
vxBase™

Copyright © 1991 - 1993
by vxBase Systems

Visual Basic
xBase Functions for Windows 3.1

vxBase is Shareware, not freeware. After a thirty day evaluation
period, if you continue to use vxBase, you are required to register the
product and include a license fee of $59.95 plus $5.00 Shipping and
Handling (North America) by check, money order, Visa, or Mastercard.
Registration Information may be found at the end of this document. The
License fee will entitle you to a registration code (to be rid of the
opening nagware) and the latest version of the software.

If you distribute vxBase with your Visual Basic application, you
must distribute an unregistered copy of the software unless you purchase
a developer distribution license.

Developer Distribution Licenses
You may distribute an unlimited number of copies of vxBase with your

application by purchasing a developer distribution license for $195.00
(less the shareware registration fee if already registered). This
license entitles you to a printed copy of the manual, the latest version
of the software, and a run time only version of vxbase.dll which is
distributed to the end user. See the last page in this document for
ordering details.

Please read the License Agreement and Limited Warranty found at the
end of this manual before you begin to use vxBase.

Manuals
A printed copy of this manual is available for $20.00 to users who

do not purchase the developer distribution license.

Requirements
Windows 3.1 and Visual Basic 2.0 or greater are required to run the

vxBase sample applications.

Release Notes
Release 3.07 August 11, 1993

vxBase was written in C by Terry Orletsky. Address inquiries and bug
reports (preferably Dr. Watson along with a listing of the offending
code) to

Terry Orletsky

vxBase Systems
#488, 9707 - 110 Street
Edmonton, Alberta, Canada
T5K 2L9

Phone (403) 488-8100
Fax (403) 488-8150
BBS (403) 488-8365
Compuserve I.D. 70524, 3723

Trademarks
Visual Basic, Windows, and MSC C/C++ are registered trademarks of
Microsoft Corporation.
Borland C++ is a registered trademark of Borland International.
Clipper is a registered trademark of Computer Associates.
Realizer is a trademark of Within Technologies, Inc.

Acknowledgements
Thanks to Ray Donahue of Hamden, CT for his three dimensional

controls, to Jonathan Zuck of UFI for his help and advice through the
Microsoft Basic forum on Compuserve, to Willy Koch of Geneva for his
French translation, to George Santamarina of Miami for his Spanish
translation, to Manfred Waldmeyer of Tornesch-Esingen, Germany for his
German translation, to Massimiliano Bellucci of Cecina, Italy for the
Italian translation, and to Kurt Rombaut of Lokeren, Belgium for the
Dutch.

Testing
vxBase was written and tested extensively on a Pegasus 386 33mhz

microcomputer with 8 megabytes of RAM, SVGA, and a 200 megabyte hard
disk running Dos 5.0, QEMM 6.0, Stacker 2.0, and Windows 3.1 in Enhanced
mode. The sample application has been installed and successfully run on
a variety of 286, 386, and 486 PCs.

Record and file locking routines were tested and verified on an 18-
station Novell 386 Netware LAN with 3 workstations running the sample
application concurrently.

If your hardware or LAN software differs significantly and vxBase
does not run properly, I would appreciate a Dr. Watson report sent by
fax, to the vxBase BBS, or to my Compuserve address.

vxBase Page 2

vxBase Table of Contents
Installation 7
Release History 9
Creating a vxBase Application 16
 Visual Basic 16
 Visual Basic and VXLOAD.EXE 16
 Realizer 17
 C 17
xBase Expressions, Functions and Operators 18
 Compatibilities and Incompatibilities 18
 Alias Names 18
 Conventions 19
 Expressions 19
 Constants 20
 Operators 21
 Numeric Operators 21
 Relational Operators 21
 Logical Operators 22
 Character (String) Operators 22
 Operator Precedence 22
 Functions 22
Sample Application 28
Tips and Techniques 33
 Entry and Exit Strategies 33
 Access to Form Menus 33
 Data Entry 33
 Parents for vxBase Windows 34
 Data Paths 34
 Controlling Multiple Windows 34
 Browse Windows 34
 DataWorks 35
MultiTasking and MultiUser Considerations 36
International Issues 40

Functions
vxAppendBlank 42
vxAppendFrom 43
vxAreaDbf 45
vxAreaNtx 47
vxBlobRead 48
vxBlobWrite 50
vxBof 52
vxBottom 53
vxBrowse 54
vxBrowseCase 61
vxBrowsePos 62
vxBrowseSetup 64
vxChar 67
vxClose 68
vxCloseAll 69
vxCloseNtx 70
vxCollate 71
vxCopy 73

vxBase Page 3

vxCopyStruc 74
Contents (continued)

vxCreateDbf 76
vxCreateNtx 78
vxCreateSubNtx 80
vxCtlBrowse 83
vxCtlBrowseMsg 87
vxCtlFormat 96
vxCtlGrayReset 98
vxCtlGraySet 99
vxCtlHwnd 100
vxCtlLength 101
vxCtlPenWidth 102
vxCtlStyle 103
vxDateFormat 105
vxDateString 106
vxDbfCurrent 107
vxDbfDate 108
vxDbfName 109
vxDeallocate 110
vxDecimals 111
vxDeleted 112
vxDeleteRange 113
vxDeleteRec 114
vxDescend 115
vxDouble 116
vxEmpty 117
vxEof 118
vxErrorTest 119
vxEval 122
vxEvalDouble 123
vxEvalLogical 124
vxEvalString 125
vxExactOff 126
vxExactOn 127
vxField 128
vxFieldCount 130
vxFieldName 131
vxFieldSize 132
vxFieldTrim 133
vxFieldType 134
vxFile 135
vxFilter 137
vxFilterReset 139
vxFormFrame 140
vxFound 141
vxGetVersion 142
vxGo 143
vxInit 145
vxInteger 146
vxIsMemo 147
vxIsPicture 148
vxIsRecLocked 149
vxIsSubNtx 150

vxBase Page 4

vxJoin 151
vxJoinNoAuto 154

Contents (continued)
vxJoinReset 155
vxLocate 156
vxLocateAgain 160
vxLockDbf 161
vxLocked 162
vxLockRecord 163
vxLockRetry 164
vxLong 166
vxMemCompact 167
vxMemoClear 168
vxMemoEdit 169
vxMemoPos 172
vxMemoRead 174
vxMemRealloc 176
vxMenuDeclare 178
vxMenuItem 179
vxNtxCurrent 183
vxNtxDeselect 184
vxNtxExpr 185
vxNtxName 186
vxNtxRecNo 187
vxNtxSubExpr 188
vxNumRecs 189
vxNumRecsFilter 190
vxNumRecsSub 191
vxPack 192
vxPictureImport 194
vxPicturePrint 196
vxPictureRead 197
vxPrinterDefault 201
vxPrinterEnum 202
vxPrinterSelect 204
vxRecall 205
vxRecNo 206
vxRecord 207
vxRecSize 209
vxReindex 210

 vxReplDate 212
vxReplDateString 214
vxReplDouble 215
vxReplInteger 216
vxReplLogical 218
vxReplLong 219
vxReplMemo 221
vxReplRecord 222
vxReplString 224
vxSeek 226
vxSeekFast 228
vxSeekSoft 230
vxSelectDbf 232
vxSelectNtx 234

vxBase Page 5

vxSetAlias 235
vxSetAnsi 238
vxSetCollate 241

Contents (continued)
vxSetDate 242
vxSetErrorCaption 243
vxSetErrorMethod 244
vxSetGauge 245
vxSetHandles 248
vxSetLanguage 249
vxSetLocks 250
vxSetMeters 251
vxSetRelation 252
vxSetSelect 255
vxSetString 256
vxSetupPrinter 257
vxSkip 258
vxSum 260
vxTableDeclare 261
vxTableField 266
vxTableFieldExt 268
vxTableReset 270
vxTestNtx 271
vxTop 273
vxTrue 274
vxUnlock 275
vxUseDbf 276
vxUseDbfAgain 278
vxUseDbfEX 279
vxUseDbfRO 280
vxUseNtx 282
vxWindowDereg 283
vxWrite 284
vxWriteHdr 285
vxZap 286

Error Messages 287
Software License Agreement 295
Limited Warranty 297
Ordering Information 298

vxBase Page 6

Installation from Diskette
If you receive a copy of vxBase from the manufacturer on diskette,

insert the diskette in drive A: or B: and run A:INSTALL or B:INSTALL
from the Program Manager Run Command.

The Visual Basic sample programs and files will be set up in
directory \VB\VXBTEST. It is strongly recommended that you do not change
this directory. A sample application written in C will be set up in
directory \VB\VXC.

The following files will be set up in your \WINDOWS directory:
vxbase.inf vxbase language and registration info
vxbase.dll the vxbase dynamic link library
vxbase.wri vxbase documentation in a Windows Write file
vxload.exe vxbase dll loader for use with Visual Basic

in Design Mode
unpack.exe unpacking utility in case you have to copy

any vxbase installation files directly from
the diskette

Installation from Compuserve, Other Bulletin Boards, or Shareware Houses
vxBase is distributed on bulletin boards or from Shareware Houses as

two compressed .ZIP files. The first ZIP file is vxbdoc.zip, which
contains the Windows Write file that you are reading now. It is
separated from the rest of vxBase to allow potential users to preview
the documentation before installing and actually using vxBase. This is
especially helpful to potential users who extract vxBase from a bulletin
board. They can evaluate the system from a documentation standpoint
before committing to down-loading the larger system.

The second ZIP (vxbase.zip) file contains the sample source code and
Visual Basic project files, vxbase.txt which includes all of the Visual
Basic declarations for the routines in the vxBase DLL and the vxBase DLL
itself.

If you are going to upload vxBase to a bulletin board, it must be
sent as it was received - in two ZIP files.

When the system ZIP file is decompressed, it contains a readme.doc
file which contains these installation instructions, and 3 more ZIP
files. These ZIP files are:

vxbdll.zip the vxBase DLL and vxload.exe
vxbtest.zip sample source code, sample database,

and vxbase.txt
 vxbezy.zip simple one database sample app

To install vxBase, first make a subdirectory under your \VB
directory named \VB\VXBTEST and copy the vxbtest.zip file there. Unzip
it and delete the vxbtest.zip file from your hard disk. To run the
sample application it is essential that these files be in directory \VB\
VXBTEST because this path is hard-coded into the sample code. If you
MUST put it somewhere else, you'll have to modify the file names in the
source code to reflect your new location. Also unzip vxbezy.zip into
the \VB\VXBTEST directory.

vxBase Page 7

Unzip vxbdll.zip and place the resulting files (VXBASE.DLL and
VXLOAD.EXE) in your \WINDOWS directory. The DLL must be in a directory
that Windows can find (i.e., in your path). The handiest place is in
your \WINDOWS directory.

To run the sample application see Creating a vxBase Application and
the Sample Application sections below.

vxBase Page 8

Release History

vxBase 1.00
November 10, 1991 original release

vxBase 2.00
October 9, 1992
28 Functions added:

vxBrowseSetup allows the user to fine tune the appearance of a
Browse table (both the old window browse and the
new vxCtlBrowse).

vxCtlBrowse allows the placement of a browse table in a form
multiline text box. Communication with the
browse table is enabled with the new
vxCtlBrowseMsg function. The Browse table no
longer has to be terminated when a selection is
made, etc. It also allows dynamic memo linking.
All standard events and procedures attached to
the text box may be used in normal fashion while
the browse is running.

vxCtlBrowseMsg communicates with a vxCtlBrowse. Messages the
programmer can pass are both interrogatory and
procedural (e.g., VXB_GETCURRENTREC extracts the
record number of the currently highlighted
record and VXB_REFRESH redraws the browse
starting at a different record number).

vxCtlFormat adds TEXT FORMATTING to vxBase.

vxCtlHwnd gets the window handle associated with a Visual
Basic control.

vxCtlPenWidth added to control the depth of Recessing and
Raising a control when using vxCtlStyle.

vxDbfCurrent reports the current database select area.

vxErrorTest added to test the result of a vxBase function
that uses the alternate error method set by
vxSetErrorMethod. Add VxErrorStruc type as
defined in the function reference.

vxGetVersion returns a string containing the current
vxBase version number.

vxLocate searches for a record from and including the
current record position that satisfies a logical
xBase expression. The search direction may be
specified.

vxBase Page 9

vxLocateAgain searches for a record from and NOT including
the current record position that satisfies a
logical xBase expression as defined by the last
vxLocate for the selected database. The search
direction may be specified.

vxFieldTrim returns a string representing the defined field
with trailing spaces removed.

vxNtxCurrent reports the current index select area.

vxNtxRecNo returns the ordinal position of the key in the
current index.

vxPrinterDefault returns a string describing the Windows default
printer in a format suitable for use by
vxPrinterSelect

vxPrinterEnum enumerates all printers on the system and
returns a string suitable for setting the
default printer with vxPrinterSelect.

vxPrinterSelect changes the default Windows printer. The printer
setup string must be in the same format as that
returned by vxPrinterEnum.

vxReplDateString replaces a field with a date string formatted as
per vxSetDate (default "mm/dd/yy"). This goes
hand in glove with dates input into text boxes
via vxCtlFormat or displayed with vxDateString.

vxReplRecord replaces the entire record buffer with the data
pointed to by a record typedef or string (see
vxRecord). BE CAREFUL with this function. No
data checks are implemented!

vxSeekFast speeds up seek times on Read Only files by 35%.

vxSetAlias allows field qualification in all vxBase field
functions.

vxSetErrorMethod allows an alternate method of trapping errors
found by vxBase. The normal method is to report
the error through a message box at run time. If
you use the alternate method, nothing is
reported (for most functions); instead, an error
structure is filled with information about the
error which may be extracted with the
vxErrorTest function.

vxSetMeters allows you to turn the analog meter bars
displayed by vxPack, vxReindex, and vxTestNtx on
or off (default is ON).

vxBase Page 10

vxSetRelation adds true relational capability to vxBase.

vxTableFieldExt added to provide column definitions to vxBrowse
when using vxSetRelation to add multi-file
fields on the same browse row.

International Functions Added
The following functions all deal with the problem of a database that

contains characters from the high end of the ANSI or OEM character sets,
which is commonplace if the database stores data in a language other
than English.

vxSetAnsi(FALSE) properly handles databases that were created
with a DOS based application (such as Clipper). These databases
are OEM databases. Characters with diacritical marks in the high end of
the OEM character collating sequence are NOT the same as the ANSI
characters. It is necessary for vxBase to translate the characters to
ANSI (both Windows and vxBase native mode) before they can be used in a
vxBase application. They also must be translated back again when they
are written.

The default value of vxSetAnsi is TRUE (no translation takes place).
If the database was created and is maintained by vxBase (or DataWorks),
and the database is going to be used exclusively by Windows
applications, vxSetAnsi should be TRUE.

vxCollate allows the programmer to create his own collating sequence
table (for EITHER an ANSI database or an OEM database). The OEM
character set in particular does not use any kind of logical collating
sequence for characters with diacritical marks. The ANSI table handles
these characters more intelligently - but its sequence is also incorrect
for some languages.

It is necessary to define a collating sequence table to properly
build an index that uses these characters.

vxSetCollate can toggle a defined collating table on or off.

vxBase 3.01
June 7, 1993

Changes made to Version 2.00
File open error when using vxSetupPrinter corrected.
vxFilterReset memory deallocation corrected.
vxBrowse creeping window corrected when using a parent window that

has no menu bar.
vxUseNtx consecutive calls now returns the correct, previous select

area and does not open the index file again.
vxBrowseSetup corrected to display user menus if system menus

disabled.
vxCtlStyle corrected to handle new Visual Basic 2.0 "graphical

objects" (e.g., labels).

vxBase Page 11

All SETTINGS cited as System Wide in the current documentation are
now local to the vxBase task. These settings include the following:
 vxCtlPenWidth
 vxSetAnsi
 vxSetCollate/vxCollate collating table
 vxSetDate
 vxSetErrorCaption
 vxSetErrorMethod
 vxSetLanguage
 vxSetLocks
 vxSetMeters
 vxSetString

If more than one vxBase task is running at the same time, the items
set by the functions above are now local to each concurrent task (e.g.,
vxBase in French and in English can be run on the same machine at the
same time).

Inconsistent index file lockup in multiuser mode when vxSeek
fails corrected.

DESCEND and vxDescend index algorithms changed to use 2s complement
instead of 1s complement arithmetic to convert defined descending keys
into the correct sequence. This makes the vxBase DESCEND index
compatible with CLIPPER.

NOTE: ALL DESCENDING INDEXES CREATED WITH VXBASE PRIOR TO THIS
RELEASE SHOULD BE REBUILT.

Memo soft returns from Clipper apps are now properly stripped on
European memos when vxSetAnsi is FALSE.

Dutch language support added.
The vxBase alternate error method now hooks in to Visual Basic ON

ERROR GOTO.
vxBrowse and vxCtlBrowse quick key displays and vertical scrolling

speeds have been increased by a factor of 2 to 3.
Memory leaks created by VB 2.0 string creation corrected by using

new function to create Visual Basic strings if version is 2.0 or
greater.

Max memo size now increased to 64k (was 32k).
Memo reading procedures changed to read 4k blocks instead of 64k

file chunks. This should speed memo reads and packs with memo files
considerably.

Memo reads no longer lock the memo file.
vxAppendFrom now appends memos and bitmaps. Restriction removed.
vxGo() passed with a zero record number now returns FALSE instead of

crashing.
Dbf files opened as Read Only with vxUseDbfRO no longer have their

index files locked when positioning to a specific record.
More elegant on screen edit within a vxBrowse or vxCtlBrowse table.
Initial memory allocation requirements reduced.
vxTop() on empty file now properly returns FALSE.
Dutch language support added.

vxBase Page 12

vxBase 3.00 18 New Functions
vxBlobRead read a binary large object that has been

attached to a memo field.

vxBlobWrite write a binary large object to a memo field
by passing a global memory handle.

vxCreateSubNtx create a permanent sub index that represents
a subset of records in the main database that
conform to some condition.

vxIsPicture determine whether a memo field holds a picture
(i.e., a blob or bitmap) or not.

vxIsSubNtx determine whether or not the defined index is
a sub index.

vxLockRetry set error message protocol for file/record in
use and also set lock try timeout value.

vxMemCompact perform memory compacting routines on Windows
global memory.

vxMemoClear remove a reference to a memo or a bitmap from
the dbf memo field.

vxMemoPos set initial size and position of a vxMemoEdit
window.

vxMemRealloc shrink the initial size of the vxBase memory
pool.

vxNtxSubExpr extract the conditional expression that controls
a sub index.

vxNumRecsFilter determine the number of records in a database
that pass a filter condition.

vxNumRecsSub determine the number of records in a sub index.

vxPictureImport import a bmp or rle picture file into a memo.

vxPictureRead read a bitmap from a memo file.

vxSetSelect turn auto database selection on or off.

vxUseDbfAgain open another instance of an already open dbf.

vxUseDbfEX open a database for exclusive use.

Release 3.03-3.07 Changes
Release 3.03 increased max filter string length to 1024 from 512.

Filters set in child files are now respected in vxSetRelation
chains.

vxBase Page 13

Release 3.04 corrected vxPack problem (640/1602 error) when every
record in the 64k read buffer was deleted.

Release 3.05 added function vxPicturePrint and the following
elements to the xBase expression parsing engine:

function ALLTRIM() trims right and left
functiom EMPTY() true if string is all spaces, blank date,

or 0 numeric value or .F. logical
operator ! equivalent to .NOT.
operator == exactly equal
not equal (equivalent to <>)
!= not equal (equivalent to <>)

Release 3.06 adds:
(1) sub function vxSetGauge allows the programmer to use his

own gauge controls in vxReindex, vxPack, etc.
(2) new vxCtlBrowseMsg messages VXB_GO, VXB_SKIP (see below).
(3) quasi-xBase function TIMEODAY(). TIMEODAY(val) converts a

number (either literal or contained in a numeric field) representing
minutes into a string representing the time of day (e.g., TIMEODAY(510)
= " 8:30 am").

(4) "Exit" item aded to vxMemoEdit window.
(5) minor positioning and scroll problems corrected in

vxCtlBrowse.
(6) xBase expressions that do not have their elements

separated by spaces now parse properly (e.g., (Y_N1.and.Y_N2) formerly
returned an error unless ".and." was separated from the field names by
spaces).

(7) memo overwrite caused by 3.02 changes corrected in 3.07.
3.07 also corrects an index key append problem with sub indexes and also
makes some minor changes to vxNumRecsSub and vxNtxRecNo.

vxBase Page 14

Compatibility Issues
With release 3.0, vxBase breaks away from strict xBase standards.

Bitmaps of course may only be retrieved and displayed using vxBase
functions. The header block of a subindex also differs from a standard
Clipper NTX index header block. New elements have been added that define
whether or not the index is a subindex and an area is used to hold the
conditional expression as well.

Release 5.2 of CA-Clipper changes the index header as well and also
changes the index locking scheme. vxBase NTX indexes ARE NOT COMPATIBLE
with Clipper 5.2 indexes. Indexes created and/or maintained with any
version of Clipper will NOT properly maintain a vxBase subindex.

Bitmaps and subindexes are specialty items requested by a great many
vxBase users. If compatibility is an issue with your application, it
would be best not to use these functions (although bitmaps may be safely
ignored; if the memo text returns "BIT*MAP" then it may be ignored in a
Clipper application).

vxBase Page 15

Creating a vxBase Application

SHARE.EXE
The program SHARE.EXE must be loaded at the workstation to run

vxBase. This is a WINDOWS 3.1 requirement!

Visual Basic
Your application requires the vxbase.txt file (which should be in

directory \vb\vxbtest if you followed the installation instructions)
placed in the Global module. You may simply wish to copy the Global
module from the sample application, which contains some useful
declarations from the WIN API, as well.

Visual Basic and VXLOAD.EXE
A utility program named vxload.exe is included with the vxbase DLL

and is normally installed in your \WINDOWS directory. This program is
for use with Visual Basic in Design Mode. vxBase maintains a single
memory pool for use by all concurrent vxBase applications. This memory
pool is attached to the FIRST program that calls a vxBase function.
Programmers testing their Visual Basic/vxBase programs by running them
in Design Mode have frequent program failures (syntax errors, etc.). In
Windows 3.0 we relied on a call to the vxDeallocate() function to detach
the vxBase memory pool from VB.EXE (i.e., Visual Basic running in Design
Mode). Whenever the test run ended, we could always rely on vxbase.dll
being unloaded. Under Windows 3.1, however, an ungraceful exit from a
test run does not always unload the DLL. Subsequent attempts at running
the program (or even another Visual Basic program) could end in failure
with a General Protection Fault in the memory allocation routines.
VXLOAD was written to overcome this problem.

Set up VXLOAD as a program item with its icon adjacent to the Visual
Basic icon and ALWAYS RUN IT prior to starting up Visual Basic. It runs
in an iconized state, consumes little extra memory, and controls the
vxBase memory pool. With VXLOAD running, any unexpected failures of your
test programs in Visual Basic design mode will never result in
compromised memory because VXLOAD controls it.

It is highly recommended that you also include two statements after
your call to vxInit() in your program initialization sequence:

Call vxSetLocks(FALSE)
j% = vxCloseAll()

The first statement will ensure that no file is locked if your
program terminates abnormally. Subsequent runs will not balk because of
a lock left in place due to the program terminating before its time.

The second statement will close all files left open by an abnormal
termination so you can start with a clean slate when you try again.

If you wish to use the default locking scheme in your running
application, remove the vxSetLocks command before creating your .EXE
file.

vxBase Page 16

Note that vxInit and vxDeallocate are still required elements in a
vxBase program.

 Also note that if you terminate Visual Basic with vxDeallocate never
having been called, an attempt to close VXLOAD from the VXLOAD system
menu will fail with a "Task Closure Sequence Error" because Visual Basic
as a task has never been deregistered from the vxBase task list
(vxDeallocate does this). If this happens to you, you may force an
unload of VXLOAD by restoring the VXLOAD window and selecting the EXIT
item from the VXLOAD menu.

Realizer
vxBase may be used with Realizer as well as Visual Basic. VB Strings

are not compatible with Realizer, however. See vxSetString and vxRecord
for an example of extracting data from a database using Realizer. VB
specific functions that use handles to Visual Basic controls (e.g.,
vxCtlLength, vxCtlStyle) will not work either.

C
vxBase functions may also be called from C languages (Borland C++,

Turbo C for Windows, Microsoft C/C++ 7.0, Microsoft Quick C, Microsoft
Visual C/C++). Contact the author for a sample application written in
Microsoft C/C++ 7.0. The sample includes the vxbase header file and
import library.

vxBase Page 17

xBase Expressions, Functions, and Operators

Compatibilities and Incompatibilities
vxBase dbf files (database files) and dbt files (memo files) are

compatible with those of Clipper, dBase III and III+, and any other
"xBase product". They are not compatible with dBase IV.

vxBase index files use Clipper standard .ntx files (Clipper version
5.1 and below). These indexes are more efficient both in speed and size
than traditional ndx files. vxBase again imposes one important
restriction. In the interests of speed and simplicity, all indexing
expressions must evaluate as strings.

vxBase sub indexes may be read by Clipper applications but they will
NOT be properly maintained by a Clipper application. vxBase indexes
built with the DESCEND() function are only compatible with Clipper
descending indexes with vxBase release 2.09 and above.

NOTE: current indexes you wish to use in a new vxBase application must
be converted if they contain numeric fields or date fields. Use the
STR() function to convert numeric fields to strings, and the DTOS()
function to convert date fields to strings within your index expression.

vxBase bitmaps and blobs (binary large objects) stored in memo files
will not interfere with Clipper memo functions. They will appear in a
Clipper memo as the string "BIT*MAP". You can test for this value in a
Clipper application and disallow editing. If the bitmap is overwritten
with Clipper memo text, it will of course be lost.

Alias Names
An alias name is an alternative method for indicating the database

that a field belongs to. vxBase uses integer select areas returned when
the file is opened to refer to a database and to select it as the
database of record. An alaias name (as a character string) may be
assigned to this integer with the vxSetAlias function. The alias is used
to access a field in an open database in a select area other than the
one currently selected (or to ensure that the correct database is
referenced no matter what the current database selection). vxBase will
not permit access to fields in a database open in a work area other than
the current selection unless an alias name is used.

xBase style alias names and alias names set with the vxSetAlias
function are supported within a vxBase xBase expression. The alias names
used must be set with vxSetAlias. File alias names are separated from
the field reference by "->" (classical xBase syntax) within an xBase
expression string. When alias names are used within vxBase functions
that refer to field names, a period delimiter is used instead (to
conform to Visual Basic syntax).

vxBase Page 18

For example,
 MasterDbf = vxUseDbf("cmaster.dbf")
 If vxSetAlias("master", MasterDbf) Then

 If Not vxEval("master->country = 'Canada'") Then
 MsgBox "Country does not exist"
 Else
 Country$ = vxField("master.country")
 End If
 End If

Conventions
This section and those following on Expressions, Constants,

Operators, and Functions refer to xBase conventions. xBase expressions
are used within vxBase to communicate with the xBase file via standard
xBase index expressions, filter strings, etc. These expressions are not
available directly from Visual Basic; rather, they are passed as
parameters to vxBase functions that do the low level work of translating
and validating the expressions.

For example, Newdate$ = DTOS(datefield) is illegal. Instead, the
xBase expression must be evaluated by the vxBase parser by passing the
expression as a character string parameter (either as a literal string
or as a string variable) in a vxBase function that takes xBase
expression parameters.

The following vxBase functions take xBase expressions as parameters:

vxCreateNtx vxJoin
vxEval vxLocate
vxEvalDouble vxSetRelation
vxEvalLogical vxTableField
vxEvalString vxTableFieldExt
vxFilter vxCtlBrowseMsg
vxCreateSubNtx

Program variables may not be used directly within an xBase
expression. For example, suppose you wish to build a filter expression
to display only records in a certain country. You would solicit the name
of the country from the user and store it in variable Country$. To build
a filter string suitable for passing to vxFilter, you would use the
following code (assuming the xBase field name is "country").

Filter$ = "country = upper('" + Country$ + "')"
Call vxFilter(Filter$)

If the user entered "Canada" and you stored it in Country$, the
content of Filter$ would be country = upper('Canada'), which is a valid
xBase expression.

Expressions
Expressions are character strings that consist of field names,

functions, constants, and operators that are formatted in conventional
xBase syntax. They are used for index expressions, filter expressions,
and expressions that control vxBrowse displays. The only difference
between vxBase expressions and conventional xBase expressions is in the
characters that delimit strings. vxBase only supports single or double
quotes; the traditional square bracket [] is not supported. Visual
Basic functions must not be included in a parameter passed to a vxBase

vxBase Page 19

function that requires an xBase expression.

Conventional xBase functions and operators that are supported by
vxBase are listed below. These and only these may be included in the
construction of an xBase expression.

An expression may be as simple as a single field name (e.g.,
cust_name) or as complicated as an IIF function which returns the result
of complex expressions (e.g., IIF(left(phone_num,1)=" ","No phone on
File",area_code+phone_num)).

The IIF example expressed in normal language would read as "If the
first character of the phone_num field is blank, output the phrase 'No
phone on file'; otherwise, output the area code plus the phone number".
This expression contains two functions (IIF() and LEFT()), two constants
(a space between the two quotation marks and the phrase "No phone on
file"), two field names (phone_num and area_code), and two operators
(the relational operator equal sign = and the string concatenation
operator plus sign +).

Expressions are used in index keys, filter definitions, definition
of beginning of file and end of file logic to a user table, in
statements used to join (or relate) one file to another, in statements
used to define the contents of a display column when creating a browse
table, and to return the results of logical, numeric, or character
expressions to the program when using the vxEvalXXX functions.

All expressions return a value of a specific type - either
character, numeric, date, or logical. In many cases, vxBase requires
that an expression return a value of a specific type. For example, when
defining a filter expression to limit the viewable records, the
expression must evaluate as logical (i.e., either TRUE or FALSE). A
conditional filter may be defined that limits a view to all customer
records that begin with the letter "A". This condition could be
expressed as LEFT(cust_name,1)="A". vxBase would interpret this as "If
the leftmost character of the field CUST_NAME is an "A", then display
the record". The presence of a relational operator (in this case, the
equal sign) generally denotes an expression that will evaluate as
logical.

Expressions may be entered in upper or lower case.

Constants
An expression may contain one or more numeric, character, or logical

constants. An expression which consists of a single constant is not very
useful. Constants are usually used within more complex expressions.

A numeric constant represents a number. For example, 4, 9.21, and -
26 are all numeric constants.

Character or string constants are always delimited with quotation
marks, either single or double. "This is a string", 'so is this', and
"John has 3 apples" are all character constants. A string that contains
either a double or single quotation mark must be delimited with the

vxBase Page 20

other mark. For example, "John's apple" is a valid string. 'John's
apple' is not a valid string. You will normally be passing constants
from the Visual Basic environment to vxBase. In this case, the normal
procedure would be to delimit the entire expression in double quotes and
any string constants that form part of the expression in single quotes.

Logical constants are represented by .TRUE. or .FALSE.. Note the
leading and trailing periods. .T. and .F. are valid abbreviations for
the logical constants and the letters must be bounded by periods on both
sides.

Operators
Operators are signs used to manipulate fields, constants, and the

results of functions. A plus sign (+) is used as an Add Operator in the
expression 4+5. Two numeric constants are added together to return the
numeric value 9.

Operators are type specific. For example, arithmetic operators must
act on numeric types. The Divide Operator (/) only acts on numeric
types. Some operators perform double duty. The Plus and Minus signs are
both arithmetic and string operators. vxBase determines the appropriate
operation according to the type of data being acted upon. The data types
on either side of a relational operator must be the same (i.e., strings
must be compared to strings and numbers must be compared to numbers).
Functions which change the data type may be used to convert operands for
use in relational expressions.

The only mixed operands allowed are involved in Date Arithmetic. A
numeric constant, field, or expression may be added to or subtracted
from a date type. Dates subtracted from dates yield a numeric type
(i.e., the number of days between two dates).

Numeric Operators
+ Addition
- Subtraction
* Multiplication
/ Division (divide by zero returns zero instead of crashing)
^ or ** Exponentiation
() Groups sets of numbers (evaluation order)

Relational Operators
= Equal to
Not equal to
!= Not equal to
<> Not equal to
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
$ Is contained in the set or is a subset of

All relational operators return a Logical result. All operators
except the Contains($) operator work on numeric, character, or date
values. The $ operator works on two values of type character and returns

vxBase Page 21

true if the first value is contained in the second (e.g., "DC"$"ABDC"
returns .TRUE.).

vxBase Page 22

Logical Operators
.AND. both expressions are true
.OR. either expression is true
.NOT. either expression is false
! equivalent to .NOT.

Note the leading and trailing periods that delimit a logical
operator (except with !).

Character (String) Operators
+ Concatenates (joins) two or more character expressions. Trailing
blank spaces in the expressions will be placed at the end of each
expression.

- Concatenates two or more expressions. Trailing blank spaces will be
removed from the expression preceding the operator and placed at the end
of the expression following the minus sign operator.

Operator Precedence
When more than one type of operator appears in an expression, the

order of evaluation is as follows:
string
numeric
relational
logical

Expressions containing more than one operator are evaluated from
left to right. Parentheses can be used to change the precedence level of
operators (see example below). If parentheses are nested, the innermost
set is evaluated first.

Numeric operators are evaluated as follows:
operators contained in parentheses
exponentiation
multiplication and division
addition and subtraction

Evaluation order may be altered with parentheses:
1+2*3+4 = 11
(1+2)*3+4 = 13
(1+2)*(3+4) = 21

Functions
Functions may be used as expressions or parts of expressions.

Functions always return a value.

One of the most common uses of functions is to convert one data type
into another. Functions can also extract system and database-specific
information.

Functions are formatted as FunctionName(Parameters). The number and
type of parameters contained within the function parentheses depend on
the specific function being called.

vxBase Page 23

The following functions are available. For more information, see
the specific commands following the table.

Function Returns
ALLTRIM(Char Value) removes leading and trailing spaces
CTOD(Char_Value) Character to date
DATE() System date
DAY(Date_Value) Numeric day
DELETED() .TRUE. if deleted
DESCEND() Create descending index
DTOC(Date_Value) Date to character
DTOS(Date_Value) Date to string
EMPTY(Value) True if string is blank or number is 0
IIF(Logical, True Result, False Result) Logical if
LEFT(Char_Value, Length) Leftmost n characters
LEN(Char_Value) Return the length of the char expr
MONTH(Date_Value) Numeric month
RECNO() Record number
RIGHT(Char_Value, Length) Rightmost n characters
SOUNDEX(Char_Value) String to phonetic complement
SPACE(n) Generate a string consisting of n spaces
STR(Number, Len, Dec) Numeric value to string
SUBSTR(Char_Value, Start, Length) Substring
TIME() System time as string
TIMEODAY(Num_Value) Converts minutes to time display format
TRIM(Char_Value) Trim trailing spaces from string
UPPER(Char_Value) Convert to uppercase
VAL(Char_Value) Character to numeric value
YEAR(Date_Value) Numeric Year

ALLTRIM(Char_Value)
Trim leading and trailing spaces from a character field
Example: ALLTRIM(" White space string ") returns

"White space string"

CTOD(Char_Value)
Character to date function.
Converts a character value in the form "MM/DD/YY" into a date value.

If vxSetDate has been used to set a different date format,
that format MUST be used instead of the default "MM/DD/YY".

Example: CTOD("07/22/91") returns a date in the form CCYYMMDD
19910722. A blank date defaults to January 1, 1980.

DATE()
System date function.
Returns the system date as a date value.
Example: DTOC(DATE()) returns "07/22/91" If the date is July 22,

1991 and the default date format is used (VX_AMERICAN). If
another international format is selected with vxSetDate then
that format will be used.

DAY(Date_Value)
Numeric day function.
Returns the day in a date_value as a number.

vxBase Page 24

Example: DAY(DATE()) returns 22 if the date is July 22, 1991

DELETED()
Logical delete function.
Returns .TRUE. if the current record has been flagged for deletion.
Example: IIF(DELETED(), "Deleted", "Not Deleted")

DESCEND()
Create descending index.
An entire index expression or an element of a complex index

expression may be encapsulated within a DESCEND function to
reverse the normal ascending sequence.

Example: UPPER(cust_name) + DESCEND(DTOS(order_day)) could be used
with vxCreateNtx to create an index that displayed records in
ascending customer name order and descending order date
(i.e., the latest dates first instead of the oldest).

DTOC(Date_Value)
Date to character function.
Converts a date value into a character string in the format

"MM/DD/YY" or into whatever format has been selected with
vxSetDate.

