
The FBUG Debugger User Guide

Page 1

Version 1.12

The FBUG Debugger User Guide

Page 2

1. INTRODUCTION .. 4

1.1 OVERVIEW .. 4

1.2 INVOKING THE FBUG DEBUGGER .. 5

1.2.1 Creating a Windows® Shortcut .. 5

1.2.2 Command Line Invocation ... 6

1.3 ENTERING FBUG.. 6

1.4 INVOKING THE FBUGWIN GRAPHICAL USER INTERFACE.................................... 7

1.4.1 fbug Command Line Options ... 7

1.4.2 Fbugwin Specific Options... 8

1.5 REMOTE DEBUGGING .. 9

1.6 GENERATING DEBUGGABLE TOOLS .. 9

2. LOCAL DEBUGGING ARCHITECTURE... 10

3. THE FBUG INTERFACE.. 11

3.1.1 Shortcut keys.. 12

3.1.2 List window... 12

3.1.3 Memory Window... 13

3.1.4 Registers Window .. 13

3.1.5 Callstack window.. 13

3.1.6 Process window ... 13

3.1.7 Breakpoints window ... 13

3.1.8 Query window... 13

3.1.9 Output Window... 14

3.2 MENUS AND COMMANDS .. 14

3.2.1 File Menu.. 14

3.2.2 View Menu.. 15

3.2.3 The Breakpoints Menu ... 17

3.2.4 The Run Menu.. 18

3.2.5 The Window Menu ... 19

3.2.6 Options ... 19

4. EXPRESSIONS .. 20

4.1.1 Radix specification ... 20

4.1.2 Tool, atom and register names .. 20

4.1.3 Primitive type names.. 21

4.1.4 Assembler-style memory access ... 21

5. THE FBUG GRAPHICAL USER INTERFACE .. 22

5.1.1 File Menu.. 23

The FBUG Debugger User Guide

Page 3

5.1.2 Edit Menu ... 23

5.1.3 View Menu.. 24

5.1.4 Target Menu... 25

5.1.5 Debug Menu... 26

5.2 THE FBUG WINDOWING OPTIONS ... 27

5.2.1 Window Location.. 28

5.2.2 Source / Disassembly Window... 28

5.2.3 Memory Information ... 29

5.2.4 Process Information ... 30

5.2.5 Native Register Information.. 31

5.2.6 Watched Expressions .. 32

5.2.7 Ktrace Information.. 33

5.2.8 Stacktrace Information ... 34

5.2.9 Port Forwarding.. 35

5.2.10 Debug Memory Object Analysis Tool... 35

6. COMMON PROBLEMS IN DEBUGGING.. 37

7. USING THE DEBUGGER GRAPHICAL INTERFACE 38

7.1 NON-ALIGNED MEMORY ACCESS... 38

7.2 INCORRECT PARAMETERS PASSED ... 40

7.3 STACK OVERFLOW .. 41

7.4 DIVIDE BY ZERO .. 42

7.5 SETTING A BREAKPOINT... 43

7.6 INCORRECT USE OF NORET INSTRUCTION.. 44

8. NOTES ON REMOTE DEBUGGING ... 46

8.1 THE DEBUG STUB ... 46

8.2 LOADING THE DEBUG STUB ... 46

8.3 BAUD RATE ... 47

9. OTHER UTILITIES ... 48

9.1 DFA... 48

9.1.1 Using DFA.. 48

9.2 TCA... 48

9.2.1 Using TCA.. 48

9.2.2 Instrumenting The Object Tool(s)... 49

9.2.3 Running The Test... 49

9.3 MORE UTILITIES.. 50

9.3.1 The Debug Device Driver... 50

9.3.2 The Debug Memory Allocator .. 50

9.3.3 Exception Flight Recorder.. 50

The FBUG Debugger User Guide

Page 4

1. Introduction
The fbug debugger is an interactive system level debugger for intent®. fbug itself is a text mode
debugger, but it can be used with a graphical user interface, referred to as fbugwin. The fbug
debugger has been designed to perform such tasks as debugging applications, device drivers and
other pieces of intent code. At present, the fbug debugger can be run within the following
environments:

• Windows NT/95/98/2000 • Linux (with X11 for fbugwin support)

The debugger can be of use in the following areas:

• Examination and modification of registers • Setting and clearing multiple breakpoints
• Single stepping through code • Expression evaluation (VP and Native)
• Incorrect parameters * • Identifying misaligned loads and stores *
• Identifying stack overflows*

* These features are only available with the developt image.

It also supports a limited form of 'post-mortem' analysis. This occurs when a debugger is connected to
a system that has crashed, and used to perform a retrospective analysis of the causes of the failure.
In other words, this facility is available whilst using remote debugging when the target has the debug
stub started. If it traps it is possible to attach fbug after this has happened (it is not possible to attach
fbug to a local session after it has crashed, though fbug can be attached to a crash which has hung).
Limited support for debugging programs written in C, C++ and the Java™ language is available.

1.1 Overview
fbug provides two discrete methods for communicating with the intent session being debugged. In
either eventuality the current directory must be the intent root prior to starting. Any source files must
be accessible in the host file system.

• In local debugging, the intent session must be running on the same machine as fbug. This
method is the default when no method specifying option is used. Local debugging can be used to
attach to a running process on Windows or Linux by using the same decimal process id as the
argument.

• In remote debugging, fbug communicates with the debug stub in the intent session using the
intent debug protocol. The -s option enables remote debugging using a serial port, while the -p
option enables remote debugging using a specified pipe. The –r option enables remote debugging
over a socket connection. The intent session with a debug stub must be started independently, in
a manner that is platform dependent. The -i option can be used to send a command to start the
target along the same connection as is used for remote debugging. When using remote
debugging, no arguments other than option switches should be specified in the fbug command
line. It is possible to use remote debugging to debug an intent session on the same Linux
machine. For more information on this, please see the html documentation.

The FBUG Debugger User Guide

Page 5

HOST
SYSTEM

TARGET
SYSTEM

SERIAL LINK
DRIVER

USER
INTERFACE

DEBUGGER

STUB

REQUESTS AND COMMANDS

INFORMATION

COMMANDS DATA

Figure 1. Example of Remote Debugging over a Serial Connection.

For either type of debugging, fbug must be run from the intent root on the host machine, with any
source files accessible in the host file system - fbug cannot read intent file systems.

1.2 Invoking the fbug Debugger
The fbug debugger may be invoked either through a command line or through a desktop shortcut (on
Windows). This is described in section 1.4.

1.2.1 Creating a Windows® Shortcut
Under Windows® fbug should be run by modifying the icon for starting intent (assuming that a
shortcut has not already been provided by the InstallShield® process). For example, if it says:

d:\work\intent\sys\platform\win32\elate.exe -Bdevelopt.img

This should be changed to:

d:\work\intent\sys\platform\win32\fbug.exe
d:\work\intent\sys\platform\win32\elate.exe -Bdevelopt.img

Before starting, the current directory should be the intent root. This is achieved by setting the "Start In"
part of the shortcut.

The above example assumes local debugging, although a shortcut for debugging a remote target can
be created in a similar example (see below).

d:\work\intent\sys\platform\win32\fbug -s com1,115200 -T
d:\work\intent\sys\platform\myplatform\myimage.sym

Note the use of the developt image to make use of the checking translator. The checking translator
results in tools that are much larger than if the normal translator is used, as a result of the extra debug
code that is inserted into the tool, and performs checking of potential stack overflows, parameter
mismatches and unaligned memory access.

The FBUG Debugger User Guide

Page 6

Invoking fbug will cause a window to appear on the screen upon which fbug commands can be
entered.

1.2.2 Command Line Invocat ion
Command line invocation for the fbug debugger is as follows:

sys/platform/linux/fbug [<fbug_options>] sys/platform/linux/elate
[<elate_options>]

In this case the first <arg> is the name of the intent driver program, and subsequent <arg>s specify
options and arguments to pass to the driver program.

Under Windows®, the following should be entered at a command prompt:

sys\platform\win32\fbug [<fbugwin_options>]
C:/intent/sys/platform/win32/elate <elate_command>

(assuming C:/intent is the root directory).

1.3 Entering fbug
fbug is entered, showing the current execution position, when one of the following happens in the
target:

• Execution is interrupted by the user (see below);
• A breakpoint (or watchpoint) is hit;
• An exception is encountered. *

* This also applies under remote debugging when intent starts up or shuts down. This requires the –u
option on the debug stub built into the target image,

Execution can be interrupted by pressing Ctrl-C in fbug, except when using local debugging on Linux,
in which case a SIGINT must be sent to the target intent session. When intent is running on a terminal
or an xterm, this can be done by pressing Ctrl-], otherwise the Linux kill or the killall command can be
used. . This causes the intent system to be stopped in either case and fbug entered. It prints a brief
description of the problem (e.g. a hard coded breakpoint), a register dump, the name of the tool where
the problem occurred and the offset into that tool, and the source line where the problem occurred
(only if the tool was assembled with the -g option). If source is not available a disassembly of the
instruction which caused the problem can be displayed.

When using local debugging on Windows, pressing Ctrl-C may not immediately interrupt execution if
the intent session is idle. In this case, move the mouse over the intent window.

When using remote debugging, pressing Ctrl-C will not interrupt execution unless the -t option was
specified when starting the debug stub, or if the whole intent session has crashed in a way which
stops the debug stub responding to communication from fbug. In these cases, fbug will exit after a
timeout of a few seconds. When execution has stopped and fbug is responding to input, fbug has a
selected process and a selected stack level. All expression evaluation and CPU register evaluation is
performed in the context of the selected process and the selected stack level. Each time execution
stops, the current process becomes the selected process, and the top stack level in that process
becomes the selected stack level.

The FBUG Debugger User Guide

Page 7

1.4 Invoking the fbugwin Graphical User Interface

To start up fbugwin and a particular intent image together, the full path of the intent executable, and
the name of the image file should be passed as parameters to the command
sys/platform/win32/fbugwin.

