
Chapter 0 Shareware 
and License 
Information

CT-Shell is distributed as shareware, which means that you are 
encouraged to try it out before buying it, and you are welcome to pass it
along to friends and others, provided that no charge is made for it, and 
you distribute all the files intact.  The following sections provide more 
details regarding copyright and other legal matters.

Trial Period
Non-registered users may try the evaluation version of CT-Shell for a 
period not to exceed 30 days, for the purpose of determining whether it 
is suited to their needs.  A license must be purchased to continue using 
CT-Shell beyond that time, or its use discontinued and all copies of it 
removed. 

Copyright
This software is copyrighted and all rights are reserved by Computer 
Training.  The distribution and sale of registered versions of this software
are intended for use of the original purchaser only.  Lawful users of this 
software are hereby licensed only to read the software in the asso-ciated
files solely for the purpose of executing it.  Copying, duplicating, renting,
leasing, selling, or otherwise distributing registered versions of this 
software is against the law, with the excep-tion that the original 
purchaser may sell the original license to another person, keeping no 
copy of the software for himself.

Licenses Required
Licenses are required on a per-user basis, with a maximum number of 
licenses not to exceed the number of machines that CT-Shell is installed 
on..  Thus, if two people use CT-Shell in an office  where it may be 
installed on five different computers, only two licenses are required.  If 
five dif-ferent people use CT-Shell on a single computer, only one license
is required.  CT-Shell may be installed on and from, and it may be 
executed on and from, a server that is part of a network, provided that 
sufficient licenses are purchased, as provided above.

Trademarks
Various product names referred to in this manual are the trademarks or 
registered trademarks of their respective manufacturers.  CT, CT-Shell, 

C:\WINWORD\CTSHTOC.DOTChapter One – 1 – Installation



and CT-Shell for Windows are trademarks of Computer Training.

License Agreement
Carefully read the following terms and conditions.  Use of this Software 
constitutes your acceptance of these terms and conditions, and your 
agreement to abide by them:

The original purchaser of a registered version of CT-Shell (Licensee) is 
granted a nonexclusive personal license to use the Software under the 
terms stated in this agreement.  The Licensee may transfer his license 
to a subsequent purchaser by sale, provided tht the original Licensee 
does not retain any copy of the Software.  Except for that provision, any 
attempt to sublicense, assign, or transfer any of the rights, duties, or 
obligations hereunder is void.  The Licensee may not copy, modify, alter,
electronically transfer, or lease any registered copy of the software, or 
the printed manual.  The license is effective until terminated.  The 
Licensee may terminate it at any time by destroying the Software.  The 
license will also terminate if the Licensee fails to comply with any term 
or condition of this Agreement.  The Licensee agrees upon such 
termination to destroy the Software.

Limited 90-day Warranty
The diskette(s) and printed materials that are part of a registered copy 
of this product are warranted for 90 days against physical defects.  To 
obtain a replacement for a defective product, return it within the 90-day 
period with an explanation of the problem to:

      Computer Training
            7016  NE 137 ST
     Kirkland, WA  98034-5010  

Voice: (206) 820-6859      Data: (206) 823-2831

This product is also warranted against significant errors in the software 
that render it unusable for you.  However, you may find it more useful to
call Computer Training and discuss a problem before returning your 
software for replacement.  Often what appears to be an error in the 
software is actually a misunderstanding about how it is to be used, and 
an immediate workaround or solution to the problem is possible.

Not covered by any warranty are materials that have been lost, 
stolen, or damaged by accident, misuse, or unauthorized modification.  
COMPUTER TRAINING WILL NOT BE LIABLE FOR ANY SPECIAL, 
INCIDENTAL, CONSEQUENTIAL, INDIRECT, OR OTHER SIMILAR DAMAGES,
EVEN IF WE OR OUR AGENT HAVE BEEN ADVISED OF THE POSSIBILITY 
OF SUCH DAMAGES.  ANY LIABILITY IS NOT TO EXCEED THE ORIGINAL 
PURCHASE PRICE PAID.

We make no other warranty, express or implied, to you or to any 
other person or entity.  Specifically, we make no warranty that the 

C:\WINWORD\CTSHTOC.DOTChapter One – 2 – Installation



software is fit for a particular purpose.  Any implied warranty of 
merchantability is limited to the 90-day duration of the limited warranty,
and is otherwise expressly and specifically disclaimed.

This warranty gives you specific legal rights.  You may also have other
rights which vary from state to state.  Some states do not allow the 
exclusion of incidental and consequential damages, or the limitation on 
how long an implied warranty lasts, so some of the above may not apply
to you.  This agreement will be goverened by the laws of the State of 
Washington. 

C:\WINWORD\CTSHTOC.DOTChapter One – 3 – Installation



Chapter 1 
Installing     

This chapter describes the process of installing CT-Shell onto your 
computer.  It is a very simple process, and because it is much easier to 
understand how CT works if you try out features as you read about 
them, these directions are placed first in the manual.  It is strongly 
suggested that you go ahead and install CT  before going beyond this 
chapter.  

Preparing for Installation
CT is distributed in two ways.  If you obtained a copy of it from a friend
or from a Bulletin Board System (BBS), you probably received an 
archive file named something like CTSHW200.LZH (or perhaps .ZIP 
or .ARJ, depending on the source).  In any event, that archive will 
require an extraction program of some kind, depending on the type of
compression program that was required.  But then, you already have 
found that out if you have gotten to the file containing this manual, as
it was stored within that archive.  

If you obtained a registered-user copy of CT directly from Computer
Training, you will have a disk with the necessary files in an 
uncompressed form.  In that case,  your disk should contain at least 
the following files:

·  CTSHELL.EXE the executable program

C:\WINWORD\CTSHTOC.DOTChapter One – 4 – Installation



·  CTSHELL.INI sample menu/initialization file
·  CTSHELL.HLP Windows help file
·  CTSHELL.KEY SoftKey to unlock your copy
·  CTINSTAL.EXE Installation program

and possibly some other files, such as

·  CTSHELL.NOT Distribution notes

Having extracted the files from a shareware version of the program, 
you would have the same selection of files with two exceptions:  (1) 
rather than a printed copy of the manual, you will have a Windows 
Write document file named CTSHELL.WRI, and (2) you will not have 
the SoftKey file CTSHELL.KEY.  That one is provided to registered users
only.

Once you've arrived at this point, installation of the program is 
exactly the same, whether the files came in a shareware archive, or 
the files came on a registered distribution diskette. 

Installation
There is an installation program provided, named CTINSTAL (its 
executable file name is CTINSTAL.EXE) which can be run from within 
the Windows environment using any means you usually use to run 
programs.   In other words, you can doubleclick on CTINSTAL.EXE 
while using the Windows File Manager, or you can select the Run 
entry from the File menu while using the Windows Program Manager, 
and specify CTINSTAL as the program to run.  You can 
probably even start up Windows and run the install program all at 
once, with the DOS command:

C:\> WIN CTINSTAL

Install Disk/Directory
Before running CTINSTAL by any means, be sure to change to the 
drive and/or directory where the distribution files are stored.  
Everything else about the installation is automatic, but CTINSTAL 
makes the assumption that it is being run from the directory where it 
and the rest of the distribution files are stored.  When run, the 
CTINSTAL program produces a screen that looks like this:

C:\WINWORD\CTSHTOC.DOTChapter One – 5 – Installation



Decisions
There will be two decisions for you to make–both of them easy ones.  
You need to agree to install CT in your Windows home directory, or 
provide another place for it to be kept.  Ordinarily there is no reason 
why you would want it anywhere else, but CTINSTAL offers that option
anyway.  Most people will choose to install it where CTINSTAL wants to
put it.  You will also need to decide whether CT is to be your default 
Windows shell.

Directory
If you have any compelling reason to install CT in another directory,
it is recommended that it be one that lies along your DOS path.  
That will allow Windows to find CTSHELL.EXE to run it without 
requiring full path information, and it will allow CT to find its 
initialization and help files easily when it needs to.  If you're not 
sure what is meant by the DOS Path, you can find out more about 
that from your DOS manual.  

The installation process will put several files into your Windows 
directory, if you accept the default, and they're easy to recognize 
because they all begin with CTSHELL....  If you later decide to 
remove the files for any reason, there will be no question which 
ones they are.

If you do decide to install CT somewhere other than your 
Windows home directory, edit the path that is shown before going 
on with the installation.  When you click the button that is marked 
[Proceed], CTINSTAL will copy your distribution files to the directory
path shown in the setup window.

Default Windows Shell
The second decision is a little more complicated, but should be just

C:\WINWORD\CTSHTOC.DOTChapter One – 6 – Installation



as easy to make as the first one.  Most people will want to use CT 
as their replacement Windows shell–in other words, the program 
that starts up when Windows starts, and gives them control over 
what other programs to run.  That's what CT was designed to do, 
from the start.  
When Windows was first installed on your computer, it was almost 
certainly the Windows Program Manager program (PROGMAN.EXE) 
that was used for this purpose by default.  Some Windows users 
decide to install the Windows File Manager (FILEMAN.EXE) in its 
place, preferring the file-oriented rather than icon-oriented 
approach to program management.1 

Likewise, CT can be installed as the default shell by replacing 
whatever is currently being used with CTSHELL.EXE.  In fact, 
CTINSTAL will make the change for you automatically, if you check 
the box marked Install as default Windows shell near the bottom of 
the installation screen.  To install the CT files but not modify your 
SYSTEM.INI file, leave that box un-checked.  If you do it that way, 
you will need to start CT manually, as you would any other Windows
application.

Note that Program Manager and File Manager may both be 
started quite easily from CT, so there's really no reason to be 
concerned about making CT your default Windows shell, and 
besides, CT uses less of your Windows resources than does Program
Manager.  However, if you later change your mind and decide you 
would like Program Manager–or any other program–back as your 
default shell, you can simply edit your SYSTEM.INI file to restore 
the original name.  There's even a CT menu entry that makes it 
easy to edit any of your system files.

If you did decide to install CT as your default Windows shell, simply 
exit from Windows when the installation is complete, then restart 
Windows.  CT will appear on your screen in place of the shell you used 
to use.  If you decided not to install CT as your default Windows shell, 
you can start it in the way you normally start Windows applications.  
You can even install it as an icon in one of your Program Manager 
groups.  See your Microsoft Windows User Guide for more information 
about installing a group item, if you haven't done that before.

Previous Versions
Many who install CT will already have installed an earlier version, and 
will probably have an older copy of CTSHELL.INI in their destination 
directories that they do not want to erased by copying the new 
version over it.  CTINSTAL will spot the old version if one exists, and 
will prompt you for the action to take:

C:\WINWORD\CTSHTOC.DOTChapter One – 7 – Installation



Summary
Here are the steps for installing CT properly, listed without a lot of 
extra descriptive information.  Rather than going back over the 
preceding paragraphs, you may want to refer to this list as you install 
the program:

1.  If you are installing from a registered user diskette, place the 
diskette into any disk drive and change to that drive as your 
default.  In other words, if you put the disk into A:, make that your 
default drive before going on.  CTINSTAL can easily locate your 
Windows directory, but it will only look in the current directory on 
the default drive for the files it is to install.

If you received CT as an archive from a BBS, you probably already 
have it somewhere on your hard drive, and have already extracted 
the files it contains, since this document is in one of those files.  It 
doesn't matter to CT where you install it from, but you may want to 
create a temporary directory somewhere and copy the distribution 
files to there.  Make that your default directory, then proceed.

2.  Using your usual means for running  a Windows application, 
execute the program named CTINSTAL.EXE, which is one of the 
distribution files.

3.  Unless you have a good reason to change it, let CTINSTAL install CT
into your Windows home directory.  If you do have a good reason to
want it elsewhere, edit the path name that's shown, but be sure to 
put the files into a directory that's along your DOS executable path.

4.  Unless you prefer not to use CT as your default Windows shell 
C:\WINWORD\CTSHTOC.DOTChapter One – 8 – Installation



(what it was actually designed to do), check the box at the bottom 
of the install window, and CTINSTAL will modify your SYSTEM.INI file
automatically to install CT as your default shell.  If you decide not to
make CT your default shell, you will need to start it manually from 
your other shell.   

5.  Finally, click the [Proceed] button to go ahead with the installation.
Depending on whether it is a registered user version, CTINSTAL will
copy three or four files to the destination directory, and if all went 
well, will say so.

Headaches
There are two potential problems that should not occur during an 
installation.  If all didn't go well, you will see a message box that tells 
you a certain file couldn't be found, or that the destination directory 
couldn't be written to.

File Not Found 

About the only reason you would see this message is if you have 
not changed to the directory where the distribution files are stored 
before beginning your install.  CTINSTAL is able to locate your 
Windows directory easily, so it knows where to put the files it 
copies for you.  The only way it knows where to find the files, 
however, is if they are in the current directory.  

CTINSTAL was designed this way, so it can be run from any drive
or directory.  There is no need to install from drive A: only, although
that's the commonest arrangement.  If the type of disk you 
received fits into drive B:, feel free to install from there.

Likewise, if you received CT in an archive from a BBS or a friend, 
you will have extracted the contents of the archive into a directory 
somewhere.  It is only necessary for you to change to that 
directory–make it your default directory–before proceeding to run 
CTINSTAL.

Cannot Write to Destination

C:\WINWORD\CTSHTOC.DOTChapter One – 9 – Installation



Although it's technically possible for you to get this message if the 
disk drive is full and CTINSTAL can't find room for the files it needs 
to copy, it is unlikely to be caused by that.  CT only requires about 
200 KB of space on your hard drive for all the files that are 
installed, so it is unusual for that to be an issue.

What is more likely the case is that you have changed the 
destination directory name to a path that does not exist.  Perhaps 
you intended to create the directory before beginning your 
installation, but forgot to do it.  That is sufficient to cause the 
installation to fail.

Installation Fizzled
If your installation didn't go well, you'll be told in no uncertain terms.  
Also, even if you have elected to install CT as your default Windows 
shell, that change won't be made in your SYSTEM.INI file if your 
installation failed for any reason.

Success!

C:\WINWORD\CTSHTOC.DOTChapter One – 10 – Installation



Likewise, CTINSTAL doesn't keep you wondering if you had a 
successful installation.  This message tells you everything went okay, 
and reminds you to exit from Windows and restart it, if you have 
elected to install CT as your default Windows shell.  Congratulations!

Multiple Configurations
Note that no matter how or where you start CT, you may provide an 
optional initialization filespec on the command line after the program 
name.  Rather than looking for its default initialization file–
CTSHELL.INI–in any of the places where CT would normally expect to 
find it, it will instead use the name you provide as an initialization 
filespec.  Thus, you may create multiple configurations, each of which
customizes your CT session to work a different way.

Once you have learned how to add new custom features to your 
menus, for example, you might want to create a version of 
CTSHELL.INI that is specially designed for programming with a 
particular language.  Or another version that is designed purely for 
word processing projects.  Just remember to provide the whole 
filespec, including its directory path, since CT doesn't provide any kind
of file name default when you specify the initialization filespec 
yourself.  

To start a session that is customized for programming, you might 
start CT with a command like this:

CTSHELL  c:\win\program.ini

or to start a word processing session with a customized menu, you 
might use:

CTSHELL  c:\win\wordproc.ini

Of course, either of these would require that you create those xxx.INI 

C:\WINWORD\CTSHTOC.DOTChapter One – 11 – Installation



files.  You might begin by copying CTSHELL.INI to the new file name, 
then modifying it to suit your purposes.
This handy feature also makes it easy for multiple people to use a 
computer on which CT is installed.  Each of them can create an 
initialization file that suits the way they individually work, and change
to it when they're the one using the computer.

One last point should be made here.  As a Windows application, 
multiple instances of CT may be run at the same time quite effectively.
All the instances share the same program code, so it is just the data 
that differs among them.  You will find that the first copy of CT 
requires very little memory to run in, but that a second and third copy
require even less.  Don't be afraid to start several at the same time, 
using different configurations, if that turns out to be useful to you.

C:\WINWORD\CTSHTOC.DOTChapter One – 12 – Installation



Chapter 2 
Overview  

This chapter provides a quick summary of CT-Shell's overall capabilities.  
Don't be concerned that some topics are introduced here and not 
explained fully right away.  Later sections of this manual will provide all 
the details.

From this point on there will be various comments and explanations 
that go beyond what you must know in order to use CT effectively, and 
they are meant to be additional information for more advanced users.  
Those comments will be placed into footnotes, so that the flow of the 
material is not impeded.  

Generally speaking, you can ignore all footnotes as you read the rest 
of this manual, except when you'd like more details about the particular
topic of discussion.

Origins
The original DOS version of CT was developed for use in advanced 
computer programming courses, as a replacement for the DOS 4.x 
shell.  It allowed programming students to change easily and quickly 
to the directories where they needed to work, and made routine 
commands a simple matter of selecting them from its menu.

