IDBTOOLS.DLL version 1.1

IDBTABLE.WRI

IDBTOOLS

TABLE-handling routines for Visual Basic

ITabBlankLine Remove contents of a given line in a table
ITabBlankLines Remove contents of the given lines in a table

ITabDelete Delete table and release memory

ITabDir Create a table containing file and/or directory information.
ITabEnvList Read environment settings into a new table

ITabFind Search data , given mask, by column

ITabFindGE Search for data, given mask, by column in pre-sorted table.
ITabGet Get data as string type from table

ITabGetColWidth Get the width of a given column in a table

ITabGetInt Get data as integer type from table

ITabGetLine Get data as string type from an array

ITabGetLong Get data as long type from table

ITabGetNumColumns Get the defined number of columns a table consists of
ITabGetNumLines Get the defined number of lines/rows a table consists of
ITabGetReal Get data as real type from table

ITabGetSize Get the total amount of consumed memory for a given table
ITablnsertLine Insert a line at a given line number in a table
ITablnsertLines Insert lines from a given line number in a table

ITabNew Create a new table.

ITabNewArray Create a new table with only one column.

ITabPut Write data (string) to a cell in a table

ITabPutInt Write data (integer) to a cell in a table

ITabPutLine Write data (string) to a line in a table/array

ITabPutLong Write data (long) to a cell in a table

ITabPutReal Write data (real) to a cell in a table

ITabRead Read a table to memory from a file in a specific format

ITabReadFixedRecLenFile

Read a file with fixed record length to a table

ITabRemoveLine Remove a line at a given line number in a table
ITabRemoveLines Remove lines from a given line number in a table
ITabSmartSort Sort a table by column using the SmartSort algorithm
ITabWrite Write a table to a named disk file of a specific format

IDBVTSS.DLL:

ITabCopyFromVTSS
ITabCopyToVTSS

Read the contents of a Visual Tools SpreadSheet to a new table
Dump the contents of a table to a Visual Tools SpreadSheet

Include IDBTOOLS.BAS and IDBTABLE.BAS in your projects.

See also IDBTOOLS.WRI for description of more IdbTools routines

1995 © Idb Micro Adept AS, Bergen, Norway

IDBTOOLS 1.1 Table-handling for Visual Basic Page 2

IDBTOOLS 1.1 Table-handling for Visual Basic Page 3

Whatis a TABLE ?

An IdbTools table is a dynamic array or matrix of variable length text strings.

It is possible to define arrays of strings in native Visual Basic too, but this is not very flexible,
and the practical limits makes it completely useless compared to tables in IdbTools:

Static SmallMatrix (500, 10) As String ' Standard Visual Basic
For i% = 1 To 500
For j% = 1 To 10
SmallMatrix (i%, j%) = "TESTING"
Next 3%
Next 1%

"OUT OF STRING SPACE" is the message from Visual Basic !
I've got 16 MB of RAM, but VB does not want to use it.

String Arrays in VB are not going to be mentioned any
more, from this point. In the following, the term Array
will only be used for describing a table with only one column.

' The good news are: the following works fine

BigTable& = ITabNew (5000, 10) ' IdbTools: 10 times bigger - no problem !
For i% = 1 To 5000
For j% = 1 To 10
ITabPut BigTables&, i%, j%, "TESTING"
Next 3%
Next i%

' You may put several megabytes of data into the IdbTools tables.

The powerful routines for table searching, sorting, file I/O and all the other routines found in IdbTools will
open a new world for all Visual Basic programmers - giving the programming power you have dreamed of !

The rest of this document is describing the routines for table handling.

IDBTOOLS 1.1 Table-handling for Visual Basic Page 4

gub
ITabBlankLine

Erase contents of the given line.

Usage:
ITabBlankLine Handleé&, atLine%

The line will still be there, but all columns will be empty. See also: ITabRemoveLine.

§ub ITabBlankLines

Erase contents of the specified lines.

Usage:
ITabBlankLines Handleé&, atLine%, numLines$%

The lines will still be there, but all columns will be empty. See also: ITabRemoveLines.

