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Introduction
 Digital signatures

Signature, verification with different keys
For authentication—of message and signer
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message
sign

¾®
private key

signature
verify

¾®
public key

valid or
invalid?

Users keep one key private, publish other.
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Introduction (cont'd)
History

1976 Diffie, Hellman introduce digital 
signatures, suggest discrete logarithms 
as cryptographic problem.

1984 Elgamal proposes digital signature 
scheme based on discrete logarithms.

1989 Schnorr describes efficiency 
improvement for discrete-logarithm-
based schemes.

1991 NIST announces DSS, a variant of 
Elgamal with Schnorr improvements.
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1992 NIST revises DSS based on numerous 
comments.
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Definition
System parameters

p: 512-bit prime [revised up to 1024 bits]
q: 160-bit prime factor of p-1
g: proper qth root of 1, mod p

Hash function
h: one-way map from message to 160-bit hash

Keys
y: 512-bit public key
x: 160-bit private key
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y = gx mod p
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Definition (cont'd)
Signature

m: message
Signature = (r,s) where

r = (gk mod p) mod q

s = k-1(h(m)+xr) mod q
and k is 160-bit random integer.

Verification
Signature (r,s) for message m is valid if and 

only if:

r = (gh(m)t yrt mod p) mod q,
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where t = s-1 mod q.
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Definition (cont'd)
Why it works ...

If

r = (gk mod p) mod q,  s = k-1(h(m)+xr) mod q,
y = gx mod p,  and t = s-1 mod q,

then
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gh(m)t yrt mod p = gh(m)t [gx]rt mod p

= g[h(m)+xr]t mod p

= g[ks]t mod p

= gk mod p.

So

(gh(m)t yrt mod p) mod q = (gk mod p) mod q =
r.
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Definition (cont'd)
Comparison with other systems

Elgamal: no q

r = gk mod p;

s = k-1(h(m)+xr) mod p.
Schnorr: q, "zero knowledge" ideas

r = h(ágk mod p,mñ);
s = (k+xr) mod q.

DSS adds q to Elgamal.
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Performance
Signature

r = (gk mod p) mod q

s = k-1(h(m)+xr) mod q

Naive methods: 238.5 mod p multiplications
Sliding three-bit windows: 202
With precomputation (Brickell et al, 1991): 52

All but one mod q multiplication is off line.
Very good on-line speed, good off-line speed.
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Performance (cont'd)
Verification

t = s-1 mod q

r = (gh(m)t yrt mod p) mod q

Naive methods: 477 mod p multiplications
Simultaneous two-bit windows: 246
With precomputation: 229

Fair speed.
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Performance (cont'd)
Parameter generation

p: 512-bit prime
q: 160-bit prime factor of p-1
With trial division by primes £ 30, then base-2 

pseudoprimality test: 56 ´ 624 = 34944 mod p 
multiplications

Key generation
y = gx mod p

With precomputation: 52 mod p multiplications.
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Performance (cont'd)
Comparison with other systems

In 512-bit modular multiplications, with 512-bit 
keys:
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RSA Elgamal DSS

*signing off-line n/a 624 52

on-line 159 1 < 1

verification 2 to 17 689 229

parameter 
generation

n/a 34944 34944
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*key generation 4452 624 52

For DSS, all computations that must be done 
in private (marked *) are fast—good in 
smart-card applications.
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Security
Goals

Given message m, find a signature.

Or, better yet,

Given public key y, find private key x = loggy.

This is the discrete logarithm problem.
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Security (cont'd)
q-based approaches

Example: Baby-step/giant-step method 
(Shanks)

1. Tabulate (u, mod p) for all u, 0 £ u < .  
time,  space.

2. For each instance, find v, where 0 £ v < , 
such that yg-v mod p is in the table, i.e.,

yg-v mod p =  mod p.
Then x = u+v.  time.
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Other methods find x in  time, constant space, 
without a table.

NIST's Digital Signature Proposal§ Slide 22



Security (cont'd)
p-based approaches

Example: Index calculus (Adleman et al)
Define L(p) = exp((1+e))
1. "Tabulate" (s,loggs) for all prime s, 2 £ s £ 

L(p). L(p) time, L(p) space.
2. For each instance, find v such that all 

factors of yg-v mod p are in the table, i.e.,

yg-v mod p =  ´ ××× ´  .
Then x = e1loggs1 + ××× + ekloggsk + v.

L(p) time.
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Improved methods find v in  time,  space, with 
similar time for table.
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Security (cont'd)
p-based approaches (cont'd)

Example: Number field sieve (Gordon, 1991)
Time

exp((2.08+e)(log p)1/3 (log log p)2/3)
Asymptotically faster than index calculus, not

yet practical.

For special p, especially effective.
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Note: Attacks based on both p and q are 
unexplored.
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Security (cont'd)
Cost in MIPS-years

Based on L(p) as instruction count (Rivest, 
1991):
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log2p L(p) MIPS years

512 6.7´1019 2.1´106

576 1.7´1021 5.5´107

×××

960 3.7´1028 1.2´1015
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1024 4.4´1029 1.4´1016

Security is comparable to RSA's.

280 » 1.2´1024 (not directly comparable).
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Security (cont'd)
Other attacks

Random number recovery: If k is known, then r
and x can be computed:

r = (gk mod p) mod q;

x = r-1(ks-h(m)) mod q.
Weak random number generator may

reveal x.
Hash function attacks: Finding messages with 

the same hash should take time 280. May 
take less time if h is weak.
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Special methods: Forging signatures is not 
known to require discrete logarithms, but 
neither are alternative methods known.
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Trap Doors
What is a trap door?

Given an algorithm for the forward function, it is 
computationally infeasible to find a simply computed 
inverse. Only through knowledge of certain trap-door
information ... can one easily find the easily 
computed inverse. (Diffie & Hellman, 1976)

Trap door makes a hard inverse easy.

Does DSS have a trap door?
Whoever selects system parameters, may 

select system trap door.
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Trap Doors (cont'd)
System trap door

p of special form (Haber & Lenstra, 1991)
p = 

where m is an integer and d, p0, ¼, pd are
small

Number field sieve especially effective:

exp((1.00475+e)(log p)2/5 (log log p)3/5)
But the smaller the e, the more obvious the

trap door (Gordon, 1992).

NIST's Digital Signature Proposal§ Slide 33



Trap Doors (cont'd)
Avoiding system trap doors

1. Choose unique parameters.
2. Trust the one who selects system 

parameters.
NIST recommends generating p with hash 

function.
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Conclusions
DSS: Digital Signature Standard

Based on discrete logarithms
Variant of ElGamal, Schnorr

Performance
Very good on-line signature speed, fair 

verification speed

Security
Strong to very strong, by current estimates

Trap doors
Possible, but easily avoided
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