
Visualib Help Index

Overview

Programming Guide

Function Reference

Registration Information

Registration Information

License Information

Warranty

Registration Form

License

All versions of Visualib are NOT    public Domain software    NOR    are    they    free    software.    Visualib    is    a   
copyrighted program    and requires the user to register the program if he or she    intends to use it except for the
purpose of limited evaluation described below.
             
Registration grants    the user a license to use Visualib on a single computer at    any    one    time.    A    registered   
user    may    have Visualib installed on more than one computer, but the program may not be in use
on more than one computer at the same time.
             
 No user    may modify    Visualib    in    any    way,    without    the    written permission of    Visual Tech, including, but
not limited to, disassembling, debugging or otherwise reverse-engineering the program.
             
Non-registered users    are granted a limited license of 45 days to use Visualib on a    trial basis    for the    purpose of   
evaluation and    determining if Visualib is suitable for their needs. Use of , except for this limited purpose, requires
the user to register the product.
           
All users of Visualib are granted limited license to copy the product only for the trial use by others, subject    to    the
above limitations, provided that Visualib is copied in its full and unmodified form. That is, the copy must include all
files necessary to permit full operation of the program, this license agreement, registration form and full
documentation. No fee, charge,    license, warranty, registration obligation or    other compensation of any kind may
be accepted by the donor or recipient in exchange for a copy of Visualib.
             
Operators of    Electronic Bulletin    Board Systems    (BBS Sysops)    may permit Visualib to be downloaded by    any
user, and any user may be permitted to upload a copy of    Visualib to a BBS, with the Sysop's permission, provided
the above conditions are met.
             
Use of non-registered copies of Visualib by any person in connection with a business, corporation, educational
establishment or government    agency is forbidden. Such users must register the product.

Warranty

 Visual Tech makes    no warranty    of any    kind, express    or implied, as to the suitability of the product for a
particular purpose and shall not be liable for any damages, loss of productivity, loss of profits or    savings or any
other incidental or consequential damages, whether direct, indirect or consequential, arising from any failure of the
product    to operate in any manner desired by the user for which it was not    intended or as a result of the user's
inability or failure to use the program in the manner in which it was intended.    Visual Tech shall    not    be liable   
for any damage to data or property which may be caused directly or indirectly by use of the program.
             

Order Form
             
Visual Tech Co.

P.O. Box    8735

Fort Wayne, IN 46898-8735

(219) 489-0235

__

Product QuantityUnit Price Amount

Visualib 2.0 for Windows ______ $399.00 $ ______
          (DLL)
Visualib 1.x for Windows ______ $50.00 $ ______
        (Microsoft C version)
Visualib 1.x for Windows ______ $50.00 $ ______
        (Borland C++ version)
Visualib 1.x for DOS ______ $40.00 $ ______
        (Microsoft C version)
Visualib 1.x for DOS ______ $40.00 $ ______
        (Borland C++ version)

Subtotal $ ______

Tax $ ______
(Indiana Residents must add 5.0 % sales tax)

Shipping $ 5.00

TOTAL $ ______

Disk Format : ()5.25"          ()3.5"

__

Name : ___

Company : __

Address : ___

                                  __
             
City : _______________________ State : _______ Zip : ____________                   
             

Overview

Visualib 2.0 is a comprehensive state-of-the-art graphics library for the Microsoft Windows environment. It contains
powerful and efficient    functions for rendering both 2D and 3D graphic objects. Visualib 2.0 consists of several
DLLs which can be used with any Microsoft Windows develop environments such as Microsoft C/C++ , Microsoft
Visual Basic, and Borland C++ version 2.0 and up.

Complete 2D and 3D viewing systems allows flexible view settings. Sophisticated transformation mechanism
supports virtually all types of graphics transformations. An object transformation stack is maintained in conjunction
with the transformation functions to achieve flexible and efficient graphic effects.

Visualib provides many different lighting, shading, material, and other rendering options. Lights can be created
individually with different characteristics. Various shading options including Gouraud shading and Phong shading
are supported.    Materials of different characteristics can also be created and selected for different objects. Double
buffering is supported for both 2D and 3D viewers. z-buffer is also available to handle complex backface
eliminations.

Visualib supports a full set of common 2D and 3D drawing functions and the powerful curve and surface drawing
functions such as Bezier, Hermit curves, B-Spline, NURBS curves and surfaces. Visualib also includes a large
collection of graphics primitives.

Image mapping is available to map standard Windows bitmaps to graphics objects. Visualib also provides texture
mapping functions to render 3D solid textures.

Visualib contains a set of functions to display true 3D text using any TrueType font. All the shading modes are
available in text display. Object transformations can also be applied to affect the character display.

2D and 3D viewing systems

Transformations and    stack

Lighting and other rendering options

Double Buffer and z-Buffer

Drawing functions

Curves and surfaces

Graphics Primitives

Image and Texture Mapping
2D and 3D Text

 Visualib Programming Guide

Getting Started

Initialization and Termination

Coordinate Systems

Viewer Setup

Modeling Transformations

Lighting Models

Double Buffer and z-Buffer

Drawing Functions

Curves and Surfaces

Graphics Primitives

Image and Texture Mapping
2D and 3D Text

Getting Started

Visualib 2.0 disk contains the following files:

README.1ST - read me first
REGISTER.TXT - ASCII registration form
VISUALIB.LIB - import library file
VISUALIB.DLL - dynamic link library file
VISUALIB.H      - header file
VISUALIB.HLP    - on-line Windows help of Visualib
VLIBDEMO.C        - Visualib demo program source code
VLIBDEMO.RC    - Visualib demo program resource file
VLIBDEMO.DEF    - Visualib demo program module definition file
VLIBDEMO.EXE    - Visualib demo program executable

The best place to start your Visualib programming is the demo program VLIBDEMO included in the distribution
disk. The executable file is ready to run in Windows. Try it and enjoy the show!

The source code VLIBDEMO.C illustrates the application of Visualib    library to create beautiful graphics
applications. It uses many features on Visualib and may serve as a template of Visualib applications.

Visualib functions are contained in the library file VISUALIB.LIB. Place it in a directory so that your linker can find
it. In order to use the library functions in your Windows program, the header file VISUALIB.H needs to be included
in your C source code after WINDOWS.H.

To use the Visualib system, first you need to initialize the graphics system by calling InitializeVisualib. After the
graphics system is initialized, you may create 2D or 3D viewers by calling CreateViewer. Then call the viewing
transformation functions and projection transformation functions to setup the viewers.

Now you can start to draw graphics through the viewers. Using the rich set of drawing functions provided by
Visualib together with the modeling transformation functions and the matrix stacks, you will be able to achieve most
sophisticated visual effects with ease.

Call the function ExitVisualib to exit the Visualib system.

Visualib Initialization and Termination

The following initialization function should be called before using the Visualib systems.

InitializeVisualib

The initialization function allocates and initializes necessary system variables.

To exit a Visualib graphics system, use the function

ExitVisualib

ExitVisualib frees all the memory used by the Visualib system.

Coordinate Systems

Visualib has several different coordinate systems that concern users.

The world coordinate system is the common coordinate system referenced by all parts of Visualib. It is a logical 2D
or 3D coordinate system which many Visualib functions specify the viewers and geometric objects. You may define
the world coordinates in any way to suit your application. It does not need to be correlated to the display
configuration. Because of the powerful viewing transformations of Visualib, you can set up arbitrary viewing
configurations in any world coordinates. The axes of a 3D world coordinate system may be displayed by calling the
function:

MarkPosition3D

A local coordinate system (or object coordinate system) is a system attached to a set of objects. The world
coordinates of the objects are obtained through object transformation.

The screen coordinate system is the coordinate system used in MS Windows GDI functions. Several Visualib
functions use this system to specify certain parameters related to the display devices. Because Visualib is compatible
with the GDI functions, user may also call some GDI functions with this kind of coordinates while using Visualib.

The viewing coordinate system is an intermediate coordinate system    used by Visualib. The following viewing
transformations may be best thought of as operations in the viewing coordinate system.

MoveViewer3D
RotateViewer3D
ZoomViewer3D
MoveViewer2D
RotateViewer2D

There are two types of coordinates used to specify points in the world coordinate space: The Euclidean coordinates
and the homogeneous coordinates.

Three floating point numbers (x,y,w) are used to define a 2D point and four floating point numbers (x,y,z,w) are
used for a 3D point. A point in the 2D space with homogeneous coordinate (x,y,w) corresponds to    the Euclidean
coordinate (x/w,y/w) and a 3D point with homogeneous coordinate (x,y,z,w) corresponds the Euclidean coordinate
(x/w, y/w, z/w). Although the homogeneous representation will take a little more memory. There are many
advantages associated with the homogeneous coordinates:

All affine transformations (including translation) can be handled in a uniform manner by linear
transformations.

Perspective projections can be applied naturally and with the clipping in the homogeneous coordinates, the
overflow problem associated with the perspective projections is avoided.

For the NURBS curves and surfaces, it is necessary to specify the homogenous coordinates.

 Viewer

A viewer is a logical structure which specifies precisely how the graphics objects in a world coordinate system (2D
or 3D) is displayed in a two dimensional screen viewport.

Viewport

The viewport of a    viewer is a rectangular region in a window client area which is used for the actual display of the
content of the viewer.

Viewer Position

The viewer position defines the position and view direction of the viewer in the world coordinate system.

Projection

Projection defines the view volume and the way it is mapped to the viewport. A 3D projection is either perspective
or orthogonal. It also specifies the depth clipping region.

Viewer Setup

User can establish virtually unlimited number of independent 2D and 3D viewers. In each viewer, user can select
various parameters such as viewport, viewer position and directions, perspective or orthogonal projections, depth of
view volume, etc.

A 2D or 3D viewer contains three major components:

Viewport
Viewer Position
Projection

The following are viewer setup functions.

CreateViewer
SetViewport
SetViewerName
DisplayViewerFrame
DisplayViewerName
SetView2D
SetProjection2D
SetWindow
SetView3D
SetPolarView
SetPerspective
SelectViewer
ClearViewer

The viewing transformations may be modified by the following functions

MoveViewer2D
RotateViewer2D
ZoomViewer2D
MoveViewer3D
RotateViewer3D
ZoomViewer3D

Note that the viewing transformations are different from the modeling transformations. The modeling
transformations affect the current transformation matrix on the stack top only, while the viewing transformations
change the setting of a viewer.

To get information on a viewer, use the following functions:

NumViewer
ViewerLocation
ViewerDirection
ViewerField3D

Modeling Transformations and Matrix Stack

Transformations are important part of the graphics system.Visualib provides a sophisticated transformation
mechanism to support virtually all types of graphics transformations. Users may arbitrarily    translate, scale, or
rotate any object in any sequence. Visualib maintains a transformation stack which can be used in conjunction with
the transformation functions to achieve flexible and efficient graphic effects.

Rotate2D
PointRotate2D
Translate2D
TranslateTo2D
Scale2D
PointScale2D
Shear2D
Stretch2D
Mirror2D

Rotate3D
AxleRotate3D
Translate3D
TranslateTo3D
Scale3D
PointScale3D
Shear3D
Stretch3D
Mirror3D

Note that the modeling transformations are different from the viewing transformations. The modeling
transformations affect the current transformation matrix on the stack top only, while the viewing transformations
change the setting of a viewer.

To systematically manage the transformation processes, Visualib provides transformation stacks for 2D and 3D
modeling transformations. The stack top determines the final effect of transformation process. All the transformation
functions discussed above changes some aspects of the stack top. To save the current transformation configurations,
use the following functions

PushTransforamtion2D
PushTransformation3D

These functions will push the current stack top and leave the stack top unchanged. You may get back to this
particular state later by using the following function.

