
Dependency Walker Help Contents
What ’ s New in Version 2.1
Frequently Asked Questions (FAQ)

Overview of Dependency Walker
Why Use Dependency Walker?
Using Dependency Walker for Trouble Shooting Modules
Using Dependency Walker for General Information about Modules
Command Line Options and Return Values
Overview of Module Version Numbers
Types of Dependencies Handled By Dependency Walker
Using Application Profiling to Detect Dynamic Dependencies
How to Interpret Warnings and Errors in Dependency Walker
Dependency Walker Path (DWP) Files

Understanding the Module Session
The Module Session Window
The Module Dependency Tree View
The Module List View
The Parent Import Function List View
The Export Function List View
The Log View

Menus and Toolbar
The File Menu
The Edit Menu
The View Menu
The Options Menu
The Profile Menu
The Window Menu
The Help Menu
The Toolbar

What’s New in Version 2.1
Support for Side-by-Side versioning of modules.    This is a new feature

introduced with Windows XP that allows applications to specify specific
versions and/or locations of files it wishes to use.

Integration with Visual Studio help, MSDN help, and MSDN online to
provide the ability to display detailed help for any known function.

What was New in Version 2.0

Detection of dynamically loaded modules, including details about
which module actually called LoadLibrary to dynamically load the module.

Detection of dynamically called functions, including details about which
module actually called GetProcAddress to obtain the function address.

Detection of delay-load dependencies. This is a new type of
dependency that was introduced with Microsoft Visual C++ 6.0. They work
on Windows 95/98/Me and Windows NT/2000/XP.

Support for 64-bit Windows modules.
Console mode that allows Dependency Walker to be ran without its

graphical interface being displayed.    This is useful for batch files and
unattended automation of Dependency Walker features.

Command line options to configure module search order, column
sorting, output files, profiling, and other settings.

Ability to monitor module entrypoints (like DllMain) looking for module
initialization failures.

C++ function name undecorating to provide human readable C++
function prototypes including function names, return types, and parameter
types.

User definable module search paths with support for "KnownDLLs" and
the "App Paths" registry keys.    Search paths can be saved and loaded from
within the graphical interface or from the command line.

Ability to save a module's session to a text report file for easy viewing
in any text viewer.

Ability to save a module's session to a comma separated value (CSV)
file for easy importing into other applications.

Ability to save a snapshot of an entire module session to an image file,
which can be loaded by Dependency Walker at a later time on any computer.

Module profiling to detect dynamic dependencies, child processes,
thread activity, and exceptions. Child processes can also be profiled for their
dependencies.

Ability to control what file extensions Dependency Walker will add the
"View Dependencies" menu item to a file's context menu in explorer.

Added hotkeys to help match imports with exports, and modules in the
list view with modules in the tree view.    Also added hotkeys to locate the
previous, next, or original instance of a module in the tree view.

Added some new columns to the Module List View. They include Link
Time Stamp, Link Checksum, Real Checksum, Symbols, Actual Base, Virtual
Size, and Load Order.

Added an OS Information dialog. This information is also saved to text
and Dependency Walker Image (DWI) files.

All list views can now be sorted by icon, which provides an easy way of
grouping items of similar type.

You can now search all list views for text by simply typing in a few
characters to match in the currently sorted column.

Added color-coding to the module list view and log view to help
highlight problems.

Why Use Dependency Walker?
Have you ever...

...wondered why an application or module was failing to load?

...wondered what minimum set of files are required to run a particular
application or load a particular DLL?

...wondered why a certain module was being loaded with a particular
application?

...wanted to know what functions are exposed by a particular module,
and which ones are actually being called by other modules?

...wanted to know the parameter and return types of exported C++
functions?

...wanted to remove all dependencies for a given module?

...wanted to know the complete path of all the modules being loaded
for a particular application?

...wanted to know all the base addresses of each module being loaded
for a particular application?    What about versions?    Or maybe CPU types?

...received one of the following errors...
The dynamic link library BAR.DLL could not be found in the specified

path...
The procedure entry point FOO could not be located in the dynamic link

library BAR.DLL.
The application or DLL BAR.DLL is not a valid Windows image.
The application failed to initialize properly.
Initialization of the dynamic link library BAR.DLL failed. The process is

terminating abnormally.
The image file BAR.EXE is valid, but is for a machine type other than

the current machine.
Program too big to fit in memory.

Using Dependency Walker for Trouble Shooting
Modules
Dependency Walker recursively scans all dependent modules required by a
particular application.    During this scan it performs the following tasks:

Detects missing files.    These are files that are required as a
dependency to another module.    A symptom of this problem is the "The
dynamic link library BAR.DLL could not be found in the specified path..."
error.

Detects invalid Files.    This includes files that are not Win32 or Win64
compliant and files that are corrupt.    A symptom of this problem is the "The
application or DLL BAR.EXE is not a valid Windows image" error.

Detects import/export mismatches.    Verifies that all functions
imported by a module are actually exported from the dependent modules.   
All unresolved import functions are flagged with an error.    A symptom of this
problem is the "The procedure entry point FOO could not be located in the
dynamic link library BAR.DLL" error.

Detects circular dependency errors.    This is a very rare error, but can
occur with forwarded functions.

Detects mismatched CPU types of modules.    This occurs if a module
built for one CPU tries to load a module built for a different CPU.

Detects checksum inconsistencies by verifying module checksums to
see if any modules have been modified after they were built.

Detects module collisions by highlighting any modules that fail to load
at their preferred base address.

Detects module initialization failures by tracking calls to module
entrypoints and looking for errors.

Dependency Walker can also perform a run-time profile of your application to
detect dynamically loaded modules and module initialization failures.    The
same error checking from above applies to dynamically loaded modules as
well.

Using Dependency Walker for General Information
about Modules
Dependency Walker is more than just a trouble shooting utility.    It also
provides a great deal of valuable information about the module layout of a
particular application and details on each module.    Dependency Walker
provides the following information:

A complete module dependency tree diagram of all the modules
required by a particular application.

A list of all functions exported from each module.    These lists include
functions exported by name, functions exported by ordinal, and functions
that are actually forwarded to other modules.    Named C++ functions can be
shown in their native decorated format, or can be expanded into human
readable function prototypes including return types and parameters types.

A list of functions that are actually called in each module by other
modules.    These lists can help developers understand why a particular
module is being linked with an application, and also provides information on
how to remove unneeded modules from being dependencies.

A list of the minimum set of files that are required in order for a module
to load and run.    This list can be very useful when copying files to another
computer or creating setup scripts.

For each individual module found, the following information is
provided...

Full path to the module file.
Date and time of the module file.
Date and time the module was actually built.
Size of the module file.
Attributes of the module file.
The module checksum from when the module was built.
The actual module checksum.
Type of CPU that the module was built for.
Type of subsystem that the module was built to run in.
Type of debugging symbols that are associated with the module.
The preferred base load address of the module.
The actual base load address of the module.
The virtual size of the module.
The load order of the module with respect to other modules.
The file version found in the module’s version resource.
The product version found in the module’s version resource.
The image version found in the module’s file header.
The version of the linker that was used to create the module file.
The version of the OS that the module file was built to run on.
The version of the subsystem that the module file was built to run in.
A possible error message if any error occurred while processing the file.

Command Line Options and Return Values
DEPENDS.EXE [/?] [/c] [/a:#] [/f:#] [/u:#] [/ps:#] [/pp:#] [/po:#] [/ph:#]

[/pl:#] [/pg:#] [/pt:#] [/pn:#] [/pe:#] [/pm:#] [/pf:#] [/pi:#]
[/pc:#] [/pa:#] [/pd:dir] [/pb] [/sm:#] [/si:#] [/se:#] [/sf:#]
[/od:path] [/ot:path] [/of:path] [/oc:path] [/d:path] [path
[args...]]

/? Help - Displays this page.
/c Console mode - Dependency Walker will process the other

command line options and exit without displaying its graphical
interface.    You must specify a module or Dependency Walker
Image (DWI) file to open when using this option.

/a:# Auto Expand - Use /a:0 to start Dependency Walker with the
Auto Expand setting initially turned off, or /a:1 to start with it
turned on.    If this option is not specified, then the setting
from the last time you ran Dependency Walker will be used.

/f:# View full paths - Use /f:0 to start Dependency Walker with
the View Full Paths setting initially turned off, or /f:1 to start
with it turned on.    If this option is not specified, then the
setting from the last time you ran Dependency Walker will be
used.

/u:# Undecorate C++ functions - Use /u:0 to start Dependency
Walker with the Undecorate C++ Functions setting initially
turned off, or /u:1 to start with it turned on.    If this option is
not specified, then the setting from the last time you ran
Dependency Walker will be used.

/ps:# Profiling option: Simulate ShellExecute by inserting
any App Paths directories into the PATH environment
variable - Use /ps:0 to start Dependency Walker with this
setting initially turned off, or /ps:1 to start with it turned on.   
If this option is not specified, then the setting from the last
time you ran Dependency Walker will be used.

/pp:# Profiling option: Log DllMain calls for process attach
and process detach messages - Use /pp:0 to start
Dependency Walker with this setting initially turned off, or
/pp:1 to start with it turned on.    If this option is not specified,
then the setting from the last time you ran Dependency
Walker will be used.

/po:# Profiling option: Log DllMain calls for all other
messages, including thread attach and thread detach -
Use /po:0 to start Dependency Walker with this setting initially

turned off, or /po:1 to start with it turned on.    If this option is
not specified, then the setting from the last time you ran
Dependency Walker will be used.

/ph:# Profiling option: Hook the process to gather more
detailed dependency information - Use /ph:0 to start
Dependency Walker with this setting initially turned off, or
/ph:1 to start with it turned on.    If this option is not specified,
then the setting from the last time you ran Dependency
Walker will be used.

/pl:# Profiling option: Log LoadLibrary function calls - Use
/pl:0 to start Dependency Walker with this setting initially
turned off, or /pl:1 to start with it turned on.    If this option is
not specified, then the setting from the last time you ran
Dependency Walker will be used.    If this option is turned on,
then the "Hook the process to gather more detailed
dependency information" option will also be turned on.

/pg:# Profiling option: Log GetProcAddress function calls -
Use /pg:0 to start Dependency Walker with this setting initially
turned off, or /pg:1 to start with it turned on.    If this option is
not specified, then the setting from the last time you ran
Dependency Walker will be used.    If this option is turned on,
then the "Hook the process to gather more detailed
dependency information" option will also be turned on.

/pt:# Profiling option: Log thread information - Use /pt:0 to
start Dependency Walker with this setting initially turned off,
or /pt:1 to start with it turned on.    If this option is not
specified, then the setting from the last time you ran
Dependency Walker will be used.

/pn:# Profiling option: Use simple thread numbers instead of
actual thread IDs - Use /pn:0 to start Dependency Walker
with this setting initially turned off, or /pn:1 to start with it
turned on.    If this option is not specified, then the setting
from the last time you ran Dependency Walker will be used.   
If this option is turned on, then the "Log thread information"
option will also be turned on.

/pe:# Profiling option: Log first chance exceptions - Use /pe:0
to start Dependency Walker with this setting initially turned
off, or /pe:1 to start with it turned on.    If this option is not
specified, then the setting from the last time you ran
Dependency Walker will be used.

/pm:# Profiling option: Log debug output messages - Use
/pm:0 to start Dependency Walker with this setting initially
turned off, or /pm:1 to start with it turned on.    If this option is

not specified, then the setting from the last time you ran
Dependency Walker will be used.

/pf:# Profiling option: Use full paths when logging file names
- Use /pf:0 to start Dependency Walker with this setting
initially turned off, or /pf:1 to start with it turned on.    If this
option is not specified, then the setting from the last time you
ran Dependency Walker will be used.

/pi:# Profiling option: Log a time stamp with each line of log
- Use /pi:0 to start Dependency Walker with this setting
initially turned off, or /pi:1 to start with it turned on.    If this
option is not specified, then the setting from the last time you
ran Dependency Walker will be used.

/pc:# Profiling option: Automatically open and profile child
processes - Use /pc:0 to start Dependency Walker with this
setting initially turned off, or /pc:1 to start with it turned on.   
If this option is not specified, then the setting from the last
time you ran Dependency Walker will be used.    This option is
ignored when running in console mode.

/pa:# Profiling option: Turn all profiling options on or off - Use
/pa:0 to initially turn all profiling options off, or /pa:1 to initially
turn them all on.    This option can be used before other
profiling options.    For example, /pa:1 /pf:0 will turn on all
options except for the "Use full paths when logging file
names" option.

/pd:dir Profiling option: Starting directory - Specifies the starting
directory to use when profiling the module.    This option
requires that you specify a module to open.

/pb Profiling option: Automatically begin profiling after the
module has been loaded - This option requires that you
specify a module to open.    If an output option (/od, /ot, /of,
or /oc) is specified, Dependency Walker will wait until the
profiling fully completes before saving the results.

/sm:# Sort column for module list view - This option controls the
initial sort column that Dependency Walker will use when
sorting the items in the Module List View.    If this option is not
specified, then the value from the last time you ran
Dependency Walker will be used.    The values allowed are:

1. Icon
2. Module Name or Path
3. File Time Stamp
4. Link Time Stamp
5. File Size
6. File Attributes

7. Link Checksum
8. Real Checksum
9. CPU Type
10. Subsystem Type
11. Symbol Types
12. Preferred Base Address
13. Actual Base Address
14. Virtual Size
15. Load Order
16. File Version
17. Product Version
18. Image Version
19. Linker Version
20. OS Version
21. Subsystem Version

/si:# Sort column for parent import function list view - This
option controls the initial sort column that Dependency Walker
will use when sorting the items in the Parent Import Function
List View.    If neither this option or the /sf option is specified,
then the value from the last time you ran Dependency Walker
will be used.    The values allowed are:

1. Icon
2. Ordinal Value
3. Hint Value
4. Function Name
5. Entry Point Address

/se:# Sort column for export function list views - This option
controls the initial sort column that Dependency Walker will
use when sorting the items in the Export Function List View.   
If neither this option or the /sf option is specified, then the
value from the last time you ran Dependency Walker will be
used.    The values allowed are:

1. Icon
2. Ordinal Value
3. Hint Value
4. Function Name
5. Entry Point Address

/sf:# Sort column for both function list views - This option
controls the initial sort column that Dependency Walker will
use when sorting the items in both the Parent Import Function
List View and the Export Function List View.    If no sort column
option is specified for a particular column, then the value(s)
from the last time you ran Dependency Walker will be used.   
The values allowed are:

1. Icon
2. Ordinal Value
3. Hint Value
4. Function Name
5. Entry Point Address

/od:path Output file in Dependency Walker Image (DWI) format -
This option requires that you specify a module or Dependency
Walker Image (DWI) file to open.    Once the module has been
processed, the results will be written to the specified file in
the Dependency Walker Image (DWI) format.