C:\WINWORD\CTSHTOC.DOTChapter One – 13 – Installation



CT for Windows is still a DOS shell, though it now takes advantage 
of the Windows 3.x environment.  You can use it to launch DOS and 
Windows programs, to copy, move, list and delete files, and yes–
programmers still use it to build programs.

CT Menu Basics
You won't need to reconfigure your menu system to try out CT, so we 
won't go into all the details here.  The following few sections provide 
an overview to let you know how simple that system is to set up the 
way you want it.

CT is quite configurable; in fact, every entry in the menu that you 
see when you run the program is defined in the CTSHELL.INI file, and 
you can change any of them or add more entries, all to suit your 
needs.  It is important for you to realize that your menu need not stay
just the way it is, and that you can add entries to run all your favorite 
programs, change to the various directories where you do your work, 
and automate routine tasks such as disk backups, so you can 
accomplish them by clicking on a menu entry.  However, the fastest 
way to find out what the program is all about is to start it using it with
the supplied sample configuration file.  

Throughout this manual there will be many mentions of this default
CTSHELL.INI file.  It is designed to make available all the CT features 
that are built into the program, and to serve as a guide to creating 
your own menu entries.  You'll find much more discussion about 
customizing your CTSHELL.INI file in later sections of this manual. 

Besides menu entries, the CTSHELL.INI file contains values for 
many options that CT relies on for its various features.  Phone 
numbers are stored there for its directory/dialer, preferences are 
stored there, and configuration options such as those that specify 
how program listings are printed.  However, the most significant 
features in CTSHELL.INI are the entries that define the menus, the 
AUTOEXEC section, and the USER options.  They are all similar in 
construction, they all contain five sets of braces, and look like the 
following examples:

Generic form:  {Entry Name} {DirPath} {ExePath} {Switches} {Keyword}

Example 1: {NOTEPAD Editor} {} {notepad} {!} {}

In this first example, the name that will show up in the menu is 
NOTEPAD Editor.  Running that program doesn't require changing first
to a different directory, so the second set of braces is left empty.  The 
third set of braces contains the name of the program to execute–in 
this case, it's notepad.  The fourth set of braces contains any 
switches, or arguments that you need to pass to the program when it 
runs.  Here, the exclamation mark indicates that we want to edit the 
current file, the file that is highlighted in CT-Shell's list of all files in this 
directory.  Finally, the fifth set of braces is left empty, because this 

C:\WINWORD\CTSHTOC.DOTChapter One – 14 – Installation



command doesn't require a special CT keyword.  You'll see one of 
those in the third example.

To edit a specific file every time–such as to create a menu entry 
that allows you to edit the CTSHELL.INI file any time you want to–you 
would simply replace that exclamation point with the full path name 
of the file you want to edit.  For example, it might be done like this:

Example 2: {Edit CTSHELL.INI} {} {notepad} {c:\windows\CTSHELL.ini} {}

In addition to what you've seen so far, you can send a list of all the 
tagged files to a program that accepts multiple filename arguments 
by putting an pound sign in that field, such as {#}.  (Some people 
call that a number sign–musicians call it a sharp.  It's the <Shift+3> 
key on your computer keyboard.

Finally, if you need your command line to include the base filename
(of the current file) without its extension, you can specify that with 
the commercial at-sign {@}.  Some users will appreciate that they 
can create an expression that has the same name as the current file, 
but a different extension. 

Keywords
Many of the features that CT makes available are based on special 
keywords that take the place of program names.  They are 
implemented this way to give you complete freedom in redesigning 
your menu system.  Most entries that use a keyword do not use any 
of the other fields, except the first.  This one would activate the dialog
that allows you to change your preferences–those settings that affect 
how CT does certain things:

Example 3: {Set Preferences} {} {} {} {PREFER}

The special CT keywords may be entered in uppercase, lowercase, or 
mixed case.  They are all converted internally to uppercase for 
evaluation.  There are 32 CT keywords in this version of the program; 
they are all described in detail in Chapter 6 of this manual, and in the 
CT on-line help file.

There are just a few CT keywords that are, in fact, used with 
executable programs.  They include ICON and LOAD, which are 
synonyms and would cause the program to be run as an icon, as it 
would if it were listed in the  LOAD=  entry in your WIN.INI file.  
FULLSIZE causes a program to be run in the maximized–full size–
state.  RUN causes a program to be run normal size, as in the  RUN=  
entry in your WIN.INI file.  For completeness, the keyword NORMAL is 
also included, although that's the default if none of the others is used.
This next example shows how you could create a menu entry that 
would load NOTEPAD, feed it the current file, and install it as an icon, 
ready to be used at any time:

C:\WINWORD\CTSHTOC.DOTChapter One – 15 – Installation



Example 4: {Edit CTSHELL.INI} {} {notepad.exe} {!} {ICON}

Two Kinds of Menu Entries  
To summarize, CT pop-up menu entries can contain two different kinds
of commands:  commands that run programs that are not part of CT 
(such as the programs that you use every day), and commands that 
are internal to CTSHELL.  The latter are implemented using a special 
set of keywords that CT recognizes.   The rest of this section will 
probably mean more to you if you take a look at your original copy of 
CTSHELL.INI as we speak.  There's a menu entry in the Edit menu 
called CTSHELL.INI, and selecting that entry will run NOTEPAD to edit 
that file.  Go ahead and select that entry using the mouse or standard
Windows keyboard methods, but be careful not to change anything 
you're not sure about.  For now, you'll want to "look but don't touch."

Towards the beginning of the file are several sections that contain 
options and preferences.  Move down in the file until you get to the 
section where the menus are defined–that should be clearly marked.  
It's a section with lines that begin with the word Item that name 
individual menus (items in the main menu), and which are each 
followed by one or more entries that look like the examples you saw 
in the previous section.  The following paragraphs describe what 
you'll see in that part of the file.

Items
Most of the entries in the sample CTSHELL.INI file use CT keywords, 
since they will work exactly the same way on everyone's computer.  
Commands that run programs will usually vary from computer to 
computer, depending on what programs each user has installed.  

However, there are a few entries in the sample CTSHELL.INI file 
that run external programs.  There are some programs that we can 
count on all Windows users having, so the default menu contains 
entries that run some of the Windows utilities.  Since command-line 
arguments can be supplied for the programs that are run, we can 
have entries to allow us to use the NOTEPAD editor to edit various 
files, such as the configuration and system files that Windows and CT 
use.  Using the same techniques, you'll be able to create entries that 
run any of the programs you use on a day-to-day basis from the menu
in CT, with much more versatility than you might imagine!

As you can see if you take a look at it, the external programs in the
sample CTSHELL.INI file have been chosen as ones that every 
Windows user is likely to have, so they should also work on nearly all 
computers.  Don't get the impression that you can run only Windows 
programs from within CTSHELL.  You'll be able to make any program 
that you can run from within Windows a part of your menu, including 
DOS applications.2

C:\WINWORD\CTSHTOC.DOTChapter One – 16 – Installation



Directories
Besides running programs, CT makes it easy for you to change to any 
directory on your disk drive.  There's an example provided that 
changes to your Windows "home" directory, and can take you there 
from anywhere else on your system.  When you've learned to 
customize your installation, you might want to install an entry to take 
you to your root directory, to a word processing work directory, to 
where you work on spreadsheets, and so on.  There's no arbitrary 
limit to the number of entries you can have in such a menu!

As you would expect by now, an entry that is intended just to 
change to another directory usually has an entry name in the first 
field, a directory designation in the second field, and nothing in the 
remaining three fields.  Here's another example, which would change 
you to a directory with the path C:\PIF, perhaps a place where you 
store all the PIF files for your system.

Example 5: {PIF Directory} {C:\PIF} {} {} {}

Your CTSHELL.INI file is an ordinary ASCII text file, and you can modify
it with nearly any editor or word processor, not just with Windows 
NOTEPAD.  In fact, your own personal editor is probably one of the 
very first things you'll want to add to your CT menu, so you can use it 
whenever you need to modify a text file.

Autoexec
If you look back towards the beginning of your CTSHELL.INI file while 
you have it loaded in the editor, you'll see an area marked 
[AUTOEXEC], that contains an empty set of braces, just like the ones 
you've seen used in the menu items section.  This area allows you to 
create entries that will load or run programs automatically as CT is 
starting up.  Because any number of entries can be placed here3 , and
because command-line arguments may be provided using all of CT-
Shell's powerful features (many of which you haven't seen yet), this 
feature of CT far exceeds the usefulness of the  LOAD=  and  RUN=  
lines in your WIN.INI file.

These autoexec entries are just like the menu entries you saw 
earlier.  In fact, people often just copy-and-paste from the lower 
section when they want to start a program automatically when CT 
starts.  You don't really need an entry name for anything used here in 
the Autoexec section, but it doesn't hurt to leave it there as a 
reminder for you.  CT will simply ignore the first field.

Here is where you're most likely to use the ICON or LOAD keywords,
which you saw earlier.  If you have your CTSHELL.INI file still open to 
this section, experiment by entering the following example into this 
Autoexec section (just the five sets of braces, of course):

Example 6: {Calculator} {} {calc.exe} {} {ICON}

C:\WINWORD\CTSHTOC.DOTChapter One – 17 – Installation



Now when you restart Windows, and it restarts CT, you'll see the 
Windows calculator become an icon in the lower left-hand corner of 
your screen even before the CT window appears.  You'll be able to 
doubleclick on that icon to make the calculator available whenever 
you need it.

People often work with a particular set of applications when they 
use their computers, and if that applies to you, you'll probably want 
to customize this section to load your main applications whenever 
you start up.  If you understand it well enough already, go ahead and 
install another program or two in the Autoexec section while you're 
here.

User Entries
The third place where you'll find entries that look almost exactly like 
the ones you've been working with is in the [OPTIONS] section, in the 
lines that begin with  User1= ,  User2= , etc.  These are user-supplied
function key assignments, and the four that you see here become 
assigned to the function keys F9, F10, F11 and F12.  The only real 
difference here is the way the assignments are made to the specific 
functions, and this is one of only two places where you'll use entries 
like this.  For anyone who is reading this without the CTSHELL.INI file 
open in the editor, here's what those entries look like in the default 
configuration.

Example 7: User1={Alarm Settings} {} {} {} {ALARM}
User2={Listings Config} {} {} {} {CONFIG}
User3={Preferences} {} {} {} {PREFER}
User4={Printer Setup} {} {} {} {PRINTER}

These user-supplied settings allow someone to press F9, for example, 
to set the CT alarm clock, or press F11 to set preference options.  Note
that all these entries are also available in the ordinary menu entries 
(in the Shells menu), but are duplicated here for convenience.  You 
could replace these with any other entries that you want to be 
activated by the press of the key.  Are you a big solitaire fan?

Alarm Entries
Moving all the way back to the beginning of the file, you'll see a 
section called [ALARMS], which contains a lot of options that control 
up to four event timers that CT provides.  You can configure it to run a 
backup program each morning at 3am, for example, or call a remote 
system and download a packet of email or database files late at night,
when the phone rates are lowest.

You will notice that this section contains some entries that look a 
lot like the ones for user entries–but they're used here as events that 
are to be executed at a set time.  Normally you would change these 

C:\WINWORD\CTSHTOC.DOTChapter One – 18 – Installation



settings by selecting a menu entry that invokes the special CT ALARM 
keyword, but you could change them here with an editor, if you 
preferred that.   More details are provide about this in Chapter 5 and 
Chapter 6 of this manual.

Summary
This overview was meant to introduce you to the CTSHELL.INI file, 
which configures and controls all the features that CT is able to offer 
you.  There is much more in that file that will be described and 
defined in later sections, but what you've seen already should give 
you an idea of the way CT works, and the many things it can do for 
you.  It should also have left you with an appreciation of the degree of
configurability CT offers.  You will be able to customize your 
installation–easily and quickly!–to make it just what you need for all 
your daily work.

At this time you should finish looking through CTSHELL.INI and 
close the file.  Use the file menu and select Exit, which will cause 
NOTEPAD to ask whether you want to save your changes.  Answer 
yes or no, as appropriate, and you'll be returned directly to CTSHELL.  
Whenever you want to edit this, or any of the other "system"-type 
files that are listed in the Edit menu, you'll know how easy it is to do!

If you have made and saved any changes in your CTSHELL.INI file, 
you can reload the menu–and put those changes into effect–by 
pressing the F7 function key.  Of course, they'll take effect the next 
time you start up CT, even if you don't reload the menu at this time.

C:\WINWORD\CTSHTOC.DOTChapter One – 19 – Installation



Chapter 3 The CT-
Shell Window           

This chapter provides a tour of the main CT-Shell window, and the 
features that you'll see as you explore it.  It is highly recommended that
you start the program using the supplied sample CTSHELL.INI file, as all 
these features can be experienced even before you customize your 
system.

C:\WINWORD\CTSHTOC.DOTChapter One – 20 – Installation



Note that everything you see above should look the same on your 
system, except details like the contents of the files list, the contents of 
the path window just above it, and the numbers in the status window in 
the lower left corner.    If you are a registered user, your number will 
appear in the caption line.  If you are not, an Unregistered message will 
appear there. 

Menu

When CT is run, at the top of its main window is a menu that shows 
several items, such as File, Edit, Directories, and more.  This menu is 
based on the entries in the CTSHELL.INI file, and you will later want to
revise the sample file to include your own program choices.  As you 
add entries to your CTSHELL.INI file, those new options will appear in 
the CT menu, and you'll be able to select them from within the 
program.

You've already seen an overview of the menu system, and this 
manual contains much more information about menu entries in later 
sections, with instructions about how you can customize yours. For 
now, realize that you'll have almost unlimited freedom to create such 
a menu with selections that are perfect for your system and what you
do with it.  Most routine operations can become entries in your menu,
so that a keypress or a mouse click is all that's needed to accomplish 
them.  

In the menu that the sample initialization file creates, you'll find a 
number of things in the File menu that you can do with the current 
file (the one file that's selected with a dotted outline in the files list 
window), and a directory that you can change to in the Directories 
menu.  The Edit menu contains a number of choices, one of which you
have probably used already to edit your CTSHELL.INI file.  Remember 
that you can reload a modified menu by pressing <F7>.

The Shells menu offers an ordinary DOS session, and an additional 
CT window if you ever need a second one (or a third one, for that 
matter).  There are also entries available for most of the CT functions. 
The menu labeled Tagged Files contains many of the same options 
that are provided for the current file in another menu, but this one 
applies those options to a list of files that you have tagged, rather 
than just the one current file.  (The next section in this chapter will 
cover file tagging in much greater detail.)

Windows is where you'll see some utility options, applications, and 
system services that are part of Windows.  If you ever feel you need 
them, here is where you can find the Windows Program Manager and 
the Windows File Manager. The Help menu provides access to the CT 
help file, and to some other options that provide you with information 
about CT and about your system.

C:\WINWORD\CTSHTOC.DOTChapter One – 21 – Installation



Function Keys          

There are pre-assigned meanings for many of the function keys, but 
<F9>  through<F12> have been kept available for the user to define.
In the sample configuration file, they are assigned to several 
configuration options, as you saw when you edited that file.  You can 
reassign these four keys to any entries you want.  Perhaps you would 
prefer them to start up Backgammon, Chess, Taipei and Solitaire.

Here are the default settings for the user function keys, based on 
entries in the supplied sample CTSHELL.INI file:

Allows you to set up to four internal timers that can pop up 
reminder messages at preset times, or even execute programs 
according to an established schedule.  You can even arrange 
programs to run at a given time every day–even if you're working 
on something else at the time!  More details are available in a later
section of the manual that describes CT keywords.  Check the 
ALARM keyword when you need to know more.   

This will allow you to set all of the options that have to do with 
printing file listings.  You are able to set preferences like the 
number of characters that a line must accommodate, whether to 
use a fixed or proportional font, whether headings are to be 
printed, line number and page numbers, and more.

Here is where you can choose many of the options that control 
CTSHELL.  Many of the entries in the CTSHELL.INI file can be set by 
activating this keyword.  For more details, see the keyword PREFER
in the later section on keywords.

Pressing this one executes the "setup" function from the printer 
driver that you have installed.  This is the same setup function that
is invoked by your word processor when you change printer 

C:\WINWORD\CTSHTOC.DOTChapter One – 22 – Installation



settings there, so it will look familiar to you at first sight.  More 
details are available in the later section on keywords, where 
PRINTER is explained.

Current File/Tagged Files
Much of what CT does with files can be done either with a current file 
or with a set of tagged files.  When a file is tagged, its entry in the 
files list at the right  is highlighted, letting you know that it has been 
selected for an operation.  The first five function keys are devoted to 
managing those file tagging operations.  

As you read this explanation of the function keys, feel free to try 
them out by tagging and untagging the files in your current directory. 
You won't cause anything to happen to those files just by doing that, 
and it's easier to understand the process if you see it happen, rather 
than just reading about it.

Toggles the tagged/untagged condition of the current file.  If, for 
some reason, you want to be sure that no files are tagged, you can 
turn OFF the tag for the current file by pressing <F1>.  

