NIST's Digital Signature Proposal

A Technical Review

Burt Kaliski
RSA Laboratories

Dennis Branstad NIST

1993 RSA Data Security Conference

Outline

Introduction
Definition
Performance
Security
Trap Doors
Conclusions

Introduction

Digital signatures

Signature, verification with different keys
For authentication-of message and signer

Users keep one key private, publish other.

Introduction (cont'd)

History

1976 Diffie, Hellman introduce digital signatures, suggest discrete logarithms as cryptographic problem.
1984 Elgamal proposes digital signature scheme based on discrete logarithms.
1989 Schnorr describes efficiency improvement for discrete-logarithm-based schemes.
1991 NIST announces DSS, a variant of Elgamal with Schnorr improvements.
1992 NIST revises DSS based on numerous comments.

Definition

System parameters

p: 512-bit prime
[revised up to 1024 bits]
q : 160-bit prime factor of $p-1$
g : proper q th root of $1, \bmod p$
Hash function
h : one-way map from message to 160 -bit hash Keys
y: 512-bit public key
x : 160-bit private key

$$
y=g^{x} \bmod p
$$

Definition (cont'd)

Signature

m : message
Signature $=(r, s)$ where

$$
\begin{gathered}
r=\left(g^{k} \bmod p\right) \bmod q \\
s=k^{-1}(h(m)+x r) \bmod q
\end{gathered}
$$

and k is 160 -bit random integer.

Verification

Signature (r, s) for message m is valid if and only if:

$$
r=\left(g^{h(m) t} y^{r t} \bmod p\right) \bmod q,
$$

where $t=s^{-1} \bmod q$.

Definition (cont'd)

Why it works ...

If

$$
\begin{gathered}
r=\left(g^{k} \bmod p\right) \bmod q, s=k^{-1}(h(m)+x r) \bmod q, \\
y=g^{x} \bmod p, \text { and } t=s^{-1} \bmod q
\end{gathered}
$$

then

$$
\begin{aligned}
g^{h(m) t} y^{r t} \bmod p & =g^{h(m) t}\left[g^{x}\right]^{r t} \bmod p \\
& =g^{[h(m)+x r] t} \bmod p \\
& =g^{[k s] t} \bmod p \\
& =g^{k} \bmod p .
\end{aligned}
$$

So

$$
\left(g^{h(m) t} y^{r t} \bmod p\right) \bmod q=\left(g^{k} \bmod p\right) \bmod q=r .
$$

Definition (cont'd)

Comparison with other systems

Elgamal: no q

$$
\begin{gathered}
r=g^{k} \bmod p \\
s=k^{-1}(h(m)+x r) \bmod p .
\end{gathered}
$$

Schnorr: q, "zero knowledge" ideas

$$
\begin{gathered}
r=h\left(\left\langle g^{k} \bmod p, m\right\rangle\right) ; \\
s=(k+x r) \bmod q .
\end{gathered}
$$

DSS adds q to Elgamal.

Performance

Signature

$$
\begin{gathered}
r=\left(g^{k} \bmod p\right) \bmod q \\
s=k^{-1}(h(m)+x r) \bmod q
\end{gathered}
$$

Naive methods: $238.5 \bmod p$ multiplications
Sliding three-bit windows: 202
With precomputation (Brickell et al, 1991): 52

All but one $\bmod q$ multiplication is off line.
Very good on-line speed, good off-line speed.

Performance (cont'd)

Verification

$$
\begin{gathered}
t=s^{-1} \bmod q \\
r \nsupseteq\left(g^{h(m) t} y^{r t} \bmod p\right) \bmod q
\end{gathered}
$$

Naive methods: $477 \bmod p$ multiplications
Simultaneous two-bit windows: 246
With precomputation: 229

Fair speed.

Performance (cont'd)

Parameter generation

p: 512-bit prime
q : 160-bit prime factor of $p-1$
With trial division by primes ≤ 30, then base- 2
pseudoprimality test: $56 \times 624=34944 \bmod p$ multiplications

Key generation

$$
y=g^{x} \bmod p
$$

With precomputation: $52 \bmod p$ multiplications.

Performance (cont'd)

Comparison with other systems
In 512-bit modular multiplications, with 512-bit keys:

	RSA	Elgamal	DSS
*signing	off-line	n/a	624
	on-line	159	$\mathbf{1}$
	$\mathbf{2}$ to 17	689	$<\mathbf{1}$
verification	n/a	34944	34944
parameter generation	4452	624	52
*key generation			

For DSS, all computations that must be done in private (marked *) are fast-good in smart-card applications.