When fbugwin is started, it displays a window containing a main client area (which displays
disassembly and source code when the target is running), and optionally some other windows,
displaying various information gathered from the target (see information areas). If the "-g" option is
specified on the command-line, intent is started immediately.

fbugwin provides facilities for starting, stopping and interrupting the target, examining registers and
memory read from the target, changing settings, evaluating expressions, etc. It should be noted that
most of the facilities provided by fbugwin can only be used when the target is "stopped", i.e. when it
has crashed, hit a breakpoint or been interrupted. fbugwin may start one of a selection of intent
sessions whose parameters have previously been set up (for example, develop, developt, a target
board connected to using a serial line, another machine on the Internet etc), exit the intent session,
and then restart and continue debugging (without quitting fbugwin, and possibly using a different
target setup).

Before fbugwin can be used for debugging, a "target" must be configured through the target menu.
See section 7 for more information upon this.

Under Windows, a shortcut should be created whose target is set as follows:

"C:\intent\sys\platform\win32\fbugwin.exe [options]"

The "Start in" directory for the shortcut should be the root directory (C:\intent).

Under Linux, fbugwin should be started from the intent root directory using a command such as

"sys/platform/linux/ix86/fbugwin [options]"

1.4.1 fbug Command Line Options

-d Create a file fbug.log logging various internal workings of fbug.

-h Output a help message describing these options. No debugging session
is started.

-r <hostname>[,<port>] Enable remote debugging with the serial debug protocol using a TCP
socket to <hostname> on port or service <port> (default 1421). With this
option, no <arg>s should be specified.

 -i <filename> For remote debugging only, send command(s) to the target when starting
up. The contents of file <filename> are sent to the target, with any lf or
cr/lf sequences converted to cr (as if the lines of the file had been typed
on a terminal). If <filename> is -, then input is read from stdin and sent to
the target, until either an eof is received on stdin, or the target first sends
an intent debug protocol packet. Because fbug also outputs any non-
protocol data it receives, this allows fbug to act as a primitive terminal
until intent is started on the target.

-s <name>[,<baud>] Enable remote debugging with the intent serial debug protocol using the
serial port <name>, for example /dev/ttyS0 on Linux or com1 on
Windows. The serial port is set up as follows:

The FBUG Debugger User Guide

Page 8

• no handshaking;

• 8 bits, 1 stop bit, no parity;

• baud rate of <baud>, defaulting to 19200.
With this option, no <arg>s should be specified.

-p <inname>[,<outname>] Enable remote debugging with the intent serial debug protocol using a file
or device. <inname> is the filename for receiving data from the target; if
<outname> is specified it is the filename for sending data to the target,
otherwise <inname> is used for both directions. This option does no tty
setup so cannot be used on a serial/tty or pseudo tty device. It is typically
used with pipes to allow debugging of an intent session on the same
machine using the intent serial debug protocol. With this option, no
<arg>s should be specified.

-t <symfile> Load sysgen symbol file. This avoids the need for fbug to read the tool
list from the target at startup, as long as the debug stub sends an "intent
starting" message (which is enabled by the debug stub's -u option).

-j Pass possible JavaTM exceptions on, without stopping in fbug. Depending
on the CPU and platform, a JavaTM NullPointerException and/or
DivideByZeroException may be implemented as a hardware CPU
exception. The -j option causes fbug to pass such exceptions on to the
application rather than trapping them itself.

-T <symfile> Load sysgen symbol file, and assume that this reflects complete tool list
even if no "intent starting" message is seen. This avoids the need for
fbug to read the tool list from the target at startup, but means that it will
not know about tools which had already been dynamically loaded or
dynamic atoms which had already been added by the time fbug started.
Thus the option is used to stop fbug reading the tool list when no -u
option was specified to the debug stub, or when fbug is attached to an
already running target.

-x Redirect fbug input/output. Note that the xfbug script
(sys/platform/linux/xfbug.html), performs all the complicated redirection.
On Linux with local debugging only, this option causes fbug to use
handles 3, 4 and 5 for its input, output and errors, instead of the normal
0, 1 and 2. intent’s input/output continues to use 0, 1 and 2. If used in
conjunction with piping in shell commands, this option can be used to
cause fbug to appear in a different terminal from intent.

-noguess Disable guessing in stack traces. When fbug displays a process's call
stack, it uses a heuristic to fill in the stack levels for tools that don't have
debug information. Although this is generally useful, it can give false
entries in the stack trace and can upset some targets, which don't like
being asked to read arbitrary areas of memory. This option disables the
heuristic, so that no stack trace will be shown for tools that don't have
debug information.

1.4.2 Fbugwin Specific Options
-r <intent root directory> This option sets the intent root directory to the specified directory. This is

used for the following purposes:

• In local debugging, this sets the root of the intent tree, used to find
the intent executable to run.

• In both local and remote debugging, this is used as the default path
to search when looking for source files (note that fbugwin cannot

The FBUG Debugger User Guide

Page 9

access files within intent filesystems).
-g [<targetname>] By default on startup, fbugwin does not start intent, it simply initialises

and waits for the user to tell it to do so. This option specifies that intent
should be started immediately when fbugwin starts up.

If no target is specified, then the default target will be started. Other
targets can be started using the unique name specified on configuration
of the target. All subsequent parameters are passed through to fbug
without further interpretation. This allows fbug and intent options (fbugwin
makes no distinction) using the same option letters as specified here to
be passed through.

-l [<language>] Specifies the language setting for the fbugwin user interface. This
overrides the value oft the LANG environment variable, which controls
the default language setting.

-z Start in an iconified state. fbugwin will deiconify when the target traps.
-h Display a usage message and exit.
-- All subsequent parameters are passed through to fbug without further

interpretation. This allows fbug and Elate options (fbugwin makes no
distinction) using the same option letters as specified here to be passed
through.

1.5 Remote Debugging
An example command line for remote debugging would be as follows:

fbug -s com1,115200 -T myimage.sym

This would be amended as follows, in order to make use of fbugwin:

fbugwin -s com1,115200 -T myimage.sym

This would debug over com1 at 115200 baud where myimage.sym is the sym file created by sysbuild
(using its -t option).

1.6 Generating Debuggable Tools
A block of debug material exists for each intent tool. This block is an optional part of the tool structure,
and plays no part in the ordinary running of the system. Indeed, intent supplies a special utility for
stripping the debug block from each tool, so as to render the system more compact. A tool that is to
provide debug information, however, must be generated with this block attached.

It is customary for debuggable tools to be generated before the debugger is invoked. However, this is
not invariably the case.

The command used to invoke the assembler is "asm". If the tools being assembled need to be
debuggable, the option "-g" should be added to this command. Also note that it may be helpful to use
the –v option to provide the user with information about the tools generated. Using –g will in turn allow
disassembly of a tool with the dis –s command, which shows the source that goes with the
corresponding VP byte codes. For example:

$asm –g demo/example/hello

$dis –s demo/example/hello.00

Note that when assembling the .asm extension is optional, but when disassembling the .00 extension
is required, as there may be versions of the tool with different extensions, e.g. hello.00 hello.15. Note
the disassembler can be used to disassemble tools with any supported extension:

The FBUG Debugger User Guide

Page 10

$dis –s demo/example/hello.15

If the VP tools are being compiled from C or C++, the option "-g" must be added to the command
"vpcc" when invoking the compiler. In such cases, the compiler will inform the assembler that the tools
are to be generated in a debuggable form.

To obtain debug info for tools in the image the sysgen -s option should not be used (alternatively the -
nos sysbuild option can be used), instead using the sysgen -m option (the default in sysbuild) to
provide a map file, and then using the fbug -t/-T option to load it. In the case of dynamically loaded
tools, the only option is to allow them to contain debug info by not using the translator flags (in the
.jtrans and .trans lines in the sys file) which instruct the translators to strip off debug info.

2. Local Debugging Architecture
fbug is essentially a hosted debugger. This means it relies on services provided by an underlying
operating system to perform certain tasks. These tasks include:

♦ Creating a new process
♦ Waiting for a debug event
♦ Looking at debuggee’s memory
♦ Looking at debuggee’s registers
♦ Starting debuggee running

In local debugging, the intent session must be running on the same machine as fbug, and fbug uses
the host OS's native debugging facilities.

The FBUG Debugger User Guide

Page 11

3. The fbug Interface

As has previously been stated in this document, when fbug is entered and execution interrupted, it will
display disassembly or source code. fbug has a full screen textual interface. Initially, as in the
example below, only one window will be visible, however the interface normally consists of multiple
‘windows,’ separated by horizontal lines. Each window has a title line above it, except the topmost
window, which is always the main source and disassembly window. The bottom line of the screen
shows either a message or the current menu. If there is a message and fbug is in a state where it is
responding to input (i.e. the target has stopped), then pressing any key replaces the message by the
current menu, in addition to any other action the key has.

Within a window, the cursor keys move the cursor, scrolling when necessary. Certain windows are
able to scroll sideways as well as up and down. The Window/Switch command (shortcut F6) switches
the cursor into the next window down, or back to the top window if already on the bottom window. The
Window/Close command (shortcut F4) closes the current window. The Window/Resize command is
used to resize windows. On Linux, when executing fbug and the intent session in the same terminal,
the fbug screen will be corrupted by any output from the intent session. When fbug has been re-
entered, its screen can be refreshed by pressing ^L or ^R.

Figure 2: Window showing the initial menu.

Figure 2 shows the initial menu with which a user will be presented, assuming that no message is
being displayed. At present, there are six initial menus that the programmer may make use of. These
are as follows:

• File • View
• Breakpoints • Run
• Windows • Options

Any of these menus can be selected by pressing the key corresponding to the option’s letter (which
should be displayed on the screen in highlighted text).

The FBUG Debugger User Guide

Page 12

From the initial menu, a further set of options is available:

File View Breakpoints Run Windows

Esc

Open

Esc Esc EscEsc

Callstack Set / Unset Go Close

Disasm / Source Tool-Load Continue-after-exception Switch

ResizeStep

Step-nodescend

WatchpointGo-to-addr

Memory

Registers

Breakpts

Processes

Expression

Output

Output

Input Radix

Output Radix

Run-To

Figure 3. Text Debugger Options

3.1.1 Shortcut keys
Many commonly used commands have shortcut keys, which can be used from any menu:

• F2: View/Registers: view CPU registers
• F3: View/Disasm-source: switch list window between source and disassembly
• F4: Window/Close: close current window
• F5: Run/Go: continue execution
• F6: Window/Switch: move cursor to next window
• F7: Run/RunTo: continue execution up to cursor position
• F8: Run/Step: step statement/instruction
• F9: Breakpoint/Set-unset: set or unset breakpoint
• F10: Run/step-Nodescend: step over statement/instruction
• F11: View/Expression: evaluate an expression.