Example: DTOC(DATE()) returns "07/22/91" if the date is July 22,
1991

DTOS(Date_Value)
Date to string function.
Converts a date value into a character string in the format

"CCYYMMDD". Should always be used in index expressions if a
date field is part of the index key expression.

Example: DTOS(DATE()) returns "19910722" if the date is July 22,
1991

EMPTY(Value)
Returns TRUE if a character string is all blank or a numeric field

is zero or a logical field is FALSE.

IIF(Logical_Value, True_Result, False_Result)
Logical if function.
If Logical_Value is evaluated as .TRUE., then the expression

represented by True_Result is returned; otherwise, the
expression represented by False_Result is returned.

 True_Result and False_Result must be of the same type.
Example 1: IIF(YEAR(DATE()) < 1992, "Last Year", "This Year")
Example 2: IIF(amt_owing>0, amt_owing, 0)

Note: IF() may be used instead of IIF() to conform to Clipper
 conventions.

LEFT(Char_Value, Length)
Leftmost characters function.
Returns the characters on the left side of the string for the

specified length.
Example: IIF(LEFT(NAME,1)<>"A", "Does not begin with A", "begins

vxBase Page 25

with A")

LEN(Char_Value)
Get the length of a character expression.
The length of a blank character expression that has been TRIMmed

will be zero.
Example: IIF(LEN(TRIM(company))>0, company, name)

MONTH(Date_Value)
Numeric month function.
Returns the month in a date_value as a number.
Example: MONTH(DATE()) returns 7 if the date is July 22, 1991

RECNO()
Record number function.
Returns the physical record number of the current record. The

record's logical position according to the current index is
probably not the same as this number. The record number
normally reflects the sequence in which the record was
entered.

Example: STR(RECNO(),6,0)

RIGHT(Char_Value, Length)
Rightmost characters function.
Returns the characters on the right side of the string for the

specified length.
Example: RIGHT("ABCDEF", 3) returns "DEF"

SOUNDEX(Char_Value)
Character string to phonetic complement function. Useful for

indexing and searching.
Returns a character string in the form AA111.
Used primarily for indexes on names and descriptions to conserve

index file space and simplify lookups where the precise
spelling of an item (other than the first two characters) is
unknown. Always results in a table display that approximates
alphabetical order.

Note: The vxBase Soundex function is NOT the same as the Clipper
function of the same name. The vxBase function preserves the
first TWO characters before translating the remainder of the
field into a numeric phonetic complement.

This algorithm results in table displays that more closely
approximate alphabetical order than the traditional soundex
algorithm which only preserves the first character of the
field.

Example: SOUNDEX(cust_name) returns a 5 character string

SPACE(n)
Generate a string consisting of n spaces.
Would be generally used iin conjunction with the TRIM() function

to create fixed length strings for use in vxBrowse and
index expressions. See vxTableField for a practical example.

Example:
vxBase Page 26

SUBSTR((TRIM(lastname)+", "+TRIM(firstname)+ SPACE(40)),1,40)

vxBase Page 27

STR(Number, Len, Dec)
Numeric to string function.
Converts a number to a string representation of that number. Len is

the number of characters in the new string, and Dec is the
number of decimals.

Note: If you wish to use a numeric field as an element in an index
expression, always use the STR() function to convert the
number into a string.

Example: STR(CURRENT+PAST_DUE,9,2) would result in "123456.78" if
the sum of the fields CURRENT and PAST_DUE was equal to the
number 123,456.78.

Note: If the resulting number is too large for the allotted space,
the string is filled with asterisks.

SUBSTR(Char_Value, Start, Length)
Substring function.
Returns a substring of the string represented by Char_Value.
Example: SUBSTR("abcdef,4,3") returns "def" (i.e., extract a

substring from "abcdef" beginning with the fourth character
for a length of 3)

TIME()
Time of day function.
Returns the system time as a character string in the form HH:MM:SS.
Example 1: TIME() returns 12:00:00 at noon
Example 2: TIME() returns 13:45:00 at one forty-five p.m.

TIMEODAY(Num_Value)
Convert a number representing minutes to a display format time of

day (i.e., am/pm).
Example: TIMEODAY(510) returns " 8:30 am"

TRIM(Char_Value)
Trim trailing (rightmost) spaces from a character field.
May be used to logically concatenate fields in a browse column or in

an index expression AS LONG AS the length of the resultant
expression is FIXED.

Example: See vxTableField for correct usage.

UPPER(Char_Value)
Convert string to uppercase.
Only alphabetic characters are affected.
Should ALWAYS be used in index expressions to ensure correct

collating sequence for character strings without regard to
data entry formats.

Example: UPPER("abCD123g") returns "ABCD123G"

vxBase Page 28

VAL(Char_Value)
String to numeric conversion.
Evaluation is terminated when a second decimal point, the first non-

numeric character, or the end of the string is reached.
Example 1: VAL("23") returns 23
Example 2: VAL("12A12") returns 12
Example 3: VAL("-76.5") returns -76.5
Example 4: VAL(" 12.12") returns 12.12
Example 5: VAL("12. 12") returns 12.00
Example 6: VAL("A12") returns 0

YEAR(Date_Value)
Numeric year function.
Returns the year in a date_value as a number.
Example: YEAR(DATE()) returns 1991 if the date is July 22, 1991

vxBase Page 29

Sample Applications
There are two sample applications included with vxBase. The VXBTUT

project is located in directory \VB\VXBTEST and shows you how to manage
a single database using vxCtlBrowse as the primary database engine. It
is fully commented.

The second sample application is more complex and attempts to give
you examples of usage for almost every vxBase function call. It is
described fully below.

Run vxload and then Visual Basic. Load project VXBTEST from the \VB\
VXBTEST directory.

The sample application forms are designed for VGA/SVGA monitors
using vxBase control drawing functions to give them a metallic, three-
dimensional appearance. If you are running vxBase on a machine that does
not have VGA capabilities, the appearance of the forms will not impress.
Text on a gray background on an EGA monitor uses a different fill gray
than the standard light gray that appears on a VGA screen, and the
controls will all have a standard black border around them instead of a
recessed or raised appearance.

The sample applications included with vxBase are intended to be used
as templates for the developer in designing his own applications.

The source code is liberally sprinkled with comments. In some cases,
more error checking would be required in a real application to provide a
more stable product for the end user. Source code comments point out a
number of these areas.

Almost all vxBase functions return a TRUE or FALSE value depending
on the outcome of the operation. It is up to the individual programmer
to decide just how much error trapping he would like to include. Some
functions would fail only rarely (and only in the case of severely
corrupted data). Such is the case with vxSkip(), for example, in a
single user environment. In a multiuser environment, vxSkip() could be
counted on to fail regularly when an attempt is made to access a record
that another user has locked. In this case, vxBase will tell the end
user that the record is locked and give him the opportunity to retry the
operation or abort. What if he aborts? Now it is up to the programmer to
decide on a strategy to take care of this eventuality.

The sample application is intended to illustrate the use of the
vxBrowse function in controlling the logical flow of an application. It
is used everywhere as a primary entry point for file editing and also as
a help mechanism when the user is required to select a value from
another file as input to a relational field.

Study the examples that set up visual relationships in a browse
table that are accessed through the LINK menu in the sample application.
This is a very powerful and unique function in the xBase world.

To institute a file editing application, use the VXFORM2 module as
your first guide. This is a simple file consisting of two character
fields that illustrates most of the techniques you will use to build

vxBase Page 30

your own applications. More advanced techniques can be found in other
modules.

The Problem
Our client is an aircraft brokerage firm who deals in used single

engine aircraft. He does not maintain an inventory of airplanes. Rather,
he solicits business from potential sellers, who usually are interested
in selling their existing airplane and buying something else more
upscale (or downscale depending on their current financial status). If
he can find a buyer for the airplane, he receives a commission on the
sale. The whole business is rather like real estate.

His problem is keeping track of what he has available for sale and
remembering who was interested in it last month. In this sample
application we are going to solve his problem.

First of all we build a sign-on screen. This is VXFORM0. The main
controlling form will be VXFORM1. On it we will place all of the menu
items we need to complete the application.

Note that this sample application doesn't do any printing. I'll
leave that to you.

The Airtypes.Dbf File
The first thing we need is some way of categorizing the airplanes.

We build a database of aircraft makes and models and assign simple three
character codes to each type that we deal in. This file is critical to
the whole operation. A buyer is interested in this or that category.
Seller "A" is selling that category, and seller "B" is selling this
category, so we can easily match them up.

Module VXFORM2 is used to maintain the airtypes file. Its file
layout is as follows:

Field Name Type Length Decimals
---------- ---- ------ --------
category C 3 0 user defined code
catname C 35 0 make and model

This file is indexed on the CATEGORY field to file AIRTYPES.NTX.

Module VXFORM2 (Menu item File Types) does all the work of
maintaining this file. This is an excellent place to start your
investigation of vxBase because its as simple as it gets.

The Aircust.Dbf File
The next thing we need is some way to keep track of the names of our

buyers and sellers. Instead of having two files (one for buyers and one
for sellers), we can get away with just one. On the customer record we
have logical fields telling us if the customer is a buyer and/or a
seller.

vxBase Page 31

Field Name Type Length Decimals
---------- ---- ------ --------
a_code C 6 0 user defined code
a_name C 40 0 his name
a_company C 40 0 and company
a_address C 40 0 street address
a_city C 25 0 city
a_state C 2 0 state/prov abbreviation
a_zip C 10 0 postal code
a_phoneres C 13 0 residence phone
a_phonebus C 13 0 business phone
a_fax C 13 0 fax
a_buyer L 1 0 buyer?
a_seller L 1 0 seller?
a_cdate D 8 0 record creation date
a_rdate D 8 0 record revision date
a_memo M 10 0 memo reference

The file is indexed three ways:
(1) on a_code to aircust1.ntx
(2) on upper(a_name) to aircust2.ntx
(3) on a_state + a_code to aircust3.ntx

There is a supporting file for the state/provincial abbreviation
(I'm Canadian so you'll have to put up with the province bit and
probably some strange spelling). It simply contains the valid postal
abbreviation for the state or province and the state/provincial name. We
use it to validate data entry and also to provide a vxBrowse help
example when the user is entering data in the a_state field. The file is
airstate.dbf

Field Name Type Length Decimals
---------- ---- ------ --------
statecode C 2 0 postal abbreviation
statename C 20 0 name

This file is indexed on statecode to airstat1.ntx and on
upper(statename) to airstat2.ntx. It was built with DataWorks, my xBase
File Manager for Windows (which you've just got to have if you plan to
do any serious development with vxBase: they go hand in glove).

Form VXFORM3 maintains the customer file. The customer file is
accessed through the menu item File Customers.

The Airbuyer.Dbf File
If the user flags the customer record as a buyer, we enable the

Buyer Records button on the form. If it is clicked, we can peruse and/or
edit the buyer records attached to this customer. A buyer can be
interested in more than one type of aircraft, and he may be willing to
spend differing amounts on different types. We're setting up a many to
one relationship with the customer record on the one hand and the
Airtypes file on the other.

vxBase Page 32

Field Name Type Length Decimals
---------- ---- ------ --------
b_code C 6 0 customer code
b_cat C 3 0 aircraft category
b_desc C 35 0 make and model
b_low N 8 0 low price range
b_high N 8 0 high price range

The file is indexed on b_code + b_cat to airbuy1.ntx, and b_cat +
b_code to airbuy2.ntx. We will use both sequences in our different joins
when we try to match buyers to sellers or sellers to buyers.

The Aircraft.Dbf File
If the user flags the customer record as a seller, we enable the

Aircraft Button on the customer form. Only one aircraft record is
allowed to a customer. Clicking the Aircraft button on the customer form
takes us directly to an aircraft description form (VXFORM5). This form
is duplicated as VXFORM6 with different buttons for use with the
Aircraft display module accessed by the File Aircraft menu item.

Field Name Type Length Decimals
---------- ---- ------ --------
c_code C 6 0 customer code
c_nno C 6 0 aircraft identifier
c_cat C 3 0 aircraft type
c_desc C 35 0 make and model
c_price C 8 0 asking price
c_year C 2 0 model year
c_annual C 4 0 year-month annual due
c_ttsn N 6 0 total time since new
c_smoh N 4 0 time since major o/haul
c_spoh N 4 0 time since prop overhaul
c_stoh N 4 0 time since top overhaul
c_gwt N 5 0 gross weight
c_ewt N 5 0 empty weight
c_fuelcap N 4 0 fuel capacity
c_net N 8 0 net to broker
c_navcom1 L 1 0 1st of 16 avionics flds
 ... which answer the
 ... question "Is this
 ... equipment installed?"
c_deice L 1 0 last avionics field
c_memo M 10 0 memo about the aircraft

The file is indexed on c_code + c_nno to aircraf1.ntx and c_cat + c_code
to aircraf2.ntx.

The Forms
VXFORM0 is the startup form.
VXFORM1 is the menu form and system controller.
VXFORM2 is the Airtypes record editing form.
VXFORM3 is the Aircust record editing form.
VXFORM4 is the Airbuyer record editing form.
VXFORM5 is the Aircraft record editing form.

vxBase Page 33

VXFORM6 is the Aircraft detail display form.
VXFORM7 is a sample form that shows you how to extract xBase field and
file details using vxBase commands.
VXFORM8 is an example of using the vxRecord function to extract the
contents of an xBase record.
VXFORM9 shows how to use vxCtlFormat to control data entry and data
verification in Visual Basic text boxes.
VYFORM0 is an example of using database alias names and vxSetRelations.
VYFORM1 shows you how to use printer enumeration and printer selection
functions.
VYFORM2 uses a single column vxCtlBrowse with a linked picture box to
illustrate bitmap displays.

The Link Menu
These functions show off the power of vxBrowse and visual joins to

best advantage. Bring up the Buyers to Sellers item and hit the Join
menu item. Its magic! With an absolute minimum of effort we can link
potential buyers to sellers and vice versa.

Running the Sample Application
The name of the project is vxbtest.mak. It should reside in the \vb\

vxbtest directory you were asked to set up when you installed vxBase.
Remember to run vxload.exe before starting Visual Basic. Open the
vxbtest project and run, or make an .EXE and run it.

vxBase Page 34

Tips and Techniques

Entry and Exit Strategies
Please study the methods of form loading/unloading and exit

procedures in the sample application and emulate these methods in your
own application. Remember that in a Windows environment we can shut down
a running application from a number of areas - your own Exit menu item,
the application's system menu, or even shut down Windows entirely while
your application is running. It is imperative that xBase files that have
undergone changes are closed properly to ensure no loss of data, header
information, or index corruption. Always include a vxInit call as the
first statement in your vxBase application. Always include a
vxDeallocate call as the last statement before terminating your Visual
Basic application. This call ensures that memory allocated by vxBase is
released when in design mode and that it is safe to unload the
application when running as an .EXE.

The sample application allows the form with the system menu on it to
remain visible. We use global flags that are set when a form is loaded
and reset when it is unloaded to test whether there are any active forms
running when an exit is taken from this top level window.

Access to Form Menus
vxBase requires parent windows to draw upon. If your Visual Basic

parent form contains menus, remember that the menu items will be
available to the user when a vxBrowse table is being shown and program
accordingly. For example, it would be foolhardy to pack a file that was
already open and unlocked and being displayed in a browse table. The
application WILL crash when the user attempts to access the browse table
again. See the sample code in vxPack for a method of checking the open
status of files before performing critical operations on them. You can
also disable menu items temporarily before beginning the browse. Almost
every sub-function in the sample application disables one or more menu
items. Alternatively, use modal forms in critical operations that could
be led astray by other program functions.

Data Entry
xBase programmers have become accustomed to a get system that

effectively defines what data is entered, how it looks, and how long it
is. vxBase provides a somewhat similar facility thorugh the vxCtlFormat
funcion.

The sample application has many examples of manual data validation
as an alternate method. The sample uses these methods attached to each
edit control to achieve some logical flow for you as the programmer to
use as a guide without getting lost in a maze of global subroutines.

Most of the methods would be better served as global functions. Over
time, you should be able to build your own library of data validation
routines to make life simpler for your next application.

Particularly examine the GotFocus and KeyPress events attached to
the various edit controls in the sample application. I think you'll get
some good ideas there for limiting data entry length, case conversion,

vxBase Page 35

and numeric validation.

Logical fields have been much ignored among xBase programmers but I
think they'll make a comeback considering how effective they are in
controlling Windows' check boxes and radio buttons.

Release 1.07c: See the new vxCtlFormat Function to control data
entry and validation.

Parents for vxBase Windows
Windows created with vxBase functions (vxBrowse and vxMemoEdit)

absolutely require an active Visual Basic form to act as parent. Their
default sizes are calculated based upon the size of the active window.

Data Paths
The sample application has data paths for the files hard coded into

each vxUse. You would be well advised to set up a system that solicited
a path that you could save and prepend to each file name for each
command that requires it. vxBase acts like other xBase systems in that
it does not find data files that are simply in the system path. You have
to tell vxBase where the files are.

Controlling Multiple Windows
vxBase maintains an internal task-window manager that registers

database select areas with windows if certain rules are followed. Always
include a vxSelectDbf (or vxUseDbf) statement accessing the first
database you will be working on in any form as the first statement in
the Form_Load procedure and as the first statement in the Form_Paint
procedure (see Multitasking issues discussed below). The Form_Load
select registers the database as the default for the application; the
Form_Paint select registers the database with the window.

If you are going to leave a window visible that contains access to
menu items (as in the sample application), carefully disable menu items
that could adversely affect the data currently displayed on the form.
For example, if you had a record editing form visible for FileX, you
would not want the user to select a pack or reindex item from a
background menu that could compromise the status of the current file
(especially if the pack or reindex function closes the file when it
terminates).

You should also always disable the menu item that brought you to the
current form or make the current form a modal one. Always remember that
you don't know what the user is liable to do, so disable those functions
that could compromise your current position.

Browse Windows
vxBrowse windows contain their own message loops. Conflicts could

arise when running a vxBase application in Design Mode. For example,
when a browse window is displayed in VB Design Mode, it is possible to
click on the VB Menu Window and select RUN again (because vxBrowse is
not dependent on the VB controlled message loop). If you do this, the
system will hang.

vxBase Page 36

Dataworks
Dataworks is a dictionary based xBase file management system for

Windows that allows you to interactively create dbf/ntx files, import
your own files, display, join, modify xBase structures, and so on. It is
an excellent visual additive tool for the vxBase programmer - much like
the dBase dot prompt was to a whole generation of xBase programmers. It
was written by the same author as vxBase and is available for $49.95. An
unregistered shareware version is probably in the same library if you
obtained vxBase from a bulletin board - the name of the file is
dworks.zip. See the form at the back of this manual for ordering
information.

vxBase Page 37

MultiTasking and Multiuser Considerations

MultiTasking
vxBase supports multitasking. You can run a number of applications

using vxBase all at the same time. You can run multiple instances of the
same program. You can have multiple windows visible each accessing a
different database (in the same instance of the program) or the same
databases (in multiple instances of the same program or other programs).
As a programmer, you don't know what the user is liable to do. He can
easily compromise a database by injudicious use of the Windows
multitasking environment. You can make every effort to disable menu
items that could harm the current window data, but these efforts could
be circumvented by a user playing with multiple instances of your
program. You may wish to limit Windows by only allowing one instance of
your program. You can do this by implementing a window test scheme in
the form load procedure of the first form in your application.

If you don't wish to place artificial limits on the user, you may
wish to create separate file maintenance programs for packing and
reindexing files that won't run if your main application is running.
This is probably your best course of action.

The first call to vxBase from your application must be to vxInit and
the last statement in the application must be a call to vxDeallocate.
vxInit registers the task with a multitask list maintained by the DLL.
If the task registered is the first to load vxBase, it controls the
database memory that will be shared by all other vxBase tasks running at
the same time. This task must be unloaded last. If it unloaded prior to
other concurrently running vxBase tasks, all the database memory goes
with it - and the other vxBase tasks crash with an Unrecoverable
Application Error or General Protection Fault as soon as their windows
get the focus. We ensure that it is unloaded last by calling
vxDeallocate when we are making an exit. If it is the controlling task,
and there are other tasks using vxBase that were loaded after it, the
user is informed via an error message box that a task closure sequence
error has occurred. It is up to the programmer to test the result of
vxDeallocate to determine whether we can safely unload the task. See the
writeups in the function section of this manual for vxInit and
vxDeallocate for examples of correct procedures.

If running your program in Visual Basic Design Mode, see the section
entitled "Visual Basic and VXLOAD.EXE".

To implement a vxBase application in a multitasking environment,
vxBase places minimal restrictions on the programmer other than the
vXinit and vxDeallocate calls described above. The user might have two
or more windows open each displaying different data and he may move back
and forth between them at will. In a normal xBase application, there may
be only one active database select area. In a Windows environment,
however, we may have three or four or five active windows with different
databases represented in each, representing the same program or
different programs (a task). Every time the user moves from one open
window to another, as a programmer in the old xBase tradition, you would
have to ensure the proper database was selected. vxBase removes this

vxBase Page 38

onus by maintaining a task-window-select area table that automatically
selects the correct database when the window controlling that database
receives the input focus. vxBase also maintains a default select area
for the task that it uses to register databases with windows if no
database has been selected for that window. As a programmer, you are
required to insert three vxBase calls into every separate form procedure
that accesses a database:

(1) vxSelectDbf() or vxUseDbf() the first database accessed by the
form as the first line in the Form_Load procedure. This registers the
database as the default database for the task.

(2) vxSelectDbf() the first database accessed by the form as the
first line in the Form_Paint procedure. This registers the database with
the window associated with the current task.

(3) issue the vxWindowDereg command in your form unload procedure to
remove the task-window-select entry from the vxBase task management
table. This table is limited to 96 entries and could overflow if you
fail to deregister the windows. Issue the vxWindowDereg command after
closing any databases you wish to close in the Form_Unload procedure.

vxSelectDbf or vxUseDbf register databases with windows. These are
the only two vxBase functions that register databases with windows.

vxBase field functions should also have field names qualified with
an alias (see vxSetAlias). The alias names ensure proper database
selection in all circumstances.

If printing a report from a database, always reselect that database
after the Printer.EndDoc has been issued because the database becomes
attached to the print task if any vxBase functions are called from
within the body of the print routine.

While testing, if you get an "Invalid field name" error message from
vxBase, and you know the field exists in the database (i.e., the name is
correctly spelled), in all likelihood the wrong database is active
because of vxBase's automatic selection. To correct the problem, simply
insert a vxSelectDbf statement for the database you want in front of the
statement that conatins the field reference or set up an alias name for
the database with vxSetAlias. Some things go on in the background that
you are hardly aware of (e.g., Form painting), and if you have the
required select statement in the Form_Paint procedure then a reference
to a field in another database may be invalid if a Form Paint has taken
place since you last accessed the file you thought was still active. See
the code examples in the sample application for the Help buttons (e.g.,
CustStateHelp in VXFORM3) for a perfect instance of the above. Disabling
and then re-enabling a background form for a help browse causes a
Form_Paint message to be issued, which selects a different database than
the one we just used, so we have to re-select the database to access its
fields.

If the database has been registered with a window, any call to a
vxBase function that accesses a database will result in a search in the
task management table for the window id of the window that currently
owns the input focus. If found, the database is automatically selected.

vxBase Page 39

If no entry is found, the database selected will be the task default.
The user may then have multiple forms open and switch between them at
will. It doesn't matter to you as the programmer which window is
selected or where the program instruction pointer is residing when the
user switches to another window. The correct database is automatically
selected if the simple rules outlined above are followed.

Windows allows up to 20 file handles per task (15 useful handles).
Use the vxSetHandles function to increase the number of file handles
available to a task if you will have more than 15 files open
simultaneously. Only one select area is assigned to a database in any
given task (unless a file is opened an another area with vxUseDbfAgain).
The select area contains critical information about the state of the
database (e.g., current record number, filter, table definition, etc.).
Opening the file in the same task again will change this information for
the subtask that opened the file in the first place. Bear this in mind
and disable access to functions that could change the state of the
database when you don't want it changed. Use the sample application as a
guide.

The same database may be opened in different tasks (multiple
instances of the same program are different tasks as well) and each
different task gets its own select area for the database. Changes made
to records by one task are reflected in the other task as soon as the
records come into view. Records currently in view, such as in a browse
table, won't reflect the changes until the view window has been
repainted. Because each task has its own select area, changes to record
positions, tables, etc. in one task do not affect the state of the
database in the other task (or tasks).

MultiUser
On a local area network, many workstations can run the same Visual

Basic program using vxBase at the same time, all accessing the same
files on a network drive. Obviously, there are no internal conflicts
between the allocated memory buffers residing on the individual
workstations. There may, however, be file and record conflicts when more
than one user attempts to access the same record (or file) as another
user.

Always install vxbase.dll on each workstation local drive rather
than on the server drive.

If vxBase applications are going to run concurrently with other
xBase applications (e.g., those written in Clipper), always use
vxWriteHdr after appending a record in vxBase to ensure that the other
applications are kept informed of the state of the database.

Traditional (i.e., Clipper style) record and file locking is
provided by vxBase by using the vxSetLocks(FALSE) function. vxBase file
and record locking is perfectly compatible with Clipper (version 5.1 and
below). Clipper recognizes vxBase locks and vice versa.

If you use the default vxSetLocks setting (which is TRUE), it is not
necessary for the user or the programmer to be concerned with explicit

vxBase Page 40

file and/or record locking, although these functions are provided as
part of the vxBase command set. Commands that obviously require a file
lock (such as vxPack or vxReindex) are automatically locked by vxBase
during the processing of the command. Records that occupy any given
workstation buffer are also automatically locked if vxSetLocks() is
TRUE, as opposed to Clipper (or vxSetLocks(FALSE)) which allows
simultaneous access to the same record and therefore also allows
simultaneous updating of the record while it resides in each
workstation's record buffer. In this case, the last update always wins
and the user who wrote the record out first loses his changes.

In a multiuser environment, it is usually necessary to provide a
network signature flag on any record that could be affected by
simultaneous updates. The signature is simply a number that is
incremented each time the record is updated. When a user reads in the
record for updating, he saves the contents of the signature field and he
moves the contents of every other field in the record to working
storage. When the update on the working storage variables is finished,
it is necessary to re-read the record and check to see that the
signature field has not changed since he first read the record. If it is
the same, he locks the record, replaces required fields with his changed
data, increments the signature field, and then unlocks the record. If
the signature field had changed since he first read the record, it would
be necessary to re-do the update because the other user could have
changed sensitive data.

With vxSetLocks(TRUE), any record currently occupying a workstation
buffer automatically locks out other users from accessing that record.
The programmer must be aware of this fact when designing a system for
multiuse. A signature system such as the one described above could
easily be implemented as follows:
 If vxSeek("ABC") Then ' find the record to update
 RecNum& = vxRecNo() ' save the record number
 Sig% = vxInteger("CustSig") ' and the signature
 Name.text = vxField("Name) ' store the form vars
 Status.text = vxField("Stat")

 ' now unlock the record
 ' ---------------------
 j% = vxUnlock()

 ' now perform the update on the vis basic form
 ' --
 CustRecordUpdate

 ' now retrieve the record and test if anyone else
 ' has changed it
 ' ---
 j% = vxGo(RecNum&)
 If Sig% <> vxInteger("CustSig") Then
 MsgBox "Another user beat you to it. Redo!"
 Else
 Call vxReplString("Name", (Name.text))
 Call vxReplString("Stat", (Status.text))
 Call vxReplInteger("CustSig", (Sig% + 1))
 End If
 j% = vxUnlock()
 End If

vxBase Page 41

The only real difference between a Clipper implementation
(vxSetLocks(FALSE)) and the vxBase default lock procedure
(vxSetLocks(TRUE)) is that with the TRUE locks you must explicitly
unlock the record instead of locking it. If you fail to do so, other
users even attempting to browse in the same area of the file will have
to wait until the user who has the locked record finishes his update.

The sample code attached to VXFORM2 contains complete protocols for
unlocking the database in a multiuser environment when the default
locking mechanism is used. Signature fields are not used, however, for
simplicity's sake. Bear in mind that for a robust multiuser system they
should be attached to all master files that could be affected by
simultaneous updates.

Note that records displayed via a vxBrowse table are not locked.
Only when a selection has been made from a vxBrowse table does a locked
record occupy the workstation buffer space if vxSetLocks is TRUE.

Files may be accessed in Read Only mode. If network server files are
marked with the read only attribute for a specific user, vxUseDbf will
fail. You must use vxUseDbfRO to open files for reading only. Note that
files opened with vxUseDbfRO are not required to have the read only
attribute. vxBase will simply not perform any function that produces a
file write on the database or any of its related files (i.e., index and
memo files).

Share
If attempts at running vxBase applications on a LAN fail with

file/record locking errors, or if they fail on a single workstation when
vxSetHandles is used, ensure that SHARE.EXE is loaded by each
workstation that will be running vxBase.

International Issues
The following functions all deal with the problem of a database that

contains characters from the high end of the ANSI or OEM character sets,
which is commonplace if the database stores data in a language other
than English.

vxSetAnsi(FALSE) properly handles databases that were created
with a DOS based application (such as Clipper). These databases
are OEM databases. Characters with diacritical marks in the high end of
the OEM character collating sequence are NOT the same as the ANSI
characters. It is necessary for vxBase to translate the characters to
ANSI (both Windows and vxBase native mode) before they can be used in a
vxBase application. They also must be translated back again when they
are written.

The default value of vxSetAnsi is TRUE (no translation takes place).
If the database was created and is maintained by vxBase (or DataWorks),
and the database is going to be used exclusively by Windows
applications, vxSetAnsi should be TRUE.

vxBase Page 42

vxCollate allows the programmer to create his own collating sequence
table (for EITHER an ANSI database or an OEM database). The OEM
character set in particular does not use any kind of logical collating
sequence for characters with diacritical marks. The ANSI table handles
these characters more intelligently - but its sequence is also incorrect
for some languages.

It is necessary to define a collating sequence table to properly
build an index that uses these characters.

vxSetCollate can toggle a defined collating table on or off.

vxBase Page 43

vxAppendBlank
Declaration

Declare Function vxAppendBlank Lib "vxbase.dll" () As Integer

Purpose
Append a blank record to the physical end of the database file in

preparation for using the vxReplx functions to replace the fields with
your data.

Parameters
None.

Returns
TRUE if record successfully appended.
FALSE if not successfully appended. Always FALSE if the file was

opened as Read Only with vxUseDbfRO.

Usage
Always append a blank record to receive fields for a new record that

is being inserted into the database. If you forget to do this, the
current record will be changed instead.

Always close the database before exiting your application. Use
vxCloseAll in your exit routine to ensure that all records are flushed
to disk and the xBase header is updated correctly.

Multiuser Considerations
All active index files associated with the selected database are

locked until the record is written. You must explicitly lock the
appended database record. The record is written either by performing an
explicit vxWrite command or implicitly by performing some other action
on the file such as vxClose, vxSkip, or vxGo.

Example
If AddMode Then
 If Not vxAppendBlank() Then

 MsgBox "Append Error"
 Else
 j% = vxLockRecord()

 Call vxReplString("Field1","New Field")
 j% = vxWrite()
 j% = vxUnlock()
 End If
End If

See Also
vxWrite, vxReplxxx

vxBase Page 44

vxAppendFrom
Declaration

Declare Function vxAppendFrom Lib "vxbase.dll" (ByVal FromFile As
String) As Integer

Purpose
Append all of the records from the named database onto the currently

selected database.

Parameters
FromFile is either a string variable that contains the name of the

file that will be appended from (including an optional path
specification) or a literal string. If no file extension is supplied,
vxAppendFrom defaults to ".dbf". This file does not have to be open for
the operation to succeed. If it is open, it will be closed when the
function returns to your program.

Returns
TRUE if the operation was successful or FALSE if it was not. Always

FALSE if the target file was opened as Read Only with vxUseDbfRO.

Usage
Useful for processing transactions in a batch and then, after

verification, appending the transactions to a master file. For example,
in a general ledger application, it would be commonplace to collect
transactions in a batch. The user could enter and edit transactions at
will in one or more sessions. When the user decides to post the
transactions, they would then be applied to the general ledger, added to
the master transaction file with the vxAppendFrom function, and then the
records in the batch file would be deleted to protect the integrity of
the audit trail. In this case, the structure of the transaction batch
file would probably be the same as the structure of the master file.

This function would also be used when transferring fields from one
file to fields that have the same name and type in another file. Any
fields in the From file that match in name and type to fields in the
current database are appended record by record to the current selection.
Truncation in the receiving file occurs on the right for character
fields and on the left for numeric fields if the lengths of the fields
differ. If the field is numeric and the number of decimals differs,
truncation occurs on the right if the number of decimals in the
receiving field is less than the sending field. Memos and bitmaps stored
in FromFile dbt files are also appended to the receiving file dbt.

Files that duplicate current structures may also be dynamically
created at run time with the vxCopyStruc function, used as batch files,
appended to master files, and then deleted.

Note that filters on either the FromFile (if it happens to be open)
or on the currently selected database have no effect. All records,
including deleted records, in the FromFile are appended.

vxBase Page 45

Multiuser Considerations
Both databases are locked for the duration of the operation. When

the function completes, the current selection is the same as on entry,
and the record pointer is pointing to the top record in the file, which
is locked if vxSetLocks is TRUE.

Example
 ' open transaction batch file
 ' ---------------------------
 TransDbf% = vxUseDbf("Transbat.dbf")
 TransNtx% = vxUseNtx("Transbat.ntx")
 j% = vxDbfSelect(Transdbf%)

 ' call transactions editing procedure
 ' -----------------------------------
 CollectTrans

 ' if posting now, append transactions to
 ' master file after they have been posted
 ' and then clear the batch file in preparation
 ' for the next editing session
 ' ---
 j% = MsgBox("Post Now?", 52)
 If j% = 6 Then
 PostTrans
 TrMasterDbf% = vxUseDbf("Transmas.dbf")
 TrMasterNtx% = vxUseNtx("Transmas.ntx")
 j% = vxSelectDbf(TrMasterDbf%)
 j% = vxAppendFrom "Transbat.dbf"
 j% = vxClose() ' close master file

 ' reopen transaction batch because the From
 ' file is closed by vxAppendFrom
 ' --
 TransDbf% = vxUseDbf("Transbat.dbf")
 TransNtx% = vxUseNtx("Transbat.ntx")
 j% = vxDbfSelect(TransDbf%)
 j% = vxZap() ' clear the batch
 End If
 j% = vxClose() ' close the batch

See Also

vxCopy, vxCopyStruc

vxBase Page 46

vxAreaDbf
Declaration

Declare Function vxAreaDbf Lib "vxbase.dll" (ByVal DbfName As
String) As Integer

Purpose
Extracts the select area assigned by vxBase to the named database

file when it was opened with vxUseDbf. The select area is an integer
greater than zero.

Many vxBase functions take a select area as a parameter when
identifying a dbf and its related ntx files instead of using the file
name.

This function would be used primarily to test the open status of
a .dbf. Under normal conditions, the select area integer is assigned to
a global variable when the file is opened with vxUseDbf.

Parameters
DbfName is either a string variable that contains the name of the

file (including an optional path specification) or a literal string. If
no file extension is supplied, vxAreaDbf defaults to ".dbf".

Returns
An integer identifying the select area of the named file that was

assigned by vxBase when the file was opened with vxUseDbf. A number > 0
identifies an open file. If the file is not open, FALSE is returned.
Note that you cannot test the return value with a NOT expression because
a number greater than zero is NOT TRUE (but neither is it FALSE)
according to Visual Basic. Store the return value in a variable and
explicitly test it for FALSE.

Note that this function will return the lowest numbered select area
of a dbf if it has been opened more than once (with vxUseDbfAgain on
subsequent opens).

Usage
Use the returned value to check on whether a file is open or not.

This function may be used to test the open status of a file that is
about to undergo a critical operation (such as vxPack or vxReindex). A
FALSE return indicates that no active task (not just the current one)
has the file open.

Note that since this function returns the area selected by any task
that is active, you cannot rely on it to return a value that you can use
in your application.

vxBase Page 47

Example
 ' See if file is open before packing
 ' ----------------------------------
 NamesDbf% = vxAreaDbf("c:\database\names.dbf")
 If NamesDbf% = FALSE Then
 j% = vxUseDbfEX("c:\database\names.dbf")
 j% = vxPack()
 j% = vxClose()
 Else
 MsgBox "File is open. Function aborted."
 End If

See Also
vxDbfCurrent, vxPack, vxSelectDbf, vxSetHandles, vxUseDbf,

vxUseDbfAgain, vxUseDbfEX, vxUseDbfRO

vxBase Page 48

vxAreaNtx
Declaration

Declare Function vxAreaNtx Lib "vxbase.dll" (ByVal NtxName As
String) As Integer

Purpose
Extracts the select area assigned by vxBase to the named index file

when it was opened with vxUseNtx. The select area is an integer greater
than zero.

