
MS-Test Statements and Intrinsic Functions

ALLOCATE statement Allocates a memory buffer and assigns its beginning address to a
pointer variable

ASC function Converts the numeric ASCII code for the first character in a
specified string

CHDIR statement Changes the current directory (on the current drive, or the
specified drive) to a specified directory

CHDRIVE statement Changes the default drive to the drive indicated by the first
character in the specified string

CHR$ function Converts an ASCII code into a one-character string
CLEARLIST statement Clears the specified file list
CLIPBOARD statement Puts a text string on the clipboard
CLIPBOARD$ function Returns the text from the clipboard
CLOSE statement Closes one or more files
CONST statement Assigns a value to a constant identifier
CURDIR$ function Returns the current directory name and the specified drive for the

task
DATETIME$ function Returns the system date and time in the format MM/DD/YY

HH:MM:SS AM
DEALLOCATE statement Frees the memory pointed to by a pointer variable and assigns

NULL to the pointer variable
DECLARE statement Declares a user-defined subroutine or function, or a subroutine or

function residing in a dynamic-link library (DLL)
'$DEFINE metacommand Defines a symbol
DIM statement Declares variables or arrays of variables, and associates them with

data types
ECHO statement Echoes printed text to a debugging terminal (auxiliary port)
END statement The END statement stops execution of the Test Driver script and

starts "ON END" processing (if previously defined)
ENVIRON$ function Returns the contents of the PATH environment variable
EOF function Gives the end-of-file status of a file
ERF variable A global string containing the filename of the file in which the last

trappable run-time error occurred
ERL variable A global integer containing the line number of the line of code that

caused the last trappable run-time error
ERR variable A global integer containing the error code of the last trappable run-

time error that occurred
ERROR$ function Returns the error message for an error code or the last trappable

run-time error that occured
EXISTS function Checks to see if a file exists
EXIT statement Terminates execution of the current code block identified by the

given keyword
FOR... NEXT statement Repeats a block of code a specified number of times, or once for

each file that exists in the file list
GLOBAL statement Declares global variables or arrays
GOSUB statement Jumps to the section of code specified by label
GOTO statement Unconditionally jump to the first statement following the specified

label

IF...THEN statement Conditionally executes a block of code if the given condition is true
'$INCLUDE metacommand Inserts the contents of a specified file in a script
INSTR function Looks for a specified string within another string
HEX$ function Returns a string representing the hexadecimal value of a decimal

integer
KILL statement Deletes the file(s) matching the specified file specification
LCASE$ function Returns the contents of a specified string with all uppercase letters

converted to lowercase
LEN function Returns the length of a string
LTRIM$ function Returns a copy of the specified string with the leading blanks

removed
MID$ function Returns a substring of specified length from a given string
MKDIR statement Creates a new directory
NAME statement Renames files or directories
NULL function Generates a null pointer or value
ON END statement Adds one or more subroutines to a list of subroutines to be called

automatically as the script ends
ON ERROR statement Lets a script trap and recover from run-time errors
OPEN statement Opens a file
PAUSE statement Displays a string and waits for the user to acknowledge
PRINT statement Displays information in the viewport, or sends information to the

specified file
RANDOMIZE statement Seeds the random number generator
REALLOCATE statement Resizes the memory buffer associated with a pointer variable
REM statement Lets you include a comment in a script
RESUME statement Resumes program execution when an error-trap routine is finished

handling the error
RETURN statement Returns to the statement following the most recent GOSUB

statement
RMDIR statement Removes an existing directory
RND function Generates a pseudo-random number between 0 and 32,767
RTRIM$ function Returns a copy of the specified string with the trailing blanks

removed
RUN function Runs a program asynchronously
RUN statement Runs a program asynchronously or synchronously
SELECT CASE statement Executes one of several statement blocks depending on the value

of the given expression
SETFILE statement Adds or deletes filenames from the file list
SHELL statement Passes the specified string to the MS-DOS command processor for

execution
SLEEP statement Suspends execution of the script for a specified number of

seconds or indefinitely
SPLITPATH statement Splits the specified path name into its respective parts, copying

each part to the variables provided
STATIC FUNCTION statement Begins the definition block of a user-defined function
STATIC SUB statement Begins the definition of a user-defined suboutine
STOP statement Terminates execution of a script
STRING$ function Returns a string of given size whose characters all have the given

ASCII character code
STR$ function Returns the ASCII string representation of an integer expression
TIMER function Gives the number of seconds (in hundredths) since midnight
TRAP statement Defines a block of code to be executed when the specified event

(which appears in a DLL) occurs
UCASE$ function Returns the contents of the specified string with all lowercase

letters converted to uppercase
'$UNDEF metacommand Removes a symbol from the symbol definition table that has been

previously defined with the
VARPTR function Generates a far pointer to a variable
VAL function Returns the integer value of a specified string
VIEWPORT statement Displays, hides, or clears the viewport window
WHILE...WEND statement Executes a series of statements in a loop, as long as a given

condition is TRUE

ALLOCATE

Description The ALLOCATE statement allocates a memory buffer and assigns its beginning address
to pointer-var. ALLOCATE attempts to allocate a memory buffer of num-items * size
bytes, where size is the size in bytes of the data type pointer-var points to. For example, if
pointer-var is a POINTER TO INTEGER, (2 * num-items) bytes of memory will be
allocated.

Syntax ALLOCATE pointer-var, num-items

See Also CONST, DEALLOCATE, DIM, GLOBAL, REALLOCATE

ASC

Description The ASC function generates the numeric ASCII code for the first character in a string.

Syntax Ret% = ASC (strexp$)

Returns A numeric value that is the ASCII code for the first character in the argument.

See Also CHR$

CHDIR

Description The CHDIR statement changes the current directory (on the current drive, or the drive
specified) to that specified in strexp$.

Syntax CHDIR strexp$

Comments
The CHDIR statement affects only the current task. Other applications, scripts, and tasks are not
affected; each maintains its own current directory information.
You can change the current directory on the current drive or another drive. For example,

CHDIR "\MP"

changes the current directory on the current drive to \MP, but

CHDIR "D:\MYDIR"

changes the current directory on the drive D: to \MYDIR, regardless of your current drive.