PopTransformation2D
PopTransformation3D

Lighting Models

Visualib contains an advanced lighting and shading system for rendering graphics objects. Visualib provides many
different lighting, shading, material, and other rendering options. With various combinations of the options, dramatic
visual effects can be achieved. Users may create virtually unlimited number of lights and individually specify the
characteristics such as position, direction, colors, intensity, global or local lights. Graphics objects may be rendered
in many different ways. Various shading modes such as flat shading, solid fill, Gouraud shading, and Phong shading
are supported. Materials of different characteristics can also be created and selected for different objects.

Unlimited number of lights of various characteristics can be created. Position, direction, color, intensity, and other
properties can be individually set. Each light can be turned on or off at any time.

CreateLight
DeleteLight
CopyLight
SelectLight
SwitchLight

Users may select several different shading options, from simple wire-frame and flat shading to complicated Gouraud
shading and Phong shading.

CreateLModel
DeleteLModel
CopyLModel
SelectLModel

In a similar way, different materials can be created and selected for different objects.

CreateMaterial
DeleteMaterial
CopyMaterial
SelectMaterial

The following functions set or get various shading options and parameters.

ShadingOption
ShadingParameter
ShadingColor
ShadingFactor

Double Buffer and z-Buffer

 Double buffering is supported for both 2D and 3D viewers. User may select double buffer mode to achieve smooth
animation effects. Advanced hidden surface elimination techniques are employed in Visualib. Backface culling may
be used for simple polygonal surfaces and z-buffer may selected to handle arbitrarily complex views.

The following functions provide double buffer support.

BeginDoubleBuffer
EndDoubleBuffer
UpdateDoubleBuffer

Depth buffer, or z-buffer, is a general technique to achieve hidden surface removal. Visualib provides the following
functions to support z-buffer.

SetDepthBuffer
ClearDepthBuffer

Drawing Functions

Visualib supports a full set of common 2D and 3D drawing functions such as lines, polygons, ellipses, spheres,
polyhedra, etc.

Visualib greatly extends the capabilities of windows' GDI functions. For example, Visualib uses floating point type
for specifying coordinates and implements clipping in homogeneous coordinates, which effectively avoids the
common integer overflow problem associated with the perspective viewing. However, all GDI functions are still
available and the function calls from both systems can be used at the same time. Visualib can be used with any types
of device context - screens, printers, or memory. Consequently, the same routine for display can also be used for
printing or storing. Visualib also uses the attributes such as colors, line width of the device context set by the GDI
functions.

MoveTo2D
LineTo2D
Line2D
RMoveTo2D
RLineTo2D
RLine2D
MoveTo2H
LineTo2H
Polyline2D
ClosedPolyline2D
Polygon2D
Rectangle2D
Disk2D
Arc2D
Wedge2D
Ngon2D
Star2D
Flower2D

MoveTo3D
LineTo3D
Line3D
RMoveTo3D
RLineTo3D
RLine3D
MoveTo3H
LineTo3H
Polyline3D
ClosedPolyline3D
Polygon3D
Rectangle3D

Curves and Surfaces

Curves and surfaces have become important parts of advanced graphics systems. They offer powerful and flexible
ways to specify complicated objects with various smoothness and continuity. Visualib provides the powerful curve
and surface drawing functions such as cubic Bezier, Hermit, B-Spline, and NURBS curves and surfaces.

BezierCurve2D
HermitCurve2D
BSplineCurve2D
NURBSCurve2D
BSplineCurveClosed2D
NURBSCurveClosed2D
CatmullRomSpline2D
BezierCurve3D
HermitCurve3D
BSplineCurve3D
NURBSCurve3D
BezierSurface
HermitSurface
BSplineSurface
NURBSSurface
CoonsPatch

Graphics Primitives

Visualib includes a large collection of 2D and 3D graphics primitives. Many graphic objects can be drawn with a
simple function call.

Cube
Cylinder
Cone
Ellipsoid
Sphere
HemiSphere
SolidStar
SolidFlower
Wedge
Frustum
Ridge
Prism
Pyramid
Tetrahedron
Dodecahedron
Icosahedron
Octahedron

Parabola
Hyperbola
OscillatoryWave
Catenary
Spiral2D
Cycloid
Epicycloid
Cardioid
Hypocycloid
Lemniscate
Rose

Spring
Spiral3D
EllipticParaboloid
Hyperboloid1
Hyperboloid2
HyperbolicParaboloid

Image and Texture Mapping

Image mapping is a useful technique to significantly enhance the visual effects. Visualib allows user to map standard
Windows bitmaps to graphics objects. The images will be transformed appropriately to achieve the correct
perspective view. Visualib also provides texture mapping functions to render 3D solid textures.

Visualib provides the following functions for mapping a device independent bitmap to a 2D or 3D object.

ImageMap2D
ImageMap3D

3D texture mapping is another powerful feature of Visualib.

SolidTexture

2D and 3D Text

Visualib contains a set of functions to display true 3D solid texts as well as 2D and 3D flat texts using any TrueType
font. All the shading modes are available in solid text display. Object transformations can also be applied to affect
the character display.

SetFont
TextParameter
DrawString

Coordinate Type

Visualib defines four different coordinate types for points.

VL_2D
VL_2H
VL_3D
VL_3H

VL_2D uses two floating numbers to specify a 2D Euclidean point.
VL_2H uses three floating numbers to specify a 2D homogeneous point.
VL_3D uses three floating numbers to specify a 3D Euclidean point.
VL_3H uses four floating numbers to specify a 3D homogeneous point.

Visualib Function Reference

A
Arc2D
Arrow2D
Arrow3D
AxleRotate3D

B
BeginDoubleBuffer
BezierCurve2D
BezierCurve3D
BezierSurface
Bow2D
Bow3D
BrushColor
BSplineCurve2D
BSplineCurve3D
BSplineCurveClosed2D
BSplineSurface

C
Cardioid
Catenary
CatmullRomSpline2D
ClearDepthBuffer
ClearViewer
ClosedPolyline2D
ClosedPolyline3D
Cone
CoonsPatch
CopyLight
CopyLModel
CopyMaterial
CopyViewer
CreateLight
CreateLModel
CreateMaterial
CreateViewer
Cube
Cycloid
Cylinder

D
DeleteLight
DeleteLModel
DeleteMaterial
DeleteViewer
Disk2D
DisplayViewerFrame
DisplayViewerName
Dodecahedron
DrawString

E
Ellipsoid
EllipiticParaboloid
EndDoubleBuffer
Epicycloid
ExitVisualib

F
Flower2D
Flower3D
Frustum

G
GetViewerName
GetViewport

H
HemiSphere
HermitCurve2D
HermitCurve3D
HermitSurface
Hyperbola
HyperbolicParaboloid
Hyperboloid1
Hyperboloid2
Hypocycloid

I
Icosahedron
InitializeVisualib
ImageMap2D
ImageMap3D

L
Label2D
Label3D
Lemniscate
Line2D
Line2H
Line3D
Line3H
LineTo2D
LineTo2H
LineTo3D
LineTo3H
LoadTransformation2D
LoadTransformation3D

M
Mark2D
Mark3D
MarkPosition2D
MarkPosition3D
Mirror2D
Mirror3D
MoveTo2D

MoveTo2H
MoveTo3D
MoveTo3H
MoveViewer2D
MoveViewer3D

N
Net2D
Net3D
Ngon2D
NumViewer
NURBSCurve2D
NURBSCurve3D
NURBSCurveClosed2D
NURBSSurface

O
Octahedron
OscillatoryWave

P
Parabola
PenColor
PointRotate2D
PointScale2D
PointScale3D
Polygon2D
Polygon3D
Polyline2D
Polyline3D
PolyMark2D
PolyMark3D
PolyPolygon2D
PolyPolygon3D
PopTransformation2D
PopTransformation3D
Prism
PushTransformation2D
PushTransformation3D
Pyramid

R
Rectangle2D
Rectangle3D
Ridge
Ring
RLine2D
RLine3D
RLineTo2D
RLineTo3D
RMoveTo2D
RMoveTo3D
Rose
Rotate2D
Rotate3D
RotateViewer2D

RotateViewer3D

S
Scale2D
Scale3D
SelectLight
SelectLModel
SelectMaterial
SelectViewer
SetDepthBuffer
SetFont
SetPerspective
SetPoint2D
SetPoint2H
SetPoint3D
SetPoint3H
SetPolarView
SetProjection2D
SetProjection3D
SetView2D
SetView3D
SetViewerName
SetViewport
SetWindow
ShadePolygon
ShadePolyPolygon
ShadingColor
ShadingFactor
ShadingOption
ShadingParameter
Shear2D
Shear3D
SolidFlower
SolidStar
SolidTexture
Sphere
Spiral2D
Spiral3D
Spring
Star2D
Star3D
Stretch2D
Stretch3D
SwitchLight

T
Tetrahedron
TextColor
TextParameter
Translate2D
Translate3D
TranslateTo2D
TranslateTo3D
Tube

U

UpdateDoubleBuffer

V
ViewerDirection
ViewerField3D
ViewerMappingMode
ViewerLocation

W
Wedge
Wedge2D
Wedge3D

Z
ZoomViewer2D
ZoomViewer3D

Tetrahedron

Function
Draws a tetrahedron.

Syntax
void Tetrahedron (HDC hdc, float r);

Remarks
Tetrahedron draws a tetrahedron in the current 3D viewer with current pen color for the edges and current
brush color for the interior. r specifies the radius of the circumscribing sphere.

Return Value
None.

See also
Octahedron, Dodecahedron, Icosahedron

Octahedron

Function
Draws an octahedron.

Syntax
void Octahedron (HDC hdc, float r);

Remarks
Octahedron draws an octahedron in the current 3D viewer with current pen color for the edges and current
brush color for the interior. r specifies the radius of the circumscribing sphere.

Return Value
None.

See also
Tetrahedron, Dodecahedron, Icosahedron

Dodecahedron

Function
Draws a dodecahedron.

Syntax
void Dodecahedron (HDC hdc, float r);

Remarks
Dodecahedron draws a dodecahedron in the current 3D viewer with current pen color for the edges and
current brush color for the interior. r specifies the radius of the circumscribing sphere.

Return Value
None.

See also
Tetrahedron, Octahedron, Icosahedron

Icosahedron

Function
Draws an icosahedron.

Syntax
void Icosahedron (HDC hdc, float r);

Remarks
Icosahedron draws an icosahedron in the current 3D viewer with current pen color for the edges and current
brush color for the interior. r specifies the radius of the circumscribing sphere.

Return Value
None.

See also
Tetrahedron, Octahedron, Dodecahedron

InitializeVisualib

Function
Initializes the graphic system.

Syntax
BOOL InitializeVisualib (void);

Remarks
InitializeVisualib initializes Visualib graphic system. It must be called before any other Visualib functions.

Return value
On successful completion, InitalizeVisualib returns TRUE. It returns FALSE on error.

See also
ExitVisualb

ExitVisualib

Function
Exits the graphic system and frees memory.

Syntax
void ExitVisualib (void);

Remarks
ExitVisualib exits the graphics systems. The memory allocated by Visualib is released.

Return value
None.

See Also
InitializeVisualib

PenColor

Function
Selects a pen color.

Syntax
HPEN PenColor (HDC hdc, short color);

Remarks
PenColor selects a system pen with color index for the current device context.

Return value
PenColor returns a handle to the previously selected pen.

See also
BrushColor

BrushColor

Function
Selects a brush color.   

