Introduction to Public-Key Technology

Burt Kaliski RSA Laboratories

1993 RSA Data Security Conference

Outline

Concepts

Secret key, public key, message digest, ...

Algorithms

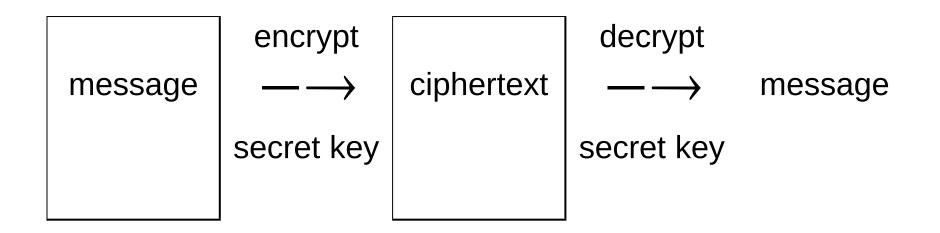
DES, RSA, DSS, ...

RSA Details

Applications

Digital signatures and envelopes

Standards

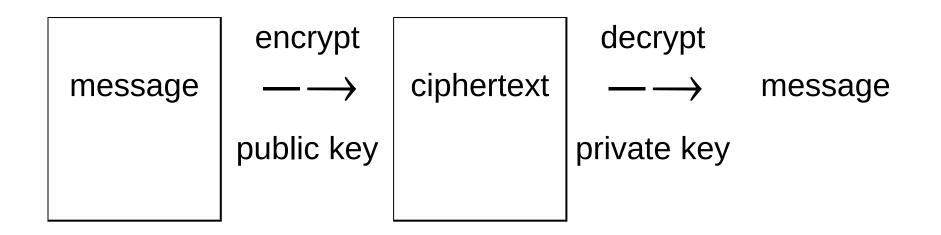

Conclusions

Concepts

Secret-key cryptosystem

Encryption, decryption with same key.

For privacy.


Users agree secretly on key. Examples: DES, RC2, RC4.

Concepts (cont'd)

Public-key cryptosystem

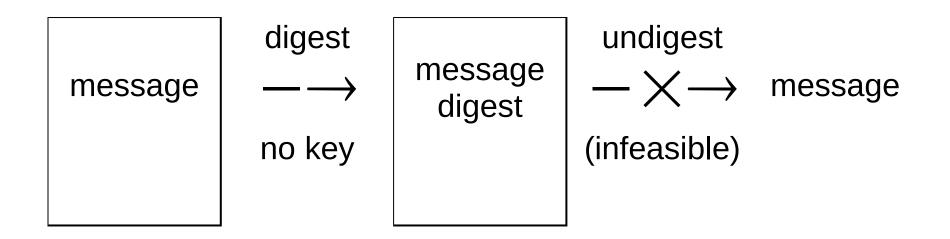
Encryption, decryption with different keys.

For privacy.

Users keep one key private, publish other. Examples: RSA, ElGamal. Often hybrid with secret key.

Concepts (cont'd)

Secret key vs. public key

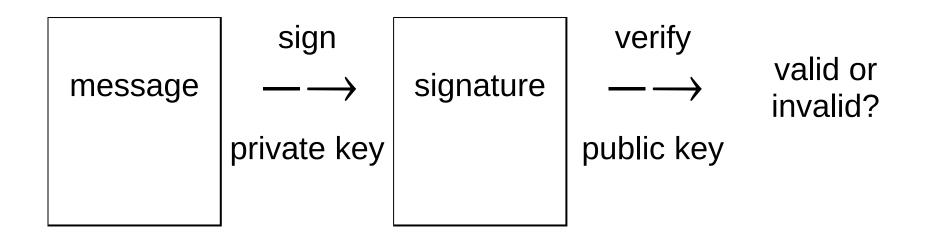

	secret key	public key
copies/ secret	two	one
secrets/user	many	one
scalability	fair	good
speed	good	fair

Hybrid cryptography combines benefits.

Concepts (cont'd)

Message-digest algorithm

For "fingerprinting"—one-way hash.


Typically 128 or 160 bits. Examples: MD5, SHS.

Concepts (cont'd)

Digital signature scheme

Signature with private key, verification with public.

For authentication—of message and signer.

Examples: RSA, DSS. Usually hybrid with message digest.