See Also CHDRIVE, CURDIR$, MKDIR, RMDIR

CHDRIVE

Description The CHDRIVE statement changes the current drive to that specified by the first character
in strexp$.

Syntax CHDRIVE strexp$

See Also CHDIR, CURDIR$, MKDIR, RMDIR

CHR$

Description The CHR$ function converts an ASCII code into a one-character string.

Syntax A$ = CHR$ (asciicode%)

Returns A one-character string whose ASCII value is equal to asciicode%.

See Also ASC

CLEARLIST

Description The CLEARLIST statement clears the file list created by the SETFILE statement.

Syntax CLEARLIST

See Also SETFILE

CLIPBOARD

Description The CLIPBOARD statement transfers text information to the clipboard.

Syntax CLIPBOARD [StringExpression$ | CLEAR]

Returns If you pass a StringExpression$, the text is copied to the clipboard. The CLEAR option
clears all information from the clipboard text, bitmaps, and so on.

Comments
The CLIPBOARD statement only supports the transfer of text to the clipboard.

See Also CLIPBOARD$

CLIPBOARD$

Description The CLIPBOARD$ function transfers text from the clipboard.

Syntax X$ = CLIPBOARD$

Returns Returns the text contents of the clipboard.

Comments
The CLIPBOARD$ function only supports the transfer of text from the clipboard. You cannot use this
function to retrieve bitmaps or other types of information supported by the clipboard. If the clipboard
contains both text and non-text data (such as a description and a bitmap), the CLIPBOARD$ function
only returns the text. If the clipboard contains non-text data only, the CLIPBOARD$ function returns an
empty string ("").

See Also CLIPBOARD

CLOSE

Description The CLOSE statement closes one or more files opened with the OPEN statement.

Syntax CLOSE [[#]filenumber%][,[#]filenumber%]...]

Comments
A CLOSE statement with no arguments closes all open files. A CLOSE statement with filenumber%
between 1 and 5 closes the file associated with filenumber% previously opened with the OPEN
statement. A value for filenumber% greater than 5 will result in a "Bad File Number" run-time error. The
CLOSE statement does not cause a run-time error if the file is not open. A CLOSE statement with a list
closes only those files listed: for example, CLOSE 1, 3, 5 leaves files 2 and 4 open.

See Also EOF, KILL, OPEN, PRINT [#]

CONST

Description The CONST statement assigns the value constdef to the identifier constantname. This
constant can be used anywhere in the script except inside quoted literal strings or
comments.

Syntax CONST constantname = constdef

Comments
Constants defined with the CONST statement can be defined as any valid numeric or string expression
(but not variables or array values), as long as their use does not cause a syntax error. For example,
these statements are invalid:

CONST a$ = "constant " + a%
CONST b$ = a$ + " constant b"

However, numeric constants can be defined with numeric expressions, as follows:

CONST x = 1
CONST y = x + 1

Numeric constants can be valid numeric expressions, and can use other previously defined numeric
constants in their constdef. String constants can only use a single string literal in their constdef. You
cannot concatenate or use previously defined string constants to define string constants.
Constants are global in scope. They can be referenced from anywhere in a script. Constants cannot be
defined within control structures. For example, CONST is not allowed within a SUB or FUNCTION,
within a WHILE or FOR loop, nor within an IF or SELECT CASE construct.

See Also DIM, GLOBAL

CURDIR$

Description The CURDIR$ function returns the current directory path for the drive specified or the
current drive.

Syntax A$ = CURDIR$ [driveparm]

Returns CURDIR$ always returns a fully qualified path name consisting of the drive letter, colon,
and full path to the directory. Without a parameter, it returns the current working directory.
With an argument, it returns the current directory on the drive indicated by the first
character of the argument. For example:

A$ = CURDIR$("D")
A$ = CURDIR$("Delta")
A$ = CURDIR$("dos")

all return the current directory on the D drive.

A$ = CURDIR$

returns the current directory on the current drive because the function has no argument.

Comments
You cannot use CURDIR$ in a UAE trap.

See Also CHDIR, CHDRIVE, MKDIR, RMDIR

DATETIME$

Description The DATETIME$ function gives the system date and time.

Syntax A$ = DATETIME$

Returns The system date and time in the format MM/DD/YY HH:MM:SS.

DEALLOCATE

Description The DEALLOCATE statement frees the memory associated with pointer-var and assigns
NULL to pointer-var. Attempting to use DEALLOCATE with a NULL pointer or a pointer
to static program variables generates a run-time error.

Syntax DEALLOCATE pointer-var

Comments
DEALLOCATE can only be used to free memory which has been allocated with the ALLOCATE
statement. Attempting to use DEALLOCATE with a pointer that points to static program variables
generates a run-time error.

See Also ALLOCATE, REALLOCATE

DECLARE

Description The DECLARE statement declares a user-defined SUB or FUNCTION, or a SUB or
FUNCTION residing in a dynamic-link library (DLL). Those routines declared from a DLL
must be written using the Pascal calling convention. The LIB keyword indicates that the
routine is in a DLL. The library name after the LIB keyword indicates the name of the
library in which the routine resides. It must be a quoted literal string; string expressions or
string variables are not allowed.

Syntax DECLARE SUB subname [(parmlist)]
DECLARE FUNCTION fnname [(parmlist)] AS typeid
DECLARE SUB subname LIB "libname.ext" [(parmlist)]
DECLARE FUNCTION fnname LIB "libname.ext" [(parmlist)] AS typeid

Comments
All SUBs and FUNCTIONs must be declared prior to use in a script, including those defined in the
script. Parameters are passed by reference to user-defined subroutines and functions and DLL
subroutines and functions, except for LONG, INTEGER, and POINTER parameters, which are passed
by value to routines residing in DLLs.
When passing a variable length string to a DLL routine, the string is first locked in place in the local
data segment, and a far pointer to the first byte of the string is passed. The string is automatically null-
terminated. If the DLL modifies the string, it should not result in a longer string than originally passed. If
the string is shortened, the string variable is changed to reflect the new length and value upon return
from the DLL.
If you use function names with type identifiers, you can leave off the AS typeid clause.
When declaring a DLL function, the parmlist for the SUB or FUNCTION has the following syntax:

(param [AS [type| ANY]], ...)