3.1.2 List window
The topmost window, which is present when fbug is entered for the first time, is the list window. If
source is available, this either shows source, or disassembly interspersed with source lines may be
displayed. If not, only disassembly is available. It is not possible to close the list window. The current
instruction (in the selected process and stack level) is shown in inverse video; any source line or
disassembly line with a breakpoint set is shown highlighted.

The View/Disasm-source command (shortcut F3) allows the user to toggle between source code and
a mixture of disassembly and source (if available). The View/Go-to-address command moves to a
disassembly at the requested address. The Breakpoint/Set-unset command (shortcut F9) sets a
breakpoint at the cursor position, or removes breakpoints if there are any.

When intent traps or hits a breakpoint or stops executing and goes into fbug for any other reason the
current location within in the program is shown in inverse video. On Windows, most of the fbug text is
shown as grey on black, so that the line of source or disassembly is shown as black on grey.

It is then possible to change the selected stack level by moving around in the callstack window and
hitting enter. This then shows where in the program the user was located at that stack level. For
example, if stack level 0, the topmost one in the callstack window is the current location, then stack
level 1 is where execution will return to at the next ret instruction, stack level 2 is where execution will

The FBUG Debugger User Guide

Page 13

return to at the next ret after that, etc. It is possible to see the chain of qcalls, goss or ncalls that led to
the current point of execution, and where each of these calls is located.

Where a stack level's execution point is not in a tool with debug info, fbug uses a "guessing" algorithm
to find the next one down (higher numbered). This finds it, but may result in some additional false
levels appearing in between.

Similarly, it is possible to change the selected process using the Processes window, in order to see
where execution was in other processes.

If either the selected process or selected stack level is changed, the list will then move to show where
the user was at that stack level in that process, with that process and that stack level's PC (only
available if showing disassembly rather than source) in inverse video as above.

3.1.3 Memory Window
The View/Memory command causes a memory window to be created, displaying memory at the
requested address. If the requested address is variable, then the actual address of the memory
changes when execution stops if the value of the address expression changes. The data is shown as
separate bytes in hexadecimal. Note that bytes are shown in VP order; when the target has a big-
endian CPU, bytes within a 4 byte word are reversed.

It is not possible to change the contents of a memory location within a memory window. Instead, use
the View/Expression command to evaluate an expression that assigns a value to memory. Multiple
memory windows can exist. Within a memory window, it is possible to scroll through the whole
address range.

3.1.4 Registers Window
The View/Regs command (shortcut F2) creates a registers window, or closes it if it already exists. The
registers window shows the values of all the CPU's native registers. Integer registers are shown in
hexadecimal. It is not possible to change a register within the registers window. Instead, use the
View/Expression command to evaluate an expression that assigns a value to a register. There can
only be one registers window.

3.1.5 Callstack window
The View/Callstack command creates a callstack window, unless one already exists. This shows the
call stack in the selectedprocess with the most recently executed level, level 0, at the top. The
selected stack level is shown in inverse video. Moving the cursor to another stack level and hitting
<enter> causes that stack level to become the selected one, showing the corresponding location in
the list window. There can only be one callstack window.

3.1.6 Process window
The View/Processes command creates a Processes window. This shows the intent process, with the
current one at the top. The selected process is shown in inverse video. Moving the cursor to another
process and hitting <enter> causes that process to become the selected one, showing the
corresponding location in the list window and its callstack in the callstack window if any. There can
only be one processes window.

3.1.7 Breakpoints window
The View/Breakpoints command creates a breakpoints window, which shows all the currently set
breakpoints. Within this window, the Breakpoint/Set-unset command adds or deletes a breakpoint at
the cursor position, and hitting <enter> moves the list window to the position of the breakpoint. There
can only be one breakpoints window.

3.1.8 Query window
The query window contains expressions to monitor and be updated each time fbug is re-entered (at
the end of a step, or at a breakpoint, or at an exception). The View/Expression command allows an
expression to be added to the query window by hitting <enter> after it has been evaluated. New
expressions are added at the top of the window and it may be necessary to scroll down to see other
expressions.

The FBUG Debugger User Guide

Page 14

Certain types of expression represent a "container" which contains further items, for example a
pointer (containing the item it points to), a structure or object (containing its members), or an array
(containing its elements). Such an expression in the query window can be expanded, showing its
contained items, by pressing <enter> with the cursor on that line. Pressing <enter> again contracts it,
hiding its contained items. There can only be one query window.

3.1.9 Output Window
The output window contains text output by the intent session in these ways:

• ktrace output on Windows local debugging, when intent is configured to send ktrace output to
OutputDebugString (using the driver's -t option);

• Any other text sent to OutputDebugString on Windows local debugging, for example the DLL
relocation messages at startup on NT 4;

• ktrace output on remote debugging, when the debug stub's -k option is used;
• Any non-debug-protocol text sent to the port being used by the debug stub on remote

debugging, including ktrace output when the debug stub's -k option is not being used and the
PII debug stub (which uses sys/pii/odata) is being used.

The output window is created the first time output is received. It can be closed in the normal way by
the Window/Close command, and (re-) opened by the View/Output command.

fbug has a buffer to remember more lines of output than can be shown in the window, and the text
can be scrolled. However, when the target is running and output is received, the window moves back
to showing the most recent text.

3.2 Menus and commands
The current menu is shown on the bottom line of the screen (unless a message is being shown there).
Commands and other menus are accessed by pressing letter keys; <alt> should not be used with the
letter.

• Quit
The quit command prompts for confirmation, and then quits fbug. In local debugging, this also kills the
intent session being debugged.

3.2.1 File Menu

• File/Open
This command prompts for a filename and opens the requested file in the list window. It is then
possible to set breakpoints in that source file, even if the tool has not yet been loaded.

The FBUG Debugger User Guide

Page 15

3.2.2 View Menu

Figure 4. The View Menu, beneath list window shoring disassembly

• View/Callstack
This command creates a callstack window, or moves the cursor to it if it already exists.

This window shows the call stack in the selected process, with the most recently executed level, level
0, at the top. The selected stack level is shown in inverse video. Moving the cursor to another stack
level and hitting <enter> causes that stack level to become the selected one, showing the
corresponding location in the list window. There can only be one callstack window.

• View/Disasm-source
This command switches the list window between source mode and disassembly mode, as long as the
mode being switched to is available. Source mode is not available if the disassembly being displayed
is outside any tool or is in a tool with no source line debug information. Similarly, disassembly mode is
not available if the source file being displayed is not used by any currently loaded tool with source line
debug information.

• View/Go-to-address
This command prompts for an address expression, and then switches the list window to disassembly
mode and moves the cursor to the address given by the expression.

• View/Memory
This command prompts for an address expression, and then creates a new memory window
displaying memory at that address. The expression must not contain an assignment. If the expression
is variable (i.e. it contains a variable, register or memory load), then it is re-evaluated, changing which
area of memory is displayed, when fbug is re-entered after executing some target code, or when the
selected process or stack level is changed. The data is shown in the form of separate bytes in
hexadecimal. Note that bytes are shown in VP order; when the target has a big-endian CPU, bytes
within a 4 byte word are reversed. It is not possible to change memory within a memory window.
Instead, use the View/Expression command to evaluate an expression that assigns a value to
memory. Multiple memory windows can exist. Within a memory window, it is possible to scroll
through the whole address range.

The FBUG Debugger User Guide

Page 16

The default input radix (which can be set from the options menu) governs how memory addresses are
interpreted (e.g. as decimal or hex values).

• View/Registers
This command creates (or closes if it already exists) the registers window, which displays the CPU
registers. This shows the values of all the CPU's registers. Integer registers are shown in
hexadecimal. It is not possible to change a register within the registers window. Instead, use the
View/Expression command to evaluate an expression that assigns a value to a register.

There can only be one registers window.

• View/Breakpoints
This command creates (or moves the cursor to if it already exists) the breakpoints window, which
shows the currently set breakpoints and allows you to remove breakpoints. This shows all the
currently set breakpoints. Within this window, the Breakpoint/Set-unset command deletes the
breakpoint at the cursor position, and hitting <enter> moves the list window to the position of the
breakpoint. There can only be one breakpoints window.

• View/Processes
This command creates a processes window, or moves the cursor to it if it already exists. This shows
the intent processes, with the current one at the top. The selected process is shown in inverse video.
Moving the cursor to another process and hitting <enter> causes that process to become the selected
one, showing its PC location in the list window and its callstack in the callstack window if any.
There can only be one processes window.

• View/Expression
This command prompts for an expression to evaluate, and then shows its value at the bottom of the
screen. By evaluating an expression containing an assignment, this command can be used to set a
variable, register or memory location to a value.

An integer value is output in a format determined by the default output radix, which is initially decimal
but can be set using the Options/Output-radix command. This can be overridden using a format
specifier, consisting of a '/' character and a single letter at the start of the text. The valid format
specifiers are:

• /d: decimal;
• /x: hexadecimal;
• /o: octal;
• /t: binary (base two);
• /c: character;
• /a: address (i.e. as if it is a pointer).

For example, to evaluate the sum of the registers eax and ecx, and then display the result in binary,
enter the expression ‘/t eax+ecx.’

In address format, if the address falls within a tool, the tool name and offset are also displayed. In
decimal, hexadecimal and octal formats, if the integer value is the value of an atom, the atom name is
also displayed.

The default output radix or format specifier affects only integer values; pointers are always output in
address format and floating point values are always output in decimal floating point format. After the
expression text has been entered, fbug displays the result. If the expression does not contain an
assignment, fbug then waits for a keypress:

• <enter>: the expression is added to the query window;
• <esc>: the expression is not added to the query window;
• Other: the expression is not added to the query window, and the keypress is processed in the

normal way.

The FBUG Debugger User Guide

Page 17

• View/Output
This command (re-)opens the output window, or moves the cursor to it if it already exists.

3.2.3 The Breakpoints Menu

Figure 5. The Breakpoint Menu

• Breakpoint/Set-unset
If the cursor is in the list window, this command sets a breakpoint at the cursor location, or removes a
set breakpoint at the cursor location.