Syntax
HBRUSH BrushColor (HDC hdc, short color);

Remarks
BrushColor selects a system brush with color index for the current device context.

Return value
BrushColor returns a handle to the previously selected brush.

See also
PenColor

TextColor

Function
Sets text color.

Syntax
void    TextColor (HDC hdc, int tcolor, int bcolor, int mode);

Remarks
TextColor sets the text color, the background color, and the background mode to tcolor,    bcolor, and mode.

Return value
None.

See also
Label2D, Label3D

CreateViewer

Function
Creates a 2D or 3D viewer

Syntax
int CreateViewer (NPSTR name, RECT port, BYTE type, BYTE mode);

Remarks
CreateViewer creates a    viewer. The viewport is defined by port . The name of the viewer is given by
string name. type defines 2D or 3D viewer which takes one of the following values.
VL_TWOD
VL_THREED

mode defines the way to fit the viewport which takes following values.
VL_HORIZONTALFIT fit the horizontal size and keep aspect ratio
VL_VERTICALFIT fit the vertical size and keep aspect ratio
VL_AUTOFIT fit automatically to include entire view and keep aspect ratio
VL_VIEWPORTFIT stretch the view to fit the viewport

Return Value
The viewer handle will be returned if it is created successfully. Otherwise, NULL will be returned. The
viewer handle is used for other Visualib functions to reference the viewer.

See also
InitializeVisualib,    SetViewport

DeleteViewer

Function
Deletes a viewer.

Syntax
void DeleteViewer (int Viewer)

Remarks
DeleteViewer deletes the viewer specified.

Return value
None

See also
CreateViewer

CopyViewer

Function
Copy viewers.

Syntax
BOOL CopyViewer (int viewdst, int viewsrc)

Remarks
CopyViewer copies the content of viewsrc to viewdst.

Return value
CopyViewer returns TRUE if successful and FALSE on error.

See also
CreateViewer

SelectViewer

Function
Selects a    viewer.

Syntax
BOOL SelectViewer (int hview);

Remarks
SelectViewer selects viewer hview as the current    viewer. The subsequent    drawing function calls will use
this viewer. hview must be a valid viewer handle returned by CreateViewer.

Return value
On success, SelectViewer returns TRUE. On error, it    returns FALSE.

See also
CreateViewer

DisplayViewerFrame

Function
Displays the    frame of a viewer.

Syntax
BOOL DisplayViewerFrame (HDC hdc, int hview);

Remarks
DisplayViewerFrame    draws the viewer hview's rectangular border with current pen color. The frame is
defined by the viewport set    in the function CreateViewer or SetViewport.

Return value
On success, DisplayViewerFrame returns TRUE. On error, it    returns FALSE.

See also
CreateViewer, SetViewport

DisplayViewerName

Function
Display    viewer's name.

Syntax
BOOL DisplayViewerName (HDC hdc, int hview, int top);

Remarks
DisplayViewerName displays the viewer hview's name string. The name is displayed on the top of the
viewport if the parameter top is nonzero.

Return value
On success, DisplayViewerName returns TRUE. On error, it    returns FALSE.

See also
GetViewerName, SetViewerName

Label2D

Function
Draws a label.

Syntax
void    Label2D (HDC hdc, float x, float y, LPSTR label);

Remarks
Label2D draws a label in the current 2D viewer. The starting point is defined by (x, y).

Return value
None.

See also
Label3D

Label3D

Function
Draws a label.

Syntax
void    Label3D (HDC hdc, float x, float y, float z, LPSTR label);

Remarks
Label3D draws a label in the current 3D viewer starting at (x, y, z).

Return value
None.

See also
Label2D

ClearViewer

Function
Clears a viewer.

Syntax
BOOL ClearViewer (HDC hdc, int hview, int color);

Remarks
ClearViewer    clears the viewer hview's client area with color.

Return value
On success, ClearViewer returns TRUE. On error, it    returns FALSE.

See also
CreateViewer

NumViewer

Function
Gets the number of viewers.

Syntax
short NumViewer (void);

Remarks
NumViewer returns the number of viewers currently created.

Return value
The number of viewers.

See also
CreateViewer

ViewerMappingMode

Function
Sets viewer mapping mode.

Syntax
int ViewerMappingMode (int viewer, int mode)

Remarks
ViewerMappingMode sets the viewer mapping mode for the specified viewer. The previous mapping mode
is returned.

Return value
The previous mapping mode.

See also
CreateViewer

PushTransformation2D

Function
Pushes the 2D transformation matrix stack.

Syntax
BOOL    PushTransformation2D (MATRIX m);

Remarks
PushTransformation2D pushes the 2D object transformation matrix stack. The stack top is the product of
the previous stack top and m. If m is NULL a copy of the previous stack top is pushed to the stack.

Return value
PushTransformation2D returns TRUE upon successful completion. FALSE is returned if the stack is full.

See also
PopTransformation2D

PopTransformation2D

Function
Pops the 2D transformation matrix stack.

Syntax
BOOL PopTransformation2D (MATRIX m);

Remarks
PopTransformation2D pops the 2D object transformation matrix stack. The stack top is assigned to m. If m
is NULL the stack top is discarded.

Return value
On success, PopTransformation2D returns TRUE.    FALSE is returned if the stack is empty.

See also
PushTransformation2D

LoadTransformation2D

Function
Loads a 2D transformation matrix.

Syntax
void    LoadTransformation2D (MATRIX m);

Remarks
LoadTransformation2D replaces the 2D transformation matrix stack top with matrix m.

Return value
None.

See also
PushTransformation2D

PushTransformation3D

Function
Pushes the 3D transformation matrix stack.

Syntax
BOOL    PushTransformation3D (MATRIX m);

Remarks
PushTransformation3D pushes the 3D object transformation matrix stack. The new stack top is the product
of the previous stack top and the matrix m. If m is NULL a copy of previous stack top is pushed to the
stack.

Return value
On success, PopMatrix3D returns TRUE. FALSE is returned if the stack is full.

See also
PopMatrix3D

PopTransformation3D

Function
Pops the 3D transformation matrix stack.

Syntax
BOOL    PopTransformation3D (MATRIX m);

Remarks
PopTransformation3D pops the 3D object transformation matrix stack. The stack top is assigned to m. If m
is NULL the stack top is discarded.

Return value
On success, PopTransformation3D returns TRUE. FALSE is returned if the stack is empty.

See also
PushTransformation3D

LoadTransformation3D

Function
Loads a 3D transformation matrix.

Syntax
void LoadTransformation3D (MATRIX m);

Remarks
LoadTransformation3D replaces the 3D object transformation stack top by the matrix m. The current stack
top is discarded.

Return value
None.

See also
PushTransformation3D

SetView3D

Function
Sets a 3D viewer's view transformation.

Syntax
BOOL SetView3D (int hview, float vx, float vy, float vz, float rx, float ry, float rz, float twist);

Remarks
SetView3D sets the 3D viewer hview's viewing transformation matrix according to the viewer position (vx,
vy, vz),    a view reference point (rx, ry, rz), and the twist angle.

Return value
On success, SetView3D returns TRUE. On error, it    returns FALSE.

See also
SetPolarView

SetPolarView

Function
Sets 3D view transformation based on polar coordinates.

Syntax
BOOL SetPolarView (int hview, float cx, float cy, float cz, float dist, float azim, float inc, float twist);

Remarks
SetPolarView sets the 3D viewer hview's view transformation according to the reference center (cx, cy, cz),
the distance dist from the reference center to the eye postition, and the three orientation angles azim, inc,
and twist.

Return value
On success, SetPolarView returns TRUE. On error, it    returns FALSE.

See also
SetView3D

SetPerspective

Function
Sets perspective projection of a 3D viewer.

Syntax
BOOL SetPerspective (int hview, float fovy, float aspect, float front, float back);

Remarks
SetPersperspective sets 3D viewer hview's perspective projection matrix according to the field of view
angle fovy, aspect ratio aspect, front and back clipping panes.

Return value
On success, SetPerspective returns TRUE. On error, it    returns FALSE.

See also
SetProjection3D

SetProjection3D

Function
Sets projection of a 3D viewer.

Syntax
BOOL SetProjectin3D (int hview, float left, float right, float bottom, float top, float front, float back, BYTE
mode);

Remarks
SetProjection3D sets 3D viewer hview's projection according to the viewing box defined by the prarameters
left, right, bottom, top, front, and back. mode defines the projection mode which is one of the following
values.
VL_PERSPECTIVE
VL_ORTHOGONAL

Return value
On success, SetProjection3D returns TRUE. On error, it    returns FALSE.

See also
SetPerspective

SetViewport

Function
Sets a viewer's viewport.

Syntax
BOOL SetViewport (int hview, RECT port);

Remarks
SetViewport sets viewer hview's viewport to the rectangle port in display coordinates.

Return value
On success, SetViewport returns TRUE. On error, it    returns FALSE.

See also
GetViewport

SetView2D

Function
Sets a 2D viewer's view transformation.

Syntax
BOOL SetView2D (int hview, float x, float y, float angle);

Remarks
SetView2D sets 2D viewer hview's    view transformation according to the center coordinates (x,y), and the
rotation angle.

Return value
On success, SetView2D returns TRUE. On error, it    returns FALSE.

See also
SetProjecton2D

SetProjection2D

Function
Sets 2D viewer's projection transformation.

Syntax
BOOL SetProjection2D (int hview, float left, float right, float bottom, float top);

Remarks
SetProjection2D sets 2D viewer hview's projection transformation according to the two corner points of the
projection rectangle defined by left, right, bottom, and top.

Return value
On success, SetProjection2D returns TRUE. On error, it    returns FALSE.

See also
SetView2D

SetWindow

Function
Sets 2D viewer's view and projection transformations.

Syntax
BOOL SetWindow (int hview, float x1, float y1, float x2, float y2);

Remarks
SetWindow sets 2D viewer hview's view transformation and projection transformation according to the two
corner points in the world coordinates (x1, y1) and (x2, y2)..

Return value
On success, SetWindow returns TRUE. On error, it    returns FALSE.

See also
SetView2D, SetProjection2D

MoveViewer3D

Function
Moves a 3D viewer.

Syntax
BOOL MoveViewer3D (int hview, float dx, float dy, float dz, BOOL viewcoord);

Remarks
MoveViewer3D moves the 3D viewer hview by the amount dx, dy, dz in the view coordinate system. If
viewcoord is TRUE, the move is about the view coordinate system. If viewcoord is FALSE, the move is
about the world coordinate system.

Return value
On success, MoveViewer3D returns TRUE. On error, it    returns FALSE.

See also
RotateViewer3D, ZoomViewer3D

RotateViewer3D

Function
Rotates a 3D viewer.

Syntax
BOOL RotateViewer3D (int hview, float yaw, float pitch, float twist, BOOL viewcoord);

Remarks
RotateViewer3D rotates the 3D viewer hview in the view coordinate system according to angles of yaw,
pitch, and twist in degrees. If viewcoord is TRUE, the rotation is about the view coordinate system. If
viewcoord is FALSE, the rotation is about the world coordinate system.

Return value
On success, RotateViewer3D returns TRUE. On error, it    returns FALSE.

See also
MoveViewer3D, ZoomViewer3D

ZoomViewer3D

Function
Zooms a 3D viewer.

Syntax
BOOL ZoomViewer3D (int hview, float zoom);

Remarks
ZoomViewer3D zooms the 3D viewer hview by the factor zoom.

Return value
On success, ZoomViewer3D returns TRUE. On error, it    returns FALSE.

See also
MoveViewer3D, RotateViewer3D

MoveViewer2D

Function
Moves a 2D viewer.