The AS ANY clause is only legal in parameter lists for DLL functions and subroutines. When declaring
a user-defined function or subroutine, you cannot declare a parameter AS ANY. Declaring a variable
AS ANY turns off parameter type checking for that parameter.

See Also FUNCTION, SUB

'$DEFINE

Description The '$DEFINE metacommand adds a symbol to the symbol definition table.

Syntax [REM | ']$DEFINE symbol

Comments
Symbols can consist of up to 31 alphanumeric characters. Symbol names are case insensitive. The
'$DEFINE metacommand can be used in association with the following conditional statements:
'$IFDEF, '$IFNDEF, '$ELSEIFDEF, '$ELSEIFNDEF, '$ELSE, '$ENDIF, '$UNDEF.

Note that $DEFINE is a metacommand tha this processed during the scanning step of compilation. It is
therefore not a statement.

See Also '$UNDEF

DIM

Description The DIM statement declares variables or arrays of variables of the associated data types.
If a subscript is given, an array of variables of the given type is allocated. All arrays are
zero-based, so a subscript of 10 allocates space for 11 elements, 0 to 10.

Syntax DIM variable [(intconst)] AS typeid [, ...]
DIM variable [(intconst)] AS POINTER TO [POINTER TO]... typeid [, ...]

Comments
The DIM statement gives the declared variables a scope id such that they are local to the current
module of code. If used outside any SUB, FUNCTION, or TRAP, the variable is local to the main-line
code of the script. If used inside a SUB, FUNCTION, or TRAP, the variable is local to that routine only.
To declare variables that are global to the entire script, use the GLOBAL statement.
The typeid can represent any type, including user-defined types. The intrinsic data types in Test Driver
are INTEGER, LONG, STRING, and STRING * n (for fixed-length strings). The DIM statement cannot
be used to dimension a variable that has already been used in the current scope (SUB, FUNCTION,
TRAP, or main-line code). A "Duplicate Definition" parse-time error occurs if the variable has already
been defined.
Note that you do not need to use the DIM statement for simple variables of intrinsic data types (except
fixed-length strings). If you use a variable without declaring it with a DIM or GLOBAL statement, it
defaults to a LONG variable. If the variable has one of the Basic type identifier characters appended to
it, then the variable automatically defaults to that type. Type identifier characters are % for INTEGER, $
for STRING, and & for LONG.
The AS POINTER TO form of DIM dimensions a pointer to a variable of type typeid. Pointers are
strictly type checked.

See Also ALLOCATE, CONST, GLOBAL

ECHO

Description The ECHO statement echoes printed text to the debug terminal. ECHO ON causes all
text printed to the viewport to be echoed to the debug terminal. ECHO OFF disables
echoing to the debug terminal.

Syntax ECHO [ON | OFF]

Comments
Anything printed with ECHO on goes to the Test Driver viewport and to the device connected the AUX
port of the computer.

See Also PRINT, VIEWPORT

END

Description If no keyword is given, the END statement stops execution of the Test Driver script and
begins calling subroutines identified with the ON END statement. When all subroutines
identified with the ON END statement have been processed, the END statement
terminates the current block of the type specified by the given keyword. If END is
executed in a subroutine being called as part of the ON END list, then ON END
processing is terminated.

Syntax END [IF | SELECT | SUB | FUNCTION | TRAP]

See Also ON END, STOP

ENVIRON$

Description The ENVIRON$ function returns the contents of the specified environment variable.

Syntax A$ = ENVIRON$ (environmentstring$)

Returns An operating system environment string. The argument environmentstring$ is a string
constant that contains the name of an environment variable. The case of
environmentstring$ is important and must be uppercase in almost all circumstances. For
example:

A$ = ENVIRON$("PATH")

returns the PATH environment variable, but

A$ = ENVIRON$("path")

returns an empty string.

One exception is the WINDIR environment variable under Windows. This environment variable is
always lowercase.
If you specify an environment variable that cannot be found in the environment-string table, ENVIRON$
returns an empty string. Otherwise, ENVIRON$ returns the text assigned to the environment variable;
that is, the text following the equal sign in the environment-string table for that environment variable.

EOF

Description The EOF function gives the end-of-file (EOF) status of a file.

Syntax Ret% = EOF (filenum%)

Returns An integer value indicating the EOF status of the file associated with filenum%. The
return value is TRUE if the file is currently at end-of-file.

Comments
The file must have been previously opened with the OPEN statement.

See Also CLOSE, KILL, LINE INPUT, OPEN, PRINT

ERF

Description The ERF variable is a global string containing the filename of the script file in which the
last trappable run-time error occurred.

Syntax StringVar$ = ERF
ERF = StringVar$

Comments
The ERF variable contains the filename of the last trappable error that occurred. The combination of
ERL, ERF and ERR can be used in logging information about run-time errors in a Test Driver script.
When a script starts, ERF contains a null string. Like any other variable, it can be assigned a value.

See Also ERL, ERR, ERROR, ERROR$, ON ERROR

ERL

Description The ERL variable is a global integer containing the line number of the line of code that
caused the last trappable run-time error that occurred.

Syntax IntVar = ERL
ERL = Integer-expression

Comments
The ERL global variable will always contain the line number where the last trappable run-time error
occurred. The line number is relative to the beginning of the file in which the line of code exists. This
means that if a script contains '$INCLUDE files, and an error occurs on a line in the include file, the line
number in ERL will be relative to the beginning of the include file, not the main script.
When a script starts, ERL contains 0. Like any other variable, it can be assigned a value.

See Also ERF, ERR, ERROR, ERROR$, ON ERROR

ERR

Description The ERR variable is a global integer containing the error code of the last trappable run-
time error that occurred.

Syntax IntVar = ERR
ERR = Integer-expression

Comments
The ERR global variable will always contain the error code of the last trappable run-time error that
occurred. Like any other variable, it can be assigned a value.
When a script starts, ERR will be 0.

See Also ERF, ERL, ERROR, ERROR$, ON ERROR

ERROR

Description The ERROR statement generates a runtime error.

