
NIST's Digital Signature
Proposal
A Technical Review

Burt Kaliski Dennis Branstad
RSA Laboratories NIST

1993 RSA Data Security Conference

Copyright Ó 1993 RSA Laboratories. All rights reserved. Slide 1
901-511002-100-000-000

Outline
Introduction
Definition
Performance
Security
Trap Doors
Conclusions

NIST's Digital Signature Proposal§ Slide 2

Introduction
 Digital signatures

Signature, verification with different keys
For authentication—of message and signer

NIST's Digital Signature Proposal§ Slide 3

message
sign

¾®
private key

signature
verify

¾®
public key

valid or
invalid?

Users keep one key private, publish other.

NIST's Digital Signature Proposal§ Slide 4

Introduction (cont'd)
History

1976 Diffie, Hellman introduce digital
signatures, suggest discrete logarithms
as cryptographic problem.

1984 Elgamal proposes digital signature
scheme based on discrete logarithms.

1989 Schnorr describes efficiency
improvement for discrete-logarithm-
based schemes.

1991 NIST announces DSS, a variant of
Elgamal with Schnorr improvements.

NIST's Digital Signature Proposal§ Slide 5

1992 NIST revises DSS based on numerous
comments.

NIST's Digital Signature Proposal§ Slide 6

Definition
System parameters

p: 512-bit prime [revised up to 1024 bits]
q: 160-bit prime factor of p-1
g: proper qth root of 1, mod p

Hash function
h: one-way map from message to 160-bit hash

Keys
y: 512-bit public key
x: 160-bit private key

NIST's Digital Signature Proposal§ Slide 7

y = gx mod p

NIST's Digital Signature Proposal§ Slide 8

Definition (cont'd)
Signature

m: message
Signature = (r,s) where

r = (gk mod p) mod q

s = k-1(h(m)+xr) mod q
and k is 160-bit random integer.

Verification
Signature (r,s) for message m is valid if and

only if:

r = (gh(m)t yrt mod p) mod q,
NIST's Digital Signature Proposal§ Slide 9

where t = s-1 mod q.

NIST's Digital Signature Proposal§ Slide 10

Definition (cont'd)
Why it works ...

If

r = (gk mod p) mod q, s = k-1(h(m)+xr) mod q,
y = gx mod p, and t = s-1 mod q,

then

NIST's Digital Signature Proposal§ Slide 11

gh(m)t yrt mod p = gh(m)t [gx]rt mod p

= g[h(m)+xr]t mod p

= g[ks]t mod p

= gk mod p.

So

(gh(m)t yrt mod p) mod q = (gk mod p) mod q =
r.

NIST's Digital Signature Proposal§ Slide 12

Definition (cont'd)
Comparison with other systems

Elgamal: no q

r = gk mod p;

s = k-1(h(m)+xr) mod p.
Schnorr: q, "zero knowledge" ideas

r = h(ágk mod p,mñ);
s = (k+xr) mod q.

DSS adds q to Elgamal.

NIST's Digital Signature Proposal§ Slide 13

Performance
Signature

r = (gk mod p) mod q

s = k-1(h(m)+xr) mod q

Naive methods: 238.5 mod p multiplications
Sliding three-bit windows: 202
With precomputation (Brickell et al, 1991): 52

All but one mod q multiplication is off line.
Very good on-line speed, good off-line speed.

NIST's Digital Signature Proposal§ Slide 14

Performance (cont'd)
Verification

t = s-1 mod q

r = (gh(m)t yrt mod p) mod q

Naive methods: 477 mod p multiplications
Simultaneous two-bit windows: 246
With precomputation: 229

Fair speed.

NIST's Digital Signature Proposal§ Slide 15

Performance (cont'd)
Parameter generation

p: 512-bit prime
q: 160-bit prime factor of p-1
With trial division by primes £ 30, then base-2

pseudoprimality test: 56 ´ 624 = 34944 mod p
multiplications

Key generation
y = gx mod p

With precomputation: 52 mod p multiplications.