Syntax
BOOL MoveViewer2D (int hview, float dx, float dy, BOOL viewcoord);

Remarks
MoveViewer2D moves a 2D viewer hview by the amount dx and dy. If viewcoord is TRUE, the move is
about the view coordinate system. If viewcoord is FALSE, the move is about the world coordinate system.

Return value
On success, MoveViewer2D returns TRUE. On error, it    returns FALSE.

See also
RotateViewer2D, ZoomViewer2D

RotateViewer2D

Function
Rotates a 2D viewer.

Syntax
BOOL RotateViewer2D (int hview, float angle, BOOL viewcoord);

Remarks
RotateViewer2D rotates the 2D viewer hview by angle in degrees in the view coordinate system. If
viewcoord is TRUE, the rotation is about the view coordinate system. If viewcoord is FALSE, the rotation is
about the world coordinate system.

Return value
On success, RotateViewer2D returns TRUE. On error, it    returns FALSE.

See also
MoveViewer2D, ZoomViewer2D

ZoomViewer2D

Function
Zooms a 2D viewer.

Syntax
BOOL ZoomViewer2D (int hview, float zoom);

Remarks
ZoomViewer2D zooms the 2D viewer hview by the factor zoom.

Return value
On success, ZoomViewer2D returns TRUE. On error, it    returns FALSE.

See also
MoveViewer2D, RotateViewer2D

ViewerLocation

Function
Gets a 3D viewer's position.

Syntax
BOOL ViewerLocation (int hview, float FAR *vx, float FAR *vy, float FAR *vz);

Remarks
ViewerLocation gets the 3D viewer hview's position in the world coordinate system.

Return value
On success, ViewerLocation returns TRUE. On error, it    returns FALSE.

See also
SetView3D

ViewerDirection

Function
Gets a 3D viewer's direction.

Syntax
BOOL ViewerDirection (int hview, float FAR *x, float FAR *y, float FAR *z);

Remarks
ViewerDirection gets the 3D viewer hview's view direction in the world coordinate system .

Return value
On success, ViewerDirection returns TRUE. On error, it    returns FALSE.

See also
SetView3D, SetPolarView

ViewerField3D

Function
Gets a 3D viewer's view field.

Syntax
BOOL ViewerField3D (int hview, float *left, float *right, float *bottom, float *top, float *front, float
*back);

Remarks
ViewerField3D gets the 3D viewer hview's view field defined by left, right, bottom, top, front, and back in
the view coordinate system.

Return value
On success, ViewerField3D returns TRUE. On error, it    returns FALSE.

See also
SetPespective, SetProjection3D

ViewerField2D

Function
Gets a 2D viewer's viewing field.

Syntax
short ViewerField2D (int hview, float *left, float *right, float *bottom, float *top);

Remarks
ViewerField2D gets the 2D viewer hview's viewing field defined by left, right, bottom, and top in the view
coordinate system.

Return value
On success, ViewerField2D returns 0. On error, it    returns a nonzero value.

See also
SetProjection2D

Rotate3D

Function
Rotates on the current transformation matrix.

Syntax
void Rotate3D (float angle, char axis);

Remarks
Rotate3D performs a 3D object rotation about axis. It changes the current 3D transformation matrix (the
stack top). axis can be 'x;, 'y', or 'z'. angle is measured in degrees.

Return value
None

See also
Translate3D, Scale3D

AxleRotate3D

Function
Rotates about an arbitrary axis.

Syntax
void AxleRotate (float angle, VECTOR point, VECTOR direction);

Remarks
AxleRotate3D performs a 3D object transformation of rotating by angle about the axis defined by point and
direction.

Return value
None.

See also
Rotate3D

Translate3D

Function
Translates on the current 3D transformation matrix.

Syntax
void Translate3D (float x, float y, float z);

Remarks
Translate3D performs a 3D object transformation on the current 3D transformation matrix by a translation
of amount (x, y, z).

Return value
None.

See also
Rotate3D, Scale3D

TranslateTo3D

Function
Translates to a point.

Syntax
void TranslateTo3D (float x, float y, float z);

Remarks
TranslateTo3D performs the object transformation of translating the origin to (x, y , z).

Return value
None.

See also
Translate3D

Scale3D

Function
Scales on the current 3D transformation matrix.

Syntax
void Scale3D (float sx, float sy, float sz);

Remarks
Scale3D scales on the current 3D transformation matrix (the stack top) in the x , y, and z directions by the
amount sx, sy, and sz.

Return value
None.

See also
Translate3D, Rotate3D

PointScale3D

Function
Scales about a point.

Syntax
void PointScale3D (float sx, float sy, float sz, VECTOR point);

Remarks
PointScale3D performs the object transformation of scaling by sx, sy, sz about point.

Return value
None.

See also
Scale3D

Stretch3D

Function
Stretchs along a line.

Syntax
void Stretch3D (float factor, VECTOR point, VECTOR direction);

Remarks
Stretch3D performs a 3D objection transformation of stretching by the amount factor about the plane
defined by point and direction.

Return value
None.

See also
Shear3D

Shear3D

Function
Performs a 3D shear operation.

Syntax
void Shear3D (float factor, VECTOR point, VECTOR normal, VECTOR direction);

Remarks
Shear3D performs the object transformation of shearing by the amount factor about the plane defined by
point and normal along direction.

Return value
None.

See also
Stretch3D

Mirror3D

Function
Performs a mirror reflection.

Syntax
void Mirror3D (VECTOR point, VECTOR normal);

Remarks
Mirror3D performs a 3D object transformation of mirror reflection about the plane defined by point and
normal.

Return value
None.

See also
Shear3D

Translate2D

Function
Translates on the current 2D transformation matrix.

Syntax
void Translate2D (float x, float y);

Remarks
Translate2D performs a 2D objec translation of the amount (x, y).

Return value
None.

See also
Rotate2D, Scale2D

TranslateTo2D

Function
Translates the origin.

Syntax
void TranslateTo2D (float x, float y);

Remarks
TranslateTo2D translates the origin to (x, y) in the world coordinate system.

Return value
None.

See also
Translate2D

Rotate2D

Function
Rotates on the current 2D transformation matrix.

Syntax
void Rotate2D (float angle);

Remarks
Rotate2D rotates on the current 2D transformation matrix (the stack top)    by the amount angle.

Return value
None.

See also
Translate2D, Scale2D

PointRotate2D

Function
Rotates about a point.

Syntax
void PointRotate (float angle, float x, float y);

Remarks
PointRotate2D performs a rotation about the point (x, y) of the amount angle.

Return value
None.

See also
Rotate2D

Scale2D

Function
Scales on the current 2D transformation matrix.

Syntax
void Scale2D (float sx, float sy);

Remarks
Scale2D scales on the current 2D transformation matrix (the stack top) in the x and y directions by the
amount (sx, sy).

Return value
None.

See also
Translate2D, Rotate2D

PointScale2D

Function
Scales about a point.

Syntax
void PointScale2D (float x, float y, float sx, float sy);

Remarks
PointScale2D performs a 2D scaling about the point (x, y) of factors sx and sy in x and y directions
respectively.

Return value
None.

See also
Scale2D

Shear2D

Function
Performs a 2D shear transformation.

Syntax
void Shear2D (float factor, float x, float y, float angle);

Remarks
Shear2D performs a 2D object shear transformation. (x,y) is the center of transformation. The axis
perpendicular to the direction of shearing is defined by angle. The amount of shearing is given by factor.

Return value
None.

See also
Translate2D, Scale2D, Rotate2D

Stretch2D

Function
Performs a stretch object transformation.

Syntax
void Stretch2D (float factor, float x, float y, float angle);

Remarks
Stretch2D performs a 2D stretch object transformation about the point (x, y) and along the line defined by
angle.

Return value
None.

See also
Shear2D

Mirror2D

Function
Performs a mirror reflection.

Syntax
void Mirror2D (float x, float y, float angle);

Remarks
Mirror2D performs a mirror reflection about the line defined by the point (x, y) and angle.

Return value
None.

See also
Translate2D, Rotate2D, Scale2D

GetViewerName

Function
Gets the name of a viewer.

Syntax
BOOL GetViewerName (int hview, LPSTR name);

Remarks
GetViewerName gets the name string of the viewer hview.

Return value
On success, GetViewerName returns TRUE. On error, it    returns FALSE.

See also
DisplayViewerName, SetViewerName

SetViewerName

Function
Sets the name of a viewer.

Syntax
BOOL SetViewerName (int hview, LPSTR name);

Remarks
SetViewerName sets the name string of the viewer hview.

Return value
On success, SetViewerName returns TRUE. On error, it    returns FALSE.

See also
DisplayViewerName, GetViewerName

GetViewport

Function
Gets the position of a viewport.

Syntax
BOOL GetViewport (int hview, LPRECT port);

Remarks
GetViewport gets the viewer hview's viewport position in display coordinates to port.

Return value
On success, GetViewport returns TRUE. On error, it    returns FALSE.

See also
SetViewport

CreateLight

Function
Creates a light

Syntax
int CreateLight (LPSTR name, int type);

Remarks
CreateLight creates a light with given name and type. The available light type type is one of the following.
VL_POINTLIGHT point light with rays in all directions
VL_DISTLIGHT distant light with parallel rays
VL_SPOTLIGHT spot light with restricted angle

Return value
CreateLight returns the id of the newly created light. It returns 0 if    it fails to create the light.

See also
DeleteLight

DeleteLight

Function
Deletes a light.

Syntax
void DeleteLight (int light);

Remarks
DeleteLight deletes the light.

Return value
None.

See also
CreateLight

CopyLight

Function
Copies the setting of a light.

Syntax
BOOL CopyLight (int lightdst, int lightsrc);

Remarks
CopyLight copies the settings of lightsrc to lightdst.

Return value
CopyLight returns TRUE if successful. On error, it returns FALSE

See also
CreateLight, DeleteLight

SelectLight

Function
Selects a light.

Syntax
BOL SelectLight (int light);

Remarks
SelectLight selects light as the current light.

Return value
SelectLight returns TRUE if successful. On error it returns FALSE.

See also
CreateLight

SwitchLight

Function
Switchs a light.

Syntax
int SwitchLight (int light, int action);

Remarks
SwitchLight turns the light on or off. action is one of the following.
TRUE turn on the light
FALSE turn off the light
VL_INQUIRE inquire the status

Return value
Previous light status.

See also
CreateLight

CreateLModel

Function
Creates a light model

Syntax
int CreateLModel (LPSTR name);

Remarks
CreateLModel creates a light model with given name.

Return value
Light model id. 0 if it fails.

See also
DeleteLModel

DeleteLModel

Function
Deletes a light model.

Syntax
void DeleteLModel (int lmodel);

Remarks
DeleteLModel deletes a light model.

Return value
None.

See also
CreateLModel

CopyLModel

Function
Copies the settings of a light model.

Syntax
BOOL CopyLModel (int lmodeldst, int lmodelsrc);

Remarks
CopyLModel copies the setting of lmodelsrc to lmodeldst.

Return value
CopyLModel returns TRUE if successful. On error it returns FALSE.

See also
CreateLModel, DeleteLModel

SelectLModel

Function
Selects a light model.

Syntax
int SelectLModel (int lmodel);

Remarks
SelectLModel selects lmodel as the current light model.

Return value
Previous light model.

See also
CreateLModel

CreateMaterial

Function
Creates a material

Syntax
int CreateMaterial (LPSTR name);

Remarks
CreateMaterial creates a material with given name.

Return value
Material id. 0 if it fails.

See also
DeleteMaterial

DeleteMaterial

Function
Deletes a material.

Syntax
void DeleteMaterial (int material);

Remarks
DeleteMaterial deletes the material.