Security

Goals

Given message m, find a signature.

Or, better yet,

Given public key y, find private key $x=\log _{g} y$.
This is the discrete logarithm problem.

Security (cont'd)

q-based approaches

Example: Baby-step/giant-step method (Shanks)

1. Tabulate $\left(u, g^{u} \sqrt{q} \bmod p\right)$ for all $u, 0 \leq u<\sqrt{q} \cdot \sqrt{q}$ time, \sqrt{q} space.
2. For each instance, find v, where $0 \leq v<\sqrt{q}$, such that $y g^{-v} \bmod p$ is in the table, i.e.,

$$
y g^{-v} \bmod p=g^{u \sqrt{q}} \bmod p .
$$

Then $x=u \sqrt{q}+v . \sqrt{q}$ time.
Other methods find x in \sqrt{q} time, constant space, without a table.

Security (cont'd)

p-based approaches

Example: Index calculus (Adleman et al)
Define $L(p)=\exp ((1+\varepsilon) \sqrt{(\log p)(\log \log p))}$

1. "Tabulate" $\left(s, \log _{g} s\right)$ for all prime $s, 2 \leq s \leq L(p)$. $L(p)$ time, $L(p)$ space.
2. For each instance, find v such that all factors of $y g^{-v} \bmod p$ are in the table, i.e.,

$$
y g^{-v} \bmod p=s_{1} e_{1} \times \cdots \times s_{k}^{e_{k}} .
$$

Then $x=e_{1} \log _{g} s_{1}+\cdots+e_{k} \log _{g} s_{k}+v . L(p)$ time.
Improved methods find v in $\sqrt{L(p)}$ time, $\sqrt{L(p)}$
space, with similar time for table.

Security (cont'd)

p-based approaches (cont'd)
Example: Number field sieve (Gordon, 1991)
Time

$$
\exp \left((2.08+\varepsilon)(\log p)^{1 / 3}(\log \log p)^{2 / 3}\right)
$$

Asymptotically faster than index calculus, not yet practical.

For special p, especially effective.

Note: Attacks based on both p and q are unexplored.

Security (cont'd)

Cost in MIPS-years

Based on $L(p)$ as instruction count (Rivest, 1991):

$\log _{2} \boldsymbol{p}$	$\boldsymbol{L}(\boldsymbol{p})$	MIPS years
512	6.7×10^{19}	2.1×10^{6}
576	1.7×10^{21}	5.5×10^{7}
\ldots		
960	3.7×10^{28}	1.2×10^{15}
1024	4.4×10^{29}	1.4×10^{16}

Security is comparable to RSA's.
$2^{80} \approx 1.2 \times 10^{24}$ (not directly comparable).

Security (cont'd)

Other attacks

Random number recovery: If k is known, then r and x can be computed:

$$
\begin{gathered}
r=\left(g^{k} \bmod p\right) \bmod q ; \\
x=r^{-1}(k s-h(m)) \bmod q .
\end{gathered}
$$

Weak random number generator may reveal x.
Hash function attacks: Finding messages with the same hash should take time 2^{80}. May take less time if h is weak.
Special methods: Forging signatures is not known to require discrete logarithms, but neither are alternative methods known.

Trap Doors

What is a trap door?

Given an algorithm for the forward function, it is computationally infeasible to find a simply computed inverse. Only through knowledge of certain trap-door information ... can one easily find the easily computed inverse. (Diffie \& Hellman, 1976)
Trap door makes a hard inverse easy.
Does DSS have a trap door?
Whoever selects system parameters, may select system trap door.

Trap Doors (cont'd)

System trap door
p of special form (Haber \& Lenstra, 1991)

$$
p=\sum_{i=0}^{d} p_{i m i}
$$

where m is an integer and d, p_{0}, \ldots, p_{d} are small

Number field sieve especially effective:

$$
\exp \left((1.00475+\varepsilon)(\log p)^{2 / 5}(\log \log p)^{3 / 5}\right)
$$

But the smaller the ε, the more obvious the trap door (Gordon, 1992).

Trap Doors (cont'd)

Avoiding system trap doors

1. Choose unique parameters.
2. Trust the one who selects system parameters.

NIST recommends generating p with hash function.

Conclusions

DSS: Digital Signature Standard

Based on discrete logarithms
Variant of ElGamal, Schnorr
Performance
Very good on-line signature speed, fair verification speed
Security
Strong to very strong, by current estimates
Trap doors
Possible, but easily avoided