Many vxBase functions take a select area as a parameter when
identifying an open index instead of using the file name.

This function would be used rarely. Under normal conditions, the
select area integer is assigned to a global variable when the file is
opened with vxUseNtx.

Parameters
NtxName is either a string variable that contains the name of the

file (including an optional path specification) or a literal string. If
no file extension is supplied, vxAreaNtx defaults to ".ntx".

Returns
An integer identifying the select area of the named file that was

assigned by vxBase when the file was opened with vxUseNtx. A number > 0
identifies an open file. If the file is not open, FALSE is returned.
Note that you cannot test the return value with a NOT expression because
a number greater than zero is NOT TRUE (but neither is it FALSE)
according to Visual Basic. Store the return value in a variable and
explicitly test it for FALSE.

Usage
Use the returned value to check on whether the file is open or not.

Note that since this function returns the area selected by any task
that is active you cannot rely on it to return a value that you can use
in your application.

Example
NamesNtx% = vxAreaNtx("c:\database\names.ntx")
If NamesNtx% = FALSE Then
 MsgBox "NAMES.NTX is not open"
End If

See Also
vxAreaDbf, vxNtxCurrent, vxSelectNtx, vxSetHandles, vxUseNtx

vxBase Page 49

vxBlobRead
Declaration
HANDLE FAR PASCAL vxBlobRead (memofieldname)
char* memofieldname; /* name of memo field holding blob */

Purpose
Read a binary large object (blob) from a memo file that was stored

with vxBlobWrite.

vxBlobRead and vxBlobWrite are primarily for the c programmer. To
handle bitmaps in Visual basic, see vxPictureImport and vxPictureRead.

Parameters
memofieldname is either a string variable or a literal string that

contains a valid memo field name from the currently selected database.
memofieldname may be qualified with a valid alias name that points to
any open database.

vxBase uses the large memory model. All char * are far pointers and
must be explicitly cast as such if you are using a different memory
model.

Returns
A HANDLE (HGLOBAL) to global memory allocated by vxBase. The memory

contains the blob. It is the programmer's responsibility to release the
memory with GlobalFree when he is done with it.

Usage
 Any binary object may be stored in a memo field with vxBlobWrite and
a HANDLE (HGLOBAL) to that object may be extracted with vxBlobRead. The
vxPicture functions are limited to standard BMPs and variants thereof.

Example
/* *** */
/* DrawBlob uses a GIF library to place an */
/* image into the window passed to the function */
/* The blob is retrieved from the memo fieldname */
/* stored in the current record */
/* *** */
BOOL DrawBlob(HWND hwnd, char *fieldname)
{
 HANDLE hPicBuffer; // mem handle to blob
 LPSTR lpPicBuffer; // string addr of blob

 // get the handle to the blob
 // if NULL, return FALSE
 // ---------------------------
 if (NULL == (hPicBuffer = vxBlobRead(fieldname))
 return(FALSE);

 // convert the handle to a string address
 // --------------------------------------
 lpPicBuffer = GlobalLock(hPicBuffer);

vxBase Page 50

 // Draw the image
 // --------------
 if (!GifConverter(hwnd, lpPicBuffer))
 {
 GlobalUnlock(hPicBuffer);
 GlobalFree(hPicBuffer);
 return(FALSE);
 }

 // release the memory
 // ------------------
 GlobalUnlock(hPicBuffer);
 GlobalFree(hPicBuffer);
 return(TRUE);
}

See Also
 vxBlobWrite, vxIsPicture, vxPictureImport, vxPictureRead, vxMemoClear

vxBase Page 51

vxBlobWrite
Declaration
int FAR PASCAL vxBlobWrite (hGlobal, memofieldname)
HANDLE hGlobal; // global handle to mem storing blob
char* memofieldname; // name of memo field to put it in

Purpose
Write a binary large object (blob) into a memo file.

vxBlobRead and vxBlobWrite are primarily for the c programmer. To
handle bitmaps in Visual basic, see vxPictureImport and vxPictureRead.

Parameters
hGlobal is a handle to a global memory object that stores a binary

large object.

memofieldname is either a string variable or a literal string that
contains a valid memo field name from the currently selected database.
memofieldname may be qualified with a valid alias name that points to
any open database.

vxBase uses the large memory model. All char * are far pointers and
must be explicitly cast as such if you are using a different memory
model.

Returns
TRUE if the operation was successful and FALSE if not.

Usage
 Any binary object may be stored in a memo field with vxBlobWrite and a
HANDLE (HGLOBAL) to that object may be extracted with vxBlobRead. The
vxPicture functions are limited to standard BMPs and variants thereof.

 vxBase does not free the global memory after writing the blob. That is
the programmer's responsibility.

Example
/* ** */
/* GetBlob stores a GIF image into a memo field */
/* The blob is retrieved from the filename passed */
/* to this function */
/* ** */
BOOL GetBlob(char *filename, char *fieldname)
{

 int hFile; // dos file handle
 DWORD dwLength; // import file length
 HANDLE hPicBuffer; // mem handle to blob
 LPSTR lpPicBuffer; // string addr of blob

 // verify existence of import file
 // --------------------------------
 if ((hFile = myFileOpen(filename, 0) < 0)
 return(FALSE);

 // if zero length, set error
 // -------------------------

vxBase Page 52

 if (!(dwLength = myFileLength(hFile))
 return(FALSE);

 // if unable to allocate memory, set error
 // ---------------------------------------
 if (NULL == (hPicBuffer = GlobalAlloc(GHND, (DWORD)dwLength)))
 {
 _lclose(hFile);
 return(FALSE);
 }

 // read image
 // ----------
 lpPicBuffer = GlobalLock(hPicBuffer);
 _hread(hFile, lpPicBuffer, (DWORD) dwLength); // huge read
 _lclose(hFile);

 // write image to memo file
 // ------------------------
 GlobalUnlock(hPicBuffer);
 if (!vxBlobWrite(hPicBuffer, fieldname))
 {
 GlobalFree(hPicBuffer);
 return(FALSE);
 }

 GlobalFree(hPicBuffer);
 return(TRUE);
}

See Also
 vxBlobRead, vxIsPicture, vxPictureImport, vxPictureRead, vxMemoClear

vxBase Page 53

vxBof
Declaration

Declare Function vxBof Lib "vxbase.dll" () As Integer

Purpose
Test if beginning of file has been reached in the currently selected

database.

Parameters
None.

Returns
TRUE if an attempt was made to skip backwards beyond the first

record in the file. Otherwise FALSE.

Usage
When skipping through a file backwards, always use vxBof to test if

the top of the file has been reached. Once the condition has been
satisified, it remains true until the record pointer is repositioned
with a call to vxGo, vxTop, vxBottom, vxSkip, or vxSeek. It is never
possible to skip to a record prior to the first record in the file. If
vxBof is true, the record buffer will contain the elements of the first
record. (It is possible, however, to skip beyond the end of the file to
an empty record buffer.)

Example
' skip back one record
' -----------------------
Do
 j% = vxSkip(-1)
 If j% = FALSE Then
 MsgBox "Error on Skip Previous. Try Reindex."
 Exit Sub
 End If
 If vxBof() Then Exit Do
Loop Until Not vxDeleted()

' test for beginning of file
' --------------------------
If vxBof() Then
 Beep
 TypeStatus.text = "Beginning of File!"
 j% = vxTop() ' make sure we've got a record
Else
 TypeStatus.text = "Skipped to " + LTrim$(Str$(vxRecNo()))
End If

See Also
vxEof, vxSkip

vxBase Page 54

vxBottom
Declaration

Declare Function vxBottom Lib "vxbase.dll" () As Integer

Purpose
Position record pointer to the last record in the currently selected

file. If an index is active, this is the last logical record in the
file. If no index is in use, it is the last physical record in the file.

Parameters
None.

Returns
TRUE if the attempt was successful. Otherwise, it is FALSE. A FALSE

condition can occur on an empty database or on a file with a corrupted
index.

Usage
Useful when your program requires a forced end of file condition.

See the example below.

If a filter is active, vxBottom will attempt to find the last record
in the file that satisfies the filter.

Multiuser Considerations
If vxSetlocks(TRUE), then the last record in the file is locked.

Example
 If vxSeek("ABC") Then
 Do While Not vxEof()
 j% = vxSkip(1)
 If vxField("CustCode") <> "ABC" Then
 PrintTotals
 j% = vxBottom() ' Exit Do would work
 j% = vxSkip(1) ' just as well but this is
 Else ' an example
 PrintRecord
 End If
 Loop
 End If
 j% = vxUnlock()

See Also
vxSetLocks, vxTop

vxBase Page 55

vxBrowse
Declaration

Declare Sub vxBrowse Lib "vxbase.dll" (ByVal Hwnd As Integer, ByVal
DbfArea As Integer, ByVal NtxArea As Integer, ByVal EditMode As Integer,
ByVal AllowFilter As Integer, ByVal EditMenu As Integer, ByVal StartRec
As Long, ByVal Caption As String, RetVal As Long)

Purpose
Create and display a table of records using the defined database and

index. This is a very powerful function that eliminates the need for a
grid control or huge arrays to display a data table. Combined with the
vxTable functions and the vxJoin function it gives the programmer an
extremely useful tool with little effort.

For a variation of vxBrowse, see vxCtlBrowse as well. vxBrowse runs
in its own window and must be closed before any user actions performed
on the browse can be evaluated by the programmer. vxCtlBrowse allows the
use of a browse grid within a form control. In vxCtlBrowse, the user and
the programmer can retrieve information from and direct the actions of
the browse window interactively.

Parameters
Hwnd is the hWnd property of an active window which assumes the role

of parent to the vxBrowse window. There must be an existing form to act
as a reference point for the browse window.

DbfArea is the select area of an already opened database. If it is
not currently selected, vxBrowse will make it the current selection. It
will be the current selection when vxBrowse returns as well.

NtxArea is the select area of an index file attached to the DbfArea.
If you do not wish to browse with an index, pass a 0 (zero) to the
function.

EditMode is passed as TRUE or FALSE. If TRUE, when the user double
clicks on any column in the table, the field attached to that row and
column is presented for update. If the user presses the ENTER key, the
field is replaced and the record is written. If the user presses the ESC
key, the update is cancelled. Note that the only data validation
possible with the onscreen edit is for type (i.e., numeric fields must
contain numbers, etc.). If your data requires more sophisticated
validation, never pass a TRUE to this function. If EditMode is FALSE,
doubleclicking on a record will return the selected record number (which
is the same result as Edit Update or pressing the ENTER key). If
EditMode is TRUE, it would probably be a good idea to add the words
"Edit Enabled" to your browse window caption to alert the user that
onscreen editing is active.

If a vxTableDeclare has been issued to control your browse display,
any column defined as an expression rather than as a field will not be
available for edit (obviously). You can use this fact to your advantage
if you wish to limit onscreen editing to only a few fields. All of the
fields which would have editing disallowed could be defined in the table
as expressions rather than fields (e.g., instead of displaying field

vxBase Page 56

"category", you could define the column to display
"substr(category,1,3)" (assuming the length of field "category" is 3),
which would effectively rule out any editing on that field, or you could
simply tell vxBase that the item is an expression with the VX_EXPR
parameter (see vxTableField for more information).

AllowFilter is passed as TRUE or FALSE. If TRUE, an item on the
vxBrowse menu will allow the user to invoke a dialog box that accepts a
standard xBase expression as a filter string. If the expression passes
the evaluation test (and that test ensures that the expression returns a
logical result), then the filter will be applied to the current browse
table. For example, areacode = '403' would be a valid filter expression
if the file contained a character field named "areacode". The table
would then only contain records whose areacode matched "403". Note that
this filter applies only to the active browse window. It goes away when
the window is closed and will not affect any program logic. It will,
however, override any filter set by vxFilter before the browse is
invoked. When the window is closed, the old vxFilter expression will
once again take effect. If AllowFilter is FALSE, the user is not allowed
to enter a filter when browsing. vxBrowse always filters out deleted
records.

Use filters judiciously. A filter can slow the vxBrowse display in a
large file enormously. See vxFilter for more details.

EditMenu is passed as TRUE or FALSE. If TRUE, an Edit menu item is
presented on the vxBrowse menu bar. The Edit menu contains Update, Add,
and Delete selections. If any of these are selected by the user, a code
is passed back to the program in the RetVal parameter (see below)
informing the program what the user wants to do. These three items are
standard fare in maintaining files. If you are going to use the vxBrowse
table as display only, or as a help window, then EditMenu would be
passed as FALSE. It should also be passed as FALSE if you use
vxMenuDeclare and vxMenuItem to define your own browse menus.

StartRec is a long integer that contains the starting record number
for the browse. If passed as 0 (zero), then the record pointer is
positioned to the first record in the file (either logical or physical
depending on whether an index was specified or not). If you are
interested in a subset of records in the file, it is your responsibility
to position the record pointer to the first one that meets your criteria
before beginning the browse. See the sample code attached to VXFORM3
(Proc BuyRecs_Click) for an example of using vxBrowse to display a
record subset. If an invalid StartRec is passed, the browse will begin
at the first record in the file.

Caption is a string that is used as a Window caption for the
vxBrowse table.

RetVal must be dimensioned as a long integer before the browse
commences. The result of the browse is passed back to the program in
this parameter. Usually, the programmer will set up a number of GLOBAL
RetVals (one for each file that will be browsed) and use these as prime
movers in his logical flow. Study the code in VXFORM2 and the use of the
TypeReturn variable to control the flow of logic surrounding the

vxBase Page 57

AirTypes file.

The values returned in RetVal are defined as Global constants in the
vxbase.txt file.

BROWSE_CLOSED: The user closed the window with the System menu or
Alt-F4. He doesn't want to do anything with this browse.

BROWSE_EDIT: The user selected the Update function from the Edit
menu. The record pointer is positioned at the record that was
highlighted on the browse table immediately prior to the menu selection.

BROWSE_ADD: The user selected the Add item from the Edit menu. The
record pointer is positioned at the record that was highlighted on the
browse table immediately prior to the menu selection.

BROWSE_DELETE: The user selected the Delete item from the Edit menu.
No action is taken by vxBase on the selection. Instead, it is the
programmer's responsibility to ensure that the delete is handled
properly. This usually involves a confirmation window and cross-
referencing logic to remove related records from other files. The record
pointer is positioned at the record that was highlighted on the browse
table immediately prior to the menu selection.

BROWSE_ERROR: An error occurred when attempting to start the browse.
For example, the defined database or index area is invalid.

In addition to these constants, BROWSE_USER is also defined to
handle circumstances known only to the programmer. BROWSE_USER could be
used if the RetVal parameter is indeed the prime mover behind your
logical flow. See an example of its use in the VXFORM2 Form_Unload
procedure.

If the user presses the ENTER key, or doubleclicks a record (when
EditMode is FALSE), RetVal will contain the record number that was
highlighted in the browse table immediately prior to the user action.
All of the BROWSE_ constants are negative numbers. If RetVal is greater
than zero, then you know what action the user took.

Returns
See the RetVal parameter above.

Usage
vxBrowse and vxCtlBrowse are intended to be the primary tools you

will use to create vxBase applications. You can display only the data
you want in the table by using the vxTable functions. You can define
visual relationships between one file and another (and another and
another) with the vxJoin command that are absolutely splendid in
execution (try the Link items in the sample system and let your
imagination flow). vxJoin links are only possible with vxBrowse - not
vxCtlBrowse.

The entire set of sample programs revolves around the use of
vxBrowse. Use them freely as templates for your own applications.

vxBase Page 58

vxBrowse is also very handy in implementing help lists. For example,
suppose a form control required the entry of a valid customer code. You
can set up a help button beside the customer code control that activates
a browse window on the customer file. When the user finds the record he
wants, he simply doubleclicks it or presses the ENTER key to pass the
record back to you. You can then extract the required field data and
place it directly into the control without the need for typing the data.

 The vxTable functions allow you customize your browse tables as to
column heads and the sequence and format of the data you display. If no
table is declared, vxBrowse provides a raw data display with the field
names as column heads. Numeric fields are right justified in columns and
dates are formatted as "mm/dd/yy" (default) or whatever format has been
set with vxSetDate.

The vxMenu functions allow you to define custom menus on the browse
table.

Function vxBrowsePos allows you to position and size the browse
window. If this function is not called prior to beginning a browse, the
size and position are dependent on the size and position of the
underlying window.

Data from more than one database may be displayed in a horizontal
row if a relationship is set up with vxSetRelations and column contents
are defined with vxTableFieldExt.

Quick Key
Quick Key searches are a standard feature of a vxBrowse window.

Usually, you will set up a browse with the vxTableDeclare function and
place the index key field first in the column array. If an index is
active during a browse. the user simply presses the sequence of
characters he is looking for and the browse table reacts accordingly.
The status of the Quick Key field is shown in the window caption.

For example, if the user had a browse table active consisting of
customer codes and names, and the file was keyed on the code, then
pressing the "T" key would position the table to the first record that
had a customer code beginning with the letter "T". Subsequent key
presses without intervening actions (such as pressing an arrow key or
using the vertical scroll bar) will expand the quick key and narrow the
search. If a quick key item is not found, the table will be positioned
to the next higher record and the quick key adjusted accordingly (for
example, if "TH" was entered and no code existed that began with these
two letters, but a code existed that began with the letters "TI", then
the table would be positioned there, and the quick key in the caption
would show "TI" instead of the "TH" that the user entered).

One limitation on Quick key access becomes evident if you have a
filter defined. If the partial key entered matches a filtered record,
vxBrowse makes no attempt to find a record past that to satisfy the the
logic in the paragraph above. Instead, a single beep is sounded and we
stay where we are.

vxBase Page 59

NOTE: All key presses directed at the quick key algorithm are
converted to upper case before the seek is performed. You should ALWAYS
use the UPPER() xBase function when indexing character fields.

The column head that contains the quick key may be marked with "*"
by specifying its relative position in vxBrowseSetup.

Vertical Scrolling
Records that are displayed in a browse table with a controlling

index react to a movement in the vertical scroll bar thumb in two ways.
First, the relative position of the thumb in the scroll bar is
ascertained to determine where, approximately, the display should start.
For example, if the thumb was positioned halfway down the bar, the
display should begin at the halfway point in the file. Because the file
is indexed, we cannot simply go to the halfway record (i.e., if there
were 5000 records in the file, we cannot go to 2500 and start there).
Instead, we must find the 2500th index pointer so we read 2500 index
keys to get the start record. Second, we use the record number attached
to the key to get the first actual record and we're away. Obviously, if
the file is very large, using the thumb to move around in the file will
be on the slow side. The quickest way to traverse the records in a
browse table is to use the Quick Key feature or the Page Keys (or click
on the paging area in the vertical scroll bar).

The method for finding the record which relates to the position of
the scroll thumb may be controlled with the Threshold parameter of
vxBrowseSetup.

Other Menu Items
The browse table always has a menu bar unless turned off with

vxBrowseSetup. If vxBase menus are not turned off with vxBrowseSetup,
items that always remain on the menu bar are Query and Utilities.

In the query dialog box that is brought up when Query Search is
selected, the user may enter any string. The search is case insensitive.
It is also field insenstive. If the string is found anywhere in the
record (even crossing field boundaries), that record is highlighted. The
Query Find Next command simply finds the next occurrence of the same
string. The standard Find Next accelerator key, F3, may be used instead
of the menu item.

The utilities provide a lowercase toggle. When checked (the default
value), the records in the table are displayed in all lowercase. This
makes a cleaner and more readable display. If the user wishes to display
the records exactly as entered, he toggles the lowercase switch off. The
default case used in the browse window may be changed with vxBrowseCase.

The utilities Print option prints all records that vxBrowse would
display. Defined tables are used to supply headings and the printout is
exactly in the same format as the display. Use vxTableDeclare with
vxBrowse to format quick reports. The position of the Print menu item
may be changed with vxBrowseSetup.

The About File item tells the user a little bit about the file - its
vxBase Page 60

name, size, etc. - and a listbox displaying the field structure.

User defined menus may also be created and displayed on the browse
table with vxMenuDeclare and vxMenuItem.
vxBrowse Limitations

Up to 8 vxBrowse windows may be active at a time (total for all
active tasks using vxBase). vxBrowse windows attached to a task must be
closed in the reverse sequence of opening. vxBase maintains an internal
stack of browse windows and informs the user about the closure sequence
if he picks the wrong one to close.

There is a reason for this. vxBrowse is a function and as such it
maintains a return address to the program line following the original
call. In C or Assembler, it is a simple matter to extract this address
and maintain an internal stack to always go back from whence you came,
no matter what the sequence of function return.

Unfortunately, Visual Basic maintains a program area for a call to a
DLL function in only one place in its structure. Therefore every call to
vxBrowse from Visual Basic emanates from the same program location and
returns to the instruction following the call. Visual Basic maintains
its own internal stack of return addresses and pops the address of the
LAST call to vxBrowse off of this stack and returns to the instruction
following that call. It always returns to the instruction following the
last call to vxBrowse.

The popping of the return address by Visual Basic follows a whole
lot of other things which essentially restores the Visual Basic state
to what it was before the call. What this means to us is that a function
such as vxBrowse, which does not return to Visual Basic immediately
after the call to it, and which may be called again in the Windows
environment while other vxBrowses still have not completed, must be
terminated in the reverse sequence of call in order for Visual Basic to
return to the instruction following each vxBrowse.

On exit from a vxBase application, no vxBrowse table may be active.
See the example shown in vxCloseAll for an exit protocol that ensures
both windows and files are closed properly, and that allocated memory is
released.

Use vxCtlBrowse if you require a table that is always visible and
that does not have the limitations described above.

Multiuser Considerations
No records are locked by vxBrowse unless and until the user makes a

record selection and vxSetLocks is TRUE (the default). If other users
lock records that will be displayed by the browse, the browse will wait
until the file is free unless vxSetLocks is set to FALSE. If the user
selects a record for update or deletion that is already in use, he is
informed immediately via a message box that the record is locked and he
can retry the operation or abort and carry on with the browse.

Focus Issues
If a browse window disappears behind another because of a loss of

focus, and it apparently cannot be made to reappear, either double-click
on the background window screen (Windows system desktop), or, if that is
not visible, press CTL-ESC to bring up the task management window. The

vxBase Page 61

browse window that was invisible will appear on this list and it may be
restored.

vxBase Page 62

Example
 j% = vxSelectDbf(AirtypesDbf) ' select database
 j% = vxSelectNtx(AirtypesNtx)

 TypeReturn = 0 ' Browse return value
 ' declared as GLOBAL

' An active form must be visible because we need a
' parent for our browse
' ---
 If Not VXFORM1.Visible Then VXFORM1.Show

' Execute the browse routine (will use table declared
' in TypesOpen - in sample file VXBMOD.BAS)
' --
 Call vxBrowse(VXFORM1.hWnd, AirtypesDbf, AirtypesNtx,
 TRUE, TRUE, TRUE, 0, "Aircraft Types", TypeReturn)
' (the above would be on one line)

' Browse returns a code or record number in TypeReturn var.
' If an edit menu item is selected, a code is returned.
' If the enter key is pressed, the rec number is returned.
' Double clicks when EditMode is true allow edit onscreen.
' (return codes defined in global vxbase.txt)
' ---
 Select Case TypeReturn

 Case BROWSE_ERROR
 MsgBox "Error in AirTypes Browse!"
 Exit Sub

 ' user closed browse with sys menu
 ' --------------------------------
 Case BROWSE_CLOSED
 j% = vxSelectDbf(AirtypesDbf)
 Call vxTableReset
 j% = vxClose()
 Exit Sub

 ' all other choices are processed by VXFORM2
 ' --
 Case Else
 VXFORM1.Hide
 VXFORM2.Show
 End Select

See Also
vxBrowseCase, vxBrowsePos, vxBrowseSetup, vxCtlBrowse, vxJoin,

vxMenuDeclare, vxMenuItem, vxSetDate, vxSetLocks, vxSetRelations,
vxTableDeclare, vxTableField, vxTableFieldExt

vxBase Page 63

vxBrowseCase
Declaration

Declare Sub vxBrowseCase Lib "vxbase.dll" (ByVal DefCase As Integer)

Purpose
Set the default case for ALL vxBrowse displays.

Parameters
DefCase is one of VX_UPPER or VX_LOWER as defined in vxbase.txt.

Returns
Nothing.

Usage
The default case used to display data in vxBrowse and vxCtlBrowse

tables is VX_LOWER (i.e., lower case). The user can change the display
to reflect the exact contents of the database (as entered) by unchecking
the Utilities Lowercase menu item on the vxBrowse menu bar. The
programmer may change the default to VX_UPPER, which displays the data
exactly as entered, in both upper and lower case.

This is a SYSTEM WIDE function. All vxBrowse/vxCtlBrowse displays
for all active tasks will be affected. It would normally be issued in
your startup form FORM_LOAD procedure.

Example
Call vxBrowseCase(VX_UPPER)

See Also
vxBrowse, vxBrowsePos, vxBrowseSetup, vxCtlBrowse, vxCtlBrowseMsg

vxBase Page 64

vxBrowsePos
Declaration

Declare Sub vxBrowsePos Lib "vxbase.dll" (ByVal StartX As Integer,
ByVal StartY As Integer, ByVal xWidth As Integer, ByVal yHeight As
Integer)

Purpose
Set the start position and size of an upcoming browse window that

will be opened using the currently selected database file.

Parameters
All parameters to this function use familiar character units in the

x dimension and line height units in the y dimension. The units are
converted to the average character width and height of the standard
Windows system font (or the font selected through vxBrowseSetup) and are
therefore device independent.

StartX is the start position of the browse window in characters from
the left edge of the screen.

StartY is the start position of the top of the browse window from
the top of the screen.

xWidth is the start width of the browse window in characters.

yHeight is the height of the browse window (including caption and
menu bar) in lines.

Returns
Nothing.

Usage
Browse window start position and size are defaulted according to the

size of the underlying window (the Hwnd parameter passed to vxBrowse) if
this command is not issued. If this command is issued, the position and
size are relative to the entire screen.

If a file is browsed with vxBrowse and not closed, and the browse is
called again, the second and subsequent window positions and sizes will
be as they were when the window was closed (i.e., if the user changes
size and/or position, this information is retained with the selected
database).

Note: If you are changing the font and/or font size, call
vxBrowseSetup BEFORE calling this function. vxBrowsePos uses the current
font settings for the database to convert the passed coordinates to
screen coordinates. If vxBrowsePos is called before vxBrowseSetup,
coordinate calculations will use the Windows System font.

This function will size and position a vxBrowse window ONLY for the
current database.

vxBase Page 65

Example
 ' The proc below will set up an initial size and
 ' position for the browse window
 ' --
 Call vxBrowsePos(10, 5, 50, 15)
 ' the coordinates are in familiar character and line
 ' units. The first param is x (characters in from left),
 ' the second param is y (lines down from top), the third
 ' param is the width of the window in characters, and the
 ' last param is the window height in lines

 ' if the user movers or sizes the window, and subsequent
 ' vxBrowse calls are made without an intervening close of the
 ' file, the window will retain its last position and size.

See Also
vxBrowse, vxBrowseCase, vxBrowseSetup

vxBase Page 66

vxBrowseSetup
Declaration

Declare Sub vxBrowseSetup Lib "vxbase.dll" (ByVal Menus As Integer,
ByVal PrintMenu As Integer, ByVal QCol As Integer, ByVal V3D As Integer,
ByVal FontName As String, ByVal FontSize As Integer, ByVal Weight As
Integer, ByVal Italic As Integer, ByVal Hdr As Integer, ByVal MinMax As
Integer, ByVal Thresh As Integer)

Purpose
Controls the appearance and some of the functionality of a vxBrowse

or vxCtlBrowse.

Parameters
Menus controls the standard menus added to a vxBrowse window. If

FALSE, both the Utility menu and the Query menu are suppressed. This
parameter has no effect on a vxCtlBrowse because a vxCtlBrowse has no
menus.

PrintMenu controls the placement of the "Print" menu item on the
vxBrowse menus. If the value is 0 (zero), no print menu item will be
added; if 1, the print menu item appears on the standard edit menu (the
default); if 2, the print menu item will appear on the Utilities menu.
This parameter has no effect on a vxCtlBrowse.

QCol is the number of the column (relative to 1) that responds to
Quick Key seeks. If this parameter is specified, an asterisk "*" is
placed in front of the header text for that column to indicate that this
column is seekable with quick key strokes.

V3D if TRUE will display the browse table in 3d format on a gray
background. If FALSE, the browse is displayed as conventional black text
on a white background. Each record and column is separated with a light
gray line to give the appearnce of a grid. The default value is TRUE.

FontName is the name of an available font that will be used to
display the browse table. It must be a valid name. A good place to look
at an enumeration of your fonts is in the list box of fontnames on the
VB properties bar for a text box.

FontSize is the size of the font in points. This number is device
dependent to some extent (on your video resolution). Experiment before
assuming that a given font size will yield the desired result.

vxBase Page 67

Weight is a vxBase Global constant that specifies the weight of the
font. The following constants are defined in vxbase.txt:

Global Const VX_DONTCARE = 0
Global Const VX_THIN = 100
Global Const VX_EXTRALIGHT = 200
Global Const VX_LIGHT = 300
Global Const VX_NORMAL = 400
Global Const VX_MEDIUM = 500
Global Const VX_SEMIBOLD = 600
Global Const VX_BOLD = 700
Global Const VX_EXTRABOLD = 800
Global Const VX_HEAVY = 900

Italic if TRUE will display the font in italic. If FALSE (the
default), the display is not in italic.

If you do not wish to change the font (from the default Windows
System font), pass the FontName as a space, the FontSize as 0, the
Weight as 0, and Italic as FALSE.

Hdr defines the type style used in the column headers. The default
is FALSE (which is shadowed text). If passed as TRUE, the header text is
displayed in a flat style.

MinMax defines whether or not minimize and maximize buttons will
appear on the browse window. If FALSE (the default) there are no
buttons; if TRUE, the buttons appear. This parameter has no effect on
vxCtlBrowse.

Thresh defines the number of records used as a threshold for
implementing the vxBase relative scroll thumb positioning algorithm. The
default value is 5000 (which is what you get if you specify 0).

Threshold Explanation: If the user positions the vertical scroll
thumb, the browse display will begin at a point that is relative to the
proportion of the new thumb position to the vertical scroll bar length.
In other words, if the thumb is positioned to the middle of the vertical
scroll bar, the record pointer is moved to the middle of the file.

This is easy if no indexes are being used (and in this case the
threshold does not apply). We simply take the number of records and
divide by 2 and that's where we start the display.

If the file is indexed, however, we must position the record pointer
to the logical middle of the file. This means we have to count keys
(just like vxNtxRecNo does) until we reach the middle key and then
position the record pointer to the physical record pointed to by the ntx
key entry.

This can take time if the file is large. An optimum size that yields
a respectably short time is about 5000 records (which is the default
threshold). If the file is larger than this, vxBase uses a key analysis
algorithm to determine the approximate position of the file (high key
value minus low key value times the scroll thumb proportion plus the low
key value equals an approximate key we can softseek on). This algorithm
works quite well on a database that is regularly sequenced (for example,

vxBase Page 68

a name and address file with a fairly regular distribution of names
throughout the alphabet will yield a key close to "M" to start the
display at if the thumb is positioned in the middle of the scroll bar).

If your database contains more than 5000 records, and the
distribution of keys is irregular (e.g., many duplicate keys or
duplicate starting portions of keys or lots of A's and Z's with nothing
in between), then you will likely wish to increase the threshold value
to a number greater than the number of records in the file (maximum
32,767) to use the exact relative positioning algorithm. If there are
more than 32,767 records in the file, the approximation alorithm will be
used.

What's more important? Speed or an accurate thumb? This is a
question for the ages.

Returns
Nothing.

Usage
Use this procedure to fine tune the appearance and functionality of

your browse tables (both of the vxBrowse and the vxCtlBrowse variety).

Note: the database you are going to be browsing must be open and
selected when the call to this procedure is issued.

If setting up for a vxBrowse window that will be positioned and
sized with vxBrowsePos, call vxBrowseSetup BEFORE vxBrowsePos to ensure
that the correct font is used to determine the window coordinates.

Example
' the browse must be set up either prior to
' or during the load of the form that contains
' the text box that will hold the browse
' --
Sub Form_Load ()
 vxClientDbf = vxUseDbf("\ab2\abacus\sam\vxuser.dbf")
 vxCl1Ntx = vxUseNtx("\ab2\abacus\sam\vxuser.ntx")

 Call vxTableDeclare(VX_RED, ByVal 0&, ByVal 0&, 0, 1, 6)
 Call vxTableField(1, "Serial", "vxser", VX_FIELD)
 Call vxTableField(2, "Name", "vxname", VX_FIELD)
 Call vxTableField(3, "Company", "vxcompany", VX_FIELD)
 Call vxTableField(4, "Phone", "vxphone", VX_FIELD)
 Call vxTableField(5, "City", "vxcity", VX_FIELD)
 Call vxTableField(6, "Country", "vxcountry", VX_FIELD)

 Call vxBrowseCase(VX_UPPER)
 Call vxBrowseSetup(0, 0, 1, 1, "Arial Narrow", 15, VX_SEMIBOLD,
 FALSE, 0, 0, 0)
End Sub

See Also
 vxBrowse, vxBrowseCase, vxBrowsePos, vxCtlBrowse, vxCtlBrowseMsg,
vxMenuDeclare, vxMenuItem, vxSetLanguage, vxSetRelation, vxTableDeclare,
vxTableField, vxTableFieldExt, vxTableReset

vxBase Page 69

vxChar
Declaration

Declare Function vxChar Lib "vxbase.dll" (ByVal FieldName As String)
As String

Purpose
Extract the first character from a defined field.

Parameters
FieldName is either a string variable or a literal string that

contains a valid field name from the currently selected database.
FieldName may be qualified with a valid alias name that points to any
open database.

Returns
A visual basic string that contains the first character of the

field.

Usage
Commonly used to test the contents of a field whose data format is

known.

Example
 If UCase$(vxChar("PersonSex")) = "M" Then
 MaleProcess
 Else
 FemaleProcess
 End If

See Also

vxEmpty, vxField

vxBase Page 70

vxClose
Declaration

Declare Function vxClose Lib "vxbase.dll" () As Integer

Purpose
Close the currently selected database.

Parameters
None.

Returns
TRUE if the close was successful, FALSE if not. A FALSE return could

mean that one of the index files associated with the database had an
error in closing.

Usage
A dbf file opened with vxDbfUse or one of its variants must always

be closed. This ensures that any changes to the xBase header info become
permanent as well as freeing any memory allocated to store the database
structure, file structures, record buffer, table declarations and table
joins. If an attempt is made to close a file that resides in an active
browse window (for example, by another task that is using the file), the
file is not closed but the result reported to the current task is TRUE
and the file is no longer available to be selected from the task that
initiated the close without another vxUseDbf being issued.

If the record buffer has been changed and not yet written, it is
written to disk.

All open index files associated with the dbf are also closed. It is
not necessary to explicitly close the index files.

After a file has been closed, it must be opened again with vxUseDbf
or one of its variants before it may be accessed again.

Example
 j% = vxSelectDbf(AirtypesDbf)
 If Not vxClose() Then
 MsgBox "Error in Airtypes close"
 End If

See Also

vxCloseAll, vxCloseNtx, vxDbfDate, vxJoinReset, vxTableReset,
vxUseDbf, vxUseDbfAgain, vxUseDbfEX, vxUseDbfRO, vxUseNtx

vxBase Page 71

vxCloseAll
Declaration

Declare Function vxCloseAll Lib "vxbase.dll" () As Integer

Purpose
Close all open database and index files.

Parameters
None.

Returns
TRUE if the operation is successful, otherwise FALSE. The operation

will always return FALSE if there are any active browse windows open.
The user is informed that the browse windows must be closed before an
exit is allowed. In your exit strategy, follow the protocol shown in the
example below (which comes directly from the sample application) to
ensure that everything is cleaned up properly when an exit is requested.

Usage
Normally called when an application exit is taken to ensure that all

record buffers, index nodes, and xBase headers are written and all
associated memory is released.

Example
' ---
' This routine is activated from either the
' Exit menu item on VXFORM1 or by selecting
' the Close item from the system menu.
'
' We MUST test the vxCloseAll result in
' case there are any active browse windows
' that require closure before we can
' terminate the application
'
' If the close operation is successful, any
' open databases are closed (which updates
' the database header information) and all
' attached memory objects (Tables and Joins)
' are released.
' ---
Sub Form_Unload (Cancel As Integer)
 If Not vxCloseAll() Then
 Cancel = -1
 VXFORM1.Show ' redraw top level form
 Exit Sub
 Else
 ' we MUST test the result of vxDeallocate
 ' to ensure that the task is not controlling
 ' memory for any other vxBase tasks that
 ' might be running at the same time as this one
 ' ---
 If Not vxDeallocate() Then
 Cancel = -1
 VXFORM1.Show
 Else
 vxCtlGrayReset
 End If
 End If
End Sub

vxBase Page 72

See Also

vxClose, vxCloseNtx, vxDeallocate, vxInit

vxBase Page 73

vxCloseNtx
Declaration

Declare Function vxCloseNtx Lib "vxbase.dll" (ByVal NtxArea As
Integer) As Integer

Purpose
Close a previously opened index file.