/ot:path Output file in text format - This option requires that you
specify a module or Dependency Walker Image (DWI) file to
open.    Once the module has been processed, the results will
be written to the specified file in text format.

/of:path Output file in text format with import / export function
lists - This option requires that you specify a module or
Dependency Walker Image (DWI) file to open.    Once the
module has been processed, the results will be written to the
specified file in text format, including the import and export
function lists.

/oc:path Output file in Comma Separated Value (CSV) format -
This option requires that you specify a module or Dependency
Walker Image (DWI) file to open.    Once the module has been
processed, the results will be written to the specified file in a
Comma Separated Value (CSV) format.

/d:path Dependency Walker Path (DWP) file to load - This options
allows you to specify a Dependency Walker Path (DWP) File to
load and use as the initial search path when searching for
modules.    DWP files can be created using the Configure
Search Order command in Dependency Walker.

path Path to a module or Dependency Walker Image (DWI)
file to load - For this option, you can specify a file name, a
relative path, or a full path to a file to load.    The file must be
a 32-bit or 64-bit Windows module or a Dependency Walker
Image (DWI) file.    This path must come after any options
intended for Dependency Walker since all options that follow
this path are assumed to be program arguments for use when
profiling the module.

args... Program arguments - Specifies the command line
arguments to use when profiling the module specified by the
path option.    Dependency Walker considers any text
following the path option as being program arguments.    For
this reason, any options intended for Dependency Walker

must be specified before the path option.    If the file specified
by the path option is really a Dependency Walker Image
(DWI) file, then the args are ignored.

General Rules about Command Line Options

Options are case insensitive.    For example, "/c" and "/C" are
equivalent.

Options may start with a slash or a dash.    For example, "/c" and "-c"
are equivalent.

The colons (:) shown in the options above are optional.    They may be
removed or replaced with spaces.    For example, "/f:0", "/f 0", and "/f0" are
equivalent.

All profiling options are cumulative from left to right.    For example,
/pa:1 /pm:0 will turn on all the profiling options, then turn off the "Log debug
output messages" option, but /pm:0 /pa:1 will simply turn on all profiling
options.

Program options intended for Dependency Walker must come before
the module path.    All options after the module path will be passed to the
module as its command line when profiled.

If you wish to specify text that has spaces, that text should be placed
in quotes.    For example:

depends /pb /oc "c:\output files\foo bar.csv" "c:\input files\foo
bar.exe" 1 2 3 "this is a test"

Multiple options can be grouped together.    You may even append
options to other options that require numerical values.    The only options
that cannot be appended to are options that require a path or text values
(/pd, /od, /ot, /of, /oc, and /d).    For example:

depends /c /f:0 /u:1 /pa:1 /pf:0 /pe:0 /pb /sm:12 /sf:4
/d:search.dwp /oc:result.csv /od:result.dwi foo.exe

Could be shortened to:
depends /cf0u1pa1pf0pe0pbsm12sf4dsearch.dwp /ocresult.csv
/odresult.dwi foo.exe bar

All options can be specified with or without the "Console Mode" option
(/c).

More than one output file type option can be specified.

Return Values

When Dependency Walker exits, it returns a set of bit flags that are OR'ed
together.    There are three groups of error flags - module warnings,
module errors, and processing errors.    The error flags have been

arranged in a way that makes it easy to detect the severity of a problem.

If the return value is greater than or equal to 0x00010000, then there was
a processing error with Dependency Walker and no work was done.   
Otherwise, if the return value is greater than or equal to 0x00000100,
then the operating system will not be able to load the module due to
some module or dependency error.    Otherwise, if the return value is
greater than or equal to 0x00000001, then the module has no load-time
dependency problems and will most likely have no problems loading, but
may have runtime problems.

Module Warnings - Application should load, but might fail during
runtime.

0x00000001 At least one dynamic dependency module was not
found.

0x00000002 At least one delay-load dependency module was not
found.

0x00000004 At least one module could not dynamically locate a
function in another module using the GetProcAddress
function call.

0x00000008 At least one module has an unresolved import due to a
missing export function in a delay-load dependent
module.

0x00000010 At least one module was corrupted or unrecognizable to
Dependency Walker, but still appeared to be a Windows
module.

0x00000020 At least one module failed to load during profiling.    This
usually occurs when a module returns 0 from its DllMain
function or generates an unhandled exception while
processing the DLL_PROCESS_ATTACH message.

Module Errors - Application will fail to load by the operating system.

0x00000100 At least one file was not a 32-bit or 64-bit Windows
module.

0x00000200 At least one required implicit or forwarded dependency
was not found.

0x00000400 At least one module has an unresolved import due to a
missing export function in a dependent module.

0x00000800 Modules with different CPU types were found.
0x00001000 A circular dependency was detected.
0x00002000 There was an error in a Side-by-Side configuration file.

Processing Errors - All or some modules could not be processed.

0x00010000 There was an error with at least one command line
option.

0x00020000 The file you specified to load could not be found.
0x00040000 At least one file could not be opened for reading.
0x00080000 The format of the Dependency Walker Image (DWI) file

was unrecognized.
0x00100000 There was an error while trying to profile the

application.
0x00200000 There was an error writing the results to an output file.
0x00400000 Dependency Walker ran out of memory.
0x00800000 Dependency Walker encountered an internal program

error.

Overview of Module Version Numbers
There are four version fields that every Windows module is guaranteed to
have.    They are all two-part version numbers (#.#).    They include:

Image Version This value is set by the developer of the module
by using the VERSION statement in their DEF file
or by using the /VERSION linker option.    It usually
represents the version of the module or product
that the module is part of, but can contain any
value since it is up to the developer to set it.    If
the developer does not specify a version, then this
value will default to 0.0.    This value may be used
as a last resort when comparing two modules to
check which module is newer.

OS Version This value represents which version of the
operating system the module was designed to run
on.    Certain functions may behave differently
depending on this value in order to remain
compatible with applications built for a particular
operating system version.

Subsystem Version This value represents which subsystem version
the module was designed to run on.    Most
modules use the default value, but developers can
override the default by using the /SUBSYSTEM
linker option if they wish to target a particular
subsystem version other than the default.   
Certain subsystem functions may behave
differently depending on this value in order to
remain compatible with applications built for a
particular subsystem version.

Linker Version This value represents the version of the linker that
was used to build the module.    It can be used to
determine if a specific linker feature was available
at the time the module was built.    For example,
delay-load dependencies is a new feature
introduced with version 6.0 of the linker, so if this
value is less than 6.0, the module shouldn't have
any delay-load dependencies.

In addition to the four standard version values, developers can add four more
optional version values by including a VERSION_INFO resource as part of
their resource file.    This resource structure has two four-part numeric fields
(#.#.#.#) and two text fields.    They include:

File Version Value This field is known as the "FILEVERSION" field in
the VERSION_INFO resource structure.    This
numerical value usually represents the version of
the module itself, but can contain any value since
it is up to the developer to set it.    This is the
value that most programs use when comparing
two modules to check which module is newer.

Product Version Value This field is known as the "PRODUCTVERSION"
field in the VERSION_INFO resource structure.   
This numerical value usually represents the
version of the product that this module is part of,
but can contain any value since it is up to the
developer to set it.    For example, "Acme Tools
version 3.0" is a set of ten utilities, including
"Acme Virus Checker version 1.5".    The virus
checker executable might have a file version of
1.5.0.0 and a product version of 3.0.0.0

File Version Text This field is known as the "FileVersion" field in the
VERSION_INFO resource structure.    This text
string usually represents the version of the
module itself, but can contain any text string since
it is up to the developer to set it.

Product Version Text This field is known as the "ProductVersion" field in
the VERSION_INFO resource structure.    This text
string usually represents the version of the
product that this module is part of, but can
contain any text string since it is up to the
developer to set it.

Dependency Walker shows the true FILEVERSION and PRODUCTVERSION
version values and not the text string versions.    Other applications, like the
Windows Properties dialog, show the text string values since that is what the
developer of the module wants the average non-technical user to see.    For
example, you may see only "2.0" in the Windows Properties dialog for a
module when its real version is 2.0.5.2034.    If you want to know the true
version of a file, you should use Dependency Walker and not the Windows
Properties dialog.

A great web site for looking up version numbers of modules is the Microsoft
DLL Help Database
(http://support.microsoft.com/servicedesks/FileVersion/dllinfo.asp).    This site
has detailed version histories of DLLs and lists what products were shipped
with each version.    This database can be helpful in tracking down version

problems.

Types of Dependencies Handled By Dependency
Walker
There are several ways a module can be a dependent of another module:

1. Implicit Dependency (also known as a load-time dependency or
sometimes incorrectly referred to as static dependency): Module A is
implicitly linked with a LIB file for Module B at compile/link time, and
Module A’s source code actually calls one or more functions in Module
B.    Module B is a load time dependency of Module A and will be loaded
into memory regardless if Module A actually makes a call to Module B
at run-time.    Module B will be listed in Module A’s import table.

2. Delay-load Dependency: Module A is delay-load linked with a LIB file
for Module B at compile/link time, and Module A’s source code actually
calls one or more functions in Module B.    Module B is a dynamic
dependency and will only be loaded if Module A actually makes a call
to Module B at run-time.    Module B will be listed in Module A’s delay-
load import table.

3. Forward Dependency: Module A is linked with a LIB file for Module B
at compile/link time, and Module A’s source code actually calls one or
more functions in Module B.    One of the functions called in Module B is
actually a forwarded function call to Module C.    Module B and Module
C are both dependencies of Module A, but only Module B will be listed
in Module A’s import table.

4. Explicit Dependency (also known as a dynamic or run-time
dependency): Module A is not linked with Module B at compile/link
time.    At runtime, Module A dynamically loads Module B via a
LoadLibrary type function.    Module B becomes a run time dependency
of Module A, but will not be listed in any of Module A’s tables.    This
type of dependency is common with OCXs, COM objects, and Visual
Basic applications.

5. System Hook Dependency (also known as an injected dependency):
This type of dependency occurs when another application hooks a
specific event (like a mouse event) in a process.    When that process
produces that event, the OS can inject a module into the process to
handle the event.    The module that is injected into the process is not
really a dependent of any other module, but does resides in that
process' address space.

Dependency Walker fully supports modules loaded by all of the above
techniques.    Case 1, 2, and 3 can easily be detected by just opening a
module in Dependency Walker.    Case 4 and 5 require runtime profiling, a
new feature in Dependency Walker 2.0.    For more information on profiling,
see the Using Application Profiling to Detect Dynamic Dependencies section.

Using Application Profiling to Detect Dynamic
Dependencies
Dependency Walker version 2.0 adds application profiling, a technique used
to watch a running application to see what modules it loads.    This allows
Dependency Walker to detect dynamically loaded modules that are not
necessarily reported in any on the import tables of other modules.   
Dependency Walker's profiler can also detect when a module fails to
initialize, which often results in the "The application failed to initialize
properly" error.

When a module is first opened by Dependency Walker, it is immediately
scanned for all implicit, delay-load, and forwarded dependencies (for more
information on dependency types, see the Types of Dependencies Handled
By Dependency Walker section).    Once all the modules have been scanned,
the results are displayed.    In addition to these known dependencies,
modules are free to load other modules at run-time without any prior
warning to the operating system.    These types of dependencies are known
as dynamic or explicit dependencies.    There is really no way to detect
dynamic dependencies without actually running the application and watching
it to see what modules it loads at run-time.    This is exactly what
Dependency Walker’s application profiling does.

For profiling to work, the module you open in Dependency Walker has to be
an executable file (usually ends with .EXE) that is designed to run on the
system you are working with.    If not, the Start Profiling menu option and
toolbar button will not be enabled.    When you choose to profile an
application, your application should begin to run.    As your application runs,
Dependency Walker will gather information and log it to the Log View, as well
as update the other views.

It is the job of the user to "exercise" the application to ensure that all
dynamic dependencies are found.    Usually dynamic dependencies are only
loaded when needed.    For example, modules related to printing might only
be loaded if the application actually prints.    In a case like this, if the
application does not perform a print while being profiled, then Dependency
Walker will not detect those modules related to printing.    Other modules
might only get loaded if an error occurs in the application.    Scenarios like
these might be hard to produce.    Because of this, It is impossible to
guarantee that all dynamic dependencies are found, but the more an
application is exercised, the better the odds are of finding them.

Dependency Walker's application profiler tracks every module that gets
loaded and attempts to determine which module actually requested the file
to be loaded.    This allows dynamically loaded modules to be inserted into

the Module Dependency Tree View as a child of the module that actually
loaded the module.

The profiler works by hooking particular function calls in the remote process
being profiled.    On Windows 95, Windows 98, and Windows Me, only non-
system modules can be hooked.    The result is that when a system module
dynamically loads another module, the profiler cannot tell who the parent
module is for the dynamically loaded module.    Parentless modules like these
will be added to the root of the Module Dependency Tree View.    All modules
that are loaded due to a system-wide hook will also be added to the root of
the Module Dependency Tree View since these types of modules are loaded
directly by the OS and have no parent module.    Even though Dependency
Walker may not be able to detect the parent of a dynamic dependency, it
does guarantee that all modules that get loaded by the application will be
detected.

One final benefit of the profiler is that it can correct the paths of any modules
that may have been incorrectly determined during the initial implicit module
scan.    When you first open a module in Dependency Walker, it recursively
scans all the import and export tables of modules to build the initial module
hierarchy.    Only file names are stored in these tables, so dependency walker
uses the rules you have set up in the Module Search Order Dialog to
determine the full path to each module.    During profiling, Dependency
Walker examines the real path of each module as they load and compares
them to the modules in the tree.    If a module loads from a different path
than Dependency Walker expected it to load from, then it will update the
module hierarchy and other views to reflect the change.

How to Interpret Warnings and Errors in
Dependency Walker
Dependency Walker may generate many warnings and errors for an
application.    Some errors may cause an application to fail, while others are
harmless and can be ignored.    Most failures fit into one of two categories:
load-time failures or run-time failures.

A load-time failure means that an application or module didn’t even have a
chance to run.    In more technical terms, this usually means that the entry-
point to a module was never called since the operating system couldn’t load
all the required modules.    This can occur if an implicit or forward
dependency could not be found or was missing a needed function (for more
information on dependency types, see the Types of Dependencies Handled
By Dependency Walker section).    You will also encounter a load-time failure
if the application attempts to load a corrupt or non-Windows module, a
module for a different CPU type then you are using, or a 16-bit module into a
32-bit application.    Here are some common load-time error messages:

The dynamic link library BAR.DLL could not be found in the specified
path...

