standard
X9.32. Originally developed by IBM and known as Lucifer, the NSA and the National Bureau of Standards (NBS,
now the National Institute of Standards and Technology, NIST) played a substantial role in the final stages of
development. The DEA, often called DES, has been extensively studied since its publication and is the best known
and widely used symmetric algorithm in the world.

The DEA has a 64-bit block size (see Question 2.1.4) and uses a 56-bit key during execution (8 parity bits are
stripped off from the full 64-bit key). The DEA is a symmetric cryptosystem, specifically a 16-round Feistel cipher
(see Question 2.1.4) and was originally designed for implementation in hardware. When used for communication,
both sender and receiver must know the same secret key, which can be used to encrypt and decrypt the message,
or to generate and verify a message authentication code (MAC). The DEA can also be used for single-user encryp-
tion, such as to store files on a hard disk in encrypted form. In a multi-user environment, secure key distribution
may be difficult; public-key cryptography provides an ideal solution to this problem (see Question 2.1.3).

NIST (see Question 6.2.1) has recertified DES (FIPS 46-1) every five years; DES was last recertified in 1993, by
default. NIST has indicated, however, it will not recertify DES again. The development of AES, the Advanced
Encryption Standard (see Question 3.3.1) is underway. AES will replace DES.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 71

Question 3.2.2. Has DES been broken?

No easy attack on DES has been discovered, despite the efforts of researchers over many years. The obvious
method of attack is a brute-force exhaustive search of the key space; this process takes 255 steps on average. Early
on, it was suggested [DH77] that a rich and powerful enemy could build a special-purpose computer capable of
breaking DES by exhaustive search in a reasonable amount of time. Later, Hellman [Hel80] showed a time-
memory tradeoff that allows improvement over exhaustive search if memory space is plentiful. These ideas
fostered doubts about the security of DES. There were also accusations the NSA (see Question 6.2.2) had intention-
ally weakened DES. Despite these suspicions, no feasible way to break DES faster than exhaustive search (see
Question 2.4.3) has been discovered. The lost of a specialized computer to perform exhaustive search (requiring
3.5 hours on average) has been estimated by Wiener at one million dollars [Wie94]. This estimate was recently
updated by Wiener [Wie98] to give an average time of 35 minutes for the same cost machine.

The first attack on DES that is better than exhaustive search in terms of computational requirements was an-
nounced by Biham and Shamir [BS93a] using a new technique known as differential cryptanalysis (see Question
2.4.5). This attack requires the encryption of 247 chosen plaintexts (see Question 2.4.2); that is, the plaintexts are
chosen by the attacker. Although it is a theoretical breakthrough, this attack is not practical because of both the
large data requirements and the difficulty of mounting a chosen plaintext attack. Biham and Shamir have stated
they consider DES secure.

More recently Matsui [Mat94] has developed another attack, known as linear cryptanalysis (see Question 2.4.5).
By means of this method, a DES key can be recovered by the analysis of 243 known plaintexts. The first experi-
mental cryptanalysis of DES, based on Matsui’s discovery, was successfully achieved in an attack requiring 50
days on 12 HP 9735 workstations. Clearly, this attack is still impractical.

Most recently, a DES cracking machine was used to recover a DES key in 56 hours
[http://www.rsa.com/rsalabs/des2/].

The consensus of the cryptographic community is that DES, if not currently insecure, will soon be insecure, simply
because 56 bit keys are becoming vulnerable to exhaustive search (see Question 2.4.4). Starting in November 1998,
DES will no longer be allowed for US government use. Triple-DES (see Question 3.2.6) will be used to replace it
until AES (see Question 3.3.1) is ready for general use.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 72

Question 3.2.3. How does one use DES securely?

When using DES, there are several practical considerations that can affect the security of the encrypted data. One
should change DES keys frequently, in order to prevent attacks that require sustained data analysis. In a commu-
nications context, one must also find a secure way of communicating the DES key from the sender to the receiver.
Use of RSA (see Question 3.1.1) or some other public-key technique for key management solves both these issues:
a different DES key is generated for each session, and secure key management is provided by encrypting the DES
key with the receiver’s RSA public key. RSA, in this circumstance, can be regarded as a tool for improving the
security of DES (or any other secret key cipher).

If one wishes to use DES to encrypt files stored on a hard disk, it is not feasible to frequently change the DES keys,
as this would entail decrypting and then re-encrypting all files upon each key change. Instead, one might employ
a master DES key that encrypts the list of DES keys used to encrypt the files; one can then change the master key
frequently without much effort. Since the master key provides a more attractive point of attack than the indi-
vidual DES keys used on a per file basis, it might be prudent to use triple-DES (see Question 3.2.6) as the encryp-
tion mechanism for protecting the file encryption keys.

DES can be used for encryption in several officially defined modes (see Question 2.1.4), and these modes have a
variety of properties. ECB (electronic codebook) mode simply encrypts each 64-bit block of plaintext one after
another under the same 56-bit DES key. In CBC (cipher block chaining) mode, each 64-bit plaintext block is
bitwise exclusive-ORed with the previous ciphertext block before being encrypted with the DES key. Thus, the
encryption of each block depends on previous blocks and the same 64-bit plaintext block can encrypt to different
ciphertext blocks depending on its context in the overall message. CBC mode helps protect against certain attacks,
but not against exhaustive search or differential cryptanalysis. CFB (cipher feedback) mode allows one to use DES
with block lengths less than 64 bits. Detailed descriptions of the various DES modes can be found in [NIS80]. The
OFB mode essentially allows DES to be used as a stream cipher.

In practice, CBC is the most widely used mode of DES, and it is specified in several standards. For additional
security, one could use triple encryption with CBC (see Question 3.2.6).

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 73

Question 3.2.4. Should one test for weak keys in DES?

DES has four weak keys k for which E
k
(E

k
(m)) = m (see Question 2.4.5). There are also twelve semi-weak keys

which come in pairs k
1
 and k

2
 and are such that E

k1
(E

k2
(m)) = m.

Since there are 256 possible DES keys the chance of picking a weak or semi-weak key at random is 2-52. As long as
the user-provided key is chosen entirely at random, weak keys can be safely ignored when DES is used for
encryption. Despite this, some users prefer to test whether a key to be used for DES encryption is in fact a weak
key. Such a test will have no significant impact on the time required for encryption.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 74

Question 3.2.5. Is DES a group?

The question here is whether, for any message m and two arbitrary keys k
1
 and k

2
, there is always a third key k

such that E
k
(m) = E

k1
(E

k2
(m)). If this were the case, the set of all keys would form a mathematical object called a

group, where the composition law on k
1
 and k

2
 yields k. This would be very harmful to the security of DES, as it

would enable a meet-in-the-middle attack whereby a DES key could be found in about 228 operations, rather than the
usual 256 operations (see [KRS88]). It would also render multiple DES encryption useless, since encrypting twice
with two different keys would be the same as encrypting once with a third key.

However, DES is not a group. This issue, while strongly supported by initial evidence, was finally settled in 1993
[CW93]. The result seems to imply that techniques such as triple encryption do in fact increase the security of
DES.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 75

Question 3.2.6. What is triple-DES?

For some time it has been common practice to protect and transport a key for DES encryption with triple-DES.
This means that the input data (in this case the single-DES key) is, in effect encrypted three times. There are of
course a variety of ways of doing this; we will explore these ways below.

A number of modes of triple-encryption have been proposed:

• DES-EEE3: Three DES encryptions with three different keys.
• DES-EDE3: Three DES operations in the sequence encrypt-decrypt-encrypt with three different keys.
• DES-EEE2 and DES-EDE2: Same as the previous formats except that the first and third operations use the

same key.

Attacks on two-key triple-DES have been proposed by Merkle and Hellman [MH81] and Van Oorschot and
Wiener [VW91], but the data requirements of these attacks make them impractical. Further information on triple-
DES can be obtained from various sources [Bih95][KR96].

The use of double and triple encryption does not always provide the additional security that might be expected.
Preneel [Pre94] provides the following comparisons in the security of various versions of multiple-DES and it can
be seen that the most secure form of multiple encryption is triple-DES with three distinct keys.

of Encryptions # of Keys Computation Storage Type of attack

single 1 256 - known plaintext

single 1 238 238 chosen plaintext

single 1 - 256 chosen plaintext

double 2 2112 - known plaintext

double 2 256 256 known plaintext

double 2 - 2112 known plaintext

triple 2 256 256 256 known plaintext

triple 2 2120-t 2t 2t known plaintext

triple 2 - 256 chosen plaintext

triple 3 2112 256 known plaintext

triple 3 256 2112 chosen plaintext

Table 1: Comparison of different forms of DES multiple encryption

Like all block ciphers, triple-DES can be used in a variety of modes. The ANSI X9.52 standard (see Question 5.3.1)
details the different ways in which triple-DES might be used and is expected to be completed during 1998.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 76

Question 3.2.7. What is DES-X?

DESX is a strengthened variant of DES supported by RSA Data Security’s toolkits (see Question 5.2.3). The differ-
ence between DES and DESX is that, in DESX, the input plaintext is bitwise XORed with 64 bits of additional key
material before encryption with DES and the output is also bitwise XORed with another 64 bits of key material.
The security of DESX against differential and linear attack (see Question 2.4.5) appears to be equivalent to that of
DES with independent subkeys (see Question 3.2.8) so there is not a great increase in security with regards to
these attacks. However the main motivation for DESX was in providing a computationally simple way to dra-
matically improve on the resistance of DES to exhaustive key search attacks. This improved security was demon-
strated in a formal manner by Killian and Rogaway [RK96] and Rogaway [Rog96]. The DESX construction is due
to Rivest.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 77

Question 3.2.8. What are some other DES variants?

G-DES is a variant on DES devised by Schaumuller-Bichl to improve on the performance of DES by defining a
cipher based on DES with a larger block size, but without an increase in the amount of computation required
[Sch83]. It was claimed that G-DES was as secure as DES since the cipher was based on DES. However, Biham and
Shamir showed that G-DES with the recommended parameter sizes is easily broken and that any alterations of G-
DES parameters that result in a cipher faster than DES are less secure than DES [BS93b].

Another variant of DES uses independent subkeys. The DES algorithm derives sixteen 48-bit subkeys, for use in
each of the 16 rounds, from the 56-bit secret key supplied by the user. It is interesting to consider the effect of
using a 768-bit key (divided into 16 48-bit subkeys) in place of the 16 related 48-bit keys that are generated by the
key schedule in the DES algorithm.

While the use of independent subkeys would obviously vastly increase the effort required for exhaustive key
search, such a change to the cipher would make it only moderately more secure against differential and linear
cryptanalytic attack (see Question 2.4.5) than ordinary DES. Biham estimated that 261 chosen plaintexts are re-
quired for a differential attack on DES with independent subkeys, while 260 known plaintexts are required for
linear cryptanalysis [Bih95].

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 78

Section 3.3: AES

Question 3.3.1. What is the AES?

The AES is the Advanced Encryption Standard. This block cipher is intended to become a FIPS (see Question
6.2.1) standard and will replace DES. While reports over the last few years of the demise of DES have been greatly
exaggerated, most now agree this venerable cipher is approaching the end of its useful life. DES will not be
reaffirmed as a federal standard after 1998. On January 2, 1997 the AES initiative was announced and on Septem-
ber 12, 1997 the public was invited to propose suitable block ciphers as candidates for the AES. NIST is looking for
a cipher that will remain secure well into the next century. For more information see http://csrc.nist.gov/encryp-
tion/aes/aes_home.htm.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 79

Question 3.3.2. What are some candidates for the AES?

There is considerable interest in the AES initiative and 15 candidates were accepted for consideration in the first
round. Among these were close variants of some of the more popular and trusted algorithms currently available,
such as CAST, RC5 and SAFER-SK. Other good candidates from well-respected cryptographers were also submit-
ted. The reason for close variants being proposed rather than the original ciphers is that one of the criteria for the
AES submission is the ability to support 128-bit blocks of plaintext. Most ciphers were developed with an eye to
providing a drop-in replacement for DES and, as a result, were often limited to having a 64-bit block size.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 80

Question 3.3.3. What is the schedule for the AES?

It would be surprising if the process for choosing something as important as a block cipher standard for the next
20-30 years (which is the intended lifetime of the AES) were not long and involved. June 15th, 1998 was the last
day to submit an algorithm. Following that, there will be a period of review before five candidates will be chosen
for further, more involved scrutiny. From these five, it is intended that the AES will be chosen. It is unlikely that
the process will be completed by the year 2000. For more information on the progress of the AES effort, please
visit the NIST website at the following URL: http://csrc.ncsl.nist.gov/encryption/aes/aes_home.htm.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 81

Section 3.4: DSA

Question 3.4.1. What are DSA and DSS?

The National Institute of Standards and Technology (NIST) (see Question 6.2.1) published the Digital Signature
Algorithm (DSA) in the Digital Signature Standard (DSS), which is a part of the U.S. government’s Capstone
project (see Question 6.2.3). DSS was selected by NIST, in cooperation with the NSA (see Question 6.2.2), to be the
digital authentication standard of the U.S. government. The standard was issued on May 19, 1994.

DSA is based on the discrete logarithm problem (see Question 2.3.7) and is related to signature schemes that were
proposed by Schnorr [Sch90] and ElGamal (see Question 3.6.8). While RSA can be used for both encryption and
digitial signatures (see Question 2.2.2) the DSA can only be used to provide digital signatures. For a detailed
description of DSA, see [NIS94b] or [NIS92].

In DSA, signature generation is faster than signature verification, whereas with RSA, signature verification is very
much faster than signature generation (if the public and private exponents, respectively, are chosen for this
property, which is the usual case). It might be claimed that it is advantageous for signing to be the faster opera-
tion, but since in many applications a piece of digital information is signed once, but verified often, it may well be
more advantageous to have faster verification. The trade-offs and issues involved have been explored by Wiener
[Wie98]. There has been work by many authors including Naccache et al [NMR94] on developing techniques to
improve the efficiency of DSA, both for signing and verification.

Although several aspects of DSA have been criticized since its announcement, it is being incorporated into a
number of systems and specifications. Initial criticism focused on a few main issues: it lacked the flexibility of the
RSA cryptosystem; verification of signatures with DSA was too slow; the existence of a second authentication
mechanism was likely to cause hardship to computer hardware and software vendors, who had already standard-
ized on RSA; and that the process by which NIST chose DSA was too secretive and arbitrary, with too much
influence wielded by the NSA. Other criticisms more related to the security of the scheme were addressed by
NIST by modifying the original proposal. A more detailed discussion of the various criticisms can be found in
[NIS92], and a detailed response by NIST can be found in [SB93].

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 82

Question 3.4.2. Is DSA secure?

The Digital Signature Standard (see Question 3.4.1) was originally proposed by NIST with a fixed 512-bit key size.
After much criticism that this is not secure enough, especially for long-term security, NIST revised DSS to allow
key sizes up to 1024 bits. DSA is, at present, considered to be secure with 1024-bit keys.

DSA makes use of computation of discrete logarithms in certain subgroups in the finite field GF(p) for some prime
p. The problem was first proposed for cryptographic use in 1989 by Schnorr [Sch90]. No efficient attacks have yet
been reported on this form of the discrete logarithm problem.

Some researchers warned about the existence of “trapdoor” primes in DSA, which could enable a key to be easily
broken. These trapdoor primes are relatively rare and easily avoided if proper key-generation procedures are
followed [SB93].

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 83

Section 3.5: Elliptic Curve Cryptosystems

Question 3.5.1. What are elliptic curve cryptosystems?

Elliptic curve cryptosystems were first proposed independently by Victor Miller [Mil86] and Neal Koblitz [Kob87]
in the mid-1980s. At a high level, they are analogs of existing public-key cryptosystems in which modular arith-
metic is replaced by operations defined over elliptic curves (see Question 2.3.10). The elliptic curve cryptosystems
that have appeared in the literature can be classified into two categories according to whether they are analogs to
RSA or discrete logarithm based systems.

Just as in all public-key cryptosystems, the security of elliptic curve cryptosystems relies on the underlying hard
mathematical problems (see Question 2.3.1). It turns out that elliptic curve analogs of RSA are mainly of academic
interest and offer no practical advantage over ordinary RSA, since their security is based on the same underlying
problem as RSA, namely integer factorization. The situation is quite different with elliptic curve variants of
discrete logarithm based systems (see Question 2.3.7). The security of such systems depends on the following hard
problem: Given two points G and Y on an elliptic curve such that Y = kG (i.e., Y is G added to itself k times), find
the integer k. This problem is commonly referred to as the “elliptic curve discrete logarithm problem.”

Presently, the methods for computing general elliptic curve discrete logs are much less efficient than those for
factoring or computing conventional discrete logs. As a result, shorter key sizes can be used to achieve the same
security of conventional public-key cryptosystems, which might lead to better memory requirements and im-
proved performance. One can easily construct elliptic curve encryption, signature, and key agreement schemes by
making analogs of ElGamal, DSA, and Diffie-Hellman. These variants appear to offer certain implementation
advantages over the original schemes, and they have recently drawn more and more attention from both the
academic community and the industry.

For more information on elliptic curve cryptosystems, see the survey article by Matt Robshaw and Yiqun Lisa Yin
[RY97] or the CryptoBytes article by Alfred Menezes [Men95].

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 84

Question 3.5.2. Are elliptic curve cryptosystems secure?

In general, the best attacks on the elliptic curve discrete logarithm problems have been general brute-force meth-
ods. The current lack of more specific attacks means that shorter key sizes for elliptic cryptosystems appear to
give similar security as much larger keys that might be used in cryptosystems based on the discrete logarithm
problem and integer factorization. For certain choices of elliptic curves there do exist more efficient attacks.
Menezes, Okamoto, and Vanstone [MOV90] have been able to reduce the elliptic curve discrete logarithm prob-
lem to the traditional discrete logarithm problem for certain curves, thereby necessitating the same size keys as is
used in more traditional public key systems. However these cases are readily classified and easily avoided.

In 1997, elliptic curve cryptography began to receive a lot more attention; by the middle of 1998, there were no
major developments as to the security of these cryptosystems. The longer this situation continues, the more
confidence will grow that they really do offer as much security as currently appears. However, a sizeable group of
very respected researchers have some doubts as to whether this situation will remain unchanged for many years.
In particular, there is some evidence that the use of special elliptic curves, sometimes known as Koblitz curves,
which provide very fast implementations, might allow new specialized attacks. As a starting point, the basic
brute-force attacks can be improved when attacking these curves [Wie98]. While RSA Laboratories believes that
continued research into elliptic curve cryptosystems might eventually create the same level of wide-spread trust
as is enjoyed by other public-key techniques (provided there are no upsets!), the use of special purpose curves will
most likely always be viewed with extreme skepticism.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 85

Question 3.5.3. Are elliptic curve cryptosystems widely used?

Elliptic curve cryptosystems have emerged as a promising new area in public-key cryptography in recent years
due to their potential for offering similar security to established public-key cryptosystems with reduced key sizes.
Improvements in various aspects of implementation, including the generation of elliptic curves, have made
elliptic curve cryptography more practical than when it was first introduced in the mid 80’s.

Elliptic curve cryptosystems are especially useful in applications for which memory, bandwidth, or computational
power is limited. It is expected that the use of elliptic curve cryptosystems in these special areas will continue to
grow in the future.

Standards efforts for elliptic curve cryptography are well underway. X9.F.1, an ANSI-accredited standards com-
mittee for the financial services industry is developing two standards: ANSI X9.62 for digital signatures and ANSI
X9.63 for key agreement and key transport. IEEE P1363 is working on a general reference for public-key tech-
niques from several families, including elliptic curves.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 86

Question 3.5.4. How do elliptic curve cryptosystems compare with other cryptosystems?

The main attraction of elliptic curve cryptosystems over other public-key cryptosystems is the fact that they are
based on a different, hard problem. This may lead to smaller key sizes and better performance in certain public
key operations for the same level of security.

Very roughly speaking, when this FAQ was published elliptic curve cryptosystems with a 160-bit key offer the
same security of RSA and discrete logarithm based systems with a 1024-bit key. As a result, the length of the
public key and private key is much shorter in elliptic curve cryptosystems. In terms of speed, however, it is quite
difficult to give a quantitative comparison, partly because of the various optimization techniques one can apply to
different systems. It is perhaps fair to say the following: Elliptic curve cryptosystems are faster than the corre-
sponding discrete logarithm based systems. Elliptic curve cryptosystems are faster than RSA in signing and
decryption, but slower than RSA in signature verification and encryption. For more detailed comparisons, see the
survey article by Matt Robshaw and Yiqun Lisa Yin [RY97].

With academic advances in attacking different hard mathematical problems both the security estimates for
various key sizes in different systems and the performance comparisons between systems are likely to change.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 87

Section 3.6: Other Cryptographic Techniques

Question 3.6.1. What is Diffie-Hellman?

The Diffie-Hellman key agreement protocol (also called exponential key agreement) was developed by Diffie and
Hellman [DH76] in 1976 and published in the groundbreaking paper “New Directions in Cryptography.” The
protocol allows two users to exchange a secret key over an insecure medium without any prior secrets.

The protocol has two system parameters p and g. They are both public and may be used by all the users in a
system. Parameter p is a prime number and parameter g (usually called a generator) is an integer less than p, with
the following property: for every number n between 1 and p-1 inclusive, there is a power k of g such that gk = n
mod p.

Suppose Alice and Bob want to agree on a shared secret key using the Diffie-Hellman key agreement protocol.
They proceed as follows: First, Alice generates a random private value a and Bob generates a random private
value b. Both a and b are drawn from the set of integers [1, ..., p-2]. Then they derive their public values using
parameters p and g and their private values. Alice’s public value is ga mod p and Bob’s public value is gb mod p.
They then exchange their public values. Finally, Alice computes gab = (gb)a mod p, and Bob computes gba = (ga)b mod
p. Since gab = gba = k, Alice and Bob now have a shared secret key k.

The protocol depends on the discrete logarithm problem for its security. It assumes that it is computationally
infeasible to calculate the shared secret key k=gab mod p given the two public values ga mod p and gb mod p when
the prime p is sufficiently large. Maurer [Mau94] has shown that breaking the Diffie-Hellman protocol is equiva-
lent to computing discrete logarithms under certain assumptions.

The Diffie-Hellman key exchange is vulnerable to a man-in-the-middle attack. In this attack, an opponent Carol
intercepts Alice’s public value and sends her own public value to Bob. When Bob transmits his public value, Carol
substitutes it with her own and sends it to Alice. Carol and Alice thus agree on one shared key and Carol and Bob
agree on another shared key. After this exchange, Carol simply decrypts any messages sent out by Alice or Bob,
and then reads and possibly modifies them before re-encrypting with the appropriate key and transmitting them
to the other party. This vulnerability is present because Diffie-Hellman key exchange does not authenticate the
participants. Possible solutions include the use of digital signatures and other protocol variants.

The authenticated Diffie-Hellman key agreement protocol, or Station-to-Station (STS) protocol, was developed by
Diffie, van Oorschot, and Wiener in 1992 [DVW92] to defeat the man-in-the-middle attack on the Diffie-Hellman
key agreement protocol. The immunity is achieved by allowing the two parties to authenticate themselves to each
other by the use of digital signatures (see Question 2.2.2) and public key certificates (see Question 4.1.3.10).

Roughly speaking, the basic idea is as follows. Prior to execution of the protocol, the two parties Alice and Bob
each obtain a public/private key pair and a certificate for the public key. During the protocol, Alice computes a
signature on certain messages, covering the public value ga mod p. Bob proceeds in a similar way. Even though
Carol is still able to intercept messages between Alice and Bob, she cannot forge signatures without Alice’s private
key and Bob’s private key. Hence, the enhanced protocol defeats the man-in-the-middle attack.

In recent years, the original Diffie-Hellman protocol been understood to be an example of a much more general
cryptographic technique, the common element being the derivation of a shared secret value (i.e., key) from one
party’s public key and another party’s private key. The parties’ key pairs may be generated anew at each run of
the protocol, as in the original Diffie-Hellman protocol. The public keys may be certified, so that the parties can be
authenticated and there may be a combination of these attributes. The draft ANSI X9.42 (see Question 5.3.1)
illustrates some of these combinations, and a recent paper by Blake-Wilson, Johnson, and Menezes provides some
relevant security proofs.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 88

Question 3.6.2. What is RC2?

RC2 is a variable key-size block cipher designed by Ron Rivest for RSA Data Security. “RC” stands for “Ron’s
Code” or “Rivest’s Cipher.” It is faster than DES and is designed as a “drop-in” replacement for DES (see Ques-
tion 3.2.1). It can be made more secure or less secure than DES against exhaustive key search by using appropriate
key sizes. It has a block size of 64 bits and is about two to three times faster than DES in software.

An agreement between the Software Publishers Association (SPA) and the United States government gives RC2
and RC4 (see Question 3.6.3) special status by means of which the export approval process is simpler and quicker
than the usual cryptographic export process. However, to qualify for quick export approval a product must limit
the RC2 and RC4 key sizes to 40 bits; 56 bits is allowed for foreign subsidiaries and overseas offices of United
States companies. An additional string (40 to 88 bits long) called a salt can be used to thwart attackers who try to
precompute a large look-up table of possible encryptions. The salt is appended to the encryption key, and this
lengthened key is used to encrypt the message. The salt is then sent, unencrypted, with the message. RC2 and RC4
have been widely used by developers who want to export their products; DES is almost never approved for
export.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 89

Question 3.6.3. What is RC4?

RC4 is a stream cipher designed by Rivest for RSA Data Security, Inc. It is a variable key-size stream cipher with
byte-oriented operations. The algorithm is based on the use of a random permutation. Analysis shows that the
period of the cipher is overwhelmingly likely to be greater than 10100. Eight to sixteen machine operations are
required per output byte, and the cipher can be expected to run very quickly in software. Independent analysts
have scrutinized the algorithm and it is considered secure. The RC4 stream cipher has a special status by which
export from the U.S. can often be facilitated.

RC4 is used for file encryption in products such as RSA SecurPC (see Question 5.2.4). It is also used for secure
communications, as in the encryption of traffic to and from secure websites using the SSL protocol (see Question
5.1.2).

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 90

Question 3.6.4. What is RC5?

RC5 [Riv95] is a fast block cipher designed by Ron Rivest for RSA Data Security in 1994. It is a parameterized
algorithm with a variable block size, a variable key size, and a variable number of rounds. Typical choices for the
block size will be 32 bits (for experimentation and evaluation purposes only), 64 bits (for use a drop-in replace-
ment for DES) or 128 bits. The number of rounds can range from 0 to 255. The key can range from 0 bits to 2048
bits in size. Such built-in variability provides flexibility at all levels of security and efficiency.

There are three routines in RC5: key expansion, encryption, and decryption. In the key-expansion routine, the
user-provided secret key is expanded to fill a key table whose size depends on the number of rounds. The key
table is then used in both encryption and decryption. The encryption routine consists of three primitive opera-
tions: integer addition, bitwise exclusive-or, and variable rotation. The exceptional simplicity of RC5 makes it easy
to implement and analyze. Indeed, like RSA, the encryption steps of RC5 can be written on the “back of an
envelope”.

The heavy use of data-dependent rotations and the mixture of different operations provide the security of RC5. In
particular, the use of data-dependent rotations helps defeat differential and linear cryptanalysis (see Question
2.4.5).

In the three years since RC5 was proposed, there have been numerous studies of RC5’s security [KY95] [KM96]
[BK98] [Sel98]. Each study has provided a greater understanding of how RC5’s structure and components contrib-
ute to its security. For a summary of known cryptanalytic results, see the survey article by Yiqun Lisa Yin [Yin97]

The US patent office granted the RC5 patent to RSA Data Security, Inc. in May 1997.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 91

Question 3.6.5. What are SHA and SHA-1?

The Secure Hash Algorithm (SHA), the algorithm specified in the Secure Hash Standard (SHS, FIPS PUB 180), was
developed by NIST (see Question 6.2.1) [NIS93a]. SHA-1 [NIS94c] is a revision to SHA that was published in 1994;
the revision corrected an unpublished flaw in SHA. Its design is very similar to the MD4 family of hash functions
developed by Rivest (see Question 3.6.6). SHA-1 is also described in the ANSI X9.30 (part 2) standard.

The algorithm takes a message of less than 264 bits in length and produces a 160-bit message digest. The algorithm
is slightly slower than MD5 (see Question 3.6.6), but the larger message digest makes it more secure against brute-
force collision and inversion attacks (see Question 2.4.6). SHA is part of the Capstone project (see Question 6.2.3).
For further information on SHA, see [Pre93] and [Rob95c].

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 92

Question 3.6.6. What are MD2, MD4, and MD5?

MD2 [Kal92], MD4 [Riv91b] [Riv92b], and MD5 [Riv92c] are message-digest algorithms developed by Rivest.
They are meant for digital signature applications where a large message has to be “compressed” in a secure
manner before being signed with the private key. All three algorithms take a message of arbitrary length and
produce a 128-bit message digest. While the structures of these algorithms are somewhat similar, the design of
MD2 is quite different from that of MD4 and MD5. MD2 was optimized for 8-bit machines, whereas MD4 and
MD5 were aimed at 32-bit machines. Description and source code for the three algorithms can be found as
Internet RFCs 1319 - 1321 [Kal92] [Riv92b] [Riv92c].

MD2 was developed by Rivest in 1989. The message is first padded so its length in bytes is divisible by 16. A 16-
byte checksum is then appended to the message, and the hash value is computed on the resulting message. Rogier
and Chauvaud have found that collisions for MD2 can be constructed if the calculation of the checksum is omitted
[RC95]. This is the only cryptanalytic result known for MD2.

MD4 was developed by Rivest in 1990. The message is padded to ensure that its length in bits plus 448 is divisible
by 512. A 64-bit binary representation of the original length of the message is then concatenated to the message.
The message is processed in 512-bit blocks in the Damgård/Merkle iterative structure (see Question 2.1.6), and
each block is processed in three distinct rounds. Attacks on versions of MD4 with either the first or the last rounds
missing were developed very quickly by Den Boer, Bosselaers [DB92] and others. Dobbertin [Dob95] has shown
how collisions for the full version of MD4 can be found in under a minute on a typical PC. In recent work,
Dobbertin (Fast Software Encryption, 1998) has shown that a reduced version of MD4 in which the third round of
the compression function is not executed but everything else remains the same, is not one-way. Clearly, MD4
should now be considered broken.

MD5 was developed by Rivest in 1991. It is basically MD4 with “safety-belts” and while it is slightly slower than
MD4, it is more secure. The algorithm consists of four distinct rounds, which has a slightly different design from
that of MD4. Message-digest size, as well as padding requirements, remain the same. Den Boer and Bosselaers
[DB94] have found pseudo-collisions for MD5 (see Question 2.4.6). More recent work by Dobbertin has extended
the techniques used so effectively in the analysis of MD4 to find collisions for the compression function of MD5
[DB96b]. While stopping short of providing collisions for the hash function in its entirety this is clearly a signifi-
cant step. For a comparison of these different techniques and their impact the reader is referred to [Rob96].

Van Oorschot and Wiener [VW94] have considered a brute-force search for collisions (see Question 2.1.6) in hash
functions, and they estimate a collision search machine designed specifically for MD5 (costing $10 million in 1994)
could find a collision for MD5 in 24 days on average. The general techniques can be applied to other hash func-
tions.

More details on MD2, MD4, and MD5 can be found in [Pre93] and [Rob95c].

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 93

Question 3.6.7. What are some other block ciphers?

IDEA (International Data Encryption Algorithm) [LMM92] is the second version of a block cipher designed and
presented by Lai and Massey [LM91]. It is a 64-bit iterative block cipher with a 128-bit key. The encryption process
requires eight complex rounds. While the cipher does not have a Feistel structure (see Question 2.1.4), decryption
is carried out in the same manner as encryption once the decryption subkeys have been calculated from the
encryption subkeys. The cipher structure was designed to be easily implemented in both software and hardware,
and the security of IDEA relies on the use of three incompatible types of arithmetic operations on 16-bit words.
However some of the arithmetic operations used in IDEA are not that fast in software. As a result the speed of
IDEA in software is similar to that of DES.