Parameters
NtxArea is the select area of the index you wish to close. This

number is returned by vxUseNtx when the file is opened or by vxAreaNtx
after it has been opened.

Returns
TRUE if the operation is successful and FALSE if not.

Usage
A dbf file is normally opened with all of its index files if there

is any chance that the file may change in the current procedure. This
will ensure that all index files are updated if any key fields are
altered or records are appended. A file opened for display only may be
used with one index, and then another requirement may necessitate the
closure of that index and the opening of one or more other index files
(or none if freeing a file handle is your intention) as the case may be.
If a dbf file is going to be left open, ensure that its index files are
also open if it may be altered.

Example
 MastFile% = vxUseDbf("Transfil.dbf")
 MastIndex% = vxUseNtx("Transfil.ntx")
 DisplayRecords
 j% = vxCloseNtx(MastIndex%)
 MastIndex2% = vxUseNtx("Transfi2.ntx")

See Also

vxClose, vxCloseAll, vxNtxDeselect, vxSetHandles

vxBase Page 74

vxCollate
Declaration

Declare Sub vxCollate lib "vxbase.dll" (CharMap As Integer)

Purpose
Define a collating sequence table to be used for indexing other than

the native collating table (ANSI or OEM depending on the setting of
vxSetAnsi).

Parameters
CharMap is the first element in an array of 256 integers. Each

integer represents the new collating sequence number for the character
that would normally occupy that slot (array index - 1).

The collating sequence table is composed of 256 characters that
range in value from zero to 255. Consequently, the index (minus 1) into
the character map represents the current native character. By placing a
different number into the integer at that spot we change its collating
sequence to the new number.

For example, suppose you wanted a space character to be first
(lowest) in your new collating sequence. A space is represented by
decimal 32 (it is the 33rd character in the set which begins at zero) in
both the ANSI and OEM character sets. To make a space the lowest value
in your index collating sequence, you would place a zero in CharMap(33).
The index number is the same as the decimal value of the character you
wish to change plus one (for relative zero).

 Note that the first integer in the array is passed BY REFERENCE rather
than by value.

Returns
Nothing.

Usage
This function is used primarily for non-English language databases.

The collating sequence of characters with diacritical marks that are
used heavily in languages other than English is certainly incorrect in
the OEM character set (for any language) and could be incorrect for
certain languages if you are using ANSI databases as well (e.g.,
Swedish). To maintain index keys in a sequence that the user can
understand, this function must be used to build a collating table.

The example below shows you how to build a true descending index in
English (the DESCEND() xBase function simply complements the bits in the
key using 2s complement arithmetic and creates a normal ascending index
that results in descending order).

vxCollate can also be used for purposes like this but you must be
careful to toggle the use of the table on and off with vxSetCollate. The
table shown in the example would only be turned on for the file and
index that it applied to. If there is more than 1 index for the file,
using a table like this WILL be disastrous.

vxBase Page 75

The new collating sequence table passed to vxCollate() MUST contain
256 elements. If fewer than 256, Windows will crash with a GPF.

Example
 Dim CharMap(256) As Integer

 Sub Form_Load ()
 Call vxInit
 Call vxCtlGraySet
 Call vxCtlGraySet
 Call vxSetLanguage(VX_GERMAN)
 Call vxSetLocks(FALSE)
 Call vxSetString(0)
 j% = vxCloseAll()

 ' using OEM databases
 ' -------------------
 Call vxSetAnsi(FALSE)

 ' create descending collating sequence table
 ' --
 i% = 255
 For j% = 1 To 256
 CharMap(j%) = i%
 i% = i% - 1
 Next j%
 Call vxCollate(CharMap(1))

 ' build descending index
 ' ----------------------
 vxDbf = vxUseDbf("\vb\vxuser.dbf")
 vxBackNtx = vxCreateNtx("\vb\vxback.ntx", "upper(vxname)")
 j% = vxClose()

 ' turn off table usage until required
 ' -----------------------------------
 Call vxSetCollate(FALSE)
 End Sub

See Also
 vxSetAnsi, vxSetCollate

vxBase Page 76

vxCopy
Declaration

Declare Function vxCopy Lib "vxbase.dll" (ByVal NewDbfName As
String) As Integer

Purpose
Make an exact copy or a filtered copy of the currently selected

database.

Parameters
NewDbfName is the name of the new database file that receives the

copy. The parameter may be a literal string or a string variable. It may
include a complete path name. If an extension is not specified, vxBase
defaults it to ".dbf". If a file exists with the same name it is
overwritten. File names must begin with a letter.

Returns
TRUE if the operation is successful and FALSE if not.

Usage
A copy is made of the selected database that excludes deleted

records. Memo files (that can include both textual memos and bitmaps)
attached to the database are also copied to NewDbfName.dbt. Any file
that matches NewDbfName is overwritten without warning.

This function is useful for sorting and packing data files without
losing the originals, and for compressing memo files.

vxCopy respects filters defined with vxFilter as well. File subsets
may be created by setting a filter and then using vxCopy to build the
smaller file.

Multiuser Considerations
The currently selected database and its index files are locked for

the duration of the operation. When it terminates, the record pointer is
reset to its value before the function was called and that record is
locked if vxSetLocks is TRUE.

Example
 CustDbf% = vxSelectDbf("Custmast.dbf")
 CustNtx% = vxSelectNtx("Custmast.ntx")
 If vxCopy("Custcopy") Then
 MsgBox "Copy OK"
 Else
 MsgBox "Copy Failed"
 End If

See Also
vxAppendFrom, vxCopyStruc, vxCreateDbf, vxCreateNtx, vxFilter,

vxPack, vxSetLocks

vxBase Page 77

vxCopyStruc
Declaration

Declare Function vxCopyStruc Lib "vxbase.dll" (ByVal NewDbfName As
String) As Integer

Purpose
Create an empty file whose structure is the same as the currently

selected database.

Parameters
NewDbfName is the name of the new database file that is created. The

parameter may be a literal string or a string variable. It may include a
complete path name. If an extension is not specified, vxBase defaults it
to ".dbf". An existing file with the same name is overwritten. File
names must begin with a letter.

Returns
TRUE if the operation is successful and FALSE if not.

Usage
Commonly used to create a temporary batch file that will be used to

capture data. The captured data would then be appended to a master file
and the batch file erased. We can modify the sample code shown under
vxAppendFrom to dynamically create a batch file instead of using a
permanent file to hold temporary records.

Example
 ' create transaction batch file with the same
 ' structure as the master file
 ' --
 BatchName$ = "Tr" + SignOnId$
 FileSpec$ = MyPath$ + BatchName$ + ".dbf"
 IndexSpec$ = MyPath$ + BatchName$ + ".ntx"

 ' if file exists, error
 ' ---------------------
 If vxFile(FileSpec$) Then
 MsgBox "Error. Batch file exists!"
 Exit Sub
 Else
 ' if no error, create empty transaction file
 ' --
 TrMasterDbf% = vxUseDbf("Transmas.dbf")
 TrMasterNtx% = vxUseNtx("Transmas.ntx")
 j% = vxSelectDbf(TrMasterDbf%)
 If Not vxCopyStruc(BatchName$) Then
 MsgBox "Error in batch file creation"
 j% = vxClose()
 Exit Sub
 Else
 ' now create index same as master file
 ' ------------------------------------
 IndexExpr$ = vxNtxExpr(TrMasterNtx%)
 If Not vxCreateNtx(BatchName$, IndexExpr$) Then
 MsgBox "Error in index creation"
 Kill FileSpec$
 j% = vxClose()
 Exit Sub
 End If

vxBase Page 78

 End If
 End If
 j% = vxClose() ' close master file
 TransDbf% = vxUseDbf(BatchName$)
 TransNtx% = vxUseNtx(BatchName$)

 ' call transactions editing procedure
 ' -----------------------------------
 CollectTrans

 ' if posting now, append transactions to
 ' master file after they have been posted
 ' and then clear the batch file in preparation
 ' for the next editing session
 ' ---
 j% = MsgBox("Post Now?", 52)
 If j% = 6 Then
 PostTrans
 TrMasterDbf% = vxUseDbf("Transmas.dbf")
 TrMasterNtx% = vxUseNtx("Transmas.ntx")
 j% = vxSelectDbf(TrMasterDbf%)
 j% = vxAppendFrom(BatchName$)
 j% = vxClose() ' close master file
 Kill FileSpec$ ' erase batch file
 Kill IndexSpec$ ' and index
 Exit Sub
 End If
 j% = vxClose() ' close the batch

See Also

vxAppendFrom, vxCopy, vxCreateDbf, vxCreateNtx

vxBase Page 79

vxCreateDbf
Declaration

Declare Function vxCreateDbf Lib "vxbase.dll" (ByVal NewDbfName As
String, ByVal NumFields As Integer, FStructure As FileStruc) As Integer

Purpose
Create a new database file.

Parameters
NewDbfName is the name of the new database file that is created. The

parameter may be a literal string or a string variable. It may include a
complete path name. If an extension is not specified, vxBase defaults it
to ".dbf". An existing file with the same name is overwritten. File
names must begin with a letter. Their length is limited by DOS to 8
characters.

NumFields is the number of fields the new database will contain.

FStructure is a user defined type that is filled in by the
programmer with the data about the fields required to build the new
database. The FileStruc type is defined in vxbase.txt (which should be
included in your Global module). The type may be modified to suit your
needs by adding or deleting "Fldnn" definitions to conform to the
largest database (in number of fields) that your application will
create.

The FileStruc type is composed of fixed length strings (each 16
characters in length) that represent the field definitions in your new
file. Each string is named Fldnn where nn represents the field number.
The structure supplied in vxbase.txt is defined with 32 fields. Add more
if necessary.

The fixed length string that defines the field structure is composed
of the following elements:

field name 10 characters
field type 1 character
field width 3 characters
field decimals 2 characters

The field type must be one of "C" for character, "N" for numeric,
"L" for logical, "D" for date, or "M" for memo (or bitmap). A logical
field length cannot exceed 1 character, a date field must be 8
characters wide, and a memo field length is 10 characters. If your new
file definition contains a memo field, a file with the same name as
NewDbfName will be created with a ".dbt" extension.

A numeric field cannot exceed 19 characters in width, which includes
the decimal point and sign position if the number can be negative. If a
numeric field has a number of defined decimals, the minimum length of
the field is the number of decimal positions plus 2 (1 for the decimal
point and 1 for a leading zero). If there is a possibility that the
number may be negative, add another for the sign.

vxBase Page 80

Field names must begin with a letter. The other nine positions can
be letters, numbers, or the underscore character (not a hyphen) and may
not contain embedded spaces. Trailing spaces of course are allowed (the
field name can be from 1 to 10 characters in length).

The field structure for a new database is passed to vxBase as a user
defined type because the elements in the structure must be contiguous in
memory. Visual Basic string array elements are not necessarily
contiguous in memory so we can't use an array. The fixed length
requirement for the elements of the structure simplifies and speeds up
the parsing vxBase performs to create your new database.

Returns
TRUE if the operation is successful and FALSE if not.

Usage
Your application could be shipped without any supporting database or

index files. The first time it is run, you could create your files in a
directory specified by the user.

Always test the result of vxCreateDbf to ensure the database was
properly created before you attempt to use the new file.

Example
 Dim CustFile As FileStruc
 Dim NumFields As Integer

' 1234567890123456 (alignment ruler)
 CustFile.Fld01 = "NAME C 30 0"
 CustFile.Fld02 = "ADDRESS C 30 0"
 CustFile.Fld03 = "CITY C 20 0"
 CustFile.Fld04 = "PHONE C 13 0"
 CustFile.Fld05 = "AMTOWING N 15 2"

 NumFields = 5

 If Not vxCreateDbf("custfile", NumFields, CustFile) Then
 MsgBox "Error in database creation"
 End If

See Also
vxAppendFrom, vxCopy, vxCopyStruc, vxCreateNtx, vxCreateSubNtx

vxBase Page 81

vxCreateNtx
Declaration

Declare Function vxCreateNtx Lib "vxbase.dll" (ByVal NewNtxName As
String, ByVal NtxExpr As String) As Integer

Purpose
Create a new index file.

Parameters
NewNtxName is the name of the new index file that is created. The

parameter may be a literal string or a string variable. It may include a
complete path name. If an extension is not specified, vxBase defaults it
to ".ntx". An existing file with the same name is overwritten. File
names must begin with a letter. Their length is limited by DOS to 8
characters.

NtxExpr is a valid xBase expression (which may be as simple as a
field name) that is passed as either a literal string or as a string
variable. The expression must evaluate to a string. The expression must
also, of course, reference field names in the currently selected
database.

Returns
The new index is created, selected, and attached to the current

database. The NxtArea is returned as an integer greater than zero if the
operation was successful. If the operation was not successful, FALSE is
returned. Always test the return value.

Note that you cannot test the return value with a NOT expression
because a number greater than zero is NOT TRUE according to Visual
Basic. Use the test format shown in the example below.

Usage
The index expression must evaluate as a string. If elements of your

index are numeric or date fields, use the xBase STR() and DTOS()
expressions to convert the fields to strings within the expression.
Always use the UPPER() xbase function when indexing character fields.
This allows instant Quick Key access in browse windows and correct
alphabetical order being maintained in the index.

"custcode + datefield + numfield" is an invalid index expression if
datefield and numfield are date and numeric fields respectively. If we
assume the numeric field has a format of length 11 with 2 decimals, to
create a valid index out of the same elements, we would use "custcode +
dtos(datefield) + str(numfield,11,2)".

You can use this function to create new indexes for new databases
created with the vxCreateDbf function (or however) or to create
temporary indexes that you require for a one-shot report that is rarely
run. Remember to explicitly close one-shot indexes and kill them after
you are done with them.

A descending index may be built using the xBase DESCEND() function
vxBase Page 82

within your index expression (see vxDescend).

If you are soliciting an expression from the user, always use the
vxEval function on the user supplied expression to test its validity
before creating the index.

If vxSetMeters is TRUE, a meter bar charting the progress of the
index creation is presented to the user. The programmer may
alternatively specify his own gauge control with vxSetGauge.

Example
Sub TestCopy_Click ()
 Dim NtxExpr As String
 Dim Ret As Long

 AirtypesDbf = vxUseDbf("\vb\vxbtest\airtypes.dbf")
 AirTypesNtx = vxUseNtx("\vb\vxbtest\airtypes.ntx")

 ' get index expression from master file
 ' -------------------------------------
 NtxExpr = vxNtxExpr(AirTypesNtx)

 If Not vxCopyStruc("\vb\vxbtest\testcopy.dbf") Then
 MsgBox "Error in database copy struc"
 Exit Sub
 End If
 j% = vxSelectDbf(AirtypesDbf)
 j% = vxClose()

 TDbf% = vxUseDbf("\vb\vxbtest\testcopy.dbf")

 ' index create opens and selects new index and
 ' returns the index select area. Zero (FALSE)
 ' is returned if there was an error
 ' --
 TNtx% = vxCreateNtx("\vb\vxbtest\testcopy.ntx", NtxExpr)
 If TNtx% = FALSE Then
 MsgBox "Error in index create"
 j% = vxClose()
 Exit Sub
 End If

 If Not vxAppendFrom("\vb\vxbtest\airtypes.dbf") Then
 MsgBox "Error in append from"
 j% = vxClose()
 Exit Sub
 End If

 Call vxBrowse(VXFORM1.hWnd, TDbf%, TNtx%, 0, 0, 0, 0,
 "Test", Ret)
 j% = vxClose()
End Sub

See Also
vxCopy, vxCopyStruc, vxCreateDbf, vxCreateSubNtx, vxDescend, vxEval,

vxNtxExpr, vxSetGauge, vxSetMeters

vxBase Page 83

vxCreateSubNtx
Declaration

Declare Function vxCreateSubNtx Lib "vxbase.dll" (ByVal NewNtxName
As String, ByVal NtxExpr As String, ByVal ForCond As String) As Integer

Purpose
Create a permanent subindex that represents a defined subset of

records in the main dbf file. Only records that pass the test of the
defined conditional logical expression are included in the index.

Parameters
NewNtxName is the name of the new index file that is created. The

parameter may be a literal string or a string variable. It may include a
complete path name. If an extension is not specified, vxBase defaults it
to ".ntx". An existing file with the same name is overwritten. File
names must begin with a letter. The file name length is limited by DOS
to 8 characters.

NtxExpr is a valid xBase expression (which may be as simple as a
field name) that is passed as either a literal string or as a string
variable. Maximum length of the expression is 255 characters.

ForCond is a valid xBase expression that evaluates as a logical TRUE
or FALSE. The index built by vxCreateSubNtx is composed of keys built
from records that satisfy the ForCond expression. The ForCond expression
may be passed as either a literal string or as a string variable.
Maximum length of the expression is 255 characters.

Usage
A subindex is an index that represents a defined subset of records

in the main dbf file. The indexing expression is in no way related to
the conditional expression that determines whether or not the record
will be represented in the index. In other words, the condition that
determines the presence or absence of a key does not depend upon the
value of the key. For example, a subindex may be created using the
expression "upper(custname)" as the key. The conditional expression
could be "(left(vxcountry,6)="CANADA") .or. (left(vxcountry,6)="U.S.A.".
This would produce an index that represented customers in North America
only. An open subindex in an index list attached to a database is
maintained just as like other index. When a record is added, an index
key for the record is only added if the conditional expression evaluates
as TRUE. If a record is updated, and the update data invalidates the
record for inclusion in the subindex, the key is deleted.

If you regularly filter data based upon a condition such as the one
above, a permanent subindex makes data retrieval MUCH faster. If the
file is large, and you need to set a temporary filter that may result in
very long record retrieval times, it is probably faster to create a
temporary subindex instead. A subindex makes it APPEAR that the database
contains only records that satisfy the conditional logical expression.

If vxSetMeters is TRUE, a meter bar charting the progress of the
index creation is presented to the user. The programmer may

vxBase Page 84

alternatively specify his own gauge control with vxSetGauge.

Warning
If you are editing a file that is being controlled by a subindex

(i.e., the index currently selected), field changes or additions that
result in the for condition returning FALSE will leave the record
pointer in an undefined state after the record is saved. If the record
is an update, the key will be removed from the index. If the record is
an addition, the key will not be added to the index. IT IS YOUR
RESPONSIBILTY to position the record pointer to a valid record if this
should occur.

There are a number of ways this can be accomplished. If you know the
condition, you can test if the new data will qualify the record for
inclusion in the index. Or you may simply seek for the record again
after writing. If it does not exist, you can position the record pointer
to someplace you have prepared to go to before you began the update
routine. This is the strategy used below:

Example (Updating a subindexed file safely)
' Validate data when save button is pressed
' ---
Sub CustSave_Click ()
 ' verify something in the field
 ' -----------------------------
 j% = vxSelectDbf(vxClientDbf)
 SeekKey$ = CustCode.Text
 If EmptyString(SeekKey$) Then
 MsgBox "vxSer Field cannot be empty"
 Exit Sub
 End If

 ' reread the record
 ' -----------------
 j% = vxSeek(SeekKey$)
 ThisRec& = vxRecNo()

 ' now get previous record in case
 ' in a subindex situation the changes
 ' the user makes removes this record
 ' from the index.
 ' The subindex condition here is
 ' vxCountry = 'CANADA' .or. vxCountry = 'U.S.A.'
 ' If the user has changed the country to
 ' something else, this record will disappear
 ' from the index when it is written so we
 ' must plan on what to do of this happens.
 ' --
 j% = vxSkip(-1)
 If vxBof() Then
 j% = vxTop()
 End If
 PrevRec& = vxRecNo()

 ' put record pointer back to update
 ' ---------------------------------
 j% = vxGo(ThisRec&)

 ' Data passed. Put it away
 ' ------------------------
 j% = vxLockRecord()

vxBase Page 85

 Call vxReplString("vxcompany", (CustCompany.Text))
 Call vxReplString("vxname", (CustName.Text))
 Call vxReplString("vxaddress1", (CustAddress.Text))
 Call vxReplString("vxaddress2", (CustAddress2.Text))
 Call vxReplString("vxcity", (CustCity.Text))
 Call vxReplString("vxstate", (CustState.Text))
 Call vxReplString("vxcountry", (CustCountry.Text))
 Call vxReplString("vxzip", (CustZip.Text))
 Call vxReplString("vxphone", (CustPhBus.Text))
 Call vxReplString("vxfax", (CustFax.Text))
 j% = vxWrite()
 j% = vxWriteHdr()
 j% = vxUnlock()

 ' Update status box
 ' -----------------
 VXFORM1.StatBar.Text = "Record " + LTrim$(Str$(ThisRec&)) + " saved"

 ' Now see if the record still exists in this index.
 ' If it does not exist, the country has been changed
 ' so we will go to the Previous record we saved
 ' above and load the form data with that. Otherwise,
 ' this record data will remain on the form.
 ' --
 If Not vxSeek(SeekKey$) Then
 j% = vxGo(PrevRec&)
 CustDataLoad
 End If

 CustReturn = BROWSE_EDIT
 RecChange = False
End Sub

Example (Creating a subindex)
 ' we open a subindex just as we do a normal index
 ' UserFname$ contains the path and name of the subindex
 If Not vxFile(UserFname$) Then
 vxCl1Ntx = vxCreateSubNtx(UserFname$, "vxser",
 "left(vxcountry,6)='CANADA'
 .or. left(vxcountry,6)='U.S.A.'")
 Else
 vxCl1Ntx = vxUseNtx(UserFname$)
 End If

See Also
 vxCreateNtx, vxIsSubNtx, vxNtxSubExpr, vxNumRecsSub, vxUseNtx,
vxSetGauge, vxSetMeters

vxBase Page 86

vxCtlBrowse
Declaration

Declare Function vxCtlBrowse Lib "vxbase.dll" (ByVal ControlHwnd As
Integer, ByVal DbfArea As Integer, ByVal NtxArea As Integer, ByVal
EditMode As Integer, ByVal StartRec As Long, ByVal MemoHwnd As Integer,
ByVal MemoField As String) As Integer

Purpose

Place a browse table into a multiline text box control. The browse
table is bounded by the confines of the text box. The browse reacts to
standard events (mouse pointing and clicking, quick key presses, etc.)
in the same fashion as vxBrowse. Communication with the Browse table is
accomplished though the use of button controls (or menu items) on the
main form and the use of vxCtlBrowseMsg.

The main differences between vxBrowse and vxCtlBrowse are:

vxBrowse is a popup window unto itself (even a task), and is
controlled with its own message loop. It may be resized,
moved, minimized, etc. After it is started, communication
between the calling program and vxBrowse is a one way street;
vxBrowse can tell the calling program what the user did but
the calling program cannot interrogate anything that happens
during the browse. After the browse window is closed, vxBrowse
reports the user action to the calling program.

vxCtlBrowse is a child window that resides entirely within the
confines of a bounded text box on a main form. Communication
works both ways; the browse window can report certain events
through standard procedures (e.g., key presses and key downs),
it can report its state (what record number is highlighted?),
and it can be controlled by the programmer and by the user
(e.g., redraw thyself starting someplace else). It does not
have to go away in order for the programmer to react.

vxBrowse is perfect for help pick lists and as a primary tool to
view a set of records in tabular format. As a pick list help tool, the
window pops up over top of another window, the user picks something (or
not), and the window goes away - leaving the programmer with the user's
choice (or not). vxBrowse can also be used to initiate and display
dynamic one to many relationships. vxCtlBrowse cannot do this
dynamically - only under programmer control by creating another
vxCtlBrowse window and manually implementing the browse.

vxCtlBrowse is much more flexible in that it can stay around and
react to and be affected by user (and programmer) actions. Its not as
good as a help pick list and its no good at all as a quick and dirty
report generator.

vxCtlBrowse can also dynamically display memos in a second text box!
(highlight a record that has a memo and the memo appears in the defined
text box).

vxBase Page 87

Parameters
 ControlHwnd is the window handle of the multiline text box that the
browse is going to inhabit. The window handle is not directly available
from Visual Basic. It must be extracted with vxCtlHwnd (see the example
in vxCtlBrowseMsg below).

DbfArea is the select area of an open database. If it is not
currently selected, vxCtlBrowse will make it the current selection.

NtxArea is the select area of an index file attached to DbfArea%.
Pass a 0 (zero) if no idex is to be used.

EditMode is passed as TRUE or FALSE. If TRUE, a mouse doubleclick on
a browse row/column will pop up an edit window with the text of the
selected field ready for edit. If the user presses the ENTER key, the
field is replaced and the record is written. If the user presses the ESC
key, the update is cancelled. Note that the only data validation
possible with the onscreen edit is for type (e.g., numeric fields must
contain numbers). If your data requires more sophisticated validation,
never pass a TRUE in this parameter.

If EditMode is FALSE, a mouse doubleclick will be converted to an
ENTER key value and may be interrogated in the textbox_keypress event
procedure. Before the key is passed, the record pointer is positioned to
the currently highlighted record so it is automatically available to
vxRecNo() if desired.

See the writeup in vxBrowse under EditMode for information on the
relationship between this parameter and vxTableDeclare/vxTableField.

StartRec is a long integer that contains the browse table starting
record number. If passed as 0 (zero), the display will commence at the
top of the file. If a record subset has been defined with
vxTableDeclare, it is the programmer's responsibility to ensure that the
pointer is positioned to the correct starting record prior to calling
vxCtlBrowse.

MemoHwnd is the window handle of a multiline text box (for textual
memos) or a picture box (for bitmaps) that may contain the contents of a
dynamic memo link. The window handle is not directly available from
Visual Basic. It must be extracted with vxCtlHwnd (see the example in
vxCtlBrowseMsg below). If there is no memo link, pass this parameter as
a 0 (zero).

MemoField is the name of the memo field that will be dynamically
linked to the browse table. Whenever a record in the browse table
receives the highlight, and that record contains a memo reference in
this field, then the memo (or bitmap) will be displayed in the MemoHwnd%
text or picture box. Pass this parameter as a space (" ") if there is no
memo link. If a relationship has been set up and is being displayed by
the browse, the memo field must belong to the parent file. NO ALIAS
NAMES ALLOWED.

Bitmap displays automatically size the picture box to the size of
the bitmap with an anchor at the upper left corner of the picture box.
If the bitmap results in a size that overflows the form, it is clipped

vxBase Page 88

on the right and/or on the bottom.

vxBase Page 89

Returns
TRUE if the browse was successfully set up. FALSE is returned for

one of the following reasons:
 (1) no current database.
 (2) DbfArea is invalid.
 (3) no more browse windows available (maximum of 16 active at once
 in all concurrent vxBase tasks - NOT including any vxBrowse
 windows).
 (4) ControlHwnd% is invalid.
 (5) The browse has already been set up in ControlHwnd (you don't
 have to worry about calling the same browse twice into the same
 window - it simply returns FALSE).
 (6) The file selected with DbfArea is empty.
 (7) Invalid memo field name.
 (8) Memo field name is not a memo.
 (9) MemoHwnd is invalid.
(10) Out of memory.

Usage
A wonderful tool for displaying and activating file editing

procedures. Users expect data to be presented in tabular format. That's
why phone books are so successful. Use vxCtlBrowse to provide a gross
view of the data, and then use vxCtlBrowseMsg to react to the user's
requests.

Please see the sections entitled "Quick Key", "Vertical Scrolling",
and "Multiuser Considerations" under vxBrowse.

NOTE: The text box that is created to hold the browse must be given the
multiline property. If scroll bars are required to allow all of the
browse data to be viewed (horizontal, vertical, or both), vxCtlBrowse
automatically provides them.

In the Form_load procedure of the form that calls vxCtlBrowse, you
should change the MousePointer property of the text box that is going to
hold the browse to an arrow as follows:

BrowseBox.MousePointer = 1

Alternatively, you can set the MousePointer property for the text
box at Design Time.

Changing the cursor shape will stop an annoying flicker that results
from vxCtlBrowse constantly changing the mouse pointer from an I-Beam to
an Arrow whenever the mouse is moved.

vxCtlBrowse may not be called from a Form_Load procedure. The text
box that is to hold the browse has not been created yet so no window
handle may be passed to vxCtlBrowse. The best place to call it is in the
Form_Paint procedure. Form_Paint of course may be called many times
during the life of the form but vxCtlBrowseMsg will not invoke itself
any more than once for a defined text box control. See the example in
vxCtlBrowseMsg below.

vxBase Page 90

Browse Navigation
The browse may be perused vertically with the mouse and the scroll

bar, the Page Up and Page Down keys, the Home and End Keys, and the up
and down arrow keys.

The horizontal aspect may be controlled with the mouse and the
scroll bar, the right and left arrow keys, and Ctrl-Left and Ctrl-Right
to move horizontally a page at a time.

Example
 SEE vxCtlBrowseMsg BELOW.

See Also
 vxBrowse, vxBrowseCase, vxBrowseSetup, vxCtlBrowseMsg, vxSetRelation,
vxTableDeclare, vxTableField, vxTableFieldExt, vxTableReset

vxBase Page 91

vxCtlBrowseMsg
Declaration

Declare Function vxCtlBrowseMsg Lib "vxbase.dll" (ByVal Hwnd As
Integer, ByVal Msg As Integer, Param As Any) As Long

Purpose
Communicate with a vxCtlBrowse text box. Messages and directives to

the browse are passed via this function, usually via a button or menu
item click event. The browse can return requested information or react
to a directive issued by vxCtlBrowseMsg.

The vxCtlBrowse may also send messages back to the KeyPress and
KeyDown event procedures for the text box.

Parameters
Hwnd is the window handle of the multiline text box that the browse

resides in. The window handle is not directly available from Visual
Basic. It must be extracted with vxCtlHwnd (see the example below).

Msg is one of the following Global Constants as defined in
vxbase.txt:

Global Const VXB_REFRESH = 0
Global Const VXB_FILTERDLG = 1
Global Const VXB_FILTERPRG = 2
Global Const VXB_GETCURRENTREC = 3
Global Const VXB_GETTOPREC = 4
Global Const VXB_STATS = 5
Global Const VXB_CASE = 6
Global Const VXB_SEARCHDLG = 7
Global Const VXB_SEARCHPRG = 8
Global Const VXB_SEARCHAGAIN = 9
Global Const VXB_SEEK = 10
Global Const VXB_CLOSE = 11
Global Const VXB_QUICKDISPLAY = 12
Global Const VXB_GO = 13
Global Const VXB_SKIP = 14

Each message is discussed under Param below.

NOTE: If any of the constants above are not defined and explicit
chcking is not turned on, Visual Basic will send a 0 (VXB_REFRESH) to
the browse. Ensure that all message values are defined.

Param is a parameter that accompanies a message to the vxCtlBrowse.
Each message that requires a Param must have that Param passed ByVal. If
a message does not require a Param, it may be passed as 0 (zero).

 * -----------------------*
 DON'T FORGET THE BYVAL.
 * -----------------------*

VXB_REFRESH: redraws the browse window. Param must be passed as a
vxBase Page 92

long integer that contains a display start record number. This
message would be sent after editing, adding, or deleting a
record that affects the visible browse display. If you wish to
start the display at the same position, use VXB_GETTOPREC to
set the start record number passed with this message. If the
record number is 0 (zero) or greater than the number of
records in the file (vxNumRecs()), no refresh takes place. The
return value may be ignored.

VXB_FILTERDLG: invokes the same vxBase filter dialog box that is
used by the vxBrowse Filter menu command. The user may enter
his own xBase filter expression. This message should be
reserved for expert users only. Use the next message
(VXB_FILTERPRG) after extracting filter parameters from the
user and building the xBase expression under program control.
Param is passed as 0 (zero). The return value may be ignored.

VXB_FILTERPRG: Sets a filter on the browse table. Param is passed
BYVAL as a complete xbase expression that evaluates as a
logical TRUE or FALSE. Note that deleted records are always
filtered out of a vxCtlBrowse display. This is the preferred
method of filter setting because things like field names and
xBase function syntax can be controlled by the programmer
(what user expects an address field to be named "A1"?). The
return value may be ignored.

A filter set on the file with vxFilter() prior to the browse
will be overridden by a filter set by either VXB_FILTERDLG or
VXB_FILTERPRG (even though it is in effect when the browse
commences). The filter will take effect again when the browse
is closed.

A filter that has been set with VXB_FILTERPRG may be cancelled
by passing Param as ByVal 0& as follows:

 j& = vxCtlBrowseMsg(vxCtlHwnd(BrowseBox), VXB_FILTERPRG, ByVal 0&)

VXB_GETCURRENTREC: Retrieves the physical record number of the
record that is currently highlighted in the browse display.
Param is passed as 0 (zero). A long integer containing the
record number is returned. This message would normally be used
in response to a button press that invoked a record edit
procedure. The user clicks the "Edit" button; the programmer
reacts in the EditButton_Click event procedure by first
going to the record using this message, extracting the record
contents and presenting the data in text boxes on the same or
another form for editing.

VXB_GETTOPREC: Retrieves the physical record number of the record
that sits at the top of the browse display. Param is passed as
0 (zero). A long integer containing the record number of the
top record is returned. After editing, adding, or deleting
records, you probably want the display to restart at the same
place that the user left off (to provide some continuity to

vxBase Page 93

the session). See VXB_REFRESH above.

VXB_STATS: Presents a file statistics dialog box - its name, size,
number of records, and a list box containing the field
structure of the file. Param is passed as 0 (zero). The return
value may be ignored.

VXB_CASE: The case of the display is toggled. If it started out as
VX_UPPER (see vxBrowseCase), it becomes all lower, and vice
versa. Note that VX_UPPER means as it was entered - not
necessarily all upper case. Param is passed as 0 (zero). The
return value may be ignored.

VXB_SEARCHDLG: Invokes a search dialog box that prompts the user for
a string. If the string exists in the table, the record that
contains the string is highlighted. If the browse was set up
with vxTableDeclare, only columns defined with vxTableField
are searched. Field boundaries are respected. If the browse is
a raw data display, the entire record is searched for the
string. If a match is found that crosses field boundaries or
not, the record is highlighted. Param is passed as 0 (zero).
The return value may be ignored.

VXB_SEARCHPRG: Searches for a string passed ByVal in Param. This
search is under programmer control. The same search algorithm
as above is used. The return value may be ignored.

VXB_SEARCHAGAIN: Search for the same string (as passed via
VXB_SEARCHDLG or VXB_SEARCHPRG) again - skipping forward one
record first. Param is passed as 0 (zero). The return value
may be ignored.

VXB_SEEK: Perform a softseek on the index (see vxSeekSoft). Param is
passed ByVal as a string. A record is highlighted if there is
a partial match or exact match. If there is no match, but a
record exists with a key higher than the search key, it is
highlighted instead. The return value may be ignored.

VXB_CLOSE: This is a very important message that must be issued to
the vxCtlBrowse window when the form containing the text box
is unloaded. It reclaims memory, clears the data structure
that was set up vxCtlBrowse, and clears the edit box that the
browse lived in. You may issue this message any time (not just
when unloading the form) to start a new browse on a different
file, or with a different index, or whatever. Just remember
that there shouldn't be any active vxCtlBrowses left over when
you unload the form (or end the program). Param is passed as 0
(zero). The return value may be ignored.

VXB_QUICKDISPLAY: Extracts the current contents of the user entered
quick key value. A quick key entry will normally result in a
the record pointer being moved so the KeyCode middle button
down event generated by vxCtlBrowse whenever a new record is
highlighted may be used to conveniently ask for the current

vxBase Page 94

quick value. Param is passed as a long integer that contains
the handle of the text box being used to display the quick
value. The new message may be used to display the current
quick value in a text box as follows:

Sub BrowseBox_KeyDown (KeyCode As Integer, Shift As Integer)
 ' Debug.Print KeyCode

 If KeyCode = 4 Then
 QWinLong& = vxCtlHwnd(QuickBox)
 ' Note: vxCtlHwnd normally returns an integer but you
 ' must explicitly cast its value as a long integer
 ' in order to fulfill the vxCtlBrowseMsg parameter
 ' requirements
 k& = vxCtlBrowseMsg(vxCtlHwnd(BrowseBox), VXB_QUICKDISPLAY,

 ByVal QWinLong&)
 End If
End Sub

Note: A VB label MAY NOT BE USED to display the quick value
because a label is a "graphical object" and therefore does not
have a window handle.