The procedure entry point FOO could not be located in the dynamic link
library BAR.DLL.

The application or DLL BAR.DLL is not a valid Windows image.
The application failed to initialize properly.
Initialization of the dynamic link library BAR.DLL failed. The process is

terminating abnormally.
The image file BAR.EXE is valid, but is for a machine type other than

the current machine.

Most load-time problems can be immediately detected by Dependency
Walker.    When you first open a module in Dependency Walker, it scans that
module for all implicit, forward, and delay-load dependencies.    Implicit and
forward dependencies are required by the operating system in order for the
application to run.    If any implicit or forward dependencies are missing or
have errors, then it is likely that the application will encounter a load-time
failure if run.    Delay-load dependencies are not required by the operating
system at load-time, so errors or warning with delay load dependencies may
or may not cause problems.

Run-time dependencies are modules that an application loads after it has
initialized and begun to run.    This is usually achieved by calling one of the
LoadLibrary type functions.    Once a module has been loaded, an application
can call the GetProcAddress function to locate a specific function in the newly
loaded module.    Dependency Walker can track all these calls and reports

any failures.    However, if the application is prepared to handle the failure,
then the warning can be ignored.

There are many reasons for using run-time dependencies.    First, they can
increase load-time performance since an application can delay the loading of
certain modules that may not be needed until later.    For example, if an
application uses a DLL related to printing, that DLL might not get loaded
unless you actually print something from the application.    Second, they can
be used in cases where a module, or a function within a module, may not
exist.    For example, an application might need to call a Windows NT specific
function when running on Windows NT, but the module or function does not
exist on Windows 9x.    If the application were to implicitly link to the module
that the function lives in, then a load-time failure would occur on Windows 9x
since the operating system would not be able to locate the function at load-
time.    By making it a run-time dependency, the application can check to see
if the function exists and only call it if it does.

There are two types of run-time dependencies: explicit dependencies (often
referred to as dynamic dependencies) and delay-load dependencies.   
Explicit dependencies can be loaded at anytime during the life of the
application with no prior notice.    Because of this, the only way to determine
what explicit dependencies an application will use is to run the application
and watch it to see what it loads (for more information on profiling, see the
Using Application Profiling to Detect Dynamic Dependencies section).    With
explicit dependencies, the application directly calls LoadLibrary and
GetProcAddress to do the work.

Delay-load dependencies are actually implemented as explicit dependencies,
but a helper library and the linker do most of the work.    Most all Windows
modules have an "import table" stored in them.    This table is built by the
linker and used by the operating system to determine the implicit and
forward dependencies of a given module.    Any module or function in this list
that cannot be found will cause the module to fail.    If you tell the linker to
make a module a delay-load dependency, then instead of storing that
module's information in the main import table, it stores it in a separate
delay-load import table.    At run-time, if a module calls into a delay-load
dependency module, the call is trapped by the helper library.    This library
then uses LoadLibrary to load the module and GetProcAddress to query all
the functions referenced in the module.    Once this is complete, the call is
passed along to the real function and execution resumes without the module
that made the call even knowing what just happen.    All future calls from that
specific module to the delay-loaded module will be made directly into the
already loaded module instead of being trapped by the helper library.

The delay-load helper library has a mechanism for notifying the caller if there
is a failure.    Like failures with explicit dependencies, if the application is

prepared for the failure, then this should not be a problem.

To summarize, implicit and forward dependencies are required dependencies
that need to exist and have no errors or warnings.    Explicit and delay-load
dependencies may not need to exist and may not need to export all the
functions that the parent module wishes to import from them.    However, if
an application is not prepared to handle a missing explicit or delay-load
module, or a missing function within an explicit or delay-load module, then
this can result in a run-time failure of the application.    Dependency Walker
cannot predict if an application plans to handle failures, so it just warns you
of all potential problems.    If you find an application runs smoothly, then you
can probably ignore most all warnings.    However, if your application were to
fail, then the warnings may provide some insight as to what caused the
failure.

There is one other type of warning generated by Dependency Walker while
profiling that is worth mentioning.    This is related to first and second
exceptions.    When an exception (like an access violation) occurs in an
application, the application is given a chance to handle the exception.   
These are known as first chance exceptions.    If the application handles the
exception, then there should be no problem and the exception can probably
be ignored.    If the application does not handle the first chance exception,
then it turns into a second chance exception, which are usually fatal to the
application.    When a second chance exception occurs, the operating system
usually puts up a dialog telling you that the application has crashed and
needs to exit.

Dependency Walker always logs second chance exceptions and can
optionally log first chance exceptions.    Many applications routinely generate
first chance exceptions and handle them.    This is not a sign of a bad
application since there are many legitimate reasons to generate first chance
exceptions and handle them.

Dependency Walker Path (DWP) Files
Dependency Walker Path (DWP) files are used to define how Dependency
Walker locates modules on your system.    By default, Dependency Walker is
set up to simulate the search algorithm that the operating system uses to
locate modules.    However, you can override this default and set up your own
custom search criteria.    See the Module Search Order Dialog section for
more information.

DWP files are usually created by configuring a search order in the Module
Search Order Dialog, and then choosing save from that dialog to save the
search order to a DWP file.    This DWP file can then be loaded at a later time
from the Module Search Order Dialog or from the Command Line.

DWP files can also be created and edited by hand.    DWP files are simply text
files that contain a list of search groups.    The following is a list of supported
keywords:

SxS Side-by-Side components
KnownDLLs The system's "KnownDLLs" list
AppDir The application directory
32BitSysDir The 32-bit system directory
16BitSysDir The 16-bit system directory (Windows NT/2000/XP only)
OSDir The system's root OS directory
AppPath The application's registered "App Paths" directories
SysPath The system's "PATH" environment variable directories
UserDir A user defined directory

Each keyword must be on a line by itself.    All keywords are case insensitive.   
Except for the UserDir keyword, no keyword can be specified more than
once.    The UserDir keyword is a special keyword that also requires a
directory path.    The syntax for it is:

UserDir c:\path\to\some\directory\

You may use system variables in the path as well.    For example:

UserDir %build_directory%\%target_cpu%\debug\

All spaces and empty lines in the DWP file are ignored, except for spaces that
are part of a directory path.    No quotes should be used with any of the
keywords or paths.    You may add comments to the file by starting a line with
a colon (:), semicolon (;), forward slash (/), single quote ('), or pound (#).

Frequently Asked Questions (FAQ)
Q: Dependency Walker seems to only show some of my

application's dependencies.    Why doesn't it show all of them?
A: When you first open a module in Dependency Walker, it only shows

implicit, forwarded, and delay-load dependencies.    Many dependencies
are loaded dynamically and will not be detected until you profile the
application.    For more information, see Types of Dependencies Handled
By Dependency Walker and Using Application Profiling to Detect
Dynamic Dependencies.

Q: How do I view the parameter and return types of a function?
A: For most functions, this information is simply not present in the module. 

The Windows’ module file format only provides a single text string to
identify each function.    There is no structured way to list the number of
parameters, the parameter types, or the return type.    However, some
languages do something called function "decoration" or "mangling",
which is the process of encoding information into the text string.    For
example, a function like int Foo(int, int) encoded with simple
decoration might be exported as _Foo@8.    The 8 refers to the number
of bytes used by the parameters.    If C++ decoration is used, the
function would be exported as ?Foo@@YGHHH@Z, which can be
directly decoded back to the function's original prototype: int Foo(int,
int).    Dependency Walker supports C++ undecoration by using the
Undecorate C++ Functions Command.

Q: Why are my function names exported differently then I declare
them?

A: Many compilers "decorate" function names by default.    Unless you give
the compiler specific instructions on how to export functions, a function
like int Foo(int, int) may end up getting exported as _Foo@8, or even
?Foo@@YGHHH@Z if C++ decoration is used.    Languages like C++
allow function overloading, which is the ability to declare multiple
functions with the same name, but with different parameters.    Because
of this, each function must have a unique signature string since
exporting just the name would cause a name conflict.    To disable C++
decoration, you can use the extern "C" notation when declaring your
functions in a C++ source file.    To prevent decoration altogether, you
can add a DEF file to your project and declare the actual function names
you want exported.

Q: My application seems to run just fine during profiling, however, I
see errors in the log view and red or yellow icons in the other
views.    Is this normal?

A: It is fairly normal to see errors or warnings during profiling.    One
common error seen is when one module tries to dynamically load
another module (using one of the LoadLibrary functions), but the module
is not found.    Dependency Walker makes a note of this failure, but if the
application is prepared for the failure, then this is not a problem.   
Another common error is when a module tries to dynamically locate a
function (using GetProcAddress) in a module.    Again, this is not a
problem if the application is prepared for the failure.    You may also see
first-chance exceptions occur in the log view.    If the application handles
the exceptions and they don't turn into second-chance exceptions, then
this is not a problem.    All these cases are normal, and can usually be
ignored.    However, if the application you are profiling crashes or fails to
run properly, then the errors may provide some insight as to what
caused the problem.    See the How to Interpret Warnings and Errors in
Dependency Walker section for more details.

Q: Wow, my application depends on all those files?    Which ones do
I need to redistribute with my application?

A: For starters, there are certain modules you should never redistribute
with your application, such as kernel32.dll, user32.dll, and gdi32.dll.    To
see which files you are allowed to redistribute, you can look for a file
named REDIST.TXT on your development computer.    This file is included
with development suites like Microsoft Visual C++ and Visual Basic.    You
can also look up "redistributable files" and "redist.txt" in the MSDN index
for more information on what files to redistribute, how to redistribute
them, how to check file versions, etc.    Another site worth mentioning is
the Microsoft DLL Help Database
(http://support.microsoft.com/servicedesks/FileVersion/dllinfo.asp).    This
site has detailed version histories of DLLs, and lists what products were
shipped with each version.

Q: What does "Shared module not hooked" mean, and why are
some module's DllMain calls never being logged?

A: Dependency Walker hooks modules as they load in order to track calls to
functions like DllMain, LoadLibrary, and GetProcAddress.    Any module
loaded above address 0x80000000 (usually system modules) on
Windows 95/98/Me is shared system-wide and cannot be hooked.    The
result is that Dependency Walker cannot log information about function
calls in those modules.    Windows NT/2000/XP does not have this
limitation.    See Using Application Profiling to Detect Dynamic
Dependencies for more information.

Q: Why do some modules show up more than once under a single
parent module?

A: Dependency Walker may show a module more than once to inform you

that it is a dependency for more than one reason.    It is possible for a
module to show up as an implicitly linked dependency, a forwarded
dependency, and a dynamic dependency, all under a single parent
module.    See the Module Dependency Tree View for more details.    In
reality, only one copy of the module resides in memory during run-time.

Q: Is there a command line version of Dependency Walker?
A: Dependency Walker can be run as a graphical application or as a console

application.    When the console mode option is used, Dependency
Walker can process a module, save the results, and exit without any
graphical interface or user prompting.    See the Command Line Options
section for more information.

Q: Will Dependency Walker work with Visual Basic or Windows CE
modules?

A: Yes.    Dependency Walker will work with any 32-bit or 64-bit Windows
module, regardless of what language was used to develop it or what
Windows platform it is targeted for.    This includes modules for Windows
95, Windows 98, Windows Me, Windows NT, Windows 2000, Windows XP,
and Windows CE.

Q: Will Dependency Walker work with 16-bit modules?
A: No.    Dependency Walker currently only supports 32-bit and 64-bit

Windows modules.

Q: What do all the version numbers mean?
A: See the Overview of Module Version Numbers section for the details.

Q: Can I print out the results of a session?
A: No, but you can save the results to several different text formats which

can be viewed or printed from a text viewer program like Notepad.

Q: How can I send the results of a session to someone?
A: Dependency Walker supports several ways to capture the data in a

session.    All the views support simple copying from them using the
Copy Command.    Dependency Walker also supports several methods of
saving the entire session to a file.    There are various text formats that
can be easily printed or emailed to someone for viewing.    You can also
save the results to a Dependency Walker Image (DWI) file, which can be
loaded by Dependency Walker on another computer to see the captured
results from your computer.    For more information on saving the session
to a file, see the Save Command and File Save Dialog section.

Q: What do all the icons mean?
A: Each view in Dependency Walker has detailed help describing what the

icons mean for that view.    See the Module Session Window section for a
list of views.

Q: Can I search for a function by name or ordinal?
A: All the list views in Dependency Walker can be sorted and searched.   

Any text you type while in a list view will search for that text in the
column that the list is currently sorted by.    For example, if the export
function list is sorted by function names and you type "Get", the first
function that starts with "Get" will be highlighted.    This will work for any
column in any list.    For more details, see the help sections for the actual
list views.

Q: Dependency Walker's open dialog is not showing a file that I
want to open.    How can I fix this?

A: By default, Windows "hides" certain system files (like DLLs) from the
user.    To change this setting, open "My Computer" and select "Options"
from the menu.    Depending on what version of Windows you are using,
this should be off of the "View" or "Tools" menu, and may be called
"Folder Options" or just "Options".    In the dialog that appears, choose
the "View" tab.    You should see an option that reads either "Show all
files" or "Show hidden files and folders".    Make sure this option is
selected.    You will also see a check-box that reads "Hide MS-DOS file
extensions for file types that are registered" or "Hide file extensions for
known file types".    You will want to uncheck this box.    Once done, press
"Ok" in that dialog.    Dependency Walker should now show all system
files in its open dialog.

Q: How do I uninstall Dependency Walker?
A: Dependency Walker does not have a setup or uninstall program.    It was

designed to simply run when you want it, and delete if you don’t need it
anymore.    If you have told Dependency Walker to handle certain file
extensions, you will probably want to remove those associations before
deleting the program.    This can be done by using the Handled File
Extensions command.    The files to delete when Dependency Walker is
no longer needed are depends.exe, depends.dll, depends.cnt, and
depends.hlp.

Q: Why are some modules looking for a function named "IsTNT" in
KERNEL32.DLL?

A: TNT is a 32-bit emulation layer written by Phar Lap.    There are still some
modules in use that have pieces of code that check to see if they are
running on TNT by calling GetProcAddress("IsTNT") for KERNEL32.DLL.   

This warning can be ignored.

Q: Why are some modules trying to load a module named "AUX"?
A: This is usually related to modules trying to load the AUX audio driver.   

Since AUX is a reserved DOS name, the load fails.    This warning is
harmless and can be ignored.

Q: MFC42.DLL is trying to load MFC42LOC.DLL, but it is not found.   
[or] COMCTL32.DLL is trying to load CMCTLENU.DLL, but it is not
found.    Why is this?

