IDBTOOLS.DLL

ver. 1.1

IdbTools routines for Visual Basic

AnsiToAscii
AsciiToAnsi
CRLF

Decrypt
Decrypt7
DecryptZ
Encrypt
Encrypt7
EncryptZ

Find

FullPath
IdbToolsVersion
IdbTrace
IdbTraceStr
IniFileGetString
IniFilePutString
LicenseGetCode
LicenseldbTools
LicenseProgram
Modulus10
Modulus10Calc
Modulus10Valid
Modulus11
Modulus11Calc
Modulus11Valid
NumO

Pick

PickWord
PickWords
Place

Strip

Subst

SubstAll
SwapChrs
SwapDate
SwapStr
SysInfo
SysInfoNum

Translate from Windows to DOS character set
Translate from DOS to Windows character set
Manipulate CR/LF in strings, remove/insert

Recover string encrypted by Encrypt

Recover string encrypted by Encrypt7

Recover string encrypted by EncryptZ

Encrypt a string, make unreadable, linked to a key
As Encrypt, but, returns only 7-bit characters

As Encrypt, but returns only alphanumeric (A-Z,0-9)
Find a substring within a string from a given position
Return full path for given file pattern

Get the current version number of IdbTools

Debug output to DBWIN.EXE-window with newline

Debug output to DBWIN.EXE-window without newline
Read data from a given address in an INI-file

Write data to a given address in an INI-file

For the developers internal use, make license code for applications
Check for legal license code for IdbTools users

Check for legal license code for applications

Append a CDV (Control Digit Verifier) to number, 10 method
Return the CDV for a number, 10 method

Check CDV in number and return false / true, 10 method
Append a CDV (Control Digit Verifier) to number, 11 method
Return the CDV for a number, 11 method

Check CDV in number and return false / true, 11 method
Translate from number to string with leading zeros

Pick a substring from string

Pick a word from a string

Pick more then one word from a string

Insert a substring into an other string

Remove a given character from a string

Substitute one substring with an other within a string
Substitute all matching substrings within a string

Exchange two characters within a string.

Exchange positions in a datestring.

Exchange positions in a string according to a formatted mask
Return system information as string.

Return system information as integer

Include IDBTOOLS.BAS in your projects

See also IDBTABLE.WRI for description of table functions in IdbTools.

1995 © Idb Micro Adept AS, Bergen, Norway

IDBTOOLS 1.1 for Visual Basic Page 2

Function AnsiToAscii

Translate string from Windows to DOS character set.

Usage:
Result$ = AnsiToAscii (StringIn$)

Example:
' We want to write some text containg special characters to a DOS file:

Open "scan-dos.txt" For Output As #1

Write #1, "In Norway and Denmark, we use some special characters:"
Write #1, AnsiToAscii (" [E]=[AE], [@]=[OE] and [A]l=[AA]™)
Write #1, AnsiToAscii (" [®]=[ae], [w]l=[oce] and [&]l=[aa]l")
Write #1, AnsiToAscii ("In Sweden, they use [A] instead of [E],"™)
Write #1, AnsiToAscii (" [a]l=T[e], [0]1=[9] and [o]l=[o].")
Close #1

' From DOS, we can look at the file we Jjust made:

C:\IDBTOOLS\TEST> type scan-dos.txt

In Norway and Denmark, we use some special characters:
[E]=[AE], [Z]=[OCE] and [A]=[AA]
[2]=[ae], [@]l=[ce] and [&]=[aa]

In Sweden, they use [A] instead of [E],
[a]=[=], [O]=[2] and [8]=[2].

' If we had not called AnsiToAscii, the result would have looked like this:
In Norway and Denmark, we use some special characters:
[£]=[AE], [D]=[CE] and EA]=[AA]
[pl=[ae], [°]=[ce] and [a]=[aa]
In Sweden, they use [-] instead of [£E],
[a]=[u], [O]=[@] and [+]=[°].
' The message would have lost its meaning because
' of incompatible character sets.

Function AsciiToAnsi

Translate string from DOS to Windows character set.

Usage:
Result$ = AsciiToAnsi (StringIn$)

Example:
' Read a Dos file to a Windows listbox after proper translation:

Open "DosFil.Txt" For Input As #1
Do While (Not EOF (1))
Line Input #1, dostexts$
ListBox.AddItem AsciiToAnsi (dostext$)
Loop
Close #1

IDBTOOLS 1.1 for Visual Basic Page 3

Function CRLF

Replace the control character pairs CR (Carrriage Return, ascii=13) and LF (Line Feed, ascii=10) with a given
character (represented by its ascii value), or the other way around (when value is negative).