VXB_GO: Positions the highlight to a specific record contained in
the current browse display. This is especially useful if you
are updating a record on a detail form and, after you are
done, you wish to refresh the browse table with the new
information and then position the highlight to the record that
was just updated (VXB_REFRESH always positions the highlight
to the top record in the browse). Param is passed BYVAL as a
dbf record number to the browse. You must ensure that the
record number passed is indeed pointing to a record on the
current browse display. The return value may be ignored.

Example:
Sub ButtonSave_Click ()
 SaveRecNo& = CurrentRec
 TopRec& = vxCtlBrowseMsg(vxCtlHwnd(BrowseBox), VXB_GETTOPREC, 0)
 j% = vxSelectDbf(vxClientDbf)
 j% = vxGo(CurrentRec)
 j% = vxLockRecord()
 Call vxReplString("vxnamekey", (BoxNAMEKEY.Text))
 Call vxReplString("vxcompany", (BoxCOMPANY.Text))
 j% = vxWrite()
 j% = vxWriteHdr()
 j% = vxUnlock()
 k& = vxCtlBrowseMsg(vxCtlHwnd(BrowseBox), VXB_REFRESH, ByVal TopRec&)
 k& = vxCtlBrowseMsg(vxCtlHwnd(BrowseBox), VXB_GO, ByVal SaveRecNo&)
End Sub

VXB_SKIP: Moves the highlight up or down in the browse table (if
param is passed as a negative number the movement is UP; 0 or
a positive number moves DOWN). If the highlight is positioned
at the top or bottom record in the display, the browse will
scroll. This is useful where you have a browse table on one
side of the screen and detail info about the highlighted
record on the other side of the screen or even on a different
form. If the detail side has a Previous or Next button on it,
you can synchronize the highlight on the browse table to the
detail record data. The return value may be ignored.

vxBase Page 95

Example:
Sub ButtonNext_Click ()
 If RecChange Then
 j% = MsgBox("Record changed. Save?", 52)
 If j% = 6 Then
 ButtonSave_Click
 End If
 End If

 CurrentRec = vxCtlBrowseMsg(vxCtlHwnd(BrowseBox), VXB_GETCURRENTREC, 0)
 j% = vxGo(CurrentRec)

 ' skip forward one record
 ' -----------------------
 j% = vxSelectDbf(vxClientDbf)
 j% = vxSkip(1)

 ' test for end of file
 ' --------------------
 If vxEof() Then
 Beep
 VXFORM1.StatBar.Text = "End of File!"
 j% = vxGo(CurrentRec)
 Else
 VXFORM1.StatBar.Text = "Skipped to record " + LTrim$(Str$(vxRecNo()))
 CurrentRec = vxRecNo()
 CurrentRec = vxCtlBrowseMsg(vxCtlHwnd(BrowseBox), VXB_SKIP, ByVal 1&)
 ButtonEdit_Click
 End If
End Sub

Returns

The only two messages that result in a return of any value are
VXB_GETCURRENTREC and VXB_GETTOPREC. These return record numbers as long
integers. Returns from all other messages may be ignored.

Usage
vxCtlBrowseMsg is the only way you have of communicating with a

vxCtlBrowse. vxCtlBrowse also communicates with you through the KeyPress
and KeyDown event procedures attached to the text box.

If the user presses the ENTER key, or doubleclicks on a record when
the EditMode parameter of vxCtlBrowse is FALSE, an value of 13 is passed
through the KeyAScii parameter of the TextBox_KeyPress event. This is
usually a signal that the user wishes to do something with the record
that currently has the highlight (expand it, edit it, etc. - its up to
you). YOU MUST SET KEYASCII TO 0 (ZERO) BEFORE THE KEYPRESS EVENT
PROCEDURE EXIT AFTER RECEIVING AN ENTER KEY SO IT DOESN'T GET THROUGH TO
THE TEXT BOX.

The ESCAPE key is also passed to the KeyPress event procedure as
KeyAscii value 27.

The TextBox_KeyDown event procedure receives INSERT presses (as
KeyCode 45) and DELETE presses (as KeyCode 46) as well. You may react or
not react to these events as you wish.

The KeyDown event procedure also receives a KEY_MBUTTON (KeyCode as
4) whenever a record is highlighted in the Browse box. You can
dynamically link a detail form display to this event.

vxBase Page 96

vxBase Page 97

Focus Issues
The browse display receives the focus automatically when it is

created. The focus is also automatically shifted back to the browse
after vxCtlBrowseMsg completes its task. Whenever the focus leaves the
browse window, the column header row is inverted (red becomes cyan,
etc.) The user can reset the focus if it is gone by tabbing to the text
box, clicking on it, etc. - all the normal ways. You can also reset the
focus with the SetFocus Method under program control.
Memos and Bitmaps

Dynamic memo field links result in the display of a defined text
memo or a bitmap whenever one exists that is attached to a highlighted
record. If a text memo, you may allow the user to edit the memo or not -
save it or not (with vxReplMemo). If displaying a text memo, the control
must be fully enabled to allow the user to scroll in the memo text box
if the box is not large enough to hold the entire contents of the memo.

Bitmaps are displayed through this facility by passing the handle of
a picture box rather than a multiline text box. The picture box is
dynamically resized (whether the AutoResize property is set on or not)
to provide an exact fit for the bitmap. Do not use vxCtlStyle to provide
3d effects to the picture box because the dynamic resizing will leave
shadow lines all over your form.

If you wish to have the bitmap displayed in a static picture box
(AutoResize property FALSE), you may trap the middle button event in the
Key_Down procedure of the browse box and extract the bitmap yourself
with vxPictureRead. The Aircraft sample application has some commented
code that shows you how to do this in VYFORM2.

Example
The following example is the actual code used to alpha test the

vxCtlBrowse function. The VB form had the following elements:

 BrowseBox: multiline text box with vertical and horizontal
 scroll bars attached.

 MemoBox: multiline text box with a vertical scroll bar attached.

 Buttons:
 ButtonAgain to test VXB_SEARCHAGAIN
 ButtonCancFilt to test VXB_FILTERPRG, ByVal 0&
 ButtonCase to test VXB_CASE
 ButtonCurRec to test VXB_GETCURRENTREC
 ButtonExit to unload form and test VXB_CLOSE
 ButtonFilter to test VXB_FILTERDLG
 ButtonPrgFilt to test VXB_FILTERPRG
 ButtonRefresh to test VXB_REFRESH
 ButtonSearch to test VXB_SEARCHDLG
 ButtonStrSearch to test VXB_SEARCHPRG
 ButtonTopRec to Test VXB_GETTOPREC

Note the use of vxCtlHwnd to convert a VB control handle into a
Window Handle (in vxCtlBrowse and vxCtlBrowseMsg calls).

vxBase Page 98

' --
' the browse must be set up either prior to
' or during the load of the form that contains
' the text box that will hold the browse
' --
Sub Form_Load ()
 vxClientDbf = vxUseDbf("\ab2\abacus\sam\vxuser.dbf")
 vxCl1Ntx = vxUseNtx("\ab2\abacus\sam\vxuser.ntx")

 Call vxTableDeclare(VX_RED, ByVal 0&, ByVal 0&, 0, 1, 6)
 Call vxTableField(1, "Serial", "vxser", VX_FIELD)
 Call vxTableField(2, "Name", "vxname", VX_FIELD)
 Call vxTableField(3, "Company", "vxcompany", VX_FIELD)
 Call vxTableField(4, "Phone", "vxphone", VX_FIELD)
 Call vxTableField(5, "City", "vxcity", VX_FIELD)
 Call vxTableField(6, "Country", "vxcountry", VX_FIELD)

 Call vxBrowseCase(VX_UPPER)
 Call vxBrowseSetup(0, 0, 1, 1, "Arial Narrow", 15, VX_SEMIBOLD,
 FALSE, 0, 0, 0)
 ' the fontsize param of 15 comes out as about 8 point type
 ' on an SVGA at 1024/768 res

 ' change the mousepointer for the text box to an arrow
 BrowseBox.MousePointer = 1
End Sub

' call vxCtlBrowse from the form_paint after
' the form has been initialized and displayed
' ---
Sub Form_Paint ()
 j% = vxSelectDbf(vxClientDbf)
 Call vxFormFrame(VXFORMX.hWnd)
 Call vxCtlStyle(BrowseBox, VX_RECESS)
 j% = vxCtlBrowse(vxCtlHwnd(BrowseBox), vxClientDbf, vxCl1Ntx,
 TRUE, 0, vxCtlHwnd(MemoBox), "vxmemo")
End Sub

' to redraw formframe if resized
' ------------------------------
Sub Form_Resize ()
 VXFORMX.Refresh
End Sub

' important to close vxCtlBrowse in form unload
' ---
Sub Form_Unload (Cancel As Integer)
 k& = vxCtlBrowseMsg(vxCtlHwnd(BrowseBox), VXB_CLOSE, 0)
 j% = vxSelectDbf(vxClientDbf)
 j% = vxClose()
 vxWindowDereg (VXFORMX.hWnd)
End Sub

' message testing functions
' invoked when buttons clicked
' ----------------------------
Sub ButtonExit_Click ()
 Unload VXFORMX
End Sub

Sub ButtonSearch_Click ()
 j& = vxCtlBrowseMsg(vxCtlHwnd(BrowseBox), VXB_SEARCHDLG, 0)
End Sub

Sub ButtonAgain_Click ()

vxBase Page 99

 j& = vxCtlBrowseMsg(vxCtlHwnd(BrowseBox), VXB_SEARCHAGAIN, 0)
End Sub

Sub ButtonCase_Click ()
 j& = vxCtlBrowseMsg(vxCtlHwnd(BrowseBox), VXB_CASE, 0)
End Sub

Sub ButtonCurRec_Click ()
 j& = vxCtlBrowseMsg(vxCtlHwnd(BrowseBox), VXB_GETCURRENTREC, 0)
 Debug.Print j&
End Sub

Sub ButtonTopRec_Click ()
 j& = vxCtlBrowseMsg(vxCtlHwnd(BrowseBox), VXB_GETTOPREC, 0)
End Sub

Sub ButtonFilter_Click ()
 j& = vxCtlBrowseMsg(vxCtlHwnd(BrowseBox), VXB_FILTERDLG, 0)
End Sub

Sub ButtonSeek_Click ()
 SeekKey$ = InputBox$("vxBase License?", "SearchKey", "")
 If EmptyString(SeekKey$) Then
 Exit Sub
 End If
 SeekKey$ = UCase$(SeekKey$)
 j& = vxCtlBrowseMsg(vxCtlHwnd(BrowseBox), VXB_SEEK, ByVal SeekKey$)
End Sub

Sub ButtonRefresh_Click ()
 SeekRec$ = InputBox$("goto record?", "Refresh", "")
 If EmptyString(SeekRec$) Then
 Exit Sub
 End If
 GoRec& = Val(SeekRec$)
 j& = vxCtlBrowseMsg(vxCtlHwnd(BrowseBox), VXB_REFRESH, ByVal GoRec&)
End Sub

Sub ButtonStrSearch_Click ()
 SeekStr$ = InputBox$("Search string?", "Search For String", "")
 If EmptyString(SeekStr$) Then
 Exit Sub
 End If
 j& = vxCtlBrowseMsg(vxCtlHwnd(BrowseBox), VXB_SEARCHPRG, ByVal SeekStr$)
End Sub

Sub ButtonPrgFilt_Click ()
 Filt$ = "trim(vxcountry)='U.S.A.'"
 j& = vxCtlBrowseMsg(vxCtlHwnd(BrowseBox), VXB_FILTERPRG, ByVal Filt$)
End Sub

Sub ButtonCancFilt_Click ()
 j& = vxCtlBrowseMsg(vxCtlHwnd(BrowseBox), VXB_FILTERPRG, ByVal 0&)
End Sub

' --
' KEY EVENTS Passed on to VB
' Enter (13) and escape (27) key presses initiated
' during the browse may be interrogated here.
' --
Sub BrowseBox_KeyPress (KeyAscii As Integer)
 If KeyAscii = 13 Then
 MsgBox "Enter key pressed"
 ' do your update or expansion routine here
 Debug.Print vxRecNo()
 KeyAscii = 0
 Else

vxBase Page 100

 Debug.Print KeyAscii
 End If
End Sub

' Insert and Delete keys (45 and 46) will show up here
' As well as KeyCode 4 when a rec is highlighted
' --
Sub BrowseBox_KeyDown (KeyCode As Integer, Shift As Integer)
 ' insert key?
 If Keycode = 45 Then
 AddRec
 End If

 ' delete key?
 If KeyCode = 46 Then
 DeleteRec
 End If

 ' record highlighted in browse?
 If Keycode = 4 Then
 vxGo(vxCtlBrowseMsg(vxCtlHwnd(BrowseBox), VXB_GETCURRENTREC, 0))
 DisplayRec
 End If
End Sub

See Also
 vxBrowse, vxBrowseSetup, vxCtlBrowse, vxSetRelation, vxTableDeclare,
vxTableField, vxTableFieldExt, vxTableReset

vxBase Page 101

vxCtlFormat
Declaration

Declare Function vxCtlFormat Lib "vxbase.dll" () (ByVal TextLen As
Integer, ByVal Picture As Integer, ByVal Decimals As Integer) As Integer

Purpose
Control the format of text entry into Visual Basic form text boxes.

Parameters
TextLen is an integer defining the number of characters that may be

entered into the text box. Maximum length for VX_UPPER/VX_ALPHA fields
is 255. Maximum numeric field length is 19. Maximum data field length is
8. If these lengths are exceeded, vxBase sets the default lengths to the
maximum.

Picture is an integer that describes the type of data that may be
entered into the text box. The data types are defined as Global
identifiers in VXBASE.TXT.

VX_UPPER = 0: converts all lowercase characters to uppercase as they
are typed.

VX_CHAR = 1: accepts all characters with no conversion (see also
vxCtlLength).

VX_ALPHA = 2: only accepts alhabetic characters (both upper and
lower case).

VX_NUM = 3: accepts only numbers, a minus sign, and a decimal point.
Numeric fields must also be entered in the correct format (i.e., the
only characters other than numbers that may be entered into a numeric
box are a minus sign (-) in the first position aand a decimal character
as defined in the internation section of the WIN.INI file). Only one
sign and 1 decimal are allowed.

VX_DATE = 4: accepts and validates dates in a format as defined by
vxSetDate (default VX_AMERICAN MM/DD/YY).

VX_PASSWORD = 5: displays all typed characters as asterisks (*) but
accepts any character.

Decimals is an integer that defines the number of decimal places
allowed in a numeric field. The maximum number of decimals allowed is
17.

Returns
TRUE if the format was successful and FALSE if not. FALSE is

returned if the maximum number of active controls is exceeded (256) or
if we run out of memory.

Usage
Use vxCtlFormat in the GotFocus() event procedure for the text box

in which you wish to control the format.

The maximum number of active controls that may be formatted with
vxCtlFormat is 256.

IMPORTANT NOTE: Always use vxWindowDereg in your Form Unload
vxBase Page 102

procedure to release the memory vxBase allocates to the formatting
routine and to reset the control procedure address.

If text is formatted as VX_UPPER, VX_ALPHA, VX_CHAR, or VX_PASSWORD,
characters are converted as they are typed. VX_DATE and VX_NUM formats
only allow numbers and delimiters as typing occurs.

VX_DATE and VX_NUM formats are validated when the control loses the
focus. An error message box is presented if the entered data does not
pass and the focus is reset to the offending control. For example, the
number 123.45- is accepted in a numeric field as it is typed but when
the control loses the focus, the user is informed that the sign must
precede the number and focus is reset to the control. If an invalid date
is entered, a date mask as defined by vxSetDate is inserted into the
control after the user has been informed of the error.

PARAMETERS CHARACTERS TYPED RESULT
---------- ---------------- ---------
6,VX_UPPER,0 abC34F ABC34F
6,VX_CHAR,0 abC34F abC34F
8,VX_NUM,2 -123.456 -123.45 (decimals truncated)
 23 23.00 (trailing .00 added)
 23. 23.00 (trailing 00 added)
 123456.7 123456.70 (truncated left)
 123.4567 123.45 (truncated right)
8,VX_DATE,0 4/1/92 04/01/92 (leading zeroes added)

6,VX_PASSWORD,0 abC34F ****** (as viewed)
 abC34F (contents of text box)

Example
Sub NumField_GotFocus()
 j% = vxCtlFormat(vxFieldSize("numfield"), VX_NUM, 2)
End Sub

See Also
vxCtlLength, vxSetDate, vxWindowDereg

vxBase Page 103

vxCtlGrayReset
Declaration

Declare Sub vxGrayReset Lib "vxbase.dll" ()

Purpose
Reset Windows Gray color for disabled items back to the system

standard.

Parameters
None.

Returns
Nothing.

Usage
Only used if vxCtlStyle and vxFormFrame are called to give your

application a metallic, three-dimensional look (VGA/SVGA only). When
using this style of form, the backgrounds of both forms and controls are
painted light gray - the same light gray used by Windows to show that
text and controls have been disabled. Disabled items therefore disappear
into the background.

At the start of our application, we issue a vxCtlGraySet to set the
disabled color to a darker gray and we use vxCtlGrayReset to set it back
when we exit. The disabled gray color is a Windows System Color and as
such it affects every other application you may have running as well.

Note: This command has no effect if the system is not running on a
VGA or SVGA monitor.

Example
 Sub Form_Unload (Cancel As Integer)
 If Not vxCloseAll() Then
 Cancel = -1
 VXFORM1.Show ' redraw top level form
 Exit Sub
 Else
 ' we MUST test the result of vxDeallocate
 ' to ensure that the task is not controlling
 ' memory for any other vxBase tasks that
 ' might be running at the same time as this one
 ' ---
 If Not vxDeallocate() Then
 Cancel = -1
 VXFORM1.Show
 Else
 vxCtlGrayReset
 End If
 End If
 End Sub

See Also
vxCtlGraySet, vxCtlPenWidth, vxCtlStyle, vxFormFrame

vxBase Page 104

vxCtlGraySet
Declaration

Declare Sub vxCtlGraySet Lib "vxbase.dll" ()

Purpose
Set the Windows System color for disabled items to dark gray.

Parameters
None.

Returns
Nothing.

Usage
Only used if vxCtlStyle and vxFormFrame are called to give your

application a metallic, three-dimensional look (VGA/SVGA only). When
using this style of form, the backgrounds of both forms and controls are
painted light gray - the same light gray used by Windows to show that
text and controls have been disabled. Disabled items therefore disappear
into the background.

At the start of our application, we issue a vxCtlGraySet to set the
disabled color to a darker gray and we use vxCtlGrayReset to set it back
when we exit. The disabled gray color is a Windows System Color and as
such it affects every other application you may have running as well.

The gray settings are done at the start and end of the application
because the entire screen is repainted whenever we set a system color.

Note: This command has no effect if the system is not running on a
VGA or SVGA monitor.

vxCtlGraySet affects all Windows system colors. As such, every
running application has its windows repainted when this command is
issued. Some background tasks (such as Norton Desktop for Windows) will
come to the foreground and overlay your vxBase task when it is run as an
.EXE. To stop this, simply issue two calls to vxCtlGraySet in
succession.

Example
 ' register task and
 ' set system gray color with the
 ' first form we load so disabled
 ' items on our gray forms will not
 ' disappear
 ' --------------------------------
 Sub Form_Load
 Call vxInit
 Call vxCtlGraySet
 End Sub

See Also

vxCtlGrayReset, vxCtlPenWidth, vxCtlStyle, vxFormFrame

vxBase Page 105

vxCtlHwnd
Declaration

Declare Function vxCtlHwnd Lib "vxbase.dll" (ControlName As Any) As
Integer

Purpose
Convert a Visual Basic control handle into a Window handle.

Parameters
ControlName is the name of a Visual Basic control.

Returns
An integer that contains the window handle of the control.

Usage
Must be used to pass a window handle to vxCtlBrowse and

vxCtlBrowseMsg so they can do their duty. May also be used to access
Windows API calls that only work on window handles and not VB control
handles.

Restriction
For Visual Basic users only.

Example
Sub ButtonStrSearch_Click ()
 SeekStr$ = InputBox$("Search string?", "Search For String", "")
 If EmptyString(SeekStr$) Then
 Exit Sub
 End If
 j& = vxCtlBrowseMsg(vxCtlHwnd(BrowseBox), VXB_SEARCHPRG,
 ByVal SeekStr$)
End Sub

See Also
 vxCtlBrowse, vxCtlBrowseMsg

vxBase Page 106

vxCtlLength
Declaration

Declare Sub vxCtlLength Lib "vxbase.dll" (ByVal FieldName As String)

Purpose
Set the maximum number of characters that can be entered by the user

in a data entry box equal to the xBase field size.

Parameters
FieldName is either a string variable or a literal string that

contains a valid field name from the currently selected database.
FieldName may be qualified with a valid alias name that points to any
open database.

Returns
Nothing.

Usage
If used, this function must be placed in the GotFocus event

procedure for each control to set the maximum number of characters that
can be entered into a text box. The text box must of course be
associated with a vxBase field.

If you require fomatted text, use vxCtlFormat instead, which also
sets the maximum text length.

Restriction
This function is restricted to Visual Basic users only.

Example
 Sub TypeCode_GotFocus ()
 ' set up text length limit
 ' ------------------------
 Call vxCtlLength("category")
 End Sub

See Also
vxCtlFormat, vxSetAlias

vxBase Page 107

vxCtlPenWidth
Declaration

Declare Sub vxCtlPenWidth lib "vxbase.dll" (ByVal PenWidth As
Integer)

Purpose
Control the depth of recessed or raised controls when using

vxCtlStyle.

Parameters
Penwidth is either 1, 2, or 3. The default value is 2.

Returns
Nothing.

Usage
Primarily to make vxBase styled text boxes look the same as

other third party controls (e.g., 3dWidgets from Sheridan Software).

Example
 Call vxInit
 Call vxCtlGraySet
 Call vxCtlPenWidth(1)

See Also
vxCtlStyle

vxBase Page 108

vxCtlStyle
Declaration

Declare Sub vxCtlStyle Lib "vxbase.dll" (ControlName As Any, ByVal
Mode As Integer)

Purpose
Draw a frame around a control that gives it a three-dimensional

look.

Parameters
ControlName is the name of your form control.

Mode is one of the Global Constants defined in vxbase.txt that
defines the drawing style. VX_RECESS (value 1) gives the control a
recessed look. VX_RAISE (value 0)raises the control away from the form,
VX_CREASE (value 2) gives the control a creased border, and VX_FLAT
(value 3) flattens recessed or raised controls.

Returns
Nothing.

Usage
Gives your application a metallic, three-dimensional look (on

VGA/SVGA monitors only). The three-dimensional depth is controlled via
vxCtlPenWidth. Follow these steps in designing a form with this style.

(1) Lay out your form as usual, in black and white. Group boxes and
related items (even groups of buttons) may be placed inside picture
boxes and then the picture boxes may be raised for effect.

(2) When satisfied with your item placement and font selection,
color the backgound of the form and every control a light gray with the
Window Color Palette. You may wish to make the text of labels a color
other than black to distinguish them from the data entered in their
related text boxes.

(3) remove the borders from picture boxes and text boxes that you
are going to paint with vxCtlStyle. You can't remove borders from list
boxes and group boxes. It is not absolutely necessary to do this. I just
think it looks better. If you disagree, leave the borders on. Try it
both ways. (If your application is run on an EGA monitor, vxCtlStyle
draws black borders around the controls instead of making them appear
three-dimensional).

(4) use the Form_Paint procedure to draw the controls as in the
example below. If any form in your application contains disabled
controls, make sure you use vxCtlGraySet at the start of your
application to change the disabled color to a darker gray or the text of
your disabled controls will disappear into the light gray background.

When using a Form_Paint procedure, it is important to understand the
sequence of painting events that results in the completed display.

The Form_Load procedure is executed first. Your Form_Load procedure
vxBase Page 109

does not display the form. You normally use this procedure to initialize
values that will appear in the form data boxes.

After the Form_load procedure, controls that have had values
assigned are given the focus and the data is inserted in the boxes.

Windows issues an internal WM_PAINT message to draw the form before
Visual Basic receives a Form_Paint message.

After your form has been painted, we can use the Form_Paint
procedure to enhance our controls.

What this really means is that you cannot use a Control_GotFocus
event to do anything that will affect the appearance of the form. For
example, if you had a browse table up and the user selected the Delete
record item from the browse menu, a good place to test for this would be
in the GotFocus event procedure for the first control on the form. We
could then solicit a Deletion Confirmation from the user. We wouldn't
test if Delete had been selected in the Form_Load procedure because the
data hasn't been displayed yet and we would like the user to see the
record he is deleting before we ask for verification. But if we are
using the enhanced controls that vxCtlStyle provides, the Visual Basic
Form_Paint event hasn't occurred yet so we would get a flat form
overlaid by our Confirmation message box. Not pretty.

Instead, we can test for the Delete message in the Form_Paint
procedure itself after the control borders have been drawn by
vxCtlStyle, as in the example below. Keep this sequence in mind when you
contemplate initialization procedures during any event that occurs after
the first Windows painting of the form and before Visual Basic is
informed of the Form_Paint event.

Restriction
This function is restricted to Visual Basic users only.

Example
 Sub Form_Paint ()
 Call vxFormFrame(VXFORM2.hWnd)
 Call vxCtlStyle(TypeCode, VX_RECESS)
 Call vxCtlStyle(TypeDesc, VX_RECESS)
 Call vxCtlStyle(TypeStatus, VX_RAISE)

 ' if delete request from browse, do it now
 ' because we must let enhanced controls
 ' paint before asking for delete confirmation
 ' --
 If TypeReturn = BROWSE_DELETE Then
 TypeDelete_Click
 End If
 End Sub

See Also
vxCtlGrayReset, vxCtlGraySet, vxCtlPenWidth, vxFormFrame

vxBase Page 110

vxDateFormat
Declaration

Declare Function vxDateFormat Lib "vxbase.dll" (ByVal DateField As
String) As String

Purpose
Convert an xBase date field to a Visual Basic date format that can

be used by Visual Basic date arithmetic and formatting functions.

xBase dates are stored as 8 character long strings in the format
CCYYMMDD.

Parameters
DateField is either a string variable or a literal string that

contains a valid date field name from the currently selected database.
DateField may be qualified with a valid alias name that points to any
open database.

Returns
A Visual Basic string in the format DD-MMM-CCYY. For example, if the

DTOS(date) in the database field is "19910722" then the returned value
will be 22-Jul-1991. If the field name does not represent a date, or if
it is empty, the value returned will be 01-Jan-1980.

Usage
This function must be used to convert a date into a format which

Visual Basic can understand. Visual Basic contains a full complement of
functions that perform date arithmetic so there is no need for vxBase to
duplicate those functions.

Example
 ' vxDateFormat() routine returns a date in the
 ' format dd-mmm-yyyy, which the Visual Basic
 ' DateValue function inderstands. We will put
 ' the creation date into a variable so we can
 ' perform some date arithmetic on it to determine
 ' the number of days on file
 ' --
 DateCreate$ = vxDateFormat("a_cdate")
 DaysOnFile% = (DateValue(Date$) - DateValue(DateCreate$))
 + 1

 CustCdate.text = DateCreate$
 CustRdate.text = vxDateFormat("a_rdate")
 CustDays.text = Format$(DaysOnFile%, "###0")

See Also

vxDateString, vxReplDate, vxReplDateString, vxSetAlias, vxSetDate

vxBase Page 111

vxDateString
Declaration

Declare Function vxDateString Lib "vxbase.dll" (ByVal DateField As
String, ByVal DateType As Integer) As String

Purpose
Convert an xBase date field to a standard display style date

formatted according to country specific conventions.

Parameters
DateField is either a string variable or a literal string that

contains a valid date field name from the currently selected database.
DateField may be qualified with a valid alias name that points to any
open database.

DateType is a country identifier as defined in vxbase.txt. It is one
of the following:

VX_AMERICAN format mm/dd/yy
VX_ANSI format yy.mm.dd
VX_BRITISH format dd/mm/yy
VX_FRENCH format dd/mm/yy
VX_GERMAN format dd.mm.yy
VX_ITALIAN format dd-mm-yy
VX_SPANISH format dd-mm-yy

Returns
A Visual Basic string in the format of the country specified. These

dates may not be used with Visual Basic date arithmetic routines because
the results are always ambiguous. Use vxDateFormat to extract an
unambiguous date if date arithmetic is to be performed on the date. If
the field name does not represent a date, or if it is empty, the value
returned will be January 1, 1980.

Usage
Use this function only for form display purposes and for filling a

data entry box with a string that will have its format controlled with
vxCtlFormat.. Use vxDateFormat if date arithmetic is to be performed on
the converted date.

Example
' format a date for display in a VB
' form textbox
' ----------------------------------

 CustRdate.text = vxDateString("a_rdate", VX_AMERICAN)

See Also

vxCtlFormat, vxDateFormat, vxDbfDate, vxReplDate, vxReplDateString,
vxSetAlias, vxSetDate, vxSetLanguage

vxBase Page 112

vxDbfCurrent
Declaration

Declare Function vxDbfCurrent lib "vxbase.dll" () As Integer

Purpose
Get the current database select area.

Parameters
None.

Returns
The current database select area (as reported by vxUseDbf or one of

its variants when the file was opened). If there is no current select
area active, FALSE (0) is returned.

Usage
Can be used to ensure that the database select area you THINK is

active is really active when you are about to perform critical tasks
(such as vxZap() or even vxClose()).

Example
 If vxDbfCurrent() = MasterDbf Then
 j% = vxClose()
 End If

See Also
 vxAreaDbf, vxNtxCurrent, vxSelectDbf, vxUseDbf, vxUseDbfAgain,
vxUseDbfEX, vxUseDbfRO

vxBase Page 113

vxDbfDate
Declaration

Declare Function vxDbfDate Lib "vxbase.dll" () As String

Purpose
Extract the date of the last read/write access performed on the

current database.

Parameters
None.

Returns
A Visual Basic string that contains the date that the file was last

opened with vxUseDbf (and successfully closed with vxClose or
vxCloseAll). The date returned is formatted according to the current
vxSetDate value (default VX_AMERICAN MM/DD/YY).

Usage
Usually for display or print purposes.

Example
 UpdateDate.text = vxDbfDate()

See Also

vxDbfName, vxSetDate

vxBase Page 114

vxDbfName
Declaration

Declare Function vxDbfName Lib "vxbase.dll" () As String

Purpose
Extract the name of the currently selected database file.

Parameters
None.

Returns
A Visual Basic string that contains the name of the database file as

it was passed to the vxUseDbf function or one of its variants when it
was opened.

Usage
Usually for display or print purposes.

Example
 NameControl.text = vxDbfName()

See Also

vxDbfDate, vxNtxName

vxBase Page 115

vxDeallocate
Declaration

Declare Function vxDeallocate Lib "vxbase.dll" () As Integer

Purpose
Release global memory allocated to VB.EXE by vxBase when in Design

Mode and test task closure sequence if multitasking vxBase applications.

Parameters
None.

Returns
TRUE if it is safe to unload the task and FALSE if not. FALSE is

returned if this is the memory controlling task for a number of
concurrently running vxBase tasks.

Usage
Always used as the last statement in your VB application. In Visual

Basic Design Mode, this function releases memory allotted to VB.EXE. If
this statement does not appear as the last statement in your appli-
cation, repeated test runs while in design mode will cause VB.EXE to
grow in memory by about 130k per repetition until you eventually run out
of memory unless VXLOAD.EXE is running as suggested. This procedure only
works if the Visual Basic Design mode window (which includes the VB main
menu) is visible on your screen when the Run command (or F5) is issued.
If running a compiled vxBase application, this function tests if it is
safe to unload the current application. See the Multitasking and
Multiuser Considerations section for a complete explanation of vxBase
memory sharing. Also see the section entitled "Visual Basic and
VXLOAD.EXE".

Example
Sub Form_Unload (Cancel As Integer)
 If Not vxCloseAll() Then
 Cancel = -1
 VXFORM1.Show ' redraw top level form
 Exit Sub
 Else
 ' we MUST test the result of vxDeallocate
 ' to ensure that the task is not controlling
 ' memory for any other vxBase tasks that
 ' might be running at the same time as this one
 ' ---
 If Not vxDeallocate() Then
 Cancel = -1
 VXFORM1.Show
 Else
 vxCtlGrayReset
 End If
 End If
End Sub

See Also
vxCloseAll, vxInit

vxBase Page 116

vxDecimals
Declaration

Declare Function vxDecimals Lib "vxbase.dll" (ByVal FieldName As
String) As Integer

Purpose
Extract the number of decimal positions defined for the specified

field.

Parameters
FieldName is either a string variable or a literal string that

contains a valid field name from the currently selected database. The
field should be numeric, although a zero will be returned for any other
field type. FieldName may be qualified with a valid alias name that
points to any open database.

Returns
An integer that contains the number of decimal positions.

Usage
Usually extracted to help in data validation.

Example
Sub BuyHigh_KeyPress (KeyAscii As Integer)
 ' Treat enter key as a tab
 ' ------------------------
 If KeyAscii = 13 Then
 KeyAscii = 0
 SendKeys "{Tab}"
 Exit Sub
 End If

 ' if there are any decimals defined, allow decimal point
 ' --
 If vxDecimals("b_high") > 0 And KeyAscii = Asc(".") Then
 Exit Sub
 End If

 ' limit key presses to numbers
 ' ----------------------------
 If KeyAscii < Asc("0") Or KeyAscii > Asc("9") Then
 KeyAscii = 0
 Beep
 End If
End Sub

See Also

vxFieldSize, vxFieldType, vxSetAlias

vxBase Page 117

vxDeleted
Declaration

Declare Function vxDeleted Lib "vxbase.dll" () As Integer

Purpose
Determine whether a record from the currently selected database has

been logically deleted or not.

Parameters
None.

Returns
TRUE if the record has been deleted, and FALSE if not.

Usage
When xBase records are deleted with the vxDeleteRec function, they

are only logically deleted. Every record has a Deletion Flag field as
the first byte in the record. If the vxDeleteRec function is used to
delete the record, the flag is changed from a space to an asterisk "*".
vxBrowse automatically filters these records. If the programmer is using
other record movement schemes, it is his responsibilty to ensure that
deleted records are ignored when they are supposed to be, or to report
the fact that the record has been deleted to the end user.

Deleted records are physically removed from a file only by packing
it or copying it using vxCopy.

A filter can be set to ignore deleted records with the vxFilter
function.

Example
 ' standard skip loop
 ' ------------------
 Do
 j% = vxSkip(1)
 If j% = FALSE Then
 MsgBox "Error on Skip. Try Reindex."
 Exit Sub
 End If
 If vxEof() Then Exit Do
 Loop Until Not vxDeleted()

See Also
vxCopy, vxDeleteRange, vxDeleteRec, vxPack, vxRecall, vxZap

vxBase Page 118

vxDeleteRange
Declaration

Declare Function vxDeleteRange Lib "vxbase.dll" (ByVal StartRec As
Long, ByVal EndRec As Long) As Integer

Purpose
Physically remove the specified range of records from the currently

selected database.

Parameters
StartRec is the record number of the first record to delete. EndRec

is the last record number in the range.

Returns
TRUE if the operation was successful and FALSE if not. Always FALSE

if the file was opened as Read Only with vxUseDbfRO.

Usage
StartRec must be less than or equal to EndRec. The record numbers

refer to the physical locations of the records. If an index is in use,
it is deselected prior to the commencement of the operation. If one or
more indexes are in use, the file is reindexed after the range of
records has been removed.

Multiuser Considerations
The file and its indexes are locked for the duration of the

operation.

Example
 j% = vxBottom()
 OldLastRec& = vxRecNo()
 j% = vxAppendFrom("Transfil.dbf")
 j% = vxBottom()
 NewLastRec& = vxRecNo()
 j% = MsgBox("Everything OK?", 52)
 If j% = 6 Then
 j% = vxClose()
 Kill "Transfil.dbf"
 Else
 j% = vxDeleteRange(OldLastRec& + 1, NewLastRec&)
 j% = vxClose()
 End If

See Also
vxDeleteRec, vxPack, vxZap

vxBase Page 119

vxDeleteRec
Declaration

Declare Function vxDeleteRec Lib "vxbase.dll" () As Integer

Purpose
Logically delete the current record from the currently selected

database.

Parameters
None.

Returns
TRUE if the operation was successful and FALSE if not. Always FALSE

if the file was opened as Read Only with vxUseDbfRO.

Usage
This function sets the Delete Flag field that is present at the

front of every xBase record to '*', which logically deletes the record.
The record is still available for use by every function except vxBrowse,
which filters all deleted records.

The record may be recalled with the vxRecall function.

Records deleted with vxDeleteRec may be physically removed from the
file with function vxPack or function vxCopy.