Syntax ERROR (errorcode%)

Comments
This statement simulates the occurrence of a specific Test Basic or user-defined error.
The errorcode% parameter is an error code. If the value is the same as an error code already used by
Test Basic, the ERROR statement simulates the occurrence of that error. To define your own error
code, use a value that is greater than any used by the standard Test Basic error codes (start at 32,767
and work down). If the ERROR statment specifies an error message that is not used by Test Basic, the
message User-defined error is displayed.

See Also ERF, ERL, ERR, ERROR$, ON ERROR

ERROR$

Description The ERROR$ function returns the error message for an error code.

Syntax A$ = ERROR$[(errorcode%)]

Returns The error message that corresponds to a given error code.

Comments
The errorcode% parameter refers to a run-time error code. It must be a positive integer value. If
errorcode% is omitted, ERROR$ returns the error message of the most recent run-time error.

See Also ERF, ERL, ERR, ERROR, ON ERROR

EXISTS

Description The EXISTS function checks to see if a file exists.

Syntax EXISTS (filespec$)

Returns An integer value indicating whether or not a file matching the specification given in
filespec$ exists. The return value is TRUE if such a file exists, and FALSE if not. The
filespec$ parameter must be a valid MS-DOS filename. You can include the MS-DOS
wildcards * and ? as part of the filename. (Wildcards behave exactly like the wildcards in
the MS-DOS DIR command, except that EXISTS does not detect subdirectories directly.)

You can use EXISTS to check if a subdirectory exists by checking for the always-present logical file,
NUL:

IF EXISTS ("C:\TEST\NUL") THEN
 ...

If the NUL file exists in this location, then the subdirectory TEST also exists, and the EXISTS function
returns TRUE. If the NUL file doesn't exist, then the subdirectory TEST does not exist, and the EXISTS
function returns FALSE.

See Also KILL, OPEN, SETFILE

EXIT

Description The EXIT statement terminates execution of the current block identified by the given
keyword and goes to the next executable statement.

Syntax EXIT [FOR | SUB | FUNCTION | TRAP | WHILE]

FOR... NEXT

Description The FOR... NEXT statement repeats a block of code a specified number of times.

Syntax FOR var = intexp1 TO intexp2 STEP intexp3
NEXT [var[, var]...]
or:
FOR strvar$ IN FILELIST [SORTED BY [NAME|EXTENSION]]
NEXT [strvar$[, strvar$]...]

Comments
The FOR statement can keep track of the index value in an INTEGER or LONG variable to count the
number of repetitions (integer syntax), or it can repeat a block of code once for each file that exists in a
file list (string syntax).
In integer syntax, the index variable var starts at intexp1 and is incremented by intexp3 each time
through the loop until it is equal to intexp2. All code between the FOR statement and the corresponding
NEXT is executed until the index variable exceeds intexp2 if intexp3 > 0 or goes below intexp2 if
intexp3 < 0. In string syntax, the string counter variable strvar$ (which must be of type STRING; fixed-
length strings are not allowed) is set to the first file in the file list, and the code up until the
corresponding NEXT statement is executed. Then strvar$ is set to the next file, and this is continued
until all files in the file list have been processed. The file list can optionally be sorted prior to cycling
through it. If the SORTED keyword is provided, the list can be sorted either by NAME or by
EXTENSION, depending on the supplied keyword.
Both versions of the FOR statement can be terminated with the EXIT FOR or the NEXT statement. The
index variable after the NEXT is optional---the NEXT is automatically matched up with the most recent
FOR construct. The NEXT statement is used to terminate blocks opened by both versions of the FOR
statement. To ensure proper stack cleanup, you should not GOTO out of a FOR statement.
When using the file list version of the FOR statement, the files are assigned to the string counter
variable in fully qualified path name form. If you are only interested in the filename or extension, or any
other section of the filename, use the SPLITPATH statement to break the filename up into its
respective parts.
The STEP clause specifies how much var is incremented on each iteration. The intexp3 parameter can
also be a negative number, allowing you to decrement the loop counter, as follows:

FOR i = 10 TO 1 STEP -1

See Also END, EXIT, SETFILE, WHILE... WEND

STATIC FUNCTION

Description The STATIC FUNCTION statement begins the definition block of a user-defined function.

Syntax STATIC FUNCTION fnname [(parmlist)] AS typeid [function code block]
END FUNCTION

Comments
If you use function names with type identifiers, you can leave off the AS typeid clause. Parameters
declared in the parmlist declaration section can be defined using type identifier characters or the AS
clause. The return type must only be of intrinsic, rather than user-defined, types. The return type also
cannot be a fixed-length string.

See Also DECLARE, SUB

FREEFILE

Description The FREEFILE function returns the next available file number.

Syntax fnum = FREEFILE

Returns This function returns a long value with the next unused file number, or -1 if there are no
available file numbers.

Comments
Use FREEFILE when you need to supply a file number and you want to ensure that the file number is
not already in use. FREEFILE returns the lowest available file number. You can have a maximum of 5
file numbers.

See Also OPEN

GLOBAL

Description The GLOBAL statement declares global variables or arrays. This means they can be
accessed inside subs, functions, and TRAPs anywhere in the script.

Syntax GLOBAL variable AS typeid [, ...]

Comments
The GLOBAL statement must appear before any subs, functions, or TRAPs that use the declared
variables. The declaration rules are the same as those for the DIM statement. Unlike the DIM
statement, GLOBAL should not appear inside a SUB, function, or TRAP (this causes a parse-
time error). See the DIM statement for more details on declaring variables.

See Also ALLOCATE, CONST, DIM

GOSUB

Description The GOSUB statement jumps to the code section specified by label. When the code
section executes the corresponding RETURN statement, execution resumes at the
statement following the GOSUB statement.

Syntax GOSUB label

Comments
Labels are identifiers followed by a colon, and must appear as the only item on a line. No line numbers
are supported. GOSUB statements can be nested up to 16 levels deep.
You cannot GOSUB to a label outside the current code module, or the current sub, function, or TRAP.
Likewise, you cannot use GOSUB to jump into a sub, function, or TRAP from the mainline code.

See Also STATIC function, GOTO, ON ERROR, STATIC SUB

GOTO

Description The GOTO statement unconditionally jumps to the first statement following the specified
label.