One of the principles used during the design of IDEA was to facilitate analysis of its strength against differential
cryptanalysis (see Question 2.4.5) and IDEA is considered to be immune to differential cryptanalysis. Furthermore
there are no linear cryptanalytic attacks on IDEA and there are no known algebraic weaknesses in IDEA. The most
significant cryptanalytic result is due to Daemen [DGV94], who discovered a large class of 251 weak keys (see
Question 2.4.5) for which the use of such a key during encryption could be detected easily and the key recovered.
However, since there are 2128 possible keys, this result has no impact on the practical security of the cipher for
encryption provided the encryption keys are chosen at random. IDEA is generally considered to be a very secure
cipher and both the cipher development and its theoretical basis have been openly and widely discussed.

SAFER (Secure And Fast Encryption Routine) is a non-proprietary block cipher developed by Massey in 1993 for
Cylink Corporation [Mas93]. It is a byte-oriented algorithm with a 64-bit block size and, in one version, a 64-bit
key size. It has a variable number of rounds, but a minimum of six rounds is recommended. Unlike most recent
block ciphers, SAFER has slightly different encryption and decryption procedures. Only byte-based operations are
employed to ensure its utility in smart card-based applications that have limited processing power. When first
announced, SAFER was intended to be implemented with a key of length 64 bits and it was accordingly named
SAFER K-64. Another version of SAFER was designed that could handle 128-bit keys and was named SAFER K-
128.

Early cryptanalysis of SAFER K-64 [Mas93] showed that SAFER K-64 could be considered immune to both
differential and linear cryptanalysis (see Question 2.4.5) when the number of rounds is greater than six. However,
Knudsen [Knu95] discovered a weakness in the key schedule of SAFER K-64 and a new key schedule for the
family of SAFER ciphers soon followed. These new versions of SAFER are denoted SAFER SK-64 and SAFER SK-
128 where SK denotes a strengthened key schedule (though one joke has it that SK really stands for “Stop
Knudsen” a wise precaution in the design of any block cipher). Most recently, a version of SAFER called SAFER
SK-40 was announced, which uses a 40-bit key and has five rounds (thereby increasing the speed of encryption).
This reduced-round version is secure against differential and linear cryptanalysis in the sense that any such attack
would require more effort than a brute-force search for a 40-bit key.

The Fast Data Encipherment Algorithm (FEAL) was presented by Shimizu and Miyaguchi [SM88] as an alterna-
tive to DES. The original cipher (called FEAL-4) was a four-round cryptosystem with a 64-bit block size and a 64-
bit key size and it was designed to give high performance in software. Soon a variety of attacks against FEAL-4
were announced including one attack that required only 20 chosen plaintexts [Mur90]. Several results in the
cryptanalysis of FEAL-8 (eight-round version) led the designers to introduce a revised version, FEAL-N, where N
denoted the number of rounds. Biham and Shamir [BS91b] developed differential cryptanalytic attacks against
FEAL-N for up to 31 rounds. In 1994, Ohta and Aoki presented a linear cryptanalytic attack against FEAL-8 that
required 225 known plaintexts [OA94], and other improvements [KR95a] followed. In the wake of these numerous
attacks, FEAL and its derivatives should be considered insecure.

Skipjack is the encryption algorithm contained in the Clipper chip (see Question 6.2.4), designed by the NSA (see
Question 6.2.2). It uses an 80-bit key to encrypt 64-bit blocks of data. Skipjack is expected to be more secure than
DES (see Question 3.2.1) in the absence of any analytic attack since it uses 80-bit keys. By contrast, DES uses 56-bit
keys.

Initially the details of Skipjack were classified and the decision not to make the details of the algorithm publicly
available was widely criticized. Some people were suspicious that Skipjack might not be secure, either due to an

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 94

oversight by its designers, or by the deliberate introduction of a secret trapdoor. Since Skipjack was not public, it
could not be widely scrutinized and there was little public confidence in the cipher.

Aware of such criticism, the government invited a small group of independent cryptographers to examine the
Skipjack algorithm. They issued a report [BDK93] which stated that although their study was too limited to reach
a definitive conclusion, they nevertheless believed Skipjack was secure.

In June of 1998 Skipjack was declassified by the NSA. Early cryptanalysis has failed to find any substantial
weakness in the cipher.

Blowfish is a 64-bit block cipher developed by Schneier [Sch93]. It is a Feistel cipher (see Question 2.1.4) and each
round consists of a key-dependent permutation and a key-and-data-dependent substitution. All operations are
based on exclusive-ors and additions on 32-bit words. The key has a variable length (with a maximum length of
448 bits) and is used to generate several subkey arrays. This cipher was designed specifically for 32-bit machines
and is significantly faster than DES. There was an open competition for the cryptanalysis of Blowfish supported
by Dr. Dobb’s Journal with a $1000 prize. This contest ended in April 1995 [Sch95a]; among the results were the
discoveries of existence of certain weak keys (see Question 2.4.5), an attack against a three-round version of
Blowfish, and a differential attack against certain variants of Blowfish. However, Blowfish can still be considered
secure, and Schneier has invited cryptanalysts to continue investigating his cipher.

Many of the block ciphers proposed in recent years, including those listed above, were developed (at least in part)
as successors to DES (see Question 3.2.1). Many other proposed successors have appeared as candidates for the
Advanced Encryption Standard, AES (see Question 3.3.1).

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 95

Question 3.6.8. What are some other public-key cryptosystems?

The ElGamal system [Elg85] is a public-key cryptosystem based on the discrete logarithm problem. It consists of
both encryption and signature variants. The encryption algorithm is similar in nature to the Diffie-Hellman key
agreement protocol (see Question 3.6.1).

The system parameters for ElGamal cryptosystem consist of a prime p and an integer g, whose powers modulo p
generate a large number of elements (it is not necessary for g to be a generator, however, it is ideal), as in Diffie-
Hellman. Alice has a private key a and a public key y, where y = ga (mod p). Suppose Bob wishes to send a mes-
sage m to Alice. Bob first generates a random number k less than p. He then computes

y
1
 = gk (mod p) and y

2
 = m ⊕ yk,

where ⊕ denotes the bit-wise exclusive-or. Bob sends (y
1
, y

2
) to Alice. Upon receiving the ciphertext, Alice com-

putes

m = (y
1
a mod p) ⊕ y

2
 .

The ElGamal signature algorithm is similar to the encryption algorithm in that the public key and private key
have the same form. However, encryption is not the same as signature verification, nor is decryption the same as
signature creation as in RSA (see Question 3.1.1). DSA, The Digital Signature Algorithm (see Question 3.4.1), is
based in part on the ElGamal signature algorithm.

Analysis based on the best available algorithms for both factoring and discrete logarithms show that RSA and
ElGamal have similar security for equivalent key lengths. The main disadvantage of ElGamal is the need for
randomness, and its slower speed (especially for signing). Another potential disadvantage of the ElGamal system
is that message expansion by a factor of two takes place during encryption. However, such message expansion is
generally unimportant if the cryptosystem is used only for exchange of secret keys.

The Merkle-Hellman knapsack cryptosystem [MH78] is a public-key cryptosystem first published in 1978. It is
commonly referred to as the knapsack cryptosystem. It is based on the subset sum problem in combinatorics. The
problem involves selecting a number of objects with given weights from a large set such that the sum of the
weights is equal to a pre-specified weight. This is considered to be a difficult problem to solve in general, but
certain special cases of the problem are relatively easy to solve, which serve as the “trapdoor” of the system.
Shamir broke the single iteration knapsack cryptosystem introduced in 1978 [Sha84]. Merkle then published the
multiple-iteration knapsack problem broken by Brickell [Bri85]. Merkle offered from his own pocket a $100
reward for anybody able to crack the single iteration knapsack and a $1000 reward for anybody able to crack the
multiple iteration cipher. When they were cracked, he promptly paid up.

The Chor-Rivest knapsack cryptosystem was first published in 1984, followed by a revised version in 1988 [CR88].
It is the only knapsack-like cryptosystem that does not use modular multiplication. It was also the only knapsack-
like cryptosystem that was secure for any extended period of time. Eventually, Schnorr and Hörner [SH95]
developed an attack on the Chor-Rivest cryptosystem using improved lattice reduction which reduced to hours
the amount of time needed to crack the cryptosystem for certain parameter values (though not for those recom-
mended by Chor and Rivest). They also showed how the attack could be extended to attack Damgård’s knapsack
hash function [Dam90].

LUC is a public-key cryptosystem [SS95] developed by a group of researchers in Australia and New Zealand. The
cipher implements the analogs of ElGamal (see Question 3.6.9), Diffie-Hellman (see Question 3.6.1), and RSA (see
Question 3.1.1) over Lucas sequences. LUCELG is the Lucas sequence analog of ElGamal, while LUCDIF and
LUCRSA are the Diffie-Hellman and RSA analogs, respectively. Lucas sequences used in the cryptosystem are the
general second-order linear recurrence relation defined by

T
n
 = PT

n-1
 - QT

n-2

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 96

where P and Q are relatively prime integers. The encryption of the message is computed by iterating the recur-
rence, instead of by exponentiation as in RSA and Diffie-Hellman.

A recent paper by Bleichenbacher et al. [BBL95] shows that many of the supposed security advantages of LUC
over cryptosystems based on modular exponentiation are either not present, or not as substantial as claimed.

The McEliece cryptosystem [Mce78] is a public key encryption algorithm based on algebraic coding theory. The
system uses a class of error-correcting codes known as the Goppa codes, for which fast decoding algorithms exist.
The basic idea is to construct a Goppa code as the private key and disguise it as a general linear code, which is the
public key. The general linear code cannot be easily decoded unless the corresponding private matrix is known.

The McEliece cryptosystem has a number of drawbacks. These include large public key size (around half a
megabit), substantial expansion of data, and possibly a certain similarity to the knapsack cryptosystem.
Gabidulin, Paramonov, and Tretjakov [GPT91] proposed a modification of the McEliece cryptosystem by replacing
Goppa codes with a different algebraic code and claimed the new version was more secure than the original
system. However, Gibson [Gib93] later showed there was not really any advantage to the new version.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 97

Question 3.6.9. What are some other signature schemes?

Merkle proposed a digital signature scheme based on both one-time signatures (see Question 7.7) and a hash
function (see Question 2.1.6); this provides an infinite tree of one-time signatures [Mer90b].

One-time signatures normally require the publishing of large amounts of data to authenticate many messages,
since each signature can only be used once. Merkle’s scheme solves the problem by implementing the signatures
via a tree-like scheme. Each message to be signed corresponds to a node in a tree, with each node consisting of the
verification parameters used to sign a message and to authenticate the verification parameters of subsequent
nodes. Although the number of messages that can be signed is limited by the size of the tree, the tree can be made
arbitrarily large. Merkle’s signature scheme is fairly efficient, since it requires only the application of hash func-
tions.

The Rabin signature scheme [Rab79] is a variant of the RSA signature scheme (see Question 3.1.1). It has the
advantage over RSA that finding the private key and forgery are both provably as hard as factoring. Verification is
faster than signing, as with RSA signatures. In Rabin’s scheme, the public key is an integer n where n = pq, and p
and q are prime numbers which form the private key. The message to be signed must have a square root mod n;
otherwise, it has to be modified slightly. Only about 1/4 of all possible messages have square roots mod n.

Signature: s = m1/2 mod n where s is the signature

Verification: m = s2 mod n

The signature is easy to compute if the prime factors of n are known, but provably difficult otherwise. Anyone
who can consistently forge the signature for a modulus n can also factor n. The provable security has the side
effect that the prime factors can be recovered under a chosen message attack. This attack can be countered by
padding a given message with random bits or by modifying the message randomly, at the loss of provable secu-
rity. (See [GMR86] for a discussion of a way to get around the paradox between provable security and resistance
to chosen message attacks.)

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 98

Question 3.6.10. What are some other stream ciphers?

There are a number of alternative stream ciphers that have been proposed in cryptographic literature as well as a
large number that appear in implementations and products world-wide. Many are based on the use of LFSRs
(Linear Feedback Shift Registers - see Question 2.1.5), since such ciphers tend to be more amenable to analysis and
it is easier to assess the security they offer.

Rueppel suggests there are essentially four distinct approaches to stream cipher design [Rue92]. The first is
termed the information-theoretic approach as exemplified by Shannon’s analysis of the one-time pad. The second
approach is that of system-theoretic design. In essence, the cryptographer designs the cipher along established
guidelines that ensure the cipher is resistant to all known attacks. While there is, of course, no substantial guaran-
tee that future cryptanalysis will be unsuccessful, it is this design approach that is perhaps the most common in
cipher design. The third approach is to attempt to relate the difficulty of breaking the stream cipher (where
“breaking” means being able to predict the unseen keystream with a success rate better than can be achieved by
guessing) to solving some difficult problem (see [BM84][BBS86]). This complexity-theoretic approach is very
appealing, but in practice the ciphers developed tend to be rather slow and impractical. The final approach
highlighted by Rueppel is that of designing a randomized cipher. Here the aim is to ensure the cipher is resistant
to any practical amount of cryptanalytic work, rather than being secure against an unlimited amount of work, as
was the aim with Shannon’s information-theoretic approach.

A recent example of a stream cipher designed by a system-theoretic approach is the Software-optimized Encryp-
tion Algorithm (SEAL), which was designed by Rogaway and Coppersmith in 1993 [RC93] as a fast stream cipher
for 32-bit machines. SEAL has a rather involved initialization phase during which a large set of tables is initialized
using the Secure Hash Algorithm (see Question 3.6.5). However, the use of look-up tables during keystream
generation helps to achieve a very fast performance with just five instructions required per byte of output gener-
ated.

A design that has system-theoretic as well as complexity-theoretic aspects is given by Aiello, Rajagopalan, and
Venkatesan [ARV95]. The design, commonly referred to as “VRA,” derives a fast stream cipher from an arbitrary
secure block cipher. VRA is described as a pseudorandom generator (see Question 2.5.2), not a stream cipher, but
the two concepts are closely connected, since a pseudorandom generator can produce a (pseudo) one-time pad for
encryption.

See Rueppel’s article [Rue92] or any book on contemporary cryptography for examples of ciphers in each of these
categories. More details are also provided in an RSA Laboratories technical report [Rob95b].

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 99

Question 3.6.11. What other hash functions are there?

The best review of hash function techniques is provided by Preneel [Pre93].

For a brief overview here, we note that hash functions are often divided into three classes:

• those built around block ciphers,
• those which use modular arithmetic, and
• those which have what is termed a “dedicated” design.

By building a hash function around a block cipher, a designer aims to leverage the security of a well-trusted block
cipher such as DES (see Question 3.2.1) to obtain a well-trusted hash function. The so-called Davies-Meyer hash
function [Pre93] is an example of a hash function built around the use of DES.

The purpose of employing modular arithmetic in the second class of hash functions is to save on implementation
costs. A hash function is generally used in conjunction with a digital signature algorithm which itself makes use of
modular arithmetic. Unfortunately, the track record of such hash functions is not good from a security perspective
and there are no hash functions in this second class that can be recommended for use today.

The hash functions in the third class, with their so-called “dedicated” design, tend to be fast, achieving a consider-
able advantage over algorithms that are based around the use of a block cipher. MD4 is an early example of a
popular hash function with such a design. Although MD4 is no longer considered secure for most cryptographic
applications, most new dedicated hash functions make use of the same design principles as MD4 in a strength-
ened version. Their strength varies depending on the techniques, or combinations of techniques, employed in
their design. Dedicated hash functions in current use include MD5 and SHA-1 (see Questions 3.6.5 and 3.6.6), as
well as RIPEMD-160 [DBP96] and HAVAL [ZPS93].

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 100

Question 3.6.12. What are some secret sharing schemes?

Shamir’s secret sharing scheme [Sha79] is a threshold scheme based on polynomial interpolation. To allow any m
out of n people to construct a given secret, an (m - 1)-degree polynomial over the finite field GF(q)

F(x) = a
0
 + a

1
x + ... + a

m - 1
 xm-1

is constructed such that the coefficient a
0
 is the secret and all other coefficients are random elements in the field.

(The field is known to all participants.) Each of the n shares is a point (x
i
, y

i
) on the curve defined by the polyno-

mial, where x
i
 not equal to 0. Given any m shares, the polynomial is uniquely determined and hence the secret a

0

can be computed. However, given m - 1 or fewer shares, the secret can be any element in the field. Therefore,
Shamir’s scheme is a perfect secret sharing scheme (see Question 2.1.9).

Figure 10. Shamir�s secret sharing scheme

A special case where m = 2 (i.e., two shares are required for retrieval of the secret) is given in Figure 10. The
polynomial is a line and the secret is the point where the line intersects with the y-axis. Each share is a point on the
line. Any two shares (two points) determine the line and hence the secret. With just a single share (point), the line
can be any line that passes the point, and hence the secret can be any point on the y-axis.

Blakley’s secret sharing scheme [Bla79] is geometric in nature. The secret is a point in an m-dimensional space. n
shares are constructed with each share defining a hyperplane in this space. By finding the intersection of any m of
these planes, the secret (or point of intersection) can be obtained. This scheme is not perfect, as the person with a
share of the secret knows the secret is a point on his hyperplane. Nevertheless, this scheme can be modified to
achieve perfect security [Sim92].

Figure 11. Blakely�s scheme

A special case of Blakley’s scheme is shown in Figure 11. This is based on the scenario where two shares are
required to recover the secret. A two-dimensional plane is used as only two shares are required to recover the
secret. The secret is a point in the plane. Each share is a line that passes through the point. If any two of the shares

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 101

are put together, the point of intersection, which is the secret, can be easily derived.

Naor and Shamir [NS94] developed what they called visual secret sharing schemes, which are an interesting
visual variant of the ordinary secret sharing schemes.

Roughly speaking, the problem can be formulated as follows: There is a secret picture to be shared among n
participants. The picture is divided into n transparencies (shares) such that if any m transparencies are placed
together, the picture becomes visible, but if fewer than m transparencies are placed together, nothing can be seen.
Such a scheme is constructed by viewing the secret picture as a set of black and white pixels and handling each
pixel separately (see [NS94] for more details). The schemes are perfectly secure and easily implemented without
any cryptographic computation. A further improvement allows each transparency (share) to be an innocent picture
(e.g., a picture of a landscape or a picture of a building), thus concealing the fact that secret sharing is taking place.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 102

Section 4.1: Key Management

Question 4.1.1. What is key management?

Key management deals with the secure generation, distribution, and storage of keys. Secure methods of key
management are extremely important. Once a key is randomly generated (see Question 4.1.2.2), it must remain
secret to avoid unfortunate mishaps (such as impersonation). In practice, most attacks on public key systems will
probably be aimed at the key management level, rather than at the cryptographic algorithm itself.

Users must be able to securely obtain a key pair suited to their efficiency and security needs. There must be a way
to look up other people’s public keys and to publicize one’s own public key. Users must be able to legitimately
obtain others’ public keys; otherwise, an intruder can either change public keys listed in a directory, or imperson-
ate another user. Certificates are used for this purpose (see Question 4.1.3.10). Certificates must be unforgeable.
The issuance of certificates must proceed in a secure way, impervious to attack. In particular, the issuer must
authenticate the identity and the public key of an individual before issuing a certificate to that individual.

If someone’s private key is lost or compromised, others must be made aware of this, so they will no longer encrypt
messages under the invalid public key nor accept messages signed with the invalid private key. Users must be
able to store their private keys securely, so no intruder can obtain them, yet the keys must be readily accessible for
legitimate use. Keys need to be valid only until a specified expiration date but the expiration date must be chosen
properly and publicized in an authenticated channel.

Section 4: Applications of Cryptography

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 103

Section 4.1.2: General

Question 4.1.2.1. What key size should be used?

The key size that should be used in a particular application of cryptography depends on two things. First of all,
the value of the key is an important consideration. Secondly, the actual key size depends on what cryptographic
algorithm is being used.

Below is a table of key sizes recommended as of this printing, for block ciphers, RSA, elliptic curve, and DSA.
There are four different “grades,” which refer to the strength of the protection. Export grade or nominal grade
gives little real protection, but this is the approximate level of cryptography approved for export from the US.
Personal grade is recommended for keys that are not very important, such as those which protect one person’s
personal e-mail, those which serve as “session keys” for low-importance transactions, et cetera. These should
provide plenty of protection relative to how much they are worth to break. Commercial grade is recommended for
information that is actually valuable, but not extremely sensitive. Military grade is recommended for information
that is truly sensitive and must be kept secret at any cost. Military grade is also recommended for Certifying
Authorities (see Question 4.1.3.12).

Keep in mind that items in the same row are not necessarily equal in security, but approximately equal.

Block Cipher RSA Elliptic Curve DSA

Export Grade 40 bits 512 bit modulus 80 bit curve 512 / 80 bits

Personal Grade 56 / 64 bits 768 bit modulus 136 bit curve 768 / 136 bits

Commercial Grade 128 bits 1024 bit modulus 160 bit curve 1024 / 160 bits

Military Grade 160 bits 2048 bit modulus 200 bit curve 2048 / 200 bits

Table 2

Notes: The Elliptic Curve key size refers to the minimum order of the base point on the elliptic curve (which
should be slightly smaller than the field size). The DSA key sizes refer to the size of the modulus and the mini-
mum size of a large subgroup.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 104

Question 4.1.2.2. How does one find random numbers for keys?

Whether using a secret-key cryptosystem or a public-key cryptosystem, one needs a good source of random
numbers for key generation. The main features of a good source are that it produces numbers that are unknown
and unpredictable by potential adversaries. Random numbers obtained from a physical process are in principle
the best, since many physical processes appear truly random. One could use a hardware device, such as a noisy
diode; some are sold commercially on computer add-in boards for this purpose. Another idea is to use physical
movements of the computer user, such as inter-key stroke timings measured in microseconds. It was recently
proved that techniques that used the spinning of disks to generate random data are not truly random, as the
movement of the disk platter is not truly random. A negligible-cost alternative is available; Davis et al. designed a
random number generator based on the variation of a disk drive motor’s speed [DIP94]. This variation is caused
by air turbulence, which has been shown to be unpredictable. By whichever method they are generated, the
random numbers may still contain some correlation, thus preventing sufficient statistical randomness. Therefore,
it is best to run them through a good hash function (see Question 2.1.6) before actually using them [ECS94].

Another approach is to use a pseudorandom number generator fed by a random seed. The primary difference
between random and pseudorandom numbers is that pseudorandom numbers are necessarily periodic whereas
truly random numbers are not. Since pseudorandom number generators are deterministic algorithms, it is impor-
tant to find one that is cryptographically secure and also to use a good random seed; the generator effectively acts
as an “expander” from the seed to a larger amount of pseudorandom data. The seed must be sufficiently variable
to deter attacks based on trying all possible seeds.

It is not sufficient for a pseudorandom number generator just to pass a variety of statistical tests, as described in
Knuth [Knu81] and elsewhere, because the output of such generators may still be predictable. Rather, it must be
computationally infeasible for an attacker to determine any bit of the output sequence, even if all the others are
known, with probability better than 1/2. Blum and Micali’s generator based on the discrete logarithm problem
[BM84] satisfies this stronger definition, assuming that computing discrete logarithm is difficult (see Question
2.3.7). Other generators perhaps based on DES (see Question 3.2.1) or a hash function (see Question 2.1.6) can also
be considered to satisfy this definition, under reasonable assumptions.

A summary of methods for generating random numbers in software can be found in [Mat96].

Note that one does not need random numbers to determine the public and private exponents in RSA. After
generating the primes, and hence the modulus (see Question 3.1.1), one can simply choose an arbitrary value
(subject to the standard constraints) for the public exponent, which then determines the private exponent.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 105

Question 4.1.2.3. What is the life cycle of a key?

Keys have limited lifetimes for a number of reasons. The most important reason is protection against cryptanalysis
(see Question 2.4.1). Each time the key is used, it generates a number of ciphertexts. Using a key repetitively
allows an attacker to build up a store of ciphertexts (and possibly plaintexts) which may prove sufficient for a
successful cryptanalysis of the key value. Thus keys should have a limited lifetime. If you suspect that an attacker
may have obtained your key, the key should be considered compromised, and its use discontinued.

Research in cryptanalysis can lead to possible attacks against either the key or the algorithm. For example, recom-
mended RSA key lengths are increased every few years to ensure that the improved factoring algorithms do not
compromise the security of messages encrypted with RSA. The recommended key length depends on the ex-
pected lifetime of the key. Temporary keys, which are valid for a day or less, may be as short as 512 bits. Keys
used to sign long-term contracts for example, should be longer, say, 1024 bits or more.

Another reason for limiting the lifetime of a key is to minimize the damage from a compromised key. It is unlikely
a user will discover an attacker has compromised his or her key if the attacker remains “passive.” Relatively
frequent key changes will limit any potential damage from compromised keys. Ford [For94] describes the life
cycle of a key as follows:

1. key generation and possibly registration (for a public key)
2. key distribution
3. key activation/deactivation
4. key replacement or key update
5. key revocation
6. key termination, involving destruction or possibly archival

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 106

Section 4.1.3: Public Key Issues

Question 4.1.3.1. What is a PKI?

A public key infrastructure (PKI) consists of protocols, services, and standards supporting applications of public-
key cryptography. The term PKI, which is relatively recent, is defined variously in current literature. PKI some-
times refers simply to a trust hierarchy based on public key certificates [1], and in other contexts embraces encryp-
tion and digital signature services provided to end-user applications as well [OG97]. A middle view is that a PKI
includes services and protocols for managing public keys, often through the use of Certification Authority (CA)
and Registration Authority (RA) components, but not necessarily for performing cryptographic operations with
the keys.

Among the services likely to be found in a PKI are the following:

• key registration: issuing a new certificate for a public key
• certificate revocation: canceling a previously issued certificate
• key selection: obtaining a party’s public key
• trust evaluation: determining whether a certificate is valid and what operations it authorizes

Key recovery has also been suggested as a possible aspect of a PKI.

There is no single pervasive public key infrastructure today, though efforts to define a PKI generally presume
there will eventually be one, or, increasingly, that multiple independent PKIs will evolve with varying degrees of
coexistence and interoperability. In this sense, the PKI today can be viewed akin to local and wide-area networks
in the 1980’s, before there was widespread connectivity via the Internet. As a result of this view toward a global
PKI, certificate formats and trust mechanisms are defined in an open and scaleable manner, but with usage
profiles corresponding to trust and policy requirements of particular customer and application environments. For
instance, it is usually accepted that there will be multiple “root” or “top-level” certificate authorities in a global
PKI, not just one “root,” although in a local PKI there may be only one root. Accordingly, protocols are defined
with provision for specifying which roots are trusted by a given application or user.

Efforts to define a PKI today are underway in several governments as well as standards organizations. The U.S.
Department of the Treasury and NIST both have PKI programs [2,3], as do Canada [4] and the United Kingdom
[5]. NIST has published an interoperability profile for PKI components [BDN97]; it specifies algorithms and
certificate formats that certification authorities should support. Standards bodies working on a PKI includes the
IETF’s PKIX and SPKI working groups [6,7] and The Open Group [8].

Most PKI definitions are based on X.509 certificates, with the notable exception of the IETF’s SPKI.

[1] PKI - PC Webopaedia Definitions and Links. http://www.sandybay.com/pc-web/PKI.htm.
[2] Government Information Technology Services, Federal Public key Infrastructure. http://gits-sec.treas.gov/

fpki.htm.
[3] NIST Public key Infrastructure Program. http://csrc.ncsl.nist.gov/pki/.
[4] The Government of Canada Public key Infrastructure. http://www.cse.dnd.ca/cse/english/gov.html.
[5] The Open Group Public key Infrastructure, Latest Proposals for an HMG PKI. http://www.opengroup.org/

public/tech/security/pki/cki/.
[6] Public key Infrastructure (X.509) (pkix) working group. http://www.ietf.org/html.charters/pkix-

charter.html.
[7] Simple Public key Infrastructure (spki) working group. http://www.ietf.org/html.charters/spki-charter.html.
[8] The Open Group Public key Infrastructure. http://www.opengroup.org/security/pki/.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 107

Question 4.1.3.2. Who needs a key pair?

Anyone who wishes to sign messages or to receive encrypted messages must have a key pair. People may have
more than one key pair. In fact, it is advisable to use separate key pairs for signing messages and receiving en-
crypted messages. As another example, someone might have a key pair affiliated with his or her work and a
separate key pair for personal use. Other entities may also have key pairs, including electronic entities such as
modems, workstations, webservers (websites) and printers, as well as organizational entities such as a corporate
department, a hotel registration desk, or a university registrar’s office. Key pairs allow people and other entities
to authenticate (see Question 2.2.2) and encrypt messages.

Corporations may require more than one key pair for communication. They may use one or more key pairs for
encryption (with the keys stored under key escrow to safeguard the key in event of loss) and use a single non-
escrowed key pair for authentication. The lengths of the encryption and authentication key pairs may be varied
according to the desired security.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 108

Question 4.1.3.3. How does one get a key pair?

A user can generate his or her own key pair, or, depending on local policy, a security officer may generate key
pairs for all users. There are tradeoffs between the two approaches. In the former, the user needs some way to
trust his or her copy of the key generation software, and in the latter, the user must trust the security officer and
the private key must be transferred securely to the user. Typically, each node on a network should be capable of
local key generation. Secret key authentication systems, such as, often do not allow local key generation, but
instead use a central server to generate keys.

Once a key has been generated, the user must register his or her public key with some central administration,
called a Certifying Authority (CA). The CA returns to the user a certificate attesting to the validity of the user’s
public key along with other information (see Question 4.1.3.10 through Question 4.1.3.12). If a security officer
generates the key pair, then the security officer can request the certificate for the user. Most users should not
obtain more than one certificate for the same key, in order to simplify various bookkeeping tasks associated with
the key.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 109

Question 4.1.3.4. Should a key pair be shared among users?
Keyword: impersonation, public key, private key, key sharing

Users who share a private key can impersonate one another (i.e., sign messages as one another and decrypt
messages intended for one another), so in general, private keys should not be shared among users. However,
some parts of a key may be shared, depending on the algorithm (see Question 3.6.12).

In RSA, while each person should have a unique modulus and private exponent (i.e. a unique private key), the
public exponent can be common to a group of users without security being compromised. Some public exponents
in common use today are 3 and 216+1; because these numbers are small, the public key operations (encryption and
signature verification) are fast relative to the private key operations (decryption and signing). If one public
exponent becomes standard, software and hardware can be optimized for that value. However, the modulus
should not be shared.

In public key systems based on discrete logarithms, such as Diffie-Hellman, DSA, and ElGamal (see Question
3.6.1, Question 3.4.1, and Question 3.6.8), a group of people can share a set of system parameters, which can lead
to simpler implementations. This is also true for systems based on elliptic curve discrete logarithms. It is worth
noting, however, that this would make breaking a key more attractive to an attacker because it is possible to break
every key with a given set of system parameters with only slightly more effort than it takes to break a single key.
To an attacker, therefore, the average cost to break a key is much lower with a set common parameters than if
every key had a distinct set of parameters.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 110

Question 4.1.3.5. What happens when a key expires?

In order to guard against a long-term cryptanalytic attack, every key must have an expiration date after which it is
no longer valid (see Question 4.1.2.3). The time to expiration must therefore be much shorter than the expected
time for cryptanalysis. That is, the key length must be long enough to make the chances of cryptanalysis before
key expiration extremely small. The validity period for a key pair may also depend on the circumstances in which
the key is used. The appropriate key size is determined by the validity period, together with the value of the
information protected by the key and the estimated strength of an expected attacker. In a certificate (see Question
4.1.3.10), the expiration date of a key is typically the same as the expiration date of the certificate, though it need
not be.

A signature verification program should check for expiration and should not accept a message signed with an
expired key. This means that when one’s own key expires, everything signed with it will no longer be considered
valid. Of course, there will be cases in which it is important that a signed document be considered valid for a
much longer period of time. Question 7.11 discusses digital time stamping as a way to achieve this.