Sub ITabDelete

Delete a table from memory with effective memory release.

Usage:
ITabDelete Handle&

NB!
After a table is deleted the handle is invalid. Using a handle for a deleted table will cause an error.
Of course, the variable holding the handle value may be reused for new tables.

Example:
ITabDelete MyTableg

IDBTOOLS 1.1 Table-handling for Visual Basic Page 5

Function ITabDir

Create a table with a list of filenames and/or directory names, and optionally, more detailed information connected to
these. The function returns a handle to the new table.

Usage:
Handle& = ITabDir (FileMask$, Type%)

FileMask$ can be a file / directory name, or a standard wildcard mask using the characters: "2?" and "*"

Col 1 Col 2 Col 3 Col 4 Col 5 Col 6
Types 1 | File.Ext |
2 | Filename | Ext |
3 | Filename | Ext | Size |
4 | Filename | Ext | Size | Date |
5 | Filename | Ext | Size | Date | Time |
9 | Filename | Ext | Size | Date | Time | Attr |
7 As type 6, but includes hidden and system files in addition to normal files.
8 As type 7, but also includes subdirectories .
9 As type 6, but includes only subdirectories

Date format: "YYYYMMDD"
Time format: "HH:MM:SS"
Attr format: "ADHRS", the single letter will be found in the given position, (D=2, R=4 ...),
when the attribute is active.
A: Archive (set when file is changed - used by back-up systems)
D: Directory name
H: Hidden file
R: Read-Only file
S: System file

The number of columns in the newly created table will be equal to Type% up to 6, and 6 for the rest.

Directory names will always be terminated by the character "\". Obs, beware: The directory name can
include the ".EXT", in that case the character "\" will be found in column 2 (for types 8 and 9).

Remember to delete the table, using ITabDelete, when it is no longer needed (free system resources).

Example:
' Make a function for returning the size of a given file.
' Will return 0 if the file does not exist (not runtime error as FilelLen):

Function FileLength& (ByVal FileName$)
tempTab& = ITabDir (FileName$, 3)
FileLength& = ITabGetLong (tempTab&, 1, 3)
ITabDelete tempTabé&

End Function

IDBTOOLS 1.1 Table-handling for Visual Basic Page 6

Function
ITabEnvList

Create a new table containing all environment strings defined. The table will have two columns where the first column
contains the variable name, and the second the environment setting.

Usage:
Handle& = ITabEnvList ()

Remember to delete the table, using ITabDelete, when it is no longer needed (free system resources):
Example:

envTabé& = ITabEnvList ()

' the table may look like this:

lst column 2nd column

! CONFIG QEMM
! COMSPEC C:\DOS\COMMAND.COM
! SHARE ON
' TMP E:\TMP
! APPEND D: \PROG
! LIST E:\TMP
' BLASTER A220 I7 D1 H5 P330 To
' LIB C:\MSVC\LIB;C:\MSVC\MFC\LIB;..\LIB
! WINDIR D: \WINDOWS
]
row$ = ITabFind(envTabé&, "COMSPEC", 1, 1, IT EXACT) ' search
If row% Then
CommandPath$ = ITabGet (envTabé&, rows, 2) ' read col 2
Else
CommandPaths$ = "" ' not found
EndIf

ITabDelete envTabé ' clean up

IDBTOOLS 1.1 Table-handling for Visual Basic Page 7

Function
ITabFind

Search in a table for data, given column to search in, given from-which-row to search from.
The function returns the row number of the first match-occurrence. If no matching-occurrence is found, the function
returns a zero.

Usage:
Result% = ITabFind(Handle&, data$, row%, col%, type$)
Types:
IT EXACT The comparing is done exact.
IT WILD Search substring in any position of the column, as a wildcard search

"*substring*". The "*" should not be included.
The IT * parameters are defined as global constants in then file "IDBTABLE.BAS"
Example:

FileSubstStr "MYPROG.TXT", "OLDLIB", "NEW LIB"

' This call is supposed to open the file "MYPROG.TXT", replace all occurences
' of the string "OLDLIB" with "NEW LIB" and write the file back to disk.