A: Both MFC42LOC.DLL and CMCTLENU.DLL are language specific resource
DLLs that may not be needed on your system.    Many modules on
Windows store all their language specific messages in external DLLs
(one per language).    At run-time, the module loads the language DLL for
the current language of the operating system.    The names of the
modules usually end in "ENU" for United States English, "ESP" for
Spanish, "JPN" for Japanese, etc.    The "LOC" ending that MFC uses
stands for "localized".    When MFC is installed, it copies the correct
language DLL to your system and renames it to MFC42LOC.DLL.    So,
why the missing module?    Well, most modules protect themselves from
failure by storing one default language in the main DLL itself.    It the
language specific resource DLL fails to load, then the module defaults to
using the local resources in itself.    In most cases, these default
resources are the same resources as would be in the ENU version of the
resource DLL.    For this reason, there does not need to be an ENU
version of the resource DLL, and therefore it fails to find one at runtime. 
This is normal.

Module Session Window
A module session window is created for every module or Dependency Walker
Image (DWI) file that is opened.    The window is split into the following five
views:

Module Dependency Tree View
Module List View
Parent Import Function List View
Export Function List View
Log View

All views support right-click context menus to commonly used commands for
that view.    All views support context help.    You may press F1 anywhere in
Dependency Walker to get help on the item that currently has the focus.   
You may also use the Context Help tool to allow you to simply click on the
item you wish to get help on.

For navigating through the views, see the Previous Pane command and the
Next Pane command.    For navigating through the open Module Session
Windows, see the Previous Window command, the Next Window command,
and the Window 1, 2, 3, ... command.

Module Dependency Tree View
The Module Dependency Tree View displays a hierarchical view of all the
modules' dependencies.    There are several ways a module can be a
dependency of another module.    For more information on dependency
types, see the Types of Dependencies Handled By Dependency Walker
section.

Dependency Walker starts with the root module you chose to open and scans
its import tables to build a list of required dependent modules.    Dependency
Walker then scans each of these dependent modules for their dependent
modules.    This recursion continues until all modules and their dependent
modules have been processed.

To prevent a bloated tree and possible infinite circular loops with dependent
modules, Dependency Walker stops processing a given branch of the tree
when it reaches a module that it has already processed somewhere else in
the tree.    Duplicate modules are marked with a small arrow in the middle of
their accompanying image (see below).    To determine what the branch
would have looked like if Dependency Walker had processed it, use the
Highlight Original Instance Command to find the original instance of the
module in the tree.

Dependency Walker also scans each dependent module looking for
forwarded function calls to other modules.    If a forwarded function is found
and actually called by the parent module, then the module that the function
is forwarded to is also pulled in and added to the dependency tree.    These
forwarded modules are specially marked in the dependency tree with a small
state image next to their accompanying image (see below).

While processing the dependency tree, Dependency Walker performs several
validity checks along the way.    It checks to make sure each module is a valid
32-bit or 64-bit Windows module.    It checks for mismatched binaries, such
as an x86 module with an Alpha module.    It scans import and export
function tables looking for unresolved external functions.    It checks for
circular dependencies, which are allowed, and for circular forwarded
dependencies, which are not allowed.    Any errors that are encountered while
processing the tree will be displayed using a special image (see below) for
the particular modules in error and/or by a message box.

The Auto Expand setting controls how much of the tree is initially seen after
loading a module.    When this option is turned on, the entire tree will be
displayed.    When the option is turned off, only the root module, its
immediate dependencies, and modules with errors will be shown.

Modules can be displayed using full file paths or just the file name to
conserve screen space.    You can control what is displayed using the Full
Paths option.    You may also copy the selected module’s file name or path to
the clipboard by selecting the Copy Command.    The actual text copied will
differ depending on how the Full Paths option is set.    The contents of the
Module Dependency Tree View can also be saved to a text file using the Save
Command or Save As Command.

The following is a table of the primary images that can accompany each
module in the dependency tree.    This list is just a subset of all the possible
images.    Actual images can be a combination of one or more of the following
images:

Normal Images
Normal module with no errors.
Duplicate module.    This module has already been processed

somewhere else in the tree.    You can use the Highlight Original Instance
Command to find the original instance of the module in the tree.

Forwarded module.    This module is a dependency because the parent
module has forwarded one of its functions to this module.

Delay-load module.    This module will be dynamically loaded if any of
its exported functions are actually called at run-time.

Dynamic module.    This module was detected during profiling and was
dynamically loaded or used by its parent module.    If the module has no
parent, then Dependency Walker was unable to determine who loaded the
module.    See Using Application Profiling to Detect Dynamic Dependencies
for more information.

This module was dynamically loaded by a call to the LoadLibraryEx
function with the DONT_RESOLVE_DLL_REFERENCES flag and/or the
LOAD_LIBRARY_AS_DATAFILE flag.    These flags cause the module to get
mapped into memory without loading its dependent modules or calling the
module’s DllMain function.

64-bit module.    This module is designed to run on a 64-bit versions of
Windows.    Modules are assumed to be 32-bit if this image is not present.

Warning and Error Images
Missing module.    This module could not be found in the search path.   

See the Configure Search Order Command for more information.
Invalid module.    See the Module List View for an error message

describing the module error.
Module warning.    This module is either missing one or more export

functions that are required by its parent module, is of the wrong CPU type, or
failed to initialize when being loaded.    For a missing export, the Parent
Import Function List View will list the actual unresolved functions that are
causing the problem.    For implicit dependencies, this is an error that will
cause the parent module to fail to load.    If the module failed to load or

initialized, then check the Log View for details on the failure.
Delay-load module warning.    This module is either missing one or

more export functions that are required by its parent module, or is of the
wrong CPU type.    For a missing export, the Parent Import Function List View
will list the actual unresolved functions that are missing.    For delay-load
dependencies, this is most likely not an error since one reason developers
use delay-load modules is when they are unsure if a particular function exists
in dependent module.    Parents of delay-load modules have techniques for
recovering from missing exports in the delay-loaded dependent module.

Dynamic module warning.    This module is either missing one or more
export functions that the parent module attempted to retrieve using
GetProcAddress, is of the wrong CPU type, or failed to initialize when being
loaded.    For a missing export, the Parent Import Function List View will list
the actual functions that the parent module could not locate.    For dynamic
dependencies, this is usually just a warning, since it is perfectly valid for a
module to dynamically check for the existence of a function in another
module, even if the function does not exist.    If the module failed to load or
initialized, then check the Log View for details on the failure.

See the How to Interpret Warnings and Errors in Dependency Walker section
for more details on module errors.

It is possible for a module to show up more than once as a dependency of a
single parent module.    Dependency Walker does this to inform you that this
module is a dependency for more than one reason.    A module can show up
as an implicitly linked dependency, a forwarded dependency, and a dynamic
dependency, all under a single parent module.

For example, if module A implicitly links to module B, you will see module B
under module A as an implicit dependency.    The functions listed in the
Parent Import Function List View for that instance of module B are what is
required for module A to be able to successfully load.    During runtime
profiling, if module A dynamically loads module B, a second instance of
module B will appear under module A, but this time with a different image
(see above) signifying that it was dynamically loaded.    The functions listed
in the Parent Import Function List View for this second instance of module B
are what module A looked for in module B at runtime using the
GetProcAddress function call.

Module List View
The Module List View displays a list of all unique modules that are
dependencies for the root module you opened.    This list defines the set of
files needed for the module to load and execute as a running process.

Modules can be displayed using full file paths or just the file name to
conserve screen space.    You can control what is displayed using the Full
Paths option.    You may also copy the selected modules’ file names or paths
to the clipboard by selecting the Copy Command.    The actual text copied
will differ depending on how the Full Paths option is set.    If more than one
module is selected, a list will be copied to the clipboard with carriage returns
after each module.    The complete contents of the Module List View can also
be saved to a text file or comma separated value (CSV) file using the Save
Command or Save As Command.

There is not a one-to-one relationship between the modules listed in this list
view and the modules listed in the Module Dependency Tree View.    This list
view shows the unique set of modules, where as the tree view shows all the
module relationships.    A module like KERNEL32.DLL may show up dozens of
times in the tree view since many other modules depend on it, but it will only
show up once in this list view.    Some instances of KERNEL32.DLL might be
implicitly loaded, while others may be dynamically loaded.    Some might
have import / export mismatch errors, while others may have no errors.   
Since there is not a one-to-one relationship between the two views, the
module list view tries to use images for modules that encapsulate the state
of all instances of each module in the tree view.    For example, if
KERNEL32.DLL appears in the tree view ten times with no errors and one
time with an import / export mismatch error, then the list view will show
KERNEL32.DLL as having an import / export mismatch error.

Dependency Walker also gives precedence to certain types of dependencies. 
If a module is implicitly required for an application to load, then it will appear
with the implicit module image in the module list view.    This is true even if
the module is also listed as a delay-load or dynamic dependency in the tree
view, since an implicit dependency is the most significant type of
dependency and is required for the application to load.    If a module is
dynamically loaded or is a child of a dynamically loaded module, then it will
appear with the dynamic module image in the list view.    If a module is delay-
loaded or is a child of a delay-loaded module, then it will appear with the
delay-load module image in the list view.    If a module is both a delay-load
and dynamic dependency, it will be shown as a dynamic dependency in the
list view since modules that actually get dynamically loaded are given
precedence over delay-loaded modules that don’t get loaded.    This can
cause images in the list view to change from delay-load to dynamic as

modules get loaded dynamically.

The following is a table of the primary images that can accompany each
module in the Module List View.    This list is just a subset of all the possible
images.    Actual images can be a combination of one or more of the following
images:

Normal Images
All instances of this module were normal and had no errors.    If no

delay-load image (hour glass) or dynamic image (star / asterisk) is to the left
of this module image, then at least one instance of this module is implicitly
required for the root module to load.

All instances of this module are marked as delay-load or are children of
modules marked as delay-load.    Modules with this image will change to
dynamic dependencies at runtime if the module is actually loaded.

All instances of this module were dynamically loaded and detected
during profiling.    See Using Application Profiling to Detect Dynamic
Dependencies for more information.

All instances of this module were dynamically loaded by calls to the
LoadLibraryEx function with the DONT_RESOLVE_DLL_REFERENCES flag
and/or the LOAD_LIBRARY_AS_DATAFILE flag.    These flags cause the module
to get mapped into memory without loading its dependent modules or calling
the module’s DllMain function.    If a module with this image is later loaded
without the DONT_RESOLVE_DLL_REFERENCES and
LOAD_LIBRARY_AS_DATAFILE flags, then the image will change to the
standard dynamic dependency image above.

64-bit module.    This module is designed to run on a 64-bit versions of
Windows.    Modules are assumed to be 32-bit if this image is not present.

Warning and Error Images
Missing module.    This module could not be found in the search path.   

See the Configure Search Order Command for more information.
Invalid module.    This module will be accompanied by an error

message to describe the problem.
Module warning.    At least one instance of this module is either missing

one or more export functions that are required by its parent module, is of the
wrong CPU type, or failed to load at runtime.    Locate the offending
module(s) in the Module Dependency Tree View and then look in the Parent
Import Function List View for that module to see the actual unresolved
functions that are causing the problem.    This may or may not be an error.    If
the offending module(s) are marked as dynamic, then this is just a warning
since it is valid for modules to call GetProcAddress to dynamically check for a
function and fail to find it.    If the offending module(s) are delay-load, then
this is also probably not an error since one reason developers use delay-load
dependencies is when they are unsure if a function exists in a dependent
module.    If the offending module(s) are implicit or forwarded dependencies,

then this is an error and will cause the parent of those modules to fail to
load.    If no export functions are missing, then check the Log View to see if
the module error is related to a load failure.

See the How to Interpret Warnings and Errors in Dependency Walker section
for more details on module errors.

The Module List View contains several columns of information about each
module.    These columns include:

Image: See above list for descriptions.
Module: Full path or file name for the module file.    See the Full Paths

option for toggling between the two modes.
File Time Stamp: Date and time of the module file.    This is the time

that the file was last saved.
Link Time Stamp: Date and time that the module was built.    This is a

value that the linker stores in the file itself.
File Size: Size of the module file.
Attr.: Attributes of the module file.    Possible values are R (read only),

H (hidden), S (system), A (archive), C (compressed), T (temporary), O
(offline), and E (encrypted).

Link Checksum: The module checksum from when the module was
built.    This value is set by using the linker's /RELEASE command line option.   
If this linker option is not specified, then the checksum may be zero.    This
value will be shown in red if it is not zero and does not match the actual
module checksum.    If the values do not match, it means that the module
has been modified after it was built.

Real Checksum: The actual module checksum.    This value is
computed by Dependency Walker and should match the checksum computed
by the linker when the module was built.

CPU: Type of CPU that the module was built for.    Possible values are
x86, Intel 64, Alpha AXP, Alpha 64, PowerPC, MIPS R3000 BE (big endian),
MIPS R3000, MIPS R4000, MIPS R10000, MIPS WinCE V2, SH3, SH3E, SH4,
SH5, ARM, Thumb, MIPS 16, MIPS FPU, MIPS FPU 16, CEE, and CEF.    This
value will be shown in red if it does not match the CPU type of the root
module in the session.    This value is set by using the linker's /MACHINE
command line option.

Subsystem: Type of subsystem that the module was built to run in.   
Possible values are Native, GUI, Console, Win9x driver, OS/2 console, Posix
console, WinCE 1.x GUI, and WinCE 2.0+ GUI, EFI, and Xbox.    This value is
set by using the linker's /SUBSYSTEM command line option.

Symbols: Type of debugging symbols that are associated with the
module.    Possible values are None, DBG (debug), PDB (program database),
CV (codeview), COFF (common object file format), FPO (frame pointer
omission), OMAP, and Borland.    If one or more of the debug blocks are
invalid, then the word "Invalid" will also appear.    This usually means that

debug symbols have been striped from the file, but the debug entries were
left behind.

Preferred Base: The preferred base load address of the module.   
This will be 32-bits for 32-bit modules and 64-bits for 64-bit modules.    This
value is set by using the linker's /BASE command line option.

Actual Base: The actual base load address of the module.    This value
will read "Unknown" until the module has actually been loaded into memory
by Dependency Walker's profiler.    See the Start Profiling Command for more
information.    This value will be shown in red if it does not match the
preferred base address for the module.    Your application will suffer a load-
time performance hit for every module that does not load at its preferred
base address.    This value will read "Data file" if the file was loaded as a data
file via a call to LoadLibraryEx with the LOAD_LIBRARY_AS_DATAFILE flag.

Virtual Size: The virtual size of the module.    This is the size of
memory that will be reserved for the module to be mapped into.

Load Order: The load order of the module with respect to other
modules.    This value will read "Not Loaded" until the module has actually
been loaded into memory by Dependency Walker's profiler.    See the Start
Profiling Command for more information.