After expiration, the old key should be destroyed to preserve the security of old messages. At this point, the user
should typically choose a new key, which should be longer than the old key to reflect both the performance
increase of computer hardware and any recent improvements in factoring algorithms (see Question 4.1.2.1 for
recent key length recommendations). However, if a key is sufficiently long and has not been compromised, the
user can continue to use the same key. In this case, the certifying authority would issue a new certificate for the
same key, and all new signatures would point to the new certificate instead of the old. However, the fact that
computer hardware continues to improve makes it prudent to replace expired keys with newer, longer keys every
few years. Key replacement enables one to take advantage of any hardware improvements to increase the security
of the cryptosystem. Faster hardware has the effect of increasing security, perhaps vastly, but only if key lengths
are increased regularly (see Question 2.3.5).

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 111

Question 4.1.3.6. What happens if my key is lost?

If your private key is lost or destroyed but not compromised, you can no longer sign or decrypt messages, but
anything previously signed with the lost key is still valid. The CA (see Question 4.1.3.12) must be notified immedi-
ately so that the key can be revoked and placed on a certificate revocation list (CRL, see Question 4.1.3.16) to
prevent any illegitimate use if the key is found or recovered by an adversary. Loss of a private key can happen, for
example, if you lose the smart card used to store your key, or if the disk on which the key is stored is damaged.
You should also obtain a new key right away to minimize the number of messages people send you that are
encrypted under your old key, since these can no longer be read.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 112

Question 4.1.3.7. What happens if my private key is compromised?

If your private key is compromised, that is, if you suspect an attacker may have obtained your private key, then
you should assume the attacker can read any encrypted messages sent to you under the corresponding public key,
and forge your signature on documents as long as others continue to accept that public key as yours. The serious-
ness of these consequences underscores the importance of protecting your private key with extremely strong
mechanisms (see Question 4.1.3.8).

You must immediately notify any certifying authorities for the public keys and have your public key placed on a
certificate revocation list (see Question 4.1.3.16); this will inform people that the private key has been compro-
mised and the public key has been revoked. Then generate a new key pair and obtain a new certificate for the
public key. You may wish to use the new private key to re-sign documents you had signed with the compromised
private key, though documents that had been time stamped as well as signed might still be valid (see Question
7.11). You should also change the way you store your private key to prevent a compromise of the new key.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 113

Question 4.1.3.8. How should I store my private key?

Private keys must be stored securely, since forgery and loss of privacy could result from compromise (see Ques-
tion 4.1.3.7). The measures taken to protect a private key must be at least equal to the required security of the
messages encrypted with that key. In general, a private key should never be stored anywhere in plaintext form.
The simplest storage mechanism is to encrypt a private key under a password and store the result on a disk.
However, passwords are sometimes very easily guessed; when this scheme is followed, a password should be
chosen very carefully since the security is tied directly to the password.

Storing the encrypted key on a disk that is not accessible through a computer network, such as a floppy disk or a
local hard disk, will make some attacks more difficult. It might be best to store the key in a computer that is not
accessible to other users or on removable media the user can remove and take with her when she has finished
using a particular computer. Private keys may also be stored on portable hardware, such as a smart card. Users
with extremely high security needs, such as certifying authorities, should use tamper-resistant devices to protect
their private keys (see Question 4.1.3.13).

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 114

Question 4.1.3.9. How do I find someone else�s public key?

Suppose Alice wants to find Bob’s public key. There are several possible ways of doing this. She could call him up
and ask him to send his public key via e-mail. She could request it via e-mail, exchange it in person, as well as
many other ways. Since the public key is public knowledge, there is no need to encrypt it while transferring it,
though one should verify the authenticity of a public key. A mischievous third party could intercept the transmis-
sion, replace Bob’s key with his or her own and thereby be able intercept and decrypt messages that are sent from
Alice to Bob and encrypted using the “fake” public key. For this reason one should personally verify the key (e.g.,
this can be done by computing a hash of the key and verifying it with Bob over the phone) or rely on certifying
authorities (see Question 4.1.3.12 for more information on certifying authorities). Certifying authorities may
provide directory services; if Bob works for company Z, Alice could look in the directory kept by Z’s certifying
authority. Directories must be secure against tampering, so users can be confident a public key listed in the
directory actually belongs to the person listed. Otherwise, they might send private, encrypted information to the
wrong person or accept documents signed by the wrong person.

Eventually, full-fledged directories will arise, serving as on-line white or yellow pages. If they are compliant with
ITU-T X.509 standards (see Question 5.3.2), the directories will contain certificates as well as public keys and the
presence of certificates will lower the directories’ security needs.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 115

Question 4.1.3.10. What are certificates?

Certificates are digital documents attesting to the binding of a public key to an individual or other entity. They
allow verification of the claim that a specific public key does in fact belong to a specific individual. Certificates
help prevent someone from using a phony key to impersonate someone else. In some cases it may be necessary to
create a chain of certificates, each one certifying the previous one until the parties involved are confident in the
identity in question.

In their simplest form, certificates contain a public key and a name. As commonly used, a certificate also contains
an expiration date, the name of the certifying authority that issued the certificate, a serial number, and perhaps
other information. Most importantly, it contains the digital signature of the certificate issuer. The most widely
accepted format for certificates is defined by the ITU-T X.509 international standard (see Question 5.3.2); thus,
certificates can be read or written by any application complying with X.509. A detailed discussion of certificate
formats can be found in [Ken93].

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 116

Question 4.1.3.11. How are certificates used?

Certificates are typically used to generate confidence in the legitimacy of a public key. Certificates are essentially
digital signatures that protect public keys from forgery, false representation, or alteration. The verification of a
signature therefore can include checking the validity of the certificate for the public key involved. Such verifica-
tion steps can be performed with greater or lesser rigor depending on the context.

The most secure use of authentication involves enclosing one or more certificates with every signed message. The
receiver of the message would verify the certificate using the certifying authority’s public key and, now confident
of the public key of the sender, verify the message’s signature. There may be two or more certificates enclosed
with the message, forming a hierarchical certificate chain, wherein one certificate testifies to the authenticity of the
previous certificate. At the end of a certificate hierarchy is a top-level certifying authority, which is trusted without
a certificate from any other certifying authority. The public key of the top-level certifying authority must be
independently known, for example, by being widely published. It is interesting to note that there are alternative
trust models being pursued by a variety of researchers that avoid this hierarchical approach.

The more familiar the sender is to the receiver of the message, or more precisely, the more trust the receiver places
in the claim that the public key really is that of the sender, the less need there is to enclose and verify certificates. If
Alice sends messages to Bob every day, Alice can enclose a certificate chain on the first day that Bob verifies. Bob
thereafter stores Alice’s public key and no more certificates or certificate certifications are necessary. A sender
whose company is known to the receiver may need to enclose only one certificate (issued by the company),
whereas a sender whose company is unknown to the receiver may need to enclose two or more certificates. A
good rule of thumb is to enclose just enough of a certificate chain so the issuer of the highest level certificate in the
chain is well known to the receiver. If there are multiple recipients then enough certificates should be included to
cover what each recipient might need.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 117

Question 4.1.3.12. Who issues certificates and how?

Certificates are issued by a certifying authority (CA), which can be any trusted central administration willing to
vouch for the identities of those to whom it issues certificates and their association with a given key. A company
may issue certificates to its employees, or a university to its students, or a town to its citizens. In order to prevent
forged certificates, the CA’s public key must be trustworthy: a CA must either publicize its public key or provide a
certificate from a higher-level CA attesting to the validity of its public key. The latter solution gives rise to hierar-
chies of CAs. See Figure 12 for an example.

Certificate issuance proceeds as follows. Alice generates her own key pair and sends the public key to an appro-
priate CA with some proof of her identification. The CA checks the identification and takes any other steps
necessary to assure itself the request really did come from Alice and that the public key was not modified in
transit, and then sends her a certificate attesting to the binding between Alice and her public key along with a
hierarchy of certificates verifying the CA’s public key. Alice can present this certificate chain whenever desired in
order to demonstrate the legitimacy of her public key. Since the CA must check for proper identification, organi-
zations find it convenient to act as a CA for their own members and employees. There are also CAs that issue
certificates to unaffiliated individuals.

Figure 12. Example of a certification hierarchy.

Different CAs may issue certificates with varying levels of identification requirements. One CA may insist on
seeing a driver’s license, another may want the certificate request form to be notarized, yet another may want
fingerprints of anyone requesting a certificate. Each CA should publish its own identification requirements and
standards, so verifiers can attach the appropriate level of confidence to the certified name-key bindings. CA’s with
lower levels of identification requirements produce certificates with lower “assurance.” CA’s can thus be consid-
ered to be of high, medium, and low assurance. One type of CA is the persona CA. This type of CA creates certifi-
cates that bind only e-mail addresses and their corresponding public keys. It is designed for users who wish to
remain anonymous yet want to be able to participate in secure electronic services.

An example of a certificate-issuing protocol is found in Apple Computer’s System 7.5 for the Macintosh. System
7.5 users can generate a key pair and then request and receive a certificate for the public key; the certificate
request must be notarized.

For more information about certificate-related products, visit the VeriSign, Inc. website; see http://
www.verisign.com/ for more information.

RSADSI

Residential

IPRA

RSADSI
Commercial
Assurance

TIS Medium

Assurance

RSADSI
Low-

Assurance

Motorola Apple LA SF MIT USC Persona

Employee

Affiliate

Employee

Affiliate

User User User

User User

User

User

User User

IPRA

Hierarchy

Certifiers

Certification

Authorities

End-Users
c
e
rt

if
ie

d
 b

y
c
e
rt

if
ie

d
 b

y
c
e
rt

if
ie

d
 b

y

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 118

Question 4.1.3.13. How do certifying authorities store their private keys?

It is extremely important that the private keys of certifying authorities (see Question 4.1.3.12) are stored securely.
The compromise of this information would allow the generation of certificates for fraudulent public keys. One
way to achieve the desired security is to store the key in a tamper-resistant device. The device should preferably
destroy its contents if ever opened, and be shielded against attacks using electromagnetic radiation. Not even
employees of the certifying authority should have access to the private key itself, but only the ability to use the
private key in the process of issuing certificates.

There are many possible designs for controlling the use of a certifying authority’s private key. BBN’s SafeKeyper,
for instance, is activated by a set of data keys, which are physical keys capable of storing digital information. The
data keys use secret sharing technology so that several people must use their data keys to activate the SafeKeyper.
This prevents a disgruntled CA employee from producing phony certificates.

Note that if the certificate-signing device is destroyed accidentally, then no security is compromised. Certificates
signed by the device are still valid, as long as the verifier uses the correct public key. Moreover, some devices are
manufactured so a lost private key can be restored into a new device.
(see Question 4.1.3.6 for a discussion of lost CA private keys).

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 119

Question 4.1.3.14. How are certifying authorities susceptible to attack?

One can think of many attacks aimed at certifying authorities (see Question 4.1.3.12) all of which can be defended
against. For instance, an attacker may attempt to discover the private key of a certifying authority by reverse
engineering the device in which it is stored. For this reason, a certifying authority must take extreme precautions
to prevent illegitimate access to its private key; see Question 4.1.3.13 for discussion.

The certifying authority’s key pair might be the target of an extensive cryptanalytic attack. For this reason, CAs
should use long keys, and should also change keys regularly. Top-level certifying authorities need especially long
keys, as it may not be practical for them to change keys frequently because the public key may be written into
software used by a large number of verifiers.

What if an attacker breaks a CA’s key, but the CA is no longer using it? Though the key has long since expired, the
attacker, say Alice, can now forge a certificate dated 15 years ago attesting to a phony public key of some other
person, say Bob. Alice can then forge a document with a signature of Bob dated 15 years ago, perhaps a will
leaving everything to Alice. The underlying issue raised by this attack is how to authenticate a signed document
dated many years ago. Time stamps are the solution in this case (see Question 2.2.2). ****

There are other attacks to consider that do not involve the compromise of a CA’s private key. For instance, sup-
pose Bob wishes to impersonate Alice. If Bob can convincingly sign messages as Alice, he can send a message to
Alice’s bank saying “I wish to withdraw $10,000 from my account. Please send me the money.” To carry out this
attack, Bob generates a key pair and sends the public key to a certifying authority saying “I’m Alice. Here is my
public key. Please send me a certificate.” If the CA is fooled and sends him such a certificate, he can then fool the
bank, and his attack will succeed. In order to prevent such an attack, the CA must verify that a certificate request
did indeed come from its purported author, i.e., it must require sufficient evidence that it is actually Alice who is
requesting the certificate. The CA may, for example, require Alice to appear in person and show a birth certificate.
Some CAs may require very little identification, but the bank should not honor messages authenticated with such
low-assurance certificates. Every CA must publicly state its identification requirements and policies so others can
then attach an appropriate level of confidence to the certificates.

 In another attack, Bob bribes someone who works for the CA to issue to him a certificate in the name of Alice.
Now Bob can send messages signed in Alice’s name and anyone receiving such a message will believe it is au-
thentic because a full and verifiable certificate chain will accompany the message. This attack can be hindered by
requiring the cooperation of two (or more) employees to generate a certificate; the attacker now has to bribe two
or more employees rather than one.

Unfortunately, there may be other ways to generate a forged certificate by bribing only one employee. If each
certificate request is checked by only one employee, that one employee can be bribed and slip a false request into
a stack of real certificate requests. Note that a corrupt employee cannot reveal the certifying authority’s private
key as long as it is properly stored.

A CA should also be certain that a user possesses the private key corresponding to the public key that is certified;
otherwise, certain attacks become possible where the user attaches a certificate to a message signed by someone
else (see [Kal93b]). (See also [MQV95] for discussion of this issue in the context of key agreement protocols.)

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 120

Question 4.1.3.15. What if a certifying authority�s key is lost or compromised?

If the certifying authority’s key is lost or destroyed but not compromised, certificates signed with the old key are
still valid, as long as the verifier knows to use the old public key to verify the certificate. In some designs for
certificate-signing devices, encrypted backup copies of the CA’s private key are kept, so a CA that loses its key can
then restore it by loading the encrypted backup into the device. If the device itself is destroyed, the manufacturer
may be able to supply another one with the same internal information, thus allowing recovery of the key.

A compromised CA key is a much more dangerous situation. An attacker who discovers a certifying authority’s
private key can issue phony certificates in the name of the certifying authority, which would enable undetectable
forgeries. For this reason, all precautions must be taken to prevent compromise, including those outlined in
Question 4.1.3.13 and Question 4.1.3.14.

If a compromise does occur, the CA must immediately cease issuing certificates under its old key and change to a
new key. If it is suspected that some phony certificates were issued, all certificates should be recalled and then
reissued with the new CA key. These measures could be relaxed somewhat if the certificates were registered with
a digital time stamping service (see Question 7.11). Note that compromise of a CA key does not invalidate users’
keys, but only the certificates that authenticate them. Compromise of a top-level CA’s private key should be
considered catastrophic, since the public key may be built into applications that verify certificates.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 121

Question 4.1.3.16. What are Certificate Revocation Lists (CRLs)?

A certificate revocation list (CRL) is a list of certificates that have been revoked before their scheduled expiration
date. There are several reasons why a certificate might need to be revoked and placed on a CRL. For instance, the
key specified in the certificate might have been compromised or the user specified in the certificate may no longer
have authority to use the key. For example, suppose the user name associated with a key is “Alice Avery, Vice
President, Argo Corp.” If Alice were fired, her company would not want her to be able to sign messages with that
key, and therefore the company would place the certificate on a CRL.

When verifying a signature, one examines the relevant CRL to make sure the signer’s certificate has not been
revoked. Whether it is worth the time to perform this check depends on the importance of the signed document.
A CRL is maintained by a CA, and it provides information about revoked certificates that were issued by that CA.
CRLs only list current certificates, since expired certificates should not be accepted in any case: when a revoked
certificate’s expiration date occurs, that certificate can be removed from the CRL.

CRLs are usually distributed in one of two ways. In the “pull” model, verifiers download the CRL from the CA, as
needed. In the “push” model, the CA sends the CRL to the verifiers at regular intervals. Some systems use a
hybrid approach where the CRL is pushed to several intermediate repositories from which the verifiers may
retrieve it as needed.

Although CRLs are maintained in a distributed manner, there may be central repositories for CRLs, such as,
network sites containing the latest CRLs from many organizations. An institution like a bank might want an in-
house CRL repository to make CRL searches on every transaction feasible. The original CRL proposals often
required a list, per issuer, of all revoked certificates; new certificate revocation methods (e.g., in X.509 version 3;
see Question 5.3.2) are more flexible.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 122

Section 4.2: Electronic Commerce

Question 4.2.1. What is electronic money?

Electronic money (also called electronic cash or digital cash) is a term that is still fairly vague and undefined. It
refers to transactions carried out electronically with a net result of funds transferred from one party to another.
Electronic money may be either debit or credit. Digital cash per se is basically another currency, and digital cash
transactions can be visualized as a foreign exchange market. This is because we need to convert an amount of
money to digital cash before we can spend it. The conversion process is analogous to purchasing foreign currency.

Pioneer work on the theoretical foundations of digital cash was carried out by Chaum [Cha83] [Cha85]. Digital
cash in its precise definition may be anonymous or identified. Anonymous schemes do not reveal the identity of
the customer and are based on blind signature schemes (see Question 7.3). Identified spending schemes always
reveal the identity of the customer and are based on more general forms of signature schemes. Anonymous
schemes are the electronic analog of cash, while identified schemes are the electronic analog of a debit or credit
card. There are other approaches, payments can be anonymous with respect to the merchant but not the bank, or
anonymous to everyone, but traceable (a sequence of purchases can be related, but not linked directly to the
spender’s identity).

Since digital cash is merely an electronic representation of funds, it is possible to easily duplicate and spend a
certain amount of money more than once. Therefore, digital cash schemes have been structured so that it is not
possible to spend the same money more than once without getting caught immediately or within a short period of
time. Another approach is to have the digital cash stored in a secure device, which prevents the user from double
spending.

Electronic money also encompasses payment systems that are analogous to traditional credit cards and checks.
Here, cryptography protects conventional transaction data such as an account number and amount; a digital
signature can replace a handwritten signature or a credit-card authorization, and public key encryption can
provide confidentiality. There are a variety of systems for this type of electronic money, ranging from those that
are strict analogs of conventional paper transactions with a typical value of several dollars or more, to those (not
digital cash per se) that offer a form of “micropayments” where the transaction value may be a few pennies or
less. The main difference is that for extremely low-value transactions even the limited overhead of public key
encryption and digital signatures is too much, not to mention the cost of “clearing” the transaction with bank. As a
result, “batching” of transactions is required, with the public key operations done only occasionally.

Several Web pages surveying payment systems and other forms of electronic money are available, including the
following:

http://ganges.cs.tcd.ie/mepeirce/Project/oninternet.html, by Michael Peirce

http://www.w3.org/hypertext/WWW/Payments/roadmap.html, by Phillip Hallam-Baker

http://nii.isi.edu/info/netcheque/related.html, part of the NetCheque project at the Information
Sciences Institute (University of Southern California).

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 123

Question 4.2.2. What is iKP?

The Internet Keyed Payments Protocol (iKP) is an architecture for secure payments involving three or more
parties [BGH95]. Developed at IBM’s T.J. Watson Research Center and Zurich Research Laboratory, the protocol
defines transactions of a “credit card” nature, where a buyer and seller interact with a third party “acquirer,” such
as a credit-card system or a bank, to authorize transactions. The protocol is based on public-key cryptography.

iKP is no longer widely in use, however it is the current foundation for SET (see Question 4.2.3).

Additional information on iKP is available from:
http://www.zurich.ibm.com/Technology/Security/extern/ecommerce/iKP.html.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 124

Question 4.2.3. What is SET?

Visa and Mastercard have jointly developed the Secure Electronic Transaction (SET) protocol as a method for
secure, cost effective bankcard transactions over open networks. SET includes protocols for purchasing goods and
services electronically, requesting authorization of payment, and requesting “credentials” (i.e. certificates) binding
public keys to identities, among other services. Once SET is fully adopted, the necessary confidence in secure
electronic transactions will be in place, allowing merchants and customers to partake in electronic commerce.

SET supports DES (see Question 3.2.1) for bulk data encryption and RSA (see Question 3.1.1) for signatures and
public key encryption of data encryption keys and bankcard numbers. The RSA public - key encryption employs
Optimal Asymmetric Encryption Padding [BR94].

SET is being published as open specifications for the industry, which may be used by software vendors to develop
applications.

More information can be found at http://www.visa.com and http://www.mastercard.com.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 125

Question 4.2.4. What is Mondex?

Mondex is a payment system in which currency is stored in smartcards. These smartcards are similar in shape and
size to credit cards, and generally permit the storage of sums of money up to several hundred dollars. Money may
be transferred from card to card arbitrarily many times and in any chosen amounts. There is no concern about
coin sizes, as with traditional currency. The Mondex system also provides a limited amount of anonymity. The
system carries with it one of the disadvantages of physical currency: if a Mondex card is lost, the money it con-
tains is also lost. Transfers of funds from card to card are effected with any one of a range of intermediate hard-
ware devices.
The Mondex system relies for its security on a combination of cryptography and tamper-resistant hardware. The
protocol for transferring funds from one card to another, for instance, makes use of digital signatures (although
Mondex has not yet divulged information about the algorithms employed). Additionally, the system assumes that
users cannot tamper with cards, i.e., access and alter the balances stored in their cards. The Mondex system is
managed by a corporation known as Mondex International Ltd., with a number of associated national franchises.
Pilots of the system have been initiated in numerous cities around the world.

For more information on Mondex, visit their website at http://www.mondex.com.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 126

Question 4.2.5. What are micropayments?

Micropayments are payments of small sums of money, generally in denominations smaller than those in which
physical currency is available. It is envisioned that sums of as little as 1/1000th of a cent may someday be used to
pay for content access or for small quantities of network resources. Conventional electronic payment systems
require too much computation to handle such sums with acceptable efficiency. Micropayment systems enable
payments of this size to be achieved in a computationally lightweight manner, generally by sacrificing some
degree of security.

One example of a micropayment system, proposed by Rivest and Shamir, is known as MicroMint. In MicroMint, a
coin consists of a hash collision computed under certain carefully tuned constraints. By investing in extensive
computational resources, a mint may compute a number of these coins, and then sell them in batches. MicroMint
exploits the efficiency of hash function calculations: any party can quickly verify the legitimacy of coin. While
deriving new coins is hard in MicroMint, it is possible for users to re-spend the same coin or to set up an expen-
sive forging operation. The MicroMint system addresses this shortcoming by presuming that it will not be worth-
while for a user to cheat in this manner.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 127

Section 5.1: Security on the Internet

Question 5.1.1. What is S/MIME?

S/MIME (Secure/ Multipurpose Internet Mail Extensions) is a protocol that adds digital signatures and encryp-
tion to Internet MIME (Multipurpose Internet Mail Extensions) messages described in RFC 1521. MIME is the
official proposed standard format for extended Internet electronic mail. Internet e-mail messages consist of two
parts, the header and the body. The header forms a collection of field/value pairs structured to provide informa-
tion essential for the transmission of the message. The structure of these headers can be found in RFC 822. The
body is normally unstructured unless the e-mail is in MIME format. MIME defines how the body of an e-mail
message is structured. The MIME format permits e-mail to include enhanced text, graphics, audio, and more in a
standardized manner via MIME-compliant mail systems. However, MIME itself does not provide any security
services. The purpose of S/MIME is to define such services, following the syntax given in PKCS #7 (see Question
5.3.3) for digital signatures and encryption. The MIME body section carries a PKCS #7 message, which itself is the
result of cryptographic processing on other MIME body sections.

S/MIME has been endorsed by a number of leading networking and messaging vendors, including ConnectSoft,
Frontier, FTP Software, Qualcomm, Microsoft, Lotus, Wollongong, Banyan, NCD, SecureWare, VeriSign, Netscape,
and Novell. For more information on S/MIME, check http://www.rsa.com/rsa/S-MIME/.

Section 5: Cryptography in the Real World

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 128

Question 5.1.2. What is SSL?

The SSL (Secure Sockets Layer) Handshake Protocol [Hic95] was developed by Netscape Communications
Corporation to provide security and privacy over the Internet. The protocol supports server and client authentica-
tion. The SSL protocol is application independent, allowing protocols like HTTP (HyperText Transfer Protocol),
FTP (File Transfer Protocol), and Telnet to be layered on top of it transparently. The SSL protocol is able to negoti-
ate encryption keys as well as authenticate the server before data is exchanged by the higher-level application.
The SSL protocol maintains the security and integrity of the transmission channel by using encryption, authentica-
tion and message authentication codes.

The SSL Handshake Protocol consists of two phases: server authentication and an optional client authentication.
In the first phase, the server, in response to a client’s request, sends its certificate and its cipher preferences. The
client then generates a master key, which it encrypts with the server’s public key, and transmits the encrypted
master key to the server. The server recovers the master key and authenticates itself to the client by returning a
message authenticated with the master key. Subsequent data is encrypted and authenticated with keys derived
from this master key. In the optional second phase, the server sends a challenge to the client. The client authenti-
cates itself to the server by returning the client’s digital signature on the challenge, as well as its public key
certificate.

A variety of cryptographic algorithms are supported by SSL. During the “handshaking” process, the RSA public-
key cryptosystem (see Question 3.1.1) is used. After the exchange of keys, a number of ciphers are used. These
include RC2 (see Question 3.6.2), RC4 (see Question 3.6.3), IDEA (see Question 3.6.7), DES (see Question 3.2.1),
and triple-DES (see Question 3.2.6). The MD5 message-digest algorithm (see Question 3.6.6) is also used. The
public key certificates follow the X.509 syntax (see Question 5.3.3).

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 129

Question 5.1.3. What is S/WAN?

The S/WAN (Secure Wide Area Network, pronounced “swan”) is an initiative to promote the widespread deploy-
ment of Internet-based Virtual Private Networks (VPNs). This is accomplished by adopting a standard specifica-
tion for implementing IPSec, the security architecture for the Internet Protocol [Atk95a] [Atk95b][Atk95c]
[KMS95][MS95a], thereby ensuring interoperability among firewall and TCP/IP products. The use of IPSec allows
companies to mix-and-match the best firewall and TCP/IP stack products to build Internet-based Virtual Private
Networks (VPNs). Currently, users and administrators are often locked in to single-vendor solutions network-
wide, because vendors have been unable to agree upon the details of an IPSec implementation. The S/WAN effort
should therefore remove a major obstacle to the widespread deployment of secure VPNs.

S/WAN supports encryption at the IP level, which provides more fundamental and lower-level security than
higher-level protocols, such as SSL (see Question 5.1.4). It is expected that higher-level security specifications,
including SSL, will be routinely layered on top of S/WAN implementations, and these security specifications will
work together.

To guarantee IPSec interoperability, S/WAN defines a common set of algorithms, modes, and options. S/WAN
uses RC5 (see Question 3.6.4) at key sizes ranging from 40 bits (for exportability) to 128 bits. S/WAN can also be
implemented using DES (see Question 3.2.1).

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 130

Question 5.1.4. What is IPSec?

The Internet Engineering Task Force (IETF)’s IP Security Protocol (IPSec) working group is defining a set of
specifications for cryptographically-based authentication, integrity, and confidentiality services at the IP datagram
layer. These specifications are expected to emerge as Internet Proposed Standard RFCs early in 1998. The IPSec
group’s results comprise a basis for interoperably secured host-to-host pipes, encapsulated tunnels, and Virtual
Public Networks (VPNs), thus providing protection for client protocols residing above the IP layer.

The protocol formats for IPSec’s Authentication Header (AH) and IP Encapsulating Security Payload (ESP) are
independent of the cryptographic algorithm, although certain algorithm sets are specified as mandatory for
support in the interest of interoperability. Similarly, multiple algorithms are supported for key management
purposes (establishing session keys for traffic protection), within IPSec’s ISAKMP/Oakley framework.

For more info on IPSec: http://www.ietf.org/html.charters/ipsec-charter.html

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 131

Question 5.1.5. What is SSH?

SSH, or Secure Shell, is a protocol which permits secure remote access over a network from one computer to
another. SSH negotiates and establishes an encrypted connection between an SSH client and an SSH server,
authenticating the client and server in any of a variety of ways (some of the possibilities for authentication are
RSA; Security Dynamics SecurID tokens; and passwords). That connection can then be used for a variety of
purposes, such as creating a secure remote login on the server (effectively replacing commands such as telnet,
rlogin, and rsh) or setting up a VPN (Virtual Private Network).

When used for creating secure logins, SSH can be configured to forward X11 connections automatically over the
encrypted “tunnel” so as to give the remote user secure access to the SSH server within a full-featured windowing
environment. SSH connections and their X11 forwarding can be cascaded to give an authenticated user convenient
secure windowed access to a complete network of hosts. Other TCP/IP connections can also be tunneled through
SSH to the server so that the remote user can have secure access to mail, the web, file sharing, FTP, and other
services.

The SSH protocol is currently being standardized in the IETF’s SECSH working group.

More information about SSH, including how to obtain commercial implementations, is available from SSH
Communications Security, Ltd. (http://www.ssh.fi), Data Fellows, Ltd. (http://www.datafellows.com), and
VanDyke Technologies, Inc. (http://www.vandyke.com).

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 132

Question 5.1.6. What is Kerberos?

Kerberos [KN93][KNT94] is an authentication service developed by the Project Athena team at MIT, based on a
1978 paper by Needham and Schroeder [NS78]. The first general use version was version 4. Version 5, which
addressed certain shortfalls in version 4, was released in 1994. Kerberos uses secret key ciphers (see Question
2.1.2) for encryption and authentication. Version 4 could only use DES (see Question 3.2.1). Unlike a public key
authentication system, Kerberos does not produce digital signatures (see Question 2.2.2). Instead Kerberos was
designed to authenticate requests for network resources rather than to authenticate authorship of documents.
Thus, Kerberos does not provide for future third-party verification of documents.

In a Kerberos system, there is a designated site on each network, called the Kerberos server, which performs
centralized key management and administrative functions. The server maintains a database containing the secret
keys of all users, authenticates the identities of users, and distributes session keys to users and servers who wish
to authenticate one another. Kerberos requires trust in a third party (the Kerberos server). If the server is compro-
mised, the integrity of the whole system is lost. Public-key cryptography was designed precisely to avoid the
necessity to trust third parties with secrets (see Question 2.2.1). Kerberos is generally considered adequate within
an administrative domain; however across domains the more robust functions and properties of public key
systems are often preferred. There has been some developmental work in incorporating public-key cryptography
into Kerberos [Gan95].

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 133

Section 5.2: Development Security Products

Question 5.2.1. What are CAPIs?

A CAPI, or cryptographic application programming interface, is an interface to a library of functions software
developers can call upon for security and cryptography services. The goal of a CAPI is to make it easy for devel-
opers to integrate cryptography into applications. Separating the cryptographic routines from the software may
also allow the export of software without any security services implemented. The software can later be linked by
the user to the local security services. CAPIs can be targeted at different levels of abstraction, ranging from
cryptographic module interfaces to authentication service interfaces. The International Cryptography Experiment
(ICE) is an informally structured program for testing NSA’s export restrictions (see Question 6.2.2 and Question
6.2.3) on CAPIs. More information can be obtained about this program by e-mail to ice@tis.com. Some examples of
CAPIs include RSA Laboratories’ Cryptoki (PKCS #11) [RSA95], NSA’s Fortezza (see Question 6.2.6), Internet
GSS-API [Lin93], and the X/Open GCS-API [Xop95]. NSA has prepared a helpful report [NSA95] that surveys
some of the current CAPIs.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 134

Question 5.2.2. What is the GSS-API?