It is allowed to set a breakpoint in a source file, which is not referenced by any currently loaded tool. A
breakpoint will be hit at the loading or unloading of the tool, and on loading a breakpoint will be set at
the corresponding instruction in code. When remote debugging is in use, the toolname is extrapolated
from the name of the source file. If this is unlikely to locate the correct tool, a tool load breakpoint
should be set manually via the breakpoints menu.

Setting a breakpoint in a source file when the relevant tool is loaded also causes a breakpoint to be
set which will be hit if the tool is unloaded. It does this so it knows it should remove the breakpoint
when the tool is unloaded. Note that having any such breakpoints set causes tool loading to slow
down.

• Breakpoint/tool-Load
This command prompts for a tool name, and then sets a tool load breakpoint. This causes execution
to stop when a tool of that name is loaded or unloaded. Having any such breakpoints set causes tool
loading to slow down.

• Breakpoint/Watchpoint
This command prompts for an expression, and then sets a watchpoint. If the text entered starts with
an equals sign '=', the watchpoint causes execution to stop when the value of the expression (without
the initial '=') changes. Otherwise, the expression is expected to be a condition and execution stops
when the value of the expression changes to non-zero. Watchpoints can only be set where the

The FBUG Debugger User Guide

Page 18

hardware and the debug stub (for remote debugging) support them. Currently they work only on the
ix86 CPUs; watchpoints with a total of up to four memory loads can be supported.

See also: View Menu/Breakpoints

3.2.4 The Run Menu

Figure 6. The Run Menu

• Run/Go
This command causes the target to continue executing, if possible.

• Run/Continue-after-exception
This command causes the target to continue executing, but if fbug was entered due to an exception,
this exception is passed on to intent for it to process.

• Run/Run-To
If the cursor is in the list window, the callstack window or the processes window, this command
causes the target to continue executing up to the cursor position (up to the stack level or process that
the cursor is on, if in one of those windows). Execution may stop for another reason, for example
hitting a breakpoint, before reaching the cursor position.

• Run/Step
If the list window is currently in source mode, this command causes a source statement to be
stepped, otherwise it causes a machine instruction to be stepped. If the statement or instruction calls
a subroutine, execution stops at the start of that subroutine.

• Run/step-Nodescend
If the list window is currently in source mode, this command causes a source statement to be
stepped, otherwise it causes a machine instruction to be stepped. If the statement or instruction calls
a subroutine, execution continues until the subroutine call returns and the next statement/instruction in
the original subroutine is hit.

The FBUG Debugger User Guide

Page 19

3.2.5 The Window Menu

Figure 7. The Window Menu

• Window/Close
This command (shortcut F4) closes the window where the cursor is. It is not possible to close the list
window.

• Window/Switch
This command (shortcut F6) moves the cursor to the next window down, or to the top window if
already on the bottom window.

• Window/Resize
This command causes resize mode to be entered, in which the boundaries between windows can be
moved. The boundary currently being moved is shown in inverse video, and it is moved using the up
and down arrow keys. The F6 key changes which boundary is being moved and any other key
changes out of resize mode.

3.2.6 Options

• Options/Input-radix
This command allows the default input radix (see Expressions below) to be changed.

• Options/Output-radix
This command allows the default output radix (see View/Expression command) to be changed.

The FBUG Debugger User Guide

Page 20

Figure 8. The Options Menu

4. Expressions
In fbug, an expression is interpreted in much the same way as an expression in C or Java, in the
context of the PC in the selected stack level and process. A variable, register or memory location can
be changed by evaluating an expression which contains an assignment operator such as '='.
Restrictions to this are as follows:

• C and Java variables cannot currently be accessed by fbug.
• Float and double VP registers may give incorrect values on any ix86 based target (including local

debugging on Linux and Windows).
• It is not possible to set the value of a VP register.

4.1.1 Radix specification
The radix of a number can be specified either in the C/Java way (0x for hexadecimal, 0 for octal) or
the VP assembler way ($ for hexadecimal, $$o for octal, $$b for binary). If a number does not have a
prefix specifying its radix, the default input radix is used. This is initially decimal, but can be changed
by the Options/Input-radix command. The $$d prefix may be used for a decimal number when the
default input radix is not decimal. If the default input radix is hexadecimal, and an un-prefixed
hexadecimal number is used which starts with a letter, then it is interpreted as a number only if there
is no symbol of that name. A floating point number is always decimal.

4.1.2 Tool, atom and register names
Prefixing a name in an expression with a '#' character has two effects:

• In addition to the characters which can normally be in a name, the characters '!', '$', '_' and '/'
can also be used. This allows a tool or atom name to be specified. The value of a tool name is
the address of the start of its code. Tool and atom names with other characters in (for
example '+') can be specified by putting the tool/atom name in double quotes after the '#'
character.

• The name is not matched by any high-level language variable or type. This allows a CPU or
VP register or atom that has the same name as a variable to be accessed.

The FBUG Debugger User Guide

Page 21

4.1.3 Primitive type names
If the context PC is in a C or Java program with debug information, then fbug understands the
primitive type names used by C or Java respectively. Otherwise, it understands only the following
unambiguous types:

• (unsigned) byte: 8 bit integer • (unsigned) short: 16 bit integer
• (unsigned) int:: 32 bit integer • (unsigned) long: 64 bit integer
• float: 32 bit floating point value • double: 64 bit floating point value
• void: no type, only used for pointers.

Note that char is ambiguous because it has different meanings in C and Java.

4.1.4 Assembler-style memory access
To access a value in memory, either the C style or an assembler style syntax may be used. For
example, the 32 bit integer at address 0x12345678 can be found using either of these expressions:

(int)0x12345678
[0x12345678].i

The suffix on the assembler style load must be one of:

• .b: unsigned byte • .s: unsigned short
• .i: unsigned integer • .l: unsigned long
• .f: float point • .d: double
• .p: pointer

If the suffix is absent, .i is assumed.

The FBUG Debugger User Guide

Page 22

5. The fbug Graphical User Interface

Figure 9. Fbugwin

The GUI presents the user with six initial menus – File, Edit, View, Target, Debug, and Help. The
toolbar simply consists of a set of graphical shortcuts to functionality that is also available using the
menu system. The status-bar at the bottom left of the main fbugwin window shows a short piece of
text describing the purpose of each button when the mouse is held over the button.

The FBUG Debugger User Guide

Page 23

5.1.1 File Menu

Figure 10. The File Menu
The file menu contains three shortcuts – Open, Close and Exit.

Open Open source file, displaying it in main Source/Disassembly Window.
Close If in Source Mode, close current source file. If in Disassembly Mode, clear main Source /

Disassembly Window, causing redisplay on next operation.
Exit Exit fbugwin, aborting debug session if it is running.

5.1.2 Edit Menu

Figure 11. The Edit Menu.

Search This menu item displays a dialog box into which the user may enter the details of a
search to be performed of the current source file (searching is currently not
implemented in Disassembly Mode). Options which may be set include the search
text, the search direction, flags indicating whether the search is to be a regular-
expression search and whether it is to be case-sensitive or not.

The regular expressions are as defined by POSIX 1003.2, and can be basic,
advanced or extended regular expressions.

Preferences This displays a sub-menu allowing the user to set preferences. Currently the only
preferences which can be set here are the option to reset the root directory and the
input radix. In addition, it is possible add and remove source path list entries.

The FBUG Debugger User Guide

Page 24

5.1.3 View Menu

Figure 12. The View Menu

Breakpoints This option displays a dialog box, allowing the user to clear, view and modify
breakpoints. Breakpoints can be added to the list using the Set breakpoint at
address or Set breakpoint at tool entry options from the Debug menu. It is also
possible to toggle breakpoints from the Debug Menu.

Extant breakpoints can be assigned a count and / or an expression using this
dialog. If a count is assigned, this indicates the number of times the breakpoint
can be hit before trapping into the debugger. If an expression is assigned, the
expression will be evaluated whenever the breakpoint is hit, but will only trap
into the debugger if the expression is true.

Structures This option displays a dialog box which provides information about the
structures available, and allows the user to add and remove structures. The
View button on the dialog box also allows the user to examine the contents of
structures at a known address.

The New button provides the facility to define new structures. Definitions should
be entered in the same format as the output of the asm -S command.

Disassembly This is a flag controlling whether to use Disassembly Mode or Source Mode. In
Source Mode, source is only displayed if debug information is available from the
target. The window list above the Source / Disassembly window allows
switching between the difference source and disassembly views available.

Create New Info
Pane

This option displays a drop down menu, enabling the user to add the following
information windows*, either as part of the main fbug window or as separate
windows.

* These are as follows:

• Ktrace • Debug Memory Object analysis tool
• Memory • Processes
• Stacktrace • Expression / Structure Watch
• Native Registers • Port Forwarding

The FBUG Debugger User Guide

Page 25

5.1.4 Target Menu

Figure 13. The Target Menu

Create new target This menu item displays a series of dialog boxes which one can use to specify
the parameters for a new target.

Select current
target

Displays a sub-menu consisting of all existing target configurations, and allows
the user to select which one to use. If this is changed while the target is
running, the change will not take effect until the target is restarted.

Delete target Displays a sub-menu consisting of all existing target configurations, and allows
the user to select one to be deleted.

Target / Modify
target settings This option displays a sub-menu consisting of all existing target configurations,

and allows the user to select one and modify any of its parameters.

The FBUG Debugger User Guide

Page 26

5.1.5 Debug Menu

Figure 14. The Debug Menu

Debug / Go This option starts the debug session if it is not
already running, and otherwise allows the target to
continue.

Debug / Pass exception to target This option allows the target to continue, but if an
exception occurred passes it to the target for
processing by intent exception handlers.

Debug / Abort This option aborts the debug session, and
terminates the target intent session if it is a local
process on Linux or Windows.

Debug / Break in This option interrupts the target intent session.
Debug / Restart This option restarts the target intent session if

possible.
Debug / Step into This option causes the target to "step into" the

current instruction or source-line, depending on
whether the debugger is in Source Mode or
Disassembly Mode.

Debug / Step over This option causes the target to "step over" the
current instruction or source-line, depending on
whether the debugger is in Source Mode or
Disassembly. Thus if the current instruction or
source-line is a call, the debugger will continue until
the instruction or source-line immediately after the
call, rather than stopping on the destination
instruction.