NIST's Digital Signature Proposal§ Slide 16

Performance (cont'd)
Comparison with other systems

In 512-bit modular multiplications, with 512-bit
keys:

NIST's Digital Signature Proposal§ Slide 17

RSA Elgamal DSS

*signing off-line n/a 624 52

on-line 159 1 < 1

verification 2 to 17 689 229

parameter
generation

n/a 34944 34944

NIST's Digital Signature Proposal§ Slide 18

*key generation 4452 624 52

For DSS, all computations that must be done
in private (marked *) are fast—good in
smart-card applications.

NIST's Digital Signature Proposal§ Slide 19

Security
Goals

Given message m, find a signature.

Or, better yet,

Given public key y, find private key x = loggy.

This is the discrete logarithm problem.

NIST's Digital Signature Proposal§ Slide 20

Security (cont'd)
q-based approaches

Example: Baby-step/giant-step method
(Shanks)

1. Tabulate (u, mod p) for all u, 0 £ u < .
time, space.

2. For each instance, find v, where 0 £ v < ,
such that yg-v mod p is in the table, i.e.,

yg-v mod p = mod p.
Then x = u+v. time.

NIST's Digital Signature Proposal§ Slide 21

Other methods find x in time, constant space,
without a table.

NIST's Digital Signature Proposal§ Slide 22

Security (cont'd)
p-based approaches

Example: Index calculus (Adleman et al)
Define L(p) = exp((1+e))
1. "Tabulate" (s,loggs) for all prime s, 2 £ s £

L(p). L(p) time, L(p) space.
2. For each instance, find v such that all

factors of yg-v mod p are in the table, i.e.,

yg-v mod p = ´ ××× ´ .
Then x = e1loggs1 + ××× + ekloggsk + v.

L(p) time.

NIST's Digital Signature Proposal§ Slide 23

Improved methods find v in time, space, with
similar time for table.

NIST's Digital Signature Proposal§ Slide 24

Security (cont'd)
p-based approaches (cont'd)

Example: Number field sieve (Gordon, 1991)
Time

exp((2.08+e)(log p)1/3 (log log p)2/3)
Asymptotically faster than index calculus, not

yet practical.

For special p, especially effective.

NIST's Digital Signature Proposal§ Slide 25

Note: Attacks based on both p and q are
unexplored.

NIST's Digital Signature Proposal§ Slide 26

Security (cont'd)
Cost in MIPS-years

Based on L(p) as instruction count (Rivest,
1991):

NIST's Digital Signature Proposal§ Slide 27

log2p L(p) MIPS years

512 6.7´1019 2.1´106

576 1.7´1021 5.5´107

×××

960 3.7´1028 1.2´1015

NIST's Digital Signature Proposal§ Slide 28

1024 4.4´1029 1.4´1016

Security is comparable to RSA's.

280 » 1.2´1024 (not directly comparable).

NIST's Digital Signature Proposal§ Slide 29

Security (cont'd)
Other attacks

Random number recovery: If k is known, then r
and x can be computed:

r = (gk mod p) mod q;

x = r-1(ks-h(m)) mod q.
Weak random number generator may

reveal x.
Hash function attacks: Finding messages with

the same hash should take time 280. May
take less time if h is weak.

NIST's Digital Signature Proposal§ Slide 30

Special methods: Forging signatures is not
known to require discrete logarithms, but
neither are alternative methods known.

NIST's Digital Signature Proposal§ Slide 31

Trap Doors
What is a trap door?

Given an algorithm for the forward function, it is
computationally infeasible to find a simply computed
inverse. Only through knowledge of certain trap-door
information ... can one easily find the easily
computed inverse. (Diffie & Hellman, 1976)

Trap door makes a hard inverse easy.

Does DSS have a trap door?
Whoever selects system parameters, may

select system trap door.

NIST's Digital Signature Proposal§ Slide 32

Trap Doors (cont'd)
System trap door

p of special form (Haber & Lenstra, 1991)
p =

where m is an integer and d, p0, ¼, pd are
small

Number field sieve especially effective:

exp((1.00475+e)(log p)2/5 (log log p)3/5)
But the smaller the e, the more obvious the

trap door (Gordon, 1992).