Syntax GOTO label

Comments
Labels are identifiers followed by a colon, and must appear as the only item on a line. No line numbers
are supported.
You can not GOTO to a label outside the current code module, or the current subroutine, function, or
TRAP. Likewise, you cannot use GOTO to jump into a subroutine, function, or TRAP from the
mainline code.

See Also function, GOSUB, ON ERROR, subroutine

IF...THEN

Description The IF...THEN statement executes a block of code if the given condition is TRUE, or
skips to the next ELSEIF block (if one is present), the ELSE block (if one is present), or
the corresponding ENDIF statement.

Syntax IF condition THEN
 [statementblock]
[[ELSEIF condition THEN
 [statementblock]]...]
[ELSE
 [statementblock]]
END IF

Comments
A TRUE condition is indicated by a nonzero numeric expression. Relational operations such as > and =
are numeric operations that return 0 for FALSE and -1 for TRUE.
Single-line IF...THEN constructs are not allowed.
An IF...THEN construct may have any number of ELSEIF blocks. A single ELSE block is allowed, and,
if present, must follow all ELSEIF blocks. The first block in the IF...THEN construct that evaluates to
TRUE is executed, and then control is passed to the ENDIF statement.

INCLUDE metacommand

Description The '$INCLUDE metacommand inserts the contents of the specified files at the location
of the '$INCLUDE metacommand.

Syntax '$INCLUDE filename

Comments
'$INCLUDE is a metacommand that is processed during the scanning step of compilation. It is
therefore not a statement. The filename can be any valid MS-DOS pathname.

INSTR

Description The INSTR function looks for a specified string within another string.

Syntax INSTR ([start%,] strexp1$, strexp2$)

Returns The character position of the first occurrence of strexp2$ in strexp1$, optionally starting at
character location start%.

Comments
INSTR returns zero (0) for any of the following conditions:

· strexp2$ is not found in strexp1$
· strexp2$ is longer than strexp1$
· strexp1$ is an empty string.
· start% is greater than the length of strexp1$

If strexp2$ is a null string, INSTR returns 1. If a negative value for start% is given, then INSTR
generates a trappable run-time error.

See Also MID$, LCASE$, LEN, LTRIM$, RTRIM$, UCASE$

HEX$

Description The HEX$ function returns a string representing the hexadecimal value of a decimal
integer.

Returns A string that represents the hexadecimal value of the decimal argument.

Comments
HEX$ returns a string of up to eight hexadecimal characters. You can directly represent hexadecimal
numbers by preceding numbers in the proper range with &H. For example, &H10 represents decimal
16 in hexadecimal notation.

See Also STR$

KILL

Description The KILL statement deletes the file(s) matching the file specification, strexp$. Wildcard
specifications are allowed in strexp$. (Wildcards behave exactly like the wildcards in the
MS-DOS DIR command, except that KILL does not delete subdirectories.)

Syntax KILL strexp$

Comments
If you delete files with the KILL statement while performing file list operations with the SETFILE
statement, use the CLEARLIST statement to immediately clear the file list and then recreate the list
with the SETFILE statement.

See Also EXISTS, NAME, OPEN

LCASE$

Description The LCASE$ function returns a copy of a string with the uppercase characters converted
to lowercase.

Syntax A$ = LCASE$ (strexp$)

Returns The contents of strexp$ with all uppercase letters converted to lowercase.

See Also INSTR, LEN, LTRIM$, MID$, RTRIM$, UCASE$

LEN

Description The LEN function gives the length of a string.

Syntax LEN (strexp$)

Returns The length of strexp$.

Comments
None.

See Also INSTR, LCASE$, LTRIM$, MID$, RTRIM$, UCASE$

LINE INPUT

Description The LINE INPUT statement reads a line from the text file associated with intexp% into
strvar$.

Syntax LINE INPUT #intexp%, strvar$

Comments
The file specified must have been previously opened with the OPEN statement for LINE INPUT mode.
Also, strvar$ must be of type STRING; fixed-length strings are not valid for use with the LINE INPUT
statement.

See Also CLOSE, EOF, KILL, OPEN, PRINT

LTRIM$

Description The LTRIM$ function returns a copy of the string with the leading blanks removed.

Syntax A$ = LTRIM$ (strexp$)

Returns The contents of strexp$ with all leading blanks removed.

See Also INSTR, LCASE$, LEN, MID$, RTRIM$, UCASE$

MID$

Description The MID$ function creates a substring of specified length from a given string.

Syntax A$ = MID$ (strexp$, intexp1% [, intexp2%])

Returns A substring of strexp$ starting at character location intexp1% that is intexp2% characters
long, or up to the end of strexp$ if intexp2% is longer than the length of the string, or is
not given.

See Also INSTR, LCASE$, LEN, LTRIM$, RTRIM$, UCASE$

MKDIR

Description The MKDIR statement creates a new directory.

Syntax MKDIR pathname$

Comments
The argument pathname$ is a string expression that specifies the name of the new directory to create.
The pathname$ must have fewer than 128 characters.
The pathname$ uses this syntax:

[drive:]directory[...]

The argument drive is an optional drive specification; the argument directory is a directory name.
The MKDIR statement works like the MS-DOS MKDIR command. However, you cannot shorten
MKDIR to MD, as you can with MS-DOS.
You can use MKDIR to create a directory with a name that contains an embedded space. Although you
may be able to access that directory with some applications, you will be unable to remove it with
standard operating system commands. You can remove such a directory using the RMDIR statement
from within Test Driver.

See Also CHDIR, CHDRIVE, CURDIR$, RMDIR

NAME

Description The NAME statement renames files or directories.

Syntax NAME oldname$ AS newname$

Returns Any error caused by the NAME statement generates a FILE I/O ERROR.

Comments
You cannot rename files or directories across drives.

See Also KILL and EXISTS

NULL

Description The NULL function generates a null pointer.

Syntax NULL

Returns Returns a null pointer that can be assigned to any pointer variable.

Comments
The NULL function returns a null pointer that can be assigned to any pointer data type or passed to
subroutines or functions that take pointers or user-defined structures as parameters.
The NULL function is the only way to pass a null pointer to a variable when passing parameters to
functions in DLLs such as the Windows API. The following table shows the results of passing NULL to
a function or subroutine in the MSTEST DLLs.