Algorithms

Data Encryption Standard (DES)

NBS, 1976

Secret-key cryptosystem

56-bit keys

RSA

Rivest-Shamir-Adleman, MIT, 1977

Public-key cryptosystem *and* digital signature scheme

Based on difficulty of factoring large integers

Algorithms (cont'd)

RC2, RC4

Rivest, RSADSI, 1980s

Block & high-speed stream secret-key cryptosystems

Variable-length keys

MD5

Rivest, MIT/RSADSI, 1991 High-speed message-digest algorithm 128-bit digest

Algorithms (cont'd)

Digital Signature Standard (DSS)

NIST, 1991

Digital signature scheme

Based on difficulty of discrete logarithms

Secure Hash Standard (SHS)

NIST, 1992

High-speed, DSS-compatible message-digest algorithm

160-bit digest

RSA Details

Keys

n: public modulus

e: public exponent (typically 3 or $2^{16}+1$)

d: private exponent

p,*q*: private factors of modulus

 $n = p \times q$ $d \times e \mod (p-1)(q-1) = 1$

Public key is (*n*,*e*). Private key is (*n*,*d*).

Introduction to Public-Key Technology§

Encryption with public key

m: message

Ciphertext = *c* where

c = m^e mod n. m may be a key.

Decryption with private key

 $m = cd \mod n$.

Encryption with private key

Signature = *s* where

 $s = md \mod n$.

m may be a message digest.

Decryption with public key

 $m = se \mod n$.

Introduction to Public-Key Technology§

Performance

RSA operations involve *modular multiplication*, which takes time proportional to $(\log n)^2$.

Public-key: 2 to 17 multiplicationsPrivate-key: 1.5 log *n* multiplicationsGiven *p*, *q*, four times faster.

Good public-key speed, fair private-key speed —but good in combination with secret key, message digest.

Performance (cont'd)

Examples with 512-bit keys, $e = 2^{16}+1$, given p, q:

Processor	Public key (sec.)	Private key (sec.)
16 MHz 68020	.32	3.3
12 MHz 80286	.25	2.7
25 MHz 68040	.065	.65
20 MHz 80386	.065	.55

30 MHz DSP16A	.035	.17
20MHz DSP56000	.0081	.044

For 1024 bits, public key \times 4, private key \times 8.

Security

Goal: Given n, find p and q.

Typical approaches take time $L(n) = \exp((1+\varepsilon)).$

L(n) is subexponential in $\log_2 n$:

For any constant c, L(n) grows slower than n^{c} (exponential), faster than $(\log_{2}n)^{c}$ (polynomial).

Thus, hardware speedups help multiplication more than factoring.

Security (cont'd)

Based on *L*(*p*) as instruction count (Rivest, 1991):

log ₂ n	L(n)	MIPS years
512	6.7×10 ¹⁹	2.1×10 ⁶
576	1.7×10 ²¹	5.5×10 ⁷

960	3.7×10 ²⁸	1.2×10 ¹⁵

Introduction to Public-Key Technology§

Slide 28

1024	4.4×10 ²⁹	$1.4 imes 10^{16}$

MIPS year = one million instructions/second for one year = 3.1×10^{13} intructions.

 $2^{56} \approx 7.2 \times 10^{16}$ (not directly comparable).

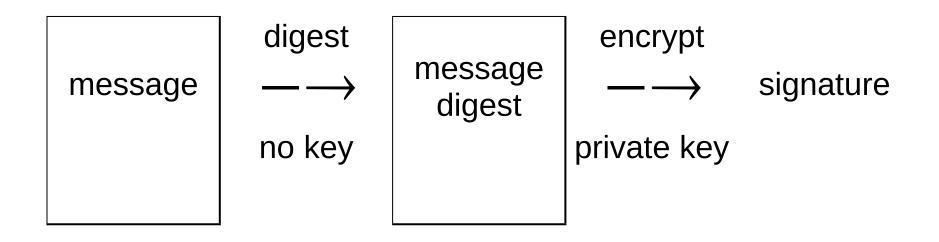
Applications

Hybrid cryptography

Digest + public key = digital signature.

Secret key + public key = digital envelope.

Performance, scalability, no shared secrets.