The programmer is responsible for skipping by deleted records when
moving the record pointer. Alternatively, a filter may be set on the
file with vxFilter that masks deleted records from the vxSkip and vxSeek
functions.

Example
Sub TypeDelete_Click ()

 ' get user confirmation of delete
 ' -------------------------------
 j% = MsgBox("Confirm Delete", 52)
 If j% = 6 Then
 If vxDeleteRec() Then
 TypeDataClear
 TypeStatus.text = "Rec " + LTrim$(Str$(vxRecNo()))
 + " Deleted"
 Else
 TypeStatus.text = "Delete failed"
 End If
 Else
 TypeStatus.text = "Delete cancelled"
 End If
End Sub

See Also

vxCopy, vxDeleted, vxDeleteRange, vxPack, vxRecall, vxZap

vxBase Page 120

vxDescend
Declaration

Declare Function vxDescend Lib "vxbase.dll" (ByVal KeyString As
String) As String

Purpose
Create a search key for use in seeking records indexed with the

xBase DESCEND() function.

Parameters
KeyString is either a literal string or string variable that

contains the value to be converted into DESCEND() format.

Returns
A Visual Basic string containing a complemented representation of

KeyString.

Usage
This function must be used to create search keys if you are

attempting to find records in an index built with the xBase DESCEND()
function.

If you are browsing a file with a key built with the DESCEND()
function as the first part of the key, be sure to turn Quick Key off in
vxTableDeclare (set parameter Quick to zero). Quick Key searches in a
browse window will not work on DESCENDing key elements.

Example
AirbuyerDbf = vxUseDbf("\vb\airtypes.dbf")
DescNtx = vxCreateNtx("\vb\airdown.ntx", "DESCEND(UPPER(b_cat))")
If vxSeek(vxDescend("P15")) Then
 DisplayBuyRec
Else
 MsgBox "Record Not Found"
End If

See Also

vxCreateNtx, vxSeek, vxSeekSoft

vxBase Page 121

vxDouble
Declaration

Declare Sub vxDouble Lib "vxbase.dll" (ByVal FieldName As String,
DblAmount As Double)

Purpose
Convert a numeric field to a Visual Basic double value.

Parameters
FieldName is either a string variable or a literal string that

contains a valid numeric field name from the currently selected
database. FieldName may be qualified with a valid alias name that points
to any open database.

DblAmount is a predimensioned double value that will receive the
result of the function. See the example below.

Returns
A double value in the DblAmount parameter.

Usage
Unlike other field reference functions, this is a procedure that

must be CALLed. The user is responsible for passing a predefined double
variable to vxDouble, which receives the result of the procedure call.

The format of this function has to do with Borland C++, phantom
parameters, and Bad DLL Calling Conventions, which you probably don't
want to know about. Unfortunately, this is the only way I could get it
to work.

Example
Sub BuyerDataLoad ()
 Dim b_low As Double
 Dim b_high As Double

 CursorWait
 EnableBuyerData
 Call vxDouble("b_low", b_low)
 Call vxDouble("b_high", b_high)
 BuyLow.text = Format$(b_low, "#######0")
 BuyHigh.text = Format$(b_high, "#######0")
 BuyType.text = vxField("b_cat")
 BuyTypeDesc.text = vxField("b_desc")
 BuyCode.text = vxField("b_code")
 CursorArrow
End Sub

See Also

vxField, vxFieldTrim, vxInteger, vxLong, vxReplDouble, vxReplString,
vxSetAlias

vxBase Page 122

vxEmpty
Declaration

Declare Function vxEmpty Lib "vxbase.dll" (ByVal FieldName As
String) As Integer

Purpose
Test if a character field is filled with spaces or if a numeric

field is zero.

Parameters
FieldName is either a string variable or a literal string that

contains a valid field name from the currently selected database.
FieldName may be qualified with a valid alias name that points to any
open database.

Returns
TRUE if the character field has nothing but spaces in it or if a

numeric field evaluates to zero. FALSE if the field contains something.
The function will actually work on any kind of field (including date,
logical, and memo fields) and return TRUE if the field is composed
entirely of spaces.

Usage
Normally used to control processing of controls depending on whether

something has been entered or not.

Example
 ' if the code has already been entered, don't
 ' allow the user to edit it
 ' ---
 If vxEmpty("buy_code") Then
 BuyCode.Enabled = TRUE
 BuyCode.text = ""
 Else
 BuyCode.Enabled = FALSE
 BuyCode.text = vxField("buy_code")
 End If

See Also

vxChar, vxField, vxFieldTrim, vxSetAlias

vxBase Page 123

vxEof
Declaration

Declare Function vxEof Lib "vxbase.dll" () As Integer

Purpose
Test for end of file.

Parameters
None.

Returns
TRUE if the record pointer has been moved past the last record in

the file and FALSE if not.

Usage
When skipping through a file in the forward direction, always use

vxEof to test if the last record has been read. If vxEof is TRUE, the
record buffer will point to an empty record (which can't be used for
anything).

Example
 ' skip forward one record
 ' -----------------------
 Do
 j% = vxSkip(1)
 If j% = FALSE Then

 ' if skip error, only allow exit
 ' ------------------------------
 MsgBox "Error on Skip Next. Try Reindex."
 TypeDataClear
 Exit Sub
 End If
 If vxEof() Then Exit Do
 Loop Until Not vxDeleted()

 ' test for end of file
 ' --------------------
 If vxEof() Then
 Beep
 TypeStatus.text = "End of File!"
 j% = vxBottom() ' go back to last record
 Else
 TypeStatus.text = "Skipped to record " +
 LTrim$(Str$(vxRecNo()))
 End If
 TypeDataLoad

See Also

vxBof

vxBase Page 124

vxErrorTest
Declaration

Declare Function vxErrorTest Lib "vxbase.dll" (ErrorStructure As
vxErrorStruc) As Integer

Purpose
Test if an error occurred in a vxBase function. This function only

works if vxSetErrorMethod is set to TRUE. vxSetErrorMethod and
vxErrorTest provide an alternate error handling procedure to the
standard vxBase error routine. If vxSetErrorMethod is FALSE, vxBase
errors are reported through an immediate run time message box.

Parameters
ErrorStructure is of type vxErrorStruc as defined in the global

module (see Example below).

Returns
TRUE if an error occurred in the previous call to vxBase and FALSE

if no error occurred.

Usage
Visual Basic 1.0 does not provide a method for a DLL to trigger a

Visual Basic Error. As a result, the standard ON ERROR method will not
work to trap errors found by a DLL. Visual Basic 2.0 does provide a
standard hook into the ON ERROR method and therefore simplifies the
processing of the alternate error method.

Visual Basic 1.0
By using vxSetErrorMethod(TRUE) and vxErrorTest(vxError), the

programmer may trap errors and execute an error procedure instead of
being caught in a no win situation (such as a series of field extraction
commands that are issued to a non-selected database which results in a
seemingly never-ending sequence of the same error message box). If an
error occurs within a vxBase function, you may exit to a special vxBase
error handling procedure and, depending on the error reported, either
END the program or continue by returning to the statement following the
vxErrorTest. vxErrorTest must be called after every vxBase function call
that could result in a runtime error.

Visual Basic 2.0
If vxSetErrorMethod is set to TRUE with Visual Basic 2.0, the

standard ON ERROR method event is triggered and vxErrorTest is only
called in the defined error routine instead of after every call to
vxBase that could result in a runtime error. Your defined error routine
must still interrogate the vxErrorStructure to determine the type of
error that occurred.

Errors that occur within high level vxBase functions (vxBrowse,
vxMemoEdit, vxCtlFormat) are NOT trappable with vxErrorTest. Errors that
occur in these functions cannot be foreseen by the programmer (such as
an invalid date entry into a vxCtlFormat date text box) and must be
dealt with at the user level.

vxBase Page 125

The error structure defined as Global var vxError (as type
vxErrorStruc) has the following elements:

 vxError.ErrorNum vxBase error number as listed in Appendix A
 vxError.ErrorMsg vxBase error message as listed in Appendix A
 or in the language selected with vxSetLanguage.
 This is a FIXED string and must be RTRIMmed
 before use.
 vxError.DbfArea the currently selected dbf area (0 if none)
 vxError.NtxArea the currently selected ntx area (0 if none)
 vxError.DbfName the name of the current dbf (blank if none)
 vxError.NtxName the name of the current ntx (blank if none)
 vxError.BadParm an extra information field that contains
 variable data depending on the type of
 error that occurred. For example, if an
 invalid field name is passed to vxBase, that
 invalid field name will appear here. If there
 is no extra info that would have any validity,
 the element is blank. If the extra info is longer
 than 79 characters (e.g., xbase expressions) it
 is truncated on the right.

A call to vxErrorTest resets the internal vxBase error flag.
Subsequent calls to vxErrorTest when no error has occurred will always
return FALSE. Only the LAST error that occurred is available at any
given time in vxError unless you wish to save the returned error
structure in different variables.

Example
 The error structure, function declaration, and global variable must
be defined in the global module as follows (and in the same order):

 Type vxErrorStruc
 ErrorNum As Integer
 ErrorMsg As String * 80
 DbfArea As Integer
 NtxArea As Integer
 DbfName As String * 80
 NtxName As String * 80
 BadParm As String * 80
 End Type

 Declare Function vxErrorTest Lib "vxbase.dll"
 (ErrorStructure As vxErrorStruc) As Integer
 ' (above declaration on ONE line)

 Global vxError As vxErrorStruc

Visual Basic 1.0
 ' Trapping the error in the FORM code
 ' -----------------------------------
 Call vxSetErrorMethod(TRUE)
 jj% = vxUseNtx("\vb\vxbtest\testerr.ntx")
 If vxErrorTest(vxError) Then
 ProcessError

vxBase Page 126

 End If
 Call vxSetErrorMethod(FALSE)

 ' processing the error in a General Procedure
 ' ---
 Sub ProcessError ()

 Select Case vxError.ErrorNum
 ' 620 File Open
 Case 620
 MsgBox "vxBase TEST: file open error"
 END

 ' 944 Invalid Field Name
 Case 944
 MsgBox "Bad Field " + RTrim$(vxError.BadParm)
 END

 Case Else
 MsgBox RTrim$(vxError.ErrorMsg)
 End Select

 ' see Appendix A in the vxBase manual
 ' for a description of all errors

 ' identify what you feel are catastrophic
 ' errors (like a 620 error) and abort
 ' the program run entirely with an END
 ' statement

 End Sub

Visual Basic 2.0
 ' VB 2.0 uses the standard VB On Error method
 ' ---
 On Error GoTo VBErrorRtn
 Call vxSetErrorMethod(True)
 jj% = vxUseNtx("\vb\vxbtest\testerr.ntx")
 ...
 ...
 ...
 Call vxSetErrorMethod(False)
 ...
 ...
 ...

VBErrorRtn:
 MsgBox "vxBase error encountered"
 If vxErrorTest(vxError) Then
 ProcessError
 End If
 Resume Next
End Sub

See Also
vxSetErrorMethod

vxBase Page 127

vxEval
Declaration

Declare Function vxEval Lib "vxbase.dll" (ByVal xBaseExpr As String)
As Integer

Purpose
Test if a user entered xBase expression will properly evaluate.

Parameters
xBaseExpr is a character expression formatted using xBase syntax.

Returns
TRUE if the expression will evaluate and FALSE if it contains syntax

errors or errors of any other type that the vxBase parser uncovers.

Note that this function does not return the result of the
expression. Rather, it simply checks to see if the expression will
evaluate correctly once it is in use.

Usage
You may solict xBase expressions from the user in the form of

filters, index expressions, browse table column definitions, etc. If an
error is uncovered during expression evaluation, the user is informed
via vxBase error message windows but the programmer has no way of
knowing that the expression doesn't pass unless he parses it first with
vxEval.

NOTE: The record buffer must be filled with a valid record from the
database that the expression applies to BEFORE this function is called.
The database must be open and currently selected.

Example
 ' test user entered filter expression
 ' -----------------------------------
 j% = vxGo(RecNum&)
 If Not vxEval((UserFilter.Text)) Then
 MsgBox "Re-Enter filter"
 UserFilter.SetFocus
 Exit Sub
 Else
 Call vxFilter((UserFilter.Text))
 Call BrowseFile
 End If

See Also
vxCreateNtx, vxEvalDouble, vxEvalLogical, vxEvalString, vxFilter,

vxTableField

vxBase Page 128

vxEvalDouble
Declaration

Declare Function vxEvalDouble Lib "vxbase.dll" (ByVal xBaseExpr as
String, DblAmount As Double) As Integer

Purpose
 Evaluate an xBase expression that returns a numeric value and store
the result of the evaluation in a predefined Visual Basic double
variable.

Parameters
 xBaseExpr is a valid xBase expression that will return a numeric
result.

DblAmount is a predefined double value that will receive the result
of the xBase expression.

Returns
TRUE if the expression is a valid NUMERIC xBase expression. FALSE is

returned if the expression cannot be parsed or if the expression type is
not numeric.

NOTE: The record buffer must be filled with a valid record from the
database that the expression applies to BEFORE this function is called.
The database must be open and currently selected.

Example
 ' use vxEvalDouble to calc capacity in
 ' lbs by subtracting empty weight from gross
 ' in an xBase expression instead of Vis Bas
 ' --
 NumVal = 0
 If vxEvalDouble("c_gwt - c_ewt", NumVal) Then
 AirEmpty.text = Format$(NumVal, "####0")
 Else
 MsgBox "Numeric expression eval error"
 End If

See Also
vxEval, vxEvalLogical, vxEvalString

vxBase Page 129

vxEvalLogical
Declaration

Declare Function vxEvalLogical Lib "vxbase.dll" (ByVal xBaseExpr as
String, ByVal TrueFalse As String) As Integer

Purpose
Evaluate an xBase expression that returns a logical value and store

the result of the evaluation in a predefined Visual Basic string. The
result will be either ".T." for TRUE or ".F." for FALSE.

Parameters
xBaseExpr is a valid xBase expression that will return a logical

result.

TrueFalse is a predefined string that is 4 characters long that will
receive the result of the xBase expression (either ".T." or ".F".).

Returns
TRUE if the expression is a valid LOGICAL xBase expression. FALSE is

returned if the expression cannot be parsed or if the expression type is
not logical.

 Notice that the integer return value is NOT the same as the result of
the expression evaluation. If the expression is logical and evaluates as
".F.", the function will return TRUE but the value in the predefined
Visual Basic string variable will be ".F.".

Usage
NOTE: The record buffer must be filled with a valid record from the

database that the expression applies to BEFORE this function is called.
The database must be open and currently selected.

Example
 ' example of xBase logical expression evaluation
 ' --
 Eval$ = String$(4, 0)
 If vxEvalLogical("left(category,1)='C'", Eval$) Then
 EvalBox.Text = Eval$
 Else
 MsgBox "Error in logical expression evaluation"
 End If

See Also
vxEval, vxEvalDouble, vxEvalString

vxBase Page 130

vxEvalString
Declaration

Declare Function vxEvalString Lib "vxbase.dll" (ByVal xBaseExpr as
String, ByVal StringVal As String) As Integer

Purpose
 Evaluate an xBase expression that returns a string value and store the
result of the evaluation in a predefined Visual Basic string.

Parameters
 xBaseExpr is a valid xBase expression that will return a character
result.

 StringVal is a predefined string that will receive the result of the
xBase expression. It MUST be long enough to hold the xBase result.

Returns
 TRUE if the expression is a valid CHARACTER xBase expression. FALSE is
returned if the expression cannot be parsed or if the expression type is
not character.

Usage
NOTE: The record buffer must be filled with a valid record from the

database that the expression applies to BEFORE this function is called.
The database must be open and currently selected.

Example
 ' example of xBase string expression evaluation
 ' ---
 EvStr$ = String$(64, 0)
 If vxEvalString("trim(catname)+' is category '+category",EvStr$) Then
 JoinBox.Text = EvStr$
 Else
 MsgBox "Error in string expression evaluation"
 End If

See Also
vxEval, vxEvalDouble, vxEvalLogical

vxBase Page 131

vxExactOff
Declaration

Declare Sub vxExactOff Lib "vxbase.dll" ()

Purpose
Turns the vxExactOn requirement OFF when using vxSeek.

Parameters
None.

Returns
Nothing. Sets an internal switch only.

Usage
Sets the ExactOn switch to OFF. OFF is the default value of this

switch. See vxExactOn for more details on exactly what it does.

Example
 vxExactOn
 If vxSeek("ABC") Then
 UpdateProcedure
 Else
 AddProcedure
 End If
 vxExactOff

See Also

vxExactOn, vxFound, vxSeek

vxBase Page 132

vxExactOn
Declaration

Declare Sub vxExactOn Lib "vxbase.dll" ()

Purpose
Sets the internal Exact switch ON.

Parameters
None.

Returns
Nothing. Internal switch setting only.

Usage
The status of the Exact switch controls whether or not vxBase will

report a successful vxSeek on a record if a partial key match is found.
For example, assume you have a customer key in the form "ABCDEF". The
vxSeek parameter could be "A", "AB", "ABC" etc. up to "ABCDEF" and it
will report the record found (if its the only one with an "A" in the
first position). In other words, vxSeek("A") will find the first record
in the file whose key begins with "A" if you pass it a single letter
"A", no matter how long the key is. There are times when you may wish to
only find a record whose key matches the vxSeek parameter exactly. This
is when you use vxExactOn. Don't forget to turn it off or things won't
work out exactly as you had planned.

If vxExactOn is TRUE, then a partially matched key will cause vxSeek
to return FALSE, and vxFound will also return FALSE. The record pointer,
however, will be set at the record whose key matched partially if that
was the case and vxEOF will be FALSE. If no part of the key was found,
vxEOF will be TRUE, vxFound will be FALSE, and the record pointer will
be pointing nowhere.

Example
 vxExactOn
 If vxSeek("ABC") Then
 UpdateProcedure
 Else
 AddProcedure
 End If
 vxExactOff

See Also

vxExactOff, vxSeek, vxSeekSoft

vxBase Page 133

vxField
Declaration

Declare Function vxField Lib "vxbase.dll" (ByVal FieldName As
String) As String

Purpose
Extract an xBase field and convert it to a Visual Basic string.

Parameters
FieldName is either a string variable or a literal string that

contains a valid field name from the currently selected database.
FieldName may be qualified with a valid alias name that points to any
open database.

Returns
A Visual Basic string that contains the contents of the defined

field.

Usage
Mostly used to get the contents of a character type field. Note,

however, that all xBase data is kept in character format, so you can use
this function to extract any field - including numeric, date, and
logical fields (and even a memo block reference if you wish). You could
then use Visual Basic data conversion functions to create the type of
data you are interested in.

NOTE 1: The maximum length of a field that can be extracted using
vxField is 255 characters. If the field is longer than 255, use vxRecord
to extract the entire record contents into a defined record type or
string.

NOTE 2: The record buffer must be filled prior to calling any vxBase
field extraction function. When a file is opened, the record pointer is
positioned to the top of the file and the first physical record is read
into the buffer. If an index is opened, the first logical record is read
into the buffer. Any field extraction operations performed on this
buffer will always return the same values until another explicit
operation is called that reads a record into the buffer (e.g., vxGo,
vxTop, vxBottom, vxSkip, vxSeek, vxSeekSoft, etc.). In a multiuser
situation user A could change the record and write it. User B may have
the old record in his buffer and will never know about the changes until
the record is re-read.

vxBase Page 134

Example
Sub BuyerDataLoad ()
 Dim b_low As Double
 Dim b_high As Double

 CursorWait
 EnableBuyerData
 Call vxDouble("b_low", b_low)
 Call vxDouble("b_high", b_high)
 BuyLow.text = Format$(b_low, "#######0")
 BuyHigh.text = Format$(b_high, "#######0")
 BuyType.text = vxField("b_cat")
 BuyTypeDesc.text = vxField("b_desc")
 BuyCode.text = vxField("b_code")
 CursorArrow
End Sub

See Also

vxDouble, vxFieldTrim, vxInteger, vxLong, vxRecord, vxReplRecord,
vxReplString, vxSetAlias, vxSetString

vxBase Page 135

vxFieldCount
Declaration

Declare Function vxFieldCount Lib "vxbase.dll" () As Integer

Purpose
Extract the number of fields in the currently selected database.

Parameters
None.

Returns
An integer with the number of fields in the current database. If no

database is selected, 0 is returned.

Usage
Use in conjunction with other field statistical functions to create

listboxes of file structures, etc.

Example
 ' demonstration of file structure extraction
 ' ---
 AircustDbf = vxUseDbf("\vb\vxbtest\aircust.dbf")
 FileName.text = vxDbfName()
 For j% = 1 To vxFieldCount()
 FieldName$ = vxFieldName(j%)
 FSize% = vxFieldSize(FieldName$)
 FType$ = vxFieldType(FieldName$)
 FDec% = vxDecimals(FieldName$)
 List1.AddItem FieldName$ + " " + FType$ + " " +
 LTrim$(Str$(FSize%)) + "." +
 LTrim$(Str$(FDec%))
 Next
 j% = vxClose

 ' note: the AddItem Method would be on one line
 ' in the actual source code
 ' ---

See Also
vxDecimals, vxFieldName, vxFieldSize, vxFieldType

vxBase Page 136

vxFieldName
Declaration

Declare Function vxFieldName Lib "vxbase.dll" (ByVal FieldNumber As
Integer) As String

Purpose
Extract the name of the nth field in the field array of the current

database.

Parameters
FieldNumber is an index into the field array that ranges from 1 to

vxFieldCount.

Returns
A Visual Basic string that contains the name of the nth field.

Usage
Use in conjunction with other field statistical functions to create

listboxes of file structures, etc.

Example
 ' demonstration of file structure extraction
 ' ---
 AircustDbf = vxUseDbf("\vb\vxbtest\aircust.dbf")
 FileName.text = vxDbfName()
 For j% = 1 To vxFieldCount()
 FieldName$ = vxFieldName(j%)
 FSize% = vxFieldSize(FieldName$)
 FType$ = vxFieldType(FieldName$)
 FDec% = vxDecimals(FieldName$)
 List1.AddItem FieldName$ + " " + FType$ + " " +
 LTrim$(Str$(FSize%)) + "." +
 LTrim$(Str$(FDec%))
 Next
 j% = vxClose

 ' note: the AddItem Method would be on one line
 ' in the actual source code
 ' ---

See Also
vxDecimals, vxFieldCount, vxFieldSize, vxFieldType

vxBase Page 137

vxFieldSize
Declaration

Declare Function vxFieldSize Lib "vxbase.dll" (ByVal FieldName As
String) As Integer

Purpose
Extract the size of the named field.

Parameters
FieldName is either a string variable or a literal string that

contains a valid field name from the currently selected database.
FieldName may be qualified with a valid alias name that points to any
open database.

Returns
An integer containing the field width.

Usage
Use in conjunction with other field statistical functions to create

listboxes of file structures, etc.

Example
 ' demonstration of file structure extraction
 ' ---
 AircustDbf = vxUseDbf("\vb\vxbtest\aircust.dbf")
 FileName.text = vxDbfName()
 For j% = 1 To vxFieldCount()
 FieldName$ = vxFieldName(j%)
 FSize% = vxFieldSize(FieldName$)
 FType$ = vxFieldType(FieldName$)
 FDec% = vxDecimals(FieldName$)
 List1.AddItem FieldName$ + " " + FType$ + " " +
 LTrim$(Str$(FSize%)) + "." +
 LTrim$(Str$(FDec%))
 Next
 j% = vxClose

 ' note: the AddItem Method would be on one line
 ' in the actual source code
 ' ---

See Also
vxDecimals, vxFieldCount, vxFieldName, vxFieldType, vxSetAlias

vxBase Page 138

vxFieldTrim
Declaration

Declare Function vxFieldTrim lib "vxbase.dll" (ByVal FieldName As
String) As String

Purpose
Extract an xBase field, trim trailing spaces, and convert it to a

Visual Basic string.

Parameters
FieldName is either a string variable or a literal string that

contains a valid field name from the currently selected database.
FieldName may be qualified with a valid alias name that points
to any open database.

Returns
A Visual Basic String (or ASCIIZ string if vxSetString is 1) that

contains the contents of the defined field.

Usage
Get the contents of a character type field and trim trailing spaces.

Trailing spaces should always be trimmed if the data is going into a
text box for editing. If you use this function, it is not necessary to
use the Visual Basic RTrim$ function to trim the string before placing
it into a text box.

Note that all xBase data is stored in character format, so you can
use this function to extract any field - including numeric, date, and
logical fields (and even a memo block reference if you wish). You could
then use Visual Basic data conversion functions to create the type of
data you are interested in.

NOTE: The maximum length of a field that can be extracted with
vxFieldTrim is 255. If a field is larger than this, use vxRecord to
extract the entire record contents into a defined record type or string.

Example
 BuyTypeDesc.Text = vxFieldTrim("b_desc")

See Also
vxField, vxInteger, vxLong, vxRecord, vxReplRecord, vxReplString,

vxSetAlias, vxSetString

vxBase Page 139

vxFieldType
Declaration

Declare Function vxFieldType Lib "vxbase.dll" (ByVal FieldName As
String) As String

Purpose
Extract the type of the defined field from the current database.

Parameters
FieldName is either a string variable or a literal string that

contains a valid field name from the currently selected database.
FieldName may be qualified with a valid alias name that points to any
open database.

Returns
A Visual Basic string that contains the type code of the field. It

will be one of "C" for character, "N" for numeric, "D" for date, "L" for
logical, or "M" for memo.

Usage
Use in conjunction with other field statistical functions to create

listboxes of file structures, etc.

Example
 ' demonstration of file structure extraction
 ' ---
 AircustDbf = vxUseDbf("\vb\vxbtest\aircust.dbf")
 FileName.text = vxDbfName()
 For j% = 1 To vxFieldCount()
 FieldName$ = vxFieldName(j%)
 FSize% = vxFieldSize(FieldName$)
 FType$ = vxFieldType(FieldName$)
 FDec% = vxDecimals(FieldName$)
 List1.AddItem FieldName$ + " " + FType$ + " " +
 LTrim$(Str$(FSize%)) + "." +
 LTrim$(Str$(FDec%))
 Next
 j% = vxClose

 ' note: the AddItem Method would be on one line
 ' in the actual source code
 ' ---

See Also
vxDecimals, vxFieldCount, vxFieldName, vxFieldSize, vxSetAlias

vxBase Page 140

vxFile
Declaration

Declare Function vxFile Lib "vxbase.dll" (ByVal FileName As String)
As String

Purpose
Determine if the named file exists.

Parameters
FileName is a literal string or string variable that contains a

complete file name including an optional path.

Returns
TRUE if the file exists and FALSE if it does not.

Usage
Especially used in batch processing applications to determine

whether or not a batch of transactions still exists. If the batch
exists, in all likelihood it has not been processed yet and therefore a
user request to create another batch file would be denied.

Example
 ' create transaction batch file with the same
 ' structure as the master file
 ' --
 BatchName$ = "Tr" + SignOnId$
 FileSpec$ = MyPath$ + BatchName$ + ".dbf"
 IndexSpec$ = MyPath$ + BatchName$ + ".ntx"

 ' if file exists, error
 ' ---------------------
 If vxFile(FileSpec$) Then
 MsgBox "Error. Batch file exists!"
 Exit Sub
 Else
 ' if no error, create empty transaction file
 ' --
 TrMasterDbf% = vxUseDbf("Transmas.dbf")
 TrMasterNtx% = vxUseNtx("Transmas.ntx")
 j% = vxSelectDbf(TrMasterDbf%)
 If Not vxCopyStruc(BatchName$) Then
 MsgBox "Error in batch file creation"
 j% = vxClose()
 Exit Sub
 Else
 ' now create index same as master file
 ' ------------------------------------
 IndexExpr$ = vxNtxExpr(TrMasterNtx%)
 If Not vxCreateNtx(BatchName$, IndexExpr$) Then
 MsgBox "Error in index creation"
 Kill FileSpec$
 j% = vxClose()
 Exit Sub
 End If
 End If
 End If
 j% = vxClose() ' close master file
 TransDbf% = vxUseDbf(BatchName$)
 TransNtx% = vxUseNtx(BatchName$)

vxBase Page 141

 ' call transactions editing procedure
 ' -----------------------------------
 CollectTrans

vxBase Page 142

 ' if posting now, append transactions to
 ' master file after they have been posted
 ' and then clear the batch file in preparation
 ' for the next editing session
 ' ---
 j% = MsgBox("Post Now?", 52)
 If j% = 6 Then
 PostTrans
 TrMasterDbf% = vxUseDbf("Transmas.dbf")
 TrMasterNtx% = vxUseNtx("Transmas.ntx")
 j% = vxSelectDbf(TrMasterDbf%)
 vxAppendFrom(BatchName$)
 j% = vxClose() ' close master file
 Kill FileSpec$ ' erase batch file
 Kill IndexSpec$ ' and index
 Exit Sub
 End If
 j% = vxClose() ' close the batch

See Also

vxAppendFrom, vxCopyStruc

vxBase Page 143

vxFilter
Declaration

Declare Sub vxFilter Lib "vxbase.dll" (ByVal FilterString As String)

Purpose
Define a filter expression for use in masking unwanted records from

displays, reports, etc.

Parameters
FilterString is a valid xBase expression that describes the records

you wish to retain in the current procedure. It may be a literal string
enclosed in quotes or a string variable.

Returns
Nothing. A pointer to the filter string is set up in the xBase

descriptor block.

Usage
Declare filters to limit the range of records that will be displayed

or printed. The most common filter is ".NOT. deleted()". A filter
expression must evaluate to a logical result. Any declared filter
affects the vxTop, vxBottom, vxSkip, vxSeek, and vxSum functions. vxGo
ignores set filters.

vxBrowse automatically filters out deleted records. The filter set
by vxFilter is in effect when a vxBrowse table is opened. If the user
has access to the Filter menu item on the vxBrowse table, he can change
the filter or remove it at will. The change or removal only effects the
current browse and when vxBase returns to your Visual Basic program, the
old filter is once again in effect.

Use filters judiciously. A filter set on a large file can slow
processing enormously. For example, if a filter was set on a large names
database to only show the name "BROWN", when the record pointer moved
past the last "BROWN" (either through program control with vxSkip or
with a down arrow by the user in a vxBrowse display), every record in
the file would have to be evaluated until the end was reached before
vxBase could determine there were no more "BROWN"s. If a filter is set
on a large file, vxBrowse tables called on that file will take some time
to initialize. vxBrowse must ascertain the number of records in the file
that pass the filter to properly set the vertical scroll bar parameters.
Study and use the SCOPE parameter available in vxTableDeclare instead.

NOTE: The record buffer must be filled with a valid record from the
database BEFORE vxFilter is called. The database must be open and
selected.

Complex Filter Expressions
A complex expression is one which contains two or more elements

combined with a logical operator. For example, vxFilter("LastName =
'Smith' .and. AmtOwing > 100.00") is a complex expression which would
result in only those records that satisfy both criteria being selected

vxBase Page 144

for the operation. One must take care to recognize the precedence of
logical operators. Use parentheses to group the elements of a complex
expression if you are not sure of the potential result.

For example, the filter vxFilter(".NOT. deleted() .and. 'Tenholder'
$ LastName") would appear to give us all records that contain
"Tenholder" in the field LastName that are not deleted. In fact, the
expression is evaluated as ".NOT. (deleted() .and. 'Tenholder' $
LastName)". The expression following the .not. will ALWAYS return false
unless the record is both deleted and the last name contains "Tenholder"
(which is not a record we want anyway). .NOT. FALSE is always TRUE;
therefore, every record that is not deleted will be returned. The proper
command would be vxFilter("(.NOT. deleted()) .and. ('Tenholder' $
LastName)").

Building Filter Expressions in String Variables
If the user is supplying one of the elements of a filter expression

through a form text box, you may build a filter expression by
concatenating the various elements into a string variable and then
passing that variable to vxFilter. For example, suppose you solicit a
city name from the user via a form textbox control and then wish to
apply a filter to the database that contains only records with that city
in Field "CityFld". The filter expression you want to pass to vxFilter
may be vxFilter("'NEW YORK' $ CityFld"). The user enters the city name
in control "TB_Detail".

Sub Btn_Find_Click
 j% = vxSelectDbf(PFind)
 j% = vxSelectNtx(DetIndex)
 FString$ = "'" + (TB_Detail.Text) + "' $ CityFld"
 Call vxFilter(FString$)
 j% = vxTop()
 ...
End Sub

Example
 Dim CalifTotal As Double

 ' this routine adds up the amounts owing by customers
 ' in California
 ' ---
 Call vxFilter("(.NOT. deleted()) .AND. (state = 'CA')")
 CalifTotal = 0
 j% = vxTop()
 Call vxSum("amtowing", CalifTotal)
 TotalBox.text = Format$(CalifTotal, "#######0.00")
 vxFilterReset

See Also

vxBrowse, vxEval, vxFilterReset

vxBase Page 145

vxFilterReset
Declaration

Declare Sub vxFilterReset Lib "vxbase.dll" ()

Purpose
Removes a filter that was set with vxFilter and releases the memory

allocated to hold the expression.

Parameters
None.

Returns
Nothing.

Usage
Always used to cancel a filter that was set to perform some specific

procedure. Closing a file will also cancel the filter and release memory
used to hold the filter expression.

Example
 Dim CalifTotal As Double

 ' this routine adds up the amounts owing by customers
 ' in California
 ' ---
 Call vxFilter("(.NOT. deleted()) .AND. (state = 'CA')")
 CalifTotal = 0
 j% = vxTop()
 Call vxSum("amtowing", CalifTotal)
 TotalBox.text = Format$(CalifTotal, "#######0.00")
 vxFilterReset

See Also

vxBrowse, vxFilter

vxBase Page 146

vxFormFrame
Declaration

Declare Sub vxFormFrame Lib "vxbase.dll" (Hwnd As Integer)

Purpose
Draw a three dimensional frame inside the bounds of a form.

Parameters
Hwnd is the hWnd property of an active Visual Basic form.

Returns
Nothing.

Usage
Use in conjunction with vxCtlStyle to produce metallic, three-

dimensional forms. The frame is drawn in gray scales that complement the
look of control boxes enhanced with vxCtlStyle. Applicable to VGA and
SVGA monitors only.

Always use the Visual Basic Refresh method in the Form_Resize event
procedure to eliminate the old frame before a new one is drawn if the
user has the ability to resize the form.

Example
Sub Form_Paint ()
 Call vxFormFrame(VXFORM2.hWnd)
 Call vxCtlStyle(TypeCode, VX_RECESS)
 Call vxCtlStyle(TypeDesc, VX_RECESS)
 Call vxCtlStyle(TypeStatus, VX_RAISE)

 ' if delete request from browse, do it now
 ' because we must let enhanced controls
 ' paint before asking for delete confirmation
 ' --
 If TypeReturn = BROWSE_DELETE Then
 TypeDelete_Click
 End If
End Sub

Sub Form_Resize ()
 VXFORM2.Refresh
End Sub

See Also
vxCtlGrayReset, vxCtlGraySet, vxCtlStyle

vxBase Page 147

vxFound
Declaration

Declare Function vxFound Lib "vxbase.dll" () As Integer

Purpose
Test the status of the last vxSeek or vxSeekSoft on the selected

database.

Parameters
None.

Returns
TRUE if the last seek on the file resulted in a find, and false if

not.

Usage
Even though vxSeek and vxSeekSoft immediately return the result of

the operation, there are times when you want to know what the result of
the last seek was well after the fact of the seek. Instead of saving the
seek result in a variable, you can interrogate the status with vxFound.
vxFound acts as a sort of global variable that retains the status of the
last seek. It can even be interrogated from a module other than the one
that issued the seek,

If the file is closed and then reopened, the status of the last seek
is of course lost.

Example
 j% = vxSeek("ABCDEF")
 Call ChangeStatus
 If vxFound() Then
 UpdateProc
 Else
 AddProc
 End If

See Also
vxSeek, vxSeekSoft

vxBase Page 148

vxGetVersion
Declaration

Declare Function vxGetVersion lib "vxbase.dll" () As String

Purpose
Get a string containing the vxBase version number.

Parameters
None.

Returns
A Visual Basic String (or ASCIIZ string if vxSetString is 1) that

contains the current vxBase version number.

Usage
It would be nice if you had a text box on your ABOUT form that

displayed this number to aid vxBase tech support.

Example
 VerBox.text = "vxBase Version " + vxGetVersion()

vxBase Page 149

vxGo
Declaration

Declare Function vxGo Lib "vxbase.dll" (ByVal RecNum As Long) As
Integer

Purpose
Position the record pointer to the defined record and read the

record into the work buffer.

Parameters
RecNum is the physical record number to go to in the currently

selected database.