The Generic Security Service API (GSS-API) is a CAPI for distributed security services. It has the capacity to
handle session communication securely, including authentication, data integrity, and data confidentiality. The
GSS-API is designed to insulate its users from the specifics of underlying mechanisms. GSS-API implementations
have been constructed atop a range of secret key and public-key technologies. The current (Version 2) GSS-API
definition is available in Internet Proposed Standard RFC 2078 and GSS-API is also incorporated as an element of
the Open Group Common Environment Specification. Related ongoing work items include definitions of a
complementary API (GSS-IDUP) oriented to store-and-forward messaging, of a negotiation facility for selection of
a common mechanism shared between peers, and of individual underlying GSS-API mechanisms.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 135

Question 5.2.3. What are RSA BSAFE CRYPTO-C and RSA BSAFE CRYPTO-J?

RSA BSAFE Crypto-C (formerly BSAFE) and RSA BSAFE Crypto-J (formerly JSAFE) are low-level cryptographic
toolkits that offer developers the tools to add privacy and authentication features to their applications.

RSA BSAFE CRYPTO-C and RSA BSAFE CRYPTO-J are designed to provide the security tools for a wide range of
applications, such as digitally signed electronic forms, virus detection, or virtual private networks. RSA BSAFE
CRYPTO-C can support virtually any global security standard; and RSA BSAFE CRYPTO-J is compatible with
various industry standards, including S/MIME, IPSec, SSL, S/WAN and SET (see Question 5.1.1, Question 5.1.4,
Question 5.1.3, Question 4.2.3, and Question 4.2.3). RSA BSAFE CRYPTO-C and RSA BSAFE CRYPTO-J fully
support PKCS (see Question 5.3.3).

RSA has introduced a whole new family of elliptic curve public-key cryptographic methods to RSA BSAFE
CRYPTO-C; which now includes elliptic curve cryptographic routines for encryption (analogous to the El Gamal
encryption system), key agreement (analogous to Diffie-Hellman key agreement) and digital signatures (analo-
gous to DSA, Schnorr, etc.). This implementation of elliptic curve cryptography includes all variants of ECC: Odd
Prime, Even Normal, and Even Polynomial, as well as the ability to generate new curve parameters for all three
fields.

RSA BSAFE CRYPTO-J is RSA’s first cryptographic toolkit designed specifically for Java developers. RSA BSAFE
CRYPTO-J has a full suite of Cryptographic Algorithms including RSA Public-key cryptosystem and Diffie-
Hellman Key Negotiation, DES, Triple-DES, RC2, RC4, RC5, MD5and SHA-1; RSA BSAFE CRYPTO-J provides
developers with a state-of-the-art implementation of the most important privacy, authentication, and data integ-
rity routines all in Java. RSA BSAFE CRYPTO-J uses the same Java Security API developers are used to. The
toolkit also includes source code for sample applications and easy-to-use self-test modules. This means proven
security and shorter time-to-market for new Java project.

For more information on RSA BSAFE CRYPTO-C, RSA BSAFE CRYPTO-J and other RSA products, see
http://www.rsa.com/rsa/products/

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 136

Question 5.2.4. What is SecurPC?

RSA SecurPC is a software utility that encrypts disks and files on both desktop and laptop personal computers.
SecurPC extends the WindowsTM File Manager or Explorer to include options for encrypting and decrypting
individually selected files or files within selected folders. Each file is encrypted, using RSA’s RC4 symmetric
cipher, with a randomly generated, 128-bit key (40 bits for some non-U.S. users.) The random key is encrypted
under the user’s secret key, which is encrypted under a key derived from the user’s passphrase. This allows the
user’s passphrase to be changed without decrypting and reencrypting all encrypted files.

SecurPC provides for optional emergency access to encrypted files, based on a k-of-n threshold scheme. The user’s
secret key may be stored, encrypted with the RSA algorithm, under an emergency access public key. The corre-
sponding private key is given, in shares, to any number of trustees. A designated number of these trustees must
present their shares in order to decrypt the encrypted files. For more on RSA SecurPC, see
http://www.securitydynamics.com/solutions/products/securpc.html .

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 137

Question 5.2.5. What is SecurID?

SecurID is a two-factor authentication system, developed and sold by Security Dynamics. It is generally used to
secure either local or remote access to computer networks. Each SecurID user has a memorized PIN or password,
and a hand-held token with a LCD display. The token displays a new pseudorandom value, called the tokencode,
at a fixed time interval, usually one minute. The user combines the memorized factor with the tokencode, either
by simple concatenation or entry on an optional keypad on the token, to create the passcode, which is then
entered to gain access to the protected resource.

The SecurID token is a battery powered, hand-held device containing a dedicated microcontroller. The
microcontroller stores, in RAM, the current time, and a 64-bit seed value that is unique to a particular token. At
the specified interval, the seed value and the time are combined through a proprietary algorithm stored in the
microcontroller’s ROM, to create the tokencode value.

An authentication server verifies the passcodes. The server maintains a database which contains the seed value
for each token and the PIN or password for each user. From this information, and the current time, the server
generates a set of valid passcodes for the user and checks each one against the entered value. For more on
SecurID, see http://www.securitydynamics.com.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 138

Question 5.2.6. What is PGP?

Pretty Good Privacy (PGP) is a software package originally developed by Phil Zimmerman that provides crypto-
graphic routines for e-mail and file storage applications. Zimmerman took existing cryptosystems and crypto-
graphic protocols and developed a program that can run on multiple platforms. It provides message encryption,
digital signatures, data compression, and e-mail compatibility.

The algorithms used for encryption are RSA (see Question 3.1.1) and Diffie-Hellman for key transport and IDEA
(see Question 3.6.7), CAST, and triple-DES for bulk encryption of messages. Digital signatures are achieved by the
use of RSA or DSA for signing and MD5 (see Question 3.6.6), RIPEMD-160, or SHA-1 for computing message
digests. The shareware program ZIP is used to compress messages for transmission and storage. E-mail compat-
ibility is achieved by the use of Radix-64 conversion.

PGP is bound by Federal export laws due to its use of the RSA public-key cryptosystem.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 139

Section 5.3: Cryptography Standards

Question 5.3.1. What are ANSI X9 standards?

American National Standards Institute (ANSI) is broken down into committees, one being ANSI X9. The commit-
tee ANSI X9 develops standards for the financial industry, more specifically for personal identification number
(PIN) management, check processing, electronic transfer of funds, etc. Within the committee of X9, there are
subcommittees; further broken down are the actual documents, such as X9.9 and X9.17.

ANSI X9.9 [ANS86a] is a United States national wholesale banking standard for authentication of financial
transactions. ANSI X9.9 addresses two issues: message formatting and the particular message authentication
algorithm. The algorithm defined by ANSI X9.9 is the so-called DES-MAC (see Question 2.1.7) based on DES (see
Question 3.2.1) in either CBC or CFB modes (see Question 2.1.4). A more detailed standard for retail banking was
published as X9.19 [ANS86b].

The equivalent international standards are ISO 8730 [ISO87]. and ISO 8731 for ANSI X9.9, and ISO 9807 for ANSI
X9.19. The ISO standards differ slightly in that they do not limit themselves to DES to obtain the message authen-
tication code but allow the use of other message authentication codes and block ciphers (see Question 5.3.4).

ANSI X9.17 [ANS85] is the Financial Institution Key Management (Wholesale) standard. It defines the protocols to
be used by financial institutions, such as banks, to transfer encryption keys. This protocol is aimed at the distribu-
tion of secret keys using symmetric (secret key) techniques. Financial institutions need to change their bulk
encryption keys on a daily or per-session basis due to the volume of encryptions performed. This does not permit
the costs and other inefficiencies associated with manual transfer of keys. The standard therefore defines a three-
level hierarchy of keys:

• The highest level is the master key (KKM), which is always manually distributed.
• The next level consists of key-encrypting keys (KEKs), which are distributed on-line.
• The lowest level has data keys (KDs), which are also distributed on-line.

The data keys are used for bulk encryption and are changed on a per-session or per-day basis. New data keys are
encrypted with the key-encrypting keys and distributed to the users. The key-encrypting keys are changed
periodically and encrypted with the master key. The master keys are changed less often but are always distributed
manually in a very secure manner.

ANSI X9.17 defines a format for messages to establish new keys and replace old ones called CSM (cryptographic
service messages). ANSI X9.17 also defines two-key triple-DES encryption (see Question 3.2.6) as a method by
which keys can be distributed. ANSI X9.17 is gradually being supplemented by public-key techniques such as
Diffie-Hellman encryption (see Question 3.6.1).

One of the major limitations of ANSI X9.17 is the inefficiency of communicating in a large system since each pair
of terminal systems that need to communicate with each other will need to have a common master key. To resolve
this problem, ANSI X9.28 was developed to support the distribution of keys between terminal systems that do not
share a common key center. The protocol defines a multiple-center group as two or more key centers that imple-
ment this standard. Any member of the multiple-center group is able to exchange keys with any other member.

ANSI X9.30 [ANS93a] is the United States financial industry standard for digital signatures based on the federal
Digital Signature Algorithm (DSA), and ANSI X9.31[ANS93b] is the counterpart standard for digital signatures
based on the RSA algorithm. ANSI X9.30 requires the SHA1 hash algorithm encryption (see Question 3.6.5); ANSI
X9.31 requires the MDC-2 hash algorithm [ISO92c]. A related document, X9.57, covers certificate management
encryption.

ANSI X9.42 [ANS94a] is a draft standard for key agreement based on the Diffie-Hellman algorithm, and ANSI
X9.44 [ANS94b] is a draft standard for key transport based on the RSA algorithm. The former is intended to
specify techniques for deriving a shared secret key; techniques currently being considered include basic Diffie-

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 140

Hellman encryption (see Question 3.6.1), authenticated Diffie-Hellman encryption, and the MQV protocols
[MQV95]. Some work to unify the various approaches is currently in progress. ANSI X9.44 will specify techniques
for transporting a secret key with the RSA algorithm. It is currently based on IBM’s Optimal Asymmetric Encryp-
tion Padding, a “provably secure” padding technique related to work by Bellare and Rogaway [BR94].

ANSI X9.42 was previously part of ANSI X9.30, and ANSI X9.44 was previously part of ANSI X9.31.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 141

Question 5.3.2. What are the ITU-T (CCITT) Standards?

The International Telecommunications Union, ITU-T (formerly know as CCITT), is a multinational union that
provides standards for telecommunication equipment and systems. ITU-T possesses a particular fashion for
naming an ITU-T X.500 directory [CCI88b], X.509 certificates and Distinguished Names. Distinguished names are
the standard form of naming. A distinguished name is comprised of one or more relative distinguished names,
and each relative distinguished name is comprised of one or more attribute-value assertions. Each attribute-value
assertion consists of an attribute identifier and its corresponding value information, e.g. “CountryName = US.”

Distinguished names were intended to identify entities in the X.500 directory tree. A relative distinguished name
is the path from one node to a subordinate node. The entire distinguished name traverses a path from the root of
the tree to an end node that represents a particular entity. A goal of the directory was to provide an infrastructure
to uniquely name every communications entity everywhere (hence the “distinguished” in “distinguished name”).
As a result of the directory’s goals, names in X.509 certificates are perhaps more complex than one might like (e.g.,
compared to an e-mail address). Nevertheless, for business applications,distinguished names are worth the
complexity, as they are closely coupled with legal name registration procedures; this is something simple names,
such as e-mail addresses, do not offer.

ITU-T Recommendation X. 400 [CCI88a], also known as the Message Handling System (MHS), is one of the two
standard e-mail architectures used for providing e-mail services and interconnecting proprietary e-mail systems.
The other is the Simple Mail Transfer Protocol (SMTP) used by the Internet. MHS allows e-mail and other store-
and-forward message transferring such as Electronic business Data Interchange (EDI) and voice messaging. The
MHS and Internet mail protocols are different but based on similar underlying architectural models. The notewor-
thy fact of MHS is that it has supported secure messaging since 1988. The MHS message structure is similar to the
MIME (see Question 5.1.1) message structure; it has both a header and a body. The body can be broken up into
multiple parts, with each part being encoded differently. For example, one part of the body may be text, the next
part a picture, and a third part encrypted information.

ITU-T Recommendation X.435 [CCI91] and its equivalent F.435 are X.400-based and designed to support elec-
tronic data interchange (EDI) messaging. EDI needs more stringent security than typical e-mail because of its
business nature: not only does an EDI message need protection against fraudulent or accidental modification in
transit, but it also needs to be immune to repudiation after it has been sent and received.

In support of these security requirements, X.435 defines, in addition to normal EDI messages, a set of EDI “notifi-
cations.” Positive notification implies the recipient has received the document and accepts the responsibility for it,
while negative notification means the recipient refused to accept the document due to a specified reason. For-
warding notification means the document had been forwarded to another recipient. Together, these notifications
form the basis for a system that can provide security controls comparable to those in the paper-based system that
EDI replaces.

ITU-T Recommendation X.509 [CCI88c] specifies the authentication service for X.500 directories, as well as the
widely adopted X.509 certificate syntax. The initial version of X.509 was published in 1988, version 2 was pub-
lished in 1993, and version 3 was proposed in 1994 and considered for approval in 1995. Version 3 addresses some
of the security concerns and limited flexibility that were issues in versions 1 and 2.
Directory authentication in X.509 can be carried out using either secret-key techniques or public-key techniques.
The latter is based on public key certificates. The standard does not specify a particular cryptographic algorithm,
although an informative annex of the standard describes the RSA algorithm (see Question 3.1.1).

An X.509 certificate consists of the following fields:

• version
• serial number
• signature algorithm ID
• issuer name
• validity period
• subject (user) name

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 142

• subject public key information
• issuer unique identifier (version 2 and 3 only)
• subject unique identifier (version 2 and 3 only)
• extensions (version 3 only)
• signature on the above fields

This certificate is signed by the issuer to authenticate the binding between the subject (user’s) name and the
subject’s public key. The major difference between versions 2 and 3 is the addition of the extensions field. This
field grants more flexibility as it can convey additional information beyond just the key and name binding.
Standard extensions include subject and issuer attributes, certification policy information, and key usage restric-
tions, among others.

X.509 also defines a syntax for certificate revocation lists (CRLs) (see Question 4.1.3.16).
The X.509 standard is supported by a number of protocols, including PKCS (see Question 5.3.3) and SSL (see
Question 5.1.2).

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 143

Question 5.3.3. What is PKCS?

The Public-key cryptography Standards (PKCS) are a set of standards for public-key cryptography, developed by
RSA Laboratories in cooperation with an informal consortium, originally including Apple, Microsoft, DEC, Lotus,
Sun and MIT. The PKCS have been cited by the OIW (OSI Implementers’ Workshop) as a method for implementa-
tion of OSI standards. The PKCS are designed for binary and ASCII data; PKCS are also compatible with the ITU-
T X.509 standard (see Question 5.3.2). The published standards are PKCS #1, #3, #5, #7, #8, #9, #10 #11 and #12;
PCKS #13 and #14 are currently being developed.

PKCS includes both algorithm-specific and algorithm-independent implementation standards. Many algorithms
are supported, including RSA (see Question 3.1.1) and Diffie-Hellman key exchange (see Question 3.6.1), however,
only the latter two are specifically detailed. PKCS also defines an algorithm-independent syntax for digital
signatures, digital envelopes, and extended certificates; this enables someone implementing any cryptographic
algorithm whatsoever to conform to a standard syntax, and thus achieve interoperability. Documents detailing the
PKCS standards can be obtained at RSA Data Security’s FTP server (accessible from http://www.rsa.com or via
anonymous ftp to ftp.rsa.com or by sending e-mail to pkcs@rsa.com).

The following are the Public-key cryptography Standards (PKCS):

• PKCS #1 defines mechanisms for encrypting and signing data using RSA public-key cryptosystem.
• PKCS #3 defines a Diffie-Hellman key agreement protocol.
• PKCS #5 describes a method for encrypting a string with a secret key derived from a password.
• PKCS #6 is being phased out in favor of version 3 of X.509.
• PKCS #7 defines a general syntax for messages that include cryptographic enhancements such as digital

signatures and encryption.
• PKCS #8 describes a format for private key information. This information includes a private key for some

public key algorithm, and optionally a set of attributes.
• PKCS #9 defines selected attribute types for use in the other PKCS standards.
• PKCS #10 describes syntax for certification requests.
• PKCS #11 defines a technology-independent programming interface, called Cryptoki, for cryptographic

devices such as smart cards and PCMCIA cards.
• PKCS #12 specifies a portable format for storing or transporting a user’s private keys, certificates, miscella-

neous secrets, etc.
• PKCS #13 defines mechanisms for encrypting and signing data using Elliptic Curve Cryptography.
• PKCS #14 gives a standard for pseudo-random number generation.

It is RSA Laboratories’ intention to revise the PKCS documents from time to time to keep track of new develop-
ments in cryptography and data security, as well as to transition the documents into open standards development
efforts as opportunities arise.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 144

Question 5.3.4. What are ISO standards?

The International Organization for Standardization, (ISO), is a non-governmental body promoting standardization
developments globally. Altogether, ISO is broken down into about 2700 Technical Committees, subcommittees
and working groups. ISO/IEC (International Electrotechnical Commission) is the joint technical committee
developing the standards for information technology.

One of the more important information technology standards developed by ISO/IEC is ISO/IEC 9798 [ISO92a].
This is an emerging international standard for entity authentication techniques. It consists of five parts. Part 1 is
introductory, and Parts 2 and 3 define protocols for entity authentication using secret-key techniques and public-
key techniques. Part 4 defines protocols based on cryptographic checksums, and part 5 addresses zero-knowledge
techniques.

ISO/IEC 9796 is another ISO standard that defines procedures for digital signature schemes giving message
recovery (such as RSA and Rabin-Williams). ISO/IEC International Standard 9594-8 is also published (and is
better known) as ITU-T Recommendation X.509, “Information Technology - Open Systems Interconnection - The
Directory: Authentication Framework, and is the basic document defining the most widely used form of public
key certificate.

Another example of an ISO/IEC standard is the ISO/IEC 9979 [ISO91] standard defining the procedures for a
service that registers cryptographic algorithms. Registering a cryptographic algorithm results in a unique identi-
fier being assigned to it. The registration is achieved via a single organization called the registration authority. The
registration authority does not evaluate or make any judgment on the quality of the protection provided.

For more information on ISO, contact their official website: http://www.iso.ch.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 145

Question 5.3.5. What is IEEE P1363?

The IEEE P1363 is an emerging standard that aims to provide a comprehensive coverage of established public-key
techniques. It continues to move toward completion, with balloting expected later this year. The project, begun in
1993, has produced a draft standard covering public-key techniques from the discrete logarithm, elliptic curve,
and integer factorization families. Contributions are currently solicited for an addendum, IEEE P1363a, which will
cover additional public-key techniques.

The project is closely coordinated with emerging ANSI standards for public-key cryptography in banking, and
forthcoming revisions of RSA Laboratories’ Public-key cryptography Standards will also be aligned with IEEE
P1363.

For more information, see http://grouper.ieee.org/groups/1363/.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 146

Question 5.3.6. What are some other cryptography specifications?

Although the following is not a description of actual standards, they are specifications for aspects of overall secure
system design.

TEMPEST is a standard for electromagnetic shielding for computer equipment. It was devised to address the
threat that information might be easily read from a distance via emanation of radiation from computer systems.
For instance, an attacker might intercept the radiation from the cathode ray tube (CRT) of a terminal that is not
protected against emission of stray radiation, thwarting any cryptographic protection that might otherwise be in
place. TEMPEST describes techniques for countering these threats. For more details about TEMPEST, see [RG91]

The Department of Defense (DOD) publication Trusted Computer System Evaluation Criteria (TCSEC), also called the
Orange Book, specifies the criteria the DOD uses when evaluating the security of a product. The assessed features
include: the security policy, marking, identification, accountability, assurance, and continuous protection of the
system. Based on the assessment, the security of the system is classified into one of four hierarchies, with A
providing the most security and D providing minimal or non-existent security. Each hierarchy has a number of
levels as well.

The Red Book, initially named the Trusted Network Interpretation (TNI) of the Trusted Computer System Evaluation
Criteria, was published to provide subsidiary information to enable the Orange Book principles to be applied in a
network environment. Acceptance of these criteria has grown to the extent that some commercial companies
require their purchases to satisfy a specific level of security as described in the Orange and Red Books.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 147

Section 6.1. Legal Disclaimer.

The materials should not be treated or relied upon as advice on technical and non-technical issues and the materi-
als have not been updated to reflect recent changes in technology, the law, or any other areas. Furthermore, RSA
cannot warrant that the information herein is complete or accurate and does not assume, and hereby disclaims,
any liability to any person for any loss or damage caused by errors or omissions in the FAQ result from negli-
gence, accident or any other cause.

Section 6: Laws Concerning Cryptography

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 148

Section 6.2: Government Involvement

Question 6.2.1. What is NIST?

NIST is an acronym for the National Institute of Standards and Technology, a division of the U.S. Department of
Commerce. NIST was formerly known as the National Bureau of Standards (NBS). Through its Computer Systems
Laboratory it aims to promote open systems and interoperability that will spur the development of computer-
based economic activity. NIST issues standards and guidelines intended to be adopted in all computer systems in
the U.S., and also sponsors workshops and seminars. Official standards are published as FIPS (Federal Informa-
tion Processing Standards) publications.

In 1987 Congress passed the Computer Security Act, which authorized NIST to develop standards for ensuring
the security of sensitive but unclassified information in government computer systems. It encouraged NIST to
work with other government agencies and private industry in evaluating proposed computer security standards.

NIST issues standards for cryptographic algorithms that U.S. government agencies are required to use.
A large percentage of the private sector often adopts them as well. In January 1977, NIST declared DES (see
Question 3.2.1) the official U.S. encryption standard and published it as FIPS Publication 46; DES soon became a
de facto standard throughout the United States. NIST is currently taking nominations for the Advanced Encryp-
tion Standard (AES), which is to replace DES, (see Questions 3.3.1 - 3.3.3 for more details on AES). There is no
definite deadline for the completion of the AES; however, submissions were only accepted until June 15, 1998. (see
Question 3.3.3)

Several years ago, NIST was asked to choose a set of cryptographic standards for the U.S., this has become known
as the Capstone project (see Question 6.2.3). After a few years of rather secretive deliberations, NIST, in coopera-
tion with the NSA (see Question 6.2.2.), issued proposals for various standards in cryptography. The combination
of these proposals, including digital signatures (DSS, see Question 3.4.1) and data encryption (the Clipper chip,
see Question 6.2.4), formed the Capstone project.

NIST has been criticized for allowing the NSA too much power in setting cryptographic standards, since the
interests of the NSA sometimes conflict with that of the Commerce Department and NIST. Yet, the NSA has much
more experience with cryptography, and many more qualified cryptographers and cryptanalysts than does NIST
so it is perhaps unrealistic to expect NIST to forego such readily available assistance.

For more information on NIST, visit their website at: http://www.nist.gov/

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 149

Question 6.2.2. What is the NSA?

NSA is the National Security Agency, a highly secretive agency of the U.S. government created by Harry Truman
in 1952. The NSA’s very existence was kept secret for many years. For a history of the NSA, see Bamford [Bam82].
The NSA has a mandate to listen to and decode all foreign communications of interest to the security of the United
States. It has also used its power in various ways to slow the spread of publicly available cryptography in order to
prevent national enemies from employing encryption methods that are presumably too strong for the NSA to
break.

As the premier cryptographic government agency, the NSA has huge financial and computer resources and
employs a host of cryptographers. Developments in cryptography achieved at the NSA are not made public; this
secrecy has led to many rumors about the NSA’s ability to break popular cryptosystems like DES (see Question
3.2.1), as well as rumors that the NSA has secretly placed weaknesses, called “trap doors,” in government-en-
dorsed cryptosystems. These rumors have never been proved or disproved. Also the criteria used by the NSA in
selecting cryptography standards have never been made public.

Recent advances in the computer and telecommunications industries have placed NSA actions under unprec-
edented scrutiny, and the agency has become the target of heavy criticism for hindering U.S. industries that wish
to use or sell strong cryptographic tools. The two main reasons for this increased criticism are the collapse of the
Soviet Union and the development and spread of commercially available public-key cryptographic tools. Under
pressure, the NSA may be forced to change its policies.

The NSA’s charter limits its activities to foreign intelligence. However, the NSA is concerned with the develop-
ment of commercial cryptography, since the availability of strong encryption tools through commercial channels
could impede the NSA’s mission of decoding international communications. In other words, the NSA is worried
that strong commercial cryptography may fall into the wrong hands.

The NSA has stated that it has no objection to the use of secure cryptography by U.S. industry. It also has no
objection to cryptographic tools used for authentication, as opposed to privacy. However, the NSA is widely
viewed to be following policies that have the practical effect of limiting and/or weakening the cryptographic tools
used by law-abiding U.S. citizens and corporations; see Barlow [Bar92] for a discussion of NSA’s effect on com-
mercial cryptography.

The NSA exerts influence over commercial cryptography in several ways. First, it controls the export of cryptogra-
phy from the U.S.; the NSA generally does not approve export of products used for encryption unless the key size
is strictly limited. It does, however, approve export of any products used for authentication purposes only, no
matter how large the key size, so long as the product cannot be easily converted to be used for encryption. The
NSA has also blocked encryption methods from being published or patented, citing a national security threat; see
[LAN88] for a discussion of this practice.

Additionally, the NSA serves an “advisory” role to NIST in the evaluation and selection of official U.S. govern-
ment computer security standards. In this capacity, it has played a prominent and controversial role in the selec-
tion of DES and in the development of the group of standards known as the Capstone project. The NSA can also
exert market pressure on U.S. companies to produce (or refrain from producing) cryptographic goods, since the
NSA itself is often a large customer of these companies. Examples of NSA-supported goods include Fortezza (see
Question 6.2.6), the Defense Messaging System (DMS), and MISSI, the Multilevel Information System Security
Initiative.

Cryptography is in the public eye as never before and has become the subject of national public debate. The status
of cryptography, and the NSA’s role in it, will probably continue to change over the next few years.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 150

Question 6.2.3. What is Capstone?

Capstone is the U.S. government’s long-term project to develop a set of standards for publicly available cryptogra-
phy, as authorized by the Computer Security Act of 1987. The primary agencies responsible for Capstone are NIST
and the NSA (see Question 6.2.2). The plan calls for the elements of Capstone to become official U.S. government
standards, in which case both the government itself and all private companies doing business with the govern-
ment would be required to use Capstone.

There are four major components of Capstone: a bulk data encryption algorithm, a digital signature algorithm, a
key exchange protocol, and a hash function. The data encryption algorithm is called Skipjack, often referred to as
Clipper (see Question 6.2.4), which is the encryption chip that includes the Skipjack algorithm. The digital signa-
ture algorithm is DSA (see Question 3.4.1) and the hash function used is SHA-1 (see Question 3.6.5). The key
exchange protocol is not published, but is generally considered to be related to Diffie-Hellman (see Question
3.6.1).

The Skipjack algorithm and the concept of a Law Enforcement Access Field (LEAF’s, see Question 7.13) have been
accepted as FIPS 185; DSS has been published as FIPS 186, and finally SHS has been published as FIPS 180.

All parts of Capstone are aimed at the 80-bit security level. The symmetric-keys involved are 80 bits long and
other aspects of the algorithm suite are designed to withstand an “80-bit” attack, that is, an effort equivalent to 280

operations.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 151

Question 6.2.4. What is Clipper?

The Clipper chip contains an encryption algorithm called Skipjack (see Question 3.6.7). Each chip contains a
unique 80-bit unit key U, which is escrowed in two parts at two escrow agencies; both parts must be known in
order to recover the key. Also present is a serial number and an 80-bit “family key” F; the latter is common to all
Clipper chips. The chip is manufactured so that it cannot be reverse engineered; this means that the Skipjack
algorithm and the keys cannot be recovered from the chip.

As specified by the Escrowed Encryption Standard, when two devices wish to communicate, they first agree on an
80-bit “session key” K. The method by which they choose this key is left up to the implementer’s discretion; a
public-key method such as RSA or Diffie-Hellman seems a likely choice. The message is encrypted with the key K
and sent (note that the key K is not escrowed.) In addition to the encrypted message, another piece of data, called
the law-enforcement access field (LEAF, see Question 7.13), is created and sent. It includes the session key K
encrypted with the unit key U, then concatenated with the serial number of the sender and an authentication
string, and then, finally, all encrypted with the family key. The exact details of the law-enforcement access field are
classified. The receiver decrypts the law-enforcement access field, checks the authentication string, and decrypts
the message with the key K.

Now suppose a law-enforcement agency wishes to “tap the line.” It uses the family key to decrypt the law-
enforcement access field; the agency now knows the serial number and has an encrypted version of the session
key. It presents an authorization warrant to the two escrow agencies along with the serial number. The escrow
agencies give the two parts of the unit key to the law-enforcement agency, which then decrypts to obtain the
session key K. Now the agency can use K to decrypt the actual message. Further details on the Clipper chip
operation, such as the generation of the unit key, are sketched by Denning [Den93].

Matt Blaze, AT&T, showed that it is possible to modify the LEAF in a way such that law enforcement cannot
determine where the message originally came from [Bla94].

The Clipper chip proposal has aroused much controversy and has been the subject of much criticism. Unfortu-
nately, two distinct issues have become confused in the large volume of public comment and discussion.

First there is controversy about the whole idea of escrowed keys. It is essential for the escrow agencies to keep the
key databases extremely secure, since unauthorized access to both escrow databases could allow unauthorized
eavesdropping on private communications. In fact, the escrow agencies are likely to be one of the major targets for
anyone trying to compromise the Clipper system. The Clipper chip factory is another likely target. Those in favor
of escrowed keys see it as a way to provide secure communications for the public at large while allowing law-
enforcement agencies to monitor the communications of suspected criminals. Those opposed to escrowed keys see
it as an unnecessary and ineffective intrusion of the government into the private lives of citizens. They argue that
escrowed keys infringe their rights of privacy and free speech. It will take a lot of time and much public discussion
for society to reach a consensus on what role, if any, escrowed keys should have.

The second area of controversy concerns various objections to the specific Clipper proposal, that is, objections to
this particular implementation of escrowed keys, as opposed to the idea of escrowed keys in general. Common
objections include: the key escrow agencies will be vulnerable to attack; there are not enough key escrow agencies
(the current escrow agents are NIST and the automated systems division of the department of treasury [DB95]);
the keys on the Clipper chips are not generated in a sufficiently secure fashion; there will not be sufficient compe-
tition among implementers, resulting in expensive and slow chips; software implementations are not possible;
and the key size is fixed and cannot be increased if necessary.

Micali [Mic93] has proposed an alternative system that also attempts to balance the privacy concerns of law-
abiding citizens with the investigative concerns of law-enforcement agencies. He called his system fair public-key
cryptography. It is similar in function and purpose to the Clipper chip proposal but users can choose their own
keys, which they register with the escrow agencies. Also, the system does not require secure hardware, and can be
implemented completely in software. Desmedt [Des95] has also developed a secure software-based key escrow
system that could be a viable alternative. There have been numerous other proposals in the cryptographic com-
munity over the last few years; Denning and Branstad give a nice survey [DB95].

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 152

Question 6.2.5. What is the Current Status of Clipper?

Clipper has been accepted as FIPS 185 [NIS94a] by the federal government. Various forms of the Clipper chip
were produced; however, it is no longer in production. The chip is still used in the AT&T TSD 3600 and in various
Fortezza products (see Question 6.2.6), including PC Cards, encrypting modems, and PCI board Fortezza. All
Capstone-based products have suppressed LEAF (see Question 7.13) escrow access function. There is now a CA
(Certifying Authority) performing key recovery.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 153

Question 6.2.6. What is Fortezza?

The Fortezza Crypto Card, formerly called Tessera, is a PC card (formerly PCMCIA, Personal Computer Memory
Card International Association) developed by NSA that implements the Capstone algorithms. The card provides
security through verification, authentication, non-repudiation, and encryption.

Fortezza is intended for use with the Defense Messaging Service (DMS) and is export controlled. A number of
vendors have announced support for the Fortezza card; NSA has also built and demonstrated a PKCS #11-based
library (see Question 5.3.3) that interfaces to the card.