Debug / Step out This option causes the target to "step out" of the
current function. This sets a breakpoint on the

The FBUG Debugger User Guide

Page 27

instruction immediately after the current stack frame,
runs until this breakpoint is hit, and then removes
the breakpoint.

Debug / Run to cursor This option sets a temporary breakpoint at the
cursor position, runs until a breakpoint is hit, and
then removes the breakpoint set above.

Debug / Show next statement This option shows the instruction which would be
executed next if the target were allowed to run. If the
target has crashed, the line which was being
executed is shown. The relevant line is indicated by
a small, blue arrow to the left of the line in the
Source / Disassembly Window.

Debug / Evaluate expression This option displays a dialog box into which the user
can enter an fbug expression for evaluation. The
result of the expression is presented to the user in
the chosen format.

Debug / Set memory watchpoint Displays a dialog box into which the user may enter
an address (or an expression evaluating to an
address), a size (byte, short or word), and a flag
(break on change in boolean value / break on any
change). A watchpoint expression is constructed
from these parameters and is set. Execution will be
interrupted if the value of the specified memory
location changes in the way specified by the user.

Debug / Toggle breakpoint Toggle (i.e. set and unset) a breakpoint at the
current cursor location.

Debug / Set watchpoint on expression Displays a dialog box into which the user may enter
a Watchpoint Expression. A watchpoint is set on this
expression, and execution will be interrupted if the
value changes in the way specified by the
watchpoint.

Debug / Set tool-load breakpoint The user is prompted for a tool name, and a
breakpoint is set on the loading of the specified tool.
In addition, a small dialog box pops up informing you
if the breakpoint is hit.

Debug / Set breakpoint at address expression The user is prompted for an address expression
(toolnames can be specified by prefixing them with a
"#" character). A breakpoint is set at the resulting
address.

Debug / Set breakpoint at tool entry-point The user is prompted for a tool name. If the
specified tool is present in memory, a breakpoint is
set at its entry-point. Otherwise, a breakpoint is set
on the loading of the tool, and when the tool-load
breakpoint is hit, a breakpoint is automatically set at
the entry-point of the tool.

Debug / Produce Textual Summary of State This menu item produces a textual summary of the
target machine's state, suitable for sending in an
email or recording for later analysis. When the menu
item is selected, a dialog box appears, in which the
user can select which parts of the target machine's
state should be recorded, including native registers,
expressions, code areas, memory areas, stack
information and process information.

5.2 The fbug Windowing Options

The FBUG Debugger User Guide

Page 28

5.2.1 Window Location

The location of the various fbugwin windows can be selected from the View menu, or from a context
menu within the relevant window. There are currently five options:

Top The corresponding window is docked at the top of the fbugwin main
window.

Bottom The corresponding window is docked at the bottom of the fbugwin main
window.

Right The corresponding window is docked at the right of the fbugwin main
window.

Left The corresponding window is docked at the left of the fbugwin main window.
Independent window The corresponding window is displayed in a separate top-level window that

can be moved and resized independently of the main fbugwin window. If this
window is closed, the state reverts to "Not displayed".

Not updating
(available only from
context menu)

The corresponding window is no longer updated. In this mode, the
information contained in the window is not refreshed each time the target
stops. Thus, the execution speed of the debugger may be slightly faster. The
words 'update disabled' are displayed in the title of the window, and updating
can be re-enabled from the context menu.

5.2.2 Source / Disassembly Window
This main window displays source and / or disassembly information gathered from the target. It is
updated whenever the target stops to show the code at the current program-counter location.

If the "currently-selected process" (see Process Information) or the current stack level is changed the
code at the corresponding location is displayed in this window.

The window consists of several parts: a section on the left showing the presence of breakpoints (if
there are any in the currently displayed area) as small red circles and the current program-counter (if
it is in the currently displayed area), and a section on the right showing either the source file or the
disassembly. A small blue arrow indicates the current line of source code or disassembly.
If source information is available, then this window can display either the source code for the current
tool, or the native instructions at the specified addresses interspersed with source lines. If source
information is not available, then only the disassembly into native instructions will be shown.
Immediately above the window is a window list, which can be used to switch between the source or
disassembly views currently available.

There are two modes of operation, Source mode and Disassembly mode, which govern which view is
displayed by default. If source information is not available, disassembly will be displayed. Toggling
between the modes is achieved by checking the "Disassembly" item in the View menu.

Context menus can be brought up by clicking the right mouse button over different areas of the
window. Clicking on a line of source code in Source mode brings up Menu A. In Disassembly mode,
clicking on a line of disassembly brings up Menu B, or clicking on a toolname (displayed in green)
Menu C.

Source / Disassembly window Context menu A

• Search file • Repeat last search
• Goto line • Close file
• Toggle breakpoint at this line • Run to this line
• Modify breakpoint settings

Source / Disassembly window Context menu B

• Disassemble at address • Disassemble at tool
• Toggle breakpoint at this address • Run to this address

The FBUG Debugger User Guide

Page 29

• Modify breakpoint settings

Source / Disassembly window Context menu C

• Disassemble at address • Disassemble at tool
• Toggle breakpoint at this address • Run to this address
• Modify breakpoint settings • View tool "toolname"
• View tool "toolname" at offset 0xXX (only

present if available)

Source/Disassembly Context
/ Search file

This menu item displays a dialog box into which the user may enter
the details of a search to be performed of the current search file.
Options which may be set include the search text, the search
direction, and flags indicating whether the search is to be a regular-
expression search and whether it is to be case-sensitive.

Source/Disassembly Context
/ Repeat last search

This option performs a search with the criteria specified for the
previous search. This search is begun from the line over the which the
mouse was clicked, not from the line on which the previous search
ended.

Source/Disassembly Context
/ Goto line

This option prompts the user for a line number, and then moves the
cursor to the specified line.

Source/Disassembly Context
/ Close file

This option closes the current source file.

Source/Disassembly Context
/ Toggle breakpoint at this
line

This option toggles (i.e. sets and unsets) a breakpoint on the line of
code indicated.

Source/Disassembly Context
/ Run to this line

This option sets a temporary breakpoint at the source line specified,
runs until a breakpoint is hit, and then removes the breakpoint set
above.

Source/Disassembly Context
/ Modify breakpoint settings

If the line selected has a breakpoint set, then this option allows you to
alter the conditions under which the breakpoint traps into the
debugger. Breakpoints can be assigned a count and / or an
expression. If a count is assigned, this indicates the number of times
the breakpoint can be hit before trapping into the debugger. If an
expression is assigned, the expression will be evaluated whenever the
breakpoint is hit, but will only trap into the debugger if the expression
is true.

Source/Disassembly Context
/ Disassemble at address …

The user is prompted for a memory address, and the disassembly into
native code of the data at that address is displayed.

Source/Disassembly Context
/ Disassemble at tool ...

The user is prompted to enter a toolname which occurrs within the
current context, and the disassembly of the tool into native code is
displayed. If source information is available, then lines of source code
will be interleaved with the disassembly.

Source/Disassembly Context
/ Toggle breakpoint at this
address

This option toggles (i.e. sets or unsets) a breakpoint on the line of
code indicated.

Source/Disassembly Context
/ Run to this address

This option sets a temporary breakpoint at the address specified, runs
until a breakpoint is hit, and then removes the breakpoint.

Source/Disassembly Context
/ View tool "toolname"

This option displays the disassembly of the tool toolname,
interspersed with source code if available.

Source/Disassembly Context
/ View tool "toolname" (offset
0xXX)

Displays the disassembly of the tool toolname at offset 0xXX,
interspersed with source code if available.

5.2.3 Memory Information
This window displays the contents of memory at a specified address on the target. The "Address" text
entry field allows the user to enter an address-expression (an fbug expression which evaluates to an
address). The memory at this address is then displayed.

The FBUG Debugger User Guide

Page 30

The window contains a checkbutton labeled "Reevaluate". If this is selected when an address
expression is entered, the expression is re-evaluated each time the target stops, and the memory
window updated to display the contents of the memory at the resulting address (which may be
different to the previous displayed address). If the "Reevaluate" checkbutton is not selected, the
address-expression is evaluated once when it is entered, and the memory at the resulting address is
displayed. When the target stops subsequently the displayed address does not change. When the
target stops, the contents of the memory window are updated, and any differences from the previous
values are highlighted in red.

If the right mouse button is clicked in the memory window, a popup menu is displayed, presenting the
user with the options to search the target memory or alter the display.

Memory Information Window Context Menu

• Search target memory • View memory as 32-bit words
• View memory as 16-bit words • View memory as 8-bit bytes and chars
• Limit width to powers of 2

Memory Information Context
/ Search target memory

This option displays a dialog box which allows the user to specify a
search string, the address from which to begin the search and the
maximum search length in bytes. The search string can be a textual
string, and may involve any of the standard characters which use the
backslash '\' as an escape character, or can be a byte value to search
for directly in memory. A hex value can be indicated by preceding the
search value with '\x', octal by preceding it with '\o'. It should be noted
that searching for '\abcdefgh' and '\ab\cd\ef\gh' will produce different
results.

The latter will search for the 4 bytes occurring the order they are
written, whereas the former will search for the little-endian word
'ghefcdab'.

Memory Information Context
/ View memory as 32-bit
words

This option displays the target memory as a series of 32-bit words.

Memory Information Context
/ View memory as 16-bit
words

This option displays the target memory as a series of 16-bit words.

Memory Information Context
/ View memory as 8-bit bytes
and chars

This option displays the target memory as a series of bytes on the left-
hand side of the window, and interprets the data as ASCII characters
(where possible) on the right hand side.

Memory Information Context
/ Limit width to powers of 2

Checking this item ensures that the number of columns of memory
displayed is the largest power of 2 that will fit into the window. If it is
not checked, then the largest number of columns possible will be
displayed.

5.2.4 Process Information
This window displays information about any currently running processes on the target system,
including its PID, GP, Priority, Wake count, Suspend count and State, and main tool. The PID of the
"currently-selected process" is displayed in blue. The "currently-selected process" can be changed by
clicking on a PID.

Context menus can be brought up by clicking the right mouse button on various areas of the window:
clicking on a column header displays Menu A, clicking on a process, Menu B.