This function can be used for translating text files between DOS and UNIX.
The function can be very useful when reading and writing MultiLine TextBoxes in Windows.

Usage:
Result$ = CRLF(StringIn$, asciiValue$%)

If asciiValue% is positive, then all CR/LF character pairs in StringIn$ will be replaced with the
character represented by asciiValue% and returned in ResultS$.

When asciiValue$ is negative, all the occurences of Chr$ (-asciivValue$%) in StringIn$ will be
replaced with CR/LF and returned in Result$.

Examples:

' Simple trix for adding several lines to a MultilLine TextBox:
MTextl = CRLF("Linel@Line2Q@Line3", -Asc("@")) ' Replace "@" with CR/LF

' Read Multiline TextBox and convert linefeeds to space:
Textl = CRLF (MTextl, Asc("™ ")) ' -> "Linel Line2 Line3"

' Convert file from UNIX format to DOS format (VERY FAST) :
Sub UnixToDos (ByVal FromFile$, ByVal ToFile$)
BytesToRead& = FileLen (FromFile$)
If FileLength(ToFile$) > 0 Then Kill (ToFile$)' see ITabDir sample
Open FromFile$ For Input As #1
Open ToFile$ For Binary Access Write As #2
Const maxBuff& = 30000 ' Read up to 30000 bytes each time
Do While BytesToRead& > 0
BuffSize& = BytesToReadé&
If BuffSize& > maxBuff& Then BuffSize& = maxBuffé
buffer$ = CRLF (Input$ (BuffSize&, #1), -10) ' convert LF to CR/LF
Put #2, , buffer$
BytesToRead& = BytesToRead& - BuffSizes
Loop
Close #1
Close #2
End Sub

IDBTOOLS 1.1 for Visual Basic Page 4

Function Decrypt*

There are 3 sets of this function. The syntax is equal for all of them. Decryption is the reverse operation to
encryption.

Type: Decrypt Decrypt a string encrypted by Encrypt
Decrypt7 Decrypt a string encrypted by Encrypt7
DecryptZ Decrypt a string encrypted by EncryptZ

Usage:
Result$ = Decrypt (EncryptedText$, EncryptionKey$)

Example:

'Crypt$ => "<'srogja’agkwdadfkae5g0+wk4r935283592+r gawasqgg"
Secretkey$="MyCode"

DecryptedString$ = Decrypt (Crypt$, secretkey$)

'=> DecryptedString$ = "This is the secret text which shall be encrypted"

Function Encrypt*

There are 3 sets of this function. The syntax is equal for all of them.

Type: EnCrypt Return 8-bit characters without control characters
Encrypt7 Return only characters from 7 bit ascii values
EncryptZ Return only folded letters (A .. Z) and/or digits (0 .. 9).

Usage:
Result$ = Encrypt (TextIn$, EncryptionKey$)

Example:

TextIn$= "This is the secret text which shall be encrypted"
Secretkey$="MyCode"

Crypt$ = Encrypt (TextIn$, SecretKey$)

Function Find

Search for a substring within an other string from the given position. The position of the found substring is
returned, else 0. (In nature equal to the function InStr in Basic).

Usage:

Result% = Find(subString$, inString$, Pos%)
Example:

Instring$ = "12345@QR67890"

Pos%$ = Find("5Q@", Instring$, 1) ' Pos => 5
Pos%$ = Find("@", Instring$, 1) ' Pos => 6
Pos% = Find("@", Instring$, 6) ' Pos => 7

IDBTOOLS 1.1 for Visual Basic Page 5

Function FullPath

Return full path for a file pattern. The full path will include drive and all directory names for the given pattern.

Usage:

Result$ = FullPath(filePattern$)

Examples:

' Assume current directory is "C:\IDBTOOLS\SAMPLE\TEST":

path$ = FullPath ("*.BAS") ' => "C:\IDBTOOLS\SAMPLE\TEST*.BAS"
path$ = FullPath("..\1lib*.DLL") ' => "C:\IDBTOOLS\SAMPLE\LIB*.DLL"
path$ = FullPath("..\IDBT*.WRI") ' -=> "C:\IDBTOOLS\SAMPLE\IDBT*.WRI"
path$ = FullPath("..\..*.*") ' => "C:\IDBTOOLS*.*"

Function IdbToolsVersion

Get the version-number of IDBTOOLS.DLL.