Currently, the NSA is working with companies, such as VLSI, to develop commercial products that implement
Fortezza algorithms. VLSI is devising a “Regent” chip that adds DES and RSA algorithms. The NSA also supports
commercial development of smart card chips with Fortezza algorithm capability.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 154

Section 6.3: Patents on Cryptography

Question 6.3.1. Is RSA patented?

RSA is patented under U.S. Patent 4,405,829, issued September 29, 1983 and held by RSA Data Security, Inc.; the
patent expires 17 years after issue, in the year 2000. RSA Data Security has a standard, royalty-based licensing
policy, which can be modified for special circumstances. The U.S. government can use RSA without a license
because it was invented at MIT with partial government funding.

In the U.S., a license is needed to “make, use or sell” RSA. However, RSA Data Security usually allows free non-
commercial use of RSA, with written permission, for academic or university research purposes.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 155

Question 6.3.2. Is DSA patented?

David Kravitz, former member of the NSA, holds a patent on DSA [Kra93]. Claus P. Schnorr has asserted that his
patent [Sch91] covers certain implementations of DSA. RSA Data Security has also asserted coverage of certain
implementations of DSA by the Schnorr patent.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 156

Question 6.3.3. Is DES patented?

U.S. Patent 3,962,539, which describes the Data Encryption Standard (DES), was assigned to IBM Corporation in
1976. IBM subsequently placed the patent in the public domain, offering royalty-free licenses conditional on
adherence to the specifications of the standard. The patent expired in 1993.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 157

Question 6.3.4. Are elliptic curve cryptosystems patented?

Elliptic curve cryptosystems, as introduced in 1985 by Neal Koblitz and Victor Miller, have no general patents,
though some newer elliptic curve algorithms and certain efficient implementation techniques may be covered by
patents.

Among the relevant implementation patents:

• Apple Computer holds a patent on efficient implementation of odd-characteristic elliptic curves, including
elliptic curves over GF(p) where p is close to a power of 2

• Certicom holds a patent on efficient finite field multiplication in normal basis representation, which applies to
elliptic curves with such a representation

• Cylink also holds a patent on multiplication in normal basis

Certicom also has two additional patents pending. The first of these covers the MQV (Menezes, Qu, and
Vanstone) key agreement technique. Although this technique may be implemented as a discrete log system, a
number of standards bodies are considering adoption of elliptic-curve-based variants. The second patent filing
treats techniques for compressing elliptic curve point representations to achieve efficient storage in memory.

In all of these cases, it is the implementation technique that is patented, not the prime or representation, and there
are alternative, compatible implementation techniques that are not covered by the patents. One example of such
an alternative is a polynomial basis implementation with conversion to normal basis representation where
needed. (This should not be taken as a guarantee that there are no other patents, of course, as this is not a legal
opinion.) The issue of patents and representations is a motivation for supporting both representations in the IEEE
P1363 and ANSI X9.62 standards efforts.

The patent issue for elliptic curve cryptosystems is the opposite of that for RSA and Diffie-Hellman, where the
cryptosystems themselves have patents, but efficient implementation techniques often do not.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 158

Question 6.3.5. What are the important patents in cryptography?

The following table gives a selection of some of the important and well established patents in cryptography,
including several expired patents of historical interest. Note that the expiration date for these patents is 17 years
after their dates of issue.

Area Inventors U.S. Patent # Year of Issue Assignee

DES Ehrsam et al. 3,962,539 1976 IBM

Notes: This patent, which covered the DES cipher, was placed in the public domain by IBM. It is now expired.

Diffie-Hellman Hellman, Diffie, and Merkle 4,200,770 1980 Stanford University

Notes: This is the first patent covering a public-key cryptosystem. It describes Diffie-Hellman key agreement, as well as

a means of authentication using long-term Diffie-Hellman public keys. This patent is now expired.

Public-key cryptosystems Hellman and Merkle 4,218,582 1980 Stanford University

Notes: The Hellman-Merkle patent covers public key systems based on the knapsack problem (and now known to be

insecure). Its broader claims cover general methods of public key encryption and digital signatures using public keys.

This patent is expired.

RSA Rivest, Shamir, Adelman 4,405,829 1983 MIT

Notes: This patent describes the RSA public-key cryptosystem as used for both encryption and signing. It served as the

basis for the founding of RSADSI.

Fiat-Shamir identification Shamir and Fiat 4,748,668 1988 Yeda Research and

Development (Israel)

Notes: Describes the Fiat-Shamir identification scheme.

Control vectors Matyas. Meyer, and Brachtl 4,850,017 1989 IBM

Notes: Patent 4,850,017 is the most prominent among a number describing the use of control vectors for key manage-

ment. This patent describes a method enabling a description of privileges to be bound to a cryptographic key, serving as

a deterrent to the key�s misuse.

GQ identification Guillou-Quisquater 5,140,634 1992 U.S. Phillips Corporation

Notes: Describes the GQ identification scheme.

DSA Kravitz 5,231,668 1993 United States of America

Notes: This patent covers the Digital Signature Algorithm (DSA), the algorithm specified in the Digital Signature Stan-

dard (DSS) of the U.S. National Institute of Standards (NIST).

IDEA Massey-Lai 5,214,703 1993 Ascom Tech AG

(Switzerland)

Notes: Patent 5,214,703 covers the IDEA block cipher, an alternative to DES that employs 128-bit keys.

Fair cryptosystems Micali 5,276,737* 1994 none

*with continuation in part 5,315,658. Notes: Covers systems in which keys are held in escrow among multiple trust-

ees, only a specified quorum of which can reconstruct these keys.

Table 3

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 159

Section 6.4: United States Cryptography Export/Import Laws

Question 6.4.1. Can RSA be exported from the United States?

Export of RSA falls under the same U.S. laws as all other cryptographic products. RSA used for authentication is
more easily exported than RSA used for privacy. In the former case, export is allowed regardless of key (modulus)
size, although the exporter must demonstrate that the product cannot be easily converted to use RSA for encryp-
tion. RSA for export is generally limited to 512 bits for key management purposes. The use of RSA for data
encryption is generally prohibited.

Export policy is currently a subject of debate, and the export status of RSA may well change in the next year or
two. For example, a Commerce Jurisdiction (basically a general export license per Department of Commerce,
rather than Department of State approval) has been obtained by Cybercash for 768-bit RSA encryption for finan-
cial transactions.

Regardless of U.S. export policy, RSA is available abroad in non-U.S. products.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 160

Question 6.4.2. Can DES be exported from the United States?

For a number of years, the government rarely approved the export of DES for use outside of the financial sector or
by foreign subsidiaries of U.S. companies. Export policy has recently been liberalized to permit unrestricted
exportation of DES to companies that demonstrate plans to implement key recovery systems in the next few years.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 161

Question 6.4.3. Why is cryptography export-controlled?

Cryptography is export-controlled for several reasons. Strong cryptography can be used for criminal purposes or
even as a weapon of war. During wartime, the ability to intercept and decipher enemy communications is crucial.
For that reason, strong cryptography is usually classified on the U.S. Munitions List as an export-controlled
commodity, just like tanks and missiles. Cryptography is just one of many technologies which is covered by the
ITAR (International Traffic in Arms Regulations).

In the United States, government agencies consider strong encryption to be systems that use RSA with key sizes
over 512-bits or symmetric algorithms (like DES, IDEA, or RC5) with key sizes over 40-bits. Since government
encryption policy is heavily influenced by the agencies responsible for gathering domestic and international
intelligence (the FBI and NSA, respectively) the government is compelled to balance the conflicting requirements
of making strong cryptography available for commercial purposes while still making it possible for those agencies
to break those codes, if need be. The US government does, however, allow 56-bit block ciphers to be exported for
financial cryptography.

To most cryptographers, this level of cryptography is not considered “strong” at all. In fact, it is worth noting that
RSA Laboratories has considered this level of cryptography to be commercially inadequate for several years, and
currently recommends that domestic customers utilize at least 80-bit secret key or 768-bit public-key cryptogra-
phy.

Government agencies often prefer to use the terms “strategic” and “standard” to differentiate encryption systems.
“Standard” refers to algorithms that have been drafted and selected as a federal standard - DES is the primary
example. The government defines “strategic” as any algorithm which requires “excessive work factors” to suc-
cessfully attack. Unfortunately, the government rarely publishes criteria for what it defines as “acceptable” or
“excessive” work factors.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 162

Question 6.4.4. Are digital signature applications exportable from the United States?

Digital signature applications are one of the nine special categories of cryptography that automatically fall under
the more relaxed Commerce regulations. Digital signature implementations using RSA key sizes in excess of 512
bits are exportable. However, there are some restrictions when developing a digital signature application using a
reversible algorithm (i.e., the signing operation is sort of the reverse operation for encryption), such as RSA. In this
case, the application should sign a hash of the message, not the message itself. Otherwise, the message must be
transmitted with the signature appended. If the message is not transmitted with the signature, the NSA considers
this quasi-encryption and the State controls would apply.

In practice, however, prior to shipping overseas, a commodity classification request should be submitted to the
Department of Commerce. This classification will indicate the specific export licensing requirements for the
product. Experience has shown Commerce personnel often request a commodity jurisdiction (CJ) request be
obtained prior to issuance of the classification notice. In this event, contact the NSA Office of Export Control to
coordinate the CJ submission. It is not necessary to register with the Department of State prior to the submission
of commodity jurisdiction requests or to export products controlled by Commerce.
Question 6.5.1. Which major countries have import restrictions on cryptography?

France, Israel, Russia and South Africa all have import restrictions on cryptography. Some countries such as
France and Singapore require vendors to obtain a license before importing cryptographic products. Many govern-
ments use such import licenses to pursue domestic policy goals. In some instances, governments require foreign
vendors to provide technical information to obtain an import license. This information is then used to steer
business toward local companies. Other governments have been accused of using this same information for
outright industrial espionage.

Should you desire to do business in a country with such import restrictions, and you can accept the requirements
for technical disclosure that the government may impose, you should consult with export agencies or legal firms
with multi-national experience in order to comply with all applicable regulations.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 163

Section 6.5: Cryptography Export/Import Laws in Other Countries

Question 6.5.1. Which major countries have import restrictions on cryptography?

France, Israel, Russia and South Africa all have import restrictions on cryptography. Some countries such as
France and Singapore require vendors to obtain a license before importing cryptographic products. Many govern-
ments use such import licenses to pursue domestic policy goals. In some instances, governments require foreign
vendors to provide technical information to obtain an import license. This information is then used to steer
business toward local companies. Other governments have been accused of using this same information for
outright industrial espionage.

Should you desire to do business in a country with such import restrictions, and you can accept the requirements
for technical disclosure that the government may impose, you should consult with export agencies or legal firms
with multi-national experience in order to comply with all applicable regulations.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 164

Question 7.1. What is probabilistic encryption?

Probabilistic encryption, developed by Goldwasser and Micali [GM84], is a design approach for encryption where
a message is encrypted into one of many possible ciphertexts (not just a single ciphertext as in deterministic
encryption). This is done in such a way that it is provably as hard to obtain partial information about the message
from the ciphertext as it is to solve some hard problem. In previous approaches to encryption, even though it was
not always known whether one could obtain such partial information, it was not proved that one could not do so.

A particular example of probabilistic encryption given by Goldwasser and Micali operates on “bits” rather than
“blocks” and is based on the quadratic residuosity problem. The problem is to find whether an integer x is a
square modulo a composite integer n. (This is easy if the factors of n are known, but presumably hard if they are
not.) In their example, a “0” bit is encrypted as a random square, and a “1” bit as a non-square; thus it is as hard to
decrypt as it is to solve the quadratic residuosity problem. The scheme has substantial message expansion due to
the bit-by-bit encryption of the message. Blum and Goldwasser later proposed an efficient probabilistic encryption
scheme with minimal message expansion [BG85].

Section 7: Miscellaneous Topics

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 165

Question 7.2. What are special signature schemes?

Since the time Diffie and Hellman introduced the concept of digital signatures (see Question 2.2.2), many signa-
ture schemes have been proposed in cryptographic literature. These schemes can be categorized as either conven-
tional digital signature schemes (e.g., RSA, DSA) or special signature schemes depending on their security fea-
tures.

In a conventional signature scheme (the original model defined by Diffie and Hellman), we generally assume the
following situation:

• The signer knows the contents of the message that he has signed.
• Anyone who knows the public key of the signer can verify the correctness of the signature at any time without

any consent or input from the signer. (Digital signature schemes with this property are called self-authenticat-
ing signature schemes.)

• The security of the signature schemes (i.e., hard to forge, non-repudable) is based on certain complexity-
theoretic assumptions.

In some situations, it may be better to relax some of these assumptions, and/or add certain special security
features. For example, when Alice asks Bob to sign a certain message, she may not want him to know the contents
of the message. In the past decade, a variety of special signature schemes have been developed to fit other security
needs that might be desired in different applications. Questions 7.3 through 7.8 deal with some of these special
signature schemes.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 166

Question 7.3. What is a blind signature scheme?

Blind signature schemes, first introduced by Chaum [Cha83][Cha85], allow a person to get a message signed by
another party without revealing any information about the message to the other party.

Chaum demonstrated the implementation of this concept using RSA signatures (see Question 3.1.1) as follows:
Suppose Alice has a message m that she wishes to have signed by Bob, and she does not want Bob to learn any-
thing about m. Let (n,e) be Bob’s public key and (n,d) be his private key. Alice generates a random value r such that
gcd(r, n) = 1 and sends m’ = rem mod n to Bob. The value m’ is “blinded” by the random value r, and hence Bob can
derive no useful information from it. Bob returns the signed value, s’ = (m’)d = (rem)d mod n to Alice. Since s’=rmd

mod n, Alice can obtain the true signature s of m by computing s = s’r-1 mod n.

Now Alice’s message has a signature she could not have obtained on her own. This signature scheme is secure
provided that factoring and root extraction remains difficult. However, regardless of the status of these problems
the signature scheme is unconditionally “blind” since r is random. The random r does not allow the signer to learn
about the message even if the signer can solve the underlying hard problems.

There are potential problems if Alice can give an arbitrary message to be signed, since this effectively enables her
to mount a chosen message attack. One way of thwarting this kind of attack is described in [CFN88].

Blind signatures have numerous uses including timestamping (see Question 7.11), anonymous access control, and
digital cash (see Question 4.2.1). Thus it is not surprising there are now numerous variations on the blind signa-
ture theme. Further work on blind signatures has been carried out in recent years [FY94] [SPC95].

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 167

Question 7.4. What is a designated confirmer signature?

A designated confirmer signature [Cha94] strikes a balance between self-authenticating digital signatures (see
Question 7.2) and zero-knowledge proofs (see Question 2.1.8). While the former allows anybody to verify a
signature, the latter can only convince one recipient at a time of the authenticity of a given document, and only
through interaction with the signer. A designated confirmer signature allows certain designated parties to confirm
the authenticity of a document without the need for the signer’s input. At the same time, without the aid of either
the signer or the designated parties, it is not possible to verify the authenticity of a given document. Chaum
developed implementations of designated confirmer signatures with one or more confirmers using RSA digital
signatures (see Question 3.1.1).

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 168

Question 7.5. What is a fail-stop signature scheme?

A fail-stop signature scheme is a type of signature devised by van Heyst and Pederson [VP92] to protect against
the possibility that an enemy may be able to forge a person’s signature. It is a variation of the one-time signature
scheme (see Question 7.7), in which only a single message can be signed and protected by a given key at a time.
The scheme is based on the discrete logarithm problem. In particular, if an enemy can forge a signature, then the
actual signer can prove that forgery has taken place by demonstrating the solution of a supposedly hard problem.
Thus the forger’s ability to solve that problem is transferred to the actual signer. (The term “fail-stop” refers to the
fact that a signer can detect and stop failures, i.e., forgeries. Note that if the enemy obtains an actual copy of the
signer’s private key, forgery cannot be detected. What the scheme detects are forgeries based on cryptanalysis.)

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 169

Question 7.6. What is a group signature?

A group signature, introduced by Chaum and van Heijst [CV91], allows any member of a group to digitally sign a
document in a manner such that a verifier can confirm that it came from the group, but does not know which
individual in the group signed the document. The protocol allows for the identity of the signer to be discovered, in
case of disputes, by a designated group authority that has some auxiliary information. Unfortunately, each time a
member of the group signs a document, a new key pair has to be generated for the signer. The generation of new
key pairs causes the length of both the group members’ secret keys and the designated authority’s auxiliary
information to grow. This tends to cause the scheme to become unwieldy when used by a group to sign numerous
messages or when used for an extended period of time. Some improvements [CP94] [CP95] have been made in
the efficiency of this scheme.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 170

Question 7.7. What is a one-time signature scheme?

A one-time signature scheme allows the signature of only a single message using a given piece of private (and
public) information. One advantage of such a scheme is that it is generally quite fast. However, the scheme tends
to be unwieldy when used to authenticate multiple messages because additional data needs to be generated to
both sign and verify each new message. By contrast, with conventional signature schemes like RSA (see Question
3.1.1), the same key pair can be used to authenticate multiple documents. There is a relatively efficient implemen-
tation of one-time-like signatures by Merkle called the Merkle Tree Signature Scheme (see Question 3.6.9), which
does not require new key pairs for each message.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 171

Question 7.8. What is an undeniable signature scheme?

Undeniable signature scheme, devised by Chaum and van Antwerpen [CV90][CV92], are non-self-authenticating
signature schemes (see Question 7.2), where signatures can only be verified with the signer’s consent. However, if
a signature is only verifiable with the aid of a signer, a dishonest signer may refuse to authenticate a genuine
document. Undeniable signatures solve this problem by adding a new component called the disavowal protocol
in addition to the normal components of signature and verification.

The scheme is implemented using public-key cryptography based on the discrete logarithm problem (see Ques-
tion 2.3.7). The signature part of the scheme is similar to other discrete logarithm signature schemes. Verification is
carried out by a challenge-response protocol where the verifier, Alice, sends a challenge to the signer, Bob, and
views the answer to verify the signature. The disavowal process is similar; Alice sends a challenge and Bob’s
response shows that a signature is not his. (If Bob does not take part, it may be assumed that the document is
authentic.) The probability that a dishonest signer is able to successfully mislead the verifier in either verification
or disavowal is 1/p where p is the prime number in the signer’s private key. If we consider the average 768-bit
private key, there is only a minuscule probability that the signer will be able to repudiate a document they have
signed.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 172

Question 7.9. What are on-line/off-line signatures?

On-line/off-line signature schemes are a way of getting around the fact that many general-purpose digital signa-
ture schemes have high computational requirements. On-line/off-line schemes are created by joining together a
general-purpose signature scheme (see Question 2.2.2) and a one-time signature scheme (see Question 7.7) in such
a way that the bulk of the computational burden for a signature operation can be performed before the signer
knows the message that will be signed.

More precisely, let a general-purpose digital signature scheme and a one-time signature scheme be fixed. These
schemes can be used together to define an on-line/off-line signature scheme which works as follows:

1. Keypair generation. A public/private keypair K
P
/K

S
 for the general-purpose signature scheme is generated.

These are the public and private keys for the on-line/off-line scheme as well.
2. Off-line phase of signing. A public/private keypair T

P
/T

S
 for the one-time signature scheme is generated. The

public key T
P
 for the one-time scheme is signed with the private key K

S
 for the general-purpose scheme to

produce a signature S
K
(T

P
).

3. On-line phase of signing. To sign a message m, use the one-time scheme to sign m with the private key T
S
,

computing the value S
T
(m). The signature of m is then the triple (T

P
, S

K
(T

P
), S

T
(m)).

Note that steps 2 and 3 must be performed for each message signed; however, the point of using an on-line/off-
line scheme is that step 2 can be performed before the message m has been chosen and made available to the
signer. An on-line/off-line signature scheme can use a one-time signature scheme that is much faster than a
general-purpose signature scheme, and this can make digital signatures much more practical in a variety of
scenarios. An on-line/off-line signature scheme can be viewed as the digital signature analog of a digital envelope
(see Question 2.2.4).

For more information about on-line/off-line signatures, see [EGM89].

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 173

Question 7.10. What is OAEP?

Optimal Asymmetric Encryption Padding (OAEP) is a method for encoding messages developed by Mihir Bellare
and Phil Rogaway [BR94]. The technique of encoding a message with OAEP and then encrypting it with RSA is
provably secure in the random oracle model. Informally, this means that if hash functions are truly random, then
an adversary who can recover such a message must be able to break RSA.

An OAEP encoded message consists of a “masked data” string concatenated with a “masked random number”. In
the simplest form of OAEP, the masked data is formed by taking the exclusive-or of the plaintext message, M, and
the hash, G, of a random string r. The masked random number is the exclusive-or of r with the hash, H, of the
masked data. The input to the RSA encryption function is then

[M ⊕ G(r)] || [r ⊕ H(M ⊕ G(r))].

Often, OAEP is used to encode small items such as keys. There are other variations on OAEP (differing only
slightly from the above) that include a feature called “plaintext-awareness”. This means that to construct a valid
OAEP encoded message, an adversary must know the original plaintext. To accomplish this, the plaintext message
M is first padded (e.g., with a string of zeroes) before the masked data is formed. OAEP is supported in the ANSI
X9.44, IEEE P1363 and SET standards.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 174

Question 7.11. What is digital timestamping?

Consider two questions that may be asked by a computer user as he or she views a digital document or on-line
record. (1) Who is the author of this record - who wrote it, approved it, or consented to it? (2) When was this
record created or last modified?

In both cases, the question is about exactly this record-exactly this sequence of bits. An answer to the first question
tells who & what: who approved exactly what is in this record? An answer to the second question tells when &
what: when exactly did the contents of this record first exist?

Both of the above questions have good solutions. A system for answering the first question is called a digital
signature scheme (see Question 2.2.2). A system for answering the second question is called a digital
timestamping scheme. Such systems are described in [BHS93] and [HS91], and an implementation is commer-
cially available from Surety Technologies (http://www.surety.com/).

Any system allowing users to answer these questions must include two procedures. First, there must be a signing
procedure with which (1) the author of a record can “sign” the record, or (2) any user can fix a record in time. The
result of this procedure is a string of bytes that serves as the signature. Second, there must be a verification
procedure by which any user can check a record and its purported signature to make sure it correctly answers (1)
who and what? or (2) when and what? about the record in question.

The signing procedure of a digital timestamping system works by mathematically linking the bits of the record to
a “summary number” that is widely witnessed by and widely available to members of the public - including, of
course, users of the system. The computational methods employed ensure that only the record in question can be
linked, according to the “instructions” contained in its timestamp certificate, to this widely witnessed summary
number; this is how the particular record is tied to a particular moment in time. The verification procedure takes a
particular record and a putative timestamp certificate for that record and a particular time, and uses this informa-
tion to validate whether that record was indeed certified at the time claimed by checking it against the widely
available summary number for that moment.

One nice thing about digital timestamps is that the document being timestamped does not have to be released to
anybody to create a timestamp. The originator of the document computes the hash values himself, and sends
them in to the timestamping service. The document itself is only needed for verifying the timestamp. This is very
useful for many reasons (like protecting something that you might want to patent).

Two features of a digital timestamping system are particularly helpful in enhancing the integrity of a digital
signature system. First, a timestamping system cannot be compromised by the disclosure of a key. This is because
digital timestamping systems do not rely on keys, or any other secret information, for that matter. Second, follow-
ing the technique introduced in [BHS93], digital timestamp certificates can be renewed so as to remain valid
indefinitely.

With these features in mind, consider the following situations.

It sometimes happens that the connection between a person and his or her public signature key must be revoked -
for example, if the user’s private key is accidentally compromised; or when the key belongs to a job or role in an
organization that the person no longer holds. Therefore the person-key connection must have time limits, and the
signature verification procedure should check that the record was signed at a time when the signer’s public key
was indeed in effect. And thus when a user signs a record that may be checked some time later - perhaps after the
user’s key is no longer in effect - the combination of the record and its signature should be certified with a secure
digital timestamping service.

There is another situation in which a user’s public key may be revoked. Consider the case of the signer of a
particularly important document who later wishes to repudiate his signature. By dishonestly reporting the
compromise of his private key, so that all his signatures are called into question, the user is able to disavow the
signature he regrets. However, if the document in question was digitally timestamped together with its signature
(and key-revocation reports are timestamped as well), then the signature cannot be disavowed in this way. This is

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 175

the recommended procedure, therefore, in order to preserve the non-reputability desired of digital signatures for
important documents.

The statement that private keys cannot be derived from public keys is an over-simplification of a more compli-
cated situation. In fact, this claim depends on the computational difficulty of certain mathematical problems. As
the state of the art advances - both the current state of algorithmic knowledge, as well as the computational speed
and memory available in currently available computers - the maintainers of a digital signature system will have to
make sure that signers use longer and longer keys. But what is to become of documents that were signed using
key lengths that are no longer considered secure? If the signed document is digitally timestamped, then its
integrity can be maintained even after a particular key length is no longer considered secure.

Of course, digital timestamp certificates also depend for their security on the difficulty of certain computational
tasks concerned with hash functions (see Question 2.1.6). (All practical digital signature systems depend on these
functions as well.) The maintainers of a secure digital timestamping service will have to remain abreast of the
state of the art in building and in attacking one-way hash functions. Over time, they will need to upgrade their
implementation of these functions, as part of the process of renewal [BHS93]. This will allow timestamp certifi-
cates to remain valid indefinitely.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 176

Question 7.12. What is key recovery?

One of the barriers to the widespread use of encryption in certain contexts is the fact that when a key is somehow
“lost”, any data encrypted with that key becomes unusable. Key recovery is a general term encompassing the
numerous ways of permitting “emergency access” to encrypted data.

One common way to perform key recovery, called key escrow, is to split a decryption key (typically a secret key or
an RSA private key) into several parts and distribute these parts to escrow agents or “trustees”. In an emergency
situation (exactly what defines an “emergency situation” is context-dependent), these trustees can use their
“shares” of the keys either to reconstruct the missing key or simply to decrypt encrypted communications directly.
This method is used by Security Dynamics’ RSA SecurPC product.

Another recovery method, called key encapsulation, is to encrypt data in a communication with a “session key”
(which varies from communication to communication) and to encrypt that session key with a trustee’s public key.
The encrypted session key is sent with the encrypted communication, and so the trustee is able to decrypt the
communication when necessary. A variant of this method, in which the session key is split into several pieces,
each encrypted with a different trustee’s public key, is used by TIS’ RecoverKey.

Dorothy Denning and Dennis Branstad have written a survey of key recovery methods [DB96].

Key recovery first gained notoriety as a potential work-around to the United States Government’s policies on
exporting “strong” cryptography. To make a long story short, the Government agreed to permit the export of
systems employing strong cryptography as long as a key recovery method that permits the Government to read
encrypted communications (under appropriate circumstances) was incorporated. For the Government’s purposes,
then, “emergency access” can be viewed as a way of ensuring that the Government has access to the plaintext of
communications it is interested in, rather than as a way of ensuring that communications can be decrypted even if
the required key is lost.

Key recovery can also be performed on keys other than decryption keys. For example, a user’s private signing key
might be recovered. From a security point of view, however, the rationale for recovering a signing key is generally
less compelling than that for recovering a decryption key.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 177

Question 7.13. What are LEAFs?

A LEAF, or Law Enforcement Access Field, is a small piece of “extra” cryptographic information that is sent or
stored with an encrypted communication to ensure that appropriate Government entities, or other authorized
parties, can obtain the plaintext of some communication. For a typical escrowed communication system, a LEAF
might be constructed by taking the decryption key for the communication, splitting it into several shares, encrypt-
ing each share with a different key escrow agent’s public key, and concatenating the encrypted shares together.

The term “LEAF” originated with the Clipper Chip (see Question 6.2.4, “What is Clipper?,” for more information).

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 178

Question 7.14. What is PSS/PSS-R?

PSS (Probabilistic Signature Scheme) is a provably secure way of creating signatures with RSA (see Question 3.1.8)
due to Mihir Bellare and Phillip Rogaway [BR96]. Informally, a digital signature scheme is provably secure if its
security can be tied closely to that of an underlying cryptographic primitive. The proof of security for PSS takes
place in the random oracle model, in which hash functions are modeled as being truly random functions. Although
this model is not realistically attainable, there is evidence that practical instantiations of provably secure schemes
are still better than schemes without provable security [BR93]. The method for creating digital signatures with
RSA that is described in PKCS #1 (see Question 5.3.3) has not been proven secure even if the underlying RSA
primitive is secure; in contrast, PSS uses hashing in a sophisticated way to tie the security of the signature scheme
to the security of RSA.

A PSS signature for a message M is formed by the following steps:

1. A random string r is concatenated with M to form M || r.
2. A hash function h is applied to M || r, forming h(M || r).
3. A hash function g is applied to h(M || r), forming g(h(M || r)).
4. g(h(M || r)) is divided into two parts, g(h(M || r))=[g1(h(M || r)) || g2(h(M || r))].
5. The exclusive-OR of g1(h(M || r)) and r is taken, forming g

1
(h(M || r)) ⊕ r

6. The following string is formed: w = [0 || h(M || r) || g
1
(h(M || r)) ⊕ r || g

2
(h(M || r))]

7. The inverse RSA function is applied to w, forming f-1(w).
8. The output is the following message-signature pair, (M, f-1(w)).

A verifier uses the sender’s public key to recover w from f-1(w). The verifier then computes h(M || r) from w and
applies g

1
 to it. The resulting string can be exclusive-ORed with the relevant part of w to recover r. Now that the

user has both M and r he can compute the string in step 6 directly, and compare it with w.

To minimize the length of communications, it is often desirable to have signature schemes in which the message
can be “folded” into the signature. Schemes that accomplish this are called message recovery signature schemes.
PSS-R is a message recovery variant of PSS. To create a PSS-R signature, form w as above and then take the
exclusive-or of M and g2(h(M || r)) and place this new string where g

2
(h(M || r)) was in w. To verify, all one

needs is the signature. The verifier can recover the message from the signature by applying g
2
 to h(M || r) and

then taking the exclusive-OR of that with the exclusive-OR of M and g
2
(h(M || r)). The user then proceeds with

the verification as in PSS. PSS-R has the same provable security as PSS.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 179

Question 7.15. What are covert channels?

Covert communication channels (also called subliminal channels) are often motivated as being solutions to the
“prisoner’s problem.” Consider two prisoners in separate cells who want to exchange messages, but must do so
through the warden, who demands full view of the messages (i.e. no encryption). A covert channel enables the
prisoners to exchange secret information through messages that appear to be innocuous. A covert channel requires
prior agreement on the part of the prisoners. For example if an odd length word corresponds to “1” and an even
length word corresponds to “0”, then the previous sentence contains the subliminal message “101011010011”.

An important use of covert channels is in digital signatures. If such signatures are used, a prisoner can both
authenticate the message and extract the subliminal message. Gustavus Simmons [Sim93a] devised a way to
embed a subliminal channel in DSA (see Question 3.4.1) that uses all of the available bits (i.e. those not being used
for the security of the signature), but requires the recipient to have the sender’s secret key. Such a scheme is called
broadband and has the drawback that the recipient is able to forge the sender’s signature. Simmons [Sim93b] also
devised schemes that use fewer of the available bits for a subliminal channel (called narrowband schemes) but
don’t require the recipient to have the sender’s secret key.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 180

Question 7.16. What are proactive security techniques?

Proactive security combines the ideas of distributed cryptography (also called secret sharing) (see Question 2.1.9)
with the refreshment of secrets. The term proactive refers to the fact that it’s not necessary for a breach of security
to occur before secrets are refreshed, the refreshment is done periodically (and hence, proactively). Key refresh-
ment is an important addition to distributed cryptography because without it, an adversary who is able to recover
all the distributed secrets given enough time will eventually be successful in breaking the system. For example,
consider the following proactive version of Shamir’s secret sharing scheme (see Question 3.6.12):

1. User i has a point (x
i
, y

i
)t (x

i
 is nonzero) on the (m-1)-degree polynomial over GF(q),

F t(x)=a
0
+a

1
x+...+a

m-1
xm-1. t indicates the refreshment period (t=0,1,...).

