NIST's Digital Signature Proposal

A Technical Review

Burt Kaliski RSA Laboratories Dennis Branstad NIST

1993 RSA Data Security Conference

Outline

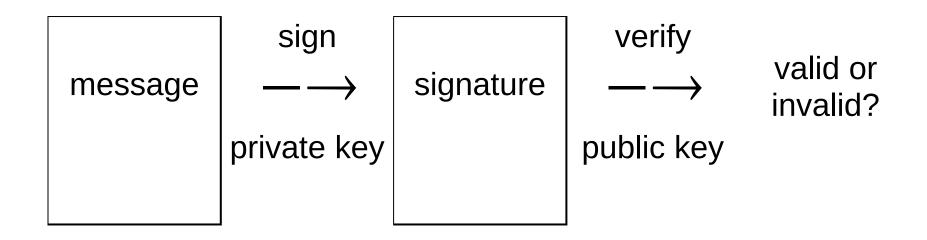
- Introduction
- Definition
- Performance
- Security
- **Trap Doors**
- Conclusions

Introduction

Digital signatures

Signature, verification with different keys

For authentication—of message and signer



Users keep one key private, publish other.

Introduction (cont'd)

History

- 1976 Diffie, Hellman introduce digital signatures, suggest discrete logarithms as cryptographic problem.
- 1984 Elgamal proposes digital signature scheme based on discrete logarithms.
- 1989 Schnorr describes efficiency improvement for discrete-logarithmbased schemes.
- 1991 NIST announces DSS, a variant of Elgamal with Schnorr improvements.

1992 NIST revises DSS based on numerous comments.

Definition

System parameters

p: 512-bit prime [revised up to 1024 bits]

q: 160-bit prime factor of *p*-1

g: proper *q*th root of 1, mod *p*

Hash function

h: one-way map from message to 160-bit hash

Keys

y: 512-bit public key

x: 160-bit private key

$$y = g^x \mod p$$

Definition (cont'd)

Signature

m: message Signature = (*r*,*s*) where $r = (g^k \mod p) \mod q$ $s = k^{-1}(h(m)+xr) \mod q$ and *k* is 160-bit random integer.

Verification

Signature (*r*,*s*) for message *m* is valid if and only if:

where
$$t = s^{-1} \mod q$$
.

Definition (cont'd)

Why it works ... If $r = (g^k \mod p) \mod q$, $s = k^{-1}(h(m)+xr) \mod q$, $y = g^x \mod p$, and $t = s^{-1} \mod q$, then

$$g^{h(m)t} y^{rt} \mod p = g^{h(m)t} [g^x]^{rt} \mod p$$

$$= g^{[h(m)+xr]t} \mod p$$

$$= g^{[ks]t} \mod p$$

$$= g^k \mod p$$
.

So

$$(g^{h(m)t} y^{rt} \mod p) \mod q = (g^k \mod p) \mod q = r.$$

Definition (cont'd)

Comparison with other systems

Elgamal: no q

 $r = g^k \mod p;$ $s = k^{-1}(h(m)+xr) \mod p.$ Schnorr: q, "zero knowledge" ideas $r = h(\langle g^k \mod p, m \rangle);$ $s = (k+xr) \mod q.$ DSS adds q to Elgamal.

Performance

Signature

 $r = (g^k \mod p) \mod q$ $s = k^{-1}(h(m) + xr) \mod q$

Naive methods: 238.5 mod *p* multiplications Sliding three-bit windows: 202 With precomputation (Brickell *et al*, 1991): 52

All but one mod *q* multiplication is *off line*. Very good on-line speed, good off-line speed.

Performance (cont'd)

Verification

 $t = s^{-1} \mod q$ $r = (g^{h(m)t} y^{rt} \mod p) \mod q$

Naive methods: 477 mod *p* multiplications Simultaneous two-bit windows: 246 With precomputation: 229

Fair speed.

Performance (cont'd)

Parameter generation

p: 512-bit prime

q: 160-bit prime factor of *p*-1

With trial division by primes \leq 30, then base-2 pseudoprimality test: 56 \times 624 = 34944 mod *p* multiplications

Key generation

 $y = g^x \mod p$

With precomputation: 52 mod p multiplications.