You might want to do something with all the files in the directory
except the current file, for example.  You could do that by selecting
the one file you want excluded from the command, then press 
<F2> to tag all the files, and finally press <F1> to untag the 
current file.

Tags all the files (but not directories or drives) that are in the files 
listing to the right.  You can perform any number of operations on a
set of tagged files, such as to copy them all somewhere, delete 
them all, etc., and this keypress tags them all.

Untags all the files, regardless of how many were tagged, or how 
they got that way.  

Inverts all the tags.  You might want to tag some of the files in the 
current directory, copy those tagged files to a floppy disk in drive 
A:, then copy the rest of the files in that directory to somewhere 
else.  <F4> will tag all the previously untagged files, and untag the
ones that were tagged.  

If that doesn't sound clear to you, drag the mouse part way 
C:\WINWORD\CTSHTOC.DOTChapter One – 23 – Installation



down the list of files (with the left button held down) to tag a few of
the files, then press <F4> several times and see what happens.  
You can finish your experiment with <F3>.

Tags by name.  If you want to copy all the .EXE and .COM files from 
the current directory to a floppy disk, you could press <F5> once, 
specify *.EXE when CT asks you for a wildcard filespec, finish the 
process, then do it again and specify *.COM.  

After you press <F5> you will be presented a dialog box (a 
question-and-answer panel) that prompts you to enter a filespec 
for tagging.  That filespec may include the ordinary DOS wildcard 
characters, such as you would use to delete or copy certain files at 
the DOS prompt.  Both the * and the ? wildcard characters work 
here as you would expect them to.4 

The dialog box that's provided for you to specify a filespec looks 
like this:

The default entry begins with *. on the assumption that you will be 
tagging all files that end in a particular extension (the most 
common use for this function).  However, you can type any legal 
DOS wildcard here.  If you don't click on any entries–thereby 
changing your tags–you can use this function several times to tag 
any odd assortment of related files.

Returns you to the original path where CT was first started.  As you 
work with the program, you will have many reasons to change to 
other drives and/or directories.  <F6> will always return you to 
your starting point.  Thus, you will want to consider starting the 
program originally in a "main" directory, such as the one in which 
you're working on a current project.  

If your AUTOEXEC.BAT file automatically starts Windows for you, 
you should consider having it do a CD (change directory) command
just prior to starting Windows.  Then, whether CT is started 
automatically via your SYSTEM.INI file, or you start it yourself from 
Windows, you'll always be able to press <F6> to return to that 
starting directory.
There is a CT keyword called HOME that makes the current directory

C:\WINWORD\CTSHTOC.DOTChapter One – 24 – Installation



your CT "home" directory, rather than the one where you started 
the program.  If you work centers around one directory for a while, 
then changes to another location, you might want to change the 
place CT calls home.  The HOME keyword is implemented in the 
Directories menu, in the default configuration.

This is a great function key to experiment with!  See if you can 
find a way to change to a different subdirectory than the one you 
started this session in, and press <F6> to transport you instantly 
back.  If you can't figure out how to do it just yet, don't get 
discouraged.  We're coming to that part pretty soon.

Reloads the menu.  You can easily customize your CTSHELL.INI file 
with an ordinary text editor, as you have probably already found 
out.  In fact, one of the entries in the default EDIT menu item uses 
the Windows NOTEPAD editor to change CTSHELL.INI.  After you 
make your modifications, you can simply press <F7> to load the 
new version, without needing to exit CT and restart it.

Will print a formatted and line-numbered listing of the current or 
tagged files.  Note that this description uses the term listing as it is
commonly used in computer jargon,  to refer to a printed (hard-
copy) version of the file contents.  It does not mean a list of the 
files in the directory.  If you would like a printed copy of your 
Windows xxx.INI files, for example, you might tag them all using 
<F5> and specifying *.INI as the file spec, then press <F8> to print
them all – assuming, of course, that you have a printer connected 
to your computer.  If you press <F8> without first tagging a set of 
files, the one current file will be printed. 

Listings are formatted with a left margin that can be hole-
punched.  Lines of text can be numbered, as can pages, and at the 
top of each page can be a header that identifies the file, its 
creation time and date, and the time and date when it was printed.
Refer to two keywords, PRINTER and CONFIG, which are explained 
in Chapter 6, for more information about setting up your printer 
driver and changing the format of your file listings.

 through  

 
Are reserved for the user.  In the sample CTSHELL.INI file they are 
assigned as mentioned above, but you can easily reassign them to 
other tasks that you want to be able to invoke with a keypress.  
These options are explained more fully in later sections of this 

C:\WINWORD\CTSHTOC.DOTChapter One – 25 – Installation



documentation. 5

The escape key is used to change to the parent directory.  So that 
the same operation is easy to accomplish with the mouse, the 
<Esc> key is represented on the screen along with the function 
keys.

Not a function key, this is a screen-oriented way to open up the CT 
command line, a place where you can type commands to be run by
CT, Windows, or the DOS command processor.  Another way to 
open the command line is with the <Shift+Enter> keypress.  

The display of these keys at the left of the CT window allows you to 
click on a button with the mouse, to accomplish the same thing as 
pressing the keys themselves.  Thus, whether you prefer using the 
keyboard or prefer using the mouse, you can have it your way.

Status Display        

Below the listing of the function keys is a small window that displays 
the current date and time, the amount of RAM that is available 
(including virtual memory if you're running Windows in Enhanced 386
mode) and how much room is left on the current disk drive.  The 
latter two measurements are displayed in megabytes, to the nearest 
hundredth, unless either one drops below one megabyte.  If that 
happens, the display changes to kilobytes instead.

There is a problem with constantly monitoring the disk space on 
removable and network drives, as every time the remaining space is 
checked the disk has to be accessed.  That wastes time, and results 
in floppy disk drives never shutting off completely.  CT uses some 
clever programming to update such drives at all the right times, such 
as when a file copy or file move has been done that might change the
remaining space.  Otherwise, CT leaves those drives alone.

That  works great unless some other program changes the drive 
capacity.  On a local hard drive, CT will even take that in stride, 
properly updating  the remaining space.  On a floppy drive or a 
network drive, however, such access would escape CT-Shell's attention.
If you ever suspect that another program might have changed the 
remaining space on a network or floppy drive, you can force an 

C:\WINWORD\CTSHTOC.DOTChapter One – 26 – Installation



update of this field by doubleclicking the mouse on the word "Disk", 
just to the right of this display.

Current Path

Just under the menu bar, and above the files display window, is the 
current path.  As you navigate around your disk drive, you can glance 
here to discover quickly where you are.  Watch this as you press 
<Esc> to move up in your directory tree, and as you press <F6> to 
return to your starting point.  

You can also click the mouse on any part of the path that's 
displayed, and you'll change immediately to that directory.  Thus, you 
can move upwards in the directory tree by pressing <Esc> to move to
the parent directory, or jump directly to a directory that is more than 
one level higher, by clicking on it in the path display.

Directory changes made this way are "permanent" in the sense 
that CT will stay, and continue to work, in the new directory that 
you've chosen.  However, you are still able to press <F6> at any time
to go directly to the original drive and directory where CT was started.
Changing directories this way requires only a single click of the 
mouse, however if you forget and doubleclick instead, no harm will 
come of it.

Files Window
The display of files contains considerable information that is always 
conveniently visible.  One of the biggest advantages of a visual shell 
over an ordinary command line is that so much more information can 
be made available at all times.  

Rather than trying to remember which file you came here to copy, 
you can see which file it was.  You can tell this without needing to 
issue a DIR command, and unlike a DIR command, the file names 
here won't scroll past faster than you can read them.  You can move 
both upwards and downwards in this list of files using the keyboard 
cursor keys, or by clicking the mouse on the scroll bar to the right of 
the window.

This section will explain the information that is displayed here, and 
tell you how you can change nearly all of it from within CT:

C:\WINWORD\CTSHTOC.DOTChapter One – 27 – Installation



The largest window contains a display of the files in the current 
directory.  Information displayed for files includes name, extension, 
size in bytes, last modified date, last modified time, and attributes.  

Deleting Files
If you press <Del> , the current file or an entire set of tagged files 
can be deleted.  You are prompted for confirmation before that 
happens, of course!  There are additional deletion options, 
including a CT keyword called DELDIR.  (See Chapter 6 for a 
reference to CT keywords that you can use in your menu entries.)  
This keyword is implemented in the sample CTSHELL.INI file in the 
File menu item, and called Kill Directory.

If you are doing disk maintenance and would like to delete an 
entire directory full of files (and possibly other subdirectories within
it as well), first make sure that the current file is the directory you 
want to delete, then select this menu entry.  You'll be asked to 
verify deletion of the directory with a dialog box which is worded to
get your attention.

Another keyword and command that can delete files is SHRED.  
This one first writes a pattern of bits to the file that renders it 
useless even if someone manages to undelete it.  Thus, SHRED 
should be used in place of DEL where data security is important, 
however,  it is slower than DEL because fo the extra work involved.

The sections that follow each describe one of the components of a line 
in the files display window, and what you can do with that information.  
In most cases, you are able to change it (except for the file size), and 

C:\WINWORD\CTSHTOC.DOTChapter One – 28 – Installation



you'll find directions here for doing that.  With a couple of obvious 
exceptions (such as deleting a file or directory), you will probably want 
to try out the various keywords, commands, and menu options that are 
described here, as you read about the files window.

Name
Remember, directory names are displayed in uppercase, to 
distinguish them from file names.  The filename extension, if any,  
is included in this field.  In addition, following the directory and file 
listings, the name field will display the various disk drives that are 
available on the system.  

If you would like to change the name of a file or a directory, you 
can easily do it with the CT RENAME keyword.  (See Chapter 6 for a 
reference to CT keywords that you can use in your menu entries.)  
This keyword is implemented in the sample CTSHELL.INI file in the 
File menu item, and called Rename.

Size
The size in bytes of the file is shown here.  You are also able to find 
out how many total bytes are included in a set of files that have 
been tagged, by using one of the special CT keywords, TAGGED, 
which is explained in a Chapter 6.  This keyword is implemented in 
the sample CTSHELL.INI file in the Tagged Files menu item, and 
called Files Tagged.  
You are also able to discover how many subdirectories, files, and 
bytes a directory contains, using the CT DIRSIZE keyword.  This 
keyword is implemented in the sample CTSHELL.INI file in the File 
menu item, and called Size of Directory.  

Date
The date when the file was last modified (created or updated) is 
shown using the conventional mm/dd/yy format.

Both the time and the date for a file or a group of tagged files 
can be changed using the CT keyword, SETDATE.  This keyword is 
implemented in the sample CTSHELL.INI file in the Tagged Files 
menu item, and called Set File Date/Time.

To change the date/time for any of the files in the current 
directory, first tag the one or more that you want to change, then 
select the menu item Tagged Files.  Click on the entry named Set 
File Date/Time to open a dialog box that provides a place for you to
enter a new date and time.

Time
CT displays the file's creation time in its full resolution, which is to 
within two seconds.  DOS displays only hours and minutes when 
you use its DIR command, although the number of seconds (to the 
nearest even number) are stored by DOS in the disk directory.6

The time applied to a file is of particular importance to 
programmers who work with a program maintenance utility called 

C:\WINWORD\CTSHTOC.DOTChapter One – 29 – Installation



MAKE, or a variation of it.  MAKE tests file date/timestamps to 
determine whether one type of file is newer than the type of file 
that is created from it, and rebuilds the target file if necessary.  
Sometimes it is important to give a file a date/time that is newer 
than another file, and there exists on many systems a small utility 
program whose only purpose is to change a file's date/time to the 
current date/time.  

CT has two keywords that provide this service, called TOUCH 
(which changes only the current file) and TTOUCH (to update a list 
of tagged files).  They are both assigned to menu entries named 
Touch, in the appropriate pop-up menus in the sample CTSHELL.INI 
file.

Attributes
The file attributes are displayed as a series of characters which 
may include any of the letters RHSDA, for Read/only, Hidden, 
System, Directory, and Archive, respectively.  

These attributes indicate that a file has certain properties which 
may affect how you and DOS can access and use it.  Following this 
listing of the attributes are directions showing how you can use CT 
to change file attributes.

Read/only
A file with the read/only attribute cannot be modified, 
overwritten or deleted.  DOS simply won't allow the operation to 
happen, unless the read/only attribute is first removed.7  

Hidden
Hidden means that a file won't show up in an ordinary DIR 
command from the DOS command processor, and the DOS COPY
command won't copy a hidden file.8  

Note that you can even use CT to hide an entire directory, so 
that others who use the same computer won't realize it's even 
there (unless they also use CT or another utility that displays 
hidden files).  You can still change to the hidden directory, 
execute programs from it, and edit files in it–by specifying the 
directory name in your commands–yet it remains invisible to 
DOS.   

System
System means the file is a special type which is part of DOS 
itself.  Examples of this type of file include the two parts of DOS 
that you'll find in your root directory, named differently 
depending on which version of DOS you're using.  CT will display 
these two files with the attribute letters RHS.. (or maybe just
.HS.., depending on your version of DOS) showing that they have 
two or three of the attributes explained so far.  

As an exercise, you might change to your root directory as 
you read this, and identify those files on your system. This is an 
C:\WINWORD\CTSHTOC.DOTChapter One – 30 – Installation



attribute that you're not likely to assign to a file, unless you're a 
systems programmer who is writing a replacement for part of 
the operating system.  Still, you should know what it means, and
you should be careful not to delete or accidentally damage any 
file that has the system attribute.  

Directory
Directory makes the file a subdirectory, rather than a data file or
a program.  In the DOS system, subdirectories are special files 
that contain information about the files that are stored under 
them.  

As is the case with other attributes, this one implies what can 
and can't be done with a file so identified.  For example, you can
change to a directory, but you can't change to a file.  You can 
TYPE or DEL a file, but you can't do either with a directory.9  

Archive
The archive attribute means that a file has been changed since 
the last time it was backed-up.  Most backup programs, such as 
the DOS BACKUP command and commercial programs like 
CPBACKUP from Central Point Software, Inc., use this attribute to
determine which files need to be processed when a differential 
backup is done.10

When you glance at your CT files display, you can easily see 
which files have been modified since your last backup.  When a 
great number of files have the archive attribute displayed, or 
whenever particularly important ones do, you should begin to 
feel uncomfortable enough to do another backup!

Changing Attributes
Besides displaying the attributes, CT makes it easy for you to 
change most of them.  You can't turn a program into a directory, 
but you might want to make a file read/only, for example, to 
prevent its being accidentally deleted or overwritten.  

You can alter the attributes for a single file or for a group of 
tagged files if your CTSHELL.INI file contains a menu entry that 
uses the keyword ATTRIB (see the later section on CT keywords for 
more information about ATTRIB and other CT keywords).  The 
sample CTSHELL.INI file contains entries for both the File and 
Tagged Files menus that implement this keyword.

When you invoke that menu entry, CT will present a dialog box 
that lets you determine which attributes are to be turned on and 
which ones are to be turned off.  The attributes that you select are 
not added to the existing ones, but replace the existing ones.  
Thus, be sure you select all the ones that should apply.  You can 
turn off all the attributes by leaving them all unchecked, and 
selecting [OK].

This would be an excellent time to experiment with this feature. 
If you're in your Windows directory still, select the file 3270.TXT.  

C:\WINWORD\CTSHTOC.DOTChapter One – 31 – Installation



Use the Attributes entry in the File menu to change that file to 
read/only status.  Now select 3270.TXT again and press the <Del> 
key to delete it.  Go ahead and confirm the deletion, and see what 
happens.

Disk Drive Display

At the end of the files listing you'll find entries for all the disk drives
in your system.  Each is identified as to type and each (except 
floppies) has its current remaining capacity.  
The capacity of floppy disks is not displayed, as those disks are 
removable, and Windows would report constant disk errors if CT 
kept trying to access empty drives.  If you want to know how much 
room is left on a floppy disk, simply change to that drive by 
doubleclicking on its entry.  You can easily change back to the 
current drive the same way afterwards, or by pressing <F6> to 
return to your starting drive/directory.  CT always displays the free 
space on the current drive, even if it is a floppy disk, so you'll want 
to make sure there is a disk in the floppy drive before making that 
your current drive.

If you have a complex computer system–perhaps one with a lot 
of network drives in addition to the local ones–you may not want CT
to monitor all the drives all the time.  For one thing, whenever you 
change directories, all those drives have to be queried, to find out 
how much space remains, so that can be displayed here.  There is 
an option available through your PREFER keyword that allows you 
to declare a series of drive letters that you want CT to ignore.  You 
can also modify the  IgnoreDrives=  setting in the [OPTIONS] 
section of your CTSHELL.INI file, if you want.  To ignore all drives 
higher than drive E:, for example:

IgnoreDrives=FGHIJKLMNOPQRSTUVWXYZ

Note that this does not keep you from accessing those drives.  
They simply will not be listed in this display.  You can still change to
a drive by typing its letter at the CT command line the same way 
you would do it from the DOS command line.  Also, you can always 
change to another drive by pressing a key combination that 
includes <Shift+Ctrl> plus the letter of the drive you want to 
change to.  To change to drive D:, for example, you could press 

C:\WINWORD\CTSHTOC.DOTChapter One – 32 – Installation



<Shift+Ctrl+D>.