2. The secret is F t(0).
3. The polynomial F t is updated at time t by adding to it a random (m-1)-degree polynomial G, such that G(0)=0

(F t+1= F t +G). Therefore, the secret is unchanged (F t+1(0)= F t (0)+G(0)), but user i’s new secret share is (x
i
, y

I
)t+1

= (x
i
, F t(x

i
)+G(x

i
)).

An adversary who knows less than m current secret shares during any particular time period, knows nothing
about the secret.

More recent techniques in proactive security include proactive RSA [FGM97] and proactive signatures (see
[GJK96] and [HJJ97]). For an overview of proactive techniques see [CGH97].

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 181

Question 7.17. What is quantum computing?

Quantum computing [Ben82][Fey82] [Fey86][Deu92] is a new field in computer science that has been developed
with our increased understanding of quantum mechanics. It holds the key to computers that are exponentially
faster than conventional computers (for certain problems). A quantum computer is based on the idea of a quan-
tum bit or qubit. In classical computers, a bit has a discrete range and can represent either a zero state or a one
state. A qubit can be in a linear superposition of the two states. . Hence, when a qubit is measured the result will
be zero with a certain probability and one with the complementary probability. A quantum register consists of n
qubits. Because of superposition, a phenomenon known as quantum parallelism allows exponentially many
computations to take place simultaneously, thus vastly increasing the speed of computation.

Quantum interference, the analog of Young’s double-slit experiment that demonstrated constructive and destruc-
tive interference phenomena of light, is one of the most significant characteristics of quantum computing. Quan-
tum interference improves the probability of obtaining a desired result by constructive interference and dimin-
ishes the probability of obtaining an erroneous result by destructive interference. Thus, among the exponentially
many computations, the correct answer can theoretically be identified with appropriate quantum “algorithms.”

It has been proven [Sho94] that a quantum computer will be able to factor (see Question 2.3.3) and compute
discrete logarithms (see Question 2.3.7) in polynomial time. Unfortunately, the development of a practical quan-
tum computer still seems far away because of a phenomenon called quantum decoherence, which is due to the
influence of the outside environment on the quantum computer. Brassard has written a number of helpful texts in
this field [Bra95a][Bra95b] [Bra95c].

Quantum cryptography (see Question 7.18) is quite different from, and currently more viable than, quantum
computing.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 182

Question 7.18. What is quantum cryptography?

Quantum cryptography [BBB92] [Bra93] is a method for secure key exchange over an insecure channel based on
the nature of photons. Photons have a polarization, which can be measured in any basis, where a basis consists of
two directions orthogonal to each other, as shown in Figure 13.

Figure 13. Bases

If a photon’s polarization is read in the same basis twice, the polarization will be read correctly and will remain
unchanged. If it is read in two different bases, a random answer will be obtained in the second basis, and the
polarization in the initial basis will be changed randomly, as shown in Figure 14.

Figure 14. Polarization readings

The following protocol can be used by Alice and Bob to exchange secret keys.

• Alice sends Bob a stream of photons, each with a random polarization, in a random basis. She records the
polarizations.

• Bob measures each photon in a randomly chosen basis and records the results.
• Bob announces, over an authenticated but not necessarily private channel (e.g., by telephone), which basis he

used for each photon.
• Alice tells him which choices of bases are correct.
• The shared secret key consists of the polarization readings in the correctly chosen bases.

Quantum cryptography has a special defense against eavesdropping: If an enemy measures the photons during
transmission, he will use the wrong basis half the time, and thus will change some of the polarizations. That will
result in Alice and Bob having different values for their secret keys. As a check, they can exchange some random
bits of their key using an authenticated channel. They will therefore detect the presence of eavesdropping, and can
start the protocol over.

There has been experimental work in developing such systems by IBM and British Telecom. For information on
quantum computing (which is not the same as quantum cryptography), see Question 7.17.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 183

Question 7.19. What is DNA computing?

DNA computing, also known as molecular computing, is a new approach to massively parallel computation
based on groundbreaking work by Adleman. He used DNA to solve a seven-node Hamiltonian path problem, a
special case of an NP-complete problem that attempts to visit every node in a graph exactly once. (This special
case is trivial to solve with a conventional computer, or even by hand, but illustrates the potential of DNA com-
puting.)

A DNA computer is basically a collection of specially selected DNA strands whose combinations will result in the
solution to some problem. Technology is currently available both to select the initial strands and to filter the final
solution. The promise of DNA computing is massive parallelism: with a given setup and enough DNA, one can
potentially solve huge problems by parallel search. This can be much faster than a conventional computer, for
which massive parallelism would require large amounts of hardware, not simply more DNA.

Research on DNA computing is ongoing; Lipton [Lip94] and Adleman [Adl95] have extended on Adleman’s
original work with more efficient designs of possible DNA computers.

The impact of DNA computing on cryptography remains to be determined. Beaver [Bea95] has estimated that to
factor a 1000-bit number following Adleman’s original approach, the required amount of solution would be 10200000

liters! However, Adleman has observed that a DNA computer sufficient to search for 256 DES keys would occupy
only a small set of test tubes [Adl96]. In any case, DNA computing is just classical computing, albeit highly
parallelized, so with a large enough key, one should be able to thwart any DNA computer that can be built. With
quantum computing (see Question 7.17), on the other hand, factoring can theoretically be done in (quantum)
polynomial time, so quantum computing might be viewed with more concern than DNA computing.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 184

Question 7.20. What are biometric techniques?

The term biometrics applies to a broad range of electronic techniques that employ the physical characteristics of
human beings as a means of authentication. In a sense, human beings already routinely authenticate one another
biometrically: confirming the identity of a friend on the telephone by the sound of his or her voice is a simple
instance of this. A number of biometric techniques have been proposed for use with computer systems. These
include (among a wide variety of others) fingerprint readers, iris scanners, face imaging devices, hand geometry
readers, and voice readers. Usage of biometric authentication techniques is often recommended in conjunction
with other user authentication methods, rather than as a single, exclusive method.

Fingerprint readers are likely to become a common form of biometric authentication device in the coming years.
To identify herself to a server using a fingerprint reader, a user places her finger on a small reading device. This
device measures various characteristics of the patterns associated with the fingerprint of the user, and typically
transmits these measurements to a server. The server compares the measurements taken by the reader against a
registered set of measurements for the user. The server authenticates the user only if the two sets of measurements
correspond closely to one another. One significant characteristic of this and other biometric technologies is that
matching must generally be determined on an approximate basis, with parameters tuned appropriately to make
the occurrence of false positive matches or false negative rejections acceptably infrequent.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 185

Question 7.21. What is tamper-resistant hardware?

One part of designing a secure computer system is ensuring that various cryptographic keys can be accessed only
by their intended user(s) and only for their intended purposes. Keys stored inside a computer can be vulnerable to
use, abuse, and/or modification by an unauthorized attacker.

For a variety of situations, an appropriate way to protect keys is to store them in a tamper-resistant hardware
device. These devices can be used for applications ranging from secure e-mail to electronic cash and credit cards.
They offer physical protection to the keys residing inside them, thereby providing some assurance that these keys
have not been maliciously read or modified. Typically, gaining access to the contents of a tamper-resistant device
requires knowledge of a PIN or password; exactly what type of access can be gained with this knowledge is
device-dependent.

Some tamper-resistant devices do not permit certain keys to be exported outside the hardware. This can provide a
very strong guarantee that these keys cannot be abused: the only way to use these keys is to physically possess the
particular device. Of course, these devices must actually be able to perform cryptographic functions with their
protected keys, since these keys would otherwise be useless.

Tamper-proof devices come in a variety of forms and capabilities. One common type of device is a “smartcard”,
which is approximately the size and shape of a credit card. To use a smartcard, one inserts it into a smartcard
reader that is attached to a computer. Smartcards are frequently used to hold a user’s private keys for financial
applications; Mondex (see Question 4.2.4) is a system that makes use of tamper-resistant hardware in this fashion.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 186

Question 7.22. How are hardware devices made tamper-resistant?

There are many techniques that are used to make hardware tamper-resistant (see Question 7.21). Some of these
techniques are intended to thwart direct attempts at opening a device and reading information out of its memory;
others offer protection against subtler attacks, such as timing attacks and induced hardware-fault attacks.

At a very high level, a few of the general techniques currently in use to make devices tamper-resistant are:

• Employing sensors of various types (for example, light, temperature, and resistivity sensors) in attempt to
detect occurrences of malicious probing.

• Packing device circuitry as densely as possible (dense circuitry makes it difficult for attackers to use a logic
probe effectively).

• Using error-correcting memory.
• Making use of non-volatile memory so that the device can tell if it has been reset (or how many times it has

been reset).
• Using redundant processors to perform calculations, and ensuring that all the calculated answers agree before

outputting a result.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 187

Question 8.1. Where can I learn more about cryptography?

There are a number of textbooks available to the student of cryptography. Among the most useful are the follow-
ing three.

Applied Cryptography, by B. Schneier, John Wiley & Sons, Inc., 1996.
Schneier’s book is an accessible and practically oriented book with very broad coverage of recent and established
cryptographic techniques.

Handbook of Applied Cryptography, by A.J. Menezes, P.C. van Oorschot, S.A. Vanstone. CRC Press, 1996.
The HAC offers a thorough treatment of cryptographic theory and protocols, with a great deal of detailed techni-
cal information. It is an excellent reference book, but somewhat technical, and not aimed to serve as an introduc-
tion to cryptography.

Cryptography: Theory and Practice, by D. R. Stinson. CRC Press, 1995.
This is a textbook, and includes exercises. Theory comes before practice in both title and content, but the book
provides a good introduction to the fundamentals of cryptography.

For additional information, or more detailed information about specific topics, the reader is referred to the chapter
summaries and bibliographies in any one of these texts.

Section 8: Further Reading

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 188

Question 8.2. Where can I learn more about cryptographic protocols and architecture?

The best way to learn more about cryptographic protocols and architecture is to read the proceedings from the
various conferences on cryptography. The International Association for Cryptographic Research (IACR) is an
excellent source for this: www.iacr.org.

Also, RSA Laboratories regularly publishes a newsletter on recent cryptography happenings called CryptoBytes.
It can be found at www.rsa.com/rsalabs/pubs/cryptobytes/.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 189

Question 8.3. Where can I learn more about recent advances in cryptography?

There are many annual conferences devoted to cryptographic research. The proceedings from these conferences
are excellent sources for information about recent advances. The IACR (www.iacr.org) runs many of the more
prominent conferences, and their web site contains information on the proceedings. Some of the major crypto-
graphic research conferences are:

ACM Conference
AsiaCrypt
Crypto
EuroCrypt
IEEE Symposium on Security and Privacy, and
ISOC Symposium

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 190

Question 8.4. Where can I learn more about electronic commerce?

As electronic commerce is a very rapidly changing field, the best resources are perhaps those available on the
World Wide Web. The following is a selection of survey sites available as of the beginning of 1998.

Payment mechanisms designed for the Internet:
http://ganges.cs.tcd.ie/mepeirce/Project/oninternet.html

iWORLD’s guide to electronic commerce:
http://e-comm.iworld.com/

Electronic Commerce, Payment Systems, and Security:
http://www.semper.org/sirene/outsideworld/ecommerce.html#syst

Electronic Payment Schemes:
http://www.w3.org/pub/WWW/Payments/roadmap.html

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 191

Question 8.5. Where can I learn more about cryptography standards?

Several organizations are involved in defining standards related to aspects of cryptography and its application.

ANSI:
The American National Standards Institute (ANSI) has a broadly based standards program, and some of the
groups within its Financial Services area (Committee X9) establish standards related to cryptographic algorithms.
Examples include X9.17 (key management: wholesale), X9.19 (message authentication: retail), and X9.30 (public-
key cryptography). Information can be found at http://www.x9.org.

IEEE:
The Institute of Electrical and Electronic Engineers (IEEE) has a broadly based standards program, including
P1363 (Public-key cryptography). Information can be found at http://www.ieee.org.

IETF:
The Internet Engineering Task Force (IETF) is the defining body for Internet protocol standards. Its security area
working groups specify means for incorporating security into the Internet’s layered protocols. Examples include
IP layer security (IPSec), transport layer security (TLS), Domain Name System security (DNSsec) and Generic
Security Service API (GSS-API). Information can be found at http://www.ietf.org.

ISO and ITU:
The International Standards Organization’s International Electrotechnical Commission (ISO/IEC) and the Interna-
tional Telecommunications Union’s Telecommunication Standardization Sector (ITU-T) have broadly-based
standards programs (many of which are collaborative between the organizations), which include cryptographi-
cally-related activities. Example results are: ITU-T Recommendation X.509, which defines facilities for public key
certification, and the ISO/IEC 9798 document series, which defines means for entity authentication. ITU informa-
tion can be found at http://www.itu.ch, and ISO information at http://www.iso.ch.

NIST:
The U.S. National Institute of Standards and Technology (NIST)’s Information Technology Laboratory produces a
series of information processing specifications (Federal Information Processing Standards (FIPS)), several of which
are related to cryptographic algorithms and usage. Examples include FIPS PUB 46-2 (Data Encryption Standard
(DES)) and FIPS PUB 186 (Digital Signature Standard (DSS)). Information is available at http://www.nist.gov.

Open Group:
The Open Group produces a range of standards, some of which are related to cryptographic interfaces (APIs) and
infrastructure components. Examples include Common Data Security Architecture (CDSA) and Generic Crypto
Service API (GCS-API). Information can be found at http://www.opengroup.org.

PKCS:
RSA Laboratories is responsible for the development of the Public-key cryptography Standards (PKCS) series of
specifications, which define common cryptographic data elements and structures. Information can be found at
http://www.rsa.com/rsalabs/pubs/.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 192

Question 8.6. Where can I learn more about laws concerning cryptography?

The best way to learn more about any specific question you might have about laws concerning cryptography is to
consult with an attorney. Beyond that, www.epic.com and www.c2.net are web pages of organizations devoted to
following laws and legislation concerning cryptography. Also, any legal archive is a good source for information
about laws concerning cryptography.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 193

Glossary
adaptive-chosen-ciphertext - A version of the chosen-ciphertext attack where the cryptanalyst can choose
ciphertexts dynamically. A cryptanalyst can mount an attack of this type in a scenario in which he or she has free
use of a piece of decryption hardware, but is unable to extract the decryption key from it.

adaptive-chosen-plaintext - A special case of the chosen-plaintext attack in which the cryptanalyst is able to
choose plaintexts dynamically, and alter his or her choices based on the results of previous encryptions.

adversary - Commonly used to refer to the opponent, the enemy, or any other mischievous person that desires to
compromise one’s security.

AES - The Advanced Encryption Standard that will replace DES (The Data Encryption Standard) around the turn
of the century.

algebraic attack - A method of cryptanalytic attack used against block ciphers that exhibit a significant amount of
mathematical structure.

algorithm - A series of steps used to complete a task.

Alice -The name traditionally used for the first user of cryptography in a system; Bob’s friend.

ANSI - American National Standards Institute.

API - Application Programming Interface.

attack - Either a successful or unsuccessful attempt at breaking part or all of a cryptosystem. See algebraic attack,
birthday attack, brute force attack, chosen ciphertext attack, chosen plaintext attack, differential cryptanalysis,
known plaintext attack, linear cryptanalysis, middleperson attack.

authentication - The action of verifying information such as identity, ownership or authorization.

big-O notation - Used in complexity theory to quantify the long-term time dependence an algorithm with respect
to the size of the input.

biometrics - The science of using biological properties to identify individuals; for example, finger prints, a retina
scan, and voice recognition.

birthday attack - A brute-force attack used to find collisions. It gets its name from the surprising result that the
probability of two or more people in a group of 23 sharing the same birthday is greater than 1/2.

bit - A binary digit, either 1 or 0.

blind signature scheme - Allows one party to have a second party sign a message without revealing any (or very
little) information about the message to the second party.

block - A sequence of bits of fixed length; longer sequences of bits can be broken down into blocks.

block cipher - A symmetric cipher which encrypts a message by breaking it down into blocks and encrypting each
block.

block cipher based MAC - MAC that is performed by using a block cipher as a keyed compression function.

Bob - The name traditionally used for the second user of cryptography in a system; Alice’s friend.

boolean expression - A mathematical expression in which all variables involved are either 0 or 1; it evaluates to
either 0 or 1.

brute force attack - This attack requires trying all (or a large fraction of all) possible values till the right value is
found; also called an exhaustive search.

CA - See certifying authority

CAPI - Cryptographic Application Programming Interface.

Capstone - The U.S. government’s project to develop a set of standards for publicly available cryptography, as

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 194

authorized by the Computer Security Act of 1987. See Clipper, DSA, DSS, and Skipjack.

certificate - In cryptography, an electronic document binding some pieces of information together, such as a user’s
identity and public key. Certifying Authorities (CA’s) provide certificates.

certificate revocation list - A list of certificates that have been revoked before their expiration date.

Certifying Authority (CA) - A person or organization that creates certificates.

checksum - Used in error detection, a checksum is a computation done on the message and transmitted with the
message; similar to using parity bits.

chosen ciphertext attack - An attack where the cryptanalyst may choose the ciphertext to be decrypted.

chosen plaintext attack - A form of cryptanalysis where the cryptanalyst may choose the plaintext to be en-
crypted.

cipher - An encryption - decryption algorithm.

ciphertext - Encrypted data.

ciphertext-only attack - A form of cryptanalysis where the cryptanalyst has some ciphertext but nothing else.

Clipper - Clipper is an encryption chip developed and sponsored by the U.S. government as part of the Capstone
project.

collision - Two values x and y form a collision of a (supposedly) one-way function F if x ≠ y but F(x) = F(y).

collision free - A hash function is collision free if collisions are hard to find. The function is weakly collision free if it is
computationally hard to find a collision for a given message x. That is, it is computationally infeasible to find a
message y ≠ x such that H(x) = H(y). A hash function is strongly collision free if it is computationally infeasible to
find any messages x, y such that x ≠ y and H(x) = H(y).

collision search - The search for a collision of a one-way function.

commutative - When a mathematical operator yields the same result regardless of the order the objects are
operated on. For example if a, b are integers then a+b = b+a, that is, the addition operator acting on integers is
commutative.

commutative group - A group where the operator is commutative, also called an Abelian group.

computational complexity - Refers to the amount of space (memory) and time required to solve a problem.

NP - Nondeterministic Polynomial. Refers to the running time of the best known algorithm for solving a particu-
lar problem. A set of problems where the best-known algorithm solving it would run in polynomial time on a
nondeterministic computer; such problems are said to be “NP” or “in NP”.

NP-complete - A problem is NP-complete if any NP problem can be reduced (transformed) to it, and it is itself NP.

P - Polynomial. Refers to the running time of the best known algorithm solving a particular problem. A set of
problems where the best known algorithm solving it runs in polynomial time; such a problem is said to be “P” or
“in P”.

space - Referring to spatial (memory) constraints involved in a certain computation.

time - Referring to the temporal constraints involved in a certain computation.

compression function - A function that takes a fixed length input and returns a shorter, fixed length output. See
also hash functions.

compromise - The unintended disclosure or discovery of a cryptographic key or secret.

concatenate - To place two (or more) things together one directly after the other. For example, treehouse is the
concatenation of the words tree and house.

covert channel - A hidden communication medium. See also subliminal channel.

CRL - Certificate Revocation List.

cryptanalysis - The art and science of breaking encryption or any form of cryptography. See attack.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 195

cryptography - The art and science of using mathematics to secure information and create a high degree of trust in
the electronic realm. See also public key, secret key, symmetric-key, and threshold cryptography.

cryptology - The branch of mathematics concerned with cryptography and cryptanalysis.

cryptosystem - An encryption - decryption algorithm (cipher), together with all possible plaintexts, ciphertexts
and keys.

Data Encryption Standard - See DES.

decryption - The inverse (reverse) of encryption.

DES - Data Encryption Standard, a block cipher developed by IBM and the U.S. government in the 1970’s as an
official standard. See also block cipher.

dictionary attack - A brute force attack that tries passwords and or keys from a precompiled list of values. This is
often done as a precomputation attack.

Diffie-Hellman key exchange - A key exchange protocol allowing the participants to agree on a key over an
insecure channel.

differential cryptanalysis - A chosen plaintext attack relying on the analysis of the evolution of the differences
between two plaintexts.

digest - Commonly used to refer to the output of a hash function, e.g. message digest refers to the hash of a
message.

digital cash - See electronic money

digital envelope - A key exchange protocol that uses a public-key cryptosystem to encrypt a secret key for a
secret-key cryptosystem.

digital fingerprint - See digital signature.

digital signature - The encryption of a message digest with a private key.

digital timestamp - A record mathematically linking a document to a time and date.

discrete logarithm - Given two elements d, g, in a group such that there is an integer r satisfying gr = d, r is called
the discrete logarithm.

discrete logarithm problem - The problem of given d and g in a group, to find r such that gr = d. For some groups,
the discrete log problem is a hard problem that can be used in public-key cryptography.

distributed key - A key that is split up into many parts and shared (distributed) among different participants. See
also secret sharing.

DMS - Defense Messaging Service.

DOD - Department of Defense.

DSA - Digital Signature Algorithm. DSA is a public-key method based on the discrete log problem.

DSS - Digital Signature Standard. DSA is the Digital Signature Standard.

ECC - Elliptic Curve Cryptosystem; A public-key cryptosystem based on the properties of elliptic curves.

ECDL - See elliptic curve discrete logarithm.

EDI - Electronic (business) Data Interchange.

electronic commerce (e-commerce) - Business transactions conducted over the Internet.

electronic mail (e-mail) - Messages sent electronically from one person to another via the Internet.

electronic money - Electronic mathematical representation of money.

elliptic curve - The set of points (x, y) satisfying an equation of the form y2 = x3 + ax + b, for variables x, y and
constants a, b.

elliptic curve cryptosystem - See ECC.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 196

elliptic curve discrete logarithm (ECDL) problem - The Problem of given two points P and Q on an elliptic curve,
to find m satisfying mP = Q, assuming such an m exists.

elliptic curve (factoring) method - A special-purpose factoring algorithm that attempts to find a prime factor p of
an integer n by finding an elliptic curve whose number of points modulo p is divisible by only small primes.

encryption - The transformation of plaintext into an apparently less readable form (called ciphertext) through a
mathematical process. The ciphertext may be read by anyone who has the key that decrypts (undoes the encryp-
tion) the ciphertext.

exclusive or - See XOR.

exhaustive search - Checking every possibility individually till the right value is found. See also attack.

expiration date - Certificates and keys may have a limited lifetime; expiration dates are used to monitor this.

exponential function - A function where the variable is in the exponent of some base, for example, bN where N is
the variable, and b is some constant.

exponential running time - If the running time, given as a function of the length of the input, is an exponential
function, the algorithm is said to have exponential running time.

export encryption - Encryption, in any form, which leaves its country of origin. For example, encrypted informa-
tion or a computer disk holding encryption algorithms that is sent out of the country.

factor - Given an integer N, any number that divides it is called a factor.

factoring - The breaking down of an integer into its prime factors. This is a hard problem.

factoring methods - See elliptic curve method, multiple polynomial quadratic sieve, number field sieve, Pollard p-
1 and Pollard p+1 method, Pollard rho method, quadratic sieve.

FBI - Federal Bureau of Investigation, a U.S. government law enforcement agency.

Feistel cipher - A special class of iterated block ciphers where the ciphertext is calculated from the plaintext by
repeated application of the same transformation called a round function.

field - A mathematical structure with multiplication and addition that behave as they do with the real numbers. A
mathematical structure with the following algebraic properties.

A nonempty set F is a field if:

1) F is closed under two binary operators denoted by + and * usually referred to as addition and multipli-
cation respectively. Closure means that for any two elements f, h in F, f+h and f*h are in F.

2) F forms a commutative group (see the definition of a group) with respect to +.

3) F - {0} forms a commutative group (see the definition of a group) with respect to *.

4) The operator * distributes over the operator +, that is a*(b+c) = a*b+a*c.

FIPS - Federal Information Processing Standards. See NIST.

flat keyspace - See Linear Key Space.

function - A mathematical relationship between two values called the input and the output, such that for each
input there is precisely one output.

Galois field - A finite field.

general-purpose factoring algorithm - An algorithm whose running time depends only on the size of the number
being factored. See special purpose factoring algorithm.

Goppa code - A class of error correcting codes, used in the McEliece public-key cryptosystem.

graph - In mathematics, a set of points called nodes (or vertices) and a set of lines connecting them or some subset
of them to one another called edges.

graph coloring problem - The problem of determining whether a graph can be colored with a fixed set of colors
such that no two adjacent vertices have the same color and producing such a coloring.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 197

group - A mathematical structure in which elements are combined.

A nonempty set G is a group if:

1) The set G is closed under the binary operator *, that is, for any two elements g, h in G, g*h is in G.

2) The operator * is associative, that is, for any a, b, c in G, a*(b*c) = (a*b)*c.

3) There exists an identity element e in G, such that for any element g in G, g*e = e*g = g.

4) For every element g in G there is an inverse h in G such that, g*h = h*g = e, the identity.

GSS-API - generic security service application program interface.

hacker - A person who tries and/or succeeds at defeating computer security measures.

Hamiltonian path problem - A Hamiltonian path is a path through a graph that passes through each vertex exactly
once. The associated problem is given a graph G is there a Hamiltonian path. This is a hard problem.

handshake - A protocol two computers use to initiate a communication session.

hard problem - A computationally-intensive problem; a problem that is computationally difficult to solve.

hash-based MAC - MAC that uses a hash function to reduce the size of the data it processes.

hash function - A function that takes a variable sized input and has a fixed size output.

HMAC - see MAC.

hyperplane - A mathematical object which may be thought of as an extension (into higher dimensions) of a 3
dimensional plane passing through the point (0,0,0).

IEEE - Institute of Electrical and Electronics Engineers, a body that creates some cryptography standards.

iKP - Internet Keyed Payments Protocol.

ISO - International Standards Organization, creates international standards, including cryptography standards.

identification - A process through which one ascertains the identity of another person or entity.

impersonation - Occurs when an entity pretends to be someone or something it is not.

import encryption - Encryption, in any form, coming into a country.

index calculus - A method used to solve the discrete log problem.

integer programming problem - The problem is to solve a linear programming problem where the variables are
restricted to integers.

interactive proof - A protocol between two parties in which one party, called the prover, tries to prove a certain
fact to the other party, called the verifier. This is usually done in a question response format, where the verifier
asks the prover questions that only the prover can answer with a certain success rate.

Internet - The connection of computer networks from all over the world forming a worldwide network.

intractable - In complexity theory, referring to a problem with no efficient means of deriving a solution.

ITAR - International Traffic in Arms Regulations.

ITEF - Internet Engineering Task Force.

ITU-T - International Telecommunications Union - Telecommunications standardization sector.

Kerberos - An authentication service developed by the Project Athena team at MIT.

key - A string of bits used widely in cryptography, allowing people to encrypt and decrypt data; a key can be used
to perform other mathematical operations as well. Given a cipher, a key determines the mapping of the plaintext
to the ciphertext. See also distributed key, private key, public key, secret key, session key, shared key, sub key,
symmetric key, weak key.

key agreement - A process used by two or more parties to agree upon a secret symmetric key.

key escrow - The process of having a third party hold onto encryption keys.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 198

key exchange - A process used by two more parties to exchange keys in cryptosystems.

key expansion - A process that creates a larger key from the original key.

key generation - The act of creating a key.

key management - The various processes that deal with the creation, distribution, authentication, and storage of
keys.

key pair - The full key information in a public-key cryptosystem, consisting of the public key and private key.

key recovery - A special feature of a key management scheme that allows messages to be decrypted even if the
original key is lost.

key schedule - An algorithm that generates the subkeys in a block cipher.

keyspace - The collection of all possible keys for a given cryptosystem. See also flat keyspace, linear key space,
nonlinear key space, and reduced key space.

knapsack problem - A problem that involves selecting a number of objects with given weights from a set, such
that the sum of the weights is maximal but less than a pre-specified weight.

known plaintext attack - A form of cryptanalysis where the cryptanalyst knows both the plaintext and the
associated ciphertext.

lattice - A lattice can be viewed as an N-dimensional grid.

LEAF - Law Enforcement Agency Field a component in the Clipper Chip.

life cycle - The length of time a key can be kept in use and still provide an appropriate level of security.

linear complexity - Referring to a sequence of 0’s and 1’s, the size of the smallest linear feedback shift register
(LFSR) that would replicate the sequence. See also linear feedback shift register.

linear cryptanalysis - A known plaintext attack that uses linear approximations to describe the behavior of the
block cipher. See known plaintext attack.

linear keyspace - A key space where each key is equally strong.

LFSR - linear feedback shift register. Used in many keystream generators because of its ability to produce se-
quences with certain desirable properties.

MAC - See message authentication code.

meet-in-the-middle attack - A known plaintext attack against double encryption with two separate keys where
the attacker encrypts a plaintext with a key and “decrypts” the original ciphertext with another key and hopes to
get the same value.

Message Authentication Code(MAC) - A MAC is a function that takes a variable length input and a key to
produce a fixed-length output. See also hash-based MAC, stream-cipher based MAC, and block-cipher based
MAC.

message digest - The result of applying a hash function to a message.

MHS - Message Handling System.

middle-person attack - A person who intercepts keys and impersonates the intended recipients.

MIME - Multipurpose Internet Mail Extensions.

MIPS - Millions of Instructions Per Second, a measurement of computing speed.

MIPS-Year - One year’s worth of time on a MIPS machine.

mixed integer programming - The problem is to solve a linear programming problem where some of the vari-
ables are restricted to being integers.

modular arithmetic - A form of arithmetic where integers are considered equal if they leave the same remainder
when divided by the modulus.

modulus - The integer used to divide out by in modular arithmetic.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 199

multiple polynomial quadratic sieve(MPQS) - A variation of the quadratic sieve that sieves on multiple polyno-
mials to find the desired relations. MPQS was used to factor RSA-129.

NIST - National Institute of Standards and Technology, a United States agency that produces security and cryp-
tography related standards (as well as others); these standards are published as FIPS documents.

non-repudiation - A property of a cryptosystem. Non-repudiation cryptosystems are those in which the users
cannot deny actions they performed.

nondeterministic - Not determined or decided by previous information.

nondeterministic computer - Currently only a theoretical computer capable of performing many computations
simultaneously.

nondeterministic polynomial running time (NP) - If the running time, given as a function of the length of the
input, is a polynomial function when running on a theoretical, nondeterministic computer, then the algorithm is
said to be NP.

nonlinear keyspace - A key space comprised of strong and weak keys.

NSA - National Security Agency. A security-conscious U. S. government agency whose mission is to decipher and
monitor foreign communications.

number field sieve - A method of factoring, currently the fastest general purpose factoring algorithm published.
It was used to factor RSA-130.

number theory - A branch of mathematics that investigates the relationships and properties of numbers.

OAEP - Optimal Asymmetric Encryption Padding; a provably secure way of encrypting a message.

one-time pad - A secret key cipher in which the key is a truly random sequence of bits that is as long as the
message itself, and encryption is performed by XORing the message with the key. This is theoretically unbreak-
able.

one-way function - A function that is easy to compute in one direction but quite difficult to reverse compute
(compute in the opposite direction.)

one-way hash function - A one-way function that takes a variable sized input and creates a fixed size output.

patent - The sole right, granted by the government, to sell, use, and manufacture an invention or creation.

PKI - Public key Infrastructure. PKIs are designed to solve the key management problem. See also key manage-
ment.

padding - Extra bits concatenated with a key, password, or plaintext.

password - A character string used as a key to control access to files or encrypt them.

PKCS - Public-key cryptography Standards. A series of cryptographic standards dealing with public key issues,
published by RSA Laboratories.

plaintext - The data to be encrypted.

plane - A geometric object defined by any three non-colinear points, containing every line passing through any
two of them.

Pollard p-1 and Pollard p+1 methods - Algorithms that attempt to find a prime factor p of a number N by exploit-
ing properties of p-1 and p+1. See also factoring, prime factor, prime number.