Return value
None.

See also
CreateMaterial

CopyMaterial

Function
Copies the settings of a material.

Syntax
BOOL CopyMaterial (int materaldst, int materialsrc);

Remarks
CopyMaterial copies the settings of materialsrc to materialdst.

Return value
CopyMaterail returns TRUE if successful. On error it returns FALSE.

See also
CreateMaterial, DeleteMaterial

SelectMaterial

Function
Selects a material.

Syntax
int SelectMaterial (int materail);

Remarks
SelectMaterail selects material as the current material.

Return value
Previous material.

See also
CreateMaterial

ShadingOption

Function
Sets shading options.

Syntax
int ShadingOption (int lmid, int option, int value);

Remarks
ShadingOption sets a shading option. lmid is the id of the lighting model. The available options and their
values are the following
VL_SHADINGMETHOD VL_WIREFRAME

VL_SOLIDFILL
VL_FLATSHADE
VL_PHONESHADE
VL_GOURAUDSHADE

VL_SHADINGMODEL VL_PHONEMODEL
VL_SPECULARMODEL

The following options take Boolean values
VL_LOCALVIEWER
VL_BACKFACEREMOVAL
VL_DEPTHBUFFER
VL_TWOSIDESHADE
VL_COUNTCLOCKWISE

Return value
Previous value of the option.

See also
ShadingParameter

ShadingParameter

Function
Sets shading parameters.

Syntax
BOOL ShadingParameter (int lmid, int parameter, BOOL inquire, VECTOR value);

Remarks
ShadingParameter sets or inquires shading parameters. lmid is the id of the lighting model. inquire is set to
TRUE for inquiry of a shading parameter. parameter is one of the following
VL_ATTENUATION
VL_LIGHTLOCATION
VL_LIGHTDIRECTION

Return value
TRUE if successful. FALSE on error.

See also
ShadingOption

ShadingColor

Function
Sets shading colors.

Syntax
COLORREF ShadingColor (int id, int type, COLORREF color);

Remarks
ShadingColor sets various shading colors. id is the id of    light, light model, or material. type is one of the
following.
VL_BACKGROUNDCOLOR
VL_MATERIALDIFFUSE
VL_MATERIALAMBIENT
VL_MATERIALEMISSION
VL_MATERIALSPECULAR
VL_LIGHTCOLOR
VL_LIGHTAMBIENT

Return value
Previous color.

See also
ShadingFactor

ShadingFactor

Function
Sets shading factors.

Syntax
float ShadingFactor (int id, int type, float factor);

Remarks
ShadingFactor sets the intensity factors of various shading colors. id is the id of the material, light, or light
model. type can be one of the following.
VL_AMBIENTREFLECT
VL_DIFFUSEREFLECT
VL_SPECULARREFLECT
VL_EMISSIONSTRENGTH
VL_SHININESS
VL_LIGHTINTENSITY
VL_AMBIENTATTRIB
VL_SPOTLIGHTANGLE
VL_SPOTLIGHTSPREAD
VL_GLOBEAMBIENT

Return value
Previous value.

See also
ShadingColor

BeginDoubleBuffer

Function
Starts double buffer mode.

Syntax
BOOL BeginDoubleBuffer (HDC FAR *phdc, int hview);

Remarks
BeginDoubleBuffer starts the double buffer mode for the viewer hview. phdc is a    pointer to the handle of
the device context used by the viewer. After calling this function, all drawing function calls to the viewer
will be redirected to a buffer. The buffer can be displayed by calling UpdateDoubleBuffer.

Return Value
On success, BeginDoubleBuffer returns TRUE. On error, it    returns FALSE.

See also
EndDoubleBuffer, UpdateDoubleBuffer

EndDoubleBuffer

Function
Ends double buffer mode.

Syntax
BOOL EndDoubleBuffer (HDC FAR *phdc, int hview);

Remarks
EndDoubelBuffer ends the double buffer mode and releases the memory allocated for the buffer.

Return Value
On success, EndDoubleBuffer returns TRUE. On error, it    returns FALSE.

See also
BeginDoubleBuffer, UpdateDoubleBuffer

UpdateDoubleBuffer

Function
Displays the buffered image in the double buffer mode.

Syntax
BOOL UpdateDoubleBuffer (HDC hdc, int hview);

Remarks
UpdateDoubleBuffer displays the buffered image in the double buffer mode. The content of the buffer is
copied to the actual device context.

Return Value
On success, UpdateDoubleBuffer returns TRUE. On error, it    returns FALSE.

See also
BeginDoubleBuffer, EndDoubleBuffer

SetDepthBuffer

Function
Sets the depth buffer.

Syntax
BOOL SetDepthBuffer (int hview);

Remarks
SetDepthBuffer sets a depth buffer (z-buffer) for the viewer hview.

Return value
SetDepthBuffer returns TRUE if successful. On error, it returns FALSE.

See also
ClearDepthBuffer

ClearDepthBuffer

Function
Clears the depth buffer.

Syntax
void ClearDepthBuffer (WORD value);

Remarks
ClearDepthBuffer clears the depth buffer with the given value.

Return value
None.

See also
SetDepthBuffer

FreeDepthBuffer

Function
Frees depth buffer.

Syntax
BOOL FreeDepthBuffer (int hview);

Remarks
FreeDepthBuffer frees the depth buffer for the viewer hview.

Return value
FreeDepthBuffer returns TRUE if successful. On error it returns FALSE

See also
SetDepthBuffer

SetPoint2D

Function
Sets a 2D point.

Syntax
void SetPoint2D (LPPOINT2D point, float x, float y);

Remarks
SetPoint2D assigns the value of the 2D point with coordinates x and y.

Return value
None.

See also
SetPoint2H

SetPoint2H

Function
Sets a 2D homogeneous point.

Syntax
void SetPoint2H (LPPOINT2H point, float x, float y, float w);

Remarks
SetPoint2H assigns the value of the point with the homogeneous coordinates x, y, w.

Return value
None.

See also
SetPoint2D

SetPoint3D

Function
Sets a 3D point.

Syntax
void SetPoint3D (LPPOINT3D point, float x, float y, float z);

Remarks
SetPoint3D assigns the value of the 3D point with coordinates x, y, z.

Return value
None.

See also
SetPoint3H

SetPoint3H

Function
Sets a 3D homogeneous point.

Syntax
void SetPoint3H (LPPOINT3H point, float x, float y, float z, float w);

Remarks
SetPoint3H assigns the value of the point with the homogeneous coordinates x, y, z, w.

Return value
None.

See also
SetPoint3D

MoveTo2D

Function
Moves to a new display position.

Syntax
void MoveTo2D (HDC hdc, float x, float y);

Remarks
MoveTo2D moves the current 2D display position to (x, y) in the current viewer.

Return value
None.

See also
LineTo2D

RMoveTo2D

Function
Moves the current display point relatively.

Syntax
void RMoveTo2D (HDC hdc, float dx, float dy);

Remarks
RMoveTo2D moves the display position by increments dx and dy.

Return value
None.

See also
MoveTo2D

LineTo2D

Function
Draws a 2D line to a new position.

Syntax
void LineTo2D (HDC hdc, float x, float y);

Remarks
LineTo2D draws a 2D line from the current 2D display position to (x, y) in the current viewer with the
current pen.

Return value
None.

See also
MoveTo2D

RLineTo2D

Function
Draws a line relatively.

Syntax
void RLineTo2D (HDC hdc, float dx, float dy);

Remarks
RLineTo2D draws a line from the current display position to the point with increments dx and dy.

Return value
None.

See also
LineTo2D

Line2D

Function
Draws a 2D line segment.

Syntax
void Line2D (HDC hdc, float x1, float y1, float x2, float y2);

Remarks
Line2D draws a 2D line from (x1, y1) to (x2, y2) in the current 2D viewer with the current pen.

Return value
None.

See also
LineTo2D, MoveTo2D

RLine2D

Function
Draws a line.

Syntax
void RLine2D (HDC hdc, float x, float y, float dx, float dy);

Remarks
RLine2D draws a line from the point (x, y) to (x+dx, y+dy) with the current pen.

Return value
None.

See also
Line2D

MoveTo2H

Function
Moves the current 2D display position.

Syntax
void MoveTo2H (HDC hdc, float x, float y, float w);

Remarks
MoveTo2H moves the 2D diaplay position to the point with homogeneous coordinates (x, y, w).

Return value
None.

See also
MoveTo2D

LineTo2H

Function
Draws a line.

Syntax
void LineTo2H (HDC hdc, float x, float y, float w);

Remarks
LineTo2H draws a line from the current display position to the point given by the homogeneous coordinates
(x, y ,w);

Return value
None.

See also
LineTo2D

Line2H

Function
Draws a line.

Syntax
void Line2H (HDC hdc, float x1, float y1, float w1, float x2, float y2, float w2);

Remarks
Line2H draws a line from point with homogeneous coordinate (x1, y1, w1) to (x2, y2, w2).

Return value
None.

See also
Line2D

Polyline2D

Function
Draws a 2D polyline.

Syntax
void Polyline2D (HDC hdc, int type, LPCOORD points, short n);

Remarks
Polyline2D draws a 2D polyline defined by points of coordinate type type in the current 2D viewer with
current pen. count is the number of vertices.

Return value
None.

See also
Polygon2D

ClosedPolyline2D

Function
Draws a closed polyline.

Syntax
void ClosedPolyline2D (HDC hdc, int type, LPCOORD points, int count);

Remarks
ClosedPolyline2D draws a closed polyline. The vertices of the polyline is given by points. type specifies the
coordinate type of points and the number of vertices is count.

Return value
None.

See also
Polyline2D

Polygon2D

Function
Draws a    2D polygon.

Syntax
void Polygon2D (HDC hdc, int type, LPCOORD points, int count);

Remarks
Polygon2D draws a 2D polygon defined by points of coordinate type type in the current 2D viewer with
current pen for edges and current brush for interior. count is the number of points.

Return value
None.

See also
Polyline2D

PolyPolygon2D

Function
Draws a polypolygon.

Syntax
void PolyPolygon2D (HDC hdc, int type, LPCOORD points, LPINT polycount, int count);

Remarks
PolyPolygon2D draws a polypolygon. The vertices are given by points and their coordinate type is given by
type.

Return value
None.

See also
Polygon2D

Mark2D

Function
Draws a 2D mark.

Syntax
void Mark2D (HDC hdc, real x, real y, int hsize, int vsize, int marktype);

Remarks
Mark2D draws a mark of given marktype at    (x, y) with horizontal size hsize and vertical size vsize.
marktype is one of the following.
VL_NULLMARK
VL_CIRCLEMARK
VL_CROSSMARK
VL_XMARK
VL_TRIANGLEMARK
VL_BOXMARK
VL_DIAMONDMARK
VL_HEXAGONMARK

Return value
None.

See also
PolyMark2D

PolyMark2D

Function
Draws a sequence of marks.

Syntax
void PolyMark2D (HDC hdc, int type, LPCOORD point, int n, int hsize, int vsize, int marktype);

Remarks
PolyMark2D draws a sequence of n marks of marktype at points with horizontal size hsize and vertical size
vsize. marktype is one of the following.
VL_NULLMARK
VL_CIRCLEMARK
VL_CROSSMARK
VL_XMARK
VL_TRIANGLEMARK
VL_BOXMARK
VL_DIAMONDMARK
VL_HEXAGONMARK

Return value
None.

See also
Mark2D

Arrow2D

Function
Draws an arrow.

