3dLib overview

3dLIB is a library of pascal units that allows Turbo-Pascal programmers to write applications
that display and animate 3D wire-mesh objects. The library is based on a project developed
since 1984 on different platforms.

This package supports both Turbo Pascal for DOS and Turbo Pascal for Windows. (Or BP 7.0
with objects for dos real/protected and windows targets).

A package called 3D120 is distributed by ISoft D&M that includes a graphic editor, macro
interpreter and pascal translator to create and use 3D objects. It is highly recommended that
any programmer trying to use this library will use the 3D program to create objects, and
understand the animation abilities of the library.

The 3dCW program is a MDI IDE for 3d macro programs (.M3D files).

Terminology
Macro Language
Contact

Registration
Credits

Terminology

The following terms are described in order to understand the need the building blocks of the
3d environment :

Pascal 3D Types

Base Object
Simple Object
Complex Object

Projections
CTM

Pascal 3D Types

The 3d library defines pascal objects that represent the 3d objects we use to animate. Each
object can display itself on the screen, move (translate), rotate and scale itself.

The code for the pascal objects is in the RTOBJ.PAS source code that is supplied with this
library.

There are 3 types of pascal objects used to describe the 3d objects :

Base Object
Simple Object
Complex Object

Base Object

baseObject - defined in the RTOBJ.PAS file, this is the "dummy" ancestor object class of the
3D-objects, such an object has a CTM (called myCTM), a color, a center of gravity 3D point
(location), and other display attributes, in order to achieve better animation results, a
scrPntUpdt boolean variable is used to indicate if the screen 2D points of the object has to
be re-calculated from the 3D representation.

The object uses a 4X4 "transformation matrix" to represent itself in the 3D universe, the
move, translate, scale, allScale, rotate, goto3dPos, setToOrigin, calcLocation and
deleteTransform methods are used to update that matrix (the Current Transformation
Matrix).

The load, save, writeMe, and readMe methods are used to store and retrieve a 3D object
from a storage device (a disk..), and the open and close methods are used to construct, and
destruct the object. The show, hide and paint methods display, or erase the object on the 2D
screen. One more interesting method is the updateScreenPoints method, that transforms the
3D object representation to the 2D screen.

The object's type definition is :

BaseObject = object

MyCtm : Ctm; { This CTM applied to the object gives the }
{ objects Position after transformations }
Name : String; { Identifies the object }
myColor : word; { Main color for the object }
Location : point3d; { Central of gravity in real space }
scrPntUpdt : boolean; { True if screen points updated }

constructor open(myName : string; color : word);
destructor CloseMe; virtual;
{$ifdef windows}
procedure show(dc : hdc); virtual;
procedure hide(dc : hdc); virtual;
procedure paint(dc : hdc); virtual; {in specified color}
{$else}
procedure show; virtual;
procedure hide; virtual,
procedure paint; virtual; {in specified color}
{$endif}
procedure updateScreenPoints; virtual; {transform object 3D -> 2D}
procedure move(axis : axisType; by : real); virtual,
procedure translate(dx, dy, dz: integer); virtual;
{multy dimentional move in 1 call}
procedure scale(axis : axisType; factor : real); virtual;
procedure allScale(sx, sy, sz : real); virtual;
{multy dimentional scale in 1 call}
procedure rotate(axis : axisType; deg : real); virtual;

procedure goto3dPos(X, y, z : real); virtual; {translate to absolute place}
procedure setToOrigin; virtual,

{translate to 0,0,0, update points, and set myCtm to unit}
procedure calcLocation; virtual; {set Location to central gravity}
procedure deleteTransform; virtual; {set MyCtm to unit}

function load : word; virtual; {from disk}
function save : word; virtual; {to disk}
procedure writeMe(var elementFile : f_real); virtual; {to disk .. without opening file..}
procedure readMe(var elementFile : f_real); virtual;
end;

Related Topics :

Simple Object
Complex Object

Simple Object
A simple object is a descendent of a base object that has the pascal name obj3D.

obj3D is a descendant object of the baseObject class, this is a simple wire-mesh object, that
is built from a collection of points (change the maxPoints constant in the HDR3D.PAS file to
start with bigger, or smaller objects) in the 3D universe, an collection of lines (a line is a
segment in the 3D universe that connects 2 3D points), another collection holds the 2D
screen points of the object, calculated from its 3D representation, and the CTM. Another
interesting aspect of this object is the use of 2 more matrices, the reverseRot, and
unReverseRot CTM objects, that are used to hold only the reverse, and counter reverse of
the rotation transformations, these are used by complex objects that contain several obj3D
objects, where some of them has to be rotated, scaled and translated around an arbitrary
point in the 3D universe, which is not there center of gravity (frame - reference).