' The code for this task can be written like this:

Sub FileSubstStr (ByVal FileName$, ByVal FromStr$, ByVal ToStr$)
table& = ITabRead (FileName$, IT TEXTFILE)
rows = 0
Do
rows = ITabFind(table&, FromStr$, row% + 1, 1, IT WILD)
If rows = 0 Then Exit Do
ITabPutLine table&, row%, SubstAll (FromStr$, ToStr$, ITabGetLine (table&, row$))
Loop
ok% = ITabWrite(table&, FileName$, IT TEXTFILE)
ITabDelete tableé&
End Sub

' The line ITabPutLine table&,row$%,SubstAll (FromStr$,ToStr$,ITabGetLine (table&,row%))
' may look unreadable, but this illustrates the power of routines returning strings

' that can be used directly as an argument to an other routine and so on.

' The line could have been split into 3 lines like this:

' templ$ = ITabGetLine (table&, row$%)

' temp2$ = SubstAll (FromStr$, ToStr$, templ$)

' ITabPutLine table&, row$, temp2$

IDBTOOLS 1.1 Table-handling for Visual Basic Page 8

Function
ITabFindGE

Search in a sorted table, given column, for "data*". The data comparing is exact. Folded/not folded letters are evaluated
differently. It is essential that the table is pre-sorted. The function returns the row number of the first match-occurrence
which is greater or equal(GE). If no matching-occurrence is found, the function returns a zero.

Usage:
Result% = ITabFindGE (Handle&, findStr$, col%)

Example:

A very fast way to look up data from a huge ascii file can be done this way:

An ascii file consists of 20,000 lines where each line is 80 + 2 positions long. (Ct/LF=2). In a VB loop the 8 first
characters of each line in the ascii file is read into an array. The file is assumed to be sorted.

To get hold of data from the ascii file:
Search in the table and get match based on the 8 characters. If match, the function /7abfindGE returns the row number.

Knowing the fact that each line is 82 bytes long, the exact bytes position within the ascii file is [(matching row number-
1) * 82].

Dim Found, BytePos As integer

Dim Dataline As string

Found = ITabFindGE (MyTable&, "1234PROD", 1) 'Search in the table
BytePos = (Found-1) * 82

'Knowing the absolute byte position the Basic operators are used:

DataLine=String(82," ") 'Define the variable to be read in

Open "Data.Txt" #1 'Open the ascii file

Seek #1, , BytePos 'Set file pointer to exact position in the file
Get #1, , DatalLine 'Get the data line from the file

Close #1 'Close the ascii file

Function ITabGet

Read data from a cell in a table.

Usage:
Result$ = ITabGet (Handle&, Row%, Col%)

Example:

1

Display search path in a ListBox:
eTab& = ITabEnvList ()

row% = ITabFind(eTabs&, "PATH", 1, 1, ITiEXACT)
path$ = ITabGet (eTab&, row%, 2) ' e.g. "C:\DOS;C:\WINDOWS;D:\UTILS;E:\PROG"
i%=
Do
pS$ = PickWord(path$, 1%, Asc(";"))
If Len(p$) = 0 Then End Loop
Listl.AddItem p$
i% = i% + 1
Loop

ITabDelete eTabé&

IDBTOOLS 1.1 Table-handling for Visual Basic Page 9

?‘unction_
ITabGetlnt

Read data from a cell in a table and return an Integer.

Usage:
Result%$ = ITabGetInt (Handle&, Row%, Col%)

?‘unction ITabGetLine

Read data from a line in a table. This is practical when reading rows from tables with only one column.

Usage:
Result$ = ITabGetLine (Handle&, Row$)

Function
ITabGetLong

Read data from a cell in a table and return a Long Integer.

Usage:
Result& = ITabGetlLong (Handle&, Row$, Col%)

?‘unction ITabGetReal

Read data from a cell in a table and return a Real (double precision floating point) number.