Usage:

Result$ = IdbToolsVersion ()

Example:

VersionText$ = "IdbTools ver: " & IdbToolsVersion ()

Sub IdbTrace

Output a line of text followed by a linefeed to the debug output device. The debug output device can be a
secondary monochrome screen, a screen connected to a Com-port or a window on the screen. You have to
run a special program for activating the debug device. A suitable program for this purpose is DBWIN.EXE.

Usage:
IdbTrace debugText$

This routine together with IdbTraceStr is a good alternative to the standard debug in Visual Basic.
It can be used for dumping contents of variables, tracing events etc.

Example:
IdbTrace "Click event: Mouse button=" & Button & ", X=" & X & ", Y=" & Y
' output: Click event: Mouse button=1, X=12, Y=43

Sub IdbTraceStr

Output a text string to the debug output device. See also IdbTrace.

Usage:
IdbTraceStr debugTexts$

Example:

IdbTraceStr "Click event: Mouse button="
IdbTraceStr Button

IdbTraceStr ", X=" & X

IdbTrace ", Y=" & Y ' terminate line.

' output: Click event: Mouse button=2, X=122, ¥Y=143

IDBTOOLS 1.1 for Visual Basic Page 6

Function IniFileGetString

Read data from an INI-file. Filename, section and a profile name is given and the function returns a string
containing the profile string. If the profile name do not exist, the return value is an empty string. If the filename
is given without any path, the system will start looking for the file in the Windows directory.

Usage:
Result$ = IniFileGetString (FileName$, Section$, Name$)

The section name must be given without brackets,

Wrong => "[SectionName]"
Correct => "SectionName"

Examples:
StartProg$ = IniFileGetString ("SYSTEM.INI", "boot", "shell")
' Returns perhaps "progman.exe"

String$ = IniFileGetString ("WIN.INI", "MS user info", "DefName")
' Return information about the user from "WIN.INI"

Function IniFilePutString

Write data to an INI-file. Given the filename, section, name and the data to be written.
If the filename is given without any path, the system will start looking for the file in the Windows directory .

The session name must be given without brackets. The function returns True(-1) if the call was successful, else
False(0).

Usage:
Result% = IniFilePutString(FileName$, Section$, Name$, Data$)

Examples:
Result%$=IniFilePutString ("MYPROG.INI", "Licence", "Name", "John Doe")

' Will write within the file "\WINDOWS\MYPROG.INI":

[Licence]
Name = John Doe

OK%=IniFilePutString ("WIN.INI", "Desktop", "Wallpaper", "c:\pic\my.bmp")
' This statement will change the wallpaper, taking effect from the next startup of Windows.

IDBTOOLS 1.1 for Visual Basic Page 7

Function LicenseGetCode

This function is meant to be used in a stand-alone program and the purpose is to generate licence code for
applications. See function LicenceProgram.

Usage:
Result$ = LicenseGetCode (Name$, Key$)

Example:
Code$ = LicenseGetCode ("Douglas Moore", "Key key key 1")

Function LicenseldbTools

The buyer of this product will receive a code from Idb Micro Adept AS. This will make him/her a
registered user of the product and he/she can use the product freely in his/her system.

The table functions are protected by a code for those who have not bought the product. In Visual Basic runmode
the protection is in a mild form. When an exefile is made the protection becomes more aggressive and will more
often remind the user of the lack of payment. Despite this, the user can fully test the product or use the 'free to
use functions’ in the package.

Usage:
Result% = LicenselIdbTools (Name$, Code$)

Result% will contain a True(-1) if a legal code is given, else False(0).

Example:
Status% = LicenseIdbTools ("Douglas Moore", "TT4LBT")

Function LicenseProgram

This function must be placed in the start-form of your application. If the code and the key is matching,. the
function returns True(-1) else False(0). See also function LicenseGetCode.

Usage:
Result%

LicenseProgram(CustomerName$, Code$, Key$)

Example:
Status% = LicenseProgram("Smart Software Ltd", "ABXY12", "Key Key Key 1")

IDBTOOLS 1.1 for Visual Basic Page 8

Function Modulus10

Append a Control Digit Verifier to the input string based on the modulus 10 formula . Other characters then
digits in the StrIn$ are ignored during calculation.