The object's type definition is :

Obj3d = object(BaseObject)
Points : T3dPointCollection;
Lines : T3dLineCollection;
scrPoints : TScreenPointsCollection;
NumOfLines : integer;
NumOfPoints : integer;
ReverseRot : Ctm; { Saves only the reverse rotations }
unReverseRot: Ctm; { reverse of the above}

constructor open(myName : string; ref : point3d; color : word);
destructor CloseMe; virtual;
{$ifdef windows}
procedure paint(dc : hdc); virtual; {in specified color}
{$else}
procedure paint; virtual; {in specified color}
{$endif}
procedure updateScreenPoints; virtual; {transform object 3D -> 2D}

procedure calcLocation; virtual; {set Location to central gravity}
procedure setToOrigin; virtual;

procedure writeMe(var elementFile : f_real); virtual;
procedure readMe(var elementFile : f real); virtual;
end;
Related Topics :

Base Object
Complex Object

Complex Object

The RTOBJ.PAS file contains the definition of the complexObj 3D object, this is an object that
contains a maxSubObjects (defined in that file) array of simple wire-mesh obj3D objects.
This object class sometimes referred to as the "super - object", allows the user to create
complex 3D objects that has a common frame - reference (center of gravity), an example of
such an object might be a Robot, that has a center of gravity, and is built of some sub
objects that must be able to be transformed both with the frame - reference, and by
themselves.

The objects type definition is :

ComplexObj = object(BaseObject)
childs :array [1..maxSubObjects] of obj3dPtr;
ctms : array [1..maxSubObjects] of ctm;
numOfChilds : integer; {counter of # of obj3d childs}

constructor open(myName : string; color : word);
destructor closeMe; virtual;
procedure updateScreenPoints; virtual;
procedure writeMe(var elementFile : f_real); virtual;
procedure readMe(var elementFile : f_real); virtual;
procedure calclLocation; virtual;

{$ifdef WINDOWS}
procedure paint(dc : hdc); virtual,;

{$else}
procedure paint; virtual,

{$endif}
procedure move(axis : axisType; by : real); virtual;
procedure rotate(axis : axisType; deg : real); virtual;
procedure scale(axis : axisType; factor : real); virtual;

function addSubObject(myName : string; refPoint : point3d) : word;
function getChildPtr(index : integer) : obj3dPtr;
procedure rotateChild(child : integer; axis : axisType;

deg : real);
procedure scaleChild(child : integer; axis : axisType;

factor : real);
procedure moveChild(child : integer; axis : axisType;

by : real);
end;

Related topics :

Base Object
Simple Object

Projections

The PROJECT3.PAS file contain the code that transforms objects and points from the 3D
universe, to the 2D coordinates.

Two 3D -> 2D transformations are supported, axonometric projection, and perspective
projection. This is a short explanation of the difference between these 2 projections :

A : axonometric projections, no perspective due to
distance is performed, the general way
we can look at the coordinate system is as
follows :

| zaxis
I
/\

xaxis [/ \ yaxis

B : perspective projections : the normal eye perspective
projection is performed, we can look at the 3d
universe we are referring to as a cube of
1000 x 1000 x 1000 integer locations, with
the x axis, and y axis parallel to the screen
X, Yy axis respectively, and the z axis going into
the screen.

we will look at the coordinate system as follows :

3Y axis
3

Z axis X------ X axis

These units contain a calcPoint procedure that receives a 3D point, and transforms it to a 2D
screen coordinate, the setPerspective, resetPerspective and togglePerspective change from
perspective projection to axonometric projection, and vice versa.

Related topics :

Terminology
overview

Current Transformation Matrix
(CTM)

CTM3D.PAS is the file that defines the current transformation matrix that is used to position
the 3D objects in the universe. The CTM is a 4x4 matrix that is multiplied (from the right) by
each point of the 3D object whenever a new location is desired for the object.

This unit defines all the transformations that can be applied and used by a CTM, like rotate,
scale, translate etc..