Type Result Passed to FUNCTION or SUB

String ($) NULL pointer
Integer (%) Integer Value (0)
Long (&) Long value (0)
Type Struct NULL pointer
POINTER NULL pointer
ANY NULL pointer

Passing NULL to a user-defined subroutine or function results in a type mismatch for all types except
POINTER, which passes a NULL pointer.

See Also VARPTR

ON END

Description The ON END statement adds one or more subroutines to a list of subroutines to be called
when the END statement is executed.

Syntax ON END subname [[, subname]...]

Comments
The ON END statement defines a list of subroutines to be called when a script reaches the last
executable statement or when a script encounters an END statement. The SUB name must be a user-
defined SUB subprogram. It cannot be a user-defined function or a function or SUB in a DLL. A
subroutine used with ON END must be declared before the ON END statement and cannot have any
parameters. This means that the following are not legal:

DECLARE SUB sub1(x%) ' Cannot use a SUB with parameters.
DECLARE function func1() AS INTEGER ' Cannot use a function.
DECLARE SUB DLLSub LIB "MYLIB.DLL" () ' Cannot use a routine in a DLL.
ON END SUB1, funct1, DLLSub, SUB2
DECLARE SUB sub2 ' Routines must be declared before the ON END statement.
' The rest of the script goes here.

The following is legal:

DECLARE SUB sub1
DECLARE SUB sub2
ON END SUB1, SUB2
' The rest of the script goes here.

If more than one ON END statement is used in a script, the SUBs are added to the list of SUBs to be
called in the reverse order that the ON END statements occur, in "last in, first out" order.
The following causes a call to SUB2, then SUB3, then SUB1 when the script ends. If a SUB is used
with ON END more than once, then it is called more than once.

ON END SUB1
ON END SUB3
ON END SUB2

The following series of ON END statements would cause a call to SUB1, then SUB3 then SUB1 again
as the script ends

ON END SUB1
ON END SUB3
ON END SUB1

There are two exceptions in which some or all of the SUBs in the ON END list may be called. A script
ends after the the last executable line of code is executed or when the END statement is encountered.
However, the STOP statement causes a script to end without calling any of the SUBs in the ON END
list.
All SUBs in the ON END list are called in the reverse order that they are added to the list when the
program ends. However, if one of the SUBs in the list contains either an END statement or a STOP
statement, the rest of the SUBs in the list will not be called. The script will stop executing at that point
in that SUB.
You can place up to eight SUBs on the ON END list. Once added, they cannot be removed
programmatically.

Example

'===
declare sub sub1
declare sub sub2
declare sub sub3
declare sub sub4

on end sub4, sub3, sub1, sub2, sub1

viewport clear

'stop
' Un-comment this to prevent any ON END subroutines
' from executing.

end

sub sub1
 print "in sub1"
end sub

sub sub2
 print "in sub2"
end sub

sub sub3
 print "in sub3"
 STOP
 END
end sub

sub sub4
 print "in sub4 -- This should never print."
end sub

'===

This example would cause the following to be printed to the viewport.

in sub1
in sub2
in sub1
in sub3

See Also END, STOP

ON ERROR

Description The ON ERROR statement lets a script trap and recover from run-time errors. If no ON
ERROR statement is used, any run-time error that occurs is fatal; that is, Test Driver
generates an error message, and stops execution of the script.

Syntax ON ERROR GOTO [linelabel | 0]

Comments
Error trapping is global only. This means you cannot use the ON ERROR GOTO statement within a
procedure. In addition, the linelabel where the error trap starts may not be inside of a procedure.
However, when errors occur within a procedure, they will be trapped by the global error handler. When
the error handler executes a RESUME statement, execution resumes within the procedure where the
error occurred.
ON ERROR GOTO 0 is a special case of the ON ERROR statement which disables error trapping in
the script. After executing this statement, any run-time errors that occur will stop execution of the script
unless another ON ERROR GOTO statement enables error trapping again.

See Also ERF, ERL, ERR, ERROR, ERROR$, RESUME

OPEN

Description The OPEN statement opens the file specified by strexp$ in the given mode, and
associates the file with intexp%.

Syntax OPEN strexp$ FOR [INPUT|OUTPUT|APPEND] AS [#] intexp%

Comments
If opened for INPUT mode, the file must exist, or a "File Not Found" run-time error occurs. If opened for
OUTPUT mode, if the file exists, it is overwritten. If opened for APPEND mode, the file is created if it
does not already exist. If it does exist, any PRINT # statements used on the file are appended to the
end of the file. The intexp% parameter must be between 1 and 5.

See Also CLOSE, EOF, EXISTS, KILL, PRINT #

PAUSE

Description The PAUSE statement displays strexp$ in a message box and waits for the user to
acknowledge.

Syntax PAUSE strexp$

Comments
The strexp$ parameter appears in a message box with an OK button.

See Also END,STOP and SLEEP

PRINT

Description The PRINT statement displays information to the viewport, or sends information to the file
associated with intexp.

Syntax PRINT [[#intexp,] exp [[;|,] exp...] [;|,]]

Comments
The PRINT statement prints each expression in the expression list, and the semicolon or comma (if
given) determines what extra characters should be printed after each expression. The semicolon
causes no extra characters to be printed; the comma causes a tab character to be printed; and if
neither a semicolon nor a comma is given, a carriage-return/line-feed pair is printed. Note that if more
than one expression is printed and they are not separated by either a semicolon or a comma, the
PRINT statement assumes a semicolon is at the end of the statement. PRINT with no expressions
simply prints a carriage-return/line-feed pair.
If printing to a file, intexp% must represent a file that has been previously opened with the OPEN
statement for OUTPUT or APPEND mode. The file number must be between 1 and 5, or a "Bad File
Number" run-time error occurs.

See Also ECHO, OPEN, VIEWPORT, CLOSE

RANDOMIZE

Description The RANDOMIZE statement seeds the random number generator with intexp%. The
RND function uses this value as its starting location for random number generation.

Syntax RANDOMIZE intexp%

See Also RND

REALLOCATE

Description The REALLOCATE statement resizes the memory buffer associated with pointer-var.
REALLOCATE attempts to shrink or grow the memory buffer to num-items * size bytes,
where size is the size in bytes of the data type pointer-var points to.