C:\WINWORD\CTSHTOC.DOTChapter One – 33 – Installation



Extended Selections

CT-Shell's file window is programmed to allow extended selections.  
Thus, you'll find that you can tag multiple files by holding down the
<Shift> or <Ctrl> keys as you tag with the mouse.  <Shift> will 
allow you to extend a selection to include contiguous files (a group 
all together) and <Ctrl> will let you select any files, even if they 
are separated by others that you don't want tagged.  

You can also mark a series of files using the keyboard.  Press the
key combination <Ctrl+Shift> and move the bar up or down with 
the keyboard cursor keys.  As the highlight bar moves up or down, 
the files that it passes over will become tagged, just as if you'd 
dragged the mouse over them.

Doubleclicking Entries
Things happen when you doubleclick the mouse on an entry in the 
files list!  (You may also move the highlight bar to an entry and 
press <Enter>.)  When you do either, what happens will depend on
what kind of file is selected:

Directories
If it is a directory, then you will change to that directory.  This is 
another of CT-Shell's "permanent" directory changes, and it will 
continue to work in the new directory until you change again.  
However, you are still able to return to your original startup 
directory by pressing <F6> at any time.

CT lists all the directories first in the file list, to make it easier 

C:\WINWORD\CTSHTOC.DOTChapter One – 34 – Installation



to travel around your drive by clicking on directory entries.  Be 
reminded that you can use the <Esc> key to change to the 
parent directory at any time, and that you can click the mouse in
the path window (just above the files list) to change to any place
in the path above this directory, up to the root directory. 

Executable Files
If it is an executable file (to CT, that means .EXE, .COM, .PIF 
or .BAT) you will execute that file.  This provides a convenient 
way to run programs that are in the current directory, and which 
require no command-line arguments.  Those that reside 
elsewhere, and those that do require command-line arguments 
should be installed as menu entries instead.  See the later 
sections for more information about setting up your menu to run
programs.

DOS programs (DosApps) that have a .PIF file (Program 
Information File) available somewhere in the path will be 
executed according to that .PIF file, so if you need to customize 
the way your DosApps run, simply create a .PIF and keep it 
available in a directory that's part of your DOS executable path.11

You can use the Windows utility program named PIFEDIT.EXE 
to create and edit .PIF files, and your Windows manual contains 
more information about these files and how to modify them.  

Programs that were designed to be run under Windows 
(WinApps), are executed just as they would be from the Windows
Program Manager or the Windows File Manager.

Known Extensions
CT checks the [Extensions] profiles in your WIN.INI file, and can 
"run" files that are not themselves executable, but for which you
have provided an extension in your WIN.INI file.  Thus, it is likely 
that if you doubleclick the mouse on a .WRI file, you'll start up 
Windows Write and can edit that file.  If you doubleclick on 
a .CRD file, you'll start up the Cardfile database program, etc.12  

Drive Specifications
If it's one of the entries at the end of the files list that  describes 
a disk drive in your system, doubleclicking on it will change to 
that drive, which will then become the default, or current, drive. 
As in many earlier examples, CT will continue to work in the new 
drive/directory until you change away from it, but you can 
instantly return to your original startup directory by pressing 
<F6>.

It's worth repeating that there are three ways to change to 
another drive, since that's something everyone needs to do so 
often.  If you have the command line open (see Chapter 4, next),
you can change to another drive the same way you would at a 
DOS prompt–by entering the drive letter, followed by a colon, as 
a command.
C:\WINWORD\CTSHTOC.DOTChapter One – 35 – Installation



If the drive you want to change to is visible on the screen, the
doubleclick method just described here is quite convenient.  But 
the easiest of all, especially if your hands are on the keyboard, is
to type <Shift+Ctrl> plus the letter of the drive you want to 
change to.  For example, to change to drive D:, you could simply
type <Shift+Ctrl+D>, and CT-Shell will instantly change to that 
drive.

(This page intentionally left unused...)

C:\WINWORD\CTSHTOC.DOTChapter One – 36 – Installation



Chapter 4 CT-Shell 
Command Line

An extremely important CT feature is its command line, with the only 
visible manifestation of that feature in the main window a button named
[Command Line] that appears just below the function keys to the left.  
To access the command line without using the mouse, simply press the 
key combination <Shift+Enter>. 

The CT-Shell Command Line

DOS Commands
Most common DOS commands like CD, RD, MD, COPY, and DEL are 
handled internally in CT, without using the DOS command processor
at all.  Most of the DOS commands that CT handles offer an 
enhancement over their DOS counterparts.  For example, the CD 
command will allow you to specify a drive as well as a directory to 
change to.  RD, MD and DELDIR all allow you to specify multiple 
arguments.  Thus, the command:

MD bin init include lib

would create four subdirectories in the current directory, with one 
command.

The COPY command uses a buffer up to 16 times the size of the 
C:\WINWORD\CTSHTOC.DOTChapter One – 37 – Installation



one DOS uses, allowing many files to be copied with only one disk 
read and one disk write, for better efficiency.  

If you enter a DOS command that CT cannot handle itself, it will 
pass that command along to your DOS command processor for 
evaluation.  Fortunately, all the most-often-used DOS commands 
can be dealt with smoothly within CT, without involving the DOS 
command processor at all.  

However, if a command involves the DOS redirection operators 
( <, >, >>) or the pipe operator ( | ), the whole command is 
passed to DOS immediately, as is any command to run a .BAT file 
or a .COM file.  (Windows executables are all .EXE files.) 

Many users will prefer to change working drives by first scrolling 
to the listing of drives at the bottom of the files list and then 
selecting a drive using the mouse or the keyboard.  That's the way 
many Windows programs let you change to another drive, such as 
to locate and process a file.  However, you are also free to enter a 
drive letter, followed by a colon, as a command on the CT 
command line, just as you would at a DOS command line. Such a 
drive change is handled internally by CTSHELL.  (There is an even 
easier way to change drives–by pressing a key combination that 
includes <Shift+Ctrl> plus the drive letter.)

CT Commands
Some additional CT commands may be issued from this command 
line as well:

Deldir
You can delete a directory, and all the files in it with this 
command.  In fact, it's one of the CT commands that accepts 
multiple arguments, so if there are a number of subdirectories 
that you want to remove, you can handle them all with one 
command.
This command actually invokes the same internal process that is
used for the DELDIR keyword, which has already been described.
You are prompted two times for each subdirectory that is to be 
deleted, to be sure you don't delete one by accident.
This command deletes all the files in the directories you ask to 
delete.  Even if those files have the read/only attribute, they will 
be deleted.  CT will remove that attribute if necessary, in order to
delete the files.

Find
It often happens that someone needs to edit one of the many 
text files that are part of a programming or word processing 
project, and can't remember for sure which file contains the text.
The FIND keyword is designed to find a string (of characters) 
wherever it may occur within any of the files in the current 
directory. 

Use quotation marks to enclose strings that include 
C:\WINWORD\CTSHTOC.DOTChapter One – 38 – Installation



embedded spaces.  This example shows how you might look 
through the current directory to find the places where you have 
used the function named "wsprintf":

Note that the command itself (FIND) is not case-sensitive, and 
may be entered in uppercase or lowercase.  However, the string 
that is being sought is case sensitive.  You'll want to be sure 
your <CapsLock> is not on when you look for a string that 
contains lowercase letters!

If that string is found in any of the files in the current 
directory, a list box like the one shown just below will be created
that contains all the matches that were found.  All leading 
spaces are removed from the lines before adding them to the list
box, so that you can view more of the significant parts of that 
line.  Up to the first 75 characters are included (starting with the 
first non-space character), which should be enough to help you 
verify whether that line is the one you're looking for.  The entries
are alphabetical according to file name, and in line-number order
within a file.

One of CT-Shell's most useful features is available to you at this 
point:  if you select one of the entries (using either the mouse or
C:\WINWORD\CTSHTOC.DOTChapter One – 39 – Installation



keyboard methods) that file will be loaded into your editor 
automatically.  Even better than that, if your editor is one that 
will accept a line number on the command line along with the 
file name, you can even load the file and jump directly to the 
line that contains the string you asked CT to find!

For you to edit one of the files that was found this way, your 
CTSHELL.INI file must have an entry in its [EDITOR] section 
called EditorName that identifies your editor by name, so CT will 
know what program to run.  The sample CTSHELL.INI file 
contains:

EditorName=NOTEPAD.EXE 

as a default, but most serious programmers will prefer to change
that name to another editor.  

For CT to be able to load the file and jump directly to the line 
where the string was found, your editor must be capable of such
a feat in the first place, and you must also include an entry in 
the [EDITOR] section of CTSHELL.INI called EditLine that shows 
how to give such a command to your editor.  The sample 
CTSHELL.INI contains:

EditLine=   

which disables the feature, since the default NOTEPAD.EXE 
editor can't handle line numbers in this manner.  There are more
details and examples in Chapter 5 of this manual, which is the 
reference to the entries in CTSHELL.INI.  

Note that you can also provide these settings (and many 
others) in the Preferences dialog box that is presented when you
invoke the PREFER keyword.  In the default configuration, 
remember that PREFER is bound to the F11 function key for easy
access.

FormFeed
It is quite often useful to send a command to the printer that 
tells it to eject the current page.  For example, if you use the 
COPY command to send a text file to your printer, it will probably
stop printing somewhere in the middle of the last page.  With 
the FORMFEED command, you can easily tell your printer to 
eject that page.

There is also a FORMFEED keyword, so this feature can easily 
be implemented from a menu item.  If you happen to have the 
command line open, however, and have just copied a file to the 
printer, it may be more convenient for you to type the 
FORMFEED command instead of looking for the menu entry.

Shred
This command first overwrites every byte in a file with a pattern 
C:\WINWORD\CTSHTOC.DOTChapter One – 40 – Installation



that leaves it unusable, then deletes the file.  Thus, even if 
someone manages to undelete a file that has been shredded, it 
will be useless.  This takes longer than simply deleting a file, so 
it should be reserved for those times when data security is an 
issue.

Because the effect of this command cannot be reversed, it 
does not accept wildcard arguments on the command line.  You 
may shred multiple files with one command, but you will have to
explicitly name each file that is to be shredded.

Move
If you want to move a file quickly from one place to another, 
rather than copying it, you can use the CT MOVE command.  The 
syntax is just like the ordinary COPY command, but the move is 
much faster.  

Where
If you want to know where a file is on the disk, you can use the 
WHERE command.  Start the command line, then issue the 
command like this:

where you type in the name of the file you want to find and its 
extension, if any.   The customary DOS wildcard characters are 
acceptable here, so you could search for files such as:

where *.dbf

or 

where copy??.bak

If you want to locate all the files with a given file name and any 
extension, you can simply enter it as FILENAME.  If there is no 
dot in the name that's entered (and thus no extension has been 
used) CT will automatically append the .* to the name.   If you 
actually do want to locate a file named FILENAME that does not 
have an extension, you can provide just a dot for an extension.  
That tells CT not to add the .* to the end.

After you've provided the name, the mouse cursor will change
C:\WINWORD\CTSHTOC.DOTChapter One – 41 – Installation



temporarily, letting you know that CT is busy as it searches the 
current disk drive for that file.  CT will display information in a list
box about all the matching files that it finds:

You even have the option to select one of those entries and go 
straight to that directory.   Just doubleclick on the entry, or select
it with a single mouse click and afterwards click on the [OK] 
button.  Alternatively, you can select it with the keyboard cursor 
keys and press <Enter> to complete the command.  If you have 
selected an entry and decide afterwards not to change to that 
directory, simply click on the [Cancel] button.

There is some potential for confusion where the FIND and WHERE 
commands are concerned.  After all, you might think to use FIND to
find a file, and WHERE to locate where a string is.  About the only 
way to keep them straight is to remember that the DOS command 
FIND looks for a string within a group of files, and CT-Shell's FIND 
command does the same.  

Also, there have been a number of public domain utility 
programs developed over the years that are named WHERE or 
WHEREIS, and are used to locate files on a drive, as does the CT 
WHERE command.

Run Mode
If you are issuing a command to run a Windows application, you 
can select from the options in the upper right-hand corner that 
allow you to run that program as an icon, or full-screen, or normal 
size.  (Actually, the default is normal, if you don't select either of 
the others.)

This set of options has no effect on DOS commands, or when 
you run DOS programs.  The latter are run according to their PIF 
files, if such exist, so the place to determine whether a DosApp is 

C:\WINWORD\CTSHTOC.DOTChapter One – 42 – Installation



to be run in a window or full screen is in the PIF.

Command Recall
CT maintains an internal doubly-linked list of previous commands, 
and lets you scroll through them to select a command to issue 
again.  Each command that you type at the command line is added
to the list, and there are three options for deleting old commands 
that you no longer want to scroll through.

After one command has been given at the command line, you'll see
a [Delete] button the next time you invoke the command line.  That
will allow you to delete the earlier command.  Perhaps you 
misspelled a file name, and the command wasn't successful, and 
you don't want to accidentally issue that same command again.

After more than one command has been issued, you'll see 
options that let you delete from the current command upwards, 
from the current command downwards, or just the current 
command itself.  The default is always to delete just the current 
command, so you don't accidentally remove several that you'd like 
to use again later.

Whenever you start a CT command line, you can use the <Up> 
and the <Down> keyboard cursor keys to scroll through the list of 
past commands.  When you've found the one you want to use, you 
can press <Enter> to accept it, or click the [OK] button with your 
mouse.  If you prefer to select from the list itself, just click the 
mouse on the small downwards-pointing arrow to the right of the 
command line itself.  That will open the associated list box, 
showing you any existing commands that are available to be 
reused.  If there are none, the box will be empty.

C:\WINWORD\CTSHTOC.DOTChapter One – 43 – Installation



Chapter 5 

CTSHELL.INI Reference
The real power of CT-Shell is unleashed when you make a few simple 
modifications to your CTSHELL.INI file, to customize it for your system 
and for the way you work.  This chapter describes the various areas in 
that file that can be modified by the user.

Options are recorded there for future sessions, and all the special 
menu entries that you create are stored there.  As long as CTSHELL.INI 
is stored in the current directory, a directory along your DOS path, or in 
your Windows "home" directory, CT will be able to find it when it needs 
the file.  It is suggested that you keep CTSHELL.INI in your Windows 
home directory with your other important xxx.INI files.  

Accessing CTSHELL.INI
Far removed from the programming that is required to customize 
some similar products, CT-Shell lets you work with simple objects 
(characters like ! and #) that take on special meaning when you use 
them in your commands.  Even those who have never written a 
program, a script, or a macro are encouraged to give this a try.

Your CTSHELL.INI file is an ordinary ASCII text file that can be 
edited with nearly any editor or word processor.  Although it isn't a 
powerful editor, the Windows NOTEPAD editor is fine for the light-duty
work of customizing your initialization file. 

If you followed earlier recommendations, your CTSHELL.INI file is 
probably stored in your Windows directory.  If that's the case, you'll be
able to edit it quite easily using the CTSHELL.INI File entry from your 
Edit menu, allowing you to make changes in the menu system and 
add new entries.  If you have stored it somewhere else, simply 
change to that directory, select the file (make it the current file), and 
select Notepad Editor from the same menu.  

In short, do whatever's necessary to edit your file and save the 
new copy.  You can put your menu entry changes into effect 

C:\WINWORD\CTSHTOC.DOTChapter One – 44 – Installation



afterwards by pressing the <F7> function key, or by exiting and 
restarting CTSHELL.  

Be aware that there are several CT dialogs that also affect portions 
of your CTSHELL.INI file, especially those sections that affect the way 
options are implemented (as opposed to menu items and entries).  
Note that any of these other option settings can always be changed 
by editing CTSHELL.INI, but usually the dialogs provide the easier way
to make such choices.  

For example, the way your printed listings are formatted is affected
by a dialog that is invoked by the CONFIG keyword.  The alarm/event 
settings are affected by a dialog that is invoked by the ALARM 
keyword.  The PREFER keyword invokes a dialog that allows you to set
a great number of preferences, all of which will be explained in the 
sections that follow.

The following sections describe the various parts of your 
CTSHELL.INI file, and what changes you might want to make to each 
of them.  Where those changes can be made with a dialog, it will be 
identified, along with the CT keyword that invokes it.

[Alarm]
This section is new for version 2.0 of CTSHELL.  It contains the 
controlling data for up to four event timers that work like alarm 
clocks.  Timers are a limited resource in Windows, with only 16 
available for all programs that need to use them.  You might be 
concerned that CT uses more than its share of timers, but don't worry–
it uses only one.  The event timing is handled by the same part of the 
program that updates the time in the status display.