Returns
TRUE if the operation was successful, or FALSE if not. FALSE will be

returned if the record number is invalid, or if the record was locked by
another user and the current user answered "NO" to the retry query. If
FALSE is returned, the status of the record pointer and the data buffer
are undefined.

Usage
This command is especially important in a multiuser environment. The

current record number is usually saved prior to collecting edit data
from a record and then the record is unlocked to allow other users to
access it. After the edit operation, the record pointer is repositioned
to the saved record number and the record is updated.

vxGo will find deleted records and records that don't satisfy a
filter condition. In other words, if the record number is valid, it
becomes the current record.

Multiuser Considerations
The record gone to is locked if vxSetLocks is TRUE (the default).

Example
 ' multiuser update example
 ' ------------------------
 If vxSeek("ABC") Then ' find the record to update
 RecNum& = vxRecNo() ' save the record number
 Sig% = vxInteger("CustSig") ' and the signature
 Name.text = vxField("Name) ' store the form vars
 Status.text = vxfield("Stat")

 ' now unlock the record
 ' ---------------------
 j% = vxUnlock()

 ' now perform the update on the vis basic form
 ' --
 CustRecordUpdate

vxBase Page 150

 ' now retrieve the record and test if anyone else
 ' has changed it
 ' ---
 j% = vxGo(RecNum&)
 If Sig% <> vxInteger("CustSig") Then
 MsgBox "Another user beat you to it. Redo!"
 Else
 Call vxReplString("Name", (Name.text))
 Call vxReplString("Stat", (Status.text))
 Call vxReplInteger("CustSig", (Sig% + 1))
 End If
 j% = vxUnlock()
 End If

See Also
vxRecNo, vxSeek, vxSeekSoft, vxSetLocks, vxSkip

vxBase Page 151

vxInit
Declaration

Declare Sub vxInit Lib "vxbase.dll" ()

Purpose
Register the current task with the vxBase DLL. If this is the first

vxBase task, it controls the database shareable memory. If more than one
vxBase task is running at the same time, only the first task allocates
memory for use by all other tasks. It is necessary to register each
vxBase task to ensure that the controlling task is not unloaded before
any other vxBase task.

Parameters
None.

Returns
Nothing.

Usage
This procedure must be called before any other vxBase stetment is

made (usually in the Form_Load procedure of your first form). It is used
in conjunction with vxDeallocate to ensure that multitasking memory
management flows smoothly. See the Multitasking and Multiuser
Considerations section for more information.

Example
 Sub Form_Load()
 vxInit
 vxCtlGraySet
 End Sub

See Also
vxDeallocate

vxBase Page 152

vxInteger
Declaration

Declare Function vxInteger Lib "vxbase.dll" (ByVal FieldName As
String) As Integer

Purpose
Extract the defined field and convert the contents to an integer.

Parameters
FieldName is either a string variable or a literal string that

contains a valid field name from the currently selected database.
FieldName may be qualified with a valid alias name that points to any
open database.

Returns
An integer representing the contents of the field.

Usage
This function obviously works on numeric fields. If the field

contains decimals, they are truncated. If the value of the field is
greater than the integer maximum, the result is anybody's guess. This
function also works on character fields that contain numbers.

Integer range is -32,768 to 32,767.

Example
 j% = vxGo(RecNum&)
 If Sig% <> vxInteger("CustSig") Then
 MsgBox "Another user beat you to it. Redo!"
 Else
 Call vxReplString("Name", (Name.text))
 Call vxReplString("Stat", (Status.text))
 Call vxReplInteger("CustSig", (Sig% + 1))
 End If

See Also

vxField, vxLong, vxReplInteger, vxSetAlias

vxBase Page 153

vxIsMemo
Declaration

Declare Function vxIsMemo Lib "vxbase.dll" (ByVal FieldName As
String) As Integer

Purpose
Determine whether there is a text memo attached to the defined

field.

Parameters
FieldName is either a string variable or a literal string that

contains a valid memo field name from the currently selected database.
FieldName may be qualified with a valid alias name that points to any
open database.

Returns
TRUE if there is a memo in the .dbt file, and FALSE if not. FALSE

will be returned if the memo block holds a bitmap instead of text.

Usage
Could be used to determine whether or not to display a memo for

editing.

Example
 If vxIsMemo("a_memo") Then
 SaveRec& = vxRecNo()
 Call vxMemoEdit(VXFORM2.hWnd, "a_memo")
 vxGo(SaveRec&)
 End If

See Also
vxIsPicture, vxMemoEdit, vxMemoRead, vxSetAlias

vxBase Page 154

vxIsPicture
Declaration

Declare Function vxIsPicture Lib "vxbase.dll" (ByVal MemoFieldName
As String) As Integer

Purpose
Determine whether a bitmap is attached to the defined memo field.

Parameters
MemoFieldName is either a string variable or a literal string that

contains a valid memo field name from the currently selected database.
MemoFieldName may be qualified with a valid alias name that points to
any open database.

Returns
TRUE if a bitmap is present and FALSE if not. Note that text

attached to the field instead of a bitmap will return FALSE.

Usage
 Could be used to determine whether or not to load a new bitmap.

Example
 ' the name of the bmp picture file is the
 ' same as the string in field "title" so
 ' we can import the bmps into the memo file
 ' by cocatenating ".bmp" to the trimmed field
 ' contents
 ' ---
 j% = vxTop()
 If Not vxIsPicture("pic") Then
 For i& = 1 To 13 ' there are 13 recs in the file
 j% = vxGo(i&)
 ftitle$ = vxFieldTrim("type")
 fname$ = "c:\magic\bmp\" + ftitle$ + ".bmp"
 If Not vxPictureImport(fname$, "pic") Then
 MsgBox "Import Failed"
 End If
 Next i&
 j% = vxClose() ' close ensures buffers flushed
 AirPicsDbf = vxUseDbf("\vb\vxbtest\airpics.dbf")
 j% = vxSelectDbf(AirPicsDbf)
 End If

See Also
vxIsMemo, vxMemoClear, vxPictureImport, vxPicturePrint,

vxPictureRead, vxSetAlias

vxBase Page 155

vxIsRecLocked
Declaration

Declare Function vxIsRecLocked Lib "vxbase.dll" () As Integer

Purpose
Determine if the current record is locked or not.

Parameters
None.

Returns
TRUE if the record is locked and FALSE if not locked.

Usage
Test if a record is locked or not before attempting an update.

Example
 ' wait until rec is free before update
 ' ------------------------------------
 Do While TRUE
 If Not vxIsRecLocked() Then
 j% = vxLockRecord
 vxReplString("field1", (Text1.text))
 j% = vxWrite()
 j% = vxWriteHdr()
 j% = vxUnlock
 Exit Do
 End If
 Loop

See Also

vxLockDbf, vxLocked, vxLockRecord, vxSetLocks, vxUnLock

vxBase Page 156

vxIsSubNtx
Declaration

Declare Function vxIsSubIndex Lib "vxbase.dll" (ByVal NtxArea As
Integer) As Integer

Purpose
Determine whether or not the defined index is a subindex or a normal

index.

Parameters
NtxArea is the select area of an index file returned by vxUseNtx or

vxAreaNtx.

Returns
TRUE if the index is a subindex or FALSE if it is not.

Usage
It may be necessary to determine an update strategy or perhaps do

something based upon the record count depending on whether or not the
entire file is represented in the index.

Example
 If vxIsSubNtx(vxNtxCurrent()) Then
 NumRecs& = vxNumRecsSub()
 Else
 NumRecs& = vxNumRecs()
 End If

See Also

vxCreateSubNtx, vxNtxCurrent, vxNtxSubExpr, vxNumRecsSub, vxUseNtx

vxBase Page 157

vxJoin
Declaration

Declare Sub vxJoin Lib "vxbase.dll" (ByVal DbfArea As Integer, ByVal
NtxArea As Integer, ByVal JoinExpr As String, ByVal KeyType As Integer,
ByVal JoinTitle As String)

Purpose
Define a visual join window. This is truly one of the most exciting

features of vxBase. You can set up chains of visual relationships that
are activated through a vxBrowse window. In the sample application, the
LINK menu items give you a taste of the possibilities.

xBase programmers will recognize this function as a variation on the
SET RELATION TO command. We aren't limited to many to one relationships,
however. We can go from one to many to many to one ad infinitum (or at
least as far as our system will allow in terms of open files).

Parameters
DbfArea is the select area of an open database that will be joined

to the currently selected database when its vxBrowse is activated.

NtxArea is the index to use with DbfArea. It also must be open. The
file being joined to must be indexed, and an index expression must be
able to be formed out of the field elements of the current database. We
are in fact setting up a relationship between the current database and
the database we are defining with this function.

JoinExpr is a valid xBase expression that defines the field or
expression (both of which must contain field elements from the current
database) that we will use to institute the join. Alias field qualifiers
are NOT allowed in JoinExpr.

KeyType is one of the Global constants VX_FIELD or VX_EXPR that are
defined in vxbase.txt. If the JoinExpr is simply a field, we use
VX_FIELD; if an expression, we use VX_EXPR. We define this value to
speed up the linking operation. If the join item is only a field, much
less processing occurs when we institute the join.

JoinTitle is the caption of the joined window.

Returns
Nothing. We are attaching the join definition to the current

database descriptor block and it will only take effect when we vxBrowse
the current file.

Usage
Suppose we have a customer file that we will use as the parent

browse window to our joins. We will define a table to limit the fields
displayed in the window and then set up a join to a subledger file. The
subledger file contains many records, each of which contains a customer
code and invoice number as the key. There could be many records for each
customer. We open the subledger file and also define a table to limit
its browse. This browse will be activated when the user selects JOIN

vxBase Page 158

from the vxBrowse menu bar attached to the customer browse table.

When we define the join for the customer file, we use the customer
code field as key into the subledger file. This is the common element.
When the join is activated by the user, a window opens that contains
nothing but the subledger records belonging to the customer who is
currently highlighted in the parent window. If we move the pointer in
the parent window to another record, then his subledger records
magically appear in the join window.

We could go on with more joins. For example, while we were defining
the table for the subledger, we could have set up another join to an
invoice file that contains the details of each invoice contained in the
subledger summary. Now, the user could pick invoices (which would be the
key from the subledger to the invoice file) from the second window and
watch their details appear in a third window.

The invoice details might contain a reference to an inventory code
number. There is nothing stopping us from defining another join to the
inventory file from the invoices file. Lots of possibilities, right?

When setting up a join sequence, it makes logical sense to start
with the lowest file in the join totem. It won't have a join to another
file. Open it, declare a table, and proceed to the next lowest file in
the hierarchy. If you are only joining two files, you can set up as in
the example below.

Note that if onscreen editing is enabled in the parent window, it
only applies to items on the parent window. You cannot perform onscreen
editing on joined windows.

Example
Sub LinkBuyToSell_Click ()
 ' Demonstration of setting up visual relationships
 ' with the vxJoin command. What we have is a file of buyers
 ' categorized by type of aircraft they are interested in.
 ' What we are going to do is display a browse table of
 ' these buyer records and link any buyer record to
 ' another browse table of aircraft that match the the
 ' buyer aircraft type field.

 ' Conversely, the LinkSellToBuy proc does the opposite.
 ' It links the aircraft with all prospective buyers.
 ' --

 ' open file that will control the join
 ' ------------------------------------
 AirbuyerDbf = vxUseDbf("\vb\vxbtest\airbuyer.dbf")
 Airbuy2Ntx = vxUseNtx("\vb\vxbtest\airbuy2.ntx")
 ' this index is on aircraft type
 ' ------------------------------

 ' define table to show data we are interested in
 ' --
 Call vxTableDeclare(VX_BLUE, ByVal 0&, ByVal 0&, 0, 1, 5)
 Call vxTableField(1, "Type", "b_cat", VX_FIELD)
 Call vxTableField(2, "Description", "left(b_desc,20)",
 VX_EXPR)
 Call vxTableField(3, "Low", "b_low", VX_FIELD)

vxBase Page 159

 Call vxTableField(4, "High", "b_high", VX_FIELD)
 Call vxTableField(5, "Customer", "b_code", VX_FIELD)

vxBase Page 160

 ' now open secondary file and define its table
 ' --
 AircraftDbf = vxUseDbf("\vb\vxbtest\aircraft.dbf")
 If AircraftDbf = FALSE Then
 MsgBox "Error Opening aircraft.dbf. Aborting."
 j% = vxSelectDbf(AirbuyerDbf)
 j% = vxClose()
 Exit Sub
 End If
 Aircraf2Ntx = vxUseNtx("\vb\vxbtest\aircraf2.ntx")

 Call vxTableDeclare(VX_RED, ByVal 0&, ByVal 0&, 0, 1, 5)
 Call vxTableField(1, "Type", "c_cat", VX_FIELD)
 Call vxTableField(2, "Code", "c_code", VX_FIELD)
 Call vxTableField(3, "Price", "c_price", VX_FIELD)
 Call vxTableField(4, "Year", "c_year", VX_FIELD)
 Call vxTableField(5, "TTSN", "c_ttsn", VX_FIELD)

 ' reselect the master file and set up the join
 ' --
 j% = vxSelectDbf(AirbuyerDbf)
 Call vxJoin(AircraftDbf, Aircraf2Ntx, "b_cat", VX_FIELD,
 "Possible Sales")

 ' this joins the Aircraft file using the index selected
 ' for it to the buyer file. The "b_cat" param is the
 ' field we will use as a key into the aircraft file and
 ' the VX_FIELD item tells vxBase that it is a field and
 ' not an expression. The last item in the call is a
 ' title for the join window.
 ' --

 ' now set up and execute the browse. The JOIN menu item
 ' is automatically enabled.
 ' --
 Call vxBrowse(VXFORM1.hWnd, AirbuyerDbf, Airbuy2Ntx,
 FALSE, TRUE, FALSE, 0, "Buyer Details",
 BuyerReturn)

 ' when we return from the browse we can ignore anything
 ' vxBase sent back to us in the BuyerReturn param
 ' ---
 j% = vxClose()
 j% = vxSelectDbf(AircraftDbf)
 j% = vxClose()

 ' we could get fancy and get the customer record if the
 ' use hit enter and then display or edit it. Do
 ' whatever you like.
 ' --
End Sub

See Also

vxBrowse, vxTableDeclare, vxTableField

vxBase Page 161

vxJoinNoAuto
Declaration

Declare Sub vxJoinNoAuto Lib "vxbase.dll" ()

Purpose
Declared join windows are automatically displayed when a browse

window is opened. This command inhibits the creation of the joined
window and forces the user to select the Join menu item from the browse
main menu to display joined records.

Parameters
None.

Returns
Nothing.

Usage
If the file you are joining to has little chance of getting a match

when you start the browse, it is preferable to force the user to pick
the join from the menu rather than immediately displaying a vxBase error
message box informing him that there are no records to display.

Example
 ' Join is declared above...
 ' -------------------------
 Call vxJoinNoAuto
 Call vxBrowse(VXFORM1.hWnd, AirbuyerDbf, Airbuy2Ntx,
 FALSE, TRUE, FALSE, 0, "Buyer Details",
 BuyerReturn)

See Also

vxJoin, vxJoinReset

vxBase Page 162

vxJoinReset
Declaration

Declare Sub vxJoinReset Lib "vxbase.dll" ()

Purpose
Remove a join definition from the current database descriptor block

and recover the memory.

Parameters
None.

Returns
Nothing. Affects internal parameters only.

Usage
It is only necessary to use this command if you intend to retain the

open status of the current file and perhaps issue another vxBrowse
command at some other point in your program. vxClose and vxCloseAll
automatically reset the join and recover allocated memory.

Example
 If BuyerReturn = BROWSE_ADD Then
 vxJoinReset
 AddProcedure
 End If

See Also
vxClose, vxCloseAll, vxJoin

vxBase Page 163

vxLocate
Declaration

Declare Function vxLocate lib "vxbase.dll" (ByVal XBaseExpr As
String, ByVal Direction As Integer) As Long

Purpose
Searches for a record from and including the current record position

that satisfies a logical xBase expression.

Parameters
XBaseExpr is a literal string or variable containing a valid xBase

expression. The expression must evaluate as .T. or .F..

Direction is an integer defined as a global constant in vxbase.txt.
VX_FORWARD (Value 0) tells vxLocate to search in a forward direction.
VX_BACKWARD (Value 1) skips backwards during the search.

Returns
A long integer that contains the record number of the found record

OR zero (0) if the search expression was not satisfied.

If found, the record buffer contains the found record. If not found,
the record pointer is repositioned to the record that was active before
the search.

Usage
Useful for searching a database for strings or values that are not

keyed. vxLocate initiates the search from and including the current
record position. Use vxLocateAgain to restart the same search.

Example
' We have a FIND button on a customer display form.
' When the button is clicked, we set up to solicit
' search parameters from the user and then load
' a modal form to gather the user input.
' ---
Sub FindButton_Click ()
 If RecChange = TRUE Then CustSave_Click

 VXFORM3.Enabled = FALSE
 CustReturn = 0
 SaveRec& = vxRecNo() ' save where we are

 j% = vxSelectDbf(vxClientDbf)
 j% = vxSelectNtx(vxCl1Ntx) ' index on customer serial
 j% = vxTop() ' start search from top

 ' display locate form as modal
 VXFORM5.Show 1

 ' VXFORM5 will fill in a value in our standard
 ' Browse return var CustReturn
 VXFORM3.Enabled = TRUE

 ' if rec wasn't found or user chose not
 ' to select a found rec then CustReturn will be zero
 ' --
 If CustReturn = 0 Then

vxBase Page 164

 j% = vxGo(SaveRec&)
 Exit Sub
 Else
 CustReturn = BROWSE_EDIT
 CustDataLoad
 VXFORM1.StatBar.text = "Edit record " + LTrim$(Str$(vxRecNo()))
 VXFORM3.CustCompany.SetFocus
 End If
End Sub

' ---
' VXFORM5 is a modal form that solicits locate information
' from the user. It puts a value into global var CustReturn
' that we can interrogate when we return from vxform5.
'
' VXFORM5 has the following elements:
' 1. a group box with radio buttons for each field
' that we want the user to be able to search
' a. Option1 designates company name
' b. Option2 designates the client name
'
' 2. a text box (SearchBox) that accepts a string
' that we wish to locate
'
' 3. five buttons:
' a. ButtonStart initiates the search
' b. ButtonAgain looks for another FORWARD
' c. ButtonBack looks for another BACKWARD
' d. ButtonOK accepts the results and returns
' e. ButtonCancel cancels the operation and returns
'
' 4. two text boxes in which we will display the
' found data (CompanyBox and NameBox)
' ---
Dim SearchStr As String ' global var to hold search string

' events below are in logical sequence
' (starting with Form_Load)
' ------------------------------------
Sub Form_Load ()
 j% = vxSelectDbf(vxClientDbf)
 Option1.Value = 1 ' set default to company

 ' disable buttons that shouldn't work
 ' until something has been found
 ButtonAgain.Enabled = FALSE
 ButtonBack.Enabled = FALSE
 ButtonOK.Enabled = FALSE
End Sub

Sub Form_Paint ()
 ' register the database
 j% = vxSelectDbf(vxClientDbf)

 ' make the form pretty
 Call vxFormFrame(VXFORM5.hWnd)
 Call vxCtlStyle(Frame1, VX_RAISE)
 Call vxCtlStyle(SearchBox, VX_RECESS)
 Call vxCtlStyle(CompanyBox, VX_RECESS)
 Call vxCtlStyle(NameBox, VX_RECESS)
End Sub

Sub SearchBox_GotFocus ()
 ' user input convert to uppercase
 j% = vxCtlFormat(40, VX_UPPER, 0)
End Sub

vxBase Page 165

' when user clicks the button to initiate the search...
' ---
Sub ButtonStart_Click ()
 ' ensure we have something to search for
 If SearchBox.Text = "" Then
 MsgBox "Search string required"
 Exit Sub
 End If

 ' ensure a button has been selected
 OpTotal% = Option1.Value + Option2.Value
 If Not OpTotal% Then
 MsgBox "Select a field"
 Exit Sub
 End If

 ' put single quotes around search string
 SearchStr = "'" + RTrim$((SearchBox.Text)) + "'"

 ' construct xbase expression
 If Option1.Value Then SearchStr = SearchStr + " $ upper(vxcompany)"
 If Option2.Value Then SearchStr = SearchStr + " $ upper(vxname)"
 j% = vxTop() ' always start search at top

 ' perform the search
 CustReturn = vxLocate(SearchStr, VX_FORWARD)

 ' vxLocate return will be zero if nothing found
 ' ---
 If CustReturn = 0 Then
 MsgBox "Search string not found"
 CompanyBox.Text = ""
 NameBox.Text = ""
 ButtonAgain.Enabled = FALSE
 ButtonBack.Enabled = FALSE
 ButtonOK.Enabled = FALSE
 Else
 ' if found show results in text box
 CompanyBox.Text = vxField("vxcompany")
 NameBox.Text = vxField("vxname")

 ' and enable buttons
 ButtonAgain.Enabled = TRUE
 ButtonBack.Enabled = TRUE
 ButtonOK.Enabled = TRUE
 End If
End Sub
' user can look for next occurence (FORWARD) by
' pressing ButtonAgain
' --
Sub ButtonAgain_Click ()
 CustReturn = vxLocateAgain(VX_FORWARD)
 If CustReturn = 0 Then
 MsgBox "Search string not found"
 CompanyBox.Text = ""
 NameBox.Text = ""
 ButtonAgain.Enabled = FALSE
 ButtonBack.Enabled = FALSE
 ButtonOK.Enabled = FALSE
 Else
 CompanyBox.Text = vxField("vxcompany")
 NameBox.Text = vxField("vxname")
 ButtonAgain.Enabled = TRUE
 ButtonBack.Enabled = TRUE
 ButtonOK.Enabled = TRUE
 End If
End Sub

vxBase Page 166

' user can look for previous occurence (BACKWARD)
' by pressing ButtonBack
' ---
Sub ButtonBack_Click ()
 CustReturn = vxLocateAgain(VX_BACKWARD)
 If CustReturn = 0 Then
 MsgBox "Search string not found"
 CompanyBox.Text = ""
 NameBox.Text = ""
 ButtonAgain.Enabled = FALSE
 ButtonBack.Enabled = FALSE
 ButtonOK.Enabled = FALSE
 Else
 CompanyBox.Text = vxField("vxcompany")
 NameBox.Text = vxField("vxname")
 ButtonAgain.Enabled = TRUE
 ButtonBack.Enabled = TRUE
 ButtonOK.Enabled = TRUE
 End If
End Sub

' user cancels search by pressing ButtonCancel
' --
Sub ButtonCancel_Click ()
 CustReturn = 0
 Unload VXFORM5
End Sub

' user accepts result of search and sends
' new record number back to caller
' by pressing ButtonOK
' ---------------------------------------
Sub ButtonOK_Click ()
 Unload VXFORM5
End Sub

' deregister window and ctlformat
' when unloading form
' -------------------------------
Sub Form_Unload (Cancel As Integer)
 vxWindowDereg (VXFORM5.hWnd)
End Sub

See Also
 vxLocateAgain

vxBase Page 167

vxLocateAgain
Declaration

Declare Function vxLocateAgain lib "vxbase.dll" (ByVal Direction As
Integer) As Long

Purpose
Searches for a record from and NOT including the current record

position that satisfies a logical xBase expression previously defined
with vxLocateAgain.

Parameters
Direction is an integer defined as a global constant in vxbase.txt.

VX_FORWARD (Value 0) tells vxLocateAgain to search in a forward
direction. VX_BACKWARD (Value 1) skips backwards during the search.

Returns
A long integer that contains the record number of the found record

OR zero (0) if the search expression was not satisfied.

If found, the record buffer contains the found record. If not found,
the record pointer is repositioned to the record that was active before
the search.

Usage
Used to continue a search that was initiated by vxLocate.

Example
See example in vxLocate documentation.

See Also
 vxLocate

vxBase Page 168

vxLockDbf
Declaration

Declare Function vxLockDbf Lib "vxbase.dll" () As Integer

Purpose
Lock the currently selected database and all of its index files.

Parameters
None.

Returns
TRUE If the operation was successful and FALSE if not. The operation

could return false if the file or any of its records is already locked
and the end user chose to abort the operation. Always test the result
before proceeding with the code that requires the exclusive use of the
file.

Usage
vxBase functions and procedures that automatically require a locked

file (such as vxPack, vxZap, etc.) are already locked. It is not
necessary to lock before performing these functions. If you require
exclusive use of a file for any reason (e.g., closing a general ledger
at the end of the year), use vxLockDbf. To unlock it, either close the
file or use vxUnlock.

Example
 If vxLockDbf() Then
 CloseTheBooks
 j% = vxUnlock()
 Else
 MsgBox "Aborting year end procedure"
 Exit Sub
 End If

See Also
vxIsRecLocked, vxLocked, vxLockRecord, vxLockRetry, vxSetLocks,

vxUnlock

vxBase Page 169

vxLocked
Declaration

Declare Function vxLocked Lib "vxbase.dll" () As Integer

Purpose
Determine if the current file is locked or not.

Parameters
None.

Returns
TRUE if the file is locked and FALSE if not locked.

Usage
Test if a file is locked before executing a procedure which will

require exclusive use.

Example
 j% = vxSelectDbf(GlMaster)
 If vxLocked() Then
 MsgBox "File is locked. Try again later."
 Exit Sub
 Else
 If vxLockDbf() Then

 CloseBooks
 j% = vxUnlock()
 End If
 End If

See Also

vxIsRecLocked, vxLockDbf, vxLockRecord, vxLockRetry, vxSetlocks,
vxUnlock

vxBase Page 170

vxLockRecord
Declaration

Declare Function vxLockRecord Lib "vxbase.dll" () As Integer

Purpose
Lock the current record.

Parameters
None.

Returns
TRUE if the lock was successful or FALSE if it was not.

Usage
This function could be used as a status check to ensure that the

record is indeed locked by your workstation. It would not normally be
required if vxSetLocks is TRUE (the default) because vxBase auto-
matically locks records as soon as they are read. If vxSetLocks is
FALSE, this function MUST be used before updating a record.

Example
 j% = vxGo(SaveRec&)
 DoABunchOfStuff
 If vxLockRecord() Then
 UpdateProc
 Else
 MsgBox "Sorry. Can't lock the record"
 End If

See Also

vxIsRecLocked, vxLockDbf, vxLocked, vxLockRetry, vxSetLocks,
vxUnlock

vxBase Page 171

vxLockRetry
Declaration

Declare Sub vxLockRetry Lib "vxbase.dll" (ByVal ErrorMode As
Integer, ByVal WaitSeconds As Integer)

Purpose
Set the method of reporting a locked file or record to the user and

also specify a lock try timeout value.

Parameters
ErrorMode is passed as either TRUE or FALSE.

If TRUE (the default), and an operation is performed that requires a
lock (either record or file) which is unable to be set because another
user has control of the record or file, the user is presented with a
message from vxBase that asks if he wishes to retry the operation or
abort. If "Retry" is chosen, vxBase attempts to set the lock again.

If ErrorMode is passed as FALSE, vxBase issues error code 610 "File
lock error" instead of the retry message IF vxSetErrorMethod is set to
TRUE. If the alternate error method is TRUE, the programmer can then set
up his own method of dealing with locks through the VB ON ERROR routine.

If vxSetErrorMethod is FALSE and ErrorMode is FALSE, the default
user retry message is sent instead.

WaitSeconds is the number of seconds to continue to attempt setting
a lock. If zero (0), and a lock fails, the lock function returns with
the error immediately and either presents the "Retry" message to the
user or triggers the vxBase 600 error depending on the value of
ErrorMode and vxSetErrorMethod.

If WaitSeconds is greater than zero, vxBase will continue to attempt
to set the lock until WaitSeconds has expired. The maximum number of
WaitSeconds that can be specified is 32,767 (which equates to over 9
hours) and is essentially a "wait forever" state.

Returns
Nothing.

Usage
In a multiuser environment the programmer often wishes to handle the

failed lock scenario himself rather than rely on the user to retry the
lock or not. This is the function of the errormode parameter.

Setting WaitSeconds to about 20 is a good value for normal database
operations. For example, if a record is to be written, vxBase will try
over and over again for 20 seconds to set the lock. After the time has
expired, the selected error method is executed.

If using vxBase in an unattended program, it makes good sense to set
the timeout value very high. Other processes that take control of a
file for 15 or 20 minutes then do not necessarily disrupt the unattended

vxBase Page 172

program from performing its tasks after the file has been released.

NOTE: If a file is opened for exclusive use with vxUseDbfEX then
ALL other processes requiring that file across the entire network will
be denied access to the file. The vxUseDbfEX function sets a network
SHARE flag rather than a Clipper style lock on the file and no one is
granted access to the file no matter what the value of vxSetLocks.

NOTE: vxLockRetry settings are GLOBAL to all vxBase tasks on a
workstation. Once you select a set of values, you should use the same
values in all of your vxBase programs.

Example
 ' this function attempts to write a record and, if the required
 ' lock fails, it send the user its own message asking for a
 ' another attempt instead of using the vxBase default Retry? message
 ' --
 Sub RecWrite
 Dim vxError As vxErrorStruc
 Dim RetryVal As Integer

 vxSetLocks FALSE
 vxSetErrorMethod TRUE
 vxLockRetry 0, 20
 ' will use alternate error method after
 ' retrying a lock for 20 seconds

 On Error GoTo LockError

 ' we will attempt to lock the record
 ' as long as RetryVal is zero. If the
 ' lock required by vxWrite fails, we
 ' exit to the On Error routine - which
 ' will set RetryVal to 2 if the user
 ' does not wish to retry.
 ' -------------------------------------
 RetryVal = 0

 Do
 If vxLockRecord() Then RetryVal = 1
 Loop While RetryVal = 0

 If RetryVal = 1 Then
 If Not vxWrite() Then
 MsgBox "Record Write Error"
 End If
 End If

 vxSetErrorMethod FALSE
 Exit Sub
 LockError:
 If vxErrorTest(vxError) Then
 If vxError.ErrorNum = 600 Then
 j% = MsgBox("Lock failed. Retry?", 52)
 If j% = 6 Then
 Resume Next
 Else
 RetryVal = 2
 Resume Next
 End If
 End If
 End If
 End Sub

vxBase Page 173

See Also
 vxIsRecLocked, vxLockDbf, vxLocked, vxLockRecord, vxSetLocks,
 vxUnlock, vxUseDbfEX

vxBase Page 174

vxLong
Declaration

Declare Function vxLong Lib "vxbase.dll" (ByVal FieldName As String)
As Long

Purpose
Extract the defined field and convert the contents to a long

integer.

Parameters
FieldName is either a string variable or a literal string that

contains a valid field name from the currently selected database.
FieldName may be qualified with a valid alias name that points to any
open database.

Returns
A long integer representing the contents of the field.

Usage
This function obviously works on numeric fields. If the field

contains decimals, they are truncated. If the value of the field is
greater than the long integer maximum, the result is anybody's guess.
This function also works on character fields that contain numbers.

Long integer range is -2,147,483,648 to 2,147,483,647.

Example
 j% = vxGo(RecNum&)
 If OrigNum& <> vxLong("OrigRecNo") Then
 MsgBox "File has been packed"
 Call vxReplLong("OrigRecNo", vxRecNo())
 End If
 j% = vxUnlock()

See Also

vxDouble, vxField, vxInteger, vxReplLong, vxSetAlias

vxBase Page 175

vxMemCompact
Declaration

Declare Function vxMemCompact Lib "vxbase.dll" () As Long

Purpose
Windows memory can become extremely fragmented when running a vxBase

application. The vxBase program architecture is built of many small
chunks which are all discardable and may be loaded on call. Other tasks
running concurrently with vxBase can also contribute to memory
fragmentation and consequent loss of perfromance or even out of memory
conditions when a large request is made for some fixed memory (e.g.,
reading a memo). vxMemCompact uses Windows API routines to compact
memory and leave the largest contiguous free areas possible.

Parameters
None.

Returns
The number of bytes in the largest free global memory object in the

global heap.

Example
' compact memory on each return to the controlling form
' ---
Sub Form_Unload (Cancel As Integer)
 vxWindowDereg(VXFORM5.hWnd)
 k& = vxMemCompact()
End Sub

vxBase Page 176

vxMemoClear
Declaration

Declare Function vxMemoClear Lib "vxbase.dll" (ByVal MemoFieldName
As String) As Integer

Purpose
 Remove a memo block reference from a memo field. The bitmap OR memo
attached to the field is effectively deleted.

Parameters
MemoFieldName is either a string variable or a literal string that

contains a valid memo field name from the currently selected database.
MemoFieldName may be qualified with a valid alias name that points to
any open database.

Returns
TRUE if the operation was successful and FALSE if not. Always

returns FALSE is always returned if the associated dbf has been opened
as Read Only with vxUseDbfRO.

Usage
Delete a memo or bitmap.

Example
 Sub ButtonDelete_Click ()
 If vxMemoClear("pic") Then
 PicBox.Picture = LoadPicture()
 Else
 MsgBox "Delete failed"
 End If
 End Sub

See Also
vxIsMemo, vxIsPicture, vxReplMemo, vxPictureImport, vxSetAlias

vxBase Page 177

vxMemoEdit
Declaration

Declare Sub vxMemoEdit Lib "vxbase.dll" (ByVal Hwnd As Integer,
ByVal FieldName As String)

Purpose
Edit an existing memo or create a new memo referenced by the

specified memo field.

Parameters
Hwnd is the hWnd property of an active Visual Basic form. This

window acts as parent to the memo window. It must be enabled and should
be big enough to accomodate a reasonable edit window (though you can of
course resize the vxMemoEdit window to whatever your heart desires). The
inital size and position (as well as the memo window caption) may also
be set with vxMemoPos.

FieldName is either a string variable or a literal string that
contains a valid memo field name from the currently selected database.
FieldName may be qualified with a valid alias name that points to any
open database.

Returns
Nothing. The procedure creates a standard Windows text editing

window and puts the memo text into it. You can also create a new memo
from scratch, import standard ASCII text files into the memo window,
export the memo to a text file, copy,cut, and/or paste from and to the
clipboard. Everything you would expect (including print).

Usage
The activated memo window comes with its own menu bar. You have

plenty of options.

File Save Memo: saves the current memo into the .dbt file. If the
edited memo will not fit into the same space it formerly occupied, it is
moved to the end of the .dbt file and rewritten there. The old space is
not reclaimed. vxPack or vxCopy will compress memo files by only writing
memo blocks that have active references in the .dbf file. Note that this
menu option is disabled if the dbf file has been opened with vxUseDbfRO
(Read Only). If vxSetAnsi(TRUE) (the default), the text is saved as ANSI
characters; if FALSE, the text is converted to the OEM character set
before saving.

File Import ASCII: you may import any ASCII text file available on
your system into the memo at the current cursor postiion. A standard
Windows file pick list is presented when you choose this option,
including a full disk/directory list box. Note that this menu option is
disabled if the dbf file has been opened with vxUseDbfRO (Read Only). If
vxSetAnsi(TRUE) (the default), the file is read directly from disk into
the memo buffer; if FALSE, the text is converted from OEM to ANSI before
filling the memo buffer.

File Export ASCII: you may export the current memo to a standard
vxBase Page 178

ASCII file. The file is written into the current directory. A standard
Windows file pick list is displayed when you choose this option but it
gives you no opportunity to change the directory. If vxSetAnsi(TRUE)
(the default), the buffer is written to the file without translation; if
FALSE, the buffer text is converted to the OEM character set before
writing.

File Print: Prints the memo to the current Windows printer exactly
as it is shown in the memo edit window.

Edit Functions: All standard Windows editing functions along with
the standard accelerator keys are available. Items can be cut, copied,
and pasted to and from the clipboard (which means you can import things
into your memo from any application that can paste into the clipboard!).
An Undo option is also available when it is possible to undo the last
operation, as well as a Select All function and an Insert Date function,
which inserts a date and time stamp directly into the memo at the
current cursor position.

All in all this is a pretty snazzy memo editor. There are only a few
rules you have to follow to successfully edit memos, and they are fully
documented in the source code example below.

Memo File Intricacies
vxBase memos are compatible with those of Clipper and dBase

III/III+. Maximum memo size is 64k. Clipper memos are always stored with
soft carriage return/line feeds that fit the memo to the size of the
text window it was edited in. vxBase strips these soft returns and
linefeeds from a Clipper maintained memo and does not restore them. A
vxBase memo always fits the size of the window it resides in with
automatic wordwrap. Remember that a Windows window can be dynamically
resized by the user so it would be foolhardy to attempt to maintain an
artficial end of line within paragraphs.

If you edit a vxBase memo with a Clipper MEMOEDIT(), the soft
returns will be restored by Clipper so there should be no compatibility
problems in moving from one type of application to another using the
same files.