NIST's Digital Signature Proposal§ Slide 33

Trap Doors (cont'd)
Avoiding system trap doors

1. Choose unique parameters.
2. Trust the one who selects system

parameters.
NIST recommends generating p with hash

function.

NIST's Digital Signature Proposal§ Slide 34

Conclusions
DSS: Digital Signature Standard

Based on discrete logarithms
Variant of ElGamal, Schnorr

Performance
Very good on-line signature speed, fair

verification speed

Security
Strong to very strong, by current estimates

Trap doors
Possible, but easily avoided

NIST's Digital Signature Proposal§ Slide 35

NIST's Digital Signature Proposal§ Slide 36

	NIST's Digital Signature Proposal
	A Technical Review
	Burt Kaliski Dennis Branstad RSA Laboratories NIST

	Outline
	Introduction
	Definition
	Performance
	Security
	Trap Doors
	Conclusions

	Introduction
	Digital signatures
	Signature, verification with different keys
	For authentication—of message and signer
	message
	sign
	¾®
	private key
	signature
	verify
	¾®
	public key
	valid or invalid?
	Users keep one key private, publish other.

	Introduction (cont'd)
	History
	1976 Diffie, Hellman introduce digital signatures, suggest discrete logarithms as cryptographic problem.
	1984 Elgamal proposes digital signature scheme based on discrete logarithms.
	1989 Schnorr describes efficiency improvement for discrete-logarithm-based schemes.
	1991 NIST announces DSS, a variant of Elgamal with Schnorr improvements.
	1992 NIST revises DSS based on numerous comments.

	Definition
	System parameters
	p: 512-bit prime [revised up to 1024 bits]
	q: 160-bit prime factor of p-1
	g: proper qth root of 1, mod p

	Hash function
	h: one-way map from message to 160-bit hash

	Keys
	y: 512-bit public key
	x: 160-bit private key
	y = gx mod p

	Definition (cont'd)
	Signature
	m: message
	Signature = (r,s) where
	r = (gk mod p) mod q
	s = k-1(h(m)+xr) mod q
	and k is 160-bit random integer.

	Verification
	Signature (r,s) for message m is valid if and only if:
	r = (gh(m)t yrt mod p) mod q,
	where t = s-1 mod q.

	Definition (cont'd)
	Why it works ...
	If
	r = (gk mod p) mod q, s = k-1(h(m)+xr) mod q, y = gx mod p, and t = s-1 mod q,
	then
	gh(m)t yrt mod p
	=
	gh(m)t [gx]rt mod p
	=
	g[h(m)+xr]t mod p
	=
	g[ks]t mod p
	=
	gk mod p.
	So
	(gh(m)t yrt mod p) mod q = (gk mod p) mod q = r.

	Definition (cont'd)
	Comparison with other systems
	Elgamal: no q
	r = gk mod p;
	s = k-1(h(m)+xr) mod p.
	Schnorr: q, "zero knowledge" ideas
	r = h(ágk mod p,mñ);
	s = (k+xr) mod q.
	DSS adds q to Elgamal.

	Performance
	Signature
	r = (gk mod p) mod q
	s = k-1(h(m)+xr) mod q
	Naive methods: 238.5 mod p multiplications
	Sliding three-bit windows: 202
	With precomputation (Brickell et al, 1991): 52
	All but one mod q multiplication is off line.
	Very good on-line speed, good off-line speed.

	Performance (cont'd)
	Verification
	t = s-1 mod q
	r = (gh(m)t yrt mod p) mod q
	Naive methods: 477 mod p multiplications
	Simultaneous two-bit windows: 246
	With precomputation: 229
	Fair speed.

	Performance (cont'd)
	Parameter generation
	p: 512-bit prime
	q: 160-bit prime factor of p-1
	With trial division by primes £ 30, then base-2 pseudoprimality test: 56 ´ 624 = 34944 mod p multiplications

	Key generation
	y = gx mod p
	With precomputation: 52 mod p multiplications.