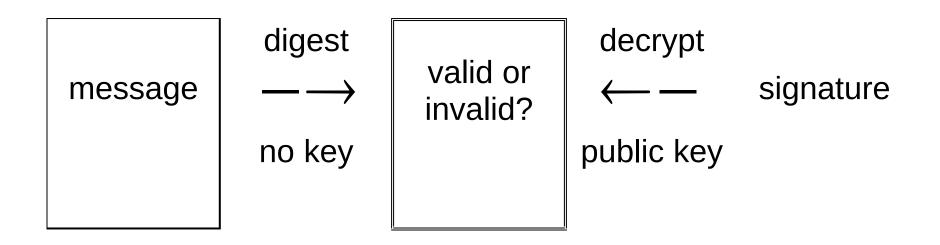

Two tools

Digital signatures: *sign* and *verify*. Digital envelopes: *seal* and *open*.

Applications (cont'd)

Signing a message

Alice digests message, encrypts signature with her private key.

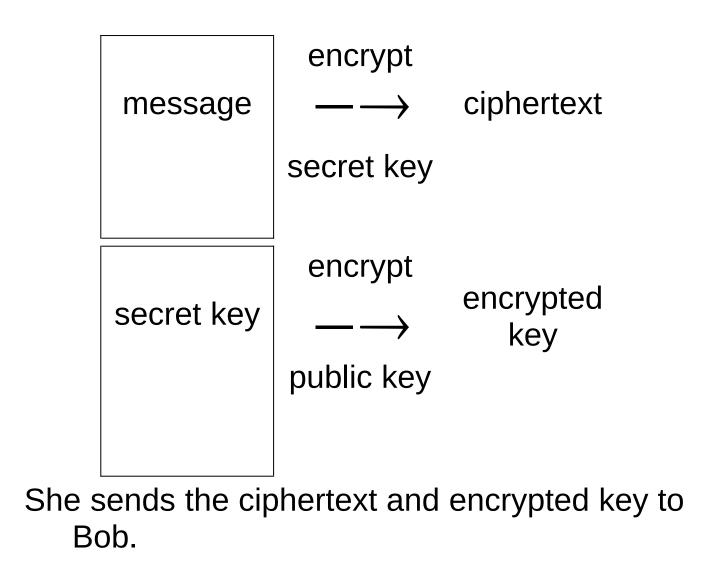


She sends the message and signature to Bob.

Applications (cont'd)

Verifying a signature

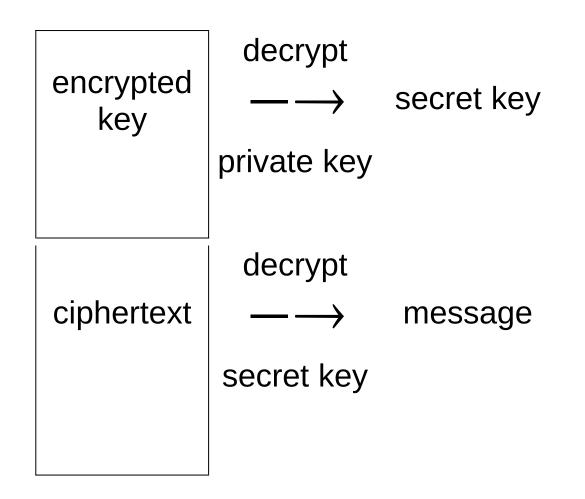
Bob digests message, decrypts signature with Alice's public key, compares results.



The signature is valid if and only if the results are the same.

Applications (cont'd)

Sealing a message


Alice encrypts message with a secret key, encrypts secret key with Bob's public key.

Applications (cont'd)

Opening an envelope

Bob decrypts the encrypted key with his private key, decrypts the ciphertext with the secret key.

Standards

ANSI

X9.30,.31: DSS, RSA

NIST

DES, DSS, SHS

Key management, certification forthcoming

CCITT

X.400, X.500

ISO/IEC

IS 9796: RSA-oriented signature scheme

Standards (cont'd)

Internet

Privacy-Enhanced Mail: RSA, DES, MD5 SNMP: MD5

RSADSI *et al* PKCS (Public-Key Cryptography Standards) *Also:* French Banking, Standards Australia, ...

Conclusions

Basic concepts, various algorithms, many standards

Secret key, public key, message digest

RSA, DES, MD5, DSS, ...

ANSI, NIST, ISO, PKCS, ...

Powerful applications

Digital signatures, digital envelopes Hybrid cryptography combines benefits