File Ver: The file version found in the module’s version resource.    This
value represents the FILEVERSION field in the VERSION_INFO resource
structure.    It will read "N/A" if the module does not contain a VERSION_INFO
resource.

Product Ver: The product version found in the module’s version
resource.    This value represents the PRODUCTVERSION field in the
VERSION_INFO resource structure.    It will read "N/A" if the module does not
contain a VERSION_INFO resource.

Image Ver: The image version found in the module’s file header.    This
value is set by using the linker's /VERSION command line option.

Linker Ver: The version of the linker that was used to create the
module file.

OS Ver: The version of the OS that the module file was built to run on.
Subsystem Ver: The version of the subsystem that the module file

was built to run in.    This value is set by using the linker's /SUBSYSTEM
command line option.

The module list can be sorted on the data in any column in the list.    Simply
click on the column header button for the column you wish to sort by.    An
arrow (^) is displayed in the column header for the column that the list is
currently sorted by.    You can also size a column to its "best fit" width by
double-clicking the divider line between two columns in the column header.   
You can search for text in the currently sorted column by simply typing in the
first few characters of the item you wish to find.

If a module was not found or was not a valid 32-bit or 64-bit Windows binary,
then an error message will be displayed in place of the normal column

information for that module.

Parent Import Function List View
The Parent Import Function List View displays the list of parent import
functions for the currently selected module in the Module Dependency Tree
View.    Parent import functions are functions that are actually called in the
given module by the parent module.

For implicit and forward dependencies, the selected module needs to export
every function that the parent is importing from it.    If the selected module
does not export one of the functions that the parent module expects to call,
then an unresolved external error will occur if the module is attempted to be
loaded.    See the Export Function List View for viewing the selected module’s
export functions.

Dependency Walker searches the exported function list for every parent
import function to ensure there is a match.    If any function is unresolved,
then the function is marked with an error image (see below) and the module
is mark with an error image as well in the Module Dependency Tree View and
the Module List View.

The Parent Import Function List View can also help you locate unnecessary
modules in an application.    The fact that the parent module is calling
functions in the selected module is what makes the selected module a
dependency of the parent.    As a developer, if you can safely stop the parent
module from calling all the functions listed in the parent import function list
for a given module, then that module will no longer be a dependent of the
parent module.

C++ functions can be displayed in their native decorated format or in a
human readable undecorated format.    See the Undecorate C++ Functions
Command for more information.    You may also copy the selected function
names to the clipboard by selecting the Copy Command.    The actual text
copied will differ depending on how the Undecorate C++ Functions option is
set.    If more than one function is selected, a list will be copied to the
clipboard with carriage returns after each function.    The complete contents
of the Parent Import Function List View can also be saved to a text file using
the Save Command or Save As Command.

The following are the primary images that can accompany each function in
the parent import list:

Resolved C import.
Resolved C++ import.    C++ functions can be viewed in their native

decorated form or in a human readable undecorated form.    See the
Undecorate C++ Functions Command for more information.

Resolved ordinal import.
Resolved dynamic C import (similar images also exist for C++ and

ordinal functions).    The parent module of this module called the
GetProcAddress function to dynamically get the address of this function.   
This does not necessarily mean the parent module actually used the function
address to call the function.

Unresolved C function (similar images also exist for C++ and ordinal
functions).    This function is called by the parent module, but it is not
exported from the current module.    This is often referred to as an
"unresolved external function".    If this module is an implicit or forwarded
dependency, then the parent module will fail to load.    If this module is a
delay-load dependency, then the parent module will most likely recover from
the missing dependency, as that is a feature of using delay-load
dependencies.

Unresolved dynamic C function (similar images also exist for C++ and
ordinal functions).    The parent module of this module called the
GetProcAddress function to dynamically get the address of this function, but
the current module does not export the function.    This is not necessarily an
error since one of the reasons modules call GetProcAddress is to see if a
function exists in a module.

The Parent Import Function View is comprised of five columns:

Image See the above list for descriptions.    The header for this
column has the letters "PI" in it, which just stands for
"Parent Imports"

Ordinal The ordinal value of the imported function, if the function is
imported by ordinal.    This value can be "N/A" if the
function is imported by name.

Hint The hint value for the imported function.    The hint value is
used internally by the operating system’s loader to quickly
match imports with exports.    It is used as an index into the
array of exported functions in the selected module.

Function The name of the imported function, if the function is
imported by name.    This can be "N/A" if the function is
imported by ordinal.    C++ functions can be viewed in their
native decorated form or in a human readable undecorated
form.    See the Undecorate C++ Functions Command for
more information.    You may also see "<invalid string>" as
a function name, which means a call to GetProcAddress
was made with an invalid string, or "<empty-string>",
which means GetProcAddress was called with an empty
string.

Entry Point The entry point memory address for the function.    For

implicit and forward dependencies, this field often reads
"Not Bound", which means that the entry point address will
not be known until load time.    If an address is given, then
the parent module has been pre-bound by a program like
BIND.    Binding is the process of walking the import list of a
module and the export list of all its dependent modules, in
order to fill in the import list with the absolute addresses to
the functions it references.    This job is usually done by the
loader as each module is loaded, but can be skipped if the
modules have been pre-bound.    Pre-binding is an
optimization that calculates the absolute addresses based
off of the modules' preferred base addresses and stores
them in the module's import table.    Assuming a
dependency of a given module actually loads at its
preferred base address and has not changed, then the
loader can save time by skipping the bind phase to that
dependency module.    For dynamic dependencies, this
Entry Point field displays the address returned by the
GetProcAddress function call.

The function list can be sorted on the data in any column in the list.    Simply
click on the column header button for the column you wish to sort by.    An
arrow (^) is displayed in the column header for the column that the list is
currently sorted by.    You can also size a column to its "best fit" width by
double-clicking the divider line between two columns in the column header.   
You can search for text in the currently sorted column by simply typing in the
first few characters of the item you wish to find.    For ordinal and hint values,
you may enter decimal or hex (prefaced by 0x) values to search for.

Export Function List View
The Export Function List View displays the list of export functions for the
currently selected module in the Module Dependency Tree View.    Export
functions are functions that a module exposes to other modules.    They can
be thought of as the module’s interface.

Dependency Walker uses the exported list to check for unresolved external
errors in the selected module.    For more information, read the Parent Import
Function List View section.

While Dependency Walker scans the export list for a module, it checks each
function to see if it is really a forwarded function.    A forwarded function is a
function that appears to be exported from a particular module, but in fact the
code for the function actually lives in another module.    The operating
system’s loader recognizes this and loads the forwarded module if necessary
to resolve any imports from the parent module.    Dependency Walker, like
the operating system’s loader, also loads the forwarded module if necessary.

C++ functions can be displayed in their native decorated format or in a
human readable undecorated format.    See the Undecorate C++ Functions
Command for more information.    You may also copy the selected function
names to the clipboard by selecting the Copy Command.    The actual text
copied will differ depending on how the Undecorate C++ Functions option is
set.    If more than one function is selected, a list will be copied to the
clipboard with carriage returns after each function.    The complete contents
of the Export Function List View can also be saved to a text file using the
Save Command or Save As Command.

The following are the possible images that can accompany each function in
the export list:

C export function that resides in the selected module.
C++ export function that resides in the selected module.    C++

functions can be viewed in their native decorated form or in a human
readable undecorated form.    See the Undecorate C++ Functions Command
for more information.

Ordinal export function that resides in the selected module.
C export function that is called at least once by any module in the

current module session (similar images also exist for C++ and ordinal
functions).

C export function that is called by the selected module in the Module
Dependency Tree View (similar images also exist for C++ and ordinal
functions).    There will be a one-to-one relationship between these functions
and the resolved imports in the Parent Import Function List View.    You can

use the Highlight Matching Item command to quickly jump between the
matching import and export.

Forwarded C export function that resides in a different module (similar
images also exist for C++ and ordinal functions).    The module that the
function truly resides in is listed in the Entry Point column.

The Export Function View is comprised of four columns:

Image See the above list for descriptions.    The header for this
column has the letter "E" in it, which just stands for
"Exports"

Ordinal The ordinal value of the exported function, if the function is
exported by ordinal.    This value can be "N/A" if the
function is exported only by name.

Hint The hint value for the exported function.    The hint value is
used internally by the operating system’s loader to quickly
match imports with exports.    It is used as an index into the
array of exported functions in the selected module.

Function The name of the exported function, if the function is
exported by name.    This can be "N/A" if the function is
exported only by ordinal.    C++ functions can be viewed in
their native decorated form or in a human readable
undecorated form.    See the Undecorate C++ Functions
Command for more information.

Entry Point The entry point memory address for the function.    This is
usually a relative offset from the base address at which the
module will load at by the operating system’s loader.    This
base address is usually the base address listed in the
Module List View for the particular module.    If the function
is forwarded to another module, then a forward string will
be displayed instead of an address.    The forward string is
in the form of ModuleName.FunctionName.

The function list can be sorted on the data in any column in the list.    Simply
click on the column header button for the column you wish to sort by.    An
arrow (^) is displayed in the column header for the column that the list is
currently sorted by.    You can also size a column to its "best fit" width by
double-clicking the divider line between two columns in the column header.   
You can search for text in the currently sorted column by simply typing in the
first few characters of the item you wish to find.    For ordinal and hint values,
you may enter decimal or hex (prefaced by 0x) values to search for.

Log View
This view is used to log module warnings, module errors, and all activity
while profiling the application for the current Module Session.    For more
information on profiling, see the Start Profiling Command, the Using
Application Profiling to Detect Dynamic Dependencies section, and the Profile
Module Dialog.

While profiling an application, Dependency Walker gathers information from
the running process.    The various types of information that can be logged
include:

The start of the new process.    This is always logged.
The exiting of the process.    This is always logged.
The creation of a thread.    These are only logged if the Log thread

information box is checked in the Profile Module Dialog.
The exiting of a thread.    These are only logged if the Log thread

information box is checked in the Profile Module Dialog.
The loading of a module.    These are always logged.
The unloading of a module.    These are always logged.
Any debug output text that the process generates.    These are only

logged if the Log debug output box is checked in the Profile Module Dialog. 
Debug output text is logged with a grayed-out color to distinguish it from
normal log text.

Any first chance exceptions that occur in the process.    These are only
logged if the Log first chance exceptions box is checked in the Profile
Module Dialog.

Any second chance exceptions that occur in the process.    These are
always logged.    These lines will be colored red.

The calling of a module's DllMain function.    These are only logged if
either of the two Log DllMain calls boxes are checked in the Profile Module
Dialog.

The return from a module's DllMain function.    These are only logged if
either of the two Log DllMain calls boxes are checked in the Profile Module
Dialog.    This line of log will be shown in red if the DllMain function was called
with the DLL_PROCESS_ATTACH message and it returned 0.    If a module
returns 0 from its DllMain function while processing the
DLL_PROCESS_ATTACH message, then the OS will unload the module and
return a failure.    In the case of an implicit dependency, this will cause the
entire application to fail to load with an error dialog reading something like
"The application failed to initialize properly".    In the case of a dynamic
dependency, the call to LoadLibrary will fail with error 1114
(ERROR_DLL_INIT_FAILED), but the application may continue to run.

The calling of a LoadLibrary type function.    These are only logged if
the Log LoadLibrary function calls box is checked in the Profile Module

Dialog.
The return from a call to a LoadLibrary type function.    These are only

logged if the Log LoadLibrary function calls box is checked in the Profile
Module Dialog.    This line of log will be colored red if the function fails.

Any calls to the GetProcAddress function.    These are only logged if the
Log GetProcAddress function calls box is checked in the Profile Module
Dialog.    This line of log will be colored red if the function fails.

If the Log a time stamp with each line of log box is checked in the Profile
Module Dialog, then each line of log in the Log View will begin with a time
stamp.    Each time stamp shows the number of hours, minutes, seconds, and
milliseconds that have elapsed since the process started.    It is important to
note that Dependency Walker can significantly impact the performance of
certain operations within the application being profiled.    For this reason,
these time stamps should probably not be used as an accurate method of
measuring the performance of your application.

You may copy text from the Log View using the Copy Command.    The
contents of the window can also be saved to a text file using the Save
Command or Save As Command.    You can also search the Log View for text
using the    Find Command and Find Next Command.

File Menu Commands
The File menu offers the following commands:

Open... Opens and processes a module file.
Close Closes the active Module Session Window.
Save Saves the active Module Session Window.
Save As... Saves the active Module Session Window with a new name

or type.
File 1, 2, 3, ... Opens and processes the specified module file.
Exit Exits Dependency Walker.

Edit Menu Commands
The Edit menu offers the following commands:

Copy Copies the selection in the current view to the clipboard
as text.

Select All Selects all items in the current view.
Find... Finds text in the Log View.
Find Next Repeats last find operation in the Log View.
Clear Log Window Clears the contents of the Log View in the active Module

Session Window.

View Menu Commands
The View menu offers the following commands:

System Information... Displays information about the system.
Expand All Expands all nodes in the Module

Dependency Tree View.
Collapse All Collapses all nodes in the Module

Dependency Tree View.
Auto Expand When checked, the Module Dependency

Tree View will automatically expand to
show modules as they are added.

Full Paths Shows or hides full file paths in the
Module Dependency Tree View and the
Module List View.

Undecorate C++ Functions Display undecorated C++ functions
names in both the Parent Import
Function List View and the Export
Function List View.

Highlight Matching Item Highlights the matching item in the
related view.

Highlight Original Instance In Tree Highlights the original instance of the
selected module in the Module
Dependency Tree View.

Highlight Previous Instance In Tree Highlights the previous instance of the
selected module in the Module
Dependency Tree View.

Highlight Next Instance In Tree Highlights the next instance of the
selected module in the Module
Dependency Tree View.

Refresh Updates all views for the active Module
Session Window.

View Module in External Viewer Opens the selected modules in the
external module viewer.

Lookup Function in External Help Lookup the selected function in the
external help collection.

Properties... Displays the Windows Properties dialog
for the selected modules.

Toolbar Shows or hides the toolbar.
Status Bar Shows or hides the status bar.

Options Menu Commands
The Options menu offers the following commands:

Configure Module Search Order... Configure or view the
search order used when
locating dependent
modules.

Configure External Module Viewer... Configures the external
module viewer.

Configure External Function Help Collection... Configures the external
function help collection
used to lookup functions.

Configure Handled File Extensions... Configures what file
extensions Dependency
Walker handles.

Profile Menu Commands
The Profile menu offers the following commands:

Start Profiling Executes the module and profiles it for runtime
dependencies.

Stop Profiling Stops execution and profiling of the process.