Pollard Rho method - A method for solving the discrete logarithm and elliptic curve discrete logarithm.

polynomial - An algebraic expression written as a sum of constants multiplied by different powers of a variable,
for example a

n
xn + a

n-1
xn-1 + ... + a

1
x1 + a

0
, where the a

j
 are the constants and x is the variable.

polynomial running time - If the running time, given as a function of the length of the input is a polynomial the
algorithm is said to have polynomial running time. Polynomial running time algorithms are sub-exponential, but
not all sub-exponential algorithms are polynomial running time.

precomputation attack - An attack where the adversary precomputes a look-up table of values used to crack

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 200

encryption or passwords. See also dictionary attack.

primality testing - A test that determines, with varying degree of probability, whether or not a particular number
is prime.

prime factor - A prime number that is a factor of another number is called a prime factor of that number.

prime number - Any integer greater than 1 that is divisible only by 1 and itself.

privacy - The state or quality of being secluded from the view and or presence of others.

private exponent - The private key in the RSA public-key cryptosystem.

private key - In public-key cryptography, this key is the secret key. It is primarily used for decryption but is also
used for encryption with digital signatures.

proactive security - A property of a cryptographic protocol or structure which minimizes potential security
compromises by refreshing a shared key or secret.

probabilistic signature scheme (PSS) - A provably secure way of creating signatures using the RSA algorithm.

protocol - A series of steps that two or more parties agree upon to complete a task.

provably secure - A property of a digital signature scheme stating that it is provably secure if its security can be
tied closely to that of the cryptosystem involved. See also digital signature scheme.

pseudorandom number - A number extracted from a pseudorandom sequence.

pseudorandom sequence - A deterministic function which produces a sequence of bits with qualities similar to
that of a truly random sequence.

PSS - See probabilistic signature scheme.

public exponent - The public key in the RSA public-key cryptosystem.

public key - In public-key cryptography this key is made public to all, it is primarily used for encryption but can
be used for verifying signatures.

public-key cryptography - Cryptography based on methods involving a public key and a private key.

quadratic sieve - A method of factoring an integer, developed by Carl Pomerance.

quantum computer - A theoretical computer based on ideas from quantum theory; theoretically it is capable of
operating nondeterministically.

RSA algorithm - A public-key cryptosystem based on the factoring problem. RSA stands for Rivest, Shamir and
Adleman, the developers of the RSA public-key cryptosystem and the founders of RSA Data Security, Inc.

random number - As opposed to a pseudorandom number, a truly random number is a number produced
independently of its generating criteria. For cryptographic purposes, numbers based on physical measurements,
such as a Geiger counter, are considered random.

reduced keyspace - When using an n bit key, some implementations may only use r < n bits of the key; the result
is a smaller (reduced) key space.

relatively prime - Two integers are relatively prime if they have no common factors, i.e. (14, 25).

reverse engineer - To ascertain the functional basis of something by taking it apart and studying how it works.

rounds - The number of times a function, called a round function, is applied to a block in a Feistel cipher.

running time - A measurement of the time required for a particular algorithm to run as a function of the input
size. See also exponential running time, nondeterministic polynomial running time, polynomial running time, and
sub-exponential running time.

S-HTTP - Secure HyperText Transfer Protocol, a secure way of transferring information over the World Wide Web.

S/MIME - Secure Multipurpose Internet Mail Extensions.

SSL - Secure Socket Layer. A protocol used for secure Internet communications.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 201

SWIFT - Society for Worldwide Interbank Financial Telecommunications.

salt - A string of random (or pseudorandom) bits concatenated with a key or password to foil precomputation
attacks.

satisfiability problem - Given a Boolean expression determine if there is an assignment of 1’s and 0’s such that
the expression evaluates to 1. This is hard problem.

secret key - In secret-key cryptography, this is the key used both for encryption and decryption.

secret sharing - Splitting a secret (e.g. a private key) into many pieces such that any specified subset of N pieces
may be combined to form the secret.

secure channel - A communication medium safe from the threat of eavesdroppers.

seed - a typically random bit sequence used to generate another, usually longer pseudorandom bit sequence.

self-shrinking generator - A stream cipher where the output of an LFSR is allowed to feed back into itself.

self-synchronous - Referring to a stream cipher, when the keystream is dependent on the data and its encryption.

session key - A key for symmetric-key cryptosystems which is used for the duration of one message or communi-
cation session

SET - Secure Electronic Transaction. MasterCard and Visa developed (with some help from industry) this stan-
dard jointly to insure secure electronic transactions.

shared key - The secret key two (or more) users share in a symmetric-key cryptosystem.

shrinking generator - A stream cipher built around the interaction of the outputs of two LFSRs. See also stream
cipher and linear feedback shift register.

Skipjack - The block cipher contained in the Clipper chip designed by the NSA.

SMTP - Simple Mail Transfer Protocol.

smartcard - A card, not much bigger than a credit card, that contains a computer chip and is used to store or
process information.

special-purpose factoring algorithm - A factoring algorithm which is efficient or effective only for some numbers.
See also factoring and prime factors.

standards - Conditions and protocols set forth to allow uniformity within communications and virtually all
computer activity.

stream cipher - A secret key encryption algorithm that operates on a bit at a time.

stream cipher based MAC - MAC that uses linear feedback shift registers (LFSR’s) to reduce the size of the data it
processes.

strong prime - A prime number with certain properties chosen to defend against specific factoring techniques.

sub-exponential running time - The running time is less than exponential. Polynomial running time algorithms
are sub-exponential, but not all sub-exponential algorithms are polynomial running time.

sub key - A value generated during the key scheduling of the key used during a round in a block cipher.

subset sum problem - A problem where one is given a set of numbers and needs to find a subset that sums to a
particular value.

S/WAN - Secure Wide Area Network.

symmetric cipher - An encryption algorithm that uses the same key is used for encryption as decryption.

symmetric key - See secret key.

synchronous - A property of a stream cipher, stating that the keystream is generated independently of the
plaintext and ciphertext.

tamper resistant - In cryptographic terms, this usually refers to a hardware device that is either impossible or
extremely difficult to reverse engineer or extract information from.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 202

TCSEC - Trusted Computer System Evaluation Criteria.

threshold cryptography - Splitting a secret (for example a private key) into many pieces such that only certain
subsets of the N pieces may be combined to form the secret.

timestamp - see digital timestamp

tractable - A property of a problem, stating that it can be solved in a reasonable amount of time using a reasonable
amount of space.

trap door one-way function - A one-way function that has an easy-to-compute inverse if you know certain secret
information. This secret information is called the trap door.

traveling salesman problem - A hard problem. The problem is: given a set of cities, how does one tour all the
cities in the minimal amount of distance traveled.

trustees - A common term for escrow agents.

Turing machine - A theoretical model of a computing device, devised by Alan Turing.

verification - The act of recognizing that a person or entity is who or what it claims to be.

Vernam cipher - See one-time pad.

weak key - A key giving a poor level in security, or causing regularities in encryption which can be used by
cryptanalysts to break codes.

WWW - World Wide Web.

XOR - A binary bitwise operator yielding the result one if the two values are different and zero otherwise.

zero knowledge proofs - An interactive proof where the prover proves to the verifier that he or she knows certain
information without revealing the information.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 203

References

[ACG84] W. Alexi, B. Chor, O. Goldreich, and C.P. Schnorr. RSA and Rabin functions: Certain parts are as hard as
the whole. SIAM Journal of Computing, October 1984.

[Adl95] L.M. Adleman. On constructing a molecular computer, University of Southern California, draft, January
1995.

[Adl96] L.M. Adleman. Statement, Cryptographer’s Expert Panel, RSA Data Security Conference, San Francisco,
CA, January 17, 1996.

[AGL95] D. Atkins, M. Graff, A.K. Lenstra and P.C. Leyland. The magic words are squeamish ossifrage. In
Advances in Cryptology Asiacrypt ‘94, pages 263277, Springer-Verlag, 1995.

[AHU74] Aho, Hopcroft, and Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley, 1974.

[ANS83] American National Standards Institute. American National Standard X3.106: Data Encryption Algo-
rithm, Modes of Operations, 1983.

[ANS85] American National Standards Institute. American National Standard X9.17: Financial Institution Key
Management (Wholesale), 1985.

[ANS86a] American National Standards Institute. American National Standard X9.9: Financial Institution Mes-
sage Authentication (Wholesale), 1986.

[ANS86b] American National Standards Institute. American National Standard X9.19: Financial Institution Retail
Message Authentication, 1986.

[ANS93a] American National Standards Institute. Draft: American National Standard X9.30-199X: Public-Key
Cryptography Using Irreversible Algorithms for the Financial Services Industry: Part 1: The Digital Signature
Algorithm (DSA). American Bankers Association, March 1993.

[ANS93b] American National Standards Institute. American National Standard X9.31-1992: Public Key Cryptog-
raphy Using Reversible Algorithms for the Financial Services Industry: Part 1: The RSA Signature Algorithm,
March 1993.

[ANS94a] American National Standards Institute. Accredited Standards Committee X9 Working Draft: American
National Standard X9.42-1993: Public Key Cryptography for the Financial Services Industry: Management of
Symmetric Algorithm Keys Using Diffie-Hellman, American Bankers Association, September 21, 1994.

[ANS94b] American National Standards Institute. Accredited Standards Committee X9 Working Draft: American
National Standard X9.44: Public Key Cryptography Using Reversible Algorithms for the Financial Services
Industry: Transport of Symmetric Algorithm Keys Using RSA, American Bankers Association, September 21, 1994.

[ARV95] W. Aiello, S. Rajagopalan, and R. Venkatesan. Design of practical and provably good random number
generators (extended abstract). In Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 1-9, San Francisco, California, 22-24 January 1995.

[Atk95a] R. Atkinson. RFC 1825: Security Architecture for the Internet Protocol. Naval Research Laboratory,
August 1995.

[Atk95b] R. Atkinson. RFC 1826: IP Authentication Header. Naval Research Laboratory, August 1995.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 204

[Atk95c] R. Atkinson. RFC 1827: IP Encapsulating Security Payload (ESP). Naval Research Laboratory, August
1995.

[Bam82] J. Bamford. The Puzzle Palace. Houghton Mifflin, Boston, 1982.

[Bar92] J.P. Barlow. Decrypting the puzzle palace. Communications of the ACM, 35(7): 2531, July 1992.

[BBB92] C. Bennett, F. Bessette, G. Brassard, L. Savail, and J. Smolin. Experimental quantum cryptography.
Journal of Cryptology, 5(1): 328, 1992.

 [BBC88] P. Beauchemin, G. Brassard, C. Crepeau, C. Goutier, and C. Pomerance. The generation of random
numbers that are probably prime. Journal of Cryptology, 1: 53-64, 1988.

[BBL95] D. Bleichenbacher, W. Bosma, and A. Lenstra. Some remarks on Lucas-based cryptosystems. In Advances
in Cryptology Crypto ’95, pages 386-396, Springer-Verlag, 1995.

[BBS86] L. Blum, M. Blum, and M. Shub. A simple unpredicatable random number generator. SIAM Journal on
Computing, 15: 364-383, 1986.

[BD93b] J. Brandt and I. Damgard. On generation of probable primes by incremental search. In Advances in
Cryptology Crypto ’92, pages 358-370, Springer-Verlag, 1993.

[BDK93] E.F. Brickell, D.E. Denning, S.T. Kent, D.P. Maher, and W. Tuchman. Skipjack Review, Interim Report:
The Skipjack Algorithm. July 28, 1993.

[BDN97] W. Burr, D. Dodson, N. Nazario, and W. T. Polk. MISPC, Minimum Interoperability Specification for PKI
Components, Version 1. NIST, June 5, 1997.

[Bea95] D. Beaver. Factoring: The DNA solution. In Advances in Cryptology Asiacrypt ’94, pages 419-423,
Springer-Verlag, 1995.

[Ben82] P. Benioff. Quantum mechanical Hamiltonian models of Turing machines. Journal of Statistical Physics,
29(3): 515-546, 1982.

[BG85] M. Blum and S. Goldwasser. An efficient probabilistic public-key encryption scheme which hides all
partial information. In Advances in Cryptology Crypto ’84, pages 289299, Springer-Verlag, 1985.

[BGH95] M. Bellare, J.A. Garay, R. Hauser, A. Herzberg, H. Krawczyk, M. Steiner, G. Tsudik, and M. Waidner. iKP
- A Family of Secure Electronic Payment Protocols. Usenix Electronic Commerce Workshop, July 1995.

[BHS93] D. Bayer, S. Haber, and W.S. Stornetta. Improving the efficiency and reliability of digital timestamping.
In Proceedings Sequences II: Methods in Communication, Security, and Computer Science, pages 329334,
Springer-Verlag, 1993.

[Bih95] E. Biham. Cryptanalysis of Multiple Modes of Operation. In Advances in Cryptology Asiacrypt ’94, pages
278292, Springer-Verlag, 1995.

[BK98] A. Biryukov and E. Kushilevitz. Improved cryptanalysis of RC5. EuroCrypt ’98. To appear.

[BKR94] M. Bellare, J. Killian and P. Rogaway. The security of cipher block chaining. In Advances in Cryptology
Crypto ’94, pages 341-358, Springer-Verlag, 1994.

[Bla79] G.R. Blakley. Safeguarding cryptographic keys. AFIPS Conference Proceedings, 48: 313-317, 1979.

[Bla94] Matt Blaze, Protocol Failure in the Escrowed Encryption Standard, Proceedings of the 2nd ACM Confer-
ence on Computer and Communications Security, pp 59-67, held in Fairfax, VA, Nov. 1994.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 205

[BLP94] J.P. Buhler, H.W. Lenstra, and C. Pomerance. The development of the number field sieve. Volume 1554 of
Lecture Notes in Computer Science, Springer-Verlag, 1994.

[BLS88] J. Brillhart, D.H. Lehmer, J.L. Selfridge, B. Tuckerman, and S.S. Wagstaff Jr. Factorizations of bn ± 1, b =
2,3,5,6,7,10,11,12 up to High Powers. Volume 22 of Contemporary Mathematics,
American Mathematical Society, 2nd edition, 1988.

[BLZ94] J. Buchmann, J. Loho, and J. Zayer. An implementation of the general number field sieve. In Advances in
Cryptology Crypto ’93, pages 159-166, Springer-Verlag, 1994.

[BM84] M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-random bits.
SIAM Journal on Computing, 13(4): 850-863, 1984.

[BR93] M. Bellare and P. Rogaway, “Random Oracles are Practical: A Paradigm for Designing Efficient Protocols,”
Proceedings of the first Annual Conference on Computer and Communications Security, ACM, 1993.

[BR94] M. Bellare and P. Rogaway. Optimal asymmetric encryption. In Advances in Cryptology Eurocrypt ’94,
pages 92-111, Springer-Verlag, 1994.

[BR96] M. Bellare and P. Rogaway, “The Exact Security of Digital Signatures How to Sign with RSA and Rabin,”
Advances in Cryptology Eurocrypt `96 Proceedings, Lecture Notes in Computer Science Vol.1070, U. Maurer ed.,
Springer-Verlag, 1996.

[Bra88] G. Brassard. Modern Cryptology. Volume 325 of Lecture Notes in Computer Science,Springer-Verlag,
1988.

[Bra93] G. Brassard. Cryptography column Quantum cryptography: A bibliography. Sigact News, 24(3): 1620,
1993.

[Bra95a] G. Brassard. The computer in the 21st Century. Scientific American. March 1995.

[Bra95b] G. Brassard. The impending demise of RSA? CryptoBytes, 1(1): 14, Spring 1995.

[Bra95c] G. Brassard. A quantum jump in computer science. Current Trends in Computer Science, LNCS 1000,
Springer-Verlag, 1995.

[Bre89] D.M. Bressoud. Factorization and Primality Testing. Springer-Verlag, 1989.

[Bri85] E.F. Brickell. Breaking iterated knapsacks. In Advances in Cryptology Crypto ’84, pages 342-358,
Springer-Verlag, 1985.

[BS91a] E. Biham and A. Shamir. Differential cryptanalysis of DES-like cryptosystems. In Advances in Cryptology
Crypto ’90, pages 221, Springer-Verlag, 1991.

[BS91b] E. Biham and A. Shamir. Differential cryptanalysis of FEAL and N-Hash. In Advances in Cryptology
Eurocrypt ’91, pages 156-171, Springer-Verlag, 1991.

[BS93a] E. Biham and A. Shamir. Differential cryptanalysis of the full 16-round DES. In Advances in Cryptology
Crypto ’92, pages 487-496, Springer-Verlag, 1993.

[BS93b] E. Biham and A. Shamir. Differential Cryptanalysis of the Data Encryption Standard. Springer-Verlag,
1993.

[CCI88a] CCITT. Recommendation X.400: Message Handling System and Service Overview. 1988.

[CCI88b] CCITT. Recommendation X.500: The Directory Overview of Concepts, Models and Services. 1988.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 206

[CCI88c] CCITT. Recommendation X.509: The Directory Authentication Framework. 1988.

[CCI91] CCITT. Recommendation X.435: Message Handling Systems: EDI Messaging System. 1991.

[CFG95] S. Crocker, N. Freed, J. Galvin, and S. Murphy. RFC 1848: MIME Object Security Services. CyberCash,
Inc., Innosoft International, Inc., and Trusted Information Systems, October 1995.

[CFN88] D. Chaum, A. Fiat and M. Naor. Untraceable electronic cash. In Advances in Cryptology Crypto ’88,
pages 319-327, Springer-Verlag, 1988.

[CGH97] Canetti, R. Gennaro, A. Herzberg and D. Naor, “Proactive Security: Long-term Protection Against
Break-ins”. CryptoBytes 3(1): 1-8, 1997.

[Cha83] D. Chaum. Blind signatures for untraceable payments. In Advances in Cryptology Crypto ’82, pages
199-203, Springer-Verlag, 1983.

[Cha85] D. Chaum. Security without identification: transaction systems to make big brother obsolete. Communi-
cations of the ACM, 28(10): 1030-1044, October 1985.

[Cha94] D. Chaum. Designated confirmer signatures. In Advances in Cryptology Eurocrypt ’94, pages 86-91,
Springer-Verlag, 1994.

[CJ98] F. Chabaud and A. Joux. Differential Collisions in SHA-0. In Advances in Cryptology Crypto ’98, pages 56-
71, Springer-Verlag, 1998.

[CKM94] D. Coppersmith, H. Krawczyz and Y. Mansour. The shrinking generator. In Advances in Cryptology
Crypto ’93, pages 22-38, Springer-Verlag, 1994.

[CLR90] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT Press, Cambridge,
Massachusetts, 1990.

[Cop92] D. Coppersmith. The data encryption standard and its strength against attacks. IBM Research Report RC
18613 (81421), T. J. Watson research center, December 1992.

[COS86] D. Coppersmith, A.M. Odlyzko, and R. Schroeppel. Discrete logarithms in GF(p). Algorithmica, 1: 115,
1986.

[CP94] L. Chen and T.P. Pederson. New group signature schemes. In Advances in Cryptology Eurocrypt ’94,
pages 171-181, Springer-Verlag, 1994.

[CP95] L. Chen and T.P. Pedersen. On the efficiency of group signatures: providing information-theoretic ano-
nymity. In Advances in Cryptology Eurocrypt ’95, pages 39-49, Springer-Verlag, 1995.

[CR88] B. Chor and R.L. Rivest. A knapsack-type public-key cryptosystem based on arithmetic in finite fields.
IEEE Transactions on Information Theory, 34(5): 901909, 1988.

[CV90] D. Chaum and H. van Antwerpen. Undeniable signatures. In Advances in Cryptology Crypto ’89, pages
212-216, Springer-Verlag, 1990.

[CV91] D. Chaum and E. van Heijst. Group signatures. In Advances in Cryptology Eurocrypt ’91, pages 257-265,
Springer-Verlag, 1991.

[CV92] D. Chaum and H. van Antwerpen. Cryptographically strong undeniable signatures, unconditionally
secure for the signer. In Advances in Cryptology Crypto ’91, pages 470-484, Springer-Verlag, 1992.

[CW93] K.W. Campbell and M.J. Wiener. DES is not a group. In Advances in Cryptology Crypto ’92, pages 512-
520, Springer-Verlag, 1993.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 207

[Dam90] I. Damgård. A design principle for hash functions. In Advances in Cryptology Crypto ’89, pages 416-
427, Springer-Verlag, 1990.

[Dav82] G. Davida. Chosen signature cryptanalysis of the RSA public key cryptosystem. Technical Report TR-CS-
82-2, Department of EECS, University of Wisconsin, Milwaukee, 1982.

[DB92] B. den Boer and A. Bosselaers. An attack on the last two rounds of MD4. In Advances in Cryptology
Crypto ’91, pages 194-203, Springer-Verlag, 1992.

[DB94] B. den Boer and A. Bosselaers. Collisions for the compression function of MD5. In Advances in Cryptology
Eurocrypt ’93, pages 293-304, Springer-Verlag, 1994.

[DB95] D.E. Denning and D.K. Branstad. A taxonomy for key escrow encryption systems. January, 1995.

[DB96] - Denning, D. and Branstad, D. “A Taxonomy for Key Escrow Encryption Systems.” Communications of
the ACM, Vol. 39, No. 3, March 1996, pp 34-40.

[DB96b] - H. Dobbertin. The Status of MD5 After a Recent Attack. CryptoBytes Vol.2 No.2, Summer 1996.

[DBP96] H. Dobbertin, A. Bosselaers, and B. Preneel. RIPEMD-160: A strengthened version of RIPEMD.In Pro-
ceedings of 3rd International Workshop on Fast Software Encryption, pages 71-82, Springer-Verlag, 1996.

[Den93] D.E. Denning. The Clipper encryption system. American Scientist, 81(4): 319-323, July-August 1993.

[Den95] D.E. Denning. The Case for “Clipper.” Technology Review, pages 48-55, July 1995.

[Des95] Y. Desmedt. Securing traceability of ciphertextsTowards a secure software key escrow system. In Ad-
vances in Cryptology Eurocrypt ’95, pages 147-157, Springer-Verlag, 1995.

[Deu92] D. Deutsch. Quantum theory, the Church-Turing principle and the universal quantum computer. Pro-
ceedings of the Royal Society, London, A439: 553-558, 1992.

[DGV94] J. Daemen, R. Govaerts, and J. Vandewalle. Weak keys for IDEA. In Advances in Cryptology Crypto ’93,
pages 224-231, Springer-Verlag, 1994.

[DH76] W. Diffie and M.E. Hellman. New directions in cryptography. IEEE Transactions on Information Theory,
IT-22: 644-654, 1976.

[DH77] W. Diffie and M.E. Hellman. Exhaustive cryptanalysis of the NBS Data Encryption Standard. Computer,
10: 74-84, 1977.

[Dif88] W. Diffie. The first ten years of public-key cryptography. Proceedings of the IEEE, 76: 560-577, 1988.

[DIP94] D. Davies, R. Ihaka, and P. Fenstermacher. Cryptographic randomness from air turbulence in disk drives.
In Advances in Cryptology Crypto ’94, pages 114-120, Springer-Verlag, 1994.

[DL95] B. Dodson and A.K. Lenstra. NFS with four large primes: An explosive experiment. In Advances in
Cryptology Crypto ’95, pages 372-385, Springer-Verlag, 1995.

[DO86] Y. Desmedt and A.M. Odlyzko. A chosen text attack on the RSA cryptosystem and some discrete loga-
rithm schemes. In Advances in Cryptology Crypto ’85, pages 516-522, Springer-Verlag, 1986.

[Dob95] H. Dobbertin. Alf Swindles Ann. CryptoBytes, 1(3): 5, 1995.

[DP83] D.W. Davies and G.I. Parkin. The average cycle size of the key stream in output feedback encipherment. In
Advances in Cryptology: Proceedings of Crypto ’82, pages 97-98, Plenum Press, 1983.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 208

[DVW92] W. Diffie, P.C. van Oorschot, and M.J. Wiener. Authentication and authenticated key exchanges. De-
signs, Codes and Cryptography, 2: 107-125, 1992.

[ECS94] D. Eastlake, 3rd, S. Crocker, and J. Schiller. RFC 1750: Randomness Recommendations for Security. DEC,
Cybercash, and MIT, December 1994.

[EGM89] Even, S., Goldreich, O., and Micali, S., “On-Line/Off-Line Digital Signatures”, Advances in Cryptology
Crypto ’89, G. Brassard (ed.), Springer-Verlag, 1990, pp. 263-275.

[Elg85] T. ElGamal. A public-key cryptosystem and a signature scheme based on discrete logarithms. IEEE
Transactions on Information Theory, IT-31: 469-472, 1985.

[Elg95] T. ElGamal. Commerce on the Internet. Version 1.00, Netscape Communications Corporation, Mountain
View, CA, July 14, 1995. http://www.netscape.com/newsref/std/credit.htm

[Fei73] H. Feistel. Cryptography and Computer Privacy, Scientific American, May 1973.

[Fey82] R.P. Feynman. Simulating physics with computers. International Journal of Theoretical Physics, 21(6):
467-488, 1982.

[Fey86] R.P. Feynman. Quantum mechanical computers. Optic News, February 1985. Reprinted in Foundations of
Physics, 16(6): 507-531, 1986.

[FFS88] U. Feige, A. Fiat and A. Shamir. Zero-knowledge proofs of identity. Journal of Cryptography, 1: 66-94,
1988.

[FGM97] Y. Frankel, P. Gemmel, P. D. MacKenzie and M. Yung, “Proactive RSA,” Advances in Cryptology
Crypto ‘97 Proceedings, Lecture Notes in Computer Science Vol. 1294, B. Kaliski ed., Springer-Verlag, 1997.

[For94] W. Ford. Computer Communications Security Principles, Standard Protocols and Techniques, Prentice-
Hall, New Jersey, 1994.

[FR95] P. Fahn and M.J.B. Robshaw. Results from the RSA Factoring Challenge. Technical Report TR-501, version
1.3, RSA Laboratories, January 1995.

[FS87] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature problems.
In Advances in Cryptology Crypto ’86, pages 186-194, Springer-Verlag, 1987.

[FY94] M. Franklin and M. Yung. Blind Weak Signature and its Applications: Putting Non-Cryptographic Secure
Computation to Work. In Advances in Cryptology Eurocrypt ’94, pages 67-76, Springer-Verlag, 1994.

[Gan95] R. Ganesan. Yaksha: Augmenting Kerberos with public key cryptography. In Proceedings of the 1995
Internet Society Symposium on Network and Distributed Systems Security, pages 132-143, IEEE Press, 1995.

[GC89] D. Gollman and W.G. Chambers. Clock-controlled shift registers: a review. IEEE Journal on Selected Areas
in Communications, 7(4): 525-533, May 1989.

[Gib93] J.K. Gibson. Severely denting the Babidulin version of the McElience public key cryptosystem. In
Prepoceedings of the 4th IMA Conference on Cryptography and Coding, 1993.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability - A Guide to the Theory of NP-
Completeness. W.H. Freeman, New York, 1979.

[GJK96] R.Gennaro, S. Jarecki, H. Krawczyk and T. Rabin, “Robust Threshold DSS Signatures,” Advances in
Cryptology - Eurocrypt ‘96 Proceedings, Lecture Notes in Computer Science Vol. 1070, Ueli Maurer ed., Springer-
Verlag, 1996.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 209

[GM84] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sciences, 28: 270-
299, 1984.

[GM93] D.M. Gordon and K.S. McCurley. Massively parallel computation of discrete logarithms. In Advances in
Cryptology Crypto ’92, pages 312-323, Springer-Verlag, 1993.

[GMR86] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against adaptive chosen
message attack. SIAM Journal on Computing, 17(2): 289-308, March 1988.

[Gor93] D.M. Gordon. Discrete logarithms in GF(p) using the number field sieve. SIAM Journal of Computing,
6(1): 124138, February 1993.

[GPT91] E.M. Gabidulin, A.V. Paramonov, and O.V. Tretjakov. Ideals over a non-commutative ring and their
application in cryptology. In Advances in Cryptology Eurocrypt ’91, pages 482-489, Springer-Verlag, 1991.

[GQ88] L.C. Guillou and J.J. Quisquater. A practical zero-knowledge protocol fitted to security microprocessor
minimizing both transmission and memory. In Advances in Cryptology Eurocrypt ’88, pages 123-128, Springer-
Verlag, 1988.

[Has88] J. Hastad. Solving simultaneous modular equations of low degree. SIAM Journal of Computing, 17: 336-
341, 1988.

[Hel80] M.E. Hellman. A cryptanalytic time-memory trade off. IEEE Transactions on Information Theory, IT-26:
401-406, 1980.

[Hic95] K.E.B. Hickman. The SSL Protocol. December 1995. (http://www.netscape.com/newsref/std/ssl.html)

[HJJ97] A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk and M. Yung, “Proactive Public Key and Signature
Systems,” In 1997 ACM Conference on Computers and Communication Security, 1997.

[HS91]S. Haber and W.S. Stornetta. How to timestamp a digital document. Journal of Cryptology, 3(2): 99-111,
1991.

[ISO87] ISO DIS 8730. Banking requirements for message authentication (wholesale). 1987.

[ISO91] ISO/IEC 9979. Data Cryptographic Techniques - Procedures for the Registration of Cryptographic
Algorithms. 1991.

[ISO92a] ISO/IEC 9798. Entity authentication mechanisms using symmetric techniques. 1992.

[ISO92b] ISO/IEC 10116. Modes of operation for an n-bit block cipher algorithm. 1992.

[ISO92c] ISO/IEC 10118. Information technology - Security techniques - Hash functions. 1992.

[Jue83] R.R. Jueneman. Analysis of certain aspects of output feedback mode. In Advances in Cryptology: Proceed-
ings of Crypto ’82, pages 99-127, Plenum Press, 1983.

[Kah67] D. Kahn. The Codebreakers. Macmillan Co., New York, 1967.

[Kal92] B.S. Kaliski Jr. RFC 1319: The MD2 Message-Digest Algorithm. RSA Laboratories, April 1992.

[Kal93a] B.S. Kaliski Jr. RFC 1424: Privacy Enhancement for Internet Electronic Mail: Part IV: Key Certification
and Related Services. RSA Laboratories, February 1993.

[Kal93b] B.S. Kaliski Jr. A survey of encryption standards. IEEE Micro, 13(6): 74-81, December 1993.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 210

[Ken93] S. Kent. RFC 1422: Privacy Enhancement for Internet Electronic Mail, Part II: Certificate-Based Key
Management. Internet Activities Board, February 1993.

[KM96] L.R. Knudsen and W. Meier. Improved differential attacks on RC5,” Advances in Cryptology Crypto ‘96
Proceedings, Lecture Notes in Computer Science Vol. 1109, pages 216-228. Springer-Verlag 1996.

[KMS95] P. Karn, P. Metzger, and W. Simpson. RFC 1829: The ESP DES-CBC Transform. Qualcomm, Piermont,
and Daydreamer, August 1995.

[KN93] J. Kohl and B. Neuman. The Kerberos Network Authentication Service. Network Working Group RFC
1510, 1993.

[KNT94] J. Kohl, B. Neuman, and T. Tso. The evolution of the Kerberos authentication service. Distributed Open
Systems, IEEE Press, 1994.

[Knu81] D.E. Knuth. The Art of Computer Programming, volume 2, Seminumerical Algorithms. Addison-Wesley,
2nd edition, 1981.

[Knu93] L.R. Knudsen. Practically secure Feistel ciphers. In Proceedings of 1st International Workshop on Fast
Software Encryption, pages 211-221, Springer-Verlag, 1993.

[Knu95] L.R. Knudsen. A key-schedule weakness in SAFER K-64. In Advances in Cryptology. Crypto ’95, pages
274-286, Springer-Verlag, 1995.

[Kob87] N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48: 203-209, 1987.

[Kob94] N. Koblitz. A Course in Number Theory and Cryptography. Springer-Verlag, 1994.