Usage:

Result$ = ModuluslO (StrIn$)

Example:

CustNum$ = Modulusl10("95101201230"™) ' CustNum$ = "951012012302"

Function Modulusi1

Append a Control Digit Verifier to the input string based on the modulus 11 formula. Other characters then digits
in the StrIn$ are ignored during calculation.

Usage:

Result$ = Modulusll (StrIn$)

Example:

Account$ = Modulusll ("9521.05.6932") ' Account$ = "9521.05.69325"

Function Modulus10Calc

The function returns a control digit based on CDV modulus 10 calculation over the StrInS$.

Usage:

Result$ = ModuluslOCalc (StrIn$)

Example:

CDS$ = Modulusl0Calc("95101201230"™) ' CDS$ = "2"

Function Modulus11Calc

The function returns a control digit based on CDV modulus 11 calculation over the StrIn$.

Usage:

Result$ = ModulusllCalc (StrIn$S)

Example:

CD$ = ModulusllCalc("9521.05.6932") ' CDS = "5"

Function Modulus10Valid

The function returns True(-1) if the last character of StrIn$ is a valid CDV based on the modulus 10 formula, else
it returns False(0).

Usage:
Result% = ModuluslOValid(StrIn$)

Example:
If Modulusl0Valid("9521.05.69325") Then Status="OK"

IDBTOOLS 1.1 for Visual Basic Page 9

Function Modulus11Valid

The function returns True(-1) if the last character of StrIn$ is a valid CDV based on the modulus 11 formula, else
it returns False(0).

Usage:
Result% = ModulusllValid(StrIn$)

Example:
If Not ModulusllValid("9521.05.69328") Then Status="ERROR"

Function Num(

Convert a positive number to a string with leading zeros.
The number of digits must be given in the call, max 9.

Usage:

Result$ = NumO (Numberé&, Digits$%)

Example:

String$ = NumO (1, 3) => "Q01"

String$ = NumO(1234,9) => "000001234", max number of digits.
String$ = NumO (1234,10) => "1234"

Function Pick

Pick one or more characters from a text string. The position of the first character, and the wanted number of
characters from that position must be given in the call. The function returns a string.

Usage:
Result$ = Pick(StringIn$, FromPos%, Length%)

Requiring more characters than the input sting contains, causes the function to fill the surplus characters with
blanks.

If the wanted number of characters is set to 0, the function will return rest of the string from the given position.
If the position is given as a negative number, the start position will be relative to the end of the string. -1 is the
last position in the string, -2 is the last but one, and so on. 0 as position will be interpreted as the position after

the last character.

If the number wanted is given as a negative number, the routine will pick characters from the left of the given
position, inclusive.

Example:
String$ ="Example of the Pick function in use"
Result$ = Pick(String$,1,8) 'Result$ => "Example"

Result$ = Pick(String$,32,11) 'Result$ => " use "

Result$ = Pick(String$, 32,0) 'Result$ => " use"
Result$ =
Result$ = Pick(String$,8,-6) 'Result$ => "ample "

Result$ = Pick(String$,-5,-2) 'Result$ => "in"

(
(
Pick (String$,-10,8) 'Result$ => "ion in u"
(
(
Result$ = Pick(String$,0,-3) 'Result$ => "se "

IDBTOOLS 1.1 for Visual Basic Page 10

Function PickWord

Pick a word from a string. Declaring the position number of the wanted word and the delimiter, the function
returns the wanted word as a string.

Usage:
Result$ = PickWord(StringIn$, WordNumber$%, Delimiter$%)

The delimiter must be given as an ascii value. For the purpose of increasing the readability the VB function
"4sc()" can be used. Given semicolon as delimiter: Asc (";"). Having a do-while-loop where PickWord will be
called many times, it would be profitable to initialize a variable outside the loop: Semicolon% = Asc (";")
Ignoring leading delimiters and /or deal with them as one connected delimiter, the negative ascii value for the
delimiter should be given: Semicolon% = -Asc(";")

Example:

text$ = "Here;is;an;;example;using PickWord" 'Result

Result$ = PickWord(text$S, 3, Asc(";™)) '"an"

Result$ = PickWord(text$, 5, Asc(";™)) '"example"
Result$ = PickWord(text$, 6, 59) '""using PickWord"
Result$ = PickWord(text$, 5, -59) '""using PickWord"
Result$ = PickWord(text$, 2, 32) '""PickWord"
Result$ = PickWord(text$, 2, Asc("e")) thpn

Function PickWords

Pick more than one word from a string. If you only need one word, you ought to use PickWord.