Process Information Context Menu A

• Select displayed fields • Restore default field layout
• Disable field "fieldname"

The FBUG Debugger User Guide

Page 31

Process Information Context Menu B

• Show properties of process "0xXX"

Process Information
Context / Select
displayed fields

This option provides a list of checkboxes that allow the user to select
which information is displayed about the processes. The fields available
include the process ID, priority, suspend count, current program-counter,
flag indicating whether the process was pre-empted, main tool of the
process, globals pointer, wake count, state, current stack-pointer and
parent process ID.

Process Information
Context / Restore default
field layout

This option returns all the fields displaying information about the
processes to their default widths.

Process Information
Context / Disable field
"fieldname"

This option stops displaying the field "fieldname", and resizes the other
fields appropriately.

Process Information
Context / Show properties
of process "0xXX"

This option displays detailed information about process 0xXX, including
the process' ID, globals pointer, priority, wake count, suspend count,
state, current program counter, current stack pointer, whether or not the
process was pre-empted, the PID of the parent, and the main tool.

5.2.5 Native Register Information
This window displays the current values of the target's native registers. It is updated whenever the
target stops, and any changes from the previous values are highlighted in red.

If the right mouse button is clicked in this window, a context menu A is displayed, allowing the user to
select which native registers should be displayed. A right-click over a register name or value brings up
menu B.

Native Register Information Context Menu A

• Select displayed registers

Native Register Information Context Menu B

• Display as hexadecimal • Display as octal
• Display as binary • Display as character
• Display as signed decimal • Display as unsigned decimal
• Restore original format • Modify/Display value of "register"
• Select displayed registers

Native Register Context /
Select displayed registers

This option provides a list of native registers, from which the user may
select which ones they wish to be displayed.

Native Register Context /
Display as hexadecimal

This option displays the contents of the selected register as hexadecimal
value.

Native Register Context /
Display as octal

This option displays the contents of the selected register as octal.

Native Register Context /
Display as binary

This option displays the contents of the selected register as binary.

Native Register Context /
Display as character

This option displays the contents of the selected register as a character.

Native Register Context /
Display as signed
decimal

This option displays the contents of the selected register as a signed
decimal value.

Native Register Context / This option displays the contents of the selected register an unsigned

The FBUG Debugger User Guide

Page 32

Display as unsigned
decimal

decimal value.

Native Register Context /
Restore original format

This option returns to displaying the contents of the selected register in
the default format.

Native Register Context /
Modify/Display value of
"register"

This option displays a dialog box which allows the user to change the
contents of the native register "register

5.2.6 Watched Expressions
This window displays the current value of the "watched expressions". These are expressions specified
by the user, whose values are updated whenever the target stops. Differences from the previous
values of the expressions are highlighted in red.

If the right mouse button is clicked in the Expression section of the window, context Menu A is
displayed; clicking on a watched expression brings up Menu B, and the value of a watched expression
Menu C.

Watched Expressions Window Context Menu A

• Add new watch expression/structure • View VP registers
• View kernel data area

Watched Expressions Window Context Menu B

• Remove watch expression/structure "name" • Add new watch expression/structure
• View VP registers • View kernel data area

Watched Expressions Window Context Menu C

• Display as hexadecimal • Display as octal
• Display as binary • Display as character
• Display as signed decimal • Display as unsigned decimal
• Restore original format • Modify/display value of "name"

Watched Expressions
Context / Add new watch
expression/structure

This option displays a dialog box which allows the user to enter a new
expression to be 'watched'.

Watched Expressions
Context / View VP
registers

This option adds the VP registers to the list of watched expressions,
displaying them as an unexpanded list. If the toggle button is not present
to expand the list, then the contents of the registers is not available. It
should be noted that VP registers added in this way cannot be handled
individually. Individual VP registers can be added as watched
expressions using the Add new watch expression/structure menuitem.

Watched Expressions
Context / View kernel
data area

This option adds all the fields of the Kernel data area to the list of
watched expressions, displaying them as an unexpanded list.

Watched Expressions
Context / Remove watch
expression/structure
"name"

Removes the selected expression or structure, “name” from the list.

Watched Expression
Context / Display as
hexadecimal

This option displays the selected value as a hexadecimal.

Watched Expression
Context / Display as octal

This option displays the selected value as octal.

Watched Expression
Context / Display as
binary

This option displays the selected value as binary.

The FBUG Debugger User Guide

Page 33

Watched Expression
Context / Display as
character

This option displays the selected value as a character.

Watched Expression
Context / Display as
signed decimal

This option displays the selected value as a signed decimal.

Watched Expression
Context / Display as
unsigned decimal

This option displays the selected value as an unsigned decimal.

Watched Expression
Context / Restore to
original format

This option returns to displaying the selected value in its original format.

Watched Expression
Context / Modify/display
value of "name"

This option displays a dialog box which allows the user to alter the value
of the corresponding expression, “name.” Currently, the values of VP
registers may not be altered.

5.2.7 Ktrace Information
The Ktrace Information window simply displays any re-directed ktrace information. To redirect from
ktrace.log, consult the relevant documentation for your platform. If the right mouse button is clicked
over the ktrace window, the following context menu is displayed:

The FBUG Debugger User Guide

Page 34

Ktrace Information Context Menu

• Set number of scrollback lines • Set ktrace filter regexp
• Set output file • Clear contents

Ktrace Context / Set
number of scrollback
lines

The ktrace window buffers lines of ktrace, and presents them as a
scrollable display. This can be used to set the number of lines which are
buffered at any time. The default setting is 500 lines.

Ktrace Context / Set
ktrace filter regexp

This option displays a dialog box which allows the user to enter a regular
expression. The ktrace window will then display only lines of ktrace which
contain a matching expression. If an expression is set it is displayed in
the title bar of the window.

This feature uses regular expressions as defined by POSIX 1003.2, and
handles basic, advanced and extended regular expressions. This option
can also be used to remove a regular expression filter, by leaving the text
area of the dialog box blank. It should be noted that the filter expression
remains set until it is explicitly removed. If a filter expression is set at the
time fbugwin is closed down it will be saved as a preference, and will be
set next time fbugwin is opened.

Ktrace Context / Set
output file

This option displays a dialog box which allows the user to enter a
filename. The ktrace output is then both displayed in the ktrace window
and written to the specified file. The output filename will remain set until
explicitly cleared. Each time the target is restarted, or allowed to
conitinue, ktrace is appended to the end of the output file. If fbugwin is
closed and re-opened, the output file is cleared.

Ktrace Context / Clear
contents

This option clears the contents of the ktrace information window. It does
not clear any other preferences, such as regular expression filters.

5.2.8 Stacktrace Information
This window displays the stacktrace information for the currently selected process.

The "top", or 0th, level of the stack trace shows the stack pointer and program counter at the point at
which execution stopped, also the name of the tool which was being executed, and the offset reached
within that tool. The previous level (1) indicates the toolname previously executed, the offset at which
the current tool was called, and corresponding stack pointer and program counter. The remainder of
the call stack displays information in a similar format.

It should be borne in mind that the call stack is calculated by fbug and may contain 'phantom' entries,
which cannot be algorithmically determined to be false.

Right-clicking on any of the column headers displays context Menu A; clicking on any line of
stacktrace other than the top one displays Menu B.

Stacktrace Information Context Menu A

• Select displayed fields • Restore default field layout
• Disable field "name"

Stacktrace Information Context Menu B

• Run to stack level X • Read all stack entries

Stacktrace Context /
Select displayed fields

This option displays a dialog box which allows the user to select the fields
which are to display information. Available fields include:

• Num (the stack level)
• Stack pointer

The FBUG Debugger User Guide

Page 35

• Program counter
• Details (eg. toolname if known)

Stacktrace Context /
Restore original field
layout

This option resizes the displayed fields to return them to their default
widths.

Stacktrace Context /
Disable field "name"

This option removes the field "name" from the display. (If "name" is the
only field currently displayed, this has no effect).

Stacktrace Context / Run
to stack level X

This option sets a breakpoint at the instruction at stack level X (ie the one
following the call), runs until a breakpoint is hit, and then removes the
breakpoint which was set.

Stacktrace Context /
Read all stack entries

If there are more stack entries than can be displayed in the window, then
only the number required to fill the window are read in. Scrolling down
causes the remaining entries to be read in as they are needed, with the
scrollbar resizing itself as more entries become available. Alternatively,
this option allows all remaining stack entries to be read in at once.

5.2.9 Port Forwarding
When Port Forwarding is enabled the specified port (either a serial port or a socket connection) is
made available to another machine over a socket connection. This allows debugging of remote
targets from machines other than those directly connected to the target.

The Port Forwarding window provides information on the current parameters set for forwarding, and
enables you to change them (via the Change Settings button). The Start button will remain greyed out
until a serial port, or client host and port, has been specified.

5.2.10 Debug Memory Objec t Analysis Tool
When using the Debug Memory Object, the sys/kn/mem/util/showmem tool becomes available. This
outputs information about memory blocks, in a textual form.

The Debug Memory Object Analysis Tool allows this information to be presented in a graphical
format, and is always opened in a separate window. Right-clicking in the window brings up menu A
which enables the user to select a file from which to read in memory information.

Once the file has been read the user is prompted to 'select a section' and right-clicking again will bring
up context menu B. The Select section, PID and mode option allows the user to choose the
information which is to be displayed.

The data is displayed as a tree diagram, with nodes whose stacktraces share a common tool sharing
a parent node. Each node provides information about the size and number of allocated blocks it
represents, and the tools which performed the allocation. Further information about the memory
blocks can be obtained by expanding the nodes, either on an individual basis or by using the Expand
all terminal nodes option on menu B.

Debug Analysis Context Menu A

• Write results to a file • Analyse debug memory object data from file
• Disable filtering of stacktrace entries

Debug Analysis Context Menu B

• Write results to a file • Analyse debug memory object data from file
• Disable filtering of stacktrace entries • Discard current data
• Select section, pid and mode • Expand all terminal nodes
• Collapse all terminal nodes

Debug Analysis Context /
Write results to a file

This option allows the user to save a textual representation of the data
to a specified file. This is an easier to read format than the data

The FBUG Debugger User Guide

Page 36

obtained directly from sys/kn/mem/util/showmem
Debug Analysis Context /
Analyse debug memory
object data from file

The user is prompted to enter a filename from which to read data. The
file specified should contain information in the format output by
sys/kn/mem/util/showmem, and should not contain anything else.