The default CTSHELL.INI file does not contain data for any events 
or timed messages.  What you'll see at the beginning of this file is an 
[ALARM] section that looks like this:

[ALARM]
Enabled1=0
Enabled2=0
Enabled3=0
Enabled4=0
Time1=00:00
Time2=00:00
Time3=00:00
Time4=00:00
Message1=
Message2=
Message3=
Message4=
Event1=
Event2=
Event3=
Event4=

The easiest way to set up a timed event, or to have CT display a 
C:\WINWORD\CTSHTOC.DOTChapter One – 45 – Installation



reminder of some kind at a predetermined time, is to use the ALARM 
keyword to invoke its dialog.  There is a graphic of that dialog later in 
Chapter 6, which is about CT keywords.

[Autoexec]
This section has already been thoroughly documented in earlier 
sections of this manual.  It contains a series of entries (in the usual 
menu entry format), that determine the programs that will be started 
automatically when CT is first started.  Remember that you can use 
the ICON or LOAD keywords in addition to the name of a Windows 
executable, which causes that program to be loaded as an icon, 
instead of being run in its normal size.

This section is unaffected by any of the dialogs that change various
settings.  The only way to place entries here is to enter them with an 
editor.  Many people find it easy to do a copy-and-paste operation, to 
copy entries from another section of the file, such as from the later 
menu section.

[Color]
There are three entries here, named as shown below, which each 
contain one component of the background color that's used for CT-
Shell's main window.

[COLOR]
BkRed=255
BkGreen=255
BkBlue=235

These are the three primary additive colors, and the intensity of each 
color ranges from 0 to 255.  If all three were 0, the background would 
be black.  If all three were 255, the background would be white.  
Various combinations of other values will create a whole spectrum of 
background colors, subject to built-in limitations of the video driver in 
use.

The default combination used in the distribution CTSHELL.INI file 
creates a background that is pale yellow (red + green = yellow).  
These values are among those that can be changed via the 
Preferences dialog, which is invoked by the PREFER keyword.  

[Editor]
The section marked [EDITOR] contains two settings that tell CT 
whether you have a text editor and whether it has a particular 
capability.  These settings are used in conjunction with the FIND 
command, and will allow you to edit the file that contains a string of 
characters that you have asked CT to find for you.  These settings look
like this in the sample CTSHELL.INI file:

C:\WINWORD\CTSHTOC.DOTChapter One – 46 – Installation



[EDITOR]
EditorName=NOTEPAD.EXE
EditLine=

On the assumption that anyone who has Windows has the NOTEPAD 
editor, that's the default, even if this section is missing from the 
CTSHELL.INI file.  Most programmers use more of a heavy-duty text 
editor however, and will want to change this entry to contain that 
editor name instead (including its path, if necessary).

The EditLine entry tells CT two things about your editor: whether it 
can start at a line number that is included as part of its command, 
and if so, what command-line switch is used to invoke that feature.  If 
EditLine is left empty as in the sample file, CT will simply load the 
selected file into the editor, but not attempt to start at a particular 
line number.  If EditLine contains any characters, they will be added 
to the edit command just before the line number.

Here's an example that would work for the popular QEdit 
programming editor (from SemWare, Inc.), which has an executable 
file named Q.EXE and which uses the switch -n to tell it what line 
number to start on:

[EDITOR]
EditorName=Q.EXE
EditLine=-n

When CT puts together a command to execute your editor, the actual 
file name and line number are combined with the editor name and 
switch.  Assuming a file called FILE.EXT and assuming that the desired
string was found in line 123 of that file, the command that CT would 
create from all this would look like:

Q.EXE FILE.EXT -n123

If your editor does not offer a way to start on a specified line, just 
leave EditLine blank in your CTSHELL.INI file.  If you edit your 
CTSHELL.INI file to change these settings, you may use the <F7> 
function key to reload your menu, which will also cause these editor 
settings to be reloaded from the file.  These values are also among 
those that can be changed via the Preferences dialog, which is 
invoked by the PREFER keyword. 

[Modem]
One of CT-Shell's functions is to store phone numbers in a dialing 
directory, and optionally to dial phone numbers for you, using a 
modem13.  Nearly any kind of modem can be used for this, including 
the cheapest ones.  There are several entries in this section that can 
be changed, if necessary, to accommodate unusual or nonstandard 
modems, or phone systems that require additional characters to be 

C:\WINWORD\CTSHTOC.DOTChapter One – 47 – Installation



dialed to access an outside line or to charge the calls to a credit card.
The sample CTSHELL.INI file includes most of these settings, which 

will be satisfactory for a large number of users:

[MODEM]
ModemInit=ATQ0M1L0V1X4&C1&D2
ModemSpeed=1200
ComPort=1
DialPrefix=ATDT
DialSuffix=

The one that is not included is the modem initialization string–the first
field shown above.  If you want to activate this feature for your 
version of CT, you must have a modem connected to your computer, 
and you must provide an appropriate modem initialization string.  If 
you're not sure what your modem needs in an initialization string, the
one shown here is a good place to start experimenting. 

Assuming the very popular and common Hayes "AT" command set,
the modem initialization string shown here turns quiet mode off (Q0), 
the modem speaker on (M1) at a low volume (L0), and asks for 
verbose answers from the modem rather than numeric result codes 
(V1).  The extended result codes (X4) let many modems wait a 
reasonable length of time for a dial tone.  The &C1 and &D2 control 
the way the modem handles some of its handshake lines.
The default file sets the modem speed to 1200, which is pretty much 
a lowest-common-denominator among modern modems.  Since no 
communication is going to take place at this speed, it doesn't really 
matter that the modem may have higher speeds available.  We're 
only passing a dialing command to the modem.

The default communication port is COM1, however, if your modem 
is connected to a different port you'll want to change this.  If your 
phone uses tone dialing–as most of them do these days–the ATDT dial
prefix is probably all you will need.  If your phone system uses pulse 
dialing (a rotary-dial phone), you'll want to change that to ATDP 
instead.  The dial suffix is usually not required, but some may need to
add some more numbers here to accommodate the special needs of a
particular private exchange.

Note that there is no need to specify carriage returns at the end of 
the strings that are sent to the modem.  Those are added 
automatically by CT, when the modem initialization string is sent, and 
when a dialing command is sent.

The settings you see above are all defaults that are built into CT 
internally.  In other words, you could leave them out of your 
CTSHELL.INI file entirely, and they would still be the values used.  The
one exception is the modem initialization string, which defaults to the
empty string if it is not provided specifically.  

That's important, because that string of characters determines 
whether CT will try to dial the phone for you, or just display phone 
numbers for you to dial yourself.  The PHONE keyword invokes a 
dialog box that displays phone numbers that are stored in your 

C:\WINWORD\CTSHTOC.DOTChapter One – 48 – Installation



CTSHELL.INI file.  If CT has a valid (not empty) modem initialization 
string, it will offer a [Dial] button in the PHONE dialog that does not 
show up if that string is empty.  For more details, see the description 
of the PHONE keyword in Chapter 6.

[Options]
Here is a place to set a variety of options that affect the way CT 
works.  Nearly all of these entries may be changed via the 
Preferences dialog, which is invoked by the PREFER keyword.  The 
default CTSHELL.INI file contains the following entries in its [OPTIONS]
section, which will be discussed in the following paragraphs:

[OPTIONS]
KeepOpen=0
RequireConf=0
IgnoreDrives=
Mail_In=
Mail_Out=
user1={Alarm Settings} {} {} {} {alarm}
user2={Listings Config} {} {} {} {config}
user3={Preferences} {} {} {} {prefer}
user4={Printer Settings} {} {} {} {printer}

The entries for  KeepOpen=  and  RequireConf=  are TRUE/FALSE type
entries, in which a 1 represents TRUE and a 0 represents FALSE.  
There will be other examples of this type of entry in the sections that 
follow.

KeepOpen  
KeepOpen refers to the command line, and whether it should be 
kept open following a command, so that additional commands may
be entered without reopening the command line dialog.  Some may
prefer to keep the command line open, particularly if they regularly
issue a lot of commands in series.  Others will prefer to let the 
command line close after each command, since it can easily be 
reopened with <Shift+Enter>.  With this entry–which can be 
selected from the Preferences dialog–each user can make that 
choice.

RequireConf
RequireConf refers to closing CT by doubleclicking on the system 
menu box.  That's the bar-in-a-box that's located in the upper left 
corner of the window in which CT runs.  Some will prefer a message
box that asks, Are You Sure? and requires a keypress or a mouse 
click to confirm.  Others will want to exit from CT without further 
ado.  It is unlikely that an abrupt exit from CT could harm anything. 
This option may be changed from the Preferences dialog.

IgnoreDrives
C:\WINWORD\CTSHTOC.DOTChapter One – 49 – Installation



The IgnoreDrives setting has already been discussed in earlier 
sections.  If you have a system in which there are a great number 
of drives available–such as in a network–and you do not need a 
continuing display of the available space on those drives, you may 
instruct CT to ignore certain drives.  The example shown here would
cause CT to ignore drives from F: on up:

IgnoreDrives=FGHIJKLMNOPQRSTUVWXYZ

The drive letters in the string that follows the equal sign do not 
need to be in any particular order, though keeping them 
alphabetical makes maintaining the list a little easier for the user.  
Uppercase and lowercase letters may be used.  If a drive does not 
exist for the current system, including its letter will have no effect, 
and will cause no harm.

Note that telling CT to ignore certain drives does not make it 
impossible to work with those drives.  It simply means that those 
drives won't have to be queried every time the files listing is 
updated.  You can still change to any of the "ignored" drives in the 
usual way from the command line, or by pressing a key 
combination that includes <Shift+Ctrl> plus the drive letter.  For 
example, even given the IgnoreDrives option shown above, you 
could easily change to drive L: (if it exists on your system) by 
pressing <Shift+Ctrl+L>.

The current drive is always updated in the status window, even if
it is one of the drives that is to be ignored.  This setting may be 
changed from the Preferences dialog. 

MailIn and MailOut
These two entries will not be useful for everyone, but for those who
regularly work with files that contain network mail or email of any 
kind, the CT feature that uses them can be quite helpful.  Because 
of the way this mail notification feature works–by reporting on the 
presence or absence of two specified files–users may find 
applications for the feature that have nothing to do with network 
mail.

One of CT-Shell's keywords is named MAIL, and invoking that 
keyword in a menu entry causes CT to look for the presence of files 
that are identified by these  MailIn=  and  MailOut=  entries.  It 
then presents a message box that states in simple Yes/No terms 
whether mail is waiting to be sent (MailOut), or mail is waiting to 
be read (MailIn). 

The obvious application is for those who work with a network 
mail system, or who download mail packets from a remote service 
like CompuServe or a BBS.  Often these systems create a file of 
mail that is waiting to be read, and the fact that the file exists 
implies that there is mail waiting.  Those systems that do, usually 
also create a file of answers, which are then transferred–such as by
telephone or network connection–with the remote "host" system.  

C:\WINWORD\CTSHTOC.DOTChapter One – 50 – Installation



Again, the existence of a file containing replies often implies that 
there are answers that have not yet been sent.

Users who engage in this type of mail activity will be probably 
be able to figure out, based on this description of the process, how 
they can use the  MailIn=  and  MailOut=  path names to their 
advantage.  It may also have occurred to others that it would be 
useful to be able to check quickly on the existence of two specific 
files for totally unrelated purposes.  Anyone who is able to utilize 
these settings to their advantage should feel free to do so, network
mail or not.

These path strings may both be modified using the Preferences 
dialog.

User1 through User4
As you know from the previous discussion in the section on 
function keys, the  User1=  through  User4=  tasks are originally 
assigned to the special CT keywords, ALARM, CONFIG, PREFER and 
PRINTER.  Doing that provides quick and easy access to these 
configuration dialogs.

These are user-defined options, nonetheless, and any entries 
that are suitable for a menu are suitable here.  Thus, four function 
keys–F9 through F12–can be used to invoke commands that you 
would normally select from a menu.  
These settings may be modified through the Preferences dialog, 
however users may find it easier to use the copy-and-paste 
capabilities of their editors to copy entries from the later [ITEMS] 
section in the CTSHELL.INI file to this section.
 Because of limited space to display the entry name next to the 
representation of the function key, entry names should be 
modified, if necessary, to be no longer than 18 characters or so.  
Even shorter names may be required if there are many wide 
characters, such as capital letters.  This is the only way in which a  
Userx=  entry might need to differ from a regular menu entry–a 
menu can accommodate a much longer name14.

StartX and StartY
These two settings are not part of the default options, for a good 
reason.  If they are left out entirely–i.e., do no appear in the 
CTSHELL.INI file at all–CT will automatically start in a centered 
position on the screen.  

Some may have reason to want it to appear in another position, 
so CT is able to memorize its current position and use that 
whenever it is started.  If you invoke the CT keyword POSITION, 
these entries will be made in your CTSHELL.INI file for you.  If they 
exist, CT will use them as the position of the upper left corner when 
the program is started.

The values will vary depending on what type of video monitor is 
in use.  For example, if centered on an 800x600 monitor, POSITION 
will record these values:

C:\WINWORD\CTSHTOC.DOTChapter One – 51 – Installation



StartX=92
StartY=76

If these two entries do exist in the file, but no values are provided 
for them, they are interpreted as 0 and 0, placing CT in the upper 
left corner.  That's why the entries do not appear at all in the 
default configuration.  If you have recorded a starting position and 
later decide to return to the centered default position, you will 
need to remove these lines from your CTSHELL.INI file entirely–just 
removing the values won't be good enough, as missing values are 
interpreted as zero values.

Naturally, if you are going to record a new starting position for 
the program, you will want to move it into your preferred position 
before you invoke this keyword.  You can do that by "grabbing" the 
caption bar at the top of the window (move the mouse cursor 
there, then press and hold the left mouse key) and "dragging" it to 
the position you want.
Unlike the other settings in this section, these are not affected by 
the Preferences dialog.  They are changed only by the POSITION 
keyword, or by editing the CTSHELL.INI file itself.

[Phones]
This section contains a single entry in the distribution configuration:

[PHONES]
Phone0=Computer Training           (206)820-6859

The entries here are made available to you in the dialog that is 
invoked with the PHONE keyword.  There is a menu entry for that 
purpose in the default configuration, in the Shells menu.  

A graphic of that dialog and more details pertaining to its use are 
in the later section on CT keywords (Chapter 6), but here are a few 
observations about the entries that may be used here:  

The approximate size of the entries will become apparent when 
you first invoke that menu item.  Subsequent phone numbers are put 
into place as  Phone1=  , Phone2=  ,  Phone3=  , etc.  Legitimate 
characters for the phone number include the digits, hyphen, 
parentheses, and the period.  A phone number must be the last entry 
on the line, and it may not contain embedded spaces.  (CT figures out 
which is the phone number by moving to the end of the line, then 
backing up as long as it continues to find legitimate phone number 
characters.  It will stop at the first space it finds.)

You may feel free to edit this section directly in your CTSHELL.INI 
file, and that may be the easiest way to enter a long list of phone 
numbers.  You may also modify this section from the dialog that is 
invoked by the PHONE keyword.

C:\WINWORD\CTSHTOC.DOTChapter One – 52 – Installation



[Printer]
The [PRINTER] section controls certain options that affect the way CT 
prints a file (or a list of tagged files) when you press the <F8> key.  It 
looks like this in the sample CTSHELL.INI file that is supplied:

[PRINTER]
LineSize=80
Headings=1
PageNums=1
24Hour=0
LineNums=1
Independent=0
Draft=0
TextFixed=1

All of these settings are controlled from within CT, from a dialog box 
that is presented when you execute a pop-up menu entry that uses 
the CT keyword CONFIG (which is described in Chapter 6, which 
follows next).  In the default configuration, that keyword is bound to 
the <F10> function key.  Although you don't need to edit your 
CTSHELL.INI file to change these, here's an explanation of what each 
one means:

LineSize
The  LineSize=  entry will be 80, 110 or 132, if it was entered from 
within CT, and it specifies the width of text file lines, as you usually 
work with them.  When printing text files, CT will choose the largest 
font that is available for your printer that will display at least that 
many characters on a single line, in addition to allowing room for 
borders and optional line numbers.  

For example, if you write programs, and always make sure that 
your source file lines are 80 characters or less in length, you can 
select a line size of 80 and know that your printed listings will 
contain all your text between the borders.  If you occasionally write
on past the width of your terminal, you might want to select 110 to
ensure that everything will print.  CT does not provide linewrap, so 
lines of text that are too long may be truncated at the edge of your
printing area. 

Some people use special video hardware that provides them 
with 132-column text displays.  They may use that full width when 
editing programs, so a selection is available for that size as well.

Although these three sizes are the most useful, and are provided
for easy selection from within CT, you may edit this entry to contain
values other than 80, 110 or 132.  CT will attempt to use your 
value, providing the closest font that it can.  