Usage:
Result$ = PickWords (StringIn$, WordNumber%, NumWanted$%, Delimiter%)

Given the word number for the first word in the string and the number of wanted words, the function returns a
string.

In order to get all words from a given wordnumber, 0 as number must be used.
The delimiter must be given as an ascii value. For the purpose of increasing the readability the VB function
"4sc()" can be used. Given semicolon as delimiter: Asc (";"). Having a do-while-loop where PickWord will be

called many times, it would be profitable to initialize a variable outside the loop: Semicolon% = Asc (";")

Ignoring leading delimiters and /or deal with them as one connected delimiter, the negative ascii value for the
delimiter should be given: Semicolon% = -Asc(";")

Example:
text$ = ";Here;is;an;;example;using PickWords" 'Result
Result$ = PickWords (text$, 3, 2, Asc(";")) '"is;an"
Result$ = PickWords (text$, 3, 3, Asc(";")) '"is;an"
Result$ = PickWords (text$, 4, 3, Asc(";")) '"an; ;example"
Result$ = PickWords (text$, 3, 2,-Asc(";")) '"an;example"
Result$ = PickWords (text$, 2, 0, Asc(" ")) '"PickWords"

]

' note the leading ";" in text$

IDBTOOLS 1.1 for Visual Basic Page 11

Function Place

Superimpose a string on a copy of "tostring" in the given position and return the result as a string.

If one want the whole "fromstring" one can use 0 as the number of wanted characters, else use the actual number
of wanted characters picked from "fromstring". If the given number is greater then the length of the "fromstring",
the function will fill the surplus number by space.

Usage:

Re;ilt$ = Place (FromString$, ToString$, Pos%, Length%)

Example:

tostring$ = "MEAKKAAA KN 'Result

Result$ = Place ("TEST", tostring$, 4, 0) VAKX TESTH*x"
Result$ = Place (" TEST", tostring$, 3, 6) PWAkKx TEST **"
Result$ = Place ("TEST", tostring$, 1, 2) TITRE * &k xxkkokn
Result$ = Place (NumO (123,6), tostring$, 7, 0) TMxEkxEAFX(Q001L23"

Function Strip

Remove a given charcter, given as an ascii value, from a string.

Usage:

Result$ = Strip(StringIn$, AsciiValue%, Type$)

Type:

STRIP L Remove leading delimiters, (as LTRIM i Basic)

STRIP_ T Remove trailing delmiters, (as RTRIM i Basic)

STRIP LT Remove leading and trailing delmiters, (as TRIM 1 Basic)

STRIP ALL Remove all delmiters

Example:

Strll’lg$ = "***T*E*S*T***"

Result$ = Strip(String$, Asc("*"),STRIP L) THTXEXGHTHRA A
Result$ = Strip(String$, Asc("*"),STRIP T) TNk kR THRE R GHTN
Result$ = Strip(String$, Asc("*"),STRIP LT) 'WTXEXS*T"
Result$ = Strip(String$, Asc("*"),STRIP ALL) '"TEST"

If one want to remove repeating delimiters, the operator PickWaords can be suitable.
String$ = ";;This;;is;an;;;example;using;;PickWords; ;"
Result$ = PickWord(String$, 1, 0, -Asc(";"))

'Result$:"This;is;an;example;using;PickWords"

IDBTOOLS 1.1 for Visual Basic Page 12

Function Subst

Exchange a substring with an other string from a given position in the third string and return the resultstring.

The position must be given as a variable. The variable will be changed by the function. Into this variable the next
position is given if there are more than one occurence of the substring in the instring after the position, else a
zero will be returned. The returned position will be related to the resultstring..

Usage:
Result$ = Subst (01dStr$, NewStr$, inString$, Pos%)

This call will change the variable Pos% .

Example:

pos%=1 'startpos for searching in the instring$

Inn$= "5 hours a kr 100: kr 500"

Res$= Subst ("kr", "NOK", Inn$, pos%) ' Res$:"5 hours a NOK 100: Kr 500
' pos% :20 to next occurrence

Res$= Subst ("kr", "NOK", Inn$, pos%) ' Res$:"5 hours a NOK 100: NOK 500
] o
pos% :0

Function SubstAll

Exchange all the occurences of oldstring$ with newstring$ in a copy of the instring$ which is returned as a
result.