Debug Analysis Context /
Disable filtering of stacktrace
entries

The stacktrace filtering is intended to remove spurious entries from
the stacktrace; this option can be used to turn it off if it is not required.

Debug Analysis Context /
Discard current data

This option discards all data previously read in.

Debug Analysis Context /
Select section, pid and node

This option displays a dialog box, allowing the user to choose which
information is to be displayed. Each time sys/kn/mem/util/showmem is
called, the output is written as a separate 'section'. Thus if
sys/kn/mem/util/showmem has been called three times, the results will
appear as sections 0,1 and 2 respectively. A graph can be drawn for
an individual process, by selecting the PID of the required process, or
for all processes (select 'All PIDs'). The mode simply indicates
whether the graph should include any information about allocated
blocks only, free blocks only, or all blocks.

Debug Analysis Context /
Expand all terminal nodes

Each of the terminal nodes can be expanded individually to give more
information about the blocks they represent, including the memory
address. This option expands all terminal nodes.

Debug Analysis Context /
Collapse all terminal nodes

If terminal nodes have been expanded to display more information,
this option collapses all currently-expanded terminal nodes.

The FBUG Debugger User Guide

Page 37

6. Common Problems in Debugging
The tutorials in the following section test fbug by demonstrating how to trap five common
programming errors, as exemplified by the demonstration program demo/example/debug.asm.

The problems covered by the tutorial can only be detected through a checking translator, for example
the pentiumt translator available for the ix86. Debugging using a checking translator can help to avoid
the more obscure problems that such faults may cause on target hardware. Specifically:

1.Non-aligned Memory Access

This is detected by the pentiumt translator emitting special code to detect the situation and hit a hard
coded breakpoint. When not using pentiumt, ix86 platforms will not detect this. Nonetheless, it will
cause a crash on the majority of other CPUs.

2. Stack overflow:

This is detected by the pentiumt translator emitting special code to detect the situation and hit a hard
coded breakpoint. Other translators will carry on using the overflowed stack, which will cause
memory corruption that can be hard to track down.

3. Incorrect parameters:

This is detected by the pentiumt translator emitting special code to detect the situation and hit a hard
coded breakpoint. Other translators simply carry on, which may cause corruption of registers that
may be hard to track down.

4. Divide by Zero

It is a requirement of the VP specification that divide by 0 is detected. On ix86 cpus this is done by
using the hardware exception, which fbug detects. On many other cpus, there is no divide instruction
and as such the divide by zero is detected by the emulation tool, which will not be picked up by fbug.

5. Incorrect use of the noret instruction:

This is detected by the pentiumt translator emitting special code to detect the situation and hit a hard
coded breakpoint followed by a leave instruction. Other translators continue on into whatever code
was following, which may cause erratic behaviour to occur or crash immediately.

The following section also demonstrates setting of breakpoints.

The FBUG Debugger User Guide

Page 38

7. Using the Debugger Graphical Interface

This tutorial is mainly intended for use with fbugwin, although brief notes are included describing use
of fbug.. In order to usefbugwin, it is first necessary to go through the process of creating a new
target. A "target" is simply a named set of parameters for the debugger, which define how the
debugger should communicate with the ‘debuggee.’ A new target may be selected through the target
menu, through a series of dialogboxes. The first of these allows the selection of the name of the new
target (which must be unique), and the target type, which is one of: Local, Remote (serial), Remote
(socket) and Remote (pipe). For these purposes, Local should be selected.

The second dialog box depends on the target type which was just selected. For a "Local" target, the
user is prompted to enter the executable name, image file and any applicable flags for the executable.
It also allows the user to select the name of a symbol-file to use. Alternatively, the user can select not
to use a symbol-file at all. Finally, additional fbug options may be entered.

As such for Windows®, this will be of the form:

Executable name:

C:/intent/sys/platform/win32/elate.exe

Image file:

C:/intent/sys/platform/win32/developt.img

For an intent graphics window the following may be specified.

Flags:

-i0 –c’dev/ave/dsk/tiles/ -sdev/ave/dsk/runapp.scr’

For Linux® it will be of the form:

sys/platform/linux/elate

sys/platform/linux/ix86/developt.img

For a "Remote (pipe)" target, the user is prompted to enter the names of the input and output pipes. If
the output pipe is not specified, the input pipe is used for both input and output. For a "Remote
(serial)", the user is prompted to enter the name of the serial port to use (such as "COM1" and so on
for Windows, or "/dev/ttyS0" on Linux), and the baud rate. For a "Remote (socket)" target, the user is
prompted to enter a hostname, and a port.

Once the process of creating a new target has been finished, a button on the toolbar (currently
containing a picture of traffic lights) can be used to start the intent session (assuming this has not
already been done through a command line option).

fbug users will need to specify the image name at the command line.

7.1 Non-aligned memory access
At the intent shell prompt type:

$ asm –vg demo/example/debug

The FBUG Debugger User Guide

Page 39

This assembles debug.asm in verbose mode with debugging information included. Debug.asm
contains a number of common errors that we are going to use the debugger to find and correct. Now
run the code:

$ demo/example/debug

Initially, demo/example/debug.asm may be within the intent filesystem which cannot be read by fbug.
Either specify the filename when prompted by fbugwin or (if using fbug) touch the file before running:

touch demo/example/debug.asm

At this point fbugwin should report a hard coded breakpoint and display the line that is causing the
problem:

Figure 15. Non-aligned Memory Access

The line of interest is highlighted above by the presence of an arrow – in the text user interface the
entire line will simply be highlighted. Note that fbug displays the VP source, although the above
screenshot of fbugwin has the interface displaying both source and disassembly. To correct the
problem, comment out the offending line. If unaligned memory access is required then the cpy.ni
instruction should be used (note the ‘n’).

The FBUG Debugger User Guide

Page 40

7.2 Incorrect parameters passed

Reassemble the source code after modifying it, while remembering to use the –g option to add
debugging information to the tool. Run the tool again. This time fbugwin will display the point at which
a problem is reached, which should be line 54:

Figure 16. Incorrect Parameters

As such, it is necessary to establish the calling line location and what subroutine is being called.

A pop-up menu box displays information, if available, concerning the cause of the problem. An Elate®
parameter mismatch: expecting (i0:-), caller gave (p0:-)” is reported. Since we can see from the
source/disassembly window that execution stopped at line 54, we know that demo/example/mytool
was called with the wrong parameters. If a stacktrace window is opened, clicking on the previous
stack level (i.e. Num=1) displays in the source/disassembly window the line from which

The FBUG Debugger User Guide

Page 41

demo/example/mytool was called (line 34). As we can see from that the wrong parameters are passed
in.

In the case of debugging with fbug; in the stack trace window (which can be accessed by going
through (V)iew & (C)allstack), move to the line of interest, and hit enter. The list window then moves
the source or disassembly to the location in question. The source should display a comment to the
effect that that particular line of source code has the incorrect parameters.

Correct the incorrect line in the source code – simply comment it out and replace it with line number
35- and then reassemble.

7.3 Stack overflow
The next problem that should become apparent is a stack overflow. The tool debug.asm deliberately
simulates this by making demo/example/mytool recursive. Of course, this quickly uses up the 8K of
stack allocated to the main tool (demo/example/debug) and thereby causes fbugwin to be entered
into.

Figure 17. intent SessionStack Overflow

The cause of a stack overflow is best located by examining the stack trace, looking in particular for
‘loops’ in the stack trace or large jumps in SP. In this case we find that demo/example/mytool has
been called repeatedly, thereby forming a loop. Clicking on one of these lines of trace brings up the
relevant code in the source/disassembly window, from which it can be seen that
demo/example/mytool has been repeatedly calling itself.

The FBUG Debugger User Guide

Page 42

Figure 18. The Stack Window (displayed in the bottom right-hand corner)

In the case of using fbug, selecting callstack under the view menu again will show that the tool
demo/example/mytool has been called repeatedly. Selecting one such line (with the source display
being engaged rather than disassembly) should show the offending line of source code, namely line
57.

To rectify this issue, either comment out this line of code, thereby preventing it from calling itself, or
rewrite the tool in such a manner as to stop the recursion at another point in the code.

7.4 Divide by zero
After fixing the recursive call problem, reassemble and run again. This time, fbugwin (or fbug) traps a
new problem and informs us that an exception has occurred. The disassembly is as follows:

The FBUG Debugger User Guide

Page 43

Figure 19. Divide by Zero

The status bar indicates that and ‘integer divide error’ has taken place and the source/disassembly
window shows that the error has taken place on line 65, where i0 is divided by i1. Entering i1 as a
‘watch expression’ in the Watch Expression / Structures window confirms that i1 is indeed equal to
zero. The highlighted line of disassembly also shows that ecx is the native register currently
equivalent to i1.

In the case of fbug, the contents of ecx can be ascertained by typing in (V)iew (E)xpression, and then
entering ecx on the command line.

Leave this error un-rectified for the next task.

7.5 Setting a breakpoint
To demonstrate this we are going to add a breakpoint to debug.asm using fbugwin (there are other
ways, such as calling sys/cii/breakpt or the shell command dbgbp).

The FBUG Debugger User Guide

Page 44

To set a breakpoint at the current cursor location access the Debug menu and Toggle Breakpoint
(right-clicking on the relevant line and using Toggle Breakpoint from the context menu also works). To
confirm where the breakpoint has been set, look at View Breakpoints.

This still leaves the original problem within the code, which was that the value of ecx was 0. Arbitrary
expressions can be evaluated using the "Debug/Evaluate Expression" menu item. This includes the
ability to assign values to registers. As such the following should be entered at the evaluate
expression dialog.

ecx = 2

The special case of modifying register values can also be done using a context-menu in the native
register window. If the user right-clicks on the register value that they want to modify, they should
obtain a menu, containing (in this case) "modify value of register ecx.” Finally, Go, also under the
Debug menu can then resume execution, as does pressing the ‘traffic lights’ button.

To rectify this problem for the next task, comment out this line:

clr i1

which is commented as the source of the error in the code.