Syntax
void Arrow2D (HDC hdc, float x, float y, float u, float v, float r, float l, float w, int type);

Remarks
Arrow2D draws a 2D arrow of length r from (x, y) in the direction (u, v). l and w are the length and width
of the arrow head. The arrow type is one of the following.
VL_NULLARROW
VL_OPENARROW
VL_CLOSEDARROW

Return value
None.

See also
Mark2D

MarkPosition2D

Function
Draws a mark.

Syntax
void MarkPosition2D (HDC hdc, float x, float y, float size, int type);

Remarks
MarkPosition2D draws a mark at (x, y). The size is specified in terms of object coordinates. type defines the
type of marks which can take the following values.
VL_CROSSHAIR cross hair mark
VL_ORIGIN two arrows from the origin

Return value
None.

See also
Mark2D

Net2D

Function
Draws a 2D net.

Syntax
void Net2D (HDC hdc, int type, LPCOORD points, int m, int n);

Remarks
Net2D draws a m by n 2D net with the vertices pointed by points. The coordinate type of point is type.

Return value
None.

See also
Polygon2D

Rectangle2D

Function
Draws a 2D rectangle.

Syntax
void Rectangle2D (HDC hdc, float x1, float y1, float x2, float y2);

Remarks
Rectangle2D draws a 2D rectangle defined by two corner points (x1, y1) and    (x2, y2) in the current 2D
viewer with current pen for edge and current brush for interior.

Return value
None.

See also
Polygon2D

Disk2D

Function
Draws a 2D elliptic disk.

Syntax
void Disk2D (HDC hdc, float x, float y, float angle, float a, float b);

Remarks
Disk2D draws a 2D elliptic disk with center (x, y), the half major axis a and the half minor axis b in    the
current 2D viewer with current pen for edge and current brush for interior. The disk is rotated by angle.

Return value
None.

See also
Arc2D

Arc2D

Function
Draws a 2D elliptic arc.

Syntax
void Arc2D (HDC hdc, float x, float y, float angle, float a, float b, float start, float end);

Remarks
Arc2D draws a 2D arc in the current 2D viewer with the current pen color. (x,y) is the center of the ellipse
and angle is the angle of the major axis. a and b are the half lengths of the major and minor axes. The arc is
drawn from the angle start to end. All angles are measured in degrees.

Return Value
None.

See also
Disk2D

Wedge2D

Function
Draws a 2D elliptic wedge.

Syntax
void Wedge2D (HDC hdc, float x, float y, float angle, float a, float b, float start, float end);

Remarks
Wedge2D draws a 2D elliptic wedge (arc with the two radial lines) in the current 2D viewer with the
current pen color for the edges and the current brush color for the interior. (x,y) is the center of the ellipse,
angle is the angle of the major axis of the ellipse, and a and b are the half lengths of the major and minor
axes. The arc are drawn from angle start to end measured in degrees.

Return Value
None.

See also
Bow2D

Bow2D

Function
Draws a 2D elliptic bow.

Syntax
void Bow2D (HDC hdc, float x, float y, float angle, float a, float b, float start, float b);

Remarks
Bow2D draws a 2D elliptic bow (arc with the chord) in the current 2D viewer with current pen for edge and
current brush for interior. (x,y) is the center of the ellipse, angle is the angle of the major axis of the ellipse,
and a and b are the half lengths of the major and minor axes. The arc are drawn from angle start to end
measured in degrees.

Return value
None.

See also
Wedge2D

Ngon2D

Function
Draws a 2D n sided polygon.

Syntax
void Ngon2D (HDC hdc, float x, float y, float angle, float a, float b, short n);

Remarks
Ngon2D draws a 2D n sided polygon in the current 2D viewer with current pen for edge and current brush
for interior. The polygon can be inscribed in an ellipse and the vertices form equal angles about the center.
(x, y) is the center, angle is the initial angle, and a and b are the half lengths of the major and minor axes. .

Return value
None.

See also
Polygon2D

Star2D

Function
Draws a 2D n point star.

Syntax
void Star2D (HDC hdc, float x, float y, float angle, float a, float b, int n);

Remarks
Star2D draws a 2D n point star in    the current 2D viewer with current pen for edge and current brush for
interior. The star can be inscribed in an ellipse and the vertices form equal angles about the center. (x, y) is
the center, angle is the initial angle, and a and b are the half lengths of the major and minor axes.

Return value
None.

See also
Polygon2D

Flower2D

Function
Draws a 2D n leaf flower.

Syntax
void Flower2D (HDC hdc, float x, float y, float angle, float a, float b, int n, float ratio);

Remarks
Flower2D draws a 2D n leaf flower in the current 2D viewer with current pen for edge and current brush
for interior. The vertices of the flower lie on two ellipses. (x, y) is the center, angle is the initial angle, and a
and b are the half lengths of the major and minor axes of an ellipse. The other ellipse is obtained by scaling
of ratio.

Return value
None.

See also
Star2D

MoveTo3D

Function
Moves current 3D display position.

Syntax
void MoveTo3D (HDC hdc, float x, float y, float z);

Remarks
MoveTo3D moves current 3D display position to (x, y, z) in the current 3D viewer.

Return value
None.

See also
LineTo3D

RMoveTo3D

Function
Moves display position relatively.

Syntax
void RMoveTo3D (HDC hdc, float dx, float dy, float dz);

Remarks
RMoveTo3D moves the 3D display position relative to the current position by the amount dx, dy, dz.

Return value
None.

See also
MoveTo3D

LineTo3D

Function
Drawsa 3D line to a new position.

Syntax
void LineTo3D (HDC hdc, float x, float y, float z);

Remarks
LineTo3D draws a 3D line from the current display position to (x, y, z) in the current viewer with current
pen.

Return value
None.

See also
MovoTo3D

RLineTo3D

Function
Draws a line segment.

Syntax
void RLineTo3D (HDC hdc, float dx, float dy, float dz);

Remarks
RLineTo3D draws a line segment from the current position to the point with increments dx, dy, dz.

Return value
None.

See also
LineTo3D

Line3D

Function
Draws a 3D line segment.

Syntax
void Line3D (HDC hdc, float x1, float y1, float z1, float x2, float y2, float z2);

Remarks
Line3D draws a 3D line from the point (x1, y1, z1) to (x2, y2, z2) in the current 3D viewer with current pen.

Return value
None.

See also
LineTo3D, MovoTo3D

RLine3D

Function
Draws a line.

Syntax
void RLine3D (HDC hdc, float x, float y, float z, float dx, float dy, float dz);

Remarks
RLine3D draws a line from the point (x, y, z) to (x+dx, y+dy, z+dz).

Return value
None.

See also
Line3D

MoveTo3H

Function
Moves the 3D display position.

Syntax
void MoveTo3H (HDC hdc, float x, float y, float z, float w);

Remarks
MoveTo3H moves the display position to the point with homogeneous coordinates (x, y, z, w).

Return value
None.

See also
MoveTo3D

LineTo3H

Function
Draws a line segment.

Syntax
void LineTo3H (HDC hdc, float x, float y, float z, float w);

Remarks
LineTo3H draws a line from the current display position to the point with homogeneous coordinates (x, y, z,
w).

Return value
None.

See also
LineTo3D

Line3H

Function
Draws a line.

Syntax
void Line3H (HDC hdc, float x1, float y1, float z1, float w1, float x2, float y2, float z2, float w2);

Remarks
Line3H draws a line from point with homogeneous coordinate (x1, y1, z1, w1) to (x2, y2, z2, w2).

Return value
None.

See also
Line3D

MarkPosition3D

Function
Draws a 3D position mark.

Syntax
void MarkPosition3D (HDC hdc, float x, float y, float z, float size, int marktype);

Remarks
MarkPosition3D draws a 3D position mark of size at point (x, y, z) in the current 3D viewer with red, green,
and blue for the three axes. marktype is one of the following.
VL_CROSSHAIR
VL_ORIGIN

Return value
None.

See also
Mark3D

Polyline3D

Function
Draws a 3D polyline.

Syntax
void Polyline3D (HDC hdc, int type, LPCOORD points, int count);

Remarks
Polyline3D draws a 3D polyline defined by points of coordinate type type in the current 3D viewer with
current pen. count is the number of vertices.

Return value
None.

See also
Polygon3D

ClosedPolyline3D

Function
Draws a closed polyline.

Syntax
void ClosedPolyline3D (HDC hdc, int type, LPCOORD points, int count);

Remarks
ClosedPolyline3D draws a closed polyline. The vertices are pointed by points. The coordinate type of
points is type and the number of vertices is count. The polyline is closed automatically but the interior is not
filled.

Return value
None.

See also
Polyline3D

Polygon3D

Function
Draws a 3D polygon.

Syntax
void Polygon3D (HDC hdc, LPPOINT3D point, short n);

Remarks
Polygon3D draws a 3D polyline defined by points of coordinate type type in the current 3D viewer with
current pen the edges and current brush for the interior. count is the number of vertices.

Return value
None.

See also
Polyline3D

PolyPolygon3D

Function
Draws a polypolygon.

Syntax
void PolyPolygon3D (HDC hdc, int type, LPCOORD points, LPINT polycount, int count);

Remarks
PolyPolygon3D draws a sequence of 3D polygons. The vertices are pointed by points. The coordinate type
of points is type. The numbers of vertices in the polygons are in polycount and the number of polygons is
count.

Return value
None.

See also
Polygon3D

Rectangle3D

Function
Draws a Rectangle.

Syntax
void Rectangle3D (HDC hdc, float x1, float y1, float x2, float y2);

Remarks
Rectangle3D draws a rectangle defined by two corner points (x1, y1) and (x2, y2) in the current 3D viewer
with current pen for the edge and current brush for the interior.

Return value
None.

See also
Polygon3D

Mark3D

Function
Draws a 3D mark.

Syntax
void Mark3D (HDC hdc, float x, float y, float z, int hsize, int vsize, int marktype);

Remarks
Mark3D draws a mark of given marktype at    (x, y) with horizontal size hsize and vertical size vsize that are
given in screen coordinates. marktype is one of the following.
VL_NULLMARK
VL_CIRCLEMARK
VL_CROSSMARK
VL_XMARK
VL_TRIANGLEMARK
VL_BOXMARK
VL_DIAMONDMARK
VL_HEXAGONMARK

Return value
None.

See also
PolyMark3D

PolyMark3D

Function
Draws a sequence of marks.

Syntax
void PolyMark3D (HDC hdc, int type, LPCOORD point, int n, int hsize, int vsize, int head);

Remarks
PolyMark3D draws a sequence of n marks of marktype at points with horizontal size hsize and vertical size
vsize. marktype is one of the following.
VL_NULLMARK
VL_CIRCLEMARK
VL_CROSSMARK
VL_XMARK
VL_TRIANGLEMARK
VL_BOXMARK
VL_DIAMONDMARK
VL_HEXAGONMARK

Return value
None.

See also
Mark3D

Arrow3D

Function
Draws an arrow.

Syntax
void Arrow3D (HDC hdc, float x, float y, float z, float u, float v, float w, float r, float l, float w, int type);

Remarks
Arrow3D draws an arrow of length r from (x, y, z) in the direction (u, v, w). l and w are the length and width
of the arrow head. The arrow type is one of the following.
VL_NULLARROW
VL_OPENARROW
VL_CLOSEDARROW

Return value
None.

See also
Mark3D

Net3D

Function
Draws a 3D net.

Syntax
void Net3D (HDC hdc, int type, LPCOORD points, int m, int n);

Remarks
Net3D draws a m by n net with the vertices pointed by points. The coordinate type of points is type.

Return value
None.

See also
Polygon3D

Wedge3D

Function
Draws an elliptic wedge.