Usage:
Result$ = SubstAll (01dStr$, NewStr$, inString$)

Example:

res$ = SubstAll ("1 ", "@@", "1111 222221 33333 444441 555555")

res$ = "111Q@@22222@@33333 44444@@555555"
res$ = SubstAll ("is", "was", "This is an example")
res$ = "Thwas was an example"

Function SwapChrs

Swap two characters within a string. The argument "Character” contains the two characters which are to be
swapped. The function returns a string where all the occurences of the specified characters are swapped. A
typical example would be to swap the characters period(.) and commay,).

Usage:

Result$ = SwapChrs (String$, Characterss$)

Example:

Result$ = SwapChrs("1.234.567,00", ".,") '=> "1,234,567.00"

IDBTOOLS 1.1 for Visual Basic Page 13

Function SwapDate

Swap the position of the year and day within a datestring with format "YYMMDD" or "DDMMYY".

Usage:

Result$ = SwapDate (Date$)

Example:

NewDate$ = SwapDate ("241294") 'o=> "941224"
NewDate$ = SwapDate ("941224") 'o=> "241294"

Function SwapStr

This function can replace SwapDate, but can also be used in other occasions. The "fromFmt$" and the "toFmt$"
consist of letters which describe the wanted formate. E.g. "DD-MM-YY", YYMMDD", (Year, Month, Day).

Usage:
Result$ = SwapStr(StrIn$, FromFmt$, ToFmt$)

Letters which are found in both FromFmt$ and the ToFmt $ give the position and length, repeating equal
letters, of the string which to be be picked from "StrIn$" and placed in the Result$. The

ToFmtS$ is the template for the Result$. All positions which are not overwritten will be left in the Result$
untouched. If the length of the substring FromFmt$ is less then the lenght of the ToFmt$, leading zeros will
be put into the Result$. If the length of the substring ToFmt$ is less then the length of FromFmt$ then the
function picks the number of characters from the left which can be placed according the template. E.g. 1994

(yy) =>94.

Example:
ResultString$ = SwapStr("241294", "ddmmyy", "yymmdd") '"941224"
ResultString$ = SwapStr("941224", "yymmdd", "dd/mm-yy") ' "24/12-94"

ResultString$ = SwapStr("12-24-1994", "mm dd yyyy", "ddmmyy")' "241294"

IDBTOOLS 1.1 for Visual Basic Page 14

Function SysInfo / Function SysInfoNum

This returns system information about the PC’s environment as string. SysInfoNum as long integer when
possible.

Usage:
Result$ = SysInfo (What%)

Result& = SysInfoNum(What%)

What$ Result$/Results
SCREEN_SIZE X The width of the screeen

SCREEN SIZE Y The height of the screeen

SCREEN SIZE PALETTE The number of colors available

MEMORY FREE KB Free memory measured in KiloBytes
MEMORY BIGGEST FREE BLOCK KB Biggest free memory block measured in KiloBytes
DISK DRIVE Current drive, (1="A", 2="B", 3="C")
DISK FREE KB Free disk space measured in KiloBytes
DISK SIZE KB Total disk space measured in KiloBytes
DISK TYPE Drive type (see below)

The following is only defined for SysInfo (string only):

DIR WINDOWS Current path for the \WINDOWS directory
DIR WINDOWS SYSTEM Current path for the \WINDOWS\SYSTEM directory
DISK PATH Current D: \DIRECTORY \NAME
DISK VOLUME LABEL Disk label, (name, 11 char.)
DISK VOLUME DATE Volume label date "YYYYMMDD"
DISK VOLUME TIME Volume label time "TT:MM:SS"
DISK TYPE returns for SysInfoNum for SysInfo
B DRIVE REMOVABLE "REMOVABLE"
DRIVE FIXED "FIXED"
DRIVE:REMOTE "REMOTE"
0 e
For all "DISK" parameters, the current disk drive will be used unless a disk drive is specified.

Specifying an other drive goes as follows:
Add the drive number or the ascii value of the drive letter to the argument (What%).

Examples:

si$ = SysInfo(DISK SIZE KB + 1) '=> Regarding drive A
si$ = SysInfo(DISK PATH KB + 2) '=> Regarding drive B
si$ = SysInfo(DISK SIZE KB + Asc("A")) '=> Regarding drive A
si$ = SysInfo(DISK _FREE KB + Asc("C") '=> Regarding drive C
si& = SysInfoNum(DISK SIZE KB + Asc("D") '=> Regarding drive D