Usage:
Result# = 1ITabGetReal (Handle&, Row%, Col%)

?‘unction ITabGetColWidth

The function returns the width, as an integer, of a given column

Usage:
Result%$ = ITabGetColWidth (Handleé&, Col%)

Example:

' What is the longest line in a file ?

aTab& = ITabRead("C:\AUTOEXEC.BAT", IT TEXTFILE)
longestLine% = ITabGetColWidth (aTabé&)

ITabDelete (aTabé&)

T?unction
ITabGetNumColumns

IDBTOOLS 1.1 Table-handling for Visual Basic Page 10
The function returns the number of columns the table consists of.

Usage:
Result% = ITabGetNumColumns (Handle&)

Example:

' Find out how many columns there are in a TAB-delimited file:
aTab& = ITabRead ("DATAFILE.CSV", IT CSVFILE + 9)

numCols$% = ITabGetNumColumns (aTabé&)

ITabDelete (aTabé&)

?‘unction ITabGetNumLines

This function returns the current number of lines the table.

Usage:
Result$ = ITabGetNumLines (Handle&)

Note: The number of lines in a table is not static.
Several routines are capable of changing the number of lines i a table:

ITablnsertLine
ITablnsertLines
ITabRemoveLine
ITabRemoveLines

Calling ITabGetNumlLines is normaly the logical thing to do after the following calls:

ITabRead
ITabReadFixedRecLenFile
ITabEnvList

ITabDir
ITabCopyFromVTSS

Example:
table& = ITabRead ("\AUTOEXEC.BAT", IT TEXTFILE)
lines% ITabGetNumLines (table&)

' Note: is lines%=0, there are two possibilities:
' A) the file exists and has 0 lines
' B) the file does not exist (suppose we had the wrong drive?)
If the difference is significant, you should check for the existence of
the file before you attempt to read it.
' The following function determines whether a file exist or not:
Function FileExist% (ByVal FileName$)
tempTab& = ITabDir (FileName$, 1)
If ITabGetNumlLines (tempTabé&) Then

FileExist% = True
Else

FileExist% = False
End If

ITabDelete tempTabé&
End Function

?‘unction ITabGetSize

The function returns the size of a given table in bytes. Once the table is dimensioned by the ITabNew operator, the table

IDBTOOLS 1.1 Table-handling for Visual Basic Page 11

does not occupy memory space of any consideration. When data is loaded into the table an increase in memory
consumption can be observed. The memory consumption is dynamic and depends on the amount of loaded data.

Usage:
Result& = ITabGetSize (Handleé&)

IDBTOOLS 1.1 Table-handling for Visual Basic Page 12

§ub
ITablnsertLine

Insert a blank line/row in a table at a given line number, atLine%. The new inserted line will contain blank cells in all
columns. The lines at and below the insert point will be pushed down one position. The number of lines in the table will
be affected/changed, see ITabGetNumLines(+1).

Usage:
ITabInsertLine Handleé&, atLine$%

Sub ITablnsertLines

Insert blank lines/rows in a table at a given line number, atLine%. The new inserted lines will contain blank cells in all
columns. The lines at and below the insert point will be pushed down as many positions as the number of inserted
lines, numLines%. The number of lines in the table will be affected/changed, see ITubGetNumLines(+n)

Usage:
ITabInsertLines Handle&, atLine%, numLines$%

T?unction
ITabNew

Create and dimension a new table. Returns a handle which will identify the table.

Usage:
Handle& = ITabNew (rows$%, columns%)

Remember to delete the table, using ITabDelete, when it is no longer needed (free system resources).

Example:
' Define a table consisting of 100 rows and 10 columns pr row.

Mytab&= ITabNew (100, 10)

Function ITabNewArray

Create a table with one column . The function returns a handle which will identify the table.

Usage:
Handle& = ITabNewArray (ByVal lines$%)

Remember to delete the table, using ITabDelete, when it is no longer needed (free system resources).

Example:
' Define a table consisting of 100 lines (one column) .
Mytab&= ITabNewArray (100)

IDBTOOLS 1.1 Table-handling for Visual Basic

Sub ITabPut

Page 13

Put string data into a cell in the table.