Syntax
void Wedge3D (HDC hdc, float x, float y, float angle, float a, float b, float start, float end);

Remarks
Wedge3D draws an elliptic wedge (arc with the two radial lines) in the current 3D viewer with the current
pen color for the edges and the current brush color for the interior. (x,y) is the center of the ellipse, angle is
the angle of the major axis of the ellipse, and a and b are the half lengths of the major and minor axes. The
arc are drawn from angle start to end measured in degrees.

Return Value
None.

See also
Bow3D

Bow3D

Function
Draws an elliptic bow.

Syntax
void Bow3D (HDC hdc, float x, float y, float angle, float a, float b, float start, float end);

Remarks
Bow3D draws a 3D elliptic bow (arc with the chord) in the current 3D viewer with current pen for edge and
current brush for interior. (x,y) is the center of the ellipse, angle is the angle of the major axis of the ellipse,
and a and b are the half lengths of the major and minor axes. The arc are drawn from angle start to end
measured in degrees.

Return value
None.

See also
Wedge3D

Ring

Function
Draws a part of ring.

Syntax
void Ring (HDC hdc, float rtop, float rbot, float thick, float h, float a, float b, float ratio);

Remarks
Ring draws a ring. rtop and rbot are the radii of    the top and bottom cirlces. h is the height and thick is the
thickness of the wall. a and b are the start and end angles. ratio defines the scaling ratio of y direction over
x direction.

Return value
None.

See also
Tube

Tube

Function
Draws a tube.

Syntax
void Tube (HDC hdc, float rtop, float rbot, float thick, float h);

Remarks
Tube draws a tube which is a special ring consisting of full circles. rtop and rbot are the radii of the top and
bottom circles. thick is the thickness of the tube wall and h is the height.

Return value
None.

See also
Ring

Prism

Function
Draws a 3D prism.

Syntax
void Prism (HDC hdc, LPPOINT3D base, LPPOINT3D top, int n);

Remarks
Prism draws a 3D prism of    defined by the n points base and    n points top.

Return value
None.

See also
Pyramid

Pyramid

Function
Draws a pyramid.

Syntax
void Pyramid (HDC hdc, LPPOINT3D base, int n, LPPOINT3D tip);

Remarks
Pyramid draws a pyramid in the current 3D viewer. The apex is specified by tip. The n base vertices is in   
base.

Return Value
None.

See also
Prism

Star3D

Function
Draw a n point star.

Syntax
void Star3D (HDC hdc, float x, float y, float angle, float a, float b, short n);

Remarks
Star3D draws an n point star on the xy plane in    the current 3D viewer with current pen for edge and
current brush for interior. The star can be inscribed in an ellipse and the vertices form equal angles about
the center. (x, y) is the center, angle is the initial angle, and a and b are the half lengths of the major and
minor axes.

Return value
None.

See also
Flower3D

Flower3D

Function
Draw a 3D n point flower.

Syntax
void Flower3D (HDC hdc, float x, float y, float z, float h, float r1, float r2, short n);

Remarks
Flower3D draws a n leaf flower on the xy plane in the current 3D viewer with current pen for edge and
current brush for interior. The vertices of the flower lie on two ellipses. (x, y) is the center, angle is the
initial angle, and a and b are the half lengths of the major and minor axes of an ellipse. The other ellipse is
obtained by scaling of ratio.

Return value
None.

See also
Star3D

Cube

Function
Draws a 3D rectangular box.

Syntax
void Cube (HDC hdc, float w, float l, float h);

Remarks
Cube draws a 3D rectangular box defined by width w, length l, and height h.

Return value
None.

See also
Rectangle3D

Sphere

Function
Draws a sphere.

Syntax
void Sphere (HDC hdc, float r);

Remarks
Sphere draws a sphere of radius r.

Return value
None.

See also
Cylinder, Cone

Cone

Function
Draws a    cone.

Syntax
void Cone (HDC hdc, float a, float b, float h);

Remarks
Cone draws a vertical elliptic cone defined by the half lengths of major and minor axes a and b and the
height h.

Return value
None.

See also
Cylinder

Cylinder

Function
Draws a cylinder.

Syntax
void Cylinder (HDC hdc, float a, float b, float h);

Remarks
Cylinder draws a vertical elliptic cylinder defined by the half lengths of the major and minor axes a and b
and the height h.

Return value
None.

See also
Cone

ShadePolygon

Function
Draws a polygon with shading.

Syntax
BOOL ShadePolygon (HDC hdc, VECTOR normal, int type, LPCOORD vertices, int count);

Remarks
ShadePolygon draws a polygon in the current 3D viewer with shading. The polygon is defined by count
vertices of coordinate type type. normal is the normal of the polygon for shading. If normal is NULL, the
polygon normal will be calculated.

Return value
ShadePolygon returns TRUE if successful. On error it returns FALSE.

See also
ShadePolyPolygon

ShadePolyPolygon

Function
Draws a polypolygon with shading.

Syntax
BOOL ShadePolyPolygon (HDC hdc, VECTOR normal, int type, LPCOORD vertices, LPINT polycount,
int count);

Remarks
ShadePolyPolygon draws a polypolygon in the current 3D viewer with shading. The count polygons are
defined by polycount vertices of coordinate type type. normal is the normal of the polygon for shading. If
normal is NULL, the polygon normal will be calculated.

Return value
ShadePolyPolygon returns TRUE if successful. On error it returns FALSE.

See also
ShadePolygon

BezierCurve2D

Function
Draws a 2D Bezier curve.

Syntax
void BezierCurve2D (HDC hdc, int type, LPCOORD cp);

Remarks
BezierCurve2D draws a Bezier curve in the current 2D viewer. The curve is specified by four control points
cp of corrdinate type type.

Return value
None.

See also
BSplineCurve2D, HermitCurve2D, NURBSCurve2D

HermitCurve2D

Function
Draws a 2D Hermit curve.

Syntax
void HermitCurve2D (HDC hdc, int type, LPCOORD cp);

Remarks
HermitCurve2D draws a Hermit curve in the current 2D viewer. The curve is specified by two control
points and two tangent vectors in cp of corrdinate type type.

Return value
None.

See also
BezierCurve2D, BSplineCurve2D,    NURBSCurve2D

BSplineCurve2D

Function
Draws a 2D uniform non-rational B-Spline curve.

Syntax
void BSplineCurve2D (HDC hdc, int type, LPCOORD cp, int n);

Remarks
BezierCurve2D draws a    unform non-rational B-Spline curve in the current 2D viewer. The curve is
specified by    n control points cp of corrdinate type type. The first and the last knots of the spline are of
multiplicity 3 and all othe knots are simple and uniformly spaced.

Return value
None.

See also
BezierCurve2D, HermitCurve2D, NURBSCurve2D

NURBSCurve2D

Function
Draws a 2D NURBS curve.

Syntax
void NURBSCurve2D(HDC hdc, int type, LPCOORD2D cp, int n, float FAR *knots);

Remarks
NURBSCurve2D draws a    non-uniform rational B-spline (NURBS) curve in the current 2D viewer. The
curve is specified by n control points cp of corrdinate type type and n+2 knots.

Return value
None.

See also
BezierCurve2D, BSplineCurve2D, HermitCurve2D

BSplineCurveClosed2D

Function
Draws a 2D closed uniform non-rational B-Spline curve.

Syntax
void BSplineCurveClosed2D (HDC hdc, int type, LPCOORD cp, int n);

Remarks
BezierCurveClosed2D draws a closed    unform non-rational B-Spline curve in the current 2D viewer. The
curve is specified by n control points cp of corrdinate type type. The last control point is considered to be
followed by the first control point to form a closed curve. All    knots are simple and uniformly spaced.

Return value
None.

See also
NURBSCurveClosed2D

NURBSCurveClosed2D

Function
Draws a closed 2D NURBS curve.

Syntax
void NURBSCurveClosed2D(HDC hdc, int type, LPCOORD cp, int n, float FAR *knots);

Remarks
NURBSCurveClosed2D draws a closed non-uniform rational B-spline (NURBS) curve in the current 2D
viewer. The curve is specified by n control points    cp of corrdinate type type and n+1 knots.

Return value
None.

See also
BSplineCurveClosed2D

CatmullRomSpline2D

Function
Draws a Catmull Rom spline curve.

Syntax
void CatmullRomSpline2D (HDC hdc, int type, LPCOORD cp, int n);

Remarks
CatmullRomSpline2D draws a Catmull Rom spline curve in the current 2D viewer. The curve is defined by
n control points    cp of corrdinate type type.

Return value
None.

See also
BSplineCurve2D

BezierCurve3D

Function
Draws a 3D Bezier curve.

Syntax
void BezierCurve3D(HDC hdc, int type, LPCOORD cp);

Remarks
BezierCurve3D draws a Bezier curve in the current 3D viewer. The curve is specified by four control points
cp of corrdinate type type.

Return value
None.

See also
BSplineCurve3D, HermitCurve3D, NURBSCurve3D

HermitCurve3D

Function
Draws a 3D Hermit curve.

Syntax
void HermitCurve3D (HDC hdc, int type, LPCOORD cp);

Remarks
HermitCurve3D draws a Hermit curve in the current 3D viewer. The curve is specified by two control
points and two tangent vectors    cp of corrdinate type type.

Return value
None.

See also
BezierCurve3D, BSplineCurve3D,    NURBSCurve3D

BSplineCurve3D

Function
Draws a 3D uniform non-rational B-Spline curve.

Syntax
void BSplineCurve3D (HDC hdc, int type, LPCOORD cp, int n);

Remarks
BezierCurve3D draws a    unform non-rational B-Spline curve in the current 3D viewer. The curve is
specified by n control points cp of corrdinate type type. The first and the last knots are of multiplicity 3 and
all othe knots are simple and uniformly spaced.

Return value
None.

See also
BezierCurve3D, HermitCurve3D, NURBSCurve3D

NURBSCurve3D

Function
Draws a 3D NURBS curve.

Syntax
void NURBSCurve3D (HDC hdc, int type, LPCOORD cp, int n, float FAR *knots);

Remarks
NURBSCurve3D draws a    non-uniform rational B-spline (NURBS) curve in the current 3D viewer. The
curve is specified by n control points cp of corrdinate type type and n+2 knots.

Return value
None.

See also
BezierCurve3D, BSplineCurve2D, HermitCurve3D

BezierSurface

Function
Draws a Bezier surface.

Syntax
BOOL BezierSurface (HDC hdc, int type, LPCOORD cp, int ns, int nt);

Remarks
BezierSurface draws a Bezier surface in the current 3D viewer. The surface is specified by an array of 4 by
4 control points    cp of corrdinate type type. The surface is drawn with ns sections in s direction and nt
sections in the t direction.

Return value
TRUE if successful and FALSE if fails.

See also
BSplineSurface, HermitSurface, NURBSSurface

HermitSurface

Function
Draws a Hermit surface.

Syntax
BOOL HermitSurface(HDC hdc, int type, LPCOORD cp, int ns, int nt);

Remarks
HermitSurface draws a Hermit surface in the current 3D viewer. The surface is specified by 4 by 4 control
points cp of corrdinate type type. The surface is drawn with ns sections in s direction and nt sections in the t
direction.

Return value
TRUE if successful and FALSE if fails.

See also
BezierSurface, BSplineSurface,    NURBSSurface

BSplineSurface

Function
Draws a uniform non-rational B-Spline surface.

Syntax
BOOL BSplineSurface(HDC hdc, int type, LPCOORD cp, int n1, int n2, int ns, int nt);

Remarks
BSplineSurface draws a    unform non-rational B-Spline surface in the current 3D viewer. The surface is
specified by n1 by n2 control points cp of corrdinate type type . The first and the last knots in each direction
are of multiplicity 3 and all othe knots are simple and uniformly spaced. The surface is drawn with ns
sections in s direction and nt sections in the t direction for each rectangular patch.