If using fbug, go to (B)reakpoint (S)et. Following this (V)iew (B)reakpoint will list the breakpoints that
have been set. The register can then be modified by entering ecx = 2 under (V)iew (E)xpression and
then typing in (R)un and (G)o in order to continue execution of our program. fbug should then hit the
breakpoint which has just been set.

7.6 Incorrect use of nore t instruction
The noret instruction is used to mark a point in the code that should never be reached. If execution
does reach a noret instruction, the result is undefined. If running under fbug or fbugwin then this error
will be trapped.

The FBUG Debugger User Guide

Page 45

Figure 20. Noret

Omitting this instruction after a call, which is known not to return, does not alter the semantics of the
code, but may make the translated code less optimised. To correct the error, comment out the noret
instruction at line 40 of the source code and remove the comments prefacing line 42. Once this and
the other errors have been commented out, demo/example/debug.asm should run normally.

The FBUG Debugger User Guide

Page 46

8. Notes on Remote Debugging
The intent system being tested, otherwise known as the target system, runs upon one processor. The
host system, which houses the intent debugger, runs upon another. These two processors are joined
by any of the connections previously listed. After the debugger has been invoked, it communicates
with a 'debug stub' on the target system via this link. Through this means, the debugger is able to
'interrogate' the target system.

The target system may be any recent version of intent for which a debug stub has been written. At the
current time, debug stubs exist for the majority of supported platforms. Debugging cannot occur
unless the appropriate debug stub device is loaded. Aside from the debugger program resident upon
the host, and the debug stub contained in the target, no files are essential to the debugging process. It
is even unnecessary for the target to contain a filesystem. However, source files are required on the
host if the user wishes source information to be displayed by either fbug or fbugwin.

8.1 The Debug Stub
The intent debug stubs - the target based part of the intent debugger - are standard intent devices.
There are separate debug stubs for each supported platform, and on each platform there are separate
debug devices for each means of communicating with the debugger. A debug stub acts as an agent
for the target intent session. It provides the debugger with the most basic debugging facilities:

• suspending and resuming execution
• examination and modification of CPU registers
• examination and modification of memory
• insertion and removal of breakpoints

Some of these facilities may not be available on all platforms. In particular, the exact behaviour of
breakpoints is extremely platform dependent.

Some debug stub devices can be written to. The devices that support this will send the data written to
the debugger host, as trace data. This feature is useful with embedded targets that have only one
spare serial port that must suffice for both ktraces and debugging. Only one debug stub can be
mounted at a time. It should always be mounted at /device/dbg.

8.2 Loading the Debug Stub
In order for debugging to take place, the appropriate debug stub must be loaded onto the target
system. This can take place before or after the debugger is invoked.

It is possible to load the debug stub by using either a sysgen directive or a "devstart" command. The
"devstart" command is designed to be entered at the keyboard during run time. However, the target
may be a system upon which no shell is running, and to which no keyboard is connected., in which
case the sysgen directive may be used to ensure that the debug stub is started automatically when
the system boots.

The sysgen directive will usually take the following form:

.obj (new tool=<_new filename>", mountstr="<mountname>", cmdline="debug
<textual parameters>")

The "devstart" command takes the following form:

$devstart <mountname> <pathname> <options>

The FBUG Debugger User Guide

Page 47

8.3 Baud rate
By default, serial communication will take place at 19200 baud. However, it is possible to alter the
speed to suit the platform. For example, it may be necessary to speed up the baud rate, e.g. 115200.

Where it is desired to alter the baud rate, fbug may be invoked with the –s option, as documented
above. It is not possible to adjust the baud rate after the debugger has been invoked. When creating a
target on fbugwin, the user is asked to specify a baud rate. This can be altered between intent
sessions.

The FBUG Debugger User Guide

Page 48

9. Other Utilities

Other useful utilities are available for debugging and analysis of code. These include:

♦ Data Flow Analyser (DFA)
♦ Test Coverage Analyser (TCA)

9.1 DFA
DFA is a data flow analysis utility which can:

♦ Check conformance with the VP2 specification
♦ Analyse register data flow and detect anomalies
♦ Emit modified tools containing selected optimisations

DFA currently supports VP tools in small tool format conforming to the VP specification.

9.1.1 Using DFA
Note that detailed information about various DFA command line options and operation can be found in
app/dfa/dfa.html. DFA is designed to be run from the shell. It will accept either a single toolname or
filename as input or will accept a series of arguments from stdin. DFA output is directed to stdout.

Usage:

dfa [-options] toolname[.00]

Certain tests are performed whenever DFA runs:

♦ Data flow analysis tests
♦ VP conformance checks

Other tests or optimisations are only performed when the relevant options are selected (see the -r, -d,
-b and -z options).

Additionally, the options selected determine the level of detail and the format of the output (see the -f,
-m, -q, -t, -v and -s options).

If it is intended to emit (write) a modified tool, the -w option must be selected; the modifications made
to the tool then reflect the other options selected. -b makes a backup of a file before modifying it.
For example, if you want to find out where zaps can be added to a tool, use the -z option; if you want
the zaps to be added automatically, use the -zw option.

As there are a large number of reports generated by DFA it is a good idea to start analysis using the -
fs or -ms combination. If processing a large number of files use the -qt option. This allows the most
significant problems to be pinpointed quickly. Effort spent chasing minor anomalies is usually wasted
if there are also significant or fatal anomalies, since correcting the latter will nearly always change the
former.

9.2 TCA
TCA is a test coverage analysis utility that measures the structural coverage achieved when testing
VP tools. TCA currently supports VP tools in small tool format conforming to the VP specification.

9.2.1 Using TCA
For detailed information about using TCA please refer to app/dfa/tca.html.

The FBUG Debugger User Guide

Page 49

The measurement of test coverage takes place in three stages:

♦ Instrumenting the object of the test
♦ Running the test
♦ Recording and analysis of the test coverage results

Usage:

tca [-options] toolname[.00]

9.2.2 Instrumenting The Object Tool(s)
Instrumenting the tool means modifying the tool binary; the modified tool is functionally identical to the
input tool, but also has code inserted, which at each entry point and block entry, records the
occurrence of execution of that code. When the modified tool is used in place of the original tool, the
test coverage data is gathered.

TCA instruments tools using the -i switch. It will accept either a single toolname or filename as input or
will accept a series of arguments from stdin. There is no output at this stage unless there are error
messages; if a tool has already been instrumented, this will be reported to stdout.

The instrumentation can either be standard (-i switch) or instrument entry points only (-ie switch).
Specifying the -b switch when instrumenting a tool causes the original to be backed up.

Instrumenting a tool also creates and initialises a test coverage data (.tcd) file. This file is maintained
for the life of that version of the tool.

Note that instrumented tools are not intended for inclusion in any deliverable build; they are only
intended for the purposes of test coverage measurement.

9.2.3 Running The Test
The test is run in the normal way. An instrumented version of a tool should behave identically to the
original; if it does not, this normally indicates that the tool is performing some illegal operations within
VP. As the tests are run, a number of named data areas are created and maintained in the intent
system:

♦ For each instrumented tool, a named data area is created which contains the test coverage data
for that tool. The first time the instrumented tool is called, the named data area is created and
initialised. Each subsequent call to the tool, and each time any code within the tool is exercised,
the relevant parts of the named data area are updated.

♦ There is a single master named data area with a well known name that contains a list header. All
of the extant tool ndas are maintained on a standard intent doubly linked list. As instrumented
tools are called and their ndas created, the ndas are added to the list. Whilst there are any tool
ndas in existence, the master nda also exists.

Note that the data maintained in named data areas whilst tests are being run is only transient, and
only applies to that series of tests. The data must be committed to file to become permanent.

Whilst running the tests, typing tca -l in the shell will return a list to stdout of all tools for which named
data areas currently exist (if any). This provides a means of discovering which tools are being
exercised at any instant.

If a tool is updated and re-instrumented whilst tests are going on, this event will be detected the next
time the tool is called, and the named data area re-initialised. Therefore there is no need to quit tca
before substituting an updated version of a tool.

The FBUG Debugger User Guide

Page 50

9.3 More Utilities

9.3.1 The Debug Device Driver
The device driver call-tracing driver is a standard device driver object. It is intended to sit between the
user and a real device driver. It simply passes calls through to the underlying driver, optionally printing
tracing information as it does so. It is principally intended as a debugging aid, and since the tracing
can be turned on and off at run time it should be useful to those without access to source code.

It provides methods that allow it to be used as a filesystem device, character device, block device,
pointer device, or keyboard device.

It is possible to run several call-tracing drivers simultaneously to trace different underlying devices.
The tracing output from the drivers is guaranteed to only break at a line end, so while lines of output
from two drivers may be interleaved, a line from one driver will never be broken in two by output from
the other. For more information see dev/dbg/elate/user.html

9.3.2 The Debug Memory Allocator
This allocator keeps track of extra information about allocated memory blocks in order to facilitate
tracking of memory leaks. The Debug memory allocator is a subclass of memory allocation object. It
is designed this way to enable it to run on top of a variety of different underlying memory objects with
a minimum of configuration effort.

The allocator keeps a list of currently allocated blocks, together with the PID of the process that
allocated them, and a quantity of stack information at the time of allocation. For more information
please see sys/kn/mem/debug/user.html.

9.3.3 Exception Flight Recorder
The Exception Flight Recorder is a set of linked programs that provide low-level details of hardware
and software exceptions to aid in debugging. There is a user-level interface to start the recorder and
configure it to report the desired information. For more information please see
sys/dbg/flightrec/flightrec.html

© Tao Group Ltd or Tao Systems Ltd. 2000, 2001. All Rights Reserved.

Copyright in the software either belongs to Tao Group Ltd or Tao Systems Ltd. The software may not
be used, sold, licensed, transferred, copied or reproduced in whole or in part or in any manner or form
other than in accordance with the licence agreement provided with the software or otherwise without
the prior written consent of either Tao Group Ltd or Tao Systems Ltd.

No part of this publication may be reproduced in any material form (including photocopying or storing
it in any medium by electronic means and whether or not transiently or incidentally to some other use
of this publication) without the written permission of the copyright owner.

Elate®, intent® and the Tao logo are registered trademarks of Tao Group Ltd.
Digital Heaven™ is a trademark of Tao Group Ltd.
The rights of third party trademark owners are acknowledged.