Performance (cont'd)

Comparison with other systems

In 512-bit modular multiplications, with 512-bit keys:

		RSA	Elgamal	DSS
*signing	off-line	n/a	624	52
	on-line	159	1	< 1
verification		2 to 17	689	229
parameter generation		n/a	34944	34944

*key generation	4452	624	52
-----------------	------	-----	----

For DSS, all computations that must be done in private (marked *) are fast—good in smart-card applications.

Security

Goals

Given message *m*, find a signature.

Or, better yet,

Given public key *y*, find private key $x = \log_g y$. This is the *discrete logarithm problem*.

Security (cont'd)

q-based approaches

Example: Baby-step/giant-step method (Shanks)

- 1. Tabulate $(u, \mod p)$ for all $u, 0 \le u < .$ time, space.
- 2. For each instance, find *v*, where $0 \le v \le r$, such that $yg^{-v} \mod p$ is in the table, i.e.,

 $yg^{-v} \mod p = \mod p$. Then x = u+v. time.

Other methods find *x* in time, constant space, without a table.

Security (cont'd)

p-based approaches

Example: Index calculus (Adleman *et al*) Define $L(p) = \exp((1+\varepsilon))$

- 1. "Tabulate" (s,log_gs) for all prime s, $2 \le s \le L(p)$. L(p) time, L(p) space.
- 2. For each instance, find v such that all factors of yg^{-v} mod p are in the table, i.e.,

$$yg^{-v} \mod p = \times \cdots \times \cdot$$
.
Then $x = e_1 \log_g s_1 + \cdots + e_k \log_g s_k + v$
 $L(p)$ time.

Improved methods find *v* in time, space, with similar time for table.

Security (cont'd)

p-based approaches (cont'd)

Example: Number field sieve (Gordon, 1991) Time

 $exp((2.08+\epsilon)(\log p)^{1/3} (\log \log p)^{2/3})$ Asymptotically faster than index calculus, not yet practical.

For special *p*, especially effective.

Note: Attacks based on both *p* and *q* are unexplored.

Security (cont'd)

Cost in MIPS-years

Based on *L*(*p*) as instruction count (Rivest, 1991):

log ₂ p	L(p)	MIPS years
512	6.7×10 ¹⁹	2.1×10 ⁶
576	1.7×10 ²¹	5.5×10 ⁷

960	3.7×10 ²⁸	1.2×10 ¹⁵

• •

1024	4.4×10 ²⁹	1.4×10 ¹⁶

Security is comparable to RSA's.

 $2^{80} \approx 1.2 \times 10^{24}$ (not directly comparable).

Security (cont'd)

Other attacks

Random number recovery: If k is known, then r and x can be computed:

 $r = (g^k \mod p) \mod q;$

 $x=r^{1}(ks-h(m)) \bmod q.$

Weak random number generator may reveal *x*.

Hash function attacks: Finding messages with the same hash should take time 2^{80} . May take less time if *h* is weak.

Special methods: Forging signatures is not known to require discrete logarithms, but neither are alternative methods known.

Trap Doors

What is a trap door?

Given an algorithm for the forward function, it is computationally infeasible to find a simply computed inverse. Only through knowledge of certain *trap-door information* ... can one easily find the easily computed inverse. (Diffie & Hellman, 1976)

Trap door makes a hard inverse easy.

Does DSS have a trap door?

Whoever selects system parameters, may select system trap door.

Trap Doors (cont'd)

System trap door

p of special form (Haber & Lenstra, 1991)

p =

where *m* is an integer and *d*, p_0 , $\frac{1}{4}$, p_d are small

Number field sieve especially effective: $exp((1.00475+\epsilon)(\log p)^{2/5} (\log \log p)^{3/5})$ But the smaller the ϵ , the more obvious the trap door (Gordon, 1992).

Trap Doors (cont'd)

Avoiding system trap doors

- 1. Choose unique parameters.
- 2. Trust the one who selects system parameters.
- NIST recommends generating *p* with hash function.

Conclusions

DSS: Digital Signature Standard

Based on discrete logarithms

Variant of ElGamal, Schnorr

Performance

Very good on-line signature speed, fair verification speed

Security

Strong to very strong, by current estimates

Trap doors

Possible, but easily avoided