Window Menu Commands
The Window menu offers the following commands:

Cascade Arranges windows in an overlapped fashion.
Tile Horizontally Arranges windows in non-overlapped horizontal tiles.
Tile Vertically Arranges windows in non-overlapped vertical tiles.
Arrange Icons Arranges the icons of all minimized windows.
Window 1, 2, 3, ... Activates the specified window.

Help Menu Commands
The Help menu offers the following commands, which provide you assistance
with this application:

Help Topics Displays the table of contents for the online
help documentation.

About Dependency Walker... Displays program information, version, and
copyright.

Open Command (File Menu)
The Open Command will display the File Open Dialog, which allows you to
open and process a module, or to open a Dependency Walker Image (DWI)
file.

You may also open modules directory from an Explorer window by right-
clicking on the module you wish to open and choosing "View Dependencies"
from the context menu.    In order for this to work, you must tell Dependency
Walker what file extensions to handle by using the Handled File Extensions
Command.

Dependency Walker uses a multiple document interface that allows more
than one Module Session Window to be opened and visible at once.    Use the
Window Menu to switch between the multiple open Module Session Windows.
See the Window 1, 2, 3, ... Command for more information.

Shortcuts
Keys: CTRL+O
Shell: Drag and drop modules on top of Dependency Walker to open them.
Shell Right-click on a module file in the Shell and choose "View

Dependencies" from the Shell’s context menu.

Toolbar:

Close Command (File Menu)
Use this command to close the active Module Session Window.

Shortcuts
Keys: CTRL+F4
Mouse: Single-click on the Close button in the Title Bar of the window you

wish to close.

Mouse: Double-click on the System Menu icon in the Title Bar of the
window you wish to close.

Save Command (File Menu)
Use this command to save the active Module Session using the same name
and type that you have previously saved the file with.    If you have not
previously saved the Module Session, then this command behaves just like
the Save As Command, which will display the File Save Dialog prompting you
for a file name and file type.    Within the File Save Dialog, you can choose to
save the file as a Dependency Walker Image (DWI) file, a comma separated
value (CSV) file, or various formats of text files.

Shortcuts
Keys: CTRL+S

Toolbar:

Save As Command (File Menu)
Use this command to display the File Save Dialog, which allows you to save
the active Module Session with a new name or type.    Within the File Save
Dialog, you can choose to save the file as a Dependency Walker Image (DWI)
file, a comma separated value (CSV) file, or various formats of text files.

The Save As Command always displays the File Save Dialog, even if you have
previously saved the Module Session using a particular name and type.    This
allows you to choose a new name or file type to save to.    If you wish to re-
save the active Module Session using the same name and type that you have
previously saved the file with, then you can just use the Save Command to
avoid the File Save Dialog.

1, 2, 3, ... Command (File Menu)
Dependency Walker stores the eight most recently opened modules at the
bottom of the File menu for your convenience.    To open one of the modules
listed, select the module from the menu or type the number that corresponds
with the module you want to open.

Exit Command (File Menu)
Use this command to close all Module Session Windows and exit Dependency
Walker.

Shortcuts
Keys: ALT+F4
Mouse: Single-click on the main window’s Close button in the Title Bar.

Mouse Double-click on the main window’s System Menu icon in the Title
Bar.

Copy Command (Edit Menu)
Use this command to copy the current selection to the clipboard as text.   
This command is unavailable if there is nothing selected that can be copied.   
Copying data to the clipboard replaces any contents previously stored on the
clipboard.

For the Module Dependency Tree View and the Module List View, the selected
module names are copied.    If the Full Paths option is enabled, then complete
path strings will be copied, otherwise just the module file names are copied.

For the Parent Import Function List View and the Export Function List View,
the selected function names are copied.    If the Undecorate C++ Functions
option is enabled, then the undecorated names for C++ functions will be
copied, otherwise just the native decorated names are copied.

For the Log View, all highlighted text is copied.

Shortcuts
Keys: CTRL+C
Keys: CTRL+INSERT

Toolbar:

Select All Command (Edit Menu)
Use this command to select all the items in a particular view.    This command
only works in the Module List View, the Parent Import Function List View, the
Export Function List View, and the Log View.    Select All is often useful before
performing a Copy if you wish to copy the entire contents of a view.

Shortcuts
Keys: CTRL+A

Find Command (Edit Menu)
This command will display the Find Dialog, which allows you to search for
text in the Log View.

Shortcuts
Keys: CTRL+F

Find Next Command (Edit Menu)
Use this command to repeat the last find operation in the Log View.    If there
is no previous find operation, then this command works just like the Find
Command, which will display the Find Dialog.

Shortcuts
Keys: F3

Clear Log Window Command (Edit Menu)
Use this command to clear the contents of the Log View.

System Information Command (View Menu)
This command will display the System Information Dialog, which displays
detailed information about the operating system.    If the active Module
Session is a loaded Dependency Walker Image (DWI) file, then the System
Information Dialog will show the system information for the system that the
DWI file was saved on.    Otherwise, the System Information Dialog shows
information about the current system.

Shortcuts

Toolbar:

Expand All Command (View Menu)
This command will expand all the module nodes in the Module Dependency
Tree View, making the entire tree visible.

Shortcuts
Keys: CTRL+E

Collapse All Command (View Menu)
This command will collapse all the module nodes in the Module Dependency
Tree View, leaving only the root modules visible.

Shortcuts
Keys: CTRL+W

Auto Expand (View Menu)
When this option is turned on, the Module Dependency Tree View will
automatically expand the tree to show modules as they are added.    This
includes all modules that are detected during the initial loading of a session,
as well as all modules found during profiling.

When this option is turned off, the tree is never automatically expanded as
the result of a new module being added.    The only exceptions are the root
module and modules that contain errors.    The root module will be expanded
to show the immediate dependencies of that root module.    The tree will also
be expanded to show any modules that contain errors.    All other branches of
the module tree will remain collapsed unless you expand them.

This command can also be used to quickly show all modules that contain
errors.    Whenever this option is turned off, the tree will automatically
collapse all nodes except for those that contain modules with errors.    If this
option is already turned off, you can simply turn it on and back off to force
this effect to occur.

Shortcuts
Keys: F8

Toolbar:

Full Paths Command (View Menu)
Use this command to toggle the Full Paths option on or off.    When this option
is on, a check mark appears next to the Full Paths menu item and the Full
Paths toolbar button is displayed as depressed.

When the Full Paths option is on, both the Module Dependency Tree View and
the Module List View will display the complete path to each module.    When
this option is off, these views will display only file names.

This option also effects how the Copy Command and Save Command work.   
When the Full Paths option is on, the Copy Command will copy the full paths
of the selected files to the clipboard, otherwise it just copies the file names.   
For the Save Command, text files and comma separated value (CSV) files will
contain full paths when the Full Paths option is on and just file names when it
is off.

Shortcuts
Keys: F9

Toolbar:

Undecorate C++ Functions Command (View Menu)
Use this command to toggle the Undecorate C++ Functions option on or off.   
When this option is on, a check mark appears next to the Undecorate C++
Functions menu item and the Undecorate C++ Functions toolbar button is
displayed as depressed.

This option requires that you have IMAGEHLP.DLL on your system.    If this
DLL is not found, then the Undecorate C++ Functions option will be disabled. 
IMAGEHLP.DLL is installed with Windows NT/2000/XP and Windows 95 OSR2
and beyond.

When the Undecorate C++ Functions option is on, both the Parent Import
Function List View and the Export Function List View will undecorate C++
functions into human readable function prototypes containing parameter and
return types.    When the Undecorate C++ Functions option is off, these views
will show C++ functions in their true decorated form.    Dependency Walker
can only undecorate functions that use the Microsoft decoration rules.

This option also effects how the Copy Command and Save Command work.   
When the Undecorate C++ Functions option is on, the Copy Command will
copy the undecorated names for C++ functions to the clipboard, otherwise it
just copies the true decorated names.    For the Save Command, text files will
contain undecorated names for C++ functions when the Undecorate C++
Functions option is on and the true decorated names when it is off.

Shortcuts
Keys: F10

Toolbar:

Highlight Matching Item (View Menu)
This command behaves differently depending on what view has the focus.

If the Module Dependency Tree View has the focus and a module is selected
in it, then this command will find that selected module in the Module List
View and highlight it.

If the Module List View has the focus and a module is selected in it, then this
command will find that selected module in the Module Dependency Tree View
and highlight it.

If the Parent Import Function List View has the focus and a function is
selected in it, then this command will find the matching function in the
Export Function List View and highlight it.    This command will be disabled if
the function is unresolved and cannot be found in the Export Function List
View.

If the Export Function List View has the focus and a function is selected in it,
then this command will find the matching function in the Parent Import
Function List View and highlight it.    This command will be disabled if the
function is not called by the parent module and cannot be found in the
Parent Import Function List View.

Shortcuts
Keys: CTRL+M

Highlight Original Instance In Tree (View Menu)
This command is used to locate the original instance of a module in the
Module Dependency Tree View.    It is only enabled when a duplicate module
is highlighted.    Duplicate modules are shown with a small arrow in their
image.    This command will move the current selection to the original
instance of the module.

Shortcuts
Keys: CTRL+K

Highlight Previous Instance In Tree (View Menu)
This command is used to locate the previous instance of the selected module
in the Module Dependency Tree View.    It is only enabled when there is a
previous instance of the selected module.    This command will move the
current selection to the previous instance of the module.

Shortcuts
Keys: CTRL+B

Highlight Next Instance In Tree (View Menu)
This command is used to locate the next instance of the selected module in
the Module Dependency Tree View.    It is only enabled when there is a next
instance of the selected module.    This command will move the current
selection to the next instance of the module.

Shortcuts
Keys: CTRL+N

Refresh Command (View Menu)
This command will force the active Module Session Window to clear all of its
views and reprocess the original module.    This can be useful during trouble
shooting a module to determine if some action you performed, such as
locating and copying a missing module, has alleviated a problem.

Shortcuts
Keys: F5

View Module in External Viewer Command (View
Menu)
The external viewer command is provided as a means to launch a secondary
module viewer.    The external viewer application is completely user
configurable.    See the Configure External Module Viewer... command for
more information.

If the active view is the Module Dependency Tree View, Parent Import
Function List View, or Export Function List View, then this command will
launch the external viewer application with the module that is currently
selected in the Module Dependency Tree View.    If the Module List View has
the focus, then Dependency Walker will launch a separate instance of the
external viewer application for every module that is selected in the list.

Shortcuts
Keys: ENTER (while one or more modules are highlighted in the active

view)
Mouse: Double-click on a module.

Toolbar:

Lookup Function in External Help Command (View
Menu)
This command will attempt to find help about the currently selected function
by using a help collection installed on your computer or by using the MSDN
online collection via the internet.    This command is available when either
the Parent Import Function List View or the Export Function List View is active
and a named function is highlighted.    To configure what help collection to
use for lookups, see the Configure External Function Help Collection
command.

Shortcuts
Keys: ENTER (while a function is highlighted in the active view)
Mouse: Double-click on a function.

Properties Command (View Menu)
The properties command is provided as a means to launch the Windows
"Properties" dialog for selected modules.

If the active view is the Module Dependency Tree View, Parent Import
Function List View, or Export Function List View, then the Properties dialog
will be displayed for the module that is currently selected in the Module
Dependency Tree View.    If the Module List View has the focus, then
Dependency Walker will display a separate Properties dialog for every
module that is selected in the list.

Shortcuts
Keys: ALT+ENTER

Toolbar:

Toolbar Command (View Menu)
Use this command to display and hide the Toolbar, which includes buttons for
some of the most common commands in Dependency Walker, such as the
File Open.    A check mark appears next to the menu item when the Toolbar is
displayed.

See Toolbar for more help on using the toolbar.

Status Bar Command (View Menu)
Use this command to display and hide the Status Bar.    A check mark
appears next to the menu item when the Status Bar is displayed.

See Status Bar for more help on using the status bar.

Configure Module Search Order Command (Options
Menu)
This command will display the Module Search Order Dialog, which allows you
to control how Dependency Walker searches your system for dependent files.

Shortcuts

Toolbar:

Configure External Module Viewer Command
(Options Menu)
This command will display the Configure External Module Viewer Dialog,
which allows you to configure the external viewer application and arguments.

Configure External Function Help Collection
Command (Options Menu)
This command will display the Configure External Function Help Collection
Dialog, which allows you to configure which help collection to use when the
Lookup Function in External Help command is invoked.

Configure Handled File Extensions Command
(Options Menu)
This command will display the Handled File Extensions Dialog, which allows
you to configure which file extensions Dependency Walker should handle.   
You can open "handled" files in any explorer window by right-clicking on a file
and choosing "View Dependencies" from the context menu.    Handled files
also show up in Dependency Walker’s File Open Dialog by default.

Start Profiling Command (Profile Menu)
This command will display the Profile Module Dialog, which allows you to
configure and start profiling of the active Module Session.

This command will be disabled if any of the following apply:

You have not loaded any modules into Dependency Walker.
The application is already being profiled.    If this is the case, then the

Stop Profiling Command will be enabled.
The Module Session represents a loaded Dependency Walker Image

(DWI) file.    DWI files are snapshots from a previous time and possibly from a
different system.    The files displayed may or may not correspond to files on
your current system, and therefore cannot be profiled reliably.

The root module of the active Module Session does not match the
system you are running on.    For example, a 64-bit Alpha module cannot be
profiled on a 32-bit x86 computer.

The root module cannot be a DLL, OCX, or similar type module.    It
must be the main executable file (usually ends with .EXE) of an application.

Shortcuts
Keys: F7

Toolbar:

Stop Profiling Command (Profile Menu)
This command will stop profiling the application for the active Module
Session.    It will forcefully terminate your application, so it should only be
used in situations where the application is not responding to normal methods
of closing.    The Stop Profiling Command is only enabled when you are
currently profiling the application.    See the Start Profiling Command for more
information on profiling your application.

Shortcuts
Keys: SHIFT+F7

Toolbar:

Cascade Command (Window Menu)
Use this command to arrange all non-minimized Module Session Windows in
an overlapped fashion.

Shortcuts

Toolbar:

Tile Horizontal Command (Window Menu)
Use this command to arrange all non-minimized Module Session Windows as
non-overlapping horizontal tiles.

Shortcuts

Toolbar:

Tile Vertical Command (Window Menu)
Use this command to arrange all non-minimized Module Session Windows as
non-overlapping vertical tiles.

Shortcuts

Toolbar:

Arrange Icons Command (Window Menu)
Use this command to arrange the icons for minimized windows at the bottom
of the Dependency Walker’s main window.