Usage:
ITabPut Handle&, Row%, Col%, DataString$

§ub
ITabPutlnt

Put numeric (integer) data into a cell in the table.

Usage:
ITabPutInt Handleé&, Row$%, Col%, IntegerNumber$

Sub ITabPutLine

Put data into a line in the table (as string). This is a practical call for writing lines to tables with only one column.

Usage:
ITabPutLine Handleé&, Row$%, DataString$

Sub ITabPutl.ong

Put numeric data into a cell in the table (as Long).

Usage:
ITabPutLong Handle&, Row%, Col%, LongNumberég

§ub ITabPutReal

Put numeric data into a cell in the table (as Double).

Usage:
ITabPutReal Handleé&, Row%, Col%, DoubleRealNumber#

IDBTOOLS 1.1 Table-handling for Visual Basic Page 14

Function ITabRead

Read a file into a new table. The table is dimensioned depending on the contents of the disk file.

Usage:
Handle& = ITabRead(FileName$, FileType%)

Remember to delete the table, using ITabDelete, when it is no longer needed (free system resources):

If a table file, IT_TABFILE, is read, the file that was written from a table as source, the table will gain the same
dimension as the source table had.

If an ordinary textfile, IT TEXTFILE, is read, the table will become an array.

Filetype:
IT_TABFILE Read an earlier written table.
IT TEXTFILE An ordinary text file

IT_CSVFILE + Delim. Read a file where the columns are delimited by a given character
IT_CSVOFILE + Delim As above, but the first line in the file is written to line zero in the table
(typically for column headers)

Delim is the ascii value of then delimitter character:Tab=9, (Asc";"), (Asc",")

Additional parameters:
+IT_ASCII Translate from DOS characters to Windows characters
+STRIP T Remove trailing blanks

The IT_* parameters are defined as global constants in the file "IDBTABLE.BAS"

Example:
Mytab&= ITabRead ("Written.Tab", IT TABFILE)

Read an earlier written table file named "Written.Tab" to memory. How the table is dimensioned is determined by the
dimension of the read table/file "Written.Tab"

Mytabé& = ITabRead(Text.fil,IT TEXTFILE[+ STRIP T][+ IT ASCII])
Read a textfile named "Text.fil" to memory and pr line remove trailing blanks, optional, and translate from DOS to
Windows characters-set, optional. The table becomes an array.

IDBTOOLS 1.1 Table-handling for Visual Basic Page 15

Function
ITabReadFixedRecL.enFile

Read a file with fixed record length to a new table. The function returns the table handle.

Usage:
Handle& = ITabReadFixedRecLenFile (FileName$, fmt$)

Remember to delete the table, using ITabDelete, when it is no longer needed (free system resources):

A linefeed between each record is assumed. The "fmt$" parameter tells the system what to be picked from the record
and placed to which column in the table. Capitalised letters (A-Z) are used for giving the position and length (repeated)
in the record, The letter used. also indicates which column the data is to be put into. "A" is column 1, "B" =2 and "C" =
3.."Y" =25 and "Z" = 26. The width is given by repeating the letter. "A" means, pick one character and put it in column
1. "BBBB" means pick four characters and put it in column 2. "ZZZ" means 3 characters to column 26. The sequence
can mixed, order, according to the datafile, as long as "A" comes before "B". Further on empty columns can be reserved
in the table by skipping letters in the sequence. Leading and trailing blanks will be stripped before data is put to the
table.