Note that there is another special CT keyword called PRINTER–
which is available from your Utilities menu, and is assigned by 
default to the F12 key–that will invoke the setup function from the 
Windows printer driver for your printer.  Depending on the type 

C:\WINWORD\CTSHTOC.DOTChapter One – 53 – Installation



that you use, you may be able to change paper size, change 
orientation from portrait to landscape, and change other settings 
that will also be reflected in CT-Shell's choice of fonts for your 
listings.  As an example of the output from one of those functions is
shown in the section on CT keywords in Chapter 6.

The rest of the options shown here are simply TRUE/FALSE values, 
where the number 1 represents TRUE and 0 represents FALSE.  Inside 
CT, your selections will be made by checking boxes for the options that 
you want, however in the CTSHELL.INI file, your choices are stored as 
ones and zeros. 

Headings
Headings=  determines whether name/date/time headings will be 
printed at the top of your listings.   If you enable this option, each 
file's name and creation date and time will be printed at the top 
left of the page in a bold font, and the date and time the listing was
printed will be at the top right of the page.  Thus it will be easy to 
compare two listings to see which is newer.  You can print a few 
additional lines of text on each page if you turn off this option.  

Pagenums
PageNums=  determines whether your listings will have page 
numbers at the bottom of each page.  Be sure to see the closely 
related  Independent=  option below.  You can print a few 
additional lines of text on each page if you turn off this option.  

24Hour
This option lets you determine whether the times displayed in file 
listings will be in 24-hour "military" time, or in the conventional AM 
and PM format.   With this option enabled, 9:30 in the evening 
displays as 21:30, and with this option disabled the same time 
displays as 09:30p.

Linenums
If the file being printed is a program listing, chances are you'll want
the lines to be numbered.  This option will cause them to be 
numbered from 1 to 99999, and separated from the text with a > 
and a space.  Thus, such a listing might look in part like this:

51>        if( iLimit > iValue)
52>              foobar( iValue );

Turning the line numbering option off would make more sense 
when printing a listing of a program documentation file. 

Independent
The  Independent=  option refers to page-numbering for multiple-
file printing jobs.  If you have a series of files tagged before you 

C:\WINWORD\CTSHTOC.DOTChapter One – 54 – Installation



press <F8>, all of them will be printed, not just the current file.  If  
Independent=1, each file listing will begin with page 1.  If  
Independent=0, the whole series of files will be page-numbered 
consecutively, straight through.  

If a number of files is all part of a single programming project, 
you might prefer setting  Independent= 0.  

Draft 
Draft=  tells Windows whether to try to find a font for high-quality 
output or one that will print more quickly, with lower quality.  If  
Draft=1, lower quality will be allowed.

Note that the operational word here is allowed.  CT does not 
force Windows to use a lower-quality font, it can only allow it to do 
so.  How much effect this switch has may well depend on the kind 
of printer you use, and the number of fonts its driver is able to 
make available.

Depending on the printer type, you may have more success in 
changing to a lower quality (and faster printing) font if you use the 
CT keyword PRINTER to gain access to the printer driver's setup 
function.  By setting the graphic resolution to a value that is less 
than the maximum, you may be able to trade some excess print 
quality for a desired increase in printing speed.

TextFixed
Whether the text portion of your printout is printed in a fixed font 
or a variable (proportional) font is controlled by this one.  If you 
need to print program listings, you'll want to set  TextFixed=1, so 
that spacing is preserved in your listings.

(This feature does not affect the headings, as there is no reason 
to print headings using a fixed font.)

Under other circumstances, you might prefer to turn off this 
feature, so that proportional spacing will be used instead.  In 
particular, you might want to turn this feature off to print files that 
were created by a word processor using a proportional font.

[Items]
This part of your CTSHELL.INI file determines the contents for your 
main menu, and the pop-up menus that its items invoke.  There is no 
arbitrry limit to the number of menu items, although most people 
prefer to keep the number small enough (and the item names short 
enough) to make the menu fit on one line.  Likewise, there is no 
arbitrary limit to the number of entries that each menu item may 
contain. 

Since the sample CTSHELL.INI file provides so many examples of 
menu entries, you shouldn't have any trouble at all adding the ones 
you need to customize your system.  A good idea is to add one or two
new entries that will run programs you use often, and try them out.  
Make sure you're including the current file in the right place, and that 

C:\WINWORD\CTSHTOC.DOTChapter One – 55 – Installation



you're changing to the right directory before executing the programs. 
While  reading through these following sections, you should get 

plenty of ideas for custom entries.  Ask yourself questions like, "What 
do I use the computer for most of the time..." and think what you'd 
like to be able to do with a click of the mouse or the press of a couple 
keys. 

Menu Items
Each menu item is distinguished by the special word Item that 
appears first on its line, then a set of braces containing the item 
name as it should appear in the main menu.  Since braces are used
as delimiters, the menu entries can contain quotation marks, if you
want, as well as spaces, parentheses, and most other punctuation.

item  {ItemName}

ItemName
The menu item name may contain embedded spaces, and it 
may contain the special ampersand character (&), which 
determines a letter that will appear underlined in the menu 
itself.  So identifying a key letter in the name provides a way for 
that menu item to be selected with a combination of the <Alt> 
key and that underlined letter.  
For example, <Alt+E> typed together would activate the menu 
item that was described in the CTSHELL.INI file as {&Edit}.  The 
ampersand is optional, but provides a quicker way to invoke this 
item.

Item names may be any practical size.  Keeping them brief, 
however, helps to keep the main menu on a single line, and 
many people find a single-line main menu easier to use.  Note 
that CT will automatically detect a multi-line main menu and 
adjust its window size accordingly.

Pop-up Entries
Each pop-up entry contains five fields, delimited by braces, of 
which only the first is required.  

If you haven't yet loaded your CTSHELL.INI file into your editor to
take a look at it, you should do so now.  The following descriptions 
will be most meaningful if you're looking at the sample menu 
entries as you read about their various parts.   To load CTSHELL.INI 
into the NOTEPAD editor from the default menu, select the Edit 
menu and choose the entry to edit CTSHELL.INI.  

Entry Name

{EntryName} {DirPath} {ExePath} {Switches} {Keyword}

The entry name is displayed in the pop-up menu to allow the 
selection of this option.  Like the menu item name, the entry 

C:\WINWORD\CTSHTOC.DOTChapter One – 56 – Installation



name may contain an ampersand character to determine the 
character that will be underlined in the menu, thus providing 
easy access to this item with a keyboard command.  The 
ampersand is optional, but if it is used, it provides a quicker way 
to invoke this entry.

The entry name may also be preceded by a dollar sign ($), 
which has a special meaning.  Such an entry name is always 
followed by four more sets of empty braces (or at least, CT 
ignores anything in them), and is used only as a label for a 
section in the menu.  Thus, a number of commands to invoke 
various built-in DOS services might be grouped together under 
such an entry as in this example from the default configuration:

{$DOS SERVICES} {} {} {} {}
{    &Attributes} {} {} {} {ATTRIB}
{    &Copy} {} {} {} {COPY}
{    &Delete} {} {} {} {DELETE}
{    &Move} {} {} {} {MOVE}
{    &Rename} {} {} {} {RENAME}
{    &Touch File} {} {} {} {TOUCH}

That example is responsible for part of a menu that looks like 
this in use:

Two other special characters may be used here, to provide 
separation from other pop-up menu entries.  If an entry name 
begins with a hyphen ( - ), there will be a horizontal bar in the 
menu, separating that item from the ones that preceded.  If 
there is a plus sign ( + ) before the name, that entry will begin a 
new column in the pop-up menu, with a vertical bar separating it
from the preceding entries.  

If you visualize the hyphen as a horizontal bar, and the plus 
sign as a vertical bar that separates two halves of something, it 
should be easy to remember these.  There are also a couple of 
examples in the sample CTSHELL.INI file.  The Exit entry in the 
File menu is separated at the bottom with a horizontal bar, as 
has become customary for Microsoft products, and in the 
Windows menu, the Utilities entries are separated into their own 

C:\WINWORD\CTSHTOC.DOTChapter One – 57 – Installation



column, distinguishing them from the applications and system 
programs in the other column.

Note that spaces are considered ordinary characters, and can 
be used to provide indentation for a list of entry names that 
come under a label, as they were in the example just above.  
The location of the - and + symbols is important, as they are 
considered special characters only if they appear in the first or 
second columns.  If embedded into an entry name, they would 
be considered ordinary characters.  

In contrast, the $ must always be used as the first character 
in the entry name, but it can follow a - or a +, if those are used 
to provide separation.  And, of course, the & retains its special 
meaning wherever it might appear in the entry name.  Here are 
some practical examples of these rules and considerations:

{-$UTILITIES} {} {} {} {}

...starts a new section in the current column, using UTILITIES as 
the label for a group of entries.

{+$COMPRESSION} {} {} {} {}

...starts a new column, using COMPRESSION as the label for a 
group of entries that have to do with data compression.

{-    LHArc &Add} {} {} {} {}

...starts a new section in the current column, separating it from 
previous sections with a horizontal bar.  This entry will be 
indented by four spaces.  The 'A' character will be underlined, 
and recognized as the significant letter to access this menu 
item.  

The default configuration contains a number of examples that
may guide you in developing new entries for your own 
programs.

DirPath

{EntryName} {DirPath} {ExePath} {Switches} {Keyword}

The directory path is an optional field which, when provided, 
causes CT to change either temporarily or permanently to that 
directory, before executing any program that may be part of this
entry.  

If a directory path field is present and an executable path field
is not, it is assumed that the explicit purpose of this entry is to 
change directories permanently.  In that case, CT will change to 
the specified directory, and will continue operating from there.  
An example might look like this, where you want to be able to 

C:\WINWORD\CTSHTOC.DOTChapter One – 58 – Installation



change to a word processing work directory on drive D:

{&WordProc} {d:\winword\letters\personal} {} {} {}

Since the directory path has a content, CT will change to that 
directory when this entry is invoked.  Since the executable path 
does not have any content, the directory change will be a 
permanent one.

If both a directory path field and an executable path field are 
provided, it is assumed that the directory change should be 
temporary, for the purpose of executing the command only.  
Afterwards, CT will return automatically to the directory where it 
was before the command was executed.  Here's an example 
where the same directory change is made, but where a session 
with Word for Windows is also started:

{&WordProc} {d:\winword\letters\personal} {winword.exe} {} {}

This time the directory change will be temporary, and CT will 
return to the previous directory when the session with Word for 
Windows is finished.

ExePath

{EntryName} {DirPath} {ExePath} {Switches} {Keyword}

As you saw in the previous example, the executable path is the 
path name for an executable file which is to be run when this 
entry is selected.  Because the menu entries are processed by a 
command processor that can look throughout the DOS path for 
an executable file, programs whose names end in .EXE and that 
reside along the DOS path may be listed here without any 
qualifying path information. 

However, if the program to be executed does not reside along
the DOS path, you must include the entire path/file name here.  
If it has an extension of .COM or .PIF or .BAT, you must at least 
include the extension–even if the file does reside along the DOS 
path–as CT will default to .EXE for a filename with no extension.  
More information about path names and the DOS path is 
available in your DOS manual.

An example of an executable that lies along your DOS path is 
CALC.EXE, assuming that it is in its customary place in your 
Windows directory.  Here's a menu entry that would run the 
Windows calculator utility:

{&Calculator} {} {calc.exe} {} {}

No directory change was required, and in fact, we could have 
gotten away without the .EXE extension, since that's the default.

C:\WINWORD\CTSHTOC.DOTChapter One – 59 – Installation



Many people prefer to include it anyway, for purposes of 
documentation.  If a full path were needed, such as to run a 
program that does not reside in a directory along the DOS path, 
its entry might look like this: 

{&Calculator} {} {d:\foo\bar\progcalc.exe} {} {}

Switches

{EntryName} {DirPath} {ExePath} {Switches} {Keyword}

Programs often require additional information on the command 
line when they are run.  An editor, for example, can often be told
what file to edit by including the file name as part of the editor 
command.  

Sometimes too, the way a program runs can be affected by 
switches that turn on or off certain features.  For example, the 
extended copy XCOPY command from DOS will copy entire 
directories if you follow the command with the switch /s and will 
even include empty directories if you include the switch /e.  If a 
menu entry were created to execute the XCOPY command, you 
might want to include these switches as part of the entry.

The switches field is the one in which the CT special field 
characters are most often used (see Chapter 7).  Using object-
oriented techniques, you are able to include the current file as 
part of your command, a list of all the tagged files, an 
environment variable, and more.  You are even able to cause CT 
to prompt you for one or more values to be inserted as it runs.

As it operates, CT combines the switches field with the 
executable path field to form a command.  Thus, it doesn't really
matter whether a command argument or switch occurs in one 
field or the other.  However, it is easier to visualize executable 
programs as separate from the arguments and switches that are
used with them, so both fields are provided.  If you prefer, you 
may put all the necessary entries into the executable path field 
and leave the switches field empty, but its braces must be left in
place or, under some circumstances, CT might become confused 
by the missing field. 
Here's an example for an XCOPY command that assumes the 
current file is a directory, and copies it and everything in it to 
the floppy disk in drive A:.  Note that the ! represents the current
file, and can be placed in the command right where the current 
file name would be placed if the command were being given at a
DOS command line:

{&CopyDir} {} {xcopy.exe} {! a: /s /e} {}

An exclamation point used in this way gets replaced by the 
current file, which we would assume to be a directory in this 

C:\WINWORD\CTSHTOC.DOTChapter One – 60 – Installation



usage.  The a: is a destination, indicating that the copy should 
be done to drive a:.  The /s tells XCOPY to copy all files in 
subdirectories, creating those subdirectories as needed on the 
target disk.  The /e switch tells XCOPY that it should even 
preserve empty directories during the copying.

Keyword

{EntryName} {DirPath} {ExePath} {Switches} {Keyword}

Many of the operations that CT performs are handled internally 
by CT itself.  That's how it is able to improve on many of the DOS 
commands, rather than passing the commands along to DOS.  A 
keyword command is almost always used in place of–rather than
in addition to–an executable path.  In fact, if there is a keyword 
in this last field other than those few that specify the run mode 
for a Windows executable, CT will process that keyword first, and 
ignore any entries that may be in the executable path or 
switches fields.

Because CT-Shell keywords provide so much of the functionality
of the program, the whole next chapter is devoted to an 
explanation of them.

C:\WINWORD\CTSHTOC.DOTChapter One – 61 – Installation



Chapter 6 CT-Shell 
Keywords

CT-Shell keywords are listed here, along with a brief description of what 
they each accomplish, and an example of any dialogs that are invoked 
by them.  

Single and Tagged Files
When a keyword is designed to affect a single file, CT needs only to 
inquire which file is the current file in the file list, and apply that 
operation to that single file.  When a keyword is designed to affect a 
list of tagged files, CT needs to go through all the entries in the file list
and ask of each, "Is this one tagged?"  Then it applies the operation 
to the ones that are, skipping the ones that are not.  Obviously, it is 
easier and quicker to affect only the single current file.

Keywords that are intended for use with tagged files will almost 
always work with the current file, which is almost always considered 
to be tagged15.  Examples of most of these keywords are already 
included in menu items in the sample CTSHELL.INI file, however you 
may want to rearrange them to suit you:

About
Displays information about CT, including the number of the version 
that you're using.  The dialog that it invokes looks like this:

C:\WINWORD\CTSHTOC.DOTChapter One – 62 – Installation



Alarm
Allows the user to modify the settings used by the four event timers 
that CT provides.  If a time is established and that timer is enabled, a 
message entered for that timer will be displayed at the specified 
time, and any menu-type entry placed in the event field will be 
executed at the stated time.  Note that messages can be displayed 
without starting an event, and events can be started without 
displaying a message.  The dialog presented by ALARM looks like this:

Most of these fields should be pretty obvious.  For example, to create 
an event you must enter a time for it to happen, and then enable it 
by clicking on the Enabled check box.  If you only want to be 
reminded of something, you can enter a message that you would like 
displayed in a message box at that time.  Enter the time in HH:MM 
format, and use 24-hour time.  In other words, 9am would look like 
09:00, while 9pm would look like 21:00.

C:\WINWORD\CTSHTOC.DOTChapter One – 63 – Installation



If you would like to execute a program at the time you specified, 
you'll need to type in an entry for the Event field.   This entry takes 
the same form as the ones you've already seen used in the menu 
section of your CTSHELL.INI file, with five sets of braces (and which 
you've seen in other examples in this manual).  You might want to 
include an entry name in the first set of braces as a reminder, but CT 
won't need it.
Your event can execute DosApps and WinApps, or invoke a CT 
keyword.  In short: you can do anything here that you could do in a 
menu entry.

Having created an event or scheduled a reminder message, you 
can click on [Accept] to accept those settings and close the dialog.  If 
you have also checked the box marked Save settings to CTSHELL.INI 
file?, the event will be recorded for future use, and reloaded 
whenever CT is started.  If an event is enabled, it will be triggered the 
next time that time comes up, and will be triggered again the next 
day at the same time.  In this way, an event can be established that 
will be automatically done every day, so long as CT is running when 
the time comes.