1, 2, 3, ... Command (Window Menu)
Dependency Walker displays a list of currently open Module Session Windows
at the bottom of the Window menu.    A check mark appears in front of the
Module Session Window name of the active Module Session Window.   
Choose a module session from this list to make its window active.

Help Topics Command (Help Menu)
Use this command to display the opening screen of Help.    From the opening
screen, you can jump to any area of Dependency Walker’s online help
documentation.

Once you open Help, you can click the Contents button whenever you want
to return to the opening screen.

About Dependency Walker Command (Help Menu)
Use this command to display program information, the version, and the
copyright of your copy of Dependency Walker.

Context Help Command
Use the Context Help command to obtain help on a particular area of
Dependency Walker.    When you choose the Toolbar's Context Help button,
the mouse pointer will change to an arrow and question mark.    Then click
somewhere in the Dependency Walker window, such as another Toolbar
button, menu item, or a view.    The Help topic will be shown for the item you
clicked on.

Shortcuts
Keys: SHIFT+F1

Toolbar:

Restore Command (System Menu)
Use this command to return the active window to its size and position before
it was Maximized or Minimized.

Shortcuts
Mouse Single-click the Restore button on the Title Bar of the maximized

window or minimize icon bar.

Move Command (System Menu)
Use this command to display the four-headed arrow cursor, which allows you
to move the active window or dialog box with the arrow keys.

Note:    This command is unavailable if you maximize the window.

Shortcuts
Mouse: Grab the Title Bar of the window and drag the window it to a new

location.

Size Command (System Menu)
Use this command to display the four-headed arrow cursor which allows you
to re-size the window with the arrow keys.

After the pointer changes to the four-headed arrow:
1. Press one of the DIRECTION keys (left, right, up, or down arrow key) to

move the pointer to the border you want to move.    The cursor will
change to one of the following images:

2. Press a DIRECTION key to move the border.
3. Press ENTER when the window is the size you want.

Note: This command is unavailable if you maximize or minimize the window.

Shortcuts
Mouse: Drag the size bars at the corners or edges of the window.

Minimize Command (System Menu)
Use this command to reduce the window to an icon.

Shortcuts
Mouse: Single-click the Minimize button on the Title Bar.

Maximize Command (System Menu)
Use this command to enlarge the active window to fill the available space.

Shortcuts
Mouse: Single-click the Maximize button on the Title Bar.

Mouse: Double-click on the Title Bar.

Close Command (System Menu)
Use this command to close the window.

Shortcuts
Keys: CTRL+F4 to close the active Module Session Window.
Keys: ALT+F4 to close all Module Session Windows and Dependency

Walker.
Mouse: Single-click on the Close button in the Title Bar of the window you

wish to close.

Mouse: Double-click on the System Menu icon in the Title Bar of the
window you wish to close.

Next Window Command (System Menu)
Use this command to switch to the next open Module Session Window.   
Dependency Walker determines which window is next according to the order
in which you opened the Module Session Windows.

See the Previous Window command also.

Shortcuts
Keys: CTRL+F6

Previous Window Command (System Menu)
Use this command to switch to the previous open Module Session Window.   
Dependency Walker determines which window is previous according to the
order in which you opened the Module Session Windows.

See the Next Window command also.

Shortcuts
Keys: SHIFT+CTRL+F6

Next Pane Command
This command allows you to use the keyboard to switch between the
different views in a Module Session Window.    The Next Pane Command
navigates forward through the views in the following order:

1. Module Dependency Tree View
2. Parent Import Function List View
3. Export Function List View
4. Module List View
5. Log View

See the Previous Pane command for navigating through the views in opposite
order.

Shortcuts
Keys: F6

Previous Pane Command
This command allows you to use the keyboard to switch between the
different views in a Module Session Window.    The Previous Pane Command
navigates backwards through the views in the following order:

1. Log View
2. Module List View
3. Export Function List View
4. Parent Import Function List View
5. Module Dependency Tree View

See the Next Pane command for navigating through the views in opposite
order.

Shortcuts
Keys: SHIFT+F6

File Open Dialog
Look in

Lists the available folders and files.    To see how the current folder fits in
the hierarchy on your computer, click the down arrow.    To see what’s
inside a folder, click it.

File and Folder List
This list displays all the files and folders located in the folder specified by
the Look in field that match the search specifications of the File name
field and/or the Files of type field.    You may select any file in this list
and press Ok to open the file.    You may also double-click on any file in
this list to open the file.

File name
This box allows you to type a full path to a file, a relative path to a file, a
path to another folder to browse, a file name to open, or a partial filename
with wildcards (* and ?) to search for.    Depending on what you choose to
do, the Look in field and the File and Folder List will update to reflect
the change.    If you type an exact match to a particular file, then that file
will be opened.

Files of type
Select the types of files you want to open from the drop-down list.    The
File and Folder List will update to show only the types of files specified
by the Files of type field.    Dependency Walker provides three options for
this list:

Handled File Extensions
Selecting this type will show all files that contain a file extension
that you have told Dependency Walker to handle.    To configure
what extensions are handled, see the Handled File Extensions
Command.    You can load a file with any extension, but this setting
only displays the ones that are handled.

Dependency Walker Image (DWI)
Selecting this type will show all files with the DWI extension.    DWI
files are image files that contain a complete snapshot of a previous
Module Session.    By loading a DWI file, you can view the complete
results of a previous Module Session without actually being on the
system that generated the results.

All Files (*.*)
Selecting this option will simply display all files for the current
folder.    This can be useful in finding a file that you have not told

dependency walker to handle.

File Save Dialog
Save in

Lists the available folders and files.    To see how the current folder fits in
the hierarchy on your computer, click the down arrow.    To see what’s
inside a folder, click it.

File and Folder List
This list displays all the files and folders located in the folder specified by
the Save in field that match the search specifications of the File name
field and/or the Files of type field.    You may select any file in this list
and press Ok to overwrite the file.    You may also double-click on any file
in this list to overwrite the file.

File name
This box allows you to type a full path to a file, a relative path to a file, a
path to another folder to browse, a file name to save to, or a partial
filename with wildcards (* and ?) to search for.    Depending on what you
choose to do, the Save in field and the File and Folder List will update
to reflect the change.    If you type in a valid file name and press Ok or
Enter, then that file will be created and saved to.

Save as type
Select the file format you wish to save the active Module Session to.   
Dependency Walker provides four options for this list:

Dependency Walker Image (DWI)
DWI files represent a complete snapshot of the current Module
Session.    They are binary files that are only recognizable to
Dependency Walker.    DWI files may be loaded by Dependency
Walker at a future time on any computer to view the complete
results of the current Module Session as displayed on the computer
that generated the Module Session.

Text (*.txt)
Selecting this option will save the contents of the System
Information Dialog, Module Search Order Dialog, Module
Dependency Tree View, Module List View, and Log View to a
formatted text file that can be viewed with any text viewer.

Text with Import/Export Lists (*.txt)
This option is the same as the Text option, but also saves the
contents of the Parent Import Function List View and Export Function
List View in addition to the contents of the System Information
Dialog, Module Search Order Dialog, Module Dependency Tree View,

Module List View, and Log View to a formatted text file that can be
viewed with any text viewer.

Comma Separated Values (*.csv)
This option will save the Module List View to a comma separated
value (CSV) text file.    CSV files can be easily imported into many
applications such as Excel or Access.    They may also be useful with
any post processing tools you may write on your own.    Each
module in the Module List View uses one line in the CSV file.    The
text in each column of the Module List View are separated by
commas in the CSV file.    Any text that may contain a comma as
part of its text will be put in quotes to prevent the comma from
being interpreted as a column separator.

Find Dialog
The following options allow you to search for text in the Log View.

Find what
Fill this field in with the text you wish to locate in the Log View.

Match whole word only
Check this box to limit the search to only finding your text when seen as a
whole word and not part of a larger word.    When not checked, all
occurrences of your text will be found.    For example, when this option is
not checked, searching for "lock" could find words like "clock" and
"locker".

Match case
Check this box to limit the search to only finding text that exactly matches
the case of your search text.

Find Next
Press this button to look for the next occurrence of your search text.    The
search begins from your current cursor location and continues to the end
of the view.    For each match that is found, the text will be highlighted in
the Log View, and the cursor will be moved to that selection.    You may
repeatedly press Find Next to continue searching for more matches.

System Information Dialog
This resizable dialog displays information about the current computer,
operating system, and user.    If the active Module Session is actually a
loaded Dependency Walker Image (DWI) file, then all the information in the
System Information Dialog describes the computer that saved the DWI file
rather then the current computer.    The caption of this dialog will contain the
text "(Local)" if it is displaying live information for the current computer.    For
DWI files, the caption will contain the name of the DWI file that the
information is stored in.

All the information shown in the System Information Dialog is also saved to
text and DWI type files when you use the Save Command or Save As
Command.

Close
Closes the dialog.

Refresh
Refreshes the dialog with updated information.    This button will be
disabled if the data shown is really from a loaded Dependency Walker
Image (DWI) file.

Select All
Selects all the text in the text window.    This button is useful before
pressing the Copy button if you wish to copy the entire text window.

Copy
Copies the selected text in the text window to the clipboard.    This button
is disabled if no text is selected.

Module Search Order Dialog

This resizable dialog is used to configure how Dependency Walker locates
dependent modules.    When you first open a module in Dependency Walker,
it is scanned for all modules it is dependent on.    Then, all those dependent
modules are scanned for their dependent modules.    This recursion is
repeated until all modules have been scanned.    Inside each module are
various tables that provide this information.    However, only the file names of
the dependent files are specified and not complete file paths.    For this
reason, it is the job of Dependency Walker to search your system for each file
to establish a full path to the files.    This is where the Module Search Order
Dialog comes into play.

The Module Search Order Dialog allows you to specify where Dependency
Walker should look for dependent modules.    By default, Dependency Walker
is set up to simulate the search algorithm that the operating system uses to
locate modules.    You can override this default behavior and set up your own
custom search criteria.    This can be helpful for various reasons.    For
example, maybe you want to check the dependencies of a group of MIPS
Windows CE files on your x86 Windows computer.    Since you really don't
want Dependency Walker to accidentally pick up x86 Windows modules as
dependencies, you can remove all the default search criteria from the search
order and just add directories that contain MIPS Windows CE modules.

If the active Module Session is actually a loaded Dependency Walker Image
(DWI) file, then the dialog will show the search order that was in use on the
computer that created the DWI file.    Also, the caption of the dialog will
contain the name of the DWI file, and many of the controls listed below will
not be accessible since the search order cannot be modified when viewing
the results from a DWI file.    If the current Module Session is not a DWI file,
then the dialog's caption will contain the text "(Local)" in it.

The Module Search Order Dialog has seven predefined locations it searches
for files.    In addition to these seven locations, you can add search directories
of your own.    The seven predefined locations include the following:

Side-by-Side Components (Windows XP only)
Starting with Windows XP, applications can override the operating
system’s default search order by providing instructions about the
versions and/or locations of modules it requires.    These instructions
can be stored in a special XML file or as an RT_MANIFEST resource in
the main executable itself.

The system's known DLLs list.

These are known modules like KERNEL32.DLL.    When the operating
system encounters a known DLL, it skips all rules and loads it from a
known place.

The application directory.
This is the directory that the main module of your application lives in.

The 32-bit system directory.
This is your 32-bit system directory.    On Windows NT/2000, it is usually
something like C:\WinNT\System32\.    On Windows XP, it is usually
something like C:\Windows\System32\.    On Windows 95/98/Me, it is
usually something like C:\Windows\System\.

The 16-bit system directory (Windows NT/2000/XP only).
This is your 16-bit Windows directory and only exists on Windows
NT/2000/XP.    It is usually located at C:\WinNT\System\.

The system's root OS directory.
This is the directory that your operating system is installed to.    It is
usually something like C:\WinNT\ on Windows NT/2000 and C:\
Windows\ on Windows 95/98/Me/XP.

The application's registered "App Paths" directories.
This is a set of directories that an application can register for itself in
the "HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\
CurrentVersion\App Paths\" section of the registry.    If an application
has registered one or more directories, then those directories will be
searched for dependent files.    This feature is actually provided by the
Shell and not by the core operating system.    When an application is
started by calling a Shell function (like ShellExecute or ShellExecuteEx),
the Shell checks the registry to see if the application has registered a
path in the "App Paths" section.    If so, that path is inserted into the
head of the PATH variable for the application about to be started.   
Most newer applications use the Shell functions to start other
applications, but for applications that call CreateProcess, the
applications started will not receive their "App Paths" path as part of
their search order.

The system's "PATH" environment variable directories.
The last item in a module's search order is usually the PATH variable.   
This is a user-definable system variable that is seen by all applications
running on a given computer.    It usually contains one or more
directories where common modules can be found.

The Module Search Order Dialog has the following controls:

Available Search Groups

If you remove one or more of the predefined search locations from the
Current Search Order list, they will be added to this list so that you can
access them if you wish to add them back to the Current Search Order. 
The locations in this list will not be part of the search order.

Current Search Order
This list displays the current search order.    It can contain any number of
the predefined search locations as well as any number of user-defined
directories.    When Dependency Walker is searching for a module, it will
start at the top of the list and work its way down until the module is
found.    If the end of the list is reached with no match, then Dependency
Walker gives up and marks the module as "Not Found"

>> (Add)
This moves the highlighted item in the Available Search Groups list to
the bottom of the Current Search Order list.    Once moved, you can
move it up the list if necessary using the Move Up button.    If no item is
highlighted in the Available Searches list, then this button will be
disabled.

<< (Remove)
This moves the highlighted item in the Current Search Order list to the
bottom of the Available Search Groups list.    If no item is highlighted in
the Current Search Order list, then this button will be disabled.

Expand
Press this button to show all the files and/or directories that belong to
each search group.    When this button is not pressed, just the group
names are displayed.

Move Up
This moves the highlighted item in the Current Search Order list up one
position.    If no item is highlighted, or the first item is highlighted, then
this button will be disabled.

Move Down
This moves the highlighted item in the Current Search Order list down
one position.    If no item is highlighted, or the last item is highlighted,
then this button will be disabled.

Load
Press this button to load a Dependency Walker Path (DWP) file from disk.   
See the Dependency Walker Path (DWP) Files section for more
information.    You may also load DWP files from the Command Line when
first starting Dependency Walker.

Save

Press this button to save the current search order to a Dependency Walker
Path (DWP) file.    See the Dependency Walker Path (DWP) Files section for
more information.

Default
This button resets the Current Search Order list to its default
configuration.    This will cause all user-defined directories to be removed
from the list.

Add Directory
This button and text field allow you to add user-defined search directories
to the search order.    You can type in a directory you wish to add or press
the Browse button to graphically pick a directory.    If no text is present in
the text field, then the Add Directory button will be disabled.    You can
add as many user-defined directories as you wish.    Directories are added
to the bottom of the Current Search Order list.    To move them up the
list, use the Move Up button.