[Koc94] Ç.K. Koç. High-Speed RSA Implementation. Technical Report TR-201, version 2.0, RSA Laboratories,
November 1994.

[Koc95] Ç.K. Koç. RSA Hardware Implementation. Technical Report TR-801, version 1.0, RSA Laboratories,
August 1995.

[KR94] B.S. Kaliski Jr. and M.J.B. Robshaw. Linear cryptanalysis using multiple approximations. In Advances in
Cryptology Crypto ’94, pages 26-39, Springer-Verlag, 1994.

[KR95a] B.S. Kaliski Jr. and M.J.B. Robshaw. Linear cryptanalysis using multiple approximations and FEAL. In
Proceedings of 2nd International Workshop on Fast Software Encryption, pages 249-264, Springer-Verlag, 1995.

[KR95b] B.S. Kaliski Jr. and M.J.B. Robshaw. Message authentication with MD5. CryptoBytes, 1(1): 5-8, 1995.

[KR95c] B.S. Kaliski Jr. and M.J.B. Robshaw. The secure use of RSA. CryptoBytes, 1(3): 7-13, 1995.

[KR96] B.S. Kaliski Jr. and M.J.B. Robshaw. Multiple encryption: weighing up security and performance. Dr.
Dobb’s Journal, #243, pages 123-127, January 1996.

[Kra93] D. Kravitz. Digital signature algorithm. U.S. Patent #5,231,668, July 27, 1993.

[KRS88] B.S. Kaliski Jr., R.L. Rivest, and A.T. Sherman. Is the data encryption standard a group? Journal of
Cryptology, 1: 336, 1988.

[KY95] B.S. Kaliski Jr. and Y.L. Yin. On differential and linear cryptanalysis of the RC5 encryption algorithm. In
Advances in Cryptology Crypto ’95, pages 171-183, Springer-Verlag, 1995.

[Lan88] S. Landau. Zero knowledge and the Department of Defense. Notices of the American Mathematical
Society, 35: 5-12, 1988.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 211

[Len87] H.W. Lenstra Jr. Factoring integers with elliptic curves. Annuals of Mathematics., 126: 649-673, 1987.

[LH94] S.K. Langford and M.E. Hellman. Differential-linear cryptanalysis. In Advances in Cryptology Crypto ’94,
pages 1725, Springer-Verlag, 1994.

[Lin93] J. Linn. RFC 1508: Generic Security Services Application Programming Interface. Geer Zolot Associates,
September 1993.

[Lip94] R.J. Lipton. Speeding up computations via molecular biology. Princeton University, draft, December 1994.

[LL90] A.K. Lenstra and H.W. Lenstra Jr. Algorithms in number theory. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume A, pages 673-715, MIT Press/Elsevier, Amsterdam, 1990.

[LLM93] A.K. Lenstra, H.W. Lenstra Jr., M.S. Manasse, and J.M. Pollard. The factorization of the ninth Fermat
number. Mathematics of Computation, 61(203): 319-349, 1993.

[LM91] X. Lai and J.L. Massey. A proposal for a new block encryption standard. In Advances in Cryptology
Eurocrypt ’90, pages 389-404, Springer-Verlag, 1991.

[LMM92] X. Lai, J.L. Massey and S. Murphy. Markov ciphers and differential cryptanalysis. In Advances in
Cryptology Eurocrypt ’91, pages 17-38, Springer-Verlag, 1992.

[LP98] Harry R. Lewis and Christos H. Papadimitriou. Elements of the Theory of Computation, 2nd edition,
Prentice Hall, Upper Saddle River, NJ, 1998.

[LRW92] X. Lai, R.A. Rueppel, and J. Woollven. A fast cryptographic checksum algorithm based on stream
ciphers. In Advances in Cryptology Auscrypt ’92, Springer-Verlag, 1992.

[Mas93] J.L. Massey. SAFER K-64: A byte-oriented block ciphering algorithm. In Proceedings of 1st International
Workshop on Fast Software Encryption, pages 1-17, Springer-Verlag, 1993.

[Mas95] J.L. Massey. SAFER K-64: One year later. In Proceedings of 2nd Workshop on Fast Software Encryption,
pages 212-241, Springer-Verlag, 1995.

[Mat93] M. Matsui. Linear cryptanalysis method for DES cipher. In Advances in Cryptology Eurocrypt ’93, pages
386-397, Springer-Verlag, 1993.

[Mat94] M. Matsui. The first experimental cryptanalysis of the data encryption standard. In Advances in
Cryptology Crypto ’94, pages 1-11, Springer-Verlag, 1994.

[Mat96] T. Matthews. Suggestions for random number generation in software. Bulletin No. 1, RSA Laboratories,
January 1996.

[Mau94] U. Maurer. Towards the equivalence of breaking the Diffie-Hellman protocol and computing discrete
logarithms. In Advances in Cryptology Crypto ’94, pages 271-281, Springer-Verlag, 1994.

[Mce78] R.J. McEliece. A public-key cryptosystem based on algebraic coding theory. JPL DSN Progress Report
4244, pages 114-116, 1978.

[Mcn95] F.L. McNulty. Clipper Alive and well as a voluntary government standard for telecommunications. The
1995 RSA Data Security Conference, January 1995.

[Men93] A. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer Academic Publishers, 1993.

[Men95] A. Menezes. Elliptic Curve Cryptosystems. CryptoBytes, 1(2): 1-4, 1995.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 212

[Mer79] R.C. Merkle. Secrecy, authentication and public-key systems. Ph. D. Thesis, Stanford University, 1979.

[Mer90a] R.C. Merkle. One way hash functions and DES. In Advances in Cryptology Crypto ’89, pages 428-446,
Springer-Verlag, 1990.

[Mer90b] R.C. Merkle. A digital signature based on a conventional encryption function. In Advances in
Cryptology Crypto ’89, pages 428-446, Springer-Verlag, 1990.

[Mer91] R.C. Merkle. Fast software encryption functions. In Advances in Cryptology Crypto ’90, pages 627-638,
Springer-Verlag, 1991.

[MH78] R.C. Merkle and M.E. Hellman. Hiding information and signatures in trapdoor knapsacks. EEE Transac-
tions on Information Theory, IT-24: 525-530, 1978.

[MH81] R.C. Merkle and M.E. Hellman. On the security of multiple encryption. Communications of the ACM, 24:
465-467, July 1981.

[Mic93] S. Micali. Fair public-key cryptosystems. In Advances in Cryptology Crypto ’92, pages 113-138, Springer-
Verlag, 1993.

[Mic95] Microsoft Corporation. STT Wire Formats and Protocols. Version 0.902, Redmond, WA, October 5, 1995.
http://www.microsoft.com/windows/ie/STT.htm

[Mil86] V.S. Miller. Use of elliptic curves in cryptography. In Advances in Cryptology Crypto ’85, pages 417-426,
Springer-Verlag, 1986.

[MOV90] A. Menezes, T. Okamoto, and S. Vanstone. Reducing elliptic curve logarithms to logarithms in a finite
field. Unpublished manuscript, September 1990.

[MQV95] A. Menezes, M. Qu, and S. Vanstone. Some new key agreement protocols providing implicit authentica-
tion. In Preproceedings of Workshops on Selected Areas in Cryptography, 1995.

[MS95a] P. Metzger and W. Simpson. RFC 1828: IP Authentication using Keyed MD5. Piermont and Daydreamer,
August 1995.

[MS95b] W. Meier and O. Staffelbach. The self-shrinking generator. In Advances in Cryptology Eurocrypt ’94,
pages 205-214, Springer-Verlag, 1995.

[Mur90] S. Murphy. The cryptanalysis of FEAL-4 with 20 chosen plaintexts. Journal of Cryptology, 2(3): 145-154,
1990.

[MY92] M. Matsui and A. Yamagishi. A new method for known plaintext attack of FEAL cipher. In Advances in
Cryptology Eurocrypt ’92, pages 81-91, Springer-Verlag, 1992.

[NIS80] National Institute of Standards and Technology (NIST). FIPS Publication 81: DES Modes of Operation.
December 2, 1980. Originally issued by National Bureau of Standards.

[NIS85] National Institute of Standards and Technology (NIST). FIPS Publication 113: Computer Data Authentica-
tion. 1985.

[NIS92] National Institute of Standards and Technology (NIST). The Digital Signature Standard, proposal and
discussion. Communications of the ACM, 35(7): 36-54, July 1992.

[NIS93a] National Institute of Standards and Technology (NIST). FIPS Publication 180: Secure Hash Standard
(SHS). May 1993.

[NIS93b] National Institute of Standards and Technology (NIST). FIPS Publication 46-2: Data Encryption Stan-

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 213

dard. December 1993.

[NIS94a] National Institute of Standards and Technology (NIST). FIPS Publication 185: Escrowed Encryption
Standard. February 1994.

[NIS94b] National Institute of Standards and Technology (NIST). FIPS Publication 186: Digital Signature Standard
(DSS). May 1994.

[NIS94c] National Institute of Standards and Technology (NIST). Announcement of Weakness in the Secure Hash
Standard. May 1994.

[NK95]K. Nyberg and L.R. Knudsen. Provable security against a differential attack. Journal of Cryptology, 8(1): 27-
37, 1995.

[NMR94] D. Naccache, D. M’raïhi, D. Raphaeli, and S. Vaudenay. Can D.S.A. be improved? Complexity trade-offs
with the Digital Signature Standard. In Advances in Cryptology Eurocrypt ’94, pages 77-85, Springer-Verlag,
1994.

[NS78] R.M. Needham and M.D. Schroeder. Using encryption for authentication in large networks of computers.
Communications of the ACM, 21: 993-999, 1978.

[NS94] M. Naor and A. Shamir. Visual cryptography. In Advances in Cryptology Eurocrypt ’94, pages 1-12,
Springer-Verlag, 1994.

[NSA95] NSA Cross Organization CAPI Team. Security Service API: Cryptographic API Recommendation, 1995.

[Nyb95] K. Nyberg. Linear approximation of block ciphers. In Advances in Cryptology Eurocrypt ’94 (rump
session), pages 43944, Springer-Verlag, 1995.

[OA94] K. Ohta and K. Aoki. Linear cryptanalysis of the fast data encipherment algorithm. In Advances in
Cryptology Crypto ’94, pages 12-16, Springer-Verlag, 1994.

[Oco95] L. O’Connor. A unified markov approach to differential and linear cryptanalysis. In Advances in
Cryptology Asiacrypt ’94, pages 387-397, Springer-Verlag, 1995.

[Odl84] A.M. Odlyzko. Discrete logarithms in finite fields and their cryptographic significance. In Advances in
Cryptology Eurocrypt ’84, pages 224-314, Springer-Verlag, 1984.

[Odl95] A.M. Odlyzko. The future of integer factorization. CryptoBytes, 1(2): 5-12, 1995.

[OG97] Architecture for Public-Key Infrastructure (APKI) Draft 1. The Open Group, May 1997. http://
www.opengroup.org/security/pki/apki_1-0.{ps, pdf}.

[Pol74] J. Pollard. Theorems of factorization and primality testing. Proceedings of Cambridge Philosophical
Society, 76: 521-528, 1974.

[Pol75] J. Pollard. Monte Carlo method for factorization. BIT, 15: 331-334, 1975.

[Pre93] B. Preneel. Analysis and Design of Cryptographic Hash Functions. Ph.D. Thesis, Katholieke University
Leuven, 1993.

[Pre94] B. Preneel. The State of DES. 1994 RSA Laboratories Seminar Series, August 1994.

[PV95] B. Preneel and P.C. van Oorschot. MDx-MAC and Building Fast MACs from Hash Functions. In Advances
in Cryptology Crypto ’95, pages 1-14, Springer-Verlag, 1995.

[QG90] J.J. Quisquater and L. Guillou. How to explain zero-knowledge protocols to your children. In Advances in

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 214

Cryptology Crypto ’89, pages 628-631, Springer-Verlag, 1990.

[Rab79] M.O. Rabin. Digitalized signatures and public-key functions as intractable as factorization. Technical
Report MIT/LCS/TR-212, MIT, 1979.

[RC93] P. Rogaway and D. Coppersmith. A software-optimized encryption algorithm. In Proceedings of 1st
International Workshop on Fast Software Encryption, pages 56-63, Springer-Verlag, 1993.

[RC95] N. Rogier and P. Chauvaud. The compression function of MD2 is not collision free. Presented at Selected
Areas in Cryptography ’95, Ottawa, Canada, May 18-19, 1995.

[RG91] D. Russell and G.T. Gangemi Sr. Computer Security Basics. O’Reilly & Associates, Inc., 1991.

[Riv90] R.L. Rivest. Cryptography. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, volume
A, pages 719-755, MIT Press/Elsevier, Amsterdam, 1990.

[Riv91a] R.L. Rivest. Finding four million random primes. In Advances in Cryptology Crypto ’90, pages 625-626,
Springer-Verlag, 1991.

[Riv91b] R.L. Rivest. The MD4 message digest algorithm. In Advances in Cryptology Crypto ’90, pages 303311,
Springer-Verlag, 1991.

[Riv92a] R.L. Rivest. Response to NIST’s proposal. Communications of the ACM, 35: 4147, July 1992.

[Riv92b] R.L. Rivest. RFC 1320: The MD4 Message-Digest Algorithm. Network Working Group, April 1992.

[Riv92c] R.L. Rivest. RFC 1321: The MD5 Message-Digest Algorithm. Internet Activities Board, April 1992.

 [Riv95] R.L. Rivest. The RC5 encryption algorithm. CryptoBytes, 1(1): 9-11, 1995.

[RK96] Joe Kilian and Phillip Rogaway. How to protect DES against exhaustive key search. In Advances in
Cryptology Crypto ’96 Proceedings, pages 252-267, Springer-Verlag, 1996.

[Rob95a] M.J.B. Robshaw. Block Ciphers. Technical Report TR-601, version 2.0, RSA Laboratories, August 1995.

[Rob95b] M.J.B. Robshaw. Stream Ciphers. Technical Report TR-701, version 2.0, RSA Laboratories, July 1995.

[Rob95c] M.J.B. Robshaw. MD2, MD4, MD5, SHA and Other Hash Functions. Technical Report TR-101, version
4.0, RSA Laboratories, July 1995.

[Rob95d] M.J.B. Robshaw. Security estimates for 512-bit RSA. Technical Note, RSA Laboratories, June 1995.

[Rob96] - MJ.B. Robshaw. On Recent Results for MD2, MD4 and MD5. RSA Laboratories Bulletin No. 4. Novem-
ber 12, 1996.

[Rog96] P. Rogaway. The security of DESX. CryptoBytes, 2(2):8-11, 1996.

[RS95] E. Rescorla and A. Schiffman. The Secure HyperText Transfer Protocol. Internet-Draft, EIT, July 1995.

[RSA78] R.L. Rivest, A. Shamir, and L.M. Adleman. A method for obtaining digital signatures and public-key
cryptosystems. Communications of the ACM, 21(2): 120-126, February 1978.

[RSA95] RSA Laboratories. PKCS #11: Cryptographic Token Interface Standard. Version 1.0, April 1995.

[Rue92] R.A. Rueppel. Stream ciphers. In Contemporary Cryptology The Science of Information Integrity. IEEE
Press, 1992.

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 215

[RY97] M. Robshaw and Y. Yin. Elliptic Curve Cryptosystems. An RSA Laboratories Technical Note. Revised June
27, 1997

[SB93] M.E. Smid and D.K. Branstad. Response to comments on the NIST proposed Digital Signature Standard. In
Advances in Cryptology Crypto ’92, pages 76-87, Springer-Verlag, 1993.

[Sch83] I. Schaumuller-Bichl. Cryptanalysis of the Data Encryption Standard by a method of formal coding.
Cryptography, Proc. Burg Feuerstein 1982, 149: 235-255, Berlin,1983.

[Sch90] C.P. Schnorr. Efficient identification and signatures for smart cards. In Advances in Cryptology Crypto
’89, pages 239-251, Springer-Verlag, 1990.

[Sch91] C.P. Schnorr. Method for identifying subscribers and for generating and verifying electronic signatures in
a data exchange system. U.S. Patent #4,995,082, February 19, 1991.

[Sch93] B. Schneier. Description of a new variable-length key, 64-bit block cipher (Blowfish). In Proceedings of 1st
International Workshop on Fast Software Encryption, pages 191-204, Springer-Verlag, 1993.

[Sch95a] B. Schneier. The Blowfish encryption algorithm: one year later. Dr. Dobb’s Journal, No. 234, pages 137-
138, September 1995.

[Sch96b] B. Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code in C. Wiley, 2nd Edition,
1995.

[Sel98] A. A. Selcuk, New results in linear cryptanalysis of RC5. In Proceedings of 5th International Workshop on
Fast Software Encryption, pages 1-16, Springer-Verlag, 1998.

[SH95] C.P. Schnorr and H.H. Hörner. Attacking the Chor-Rivest cryptosystem by improved lattice reduction. In
Advances in Cryptology Eurocrypt ’95, pages 112, Springer-Verlag, 1995.

[Sha49] C.E. Shannon. Communication Theory of Secrecy Systems. Bell Systems Technical Journal, 28: 656-715,
October 1949.

[Sha79] A. Shamir. How to share a secret. Communications of the ACM, 22: 612-613, 1979.

[Sha84] A. Shamir. A polynomial time algorithm for breaking the basic Merkle-Hellman cryptosystem. IEEE
Transactions on Information Theory, IT-30(5): 699-704, September 1984.

[Sha95] M. Shand. Personal communication. 1995.

[Sho94] P.W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings of the
35th Annual IEEE Symposium on the Foundations of Computer Science, pages 124-134, 1994.

[Sil87] R.D. Silverman. The multiple polynomial quadratic sieve. Mathematics of Computation, 48: 329-339, 1987.

[Sim83] G. J. Simmons, “The Prisoner’s Problem and the Subliminal Channel,” Advances in Cryptology Crypto
‘83 Proceedings, Plenum Press, D. Chaum.

[Sim92] G.J. Simmons, editor. Contemporary Cryptology The Science of Information Integrity. IEEE Press, 1992.

[Sim93a] G. J. Simmons, “Subliminal Communication is Easy Using DSA,” Advances in Cryptology Eurocrypt
‘93 Proceedings, Lecture Notes in Computer Science Vol. 765, T. Helleseth ed., Springer-Verlag, 1993.

[Sim93b] G. J. Simmons, “The Subliminal Signatures in the U.S. Digital Signature Algorithm (DSA),” presented at
the 3rd Symposium on State and Progress of Research in Cryptography, Rome, Italy, February 15-16, 1993.

[SM88] A. Shimizu and S. Miyaguchi. Fast data encipherment algorithm FEAL. In Advances in Cryptology

RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, v4.0 216

Eurocrypt ’87, pages 267-280, Springer-Verlag, 1988.

[SPC95] M. Stadler, J.M. Piveteau, and J. Carmenisch. Fair blind signatures. In Advances in Cryptology
Eurocrypt ’95, pages 209-219, Springer-Verlag, 1995.

[SS95] P. Smith and C. Skinner. A public-key cryptosystem and a digital signature system based on the Lucas
function analogue to discrete logarithms. In Advances in Cryptology Asiacrypt ’94, pages 357-364, Springer-
Verlag, 1995.

[Sta95] W. Stallings. Network and Internetwork Security Principles and Practice. Prentice-Hall, New Jersey, 1995.

[Sti95] D.R. Stinson. Cryptography Theory and Practice. CRC Press, Boca Raton, 1995.

[SV93] M. Shand and J. Vuillemin. Fast implementations of RSA cryptography. In Proceedings of the 11th IEEE
Symposium on Computer Arithmetic, pages 252-259, IEEE Computer Society Press, 1993.

[Ver26] G.S. Vernam. Cipher printing telegraph systems for secret wire and radio telegraphic communications. J.
Amer. Inst. Elec. Eng., vol. 45, pages 109-115, 1926.

[VP92] E. van Heyst and T.P. Pederson. How to make efficient fail-stop signatures. In Advances in Cryptology
Eurocrypt ’92, pages 366-377, Springer-Verlag, 1992.

[VW91] P. van Oorschot and M. Wiener. A known plaintext attack on two-key triple encryption. In Advances in
Cryptology Eurocrypt ’90, pages 318-325, Springer-Verlag, 1991.

[VW94] P. van Oorschot and M. Wiener. Parallel collision search with application to hash functions and discrete
logarithms. In Proceedings of 2nd ACM Conference on Computer and Communication Security, 1994.

[Wie94] M.J. Wiener. Efficient DES key search. Technical Report TR244, School of Computer Science, Carleton
University, Ottawa, Canada, May 1994.

[Wie98] M.J. Wiener. Performance Comparison of Public-Key Cryptosytstems. CryptoBytes, 3(3): 1-5, 1998.

[Xop95] X/Open Company Ltd. Generic Cryptographic Service API (GCS-API). Base Draft 3, April 1995.

[Yuv79] G. Yuval. How to swindle Rabin. Cryptologia, July 1979.

[Yin97] Y. Yin. The RC5 encryption algorithm: two years on. CryptoBytes, 2(3):14-16, 1997.

[ZPS93] Y. Zheng, J. Pieprzyk and J. Seberry. HAVAL - a one-way hashing algorithm with variable length output.
In Advances in Cryptology Auscrypt ’92, pages 83-104, Springer-Verlag, 1993.

[Yuv79] G. Yuval. How to swindle Rabin. Cryptologia, July 1979.

[Yin97] Y. Yin. The RC5 encryption algorithm: two years on. CryptoBytes, 2(3):14-16, 1997.

[ZPS93] Y. Zheng, J. Pieprzyk and J. Seberry. HAVAL - a one-way hashing algorithm with variable length output.
In Advances in Cryptology - Auscrypt ’92, pages 83-104, Springer-Verlag, 1993.

	Table of Contents
	Foreword
	Section 1: Introduction
	Question 1.1. What is the RSA Laboratories' Frequently Asked Questions About Today's Cryptography?
	Question 1.2. What is cryptography?
	Question 1.3. What are some of the more popular techniques in cryptography?
	Question 1.4. How is cryptography applied?
	Question 1.5. What are cryptography standards?
	Question 1.6. What is the role of the United States government in cryptography?
	Question 1.7. Why is cryptography important?
	Section 2: Cryptography
	Section 2.1: Cryptographic Tools
	Question 2.1.1. What is public-key cryptography?
	Question 2.1.2. What is secret-key cryptography?
	Question 2.1.3. What are the advantages and disadvantages of public-key cryptography compared with secret-key cryptography?
	Question 2.1.4. What is a block cipher?
	Question 2.1.5. What is a stream cipher?
	Question 2.1.6. What is a hash function?
	Question 2.1.7. What are Message Authentication Codes (MACs)?
	Question 2.1.8. What are interactive proofs and zero-knowledge proofs?
	Question 2.1.9. What are secret sharing schemes?
	Section 2.2: Simple Applications of Cryptography
	Question 2.2.1. What is privacy?
	Question 2.2.2. What is a digital signature and what is authentication?
	Question 2.2.3. What is a key agreement protocol?
	Question 2.2.4. What is a digital envelope?
	Question 2.2.5. What is identification?
	Section 2.3: Hard Problems
	Question 2.3.1. What is a hard problem?
	Question 2.3.2. What is a one-way function?
	Question 2.3.3. What is the factoring problem?
	Question 2.3.4. What are the best factoring methods in use today?
	Question 2.3.5. What improvements are likely in factoring capability?
	Question 2.3.7. What is the discrete logarithm problem?
	Question 2.3.8. What are the best discrete logarithm methods in use today?
	Question 2.3.9. What are the prospects for a theoretical breakthrough in the discrete log problem?
	Question 2.3.10. What are elliptic curves?
	Question 2.3.11. What are lattice-based cryptosystems?
	Question 2.3.12. What are some other hard problems?
	Section 2.4: Cryptanalysis
	Question 2.4.1. What is cryptanalysis?
	Question 2.4.2. What are some of the basic types of cryptanalytic attack?
	Question 2.4.3. What is exhaustive key search?
	Question 2.4.4. What is the RSA Secret Key Challenge?
	Question 2.4.5. What are the most important attacks on symmetric block ciphers?
	Question 2.4.7. What are the most important attacks on stream ciphers?
	Question 2.4.8. What are the most important attacks on MACs?
	Question 2.4.9. At what point does an attack become practical?
	Section 2.5: Supporting Tools in Cryptography
	Question 2.5.1. What is primality testing?
	Question 2.5.2. What is random number generation?
	Section 3.1: RSA
	Question 3.1.1. What is RSA?
	Section 3: Techniques in Cryptography
	Question 3.1.2. How fast is RSA?
	Question 3.1.3. What would it take to break RSA?
	Question 3.1.4. What are strong primes and are they necessary for RSA?
	Question 3.1.5. How large a key should be used in RSA?
	Question 3.1.6. Could users of RSA run out of distinct primes?
	Question 3.1.7. How is RSA used for privacy in practice?
	Question 3.1.8. How is RSA used for authentication and digital signatures in practice?
	Question 3.1.9. Is RSA currently in use?
	Question 3.1.10. Is RSA an official standard today?
	Question 3.1.11. Is RSA a de facto standard?
	Section 3.2: DES
	Question 3.2.1. What is DES?
	Question 3.2.2. Has DES been broken?
	Question 3.2.3. How does one use DES securely?
	Question 3.2.4. Should one test for weak keys in DES?
	Question 3.2.5. Is DES a group?
	Question 3.2.6. What is triple-DES?
	Question 3.2.7. What is DES-X?
	Question 3.2.8. What are some other DES variants?
	Section 3.3: AES
	Question 3.3.1. What is the AES?
	Question 3.3.2. What are some candidates for the AES?
	Question 3.3.3. What is the schedule for the AES?
	Section 3.4: DSA
	Question 3.4.1. What are DSA and DSS?
	Question 3.4.2. Is DSA secure?
	Section 3.5: Elliptic Curve Cryptosystems
	Question 3.5.1. What are elliptic curve cryptosystems?
	Question 3.5.2. Are elliptic curve cryptosystems secure?
	Question 3.5.3. Are elliptic curve cryptosystems widely used?
	Question 3.5.4. How do elliptic curve cryptosystems compare with other cryptosystems?
	Section 3.6: Other Cryptographic Techniques
	Question 3.6.1. What is Diffie-Hellman?
	Question 3.6.2. What is RC2?
	Question 3.6.3. What is RC4?
	Question 3.6.4. What is RC5?
	Question 3.6.5. What are SHA and SHA-1?
	Question 3.6.6. What are MD2, MD4, and MD5?
	Question 3.6.7. What are some other block ciphers?
	Question 3.6.8. What are some other public-key cryptosystems?
	Question 3.6.9. What are some other signature schemes?
	Question 3.6.10. What are some other stream ciphers?
	Question 3.6.11. What other hash functions are there?
	Question 3.6.12. What are some secret sharing schemes?
	Section 4: Applications of Cryptography
	Section 4.1: Key Management
	Question 4.1.1. What is key management?
	Section 4.1.2: General
	Question 4.1.2.1. What key size should be used?
	Question 4.1.2.2. How does one find random numbers for keys?
	Question 4.1.2.3. What is the life cycle of a key?
	Section 4.1.3: Public Key Issues
	Question 4.1.3.1. What is a PKI?
	Question 4.1.3.2. Who needs a key pair?
	Question 4.1.3.3. How does one get a key pair?
	Question 4.1.3.4. Should a key pair be shared among users?
	Question 4.1.3.5. What happens when a key expires?
	Question 4.1.3.6. What happens if my key is lost?
	Question 4.1.3.7. What happens if my private key is compromised?
	Question 4.1.3.8. How should I store my private key?
	Question 4.1.3.9. How do I find someone else's public key?
	Question 4.1.3.10. What are certificates?
	Question 4.1.3.11. How are certificates used?
	Question 4.1.3.12. Who issues certificates and how?
	Question 4.1.3.13. How do certifying authorities store their private keys?
	Question 4.1.3.14. How are certifying authorities susceptible to attack?
	Question 4.1.3.15. What if a certifying authority's key is lost or compromised?
	Question 4.1.3.16. What are Certificate Revocation Lists (CRLs)?
	Section 4.2: Electronic Commerce
	Question 4.2.1. What is electronic money?
	Question 4.2.2. What is iKP?
	Question 4.2.3. What is SET?
	Question 4.2.4. What is Mondex?
	Question 4.2.5. What are micropayments?
	Section 5: Cryptography in the Real World
	Section 5.1: Security on the Internet
	Question 5.1.1. What is S/MIME?
	Question 5.1.2. What is SSL?
	Question 5.1.3. What is S/WAN?
	Question 5.1.4. What is IPSec?
	Question 5.1.5. What is SSH?
	Question 5.1.6. What is Kerberos?
	Section 5.2: Development Security Products
	Question 5.2.1. What are CAPIs?
	Question 5.2.2. What is the GSS-API?
	Question 5.2.3. What are RSA BSAFE CRYPTO-C and RSA BSAFE CRYPTO-J?
	Question 5.2.4. What is SecurPC?
	Question 5.2.5. What is SecurID?
	Question 5.2.6. What is PGP?
	Section 5.3: Cryptography Standards
	Question 5.3.1. What are ANSI X9 standards?
	Question 5.3.2. What are the ITU-T (CCITT) Standards?
	Question 5.3.3. What is PKCS?
	Question 5.3.4. What are ISO standards?
	Question 5.3.5. What is IEEE P1363?
	Question 5.3.6. What are some other cryptography specifications?
	Section 6: Laws Concerning Cryptography
	Section 6.1. Legal Disclaimer.
	Section 6.2: Government Involvement
	Question 6.2.1. What is NIST?
	Question 6.2.2. What is the NSA?
	Question 6.2.3. What is Capstone?
	Question 6.2.4. What is Clipper?
	Question 6.2.5. What is the Current Status of Clipper?
	Question 6.2.6. What is Fortezza?
	Section 6.3: Patents on Cryptography
	Question 6.3.1. Is RSA patented?
	Question 6.3.2. Is DSA patented?
	Question 6.3.3. Is DES patented?
	Question 6.3.4. Are elliptic curve cryptosystems patented?
	Question 6.3.5. What are the important patents in cryptography?
	Section 6.4: United States Cryptography Export/Import Laws
	Question 6.4.1. Can RSA be exported from the United States?
	Question 6.4.2. Can DES be exported from the United States?
	Question 6.4.3. Why is cryptography export-controlled?
	Question 6.4.4. Are digital signature applications exportable from the United States?
	Section 6.5: Cryptography Export/Import Laws in Other Countries
	Question 6.5.1. Which major countries have import restrictions on cryptography?
	Section 7: Miscellaneous Topics
	Question 7.1. What is probabilistic encryption?
	Question 7.2. What are special signature schemes?
	Question 7.3. What is a blind signature scheme?
	Question 7.4. What is a designated confirmer signature?
	Question 7.5. What is a fail-stop signature scheme?
	Question 7.6. What is a group signature?
	Question 7.7. What is a one-time signature scheme?
	Question 7.8. What is an undeniable signature scheme?
	Question 7.9. What are on-line/off-line signatures?
	Question 7.10. What is OAEP?
	Question 7.11. What is digital timestamping?
	Question 7.12. What is key recovery?
	Question 7.13. What are LEAFs?
	Question 7.14. What is PSS/PSS-R?
	Question 7.15. What are covert channels?
	Question 7.16. What are proactive security techniques?
	Question 7.17. What is quantum computing?
	Question 7.18. What is quantum cryptography?
	Question 7.19. What is DNA computing?
	Question 7.20. What are biometric techniques?
	Question 7.21. What is tamper-resistant hardware?
	Question 7.22. How are hardware devices made tamper-resistant?
	Section 8: Further Reading
	Question 8.1. Where can I learn more about cryptography?
	Question 8.2. Where can I learn more about cryptographic protocols and architecture?
	Question 8.3. Where can I learn more about recent advances in cryptography?
	Question 8.4. Where can I learn more about electronic commerce?
	Question 8.5. Where can I learn more about cryptography standards?
	Question 8.6. Where can I learn more about laws concerning cryptography?
	Glossary
	References