If you have made some changes and find that you need to return 
to the settings that were previously recorded in CTSHELL.INI, you can 
click on the [Reset] button.  Clicking on [Cancel] exits from the dialog 
without changing anything.

The limit of four events is somewhat arbitrary, as the data required
to set up four events fit nicely into a dialog box that fits on any 
screen.  However, it isn't difficult to create more events if they are 
needed.  Remember that you can run multiple instances of CT, and 
that all use the same copy of the program, but each has its own 
private set of data.  That means that one of the events could start 
another instance of CT, which invokes three other events plus another 
instance of CT, which invokes three other events plus...

Attrib 
Changes file attributes.  Use this keyword in a menu item to let you 
change the attributes of the current file.  There is another version 
listed below that changes the attributes for a group of tagged files.

Remember that these attributes become the attributes for the file 
that you are modifying, they're not added to the existing attributes.  
Be sure to set all the ones you want to apply, then click OK.

C:\WINWORD\CTSHTOC.DOTChapter One – 64 – Installation



Command
Invokes the command processor that is associated with your 
COMSPEC environment variable.  In most cases this will be 
COMMAND.COM, the command processor that is supplied with MS-
DOS and PC-DOS.16  

If there is anything at all that you prefer doing at an ordinary DOS 
command line rather than from within CT, this keyword provides you 
with the ordinary DOS session where you can do it. 

Config
Configures the file listing options.  These are the settings within CT 
that affect how file listings are printed.  See also the PRINTER 
keyword for access to the printer driver itself, which provides control 
over your installed printer.

The menu entry that invokes this keyword is in the Shells menu in 
the sample configuration.  When you invoke the keyword CONFIG, 
here's the dialog box that CT uses to get your choices:

If you click on the [Accept] button, CT will accept the settings that are 
shown.  If you have checked the box marked "Save settings to 
CTSHELL.INI file," that will be done as well, so you'll start off with 
those as default settings the next time .

If you click on the [Reset] button, you will cause CT to read in the 
current settings from the CTSHELL.INI file.  They will replace whatever
other settings you had in effect, and will be displayed immediately.

Copy
Copies a file to another location.  You are prompted for a destination 
for the current file, and it will be copied to that destination.  Like the 
DOS copy command, you may supply a file name or a directory as a 
destination.  Like the COPY command that you use at the CT command
line, this uses a much larger copy buffer than DOS does, for better 

C:\WINWORD\CTSHTOC.DOTChapter One – 65 – Installation



efficiency.

Note that you may provide multiple destinations when this dialog 
asks you for a destination.  The example shown here would copy the 
current file to both the C:\WIN path and the D:\WIN\TEST path.

Deldir
Deletes the currently-selected directory and all files in it.  Be careful!  
This one is so powerful that there are two confirmations necessary to 
make it work (you're asked twice whether it's okay to delete the 
directory).  

The entire subdirectory will be deleted, including any files in it and 
any subdirectories under it, even any files that have the read/only 
attribute.  This is a wonderful way to remove an outdated or 
unwanted directory during disk maintenance, but it requires you to be
careful.  Files and directories that have been deleted with this 
command can sometimes not be undeleted.17

If you click on the [NO] button, nothing will happen to the directory.  
And because this operation is so potentially disastrous if it is misused,
even if you click on the [Yes] button you will be asked to verify one 
more time:

C:\WINWORD\CTSHTOC.DOTChapter One – 66 – Installation



Delete
Deletes a file.  This removes a file in a way that cannot usually be 
reversed.  Be careful, and be sure that you mean it when you use this 
keyword.  You are asked only once for confirmation:

Note that either a single file or a list of tagged files can be deleted by 
pressing the <Del> key, then confirming.

DirSize
Displays a listing that shows you how big a directory is.  It shows how 
many subdirectories it contains, how many files, and how many bytes
they all add up to.  This can give you a very good approximation of 
how much room must be available on a destination to which you plan 
to copy that directory, or how much additional room will become 
available on your drive if you delete it.

Exit
Shuts down CTSHELL.  You can also do this by double-clicking on the 
system menu box in the upper left corner of CT-Shell's window, but 
some people find it easier to pick an exit command out of a menu.  

Users can choose whether a confirmation will be necessary to exit 
CT by modifying the  RequireConf=  setting via the Preferences dialog.
If confirmation is required:

C:\WINWORD\CTSHTOC.DOTChapter One – 67 – Installation



FileInfo
Copies the descriptive information (from the file list window) to the 
clipboard, from where it can easily be pasted into a document with 
nearly any editor, or used in other programs for which it is 
appropriate.  This keyword is implemented in the Tagged Files menu.  
When it is invoked, information such as the following is copied to the 
clipboard for any files that are currently tagged:

ctcover.doc      5030  07/14/91  05:02.14a  .....
ctdisk.bmp     224918  07/14/91  06:38.44a  .....
fkeys.bmp      224918  10/06/91  04:04.14p  .....
header           1650  07/02/91  08:08.10a  .....
regcard1.doc     3481  07/19/91  05:28.38a  .....

FormFeed
When you have copied something to the printer, and it has not 
advanced the last sheet, you can force a formfeed with this keyword. 
It is invoked by a menu entry in the Edit menu of the default 
configuration.

Help
Runs the Windows help engine.  This provides access to the online 
helpfile that explains what all these options do, and reminds users 
how to use CT-Shell.  You can start at the index, and select the topic 
you want to review.  Wherever feasible, the help file contains 
hyperlinks to other topics, making it easy for you to find all the 
information related to a subject.

Home
Changes the CT "home" directory to the current directory, so that 
when you press <F6> this is where you'll return to, rather than the 
directory in which CT was started.

This is something you might want to do if you know that you must 
leave the current directory to do some things, but that you need to 
return afterwards.  Having made the current directory "home," the 
return is easy.

C:\WINWORD\CTSHTOC.DOTChapter One – 68 – Installation



Mail
Displays a message box that tells whether there is mail waiting to be 
read, or waiting to be sent to a destination.  This feature is actually 
only commenting on the existence of the two files identified by path 
names in the  MailIn=  and  MailOut=  entries in [OPTIONS] section of 
the CTSHELL.INI file.  If the user does not participate in network mail 
or email, this feature could be used to determine the existence of any
two other files, possibly serving some other purpose instead.

Move
Moves a file to another location.  This feature changes the directory 
information relative to a file without copying the file itself.  Thus, a 
move takes only part of a second, no matter how big the file is that is 
being moved.  No file data needs to be read or written, just the 
directory entry for that file.

The destination is provided in response to this dialog:

Phone
The built-in phone directory can be used to recall numbers for manual
dialing, and on a computer that is equipped with a modem, it can be 
used to automatically dial a listed number.  Although a large number 
of phone numbers are more easily added to the CTSHELL.INI file with 
an editor, the dialog that is invoked by the PHONE keyword can also 
be used to add and delete entries.  As well, it is used to look up 
numbers and optionally to dial them.

The dialog invoked by this keyword looks like:

C:\WINWORD\CTSHTOC.DOTChapter One – 69 – Installation



The large box with the phone number for Computer Training is the list 
box in which will appear all your entries, sorted in alphabetical order.  
The small box above it is an edit field, in which you can type new 
entries to be added, or make changes to existing entries.  (CT can also
dial a number from the edit field.)

Doubleclicking on one of the entries in the list box will copy that 
entry to the edit field, making it easy to begin with one entry and 
modify it into others.  (Perhaps one person or company you know has 
more than one phone?)  

The controls at the right are all self-explanatory.  The pushbutton 
for [Add] refers to the contents of the edit field, and adds that new 
entry to the list box.  The pushbutton for [Delete] refers to the 
currently-selected entry in the list box, and provides a way to delete 
an existing entry.  

To keep matters simple, there is no pushbutton to do a change.  To 
change an existing entry, copy it to the edit field by doubleclicking on
it, modify the entry, then select [Add].  Finish by deleting the old 
version.

Once you have made any changes, you will want to select the 
[Save] pushbutton to commit those changes to your CTSHELL.INI file. 
If you don't, they will disappear when you exit from this dialog.  If you
have made any changes you regret, and want to reload the original 
contents of the list box, you can do that with the [Reload] pushbutton.

The [Dial] pushbutton will appear only if the configuration includes 
a value for the  ModemInit=  setting.  If that is the case, CT assumes 
that a modem is connected to the computer and that the rest of the 
settings in the [Modem] section of the CTSHELL.INI file are correct.  

You can select one of the entries in the list box, then press the 
[Dial] pushbutton to have CT dial the number for you, so long as the 
edit field is empty.  If there is an entry in the edit field, that entry will 
be dialed by default, even if one of the entries in the list box is also 
selected.  When the dialing has been completed, CT will present a 
message box that looks like this, where the instructions are self-
explanatory:

C:\WINWORD\CTSHTOC.DOTChapter One – 70 – Installation



If there is a problem opening the port to dial the phone, you'll see a 
message that tells you so:

That means you should doublecheck the settings in your  ModemInit=
string in the [OPTIONS] section of your CTSHELL.INI file.  That option 
can be changed via the Preferences dialog.

The fact that CT dials by default from the edit field makes it easy to 
enter and dial numbers without even adding them to your phone list. 
Simply type the number, which may be easier than using the phone 
in the ordinary way, and select the [Dial] pushbutton.  

CT provides the additional benefit of handling long and complicated
dialing prefixes and dialing suffixes with ease.  Such additional 
numbers may be required to access lines from a complicated private 
business exchange, or to charge phone calls to a credit card or calling
card number.  Once set up properly, dialing from within CT can be a lot
easier than dialing from the phone.

Position
CT defaults to displaying itself centered on the screen.  Its main 
window is small enough to fit well using the resolution of any monitor 
that can be used with Windows.

Those with higher-resolution monitors, such as 800x600 and above,
will have considerable choice regarding where to locate CTSHELL.  By 
grabbing the caption bar at the top of the window with the mouse 
cursor, you can hold down the left button and drag CT to the location 
you prefer.  Having done so, you can invoke the POSITION keyword by
selecting the appropriate entry from the Shells menu, and thereby 
establish a new starting point for CT whenever it starts.18

C:\WINWORD\CTSHTOC.DOTChapter One – 71 – Installation



Prefer
This one invokes the Preferences dialog that makes it easy for you to 
change many of the settings that are stored in your CTSHELL.INI file, 
without needing to load and edit that file with an ordinary editor.  All 
of the entries have been explained in detail in the earlier section that 
described the contents of the CTSHELL.INI file:

If you make changes in any of these settings and click on the [Accept]
pushbutton, those changes will immediately go into effect for the 
duration of the current session, or until you change them again.  To 
make those changes permanent by storing them in the CTSHELL.INI 
file, you must check the box that indicates you want the changes 
saved.  Then [Accept] will not only put the changes into effect, but 
will store them in CTSHELL.INI as well.

Note that some of the settings in the graphic just above were used 
as examples in other places in this manual, but are not necessarily 
used in the default configuration.

If you begin to make changes, and decide that you really need the 
original values back, you can select [Reset] to restore everything from
the settings stored in CTSHELL.INI.  Any changes made since the last 

C:\WINWORD\CTSHTOC.DOTChapter One – 72 – Installation



time your settings were saved will be lost.

Printer
Invokes your printer driver setup function.  The exact set of features 
and options that are offered by this function depends on the printer 
driver that you use.  This is probably where you can change from 
portrait to landscape mode, determine how high your graphic 
resolution should be, download font software, etc.  

This next illustration shows what you'd see if you happen to use a 
Hewlett-Packard LaserJet Series II printer, and happen to have it 
assigned to LPT1.OS2:

One other issue related to line size and fonts is your printer's 
resolution.  Often printer drivers allow a graphic resolution that is less
than the maximum possible, thereby speeding up printing of program
listings, with an acceptable decrease in print quality.  

If your CT listings take too long to print, and are of unnecessarily 
high quality, explore your options in the printer settings.  With a 
LaserJet, for example, you might want to select a resolution of 150 
dots per inch.  That will still provide crisp, readable listings, but they 
will print considerably faster than if the resolution were left at 300 
dots per inch. 

Rename
Changes the name of a file, and unlike the DOS REN command, CT will
change the name of a directory as well.  This is actually implemented 
as the same low-level DOS function that MOVEs a file, and it can be 

C:\WINWORD\CTSHTOC.DOTChapter One – 73 – Installation



used for the same purpose.  If you provide a new pathname that 
includes a different directory than the current directory, your file will 
be not only renamed, but moved to that directory as well.  

SetDate
See the description of this one in the following section on keywords 
that affect tagged files.  For this feature, the same function is used for
single or tagged files.

Shred
This keyword first destroys the contents of a file, and then deletes it.  
In this way, the file is rendered useless, even if someone later 
manages to undelete it.  Because the additional work takes extra 
time, this operation is slower than a simple DELETE, and should be 
used only when data security is an issue.
The dialog for this keyword looks almost exactly like the one for 
DELETE.

System
Displays system information.  This is the same information you can 
get from the Windows Program Manager by clicking on its 
HELP/ABOUT option.  You can find out what mode you are running, 
using what kind of processor and coprocessor (if any), and whether 
small-frame or large-frame EMS operation is in effect (if any).  This 
keyword does not display the amount of memory available, as CT 
displays that at all times anyway:

Note that the percentage of system resources shown available here 
may differ by a small amount from that shown in the About box from 

C:\WINWORD\CTSHTOC.DOTChapter One – 74 – Installation



Program Manager, due to different ways of rounding the available 
numers.  CT reports information that is obtained directly from the 
Windows kernel, and any difference should be so small as to be 
ignored.

Tagged
Displays the number and size of tagged files.  If you have tagged a 
set of files to be copied to a floppy disk, you might want to check to 
be sure that the number of bytes tagged does not exceed the number
of bytes that are free on your disk.  

Because of the way disks are sectored, you will actually need a bit 
more room than the number of bytes that are tagged, but you'll never
need less room.  Use the value provided here as an approximation:

Touch
Makes the date/timestamp of the current file reflect the current 
date/time.  This is mainly of interest to programmers, who sometimes
need to adjust a date in this way while using a MAKE type program 
maintenance utility.

Here are documented the special keyword versions that work with a 
group of tagged files, instead of just the current file.  Note that any of 
these could be used to handle a single current file (unless it were 
explicitly untagged with <F1>), but the reverse is not true:

SetDate
Changes the date/time stamp that DOS has applied to a file or a set 
of files.  This operation is easily reversed if an error is made, so only 
one version of this keyword is needed – one that will work for tagged 
files.  Whenever this keyword is used, the new date and time that the 
user provides will be applied to all the tagged files.  If you want to 
change the date/time for a single file, simply ensure that it's the only 
file that is tagged.19

C:\WINWORD\CTSHTOC.DOTChapter One – 75 – Installation



Tattrib
Changes the attributes of tagged files.  If you should want to change 
all the .EXE and .COM files in a directory to read/only status, to 
prevent unnecessary share violations with a network, you could tag 
those files, then use this keyword to give them all a read/only 
attribute. 

The dialog for this keyword looks exactly like the one that is used 
to change the attributes of a single file.

Tcopy
Copies a set of files to another location.  You must provide a directory 
as the destination.  CT does not support file concatenation (combining
several files into one) by copying multiple files to a single file20.  
However, CT does support multiple destinations for a multiple file 
copy.  Put another way, you can tag an assortment of files that you 
want to copy to two places, then when the dialog asks for the 
destination(s), you can provide both.  When the first series of copies 
has been made, the second will be done automatically.

Notice that there is a check box to allow you to specify an update 
only.  If you do so, you are assured that only older files are 
overwritten by the ones you're copying now.  In this way, you can 
safely copy a set of documents from a directory on your workstation 
to a directory on a server, knowing that you are doing just an update–
that anything newer on the server remains unchanged.

If you do an update from location A to location B, then do an 
update from location B to location A, you will end up with two 
identical directories, each of which contains the same set of the 
newest files from both.

This feature is really convenient if you have a main directory on a 
server for the storage of document files or program source files.  You 
can work with copies of those files in a local directory, and easily 

C:\WINWORD\CTSHTOC.DOTChapter One – 76 – Installation



update the server with your revisions, without taking a chance that 
you'll accidentally overwrite any newer files. 

Tdelete
Deletes a set of tagged files.  You are prompted for confirmation 
before the deletion is accomplished:

Tmove
Moves a set of tagged files to another location.  Just as with the single
file move keyword, these files are not physically copied to their new 
location, just their directory entries are changed.

Tshred
Shreds a set of tagged files, first destroying the data in the file, then 
deleting it.  In that way, its contents are rendered useless, even if 
someone later manages to undelete the file.  This operation takes 
longer than simply deleting the files, so it should be used when data 
security is an issue.