	Performance (cont'd)
	Comparison with other systems
	In 512-bit modular multiplications, with 512-bit keys:
	RSA
	Elgamal
	DSS
	*signing off-line
	n/a
	624
	52
	on-line
	159
	1
	< 1
	verification
	2 to 17
	689
	229
	parameter generation
	n/a
	34944
	34944
	*key generation
	4452
	624
	52
	For DSS, all computations that must be done in private (marked *) are fast—good in smart-card applications.

	Security
	Goals
	Given message m, find a signature.
	Or, better yet,
	Given public key y, find private key x = loggy.
	This is the discrete logarithm problem.

	Security (cont'd)
	q-based approaches
	Example: Baby-step/giant-step method (Shanks)
	1. Tabulate (u, mod p) for all u, 0 £ u < . time, space.
	2. For each instance, find v, where 0 £ v < , such that yg-v mod p is in the table, i.e.,
	yg-v mod p = mod p.
	Then x = u+v. time.
	Other methods find x in time, constant space, without a table.

	Security (cont'd)
	p-based approaches
	Example: Index calculus (Adleman et al)
	Define L(p) = exp((1+e))
	1. "Tabulate" (s,loggs) for all prime s, 2 £ s £ L(p). L(p) time, L(p) space.
	2. For each instance, find v such that all factors of yg-v mod p are in the table, i.e.,
	yg-v mod p = ´ ××× ´ .
	Then x = e1loggs1 + ××× + ekloggsk + v. L(p) time.
	Improved methods find v in time, space, with similar time for table.

	Security (cont'd)
	p-based approaches (cont'd)
	Example: Number field sieve (Gordon, 1991)
	Time
	exp((2.08+e)(log p)1/3 (log log p)2/3)
	Asymptotically faster than index calculus, not yet practical.
	For special p, especially effective.
	Note: Attacks based on both p and q are unexplored.

	Security (cont'd)
	Cost in MIPS-years
	Based on L(p) as instruction count (Rivest, 1991):
	log2p
	L(p)
	MIPS years
	512
	6.7´1019
	2.1´106
	576
	1.7´1021
	5.5´107
	×××
	960
	3.7´1028
	1.2´1015
	1024
	4.4´1029
	1.4´1016
	Security is comparable to RSA's.
	280 » 1.2´1024 (not directly comparable).

	Security (cont'd)
	Other attacks
	Random number recovery: If k is known, then r and x can be computed:
	r = (gk mod p) mod q;
	x = r-1(ks-h(m)) mod q.
	Weak random number generator may reveal x.
	Hash function attacks: Finding messages with the same hash should take time 280. May take less time if h is weak.
	Special methods: Forging signatures is not known to require discrete logarithms, but neither are alternative methods known.

	Trap Doors
	What is a trap door?
	Given an algorithm for the forward function, it is computationally infeasible to find a simply computed inverse. Only through knowledge of certain trap-door information ... can one easily find the easily computed inverse. (Diffie & Hellman, 1976)
	Trap door makes a hard inverse easy.

	Does DSS have a trap door?
	Whoever selects system parameters, may select system trap door.

	Trap Doors (cont'd)
	System trap door
	p of special form (Haber & Lenstra, 1991)
	p =
	where m is an integer and d, p0, ¼, pd are small
	Number field sieve especially effective:
	exp((1.00475+e)(log p)2/5 (log log p)3/5)
	But the smaller the e, the more obvious the trap door (Gordon, 1992).

	Trap Doors (cont'd)
	Avoiding system trap doors
	1. Choose unique parameters.
	2. Trust the one who selects system parameters.
	NIST recommends generating p with hash function.

	Conclusions
	DSS: Digital Signature Standard
	Based on discrete logarithms
	Variant of ElGamal, Schnorr

	Performance
	Very good on-line signature speed, fair verification speed

	Security
	Strong to very strong, by current estimates

	Trap doors
	Possible, but easily avoided