Return value
TRUE if successful and FALSE if fails.

See also
BezierSurface, HermitSurface,    NURBSSurface

NURBSSurface

Function
Draws a NURBS surface.

Syntax
void NURBSSurface(HDC hdc, LPCOORD cp, float FAR *sknots, float FAR *tknots, int n1, int n2, int ns,
int nt);

Remarks
NURBSSurface draws a    non-uniform rational B-spline (NURBS) surface in the current 3D viewer. The
surface is specified by n1 by n2 control points cp of corrdinate type type and with n1+2 sknots and n2+2
tknots. The surface is drawn with ns sections in s direction and nt sections in the t direction for each
rectangular patch.

Return value
TRUE if successful and FALSE if fails.

See also
BezierSurface, BSplineSurface, HermitSurface

CoonsPatch

Function
Draws a Coons patch.

Syntax
BOOL CoonsPatch (HDC hdc, int type, LPCOORD cp, int nv, int nv);

Remarks
CoonsPatch draws a Coons patch in current 3D viewer. The surface is specified by 2(nu+nv) boundary
control points cp of corrdinate type type.

Return value
TRUE if successful and FALSE if fails.

See also
BezierSurface, BSplineSurface

Ellipsoid

Function
Draws an ellipsoid

Syntax
BOOL Ellipsoid (HDC hdc, float a, float b, float c);

Remarks
Ellipsoid draws an ellipsoid in the current 3D viewer.

Return value
Ellipsoid returns TRUE if successful. On error it return FALSE.

See also
Sphere

HemiSphere

Function
Draws a hemisphere.

Syntax
BOOL HemiSphere (HDC hdc, float r, float h);

Remarks
HemiSphere draws a section of sphere in the current 3D viewer. r is the radius of the sphere and h is the
height of the section.

Return value
HemiSphere returns TRUE if successful. On error it return FALSE.

See also
Sphere

SolidStar

Function
Draws a solid star.

Syntax
BOOL SolidStar (HDC hdc, int n, float a, float b, float h);

Remarks
SolidStar draws a solid n star in the current 3D viewer. The half lengths of the major and minor axes of the
ellipse are a and b. h is the height of the star.

Return value
SolidStar returns TRUE if successful. On error it return FALSE.

See also
SolidFlower

SolidFlower

Function
Draws a solid flower.

Syntax
BOOL SolidFlower (HDC hdc, int n, float ratio, float a, float b, float h);

Remarks
SolidFlower draws a n leaf solid flower in the current 3D viewer. The half lengths of the major and minor
axes are a and b. The other ellipse is obtained by scaling of ratio. h is the height of the solid flower.

Return value
SolidFlower returns TRUE if successful. On error it return FALSE.

See also
SolidStar

Wedge

Function
Draws a solid wedge.

Syntax
BOOL Wedge (HDC hdc, float a, float b, float h, float start, float end);

Remarks
Wedge draws a solid elliptic wedge in the current 3D viewer. The half axes of the ellipse are a and b. h is
the height of the wedge. The wedge is drawn from angle start to end.

Return value
Wedge returns TRUE if successful. On error it return FALSE.

See also
Wedge2D

Frustum

Function
Draws a solid frustum.

Syntax
BOOL Frustum (HDC hdc, float bw, float bl, float tw, float tl, float h);

Remarks
Frustum draws a frustum in the current 3D viewer. The bottom rectangle is bw by bl and the top rectangle
tw by tl. h is the height.

Return value
Frustum returns TRUE if successful. On error it return FALSE.

See also
Cube

Ridge

Function
Draws a ridge.

Syntax
BOOL Ridge (HDC hdc, float w, float l, float h, float r);

Remarks
Ridge draws a ridge in the current 3D viewer. The bottom rectangle is w by l. h is the height and r is the
length of the top ridge.

Return value
Ridge returns TRUE if successful. On error it return FALSE.

See also
Frustum

Parabola

Function
Draws a parabola.

Syntax
void Parabola (HDC hdc, float x1, float x2);

Remarks
Parabola draws a parabola curve in the current 2D viewer. x1 and x2 specity the start and end x values.

Return value
None.

See also
Hyperbola

Hyperbola

Function
Draws a hyperbola.

Syntax
void Hyperbola (HDC hdc, float y1, float y2);

Remarks
Hyperbola draws a branch of    hyperbola curve in the current 2D viewer. y1 and y2 specify the start and end
y values.

Return value
None.

See also
Parabola

OscillatoryWave

Function
Draws a sine wave.

Syntax
void OscillatoryWave (HDC hdc, float a, float b, float x1, float x2);

Remarks
OscillatoryWave draws a oscillaroty wave with equation y=exp(-ax)sin (bx) from x1 to x2 in the current 2D
viewer.

Return value
None.

See also
Catenary

Catenary

Function
Draws a catenary.

Syntax
void Catenary (HDC hdc, real x1, real x2);

Remarks
Catenary draws a catenary in the current 2D viewer. x1 and x2 specify the start and end x values.

Return value
None.

See also
OscillatoryWave

Spiral2D

Function
Draws a 2D spiral.

Syntax
void Spiral2D (HDC hdc, float angle);

Remarks
Spiral2D draws a 2D spiral in the current 2D viewer. The spiral is drawn from angle 0 to angle.

Return value
None.

See also
Spiral3D

Cycloid

Function
Draws a cycloid.

Syntax
void Cycloid (HDC hdc, float angle);

Remarks
Cycloid draws a cycloid from 0 to angle in the current 2D viewer.

Return value
None.

See also
Epicycloid, Hypocycloid

Epicycloid

Function
Draws an epicycloid.

Syntax
void Epicycloid (HDC hdc, float a, float b);

Remarks
Epicycloid draws an epicycloid in the current 2D viewer. The equation is given by
x = (a+b) cos t - a cos ((a+b) t / a)
y = (a+b) sin t - a sin ((a+b) t / a)

Return value
None.

See also
Cycloid

Cardioid

Function
Draws a cardioid.

Syntax
void Cardioid (HDC hdc);

Remarks
Cardioid draws a cardioid in the current 2D viewer.

Return value
None.

See also
Cycloid

Hypocycloid

Function
Draws a hypocycloid.

Syntax
void Hypocycloid (HDC hdc, float a, float b);

Remarks
Hypocycloid draws a hypocycloid in the current 2D viewer. The equation is given by
x = (a-b) cos t + b cos ((a-b) t / b)
y = (a-b) sin t - b sin ((a-b) t / b)

Return value
None.

See also
Cycloid, Epicycloid

Lemniscate

Function
Draws a lemniscate.

Syntax
void Lemniscate (HDC hdc, float a);

Remarks
Lemniscate draws a lemniscate in the current 2D viewer. The polar equation is given by
r = a sqrt(2cos 2t)

Return value
None.

See also
Cardioid

Rose

Function
Draws a rose.

Syntax
void Rose (HDC hdc, int n, float a);

Remarks
Rose draws a rose curve in the current 2D viewer. The polar equation is given by
r = a cos nt

Return value
None.

See also
Lemniscate

Spring

Function
Draws a spring.

Syntax
void Spring (HDC hdc, int n, float radius, float height);

Remarks
Spring draws n rounds a spring of given radius and height.

Return value
None.

See also
Spiral3D

Spiral3D

Function
Draw a 3D spiral curve.

Syntax
Spiral3D (HDC hdc, float angle, float height);

Remarks
Spiral3D draws a 3D spiral curve of height from 0 to angle in the current 3D viewer.

Return value
None

See also
Spring

EllipticParaboloid

Function
Draws a elliptic paraboloid.

Syntax
void EllpticParaboloid (HDC hdc, float height, float count1, float count2);

Remarks
EllipticParaboloid draws an elliptic paraboloid height in the current 3D viewer. The surface is drawn with
count1 pieces in the circular sections and count2 pieces in the vertical direction.

Return value
None.

See also
HyperbolicParaboloid

Hyperboloid1

Function
Draws a hyperboloid of one sheet.

Syntax
void Hyperboloid1 (HDC hdc, float z1, float z2, int count1, int count2);

Remarks
Hyperboloid1 draws a hyperboloid of one sheet in the current 3D viewer. The surface is drawn from z1 to
z2 with count1 pieces in the circular sections and count2 pieces in the vertical direction.

Return value
None.

See also
Hyperboloid2

Hyperboloid2

Function
Draws a hyperboloid of two sheet.

Syntax
void Hyperboloid2 (HDC hdc, float height, int count1, int count2);

Remarks
Hyperboloid2 draws a hyperboloid of two sheets in the current 3D viewer. The surface is drawn with
count1 pieces in the circular sections and count2 pieces in the vertical direction.

Return value
None.

See also
Hyperboloid1

HyperbolicParaboloid

Function
Draws a hyperbolic paraboloid.

Syntax
void HyperbolicParaboloid (HDC hdc, float x1, float x2, float y1, float y2, int count1, int count2);

Remarks
HyperbolicParaboloid draws a hyperbolic parabolid in the current 3D viewer. The surface is drawn from x1
to x2 and from y1 to y2 with count1 by count2 patchs.

Return value
None.

See also
EllipticParaboloid

ImageMap2D

Function
Maps an image to a 2D object.

Syntax
BOOL ImageMap2D (HDC hdc, HGLOBAL hdib, int type, LPCOORD vertices);

Remarks
ImageMap2D maps a bitmap image in the 2D viewer. hdib is a handle to a device independent image. The
four corner points of the image are vertices of coordinate type.

Return value
ImageMap2D returns TRUE if successful. On error it returns FALSE.

See also
ImageMap3D

ImageMap3D

Function
Maps an image to a 3D object.

Syntax
BOOL ImageMap3D (HDC hdc, HGLOBAL hdib, int type, LPCOORD vertices);

Remarks
ImageMap3D maps a bitmap image in the 3D viewer. hdib is a handle to a device independent image. The
four corner points of the image are vertices of coordinate type.

Return value
ImageMap3D returns TRUE if successful. On error it returns FALSE.

See also
ImageMap2D

SolidTexture

Function
Sets solid texture.

Syntax
BOOL SolidTexture (int texture);

Remarks
SolidTexture sets the solid textures to be rendered on the objects. The following texture are available.
VL_NULL
VL_WOODGRAIN
VL_MARBLE.
VL_GRANITE

Return value
SolidTexture returns TRUE if successful. On error it returns FALSE.

See also
ShadingOption

SetFont

Function
Sets current TrueType font.

Syntax
BOOL SetFont (const LPLOGFONT lplf);

Remarks
SetFont sets the current font to the logic font pointed by lplf.

Return value
SetFont returns TRUE is successful. On error it returns FALSE.

See also
DrawString

TextParameter

Function
Sets 3D font's characteristics.

Syntax
float TextParameter (int parameter, float value);

Remarks
SetFont3D sets font parameters to value for DrawString. parameter is one of the following.
VL_TEXT_TAB
VL_TEXT_HEIGHT
VL_TEXT_ASPECT
VL_TEXT_THICKNESS

Return value
Previous value of the parameter.

See also
DrawString

DrawString

Function
Draws a string of 3D text.

Syntax
BOOL DrawString (HDC hdc, LPSTR string, int mode);

Remarks
DrawString draws a string of text in given mode. The current TrueType font is used to rendering. mode is a
combination of the following flags.
VL_2DTEXT
VL_SOLIDTEXT
VL_HORIZONTAL
VL_VERTICAL

Return value
DrawString returns TRUE if successful. On error it returns FALSE.

See also
SetFont