Syntax REALLOCATE pointer-var, num-items

Comments
REALLOCATE can only be used to resize memory which has been allocated with the ALLOCATE
statement. Attempting to use REALLOCATE with a NULL pointer or a pointer that points to static
program variables generates a run-time error.

See Also ALLOCATE, DEALLOCATE

REM

Description The REM statement lets you include a comment in a script. You can use a single
quotation mark in place of the keyword REM. REM can also introduce a metacommand
(a special instruction to the compiler) such as $DEFINE.

Syntax [REM | '] comment

Comments
comment is text that has any combination of characters.

RESUME

Description The RESUME statement resumes program execution when an error-trap routine is
finished handling the error.

Syntax RESUME [NEXT | line-label]

Comments
RESUME NEXT causes execution to resume with the statement immediately following the one that
caused the error. RESUME line-label causes execution to resume at a line label. The argument line-
label must be in the main code of the script. It cannot be in a subroutine or function.

See Also ON ERROR

RETURN

Description The RETURN statement returns to the statement following the most recent GOSUB
statement.

Syntax RETURN

Comments
If a RETURN statement is executed before a corresponding GOSUB statement, a "RETURN without
GOSUB" run-time error occurs. GOSUB/RETURN pairs may be nested up to 16 levels. If more levels
are attempted, a "GOSUB Stack Overflow" run-time error occurs.
Unlike some Basic interpreters, you cannot return to a specific label. RETURN passes control back to
the statement following the most recently executed GOSUB statement only.

See Also GOSUB

RMDIR

Description The RMDIR statement removes an existing directory.

Syntax RMDIR pathname$

Comments
The argument pathname$ is a string expression that specifies the name of the directory to remove and
must have fewer than 128 characters.
pathname$ uses this syntax:

[drive:]directory[...]

The argument drive is an optional drive specification; the argument directory is a directory name.
The RMDIR statement works like the MS-DOS RMDIR command. However, you cannot shorten
RMDIR to RD as you can with MS-DOS.

See Also CHDIR, CHDRIVE, CURDIR$, MKDIR

RND

Description The RND function generates a pseudo-random number between 0 and 32767.

Syntax i% = RND

Returns A pseudo-random number between 0 and 32,767.

See Also RANDOMIZE

RTRIM$

Description The RTRIM$ function returns a copy of the string with the trailing blanks removed.

Syntax A$ = RTRIM$ (strexp$)

Returns The contents of strexp$ with all trailing blanks removed.

See Also INSTR, LCASE$, LEN, LTRIM$, MID$, UCASE$

RUN

Description The RUN function runs a program.

Syntax ret% = RUN (strexp$)

Returns After spawning the process identified in strexp$, the return value indicates the success or
failure of the operation.

Comments
The function returns a value greater than 32 if the process was successfully spawned. Otherwise, the
process was not started and the return value indicates the error that occurred. See the Windows SDK
reference on WinExec for a description of the error return values. The script continues as soon as the
child process is spawned, and the two processes run asynchronously. Strexp$ cannot exceed 128
characters.
The RUN function is essentially the same as the RUN/NOWAIT statement.

See Also RUN STATEMENT, SHELL

RUN

Description The RUN statement executes the program specified by strexp$. The optional NOWAIT
parameter allows the process to run asynchronously (if supported by the host operating
system). If not given, the child process is allowed to complete before the script continues
on to the next statement.

Syntax RUN strexp$ [, NOWAIT]

Comments
Strexp$ cannot exceed 128 characters.

See Also RUN FUNCTION, SHELL

SELECT CASE

Description The SELECT CASE statement executes one of several statement blocks depending on
the value of the given expression and the expressions given on the CASE statements.

Syntax SELECT CASE expression
[CASE exp [TO intexp] [, exp [TO intexp]...]
 [statementblock]...]
[CASE IS relational-operator expression]
[CASE ELSE
 [statementblock]]
END SELECT

Comments
The expression on the SELECT CASE statement can be any expression of either INTEGER, LONG, or
STRING type, so long as the expressions in the following CASE statements are of the same type.
The TO keyword on the CASE statement is only valid when used with numeric SELECT CASE
expressions. The expression on the left side of the TO keyword must be the smaller of the two
expressions, or that CASE clause never evaluates to TRUE.
If more than one expression clause is given on the CASE statement, their values are combined with a
logical OR together to determine the truth value of the entire CASE block. The first CASE block that is
executed transfers control to the END SELECT statement when it is finished. The CASE ELSE block is
executed only if none of the expression clauses on the CASE blocks above it were true. The CASE
ELSE block must be the last block in the SELECT CASE construct.

See Also IF...THEN

SETFILE

Description The SETFILE statement adds (ON) or subtracts (OFF) all files matching the specification
given in strexp$ to or from the file list.

Syntax SETFILE strexp$, [ON | OFF]

Comments
Any files matching the specification that are already present in the file list are not duplicated. Wildcard
specifications are allowed in strexp$, both for ON and OFF operations. (Wildcards behave exactly like
the wildcards in the MS-DOS DIR command, except that SETFILE does not list subdirectories.)
If you delete files with the KILL statement while performing file list operations with the SETFILE
statement, use the CLEARLIST statement to immediately clear the file list and then re-create the list
with the SETFILE statement.

See Also CLEARLIST, FOR, KILL

SHELL

Description The SHELL statement passes strexp$ to the MS-DOS command processor for execution.

Syntax SHELL strexp$

Comments
The SHELL statement opens a MS-DOS box to perform the operation given in strexp$. The script does
not continue execution until this MS-DOS box has completed its task and terminates. Strexp$ cannot
exceed 110 characters.

See Also RUN

SLEEP

Description The SLEEP statement suspends execution of the script until after intexp% number of
seconds, or until you issue a BREAK event by pressing the ESC key.

Syntax SLEEP (intexp%)

Comments
The SLEEP statement can be used to stop execution of script code, but not leave RUN mode. This
allows all traps to remain active while the script has nothing to do. For example, you could run a script
that traps UAE conditions and then put it to sleep. The script will wait in the background until a UAE
occurs, at which time it wakes up and continues with whatever instructions are in the script.
If an integer expression is given, the SLEEP statement suspends the script for the given number of
seconds. If intexp% is 0 or not provided, the script is suspended indefinitely. You can stop a suspended
script by selecting Break from the Run menu.