Example:

The first line shows the "fimt$" and the 10 to follow the datalines within a datafile:

"AAAAAAAAAAAAABBBBBBBB DD CC EE FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE"

File Name Size Date Description

TOLL20.ZIP 35652 04-28-93 Tool Button Custom Control For VBasic
VB2 TB.ZIP 162895 01-14-93 The Ultimate VBASIC v2.0 Add-On, Supe
VB4EX.ZIP 116486 03-14-92 Example Of How To Use DLL's With VisB
VBEING.ZIP 118521 04-04-93 Visual Basic Engine For Making DataBa
VGX3.ZIP 194111 01-06-93 VGA Graphics File Lib For QB/BASIC Pr
VXBASE.ZIP 212606 03-25-92 XBase Windows Visual BASIC Functions
VXBDOC.ZIP 132274 03-19-92 XBase Windows Visual BASIC Docs [2/2]
WBB12.ZIP 266520 09-10-92 BasicBasic For Windows v1.2

The table defined with 6 columns and 10 lines:

1. 2. 3. 4. 5. 6.column:

File Name Size e Da Description

TOLL20.ZIP 35652 28 04 93 Tool Button Custom Control For VBasic
VB2 TB.ZIP 162895 14 01 93 The Ultimate VBASIC v2.0 Add-On, Supe
e.t.c.

Sub ITabRemoveLine

Remove a line/row in a table from a given line number, atLine%. The lines below the given linenumber
will be scrolled up one line. The number of lines in the table will be affected/changed, /TubGetNumLines(-1).

Usage:
ITabRemovelLine Handleé&, atLine$%

Eub
ITabRemoveLines

Remove lines/rows in a table from a given line number, atLine%. The lines below the given linenumber, atLine%, + the

IDBTOOLS 1.1 Table-handling for Visual Basic Page 16

number of deleted lines, num%, will scroll up. The number of lines in the table will be affected/changed,
ITabGetNumLines% (-n)

Usage:
ITabRemovelLines Handleé&, atLine%, num%

IDBTOOLS 1.1 Table-handling for Visual Basic Page 17

§ub
ITabSmartSort

Sort a table by the contents of the given column. This rutine sorts both text and numbers logically. The sorting is not
case sensitive. If there are duplicates in the column beeing sorted, the original order will be kept. This makes it possible
to sort on several columns just by repeating this call (sort least significant column first).

Usage:
ItabSmartSort Handleé&, Col$%

If the column number is negative, the sorting will be descending on column (-Col%) .

Example
Given then table, "TestTab", consisting of one column and data as follows:
Number 1 of 100
Number 10 of 100
Number 100 of 100
Number 2 of 100
Number 20 of 100
Number 20 of 50
(The result of an ordinary sort in Excel)

Call ITabSmartsort(TestTable&, 1)

The result of "smart"sorting :
Number 1 of 100
Number 2 of 100
Number 10 of 100
Number 20 of 50
Number 20 of 100
Number 100 of 100

T?unction ITabWrite

Write a table to a disk file. Return value is a zero.

Usage:
Result% = ITabWrite (Handle&, FileName$, FileType$)

FileType:
IT TABFILE The internal format for reading/writing
IT TEXTFILE Ordinary textfile which can be read to a table consisting of one column

Additional options:
IT_ASCI Translate from Windows to the DOS character set.

The IT * parameters are defined as global constants in the file "IDBTABLE.BAS"

IDBTOOLS 1.1 Table-handling for Visual Basic Page 18

The following functions are defined in IDBVTSS.DLL

The functions are only useful if you have got the Formula One VBX/DLL from Visual Tools.

Function
ITabCopyFromVTSS

Read the contents of a Visual-Tools spreadsheet to a new table. This function makes it possible to read Excel 4.0
spreadsheet and *.vts files, internal format of Visual Tools, indirectly via the worksheet.

The number of lines in the table will be as many as it are datafilled lines in the worksheet. Blank trailing lines in the
worksheet are disregarded.

Usage:
Handle& = ITabCopyFromVTSS (SShandle&)

Remember to delete the table, using ITabDelete, when it is no longer needed (free system resources):

Example:
MyTab& = ITabCopyFromVTSS (Sheetl.SS)

?‘unction
ITabCopyToVTSS

Dump/write the contents of a table to a Visual Tools spreadsheet.
This function makes it possible to write Excel 4.0 spreadsheet and *.vts files, internal format of Visual Tools, indirectly
via the spreadsheet.

Usage:
ITabCopyToVTSS Handleé&, SShandleé&

Example:
ITabCopyToVTSS MyTabé&, Sheetl.SS