Ttouch
Changes the date/timestamp of all the tagged files to the current 
date/time.  Used mainly by programmers who use a MAKE type 
program maintenance utility.

These keywords have been provided so that you can have complete 
control over how your menus are crafted, rather than having CT contain 
a fixed menu that determines how you must access these features.  For 
example, one user might think it makes good sense to have COPY and 
MOVE in a menu named Utils, whereas someone else might think they 
belong in one named Claudia.  CT keywords are not case-sensitive: 
uppercase and lowercase work the same way.

C:\WINWORD\CTSHTOC.DOTChapter One – 77 – Installation



(This page intentionally left unused...)

C:\WINWORD\CTSHTOC.DOTChapter One – 78 – Installation



Chapter 7 Special 
Field Characters

Many times a command should contain the name of the current file, a 
list of all the tagged files, or other additional information.  CT provides a 
powerful and easy way to generate complete commands, that doesn't 
require any programming knowledge or experience.  

Object-Oriented Substitution
Sometimes it is convenient to refer to an environment variable within 
the directory path field, so that the command doesn't need to be 
changed just because the directory has been changed.  There are a 
number of special field characters that allow you to insert such 
information into a command in a convenient object-oriented manner.

The term "object-oriented" here means that you do not need to 
write special code using a programming language, or call a function 
or procedure to do these things.  Certain objects (characters like ! and
#) that you place in the command automatically take on values that 
represent file names or other information.

Here is a listing of all the special field characters that may be used 
in CT pop-up menu entries.  Although any of them may be used in any
of the fields except the entry name field and the keyword field, you 
will find that certain ones are likely to be used in the directory path 
field, and other ones are more likely to be of use in the executable 
path and switches fields.

In each of the following examples, a DOS command line is shown, 
to illustrate how the command would look if it were entered normally 
at a DOS prompt.  After that, the CTSHELL.INI entry is shown that 
would produce that command, substituting current information for the
CT special characters:  

!
The exclamation mark translates into the current file name.  Here's an

C:\WINWORD\CTSHTOC.DOTChapter One – 79 – Installation



example that would use the Windows NOTEPAD.EXE editor to edit the 
current file:

Command line:   notepad.exe filename.ext

CT entry: {&Edit} {} {notepad.exe} {!} {}

#
The pound sign translates into a list of files that are tagged, or as 
many of them as can be squeezed into the DOS limit of 127 
characters on a command line.  You might like to add all of the tagged
files to an archive file named ARCNAME.LZH by using the LHArc 
program:21

Command line: lha a arcname file1 file2 file3 ...

CT entry: {&LHArc Add} {} {lha.exe} {a arcname #} {} 

@
The commercial at-sign translates to the root filename of the current 
file, without any extension.  For example, if the current file were 
named FOO.EXE, the the {@} in a command would become FOO.  

There aren't many cases when the root filename is needed, and 
programmers will probably find this one more useful than most other 
users.  For example, if the current filename is FOO.EXE, the 
expression {@.C} would translate to FOO.C, and the expression 
{@.EXE} would translate to FOO.EXE.

If you do store all your .PIF files in a special subdirectory, you can 
create a menu entry that will allow you to edit the PIF file for any .EXE
that happens to be the current file:

Command line: pifedit.exe \pif\filename.pif

CT entry: {&PIFedit an EXE} {} {pifedit.exe} {\pif\@.pif} {} 

?argument?
A pair of question marks surrounds the prompt you want CT to display 
when it asks you for a string of characters to put in its place.  This is 
how you can supply variable arguments at the time an entry is 
executed.  

For example, the LHArc command shown earlier will always create 
an archive called ARCNAME.LZH, because the name ARCNAME has 
been hard coded, or stated explicitly, in the command.  It will require 
that the same archive be created or updated each time this pop-up 
entry is executed, although the currently-tagged file names may be 
different each time.  Compare that to this example, where CT will ask 
the user for an archive name each time the command is executed:

C:\WINWORD\CTSHTOC.DOTChapter One – 80 – Installation



Command line: lha a arcname file1 file2 file3 ...

CT entry: {&LHArc Add} {} {lha.exe} {a ?Archive Name? #} {}

When this pop-up entry is executed, CT will display a dialog box 
identifying the needed argument as "Archive Name" and asking the 
user to supply a name.  That answer will be inserted into the 
command line, replacing the ?Archive Name? characters:

Although it is usually an error to use the ! or the # special characters 
more than one time in a command, you may want to use several ?? 
pairs, to ask for multiple arguments for a command.  Since each 
prompt specifies what information is needed, the user won't get them
confused.  

And since it does no harm to enter a blank answer, it is even 
practical to use a prompt for those times when you might, or might 
not, need input.  If none is needed for a particular execution of the 
command, the prompt can be ignored by clicking on [Cancel] button 
or simply entering a blank answer.

%variable%
A pair of percent signs will cause CT to insert the value for a named 
environment variable into the command.  This is consistent with the 
way environment variables can be accessed within a batch file, and 
the topic of environment variables is explained fully in your DOS 
manual.  

Briefly, you set environment variables to a given value with a SET 
command like this:

SET ENVAR=contents of variable

Although that can be done at a DOS prompt, it is usually done in an 
AUTOEXEC.BAT file instead, so that your environment variables are 
established correctly each time you start your computer.  Programs 
can obtain various kinds of information from environment variables, 
and the documentation for those programs will tell you how to set 
them, if any are needed.  

It's very common for a language compiler to require an 
environment variable named LIB to contain the directory name where 

C:\WINWORD\CTSHTOC.DOTChapter One – 81 – Installation



the compiler's runtime libraries–files that are used in creating 
programs–are stored.  Many programs use the TEMP environment 
variable to tell them the best place to create a temporary file.

When used in a CT pop-up entry, the two percent signs and the 
variable name that is between them are replaced by the value that 
DOS associates with that environment variable.
For example, a programmer might want an easy way to insert object 
modules that are being created (parts of programs) into a library 
named FOO.LIB, and which is located in the directory pointed to by 
the LIB environment variable.  It is assumed that the current file will 
be an object module, a file ending with the extension .OBJ.  This 
example assumes that the environment variable currently contains 
the value C:\LIB and that the current file name is BAR.OBJ:

Command line: lib C:\LIB\FOO +BAR.OBJ;

CT entry: {Add &Module} {} {lib} {%LIB%\FOO +!;} {}

A second example shows how you might use an environment variable
in the directory path field, one of the rare uses of CT special 
characters in that field.  Here a command is created that will change 
the working directory to the one in which a programmer's header files
are stored, and pointed to by the environment variable called 
INCLUDE:

CT entry: {Change to &Headers} {%INCLUDE%} {} {} {}

Since there is no command to execute in this case, the directory 
change will be permanent (although you can still return to the original
starting directory by pressing <F6>).  

Another example shows how you might use the same environment 
variable to edit your PRG.H file, which is assumed to be located in 
that directory, using the QEdit editor:

Command line: q.exe C:\MSC600A\INCLUDE\PRG.H

CT entry: {Edit PRG.H} {} {q.exe} {%INCLUDE%\PRG.H} {}

Finally, there's even a special CT pseudo-environment-variable called 
WINDIR that you can use in your command entries wherever you 
need to refer to the Windows "home" directory.  Although such an 
environment variable is never set at DOS (there's no need for it–
Windows already knows where its directory is, and so do Windows 
programs), it is used in these entries in the same way that an 
environment variable would be, so it follows the same syntax.  

Thus, the sample menu entry that edits your Windows SYSTEM.INI 
file using NOTEPAD.EXE is always able to find it because of the 
%WINDIR% "environment variable" that CT replaces with the actual 
directory name.  It looks like this:

C:\WINWORD\CTSHTOC.DOTChapter One – 82 – Installation



{SYSTEM.INI File} {} {notepad.exe} {%WINDIR%\system.ini} {}

As in the case of the ?? special characters, it does no harm to use 
more than one environment variable in a command.  They may even 
be used in more than one field in the same command, if appropriate.

1 They make that change by replacing PROGMAN.EXE with FILEMAN.EXE in a  SHELL=  entry near the beginning 
of their SYSTEM.INI file, in the Windows directory.
2 Of course, experienced users will understand that there are some programs that simply won't run in Windows at all, in 
their current versions, perhaps due to memory management conflicts or conventional memory requirements.  CT-Shell 
is subject to the same limitations that Windows itself is, and it can't work any special magic with these hard cases.  
However, it's safe to say that if you've run it from Windows, you can almost certainly run it from CT-Shell.

Incidentally, CT-Shell has been designed to require as little memory as possible when it runs.  Although the 
executable file is more than 85K in size, you'll find that the program actually requires about 35K or so to run, 
depending partly on your system.
3 Subject to memory limitations, of course.  Windows has to RUN all these programs!
4 Be advised that the dialog box you use to enter your file spec will contain a default of   *.  , to which you can simply 
add an extension, if you want.  To keep that original part of the prompt from disappearing when you type your first 
letter, you need to click the mouse one time where you intend to type, or press one of the arrow keys on the keyboard.  
The reverse-image prompt will change to a normal image, letting you add to it rather than replacing it with your input.

It is probably obvious by now, but if you want to specify a file spec that does not begin with   *.  , you can simply 
begin typing, and what you enter will replace that default prompt. 
5 Windows traps the <F10> key, by the way, and uses it to access the menu, duplicating what the <Alt> key is usually 
used for.  That is because of IBM mainframe terminals that don't have an <Alt> key.  In an attempt to standardize an 
interface that can be used across many diverse systems, <F10> was chosen to be the menu access key that exists on all 
terminals.

Still, anything you assign to this <F10> key can be executed by clicking the mouse on the screen representation of 
the key, as you can with all the others.  Since most users will probably access these commands with the mouse, most of 
you probably won't notice – or care – that pressing the <F10> key itself accesses the menus.
6 The reason full seconds are not stored is an interesting matter of simply not enough room in the directory entry.  The 
creation time is stored in a single 16-bit integer in the DOS directory on the disk.  The Hours field requires 5 bits, to 
store numbers as high as 23.  The Minutes field requires 6 bits, as it must store numbers as high as 59, and that leaves 
only 5 bits left for the Seconds field.  The best resolution available (that can be stored in 5 bits) is seconds divided by 2,
and that's exactly what DOS does.  
7 Sometimes network administrators will assign the read/only attribute to executable files that are to be shared by 
several users.  If such a file is accessed by more than one user at a time, having the read/only attribute will prevent the 
DOS SHARE program from complaining about a share violation.  Since the files can't be modified by anyone, SHARE 
is content to allow multiple users to access it at the same time.
8 Sometimes hidden files are used to provide copy protection for a program:  files you can't see and don't know are there
are required for the application to run.  Since it displays all file attributes, and you can easily see that a file has this 
attribute, CT-Shell displays all hidden files.   

CT-Shell, by the way, is not copy protected in any way.  Computer Training respects the honesty of its customers, 
and doesn't want to make their lives any more complicated than they may already be!
9 Not without using a special command to delete the directory.  DOS provides an RD (remove directory) command, but 
it won't remove a directory that has any files in it, and in any case, the DEL command doesn't work with directories at 
all.  CT-Shell has a DELDIR keyword that is documented in the CTSHELL.INI Reference section, that can be used to 
delete an entire directory and everything it contains.
10 Because that's really the only purpose of this attribute, a little more explanation seems in order.  A differential backup 
is one that copies only those files which have been changed since the last full backup, which cleared this attribute on all
the files it copied.  A differential backup does not clear the archive attribute, so you always have just two backup sets – 
the full set and the differential set.  When you do a restore, there are never more than these two backup sets to replace.

Another type of backup, an incremental backup, differs by clearing the archive attribute whenever files are saved.  
Thus, with an incremental backup you create a new backup set every time you do a backup, and it always contains the 
files that were changed since the last incremental backup.  When you do a restore, you may be required to restore a 
large number of backup sets.  

11 If you honestly want to use an ordinary DOS command like DIR from the CT-Shell command line or from a menu 
entry, you'll want to make a PIF file for that command that invokes your command processor and provides any options 

C:\WINWORD\CTSHTOC.DOTChapter One – 83 – Installation



that you need.  For example, if you run any command from within CT-Shell that produces screen output that you want 
to look at before returning, you'll want to be sure that the PIF file for that command does not have the option checked to
close the window automatically when the program is finished.

The program to run will be your command processor, and you'll probably need to include a /c switch on its 
command line, otherwise you'll have started a DOS session with it.  (The /c switch tells it you want to return 
immediately after executing the command.)  Here's how you might handle this in a PIF file that uses 
COMMAND.COM to provide a CHKDSK command:

COMMAND.COM /c chkdsk

By the way, with current versions of DOS, it is very unsafe to use the /f switch with CHKDSK, when you're running 
under Windows (to "fix" disk errors).  The reason is because you may have a number of files open for programs that 
you have running, and CHKDSK doesn't understand that.  It will think the files are lost clusters, and will gather them 
together for deletion.  Future versions of DOS will undoubtedly contain CHKDSK commands that can make this 
distinction and will be able to be used safely under Windows, but be sure before you use it!
12 These extensions are automatically installed in your WIN.INI file by Windows during its setup process.  You can also 
edit that section of your WIN.INI file to add other extensions that would be useful to you.  Your Windows 
documentation has more information about the [Extensions] section of your WIN.INI file, but here are some examples 
that may be enough for you:

C=QFULL.PIF ^.C
SLC=TELIX S^.SLC

The first example shows what CT-Shell should do if you doubleclick a file name that ends in .C (a C language program 
source file).  This implementation will run the QEdit editor using the Program Information File named QFULL.PIF, 
and pass it the current file name (^) and the extension .C as arguments.

The second example shows a way to start up the Telix communication program and pass it the name of a compiled 
script to run.  Telix's command line may include an optional letter "S" which is followed by the name of a compiled 
script.  Those scripts end with the extension .SLC.  

Any such extensions that you set up in your WIN.INI file can be used both by the Windows File Manager and by 
CT-Shell.  Be creative with them, and you can save a great deal of work.  You can doubleclick on a database file and 
automatically start your database manager.  You can doubleclick on a phone directory file and automatically start the 
communication program that uses it.  The possibilities are nearly endless.  This is a VERY powerful feature, and one 
that experienced users should not let pass by without experimenting a bit!
13 A modem is a device that allows a computer to talk to another computer over ordinary phone lines.  In this case, it 
isn't being used for that, but just to dial a phone number for a voice call.
14 The names used in menu entries may be any practical length.  Technically, CT-Shell limits them to 127 characters, but
few will find any reason to use names that large.
15 The current file is tagged if it is blackened.  That's almost always the case, if you've clicked on any files in the list.  
The only way for the current file not to be tagged, is if you have used one of the function keys to untag it, either F1–
Toggle Tag or F3–Untag All.
16 If you are using a third-party replacement command processor, be sure that you have followed the manufacturer's 
directions regarding setting your COMSPEC variable.  If you do not set this explicitly to match your substitute 
processor, DOS will set COMSPEC to COMMAND.COM in the root directory of the boot disk, as a default.
17 The UNDELETE command for DOS 5.0, for example, may not find a file that was deleted by CT-Shell.  You may be 
able to recover a deleted file by using that or another utility, but there is no guarantee at all.  It is best to assume that 
once CT-Shell has deleted a file, it's going to stay deleted, and to be very careful with this keyword.  The same is true of
the DELETE keyword documented next, and the DEL command when used at the CT-Shell command line.
18 If you ever want to reestablish the central position, go into your CTSHELL.INI file and in the [Options] section, 
delete the entries for  StartX=  and  StartY=  .  The first of those determines the starting position of the upper left corner
of the CT main window along the X-axis, that is, horizontally.  The second determines the starting position along the Y-
axis, or vertically.
19 Programmers, in particular, enjoy this feature, because it allows them to follow the convention in which all the files 
for the release of a software package have the same datestamp, and have a timestamp that specifies the version number. 
Thus, a timestamp of 01:00 would mean the files are part of version 1.00, and a timestamp of 2:34 would make it 
version 2.34.

When a file is modified, DOS changes the date and time for that file, so you can easily determine later whether any 
of the release files has been modified in any way.
20 DOS command processors like COMMAND.COM provide that capability.  It is a feature that most people use so 
seldom, that a design decision was made to leave it out.  

If you ever need to perform this unusual operation, you can easily select the Default COMSPEC entry in the Shells 

C:\WINWORD\CTSHTOC.DOTChapter One – 84 – Installation



menu, and start a copy of your default command processor.  Then issue a copy command that looks like this:   COPY  
file1+file2+file3+file4  file5 .  That will create one file5 that contains all the text from the first four files.  

If you ever need to do the same with non-text files, be sure to use the /B switch to force a binary mode copy.
21 LHArc is a popular freeware data compression program that is available from many sources.   It creates archives, or 
libraries, of files that have been compressed much smaller than their original size.  It makes an excellent example for 
these special characters, because it gets a lot of information from its command line when it is run.

C:\WINWORD\CTSHTOC.DOTChapter One – 85 – Installation