See Also END, PAUSE, STOP

SPLITPATH

Description The SPLITPATH statement splits the path name given in strexp$ into its respective parts.
The drive specification goes in drv$, the directory into dir$, the base filename into
filename$, and the extension into ext$.

Syntax SPLITPATH strexp$, drv$, dir$, filename$, ext$

Comments
The four target strings must be of type STRING. Fixed-length string arguments are not valid targets for
the SPLITPATH statement.

See Also SETFILE

STOP

Description The STOP statement terminates a TestBasic script.

Syntax STOP

Comments
STOP terminates program differently than the END statement. END allows ON END processing of
subroutines, whereas STOP does not. Both STOP and END close any open files before terminating the
script.

See Also END, PAUSE, RESUME

STRING$

Description The STRING$ function returns a string whose characters all have the given ASCII
charcode.

Syntax A$ = STRING$ (number%, charcode%)
A$ = STRING$ (number%, StringExpression$)

Returns A string whose characters all have the given ASCII charcode% or a string whose
characters are all the same as the first character of StringExpression$.

Comments
The number% parameter is the length of the string to return. If number% is 0, a null string is returned.
If there is not enough string space to hold the string, then an "Out of string space" run-time error is
generated.
The charcode% parameter is the ASCII code of the character used to build the string. It is a numeric
expression which must be between 0 and 255. If charcode% is greater than 255 then the character
used to build the string will be ASCII character (charcode% MOD 256).
The stringExpression$ parameter is the string expression whose first character is used to build the
returned string. If a null string is given, an "Illegal function call" run-time error is generated.

See Also CHR$, HEX$, STR$, VAL

STR$

Description The STR$ function returns an integer expression as an ASCII string.

Syntax A$ = STR$ (intexp%)

Returns A string representing intexp% in ASCII form. If the number is positive, the string is padded
with a single space at the beginning. If negative, the string is returned with the minus (-)
sign at the beginning and no leading space.

See Also HEX$, VAL, CHR$, STRING$

STATIC SUB

Description The STATIC SUB statement begins the definition of a user-defined SUB.

Syntax SUB subname [(parmlist)]
 [subprogram block]
END SUB

Comments
Parameters declared in the parmlist declaration section can be defined using type identifier characters
or the AS clause. Parameters must only be of intrinsic types, excluding fixed-length strings.

See Also FUNCTION

TIMER

Description The TIMER function gives the number of seconds (in hundredths) since midnight.

Syntax secnds% = TIMER

Returns The number of hundredths of a second elapsed since midnight, in LONG format. You
should always assign the return value to a LONG variable.

See Also DATETIME$

TRAP

Description The TRAP statement allows definition of a block of code to be executed when the event
defined by trapname (which appears in the DLL LIBNAME.EXT) occurs.

Syntax TRAP trapname FROM "libname.exe"
 [trap code block]
END TRAP

Comments
Care should be taken when writing TRAP service routines. Depending upon the event that you are
trapping, certain actions that may be "acceptable" under normal circumstances may be hazardous
inside TRAP routines.

UCASE$

Description The UCASE$ function returns a copy of a string with the lowercase characters converted
to uppercase.

Syntax A$ = UCASE$ (strexp$)

Returns The contents of strexp$ with all lowercase letters converted to uppercase.

See Also INSTR, LCASE$, LEN, LTRIM$, MID$, RTRIM$

VARPTR

Description The VARPTR function generates a far pointer to a variable.

Syntax VARPTR (variable)

Returns A far pointer to the given variable.

Comments
The variable can be almost any Test Driver data type: LONG, INTEGER, STRING *, POINTER, or

user-defined TYPE. However, the variable cannot be a STRING since this would return
the address of the string descriptor not of the string contents. Using VARPTR with a
variable-length string produces a type mismatch error.

'$UNDEF

Description The '$UNDEF metacommand removes symbols from the symbol definition table that had
been previously defined with the '$DEFINE metacommand.

Syntax '$UNDEF symbol

Comments
Symbols can consist of up to 31 alphanumeric characters. Symbol names are case insensitive. The
"$UNDEF metacommand can be used in association with the following conditional statements:
'$IFDEF, '$IFNDEF, '$ELSEIFDEF, '$ELSEIFNDEF, '$ELSE, '$ENDIF, '$UNDEF.
Note that '$UNDEF is a metacommand that is processed during the scannign step of compilation. It is
therefore not a statement.

See Also '$DEFINE

VAL

Description The VAL function generates the integer value of a specified string.

Syntax intval% = VAL (strexp$)

Returns The integer value of strexp$ or 0 if the string does not represent an integer.

See Also HEX$, STR$

VIEWPORT

Description The VIEWPORT statement displays, hides, or clears the viewport window.

Syntax VIEWPORT [ON | OFF | CLEAR]

Comments
The VIEWPORT ON statement displays the viewport in its most recent state, but does not give it focus.

See Also PRINT

WHILE...WEND

Description The WHILE...WEND statement executes a series of statements in a loop, as long as a
given condition is TRUE.

Syntax WHILE condition
 [statementblock]...]
WEND

Comments
The argument condition is a numeric expression that evaluates as TRUE or FALSE.
If condition is TRUE, any intervening statements are executed until the WEND statement is
encountered. Test Driver then returns to the WHILE statement and checks condition. If it is still TRUE,
the process is repeated. If it is not TRUE, execution resumes with the statement following the WEND
statement.
The WHILE statement only checks for a nonzero value. For example, if condition is 2, the WHILE
statement will still evaluate this as TRUE.
You can nest WHILE... WEND loops to any level. Each WEND statement matches the most recent
WHILE. When Test Driver encounters an unmatched WHILE statement, it generates the error
message, WHILE without WEND. If Test Driver encounters an unmatched WEND statement, it
generates the error message "WEND without WHILE".

Note Do not branch into the body of a WHILE... WEND loop without executing a WHILE statement.
Doing so may cause errors or program problems that are difficult to locate.