Homogeneous Coordinates

Homogeneous coordinates allow transformations to be represented by
matrices. A 3x3 matrix is used for 2D transformations, and a 4x4 matrix

for 3D transformations.
THIS MODULE IMPLEMENTS ONLY 3D TRANSFORMATIONS.

in homogeneous coordination the point P(x,y,z) is represented as
P(w*x, w*y, w*z, w) for any scale factor w!=0.
in this module w ==

Transformations:
1. translation
[X,y, z] --> [x + Dx, y + Dy, z + Dz]

U i
31. 0 0 03
T(Dx,Dy,Dz) =30 1 0 03
30 01 03
3Dx Dy Dz 13
A U

2. scaling
[X,y, z] --> [Sx * x, Sy * vy, Sz * 7]

U :
35x0 0 03
S(Sx, Sy) =30 Sy 0 03
30 0 Sz03
30 0 0 13
A U

3. rotation
a) Around the Z axis:
[, y, z] --> [x*cost - t*sint, x*sint + y*cost, z]
U ¢
3cost sint 0 O3

Rz(t) = 3-sintcost 0O O3
30 0 1 03

30 0 o 13
A u
b) Around the X axis:
[X, y, z] --> [X, y*cost - Z*¥sint, y*sint + z*cost]
U .

é
31 0 0 03
Rx(t) = 30 cost sint 03

30 -sint cost 03
30 0 0 13
A U

c) Around the Y axis:

[X,y, z] --> [xcost + z*sint, y, z*cost - x*sint]
U i
3cost 0 -sint 03
Ry(t) =30 1 0 03
3sint O cost 03
30 0 0 13
A U

transformation of the vector [x,y,z,1] by transformation matrix T is given
by the formula:

u ¢
[x',y, 2,11 =[xy,z1PT3
A U

Optimizations:
The most general composition of R, S and T operations will produce a matrix
of the form:
U i
3rll rl2 rl3 03
3r21 r22 r23 03
3r31 r32 r33 03
3tx ty tz 13
A U
The task of matrix multiplication can be simplified by
X' = x*rll + y*r21 + z*r31 + tx
y' = x*rl2 + y*r22 + z*r32 + ty
z' = x*rl3 + y*r23 + z*r33 + tz

See also:
"Fundamentals of Interactive Computer Graphics" J.D FOLEY A.VAN DAM
Adison-Weslely ISBN 0-201-14468-9 pp 245-265

Related Topics :
Terminology

Contact

Please contact :

ISoft D&M,

P.O.B 5517
Coralville IA 52241,
U.S.A

To contact the author directly :
Contact : Loewy Ron,
9 Haneveem st.
Herzeliya, 46465
ISRAEL.

e-mail address : CompuServe - 100274,162

Registration

3dLIB is a shareware product, if you find this product valuable,
please register it. This section describes the reasons you should register.

By registering you will receive a diskette with the latest 3dLIB version,
the 3d environment program, for WYSIWYG object creation, the complete source
code for the 3d environment program, and - you will help us to create the next
version of 3dLIB - that will include even more features then the features that
are currently available!, we might even add YOUR enhancement requests!

Macro Language (M3D)

The following commands are supported in the 3D Macro language :

¢ - Clear Screen .

w - set Color to White.

b - set Color to Black.

p - Paint Active object in last color.

00 - set Perspective off.

0l - set Perspective on.

>x - Start a loop to be performed x times.

Ifl - Load simple object from file fl into the active object.

Lfl - Load complex object from file fl into the active object.

rad - Rotate Active Element In axis a, d degrees.

ex - Choose Active Element x.

mas - Move in a axis, s steps.

gx,y,z - Goto 3d pos x,y,z.

saf - Scale a axis in f factor.

v0..v9 variable names.

< - End Loop.

\ -Endline.

z - set object to center.

Rsad - rotate a sub object of a complex object
around axis a, d degrees.

Msas - move a sub object of a complex object
in axis a, s steps.

Ssaf - scale a sub object of a complex object
around axis a, by a factor of f.

Special Notes : a number must end with a space character.
Loops can be nested 10 levels deep in the 3D111 package,
but 3DC can translate even more levels that.

any numeric expressions requested can be
given with a normal infix notation, for
example :

rx30 * vl + 2
will rotate the current active object

around the x axis, by 2 plus 30 * v1
degrees, where v1 is a variable.

CREDITS

3dLIB was written using Turbo Pascal 6.0 & 7.0, as well as

Turbo Pascal for Windows 1.0, 1.5 and Borland Pascal with objects 7.0.
These products are trademarks of Borland international.

Windows 3.0 and Windows 3.1 are trademarks of Microsoft Corp.

The Borland Brief v3.1 editor was used to write these programs.

The windows help file, as well as the TPH file were created using the
help development kit (hlpdk) v5.0 by Loewy Ron.

The Author's picture (in the 3dCW program) was taken by Allison Bially.

Related Topics : Overview