Browse
This button allows you to graphically choose a directory to be added to
the Current Search Order list.    Once pushed, a browse dialog will
appear allowing you to choose a directory.    If you choose a directory from
the browse dialog, it will show up in the Add Directory text field.    To
actually add the directory to the search order, you need to press the Add
Directory button.

Configure External Module Viewer Dialog
Command

This field specifies a path to the executable to be run when the View
Module in External Viewer command is invoked.    You may use
environment variables, like %SystemRoot%, in this path.

Arguments
This field specifies the command line arguments to be passed to the
executable specified in the Command field when the View Module in
External Viewer command is invoked.    You may use a %1 anywhere in the
argument string to represent the full path to the module file.    When the
external viewer application is launched, all %1 tokens will be replaced
with the full path to the module file.    You should surround all %1
arguments in quotes so that the external viewer can handle long
filenames with spaces.    For example, "%1".    You may also use
environment variables in this field.

Browse
This button will display a File Open Dialog, which allows you to browse
your system for the executable file to be used as your external viewer.    If
a file is chosen in this dialog, the Command field will be updated to show
the new file.

When you first run Dependency Walker, it defaults to using QUIKVIEW.EXE as
your external viewer if you have it on your system.    If it is not found, then it
defaults to using DEPENDS.EXE as the external viewer, which will just launch
another instance of Dependency Walker.    Here is an example using
DUMPBIN.EXE (part of Visual C++) on Windows NT/2000/XP to get header
information about a module:

Command: %SystemRoot%\System32\cmd.exe
Arguments: /c dumpbin.exe /headers "%1" > "%TEMP%\headers.txt" &

start notepad "%TEMP%\headers.txt"

Configure External Function Help Collection Dialog
This dialog is used to determine what help collection should be used when
the Lookup Function in External Help command is invoked.    Dependency
Walker will examine your computer and determine what help collections are
installed and available for you to use.    It supports collections from MSDN,
Visual Studio 6.0, and Visual Studio 7.0.    Dependency Walker can also
perform a lookup over the internet using the MSDN online help.    This is
useful if you don't have any installed collections, or your collections are out
of date.

Use the following MSDN collection

Select this radio button to indicate that you wish to use an installed help
collection rather than the online collection.

Collection list
This is a list of help collections that Dependency Walker found installed on
your system.    Dependency Walker attempts to sort the list from the most
relevant help collection to the least relevant help collection.

Refresh
This button will rescan your system for help collections.

Use MSDN online (Use a %1 to represent the function name)
Select this radio button to indicate that you wish to use the MSDN online
help rather than an installed help collection.

URL
This field contains the URL that Dependency Walker will launch in a
browser window when you invoke the Lookup Function in External Help
command.    Dependency Walker will replace all occurrences of %1 in the
URL with the name of the function you are looking up.

Default URL
This button will fill in the URL field with the default URL for using MSDN
online.    This default URL was determined at the time Dependency Walker
was released and may not work in the future if MSDN online changes the
format of their URL.    For this reason, the URL field has been provided so
that you can modify the URL to fit your needs.

Handled File Extensions Dialog
This dialog is used to configure what file extensions you wish Dependency
Walker to "handle".    Dependency Walker will register itself with your
operating system as a viewer for any file extensions you add within this
dialog.    Once registered, you can right-click on a handled file in any explorer
window and choose "View Dependencies" from the context menu to launch
Dependency Walker and process that file.    Handled files are also shown by
default in the File Open Dialog when it is first displayed.   

You may also use the Handled File Extensions Dialog to remove handled file
extensions.    This will remove the "View Dependencies" menu item from the
right-click explorer context menu for the extensions you wish to stop
handling.

Usually, you will want Dependency Walker to handle all extensions that
represent 32-bit or 64-bit Windows modules.    Some common ones are EXE,
DLL, and OCX.    However, developers are free to use any extension they wish
when creating modules.    Because of this, Dependency Walker provides the
option to scan one or more of your disk drives looking for files that are 32-bit
or 64-bit Windows modules and automatically add them to your handled file
extension list.

Extension
This field allows you to manually enter an extension and add it to the list. 
You do not need to enter a period as part of the extension.    After you type
in an extension, you need to press the Add button to add it to the list.

Add
This button adds the extension in the Extension field to the extension
list.    If there is no text in the Extension field or the extension entered is
already in the list, then this button will be disabled.

Remove
Removes all the highlighted extensions from the extension list.

Search...
This button will display the Search for Executable File Extensions Dialog,
which allows you to automatically search one or more of your disk drives
for 32-bit and 64-bit Windows modules.

Search for Executable File Extensions Dialog
This dialog will automatically search one or more of your disk drives looking
for 32-bit and 64-bit Windows modules.    Once the search is complete, you
can choose which of the files you want Dependency Walker to handle.

Drives to Search
This list shows all drive letters currently available on your computer.    By
default, all drives that are local hard drives are highlighted.    Select the
drives you wish to search and press the Search button to begin.    While
searching, the word "Searching" will appear next to the drive that is
currently being searched.

Extensions to Add
Once the searching begins, this list will be populated as 32-bit or 64-bit
Windows modules are found.    During the search, the list itself will be
disabled, preventing you from unselecting items.    Once the search
completes, you can select which files you want Dependency Walker to
handle and press the Add button.

Search
Once you have selected the drives you wish to search in the Drives to
Search list, press this button to begin searching.    While searching, all
controls in the dialog will be disabled except the Stop and Cancel
buttons.

Stop
This will stop the currently running search.    If there is no currently
running search, then this button will be disabled.

Add
Once the search has completed, you can press this button to add all the
highlighted extensions in Extensions to Add list to the handled list and
return to the Handled File Extensions Dialog.

Cancel
Press this button to close the dialog without adding any file extensions to
Dependency Walker's handled list.    If a search is currently running, the
Cancel button will stop the search first, then close the dialog.

Profile Module Dialog
The profile dialog is used to configure how a module is to be profiled.    It
contains the following controls:

Program arguments
This field can be filled in with any arguments you wish to start the
application with.

Starting directory
This field contains the directory that the application should start in.    By
default, this field is filled in with the directory that the main executable
lives in.    If you wish to change this directory, you can type in a new
directory or press the Browse button to graphically choose a new
directory.    You can also press the Default button to restore this field to its
default directory.

Browse...
This button will display a browse dialog that lets you graphically choose a
starting directory for the application.    After you choose a directory, it will
appear in the Starting Directory field.

Default
This button will restore the Starting Directory field to its default
directory.

Clear the log window.
When this box is checked, the Log View will be cleared before the profile is
started.

Simulate ShellExecute by inserting any App Paths directories into
the PATH environment variable.

When this box is checked, Dependency Walker will simulate the
ShellExecute function when starting your application.    This ensures that
your application's "App Paths" entries are part of the search path.    When
this box is not checked, Dependency Walker simply calls CreateProcess to
start your application, which does not use the "App Paths" entries.   
Usually, you should check this box unless you are troubleshooting a
problem related to "App Paths" entries.

Log DllMain calls for process attach and process detach messages.
Dependency Walker monitors all calls to each non-shared module’s
entrypoint, usually known as the DllMain function.    When this box is
checked, all DllMain functions called with the DLL_PROCESS_ATTACH
message or DLL_PROCESS_DETACH message will be logged.    If a module
returns 0 from its DllMain function while processing the

DLL_PROCESS_ATTACH message, then the OS will unload the module and
return a failure.    In the case of an implicit dependency, this will cause the
entire application to fail to load with an error dialog reading something
like "The application failed to initialize properly".    In the case of a
dynamic dependency, the call to LoadLibrary will fail with error 1114
(ERROR_DLL_INIT_FAILED), but the application may continue to run.

Log DllMain calls for all other messages, including thread attach and
thread detach.

Dependency Walker monitors all calls to each non-shared module’s
entrypoint, usually known as the DllMain function.    When this box is
checked, all DllMain functions called with the DLL_THREAD_ATTACH
message or DLL_THREAD_DETACH message will be logged.

Hook the process to gather more detailed dependency information.
When this item is checked, Dependency Walker will inject a small DLL into
the application being profiled to help gather details that can only be
gathered from within the application itself.    When the process being
profiled is hooked, Dependency Walker is able to track which modules
dynamically load other modules at runtime, as well as what functions are
dynamically being called into those dynamically loaded modules.    It can
also capture the command line arguments passed to child processes.   
When a process is not hooked, Dependency Walker can still track all
dynamically loaded modules, but cannot provide information about which
module loaded the dynamic modules, or what dynamic functions were
called.    See the Using Application Profiling to Detect Dynamic
Dependencies section for more information.

Log LoadLibrary function calls.
This option is only enabled if the Hook the process to gather more
detailed dependency information is checked.    When checked, all calls
to LoadLibrary type functions will be logged to the Log View.    When not
checked, the calls are still processed, but just not displayed in the Log
View.

Log GetProcAddress function calls.
This option is only enabled if the Hook the process to gather more
detailed dependency information is checked.    When checked, all calls
to GetProcAddress will be logged to the Log View.    When not checked, the
calls are still processed, but just not displayed in the Log View.

Log thread information.
When this option is checked, all thread creations and deletions are logged
to the Log View.    Also, all other events logged to the Log View, will have
the thread I.D. appended to the end.    This option can be helpful if you are
trying to track down what threads are loading modules and calling
functions.

Use simple thread numbers instead of actual thread IDs.
This option is only enabled if the Log thread information is checked.   
When checked, simple incrementing numbers are used to represent the
different threads rather than true thread I.D.'s, which can be lengthy
hexadecimal values.    This makes following a particular thread's activity
easier.

Log first chance exceptions.
When this option is checked, all first chance exceptions will be logged to
the Log View.    First chance exceptions should be harmless if handled
correctly by the application.    Usually, you can leave this option checked,
but if you are profiling an application that makes extensive use of first
chance exceptions, then you may wish to uncheck this option to reduce
unwanted output.    If an application does not handle a first chance
exception, then a second chance exception occurs and the application is
terminated.    Dependency Walker always logs second chance exceptions,
regardless of how this option is set.

Log debug output.
When this option is set, all debug output from the process will be logged
to the Log View.

Use full paths when logging file names.
This option lets you control how file names are logged to the Log View.   
Several of the events that are logged will need to display file names.   
When this option is checked, full paths to the files will be logged.    When
this option is not checked, only the file names will be displayed.

Log a time stamp with each line of log.
When this option is set, each line of log will begin with a time stamp.   
Each time stamp shows the number of hours, minutes, seconds, and
milliseconds that have elapsed since the process started.    It is important
to note that Dependency Walker can significantly impact the performance
of certain operations within the application being profiled.    For this
reason, these time stamps should probably not be used as an accurate
method of measuring the performance of your application.

Automatically open and profile child processes.
When this option is checked, Dependency Walker will automatically open
and process any child processes of a process being profiled.    For
example, if you are profiling application A and it decides to launch
application B, then Dependency Walker will open a new Module Session
Window for application B and immediately begin to profile it using the
same profiling settings as application A.

About Dependency Walker Dialog
This dialog displays program information, the version, and the copyright of
your copy of Dependency Walker.

Toolbar

The toolbar is displayed by default across the top of the application window,
below the menu bar.    The toolbar provides quick mouse access to many
tools used in Dependency Walker.

There are three ways you can learn what a particular toolbar button’s action
is.    You can float the mouse over the button and a tool tip will pop up with
the command name.    You can press and hold the mouse down over a button
and read the text displayed in the Status Bar for a more detailed description. 
If you do not wish to execute the command, move the mouse off the toolbar
button and release the mouse.    Last, you can use the Context Help utility to
activate the online help documentation for the toolbar button.

The toolbar can be docked to the top, left, right, and bottom of Dependency
Walker’s main window, as well as free floated in its own mini window      To
change the docking location of the toolbar, simply grab the toolbar along its
edge and drag it to where you would like it to go.

To hide or display the Toolbar, choose the Toolbar option from the View menu.

Click To

Opens and processes a module file.    See the Open... command for
more information.

Saves the current Module Session to a file.    See the Save Command
for more information.

Copies the current selection to the clipboard as text.    See the Copy
Command for more information.

When checked, the Module Dependency Tree View will automatically
expand to show modules as they are added.    See the Auto Expand option for
more information.

Shows or hides full path strings in the Module Dependency Tree View
and the Module List View.    See the Full Paths option for more information.

Enables or disables undecoration of C++ function names in the Parent
Import Function List View and the Export Function List View.    See the
Undecorate C++ Functions option for more information.

Launches the external module viewer for the selected modules.    See
the View Module in External Viewer command for more information.

Displays the Windows Properties dialog for the selected modules.    See
the Properties command for more information.

Displays information about the system.    See the System Information
command for more information.

Configures the search order used when locating dependent modules.   
See the Configure Search Order command for more information.

Starts profiling the current Module Session.    See the Start Profiling
Command for more information.

Stops profiling the current Module Session.    See the Stop Profiling
Command for more information.

Arranges windows in an overlapped fashion.    See the Cascade
command for more information.

Arranges windows as non-overlapping horizontal tiles.    See the Tile
Horizontally command for more information.

Arranges windows as non-overlapping vertical tiles.    See the Tile
Vertically command for more information.

Enters context help mode.    See the Context Help command for more
information.

Status Bar

The status bar is displayed at the bottom of Dependency Walker’s main
window.    To display or hide the status bar, use the Status Bar option from
the View menu.

The status bar describes actions of menu items as you use the arrow keys or
mouse to navigate through menus.    This area similarly shows messages that
describe the actions of Toolbar buttons as you depress them and before
releasing them.    If after viewing the description of the toolbar button
command you wish not to execute the command, then move the mouse
pointer off the toolbar button and release the mouse button.

Title Bar

The title bar is located along the top of a window.    For Dependency Walker’s
main window (shown above), it contains the name of the application and the
active module session name if a module has been loaded.    For a Module
Session Window, it will contain the name of the session module.

To move a window, drag the title bar.    To resize a window, drag the size bars
at the corners or edges of the window.

Dependency Walker’s main window’s title bar contains the following
elements:

System Menu button.    This is actually displayed as a small
Dependency Walker icon on left size of the Title Bar

Name of the application, "Dependency Walker"
Name of the active Module Session; for example, "notepad.exe"
Minimize button
Restore/Maximize button
Close button

Scroll Bars
Scroll bars are displayed at the right and bottom edges of each view.    The
scroll boxes inside the scroll bars indicate your vertical and horizontal
location in the document.    You can use the mouse to scroll to other parts of
the view.

No Help Available
Sorry, there is no help available for this area or topic.