Example
 Sub CustMemo_Click ()
 ' Edit memo. Always have an ENABLED form showing to act
 ' as parent to the memo window. It also must have the
 ' focus. Copy the code below EXACTLY to ensure successful
 ' memoedits (changing the form and field names to fit
 ' your application of course)
 '--
 RecNum& = vxRecNo() ' save rec num to goto later
 VXFORM3.SetFocus ' make sure form has focus
 Call vxMemoEdit(VXFORM3.hWnd, "a_memo")
 j% = vxGo(RecNum&) ' reset rec buffer
 j% = vxUnlock() ' unlock the record

 ' The vxUnlock() is only necessary if you are working in
 ' a multiuser environment. The saving of the record
 ' number and then going to same after the memoedit is
 ' ABSOLUTELY NECESSARY. After the memo edit completes,

vxBase Page 179

 ' the contents of the record buffer are undefined if the
 ' user chose not to save the memo contents.
 ' --
End Sub

See Also
vxAppendFrom, vxCopy, vxIsMemo, vxIsPicture, vxMemoClear, vxMemoPos,

vxMemoRead, vxPictureImport, vxPictureRead, vxPack, vxSetAlias,
vxSetAnsi

vxBase Page 180

vxMemoPos
Declaration

Declare Sub vxMemoPos Lib "vxbase.dll" (ByVal StartX As Integer,
ByVal StartY As Integer, ByVal xWidth As Integer, ByVal yHeight As
nteger, ByVal MemoTitle As String)

Purpose
Set the start position and size of an upcoming memo edit window that

will edit a memo attached to the current database with vxMemoEdit. Also
used to set up the memo edit window title.

Parameters
Window coordinates passed to this function use familiar character

units in the x dimension and line height units in the y dimension. The
units are converted to the average character width and height of the
standard Windows system font and are therefore device independent.

StartX is the start position of the memo window in characters from
the left edge of the screen.

StartY is the start position of the memo window in lines from the
top of the screen.

xWidth is the start width of the memo window in characters.

yHeight is the height of the memo window (including caption and menu
bars) in lines.

Returns
Nothing.

Usage
Memo window position and size are defaulted according to the size of

the parent window passed to the vxMemoEdit function if this command is
not issued. If this Sub is called, the position and size are relative to
the entire screen.

The default memo window caption is "Memo Edit: DBF name". If this is
good enough, pass the MemoTitle as a null value (ByVal 0&).

If you wish to set the memo title only and leave the size and
position as the default values, pass all x and y coordinates as 0. For
example,

Call vxMemoPos(0,0,0,0,"My Memo Title")

If the user sizes the memo window according to his own tastes, its
position and size will be retained on subsequent edits.

vxBase Page 181

Example
 Call vxMemoPos(10, 5, 60, 15, "Customer Complaints")
 RecNum& = vxRecNo()
 Call vxMemoEdit(VXFORM3.hWnd, "a_memo")
 j% = vxGo(RecNum&)
 j% = vxUnLock()

See Also
 vxMemoEdit

vxBase Page 182

vxMemoRead
Declaration
 Declare Function vxMemoRead Lib "vxbase.dll" (Byval FieldName As
String, ByVal LineWidth As Integer) As String

Purpose
Read a memo into a Visual Basic string.

Parameters
FieldName is either a string variable or a literal string that

contains a valid memo field name from the currently selected database.
FieldName may be qualified with a valid alias name that points to any
open database.

LineWidth is the width of a formatted line that vxBase will
terminate with a carriage return-linefeed.

If LineWidth is zero (or less than 10), no formatting is performed.
This would be your option if you were simply displaying the memo
contents in a multiline text box. Visual Basic will automatically
perform word wrap within the multiline control.

If LineWidth is greater than zero then vxBase will insert a carriage
return-linefeed pair at this position (if a space happens to occupy that
position) or back up to the first space that precedes this position and
insert the CR-LF there. Hard carriage return-linefeed pairs are left
intact.

Returns
A Visual Basic string that contains the contents of the memo.

Usage
Use LineWidth = 0 to display the memo in a multiline text box. If

you wish to print the memo, use a LineWidth equal to the number of
characters you wish to print on one line. The minimum line width is 10.
If less than 10, the result will be the same as if you had passed a zero
(i.e., no formatting).

Note: If the memo contains soft carriage returns and linefeeds, they
are stripped before vxBase starts processing.

Note: Maximum memo length is 64k. You will require 128k
(unformatted) or 192k (formatted) in text buffers to retrieve a string
of this length. If you have monster memos, beware. The memory
requirement for unformatted memos is 2x the memo length; for formatted
memos it is 3x the memo length.

If you want the user to edit the contents of the memo in the text
box (instead of using vxMemoEdit), use vxMemoRepl to write the memo
string.

If vxSetAnsi(FALSE), the memo is converted from the OEM character
set to ANSI before the string is returned.

vxBase Page 183

Example
 ' Read memo into a multiline text box.
 ' Ensure that the multiline property is set
 ' to TRUE at design time (this property is
 ' read only at run time). Visual Basic will
 ' take care of word wrap for us.
 ' ---
 TextBox.Text = vxMemoRead("memofld", 0)

 ' to print the memo, we must format the
 ' lines with carriage returns and
 ' linefeeds.
 ' --------------------------------------
 MemoString$ = vxMemoRead("memofld",80)
 Printer.Print MemoString$

See Also
vxIsMemo, vxMemoClear, vxMemoEdit, vxReplMemo, vxSetAlias, vxSetAnsi

vxBase Page 184

vxMemRealloc
Declaration

Declare Function vxMemRealloc Lib "vxbase.dll" (ByVal NumDbf As
Integer, ByVal NumNtx As Integer, ByVal ReindexBuff As Integer) As
Integer

Purpose
Decrease the initial vxBase memory requirements.

Parameters
NumDbf is the number of dbf files that will be opened

simultaneously. The minimum number is 2.

NumNtx is the number of ntx files that will be opened
simultaneously. The minimum number is 2.

ReindexBuff is passed as either TRUE or FALSE. If TRUE, a 64k buffer
used to speed up creation of indexes and the reindex/pack routines is
set up. If this parameter is passed as FALSE, the buffer is either
removed (if is has already been created) or not set up at all.

Returns
TRUE if the memory reallocation was successful and FALSE if not.

Usage
The first call to vxBase allocates about 160,000 bytes to track open

dbf files and open index files and also creates a 64k buffer used by
vxReindex, vxPack, and vxCreateNtx. By calling vxMemRealloc(2, 2, FALSE)
this huge block of memory may be reduced to about 35,000 bytes. If you
are not going to be creating indexes, reindexing, or packing, the
ReindexBuff may be passed as FALSE to remove an immediate 64k.

You should not use this function to INCREASE memory requirements.
Let vxBase handle that automatically. DBF descriptor blocks and NTX
buffers are each limited to 64k (FAR pointer arithmetic is used by
vxBase) so the maximum number of open dbf and ntx files for ALL
concurrent vxBase tasks is about 75. If more memory is required by
vxBase, it will increase the size of each dbf or ntx object by the
immediate amount required (to a maximum of 64k each).

This function should be called in your initialization routine. It
should only be called ONCE. It is not designed as an all purpose vxBase
memory manager; rather it is designed to let users with low memory
situations customize specific vxBase applications.

WARNING: Use this function with care. This function CLOSES all open
dbf and ntx files that belong to the current task before the memory is
reallocated. If any files are open that belong to OTHER vxBase tasks,
the function fails. ALWAYS test the result for a TRUE value to ensure
the reallocation takes place.

vxBase Page 185

Example
 ' The FIRST form load is used to initalize vxbase
 ' ---
 Sub Form_Load ()
 vxInit
 vxCtlGraySet
 vxSetLocks FALSE
 j% = vxCloseAll()
 If Not vxMemRealloc(2, 2, FALSE) Then
 MsgBox "Reallocation failed"
 End
 End If
 End Sub

See Also
vxInit, vxMemCompact

vxBase Page 186

vxMenuDeclare
Declaration

Declare Sub vxMenuDeclare Lib "vxbase.dll" (ByVal NumItems As
Integer)

Purpose
Allocate memory for a menu structure that will be attached to an

upcoming browse window for the currently selected database.

Parameters
NumItems is the number of vxMenuItem definitions that will

immediately follow this function call.

Returns
Nothing.

Usage
Used only if you wish to define and attach your own menus to a

browse window.

Allocated memory is automatically released when the file is closed
with vxClose or vxCloseAll. vxTableReset also frees menu memory.

Example
 ' Declare and build a user menu
 ' -----------------------------
 Call vxMenuDeclare(19) ' 19 items in the menu

See Also
vxBrowse, vxMenuItem, vxTableReset

vxBase Page 187

vxMenuItem
Declaration

Declare Sub vxMenuItem Lib "vxbase.dll" (ByVal MenuIndex As Integer,
ByVal MenuLev As Integer, ByVal MenuString As String, ByVal MenuType As
Integer)

Purpose
Define a menu item that belongs to the set of items declared by

vxMenuDeclare. The menu so defined by vxMenuDeclare and vxMenuItem will
be attached to an upcoming browse window for the currently selected
database.

Parameters
MenuIndex is a number from 1 to the number of items declared for

this menu by vxMenuDeclare. If the item is defined as a VX_RETURN type,
this number plus 100 and negated is returned to you in the RetVal
parameter as defined in vxBrowse if the user selects this item. For
example, if the item is defined as vxMenuItem(6, 4, "&New", VX_RETURN),
and the user selects it from the browse window, the browse return will
be -106. The return value is negated so that it does not conflict with
record numbers passed back if the user presses the ENTER key. 100 is
added so that it does not conflict with the standard return values
passed back by vxBrowse (e.g., BROWSE_CLOSED is -1 if the system menu is
used to close the browse window). When the browse window is closed, the
record pointer is always positioned at the record that was highlighted
when the close occurred.

MenuLev is a number between zero and 1 less than the number of items
declared for this menu by vxMenuDeclare. It signifies that this menu
item is attached to the sub menu defined with a MenuIndex of this
number. A MenuLev of zero refers to the top level menu attached to every
window. For example, if you wished to have the word "File" appear on a
browse menu with two items ("New" and "Open") beneath it, the menu would
be defined as follows:

Call vxMenuDeclare(3)
Call vxMenuItem(1, 0, "&File", VX_MENUHEAD)
Call vxMenuItem(2, 1, "&New", VX_RETURN)
Call vxMenuItem(3, 1, "&Open", VX_RETURN)

Item 1 ("File") would be attached to menu level 0 and appear on the
main browse window menu bar.

Item 2 ("New") is attached to the submenu defined with menu index 1.
Item 3 ("Open") is also attached to the submenu defined with menu

index 1.

You can attach submenus within submenus by defining VX_MENUHEAD
items inside of a submenu as shown in the example below (reproduced from
VXFORM1 procedure UMenu_Click in the sample application).

MenuString is the text that is to appear on the menu line. If a
separator bar is being defined (MenuType VX_SEPBAR), then a space " "
should be passed. An ampersand placed in front of a character in the

vxBase Page 188

string will make that character the mnemonic for the menu item (i.e., it
will be underlined in the menu structure).

MenuType is the type of menu item being defined. It can be one of
three different items:

VX_MENUHEAD is a header to a submenu. Its menu index is never
returned from a browse. A complete menu structure may contain up to 64
VX_MENUHEADs. Windows doesn't set a limit to the number of nested menu
levels; however, three levels of menus (the main menu bar and two levels
of popup menus) is the deepest you will most likely want to go for
sanity's sake.

VX_RETURN is a normal, selectable item. If the user selects a
VX_RETURN item, the browse window is closed, the record pointer is
positioned at the highlighted record, and the RetVal parameter passed to
the vxBrowse function is filled with the MenuIndex of the selected item
plus 100 negated.

VX_SEPBAR is a separator bar (a line) between menu items. Items
defined as separator bars must have a MenuString passed as a single
space. A separator bar menu index is never returned from a browse.

Types defined as VX_RETURN or VX_SEPBAR must have MenuLev parameters
that point to a VX_MENUHEAD item or to MenuLev 0 (the browse window top
level menu bar).

VX_MENUHEAD, VX_RETURN, and VX_SEPBAR are all defined as Global
Constants in the vxbase.txt module.

Returns
Nothing.

Usage
Used to define your own menus on browse windows and then take action

according to the values returned.

Example
Sub UMenu_Click ()
 ' this proc shows how to set up user defined
 ' menus on a browse window and also how to
 ' define the browse window initial position
 ' --

 ' Open aircraft types file
 ' ------------------------
 AirtypesDbf = vxUseDbf("\vb\vxbtest\airtypes.dbf")
 If AirtypesDbf = FALSE Then
 MsgBox "Error Opening airtypes.dbf. Aborting."
 Exit Sub
 End If
 AirtypesNtx = vxUseNtx("\vb\vxbtest\airtypes.ntx")
 If AirtypesNtx = FALSE Then
 MsgBox "Error Opening airtypes.ntx. Aborting."
 j% = vxClose()
 Exit Sub
 End If

 ' Declare types table
 ' -------------------
 Call vxTableDeclare(VX_RED, ByVal 0&, ByVal 0&, 0, 1, 2)

vxBase Page 189

 Call vxTableField(1, "Type", "category", VX_FIELD)
 Call vxTableField(2, "Description", "catname", VX_FIELD)

 ' Declare and build a user menu
 ' -----------------------------
 Call vxMenuDeclare(19) ' 19 items in the menu

 ' the menu item params are:
 ' (1) menu index number (from 1 to whatever was declared)
 ' (2) attach this item to submenu number where 0 is the
 ' top level browse menu and any other number must
 ' refer to a menu index that was defined as VX_MENUHEAD
 ' (3) the menu string. An ampersand in front of a character
 ' will make that character the mnemonic. If a VX_SEPBAR
 ' is being defined, pass a space " "
 ' (4) the menu item type as defined in the global module
 ' where VX_MENUHEAD is a submenu header,
 ' VX_SEPBAR is a separator bar, and
 ' VX_RETURN is a returnable item
 '
 ' If any item is selected from the browse that is defined
 ' as VX_RETURN, the RetVal parameter passed to vxBrowse
 ' will contain the value of the menu index number plus 100
 ' and negated (e.g., menu item 6 below will return -106).
 ' The record pointer will be positioned at the record that
 ' was highlighted when the return was made. If the user
 ' presses the ENTER key in the browse, the RetVal will
 ' contain the record number that was highlighted when ENTER
 ' was pressed.

 ' the first menu item will set up a submenu on the
 ' browse table top level menu (Attach to item 0)
 Call vxMenuItem(1, 0, "&File", VX_MENUHEAD)

 Call vxMenuItem(2, 1, "&New", VX_RETURN)
 ' the item above is attached to the submenu defined as item 1

 Call vxMenuItem(3, 1, "&Open", VX_RETURN)
 Call vxMenuItem(4, 1, "&Save", VX_MENUHEAD)
 ' the item above creates another submenu within the File menu

 Call vxMenuItem(5, 4, "&Old", VX_RETURN)
 Call vxMenuItem(6, 4, "&New Name", VX_RETURN)
 ' the items above are under the sub menu defined as item 4)

 Call vxMenuItem(7, 1, " ", VX_SEPBAR)
 Call vxMenuItem(8, 1, "&Print", VX_RETURN)
 Call vxMenuItem(9, 1, " ", VX_SEPBAR)
 Call vxMenuItem(10, 1, "E&xit", VX_RETURN)

 ' now we'll set up another menu on the top level browse menu
 Call vxMenuItem(11, 0, "&Edit", VX_MENUHEAD)

 ' and attach items to menu number 11 below it
 Call vxMenuItem(12, 11, "Undo", VX_RETURN)
 Call vxMenuItem(13, 11, " ", VX_SEPBAR)
 Call vxMenuItem(14, 11, "Cu&t", VX_RETURN)
 Call vxMenuItem(15, 11, "&Copy", VX_RETURN)
 Call vxMenuItem(16, 11, "&Paste", VX_RETURN)
 Call vxMenuItem(17, 11, " ", VX_SEPBAR)
 Call vxMenuItem(18, 11, "Cl&ear", VX_RETURN)
 Call vxMenuItem(19, 11, "&Delete", VX_RETURN)

 ' The proc below will set up an initial position
 ' for the browse window
 ' ---
 Call vxBrowsePos(10, 5, 50, 15)

vxBase Page 190

 ' the coordinates are in familiar character and line
 ' units. The first param is x (characters in from left),
 ' the second param is y (lines down from top), the third
 ' param is the width of the window in characters, and the
 ' last param is the window height in lines

 ' if the user moves or sizes the window, and subsequent
 ' vxBrowse calls are made without an intervening close of the
 ' file, the window will retain its last position and size.

 ' now we set up the browse
 ' ------------------------
 TypeReturn = 0
 VXFORM1.UMenu.Enabled = FALSE

 j% = vxSelectDbf(AirtypesDbf)
 j% = vxSelectNtx(AirtypesNtx)

 Call vxBrowse(VXFORM1.hWnd, AirtypesDbf, AirtypesNtx, TRUE, TRUE, FALSE, 0, "Aircraft
Types", TypeReturn)
 ' Note that the EDIT menu parameter should be FALSE if you
 ' are defining your own menus.

 MsgBox "Value returned from browse was " + Str$(TypeReturn)

 j% = vxClose()
 VXFORM1.UMenu.Enabled = TRUE
End Sub

See Also

vxBrowse, vxMenuDeclare

vxBase Page 191

vxNtxCurrent
Declaration

Declare Function vxNtxCurrent lib "vxbase.dll" () As Integer

Purpose
Get the current index select area.

Parameters
None.

Returns
An integer pointing to the active index for the currently selected

dbf. This integer is the same one returned by vxUseNtx when the file was
opened.

FALSE (zero) is returned if there is no active index or if any other
error occurs (such as no current dbf selected).

Usage
The programmer can let the user pick an active index from a list of

indexes. In this case, you never know exactly what index is the current
selection. If you have to find out, this is the function to use.

Example
 ' put current index name in text box
 ' ----------------------------------
 NtxNameBox.text = RTrim$(vxNtxName(vxNtxCurrent()))

See Also
vxAreaNtx, vxNtxExpr, vxNtxName, vxNtxSubExpr, vxSelectNtx, vxUseNtx

vxBase Page 192

vxNtxDeselect
Declaration

Declare Function vxNtxDeselect Lib "vxbase.dll" () As Integer

Purpose
Temporarily turn off index ordering on the currently selected file.

Parameters
None.

Returns
TRUE if the operation is successful and FALSE if not.

Usage
If or any reason you wish to revert to record number ordering use

this command. Any open indexes attached to the file remain open and
unlocked. As soon as one of the indexes is selected again, index
ordering is resumed.

This function is handy if you are skipping through a file record by
record and changing key values. If index ordering is on, once a field
has been changed that affects the selected index, the next skip will
probably take you to a place you don't want to go. With vxNtxDeselect
you can change fields that affect keys at will, reselect an index, and
then reindex the file without having to close and then reopen all of the
index files.

Example
 If vxNtxDeselect() Then
 ChangeKeyValues
 j% = vxSelectNtx(BuyerNtx)
 j% = vxReindex()
 End If

See Also

vxSelectNtx, vxUseNtx

vxBase Page 193

vxNtxExpr
Declaration

Declare Function vxNtxExpr Lib "vxbase.dll" (ByVal NtxArea As
Integer) As String

Purpose
Extract the index expression for the specified, open index.

Parameters
NtxArea is the select area of an index file returned by vxUseNtx or

vxAreaNtx.

Returns
A Visual Basic string that contains the expression used to create

the specified index.

Usage
Especially useful in creating files at run time that are copies of

existing files and that are to be indexed in the same way.

Example
 If Not vxCopyStruc(BatchName$) Then
 MsgBox "Error in batch file creation"
 j% = vxClose()
 Exit Sub
 Else
 ' now create index same as master file
 ' ------------------------------------
 IndexExpr$ = vxNtxExpr(TrMasterNtx%)
 If Not vxCreateNtx(BatchName$, IndexExpr$) Then
 MsgBox "Error in index creation"
 Kill FileSpec$
 j% = vxClose()
 Exit Sub
 End If
 End If

See Also
vxCreateNtx, vxNtxName, vxNtxSubExpr, vxUseNtx

vxBase Page 194

vxNtxName
Declaration

Declare Function vxNtxName Lib "vxbase.dll" (ByVal NtxArea As
Integer) As String

Purpose
Extract the name of the specified index file as it was passed to the

vxUseNtx function.

Parameters
NtxArea is the select area of an index file returned by vxUseNtx or

vxAreaNtx.

Returns
A Visual Basic string that contains the name of the file.

Usage
Used to head forms or reports.

Example
 ' display index items
 ' -------------------
 NtxName.text = vxNtxName(BuyerNtx)
 NtxExpr.text = vxNtxExpr(BuyerNtx)

See Also

vxAreaNtx, vxNtxExpr, vxNtxSubExpr, vxUseNtx

vxBase Page 195

vxNtxRecNo
Declaration

Declare Function vxNtxRecNo lib "vxbase.dll" () As Long

Purpose
Get the ordinal position of the current key in the active index for

the current dbf.

Parameters
None.

Returns
A long integer that describes the ordinal position of the current

dbf record in the active index. FALSE (zero) is returned if an error
occurs. If FALSE, the index pointer MAY be invalid. It is the
programmer's responsibility to trap the error and reposition if
necessary.

Usage
Primarily used to position a vertical scroll thumb when building a

scrollable list of dbf records. The physical position of the record in
the database probably bears little relation to its logical position in
the index.

 NOTE: This number is calculated by moving through the btree in reverse
sequence from the current position until the first index entry is
reached (maintaining a count all the while). After the current position
is ascertained, the index pointer is moved back to the original
position.

If the dbf file contains more than 5,000 records, or if the keys are
inordinately large, this function can consume a great deal of time.

Example
 j% = vxSelectDbf(TestDbf)
 j% = vxGo(vxNumRecs()/2)

 ' display dbf record number
 ' and then ntx record number
 debug.print vxRecNo()
 debug.print vxNtxRecNo()

See Also
 vxRecNo

vxBase Page 196

vxNtxSubExpr
Declaration

Declare Function vxNtxSubExpr Lib "vxbase.dll" (ByVal NtxArea As
Integer) As String

Purpose
Extract the conditional expression that controls the insertion and

deletion of keys in a subindex.

Parameters
NtxArea is the select area of an index file returned by vxUseNtx or

vxAreaNtx.

Returns
A string that contains the conditional expression used to create the

subindex. The string is either in Visual Basic format or C format
depending upon the value of vxSetString.

Usage
Especially useful in creating files at run time that are copies of

existing files and that are to be indexed in the same way. Or in
reporting the conditions of index insertion to the user.

Example
 If vxIsSubNtx(vxNtxCurrent()) Then
 NumRecs& = vxNumRecsSub()
 Form1.Caption = "Subindex on " + vxNtxExpr(vxNtxCurrent()) +
 " For Condition " + vxNtxSubExpr(vxNtxCurrent())
 Else
 NumRecs& = vxNumRecs()
 Form1.Caption = "Master Index on " + vxNtxExpr(vxNtxCurrent())
 End If

See Also

vxCreateSubNtx, vxIsSubNtx, vxNtxCurrent, vxNtxExpr, vxNtxSubExpr,
vxNumRecsSub

vxBase Page 197

vxNumRecs
Declaration

Declare Function vxNumRecs Lib "vxbase.dll" () As Long

Purpose
Extract the number of records in the current database file.

Parameters
None.

Returns
A long integer containing the number of records in the file. This

includes logically deleted records.

Usage
Generally used as a FOR loop counter when you wish to process every

record in the file or as a statistic to determine the approximate size
of the file.

Example
 HeadSize& = (vxFieldCount() * 32) + 34
 FilSize& = (vxNumRecs() * vxRecSize()) + HeadSize&
 FileSize.text = Format$(FilSize&, "#,###,###,###")

See Also

vxFieldCount, vxNumRecsFilter, vxNumRecsSub, vxRecSize

vxBase Page 198

vxNumRecsFilter
Declaration

Declare Function vxNumRecsFilter Lib "vxbase.dll" () As Long

Purpose
Return the number of records in the database that pass the defined

filter.

Parameters
None. The number of records returned is for the currently selected

database.

Usage
Useful for generating accurate scroll bar extents and as a FOR LOOP

counter. Note that this function does exactly what you would do to
determine the number of records in a database that satisfy some
condition. It must read every record in the database, evaluate the
filter, and increment a counter. It is done at a lower level but still
can take a lot of time in a large database.

Example
 j% = vxSelectDbf(TestDbf")
 Debug.Print vxNumRecs()
 Call vxFilter("trim(vxcountry)='CANADA')
 Debug.Print vxNumrecsFilter()

See Also
 vxFilter, vxFilterReset, vxNumRecs, vxNumrecsSub

vxBase Page 199

vxNumRecsSub
Declaration

Declare Function vxNumRecsSub Lib "vxbase.dll" () As Long

Purpose
Return the number of records in a subindex.

Parameters
None. The subindex MUST be the currently selected index.

Usage
Generally used as a FOR LOOP counter or as a statistic. It may also

be used to set an accurate vertical scroll bar extent.

Example
 If vxIsSubNtx(vxNtxCurrent()) Then
 NumRecs& = vxNumRecsSub()
 Form1.Caption = "Subindex on " + vxNtxExpr(vxNtxCurrent()) +
 " For Condition " + vxNtxSubExpr(vxNtxCurrent())
 Else
 NumRecs& = vxNumRecs()
 Form1.Caption = "Master Index on " + vxNtxExpr(vxNtxCurrent())
 End If

See Also

vxCreateSubNtx, vxIsSubNtx, vxNtxCurrent, vxNtxExpr, vxNtxSubExpr

vxBase Page 200

vxPack
Declaration

Declare Function vxPack Lib "vxbase.dll" (ByVal Hwnd As Integer) As
Integer

Purpose
Remove all logically deleted records from the file and reindex.

Parameters
Hwnd is the hWnd property of an active Visual Basic Form. This

window acts as parent to a window that displays a meter bar signifying
the progress of the pack visually and in percentage complete.

Returns
TRUE if the operation was successful and FALSE if not. Always

returns FALSE if the file has been opened with vxUseDbfRO. After the
pack is complete, A meter bar will be displayed that charts the progress
of the rebuilding of the indexes. If memos are attached to the dbf, a
third meter bar is displayed that shows you how the memo compression is
coming along.

Meters bars are only displayed if vxSetMeters is TRUE (the default).
The programmer may alternatively specify his own gauge control with
vxSetGauge.

Usage
A file maintenance item that packs all files in your application

should be a standard feature of any xBase application.

Please ensure that ALL index files that belong to the dbf being
packed are open.

Once a file has been packed, deleted records are no longer available
for recall.

If a memo file is attached to the file being packed, it is also
packed after the deleted records are removed. A temporary file with the
same name as the .dbf but with an extension of .$$$ is created. Every
record is analyzed for the presence of valid memo block references and,
if any are found, the old memo or bitmap is copied to the new .$$$ memo
file. Invalid memo blocks (which usually abound in xBase memo files) are
not copied to the new file. At end of file, the old memo file is erased
and the .$$$ file is renamed with the standard memo file .dbt extension.

If there is not enough space on the drive to hold a file of the same
size as the old memo file, the memo file is not packed.

Always use vxAreaDbf to ensure that the file is not open in any
active task before commencing the pack operation.

Multiuser Considerations
The dbf and its indexes are locked for the duration of the

operation. Consider opening the file with vxuseDbfEX.
vxBase Page 201

Example
 ' removes logically deleted records
 ' and reindexes
 ' --

 ' make sure file isn't open
 ' -------------------------
 j% = vxAreaDbf("\vb\vxbtest\airtypes.dbf")
 If j% = FALSE Then
 AirtypesDbf = vxUseDbf("\vb\vxbtest\airtypes.dbf")
 AirTypesNtx = vxUseNtx("\vb\vxbtest\airtypes.ntx")
 j% = vxPack(VXFORM1.hWnd)
 j% = vxClose()
 End If

See Also
vxAreaDbf, vxCopy, vxDeleteRec, vxSetGauge, vxSetMeters, vxUseDbfEX

vxBase Page 202

vxPictureImport
Declaration

Declare Function vxPictureImport Lib "vxbase.dll" (ByVal BmpFileName
As String, ByVal MemoFieldName As String) As Integer

Purpose
Import a bitmap from a system .BMP file into a memo field. The image

may be displayed with vxPictureRead. The maximum size of the bitmap is
16 megabytes.

Parameters
BmpFileName is the complete name of the bitmap file including path

and extension. Files other than bitmaps may be stored into the memo file
but they may not be read with vxPictureRead (unless they are run length
encoded compressed variants of BMPS - i.e., RLE files in either 4 or 8
bit per pixel format). The file name may be represented by a literal
string or a string variable.

MemoFieldName is either a string variable or a literal string that
contains a valid memo field name from the currently selected database.
MemoFieldName may be qualified with a valid alias name that points to
any open database.

Returns
FALSE if the function fails and TRUE if successful. FALSE is always

returned if the associated dbf has been opened as Read Only with
vxUseDbfRO.

Usage
It is much more efficient both from a retrieval standpoint and from

a disk management standpoint to store bitmaps you wish to have
associated with database records in a single source file.

Store pictures of people in personnel files, parts images in
inventory files, homes in real estate files, etc.

Files other than BMPs may also be stored in a memo file. Note,
however, that only BMP or RLE format files are converted by
vxPictureRead for display in a Visual basic picture box. The memo link
parameters included in the vxCtlBrowse function will also result in
bitmap display WITHOUT any effort required by the programmer other that
defining the memo window and memo field name to the vxCtlBrowse
function.

Collecting Bitmaps
vxBase takes advantage of the rich body of functions included in

Visual Basic to handle bitmap files. Bitmaps are the Windows norm; all
paint programs, viewers, etc. can handle bitmaps - and most programs
that deal with pictures can convert foreign formats (e.g., GIF) to BMPs.
As a last resort, cut a picture into the clipboard and paste it into a
Windows PAINT window. It can then be stored as a .BMP file.

Once an image is stored in a BMP file it can be transferred to the
vxBase Page 203

memo file with the vxPictureImport function. To retrieve the bitmap,
vxBase uses the standard Windows Clipboard. It puts the bitmap out to
the clipboard as a DIB (device independent bitmap). The Visual Basic
Clipboard.GetData(8) function then is used to retrieve the image from
the clipboard and display it in a VB Picture Box. The box can have the
AUTORESIZE property set to TRUE as in the sample application if the
images are all different sizes.

Bitmap files can be created from existing images you may be using in
a Visual Basic program by calling the SavePicture function. You can then
call vxPictureImport to store the image in a memo file by using the name
of the bitmap file you created with SavePicture. You can also use
SavePicture to export pictures from a memo file by first reading them
into a picture box with vxPictureRead.

Example
 ' the name of the bmp picture file is the
 ' same as the string in field "title" so
 ' we can import the bmps into the memo file
 ' by cocatenating ".bmp" to the trimmed field
 ' contents
 ' ---
 j% = vxTop()
 If Not vxIsPicture("pic") Then
 For i& = 1 To 13 ' there are 13 recs in the file
 j% = vxGo(i&)
 ftitle$ = vxFieldTrim("type")
 fname$ = "c:\magic\bmp\" + ftitle$ + ".bmp"
 If Not vxPictureImport(fname$, "pic") Then
 MsgBox "Import Failed"
 End If
 Next i&
 j% = vxClose() ' close ensures buffers flushed
 AirPicsDbf = vxUseDbf("\vb\vxbtest\airpics.dbf")
 j% = vxSelectDbf(AirPicsDbf)
 End If

See Also
vxIsPicture, vxMemoClear, vxPicturePrint, vxPictureRead

vxBase Page 204

vxPicturePrint
Declaration

Declare Function vxPicturePrint Lib "vxbase.dll" (ByVal
MemoFieldName As String) As Integer

Purpose
Print a MONOCHROME bitmap that has been stored in a vxbase memo

file.

Parameters
MemoFieldName is either a string variable or a literal string that

contains a valid memo field name from the currently selected database.
MemoFieldName may be qualified with a valid alias name that points to
any open database.

Returns
FALSE if the function fails and TRUE if successful.

Usage
The bitmap image is expanded or compressed to best fit the current

page size set for the selected printer. Color bitmaps print very
poorly because the Windows StretchBlt function used by vxPicturePrint
does not convert the color images to black and white very well. If you
are going to print a lot of bitmaps, use a conversion program to convert
color bitmaps to black and white before saving to the memo file.

Example
 Sub ButtonPrint_Click ()
 j% = vxSelectDbf(AirPicsDbf)
 TopRec& = vxCtlBrowseMsg(vxCtlHwnd(BrowseBox), VXB_GETTOPREC, 0)
 RecNum& = vxCtlBrowseMsg(vxCtlHwnd(BrowseBox), VXB_GETCURRENTREC, 0)
 j% = vxGo(RecNum&)
 If Not vxPicturePrint("pic") Then
 MsgBox "Print Failed"
 End If
 r& = vxCtlBrowseMsg(vxCtlHwnd(BrowseBox), VXB_REFRESH, ByVal TopRec&)
 End Sub

See Also
vxIsPicture, vxPictureImport, vxPictureRead

vxBase Page 205

vxPictureRead
Declaration

Declare Function vxPictureRead Lib "vxbase.dll" (ByVal PicHwnd As
Integer, ByVal MemoFieldName As String) As Integer

Purpose
Display a bitmap that was stored in a memo file with vxPictureImport

in a defined window.

Parameters
PicHwnd is the window handle of the window that will receive the

image. In Visual basic, use vxCtlHwnd to convert a control handle to a
window handle.

MemoFieldName is either a string variable or a literal string that
contains a valid memo field name from the currently selected database.
MemoFieldName may be qualified with a valid alias name that points to
any open database.

Returns
TRUE if the operation was successful and FALSE is not.

Usage
Only BITMAPS that have been stored with vxPictureImport may be

extracted with vxPictureRead. vxPictureRead assumes the binary object
contained in the memo is a formatted bitmap which contains a Windows
BITMAPFILEHEADER followed by a BITMAPINFOHEADER followed by an array of
RGBQUAD structures. All of this information is then followed by the
bitmap data itself. vxPictureRead creates a DIB (device independent
bitmap) out of the Windows data structures and passes the DIB to the
clipboard, where it can easily be extracted and placed into a Visual
Basic picture box (or onto a form) with the ClipBoard.GetData(8)
function.

If the structure contained in the memo is not a formal bitmap,
who knows what result?

If you wish to store Binary Large Objects (BLOBs) in the memo file
other than bitmaps, you must use the vxBlobWrite and vxBlobRead
functions to access the data. These functions use Windows Global memory
handles as parameters and are not easily available to the Visual Basic
programmer.

NOTE: The memo link parameters included in the vxCtlBrowse function
will also result in bitmap display WITHOUT any effort required by the
programmer other than defining the memo window and memo field name to
the vxCtlBrowse function. When vxCtlBrowse displays a bitmap, it auto-
matically sizes the memo link window to the size of the bitmap. The top
left corner of your memo window is anchored. If there is not enough room
on the form to contain the entire bitmap, it is clipped on the right
and/or the bottom to the limits of the parent form.

vxBase Page 206

Example
 The following code is a complete reproduction of the code contained
in VYFORM2 in the vxbtest project sample application:
' static switch set to TRUE in form
' load procedure so we know when this
' form is first loaded
Dim FirstTime As Integer

Sub BrowseBox_KeyDown (KeyCode As Integer, Shift As Integer)
 ' whenever a record is highlighted, this
 ' proc receives a middle button code
 ' from the ctlBrowse so we can dynamically
 ' display the picture in the memo field
 ' ---
 If KeyCode = 4 Then ' middle button?
 j% = vxSelectDbf(AirPicsDbf)
 RecNum& = vxCtlBrowseMsg(vxCtlHwnd(BrowseBox),
 VXB_GETCURRENTREC, 0)
 j% = vxGo(RecNum&)
 VYFORM2.Caption = vxFieldTrim("Title")
 If vxPictureRead(vxCtlHwnd(PicBox), "pic") Then
 ' the "8" param below is CF_DIB
 PicBox.Picture = Clipboard.GetData(8)
 ' If you want to leave the picture in
 ' the clipboard, comment out line below
 Clipboard.Clear
 Else
 PicBox.Picture = LoadPicture() ' clears the picture area
 End If
 End If

 ' ---
 ' NOTE: the code above is an example of using vxPictureRead.
 ' In this case (displaying records in a vxCtlBrowse table),
 ' it would be much more efficient to define the memo window
 ' and the memo field name to the vxCtlBrowse function instead
 ' ---
End Sub

Sub BrowseBox_KeyPress (KeyAscii As Integer)

 ' NOTE: YOU MUST ALWAYS TRAP THE ENTER KEY
 ' AND CHANGE THE KEYASCII CODE TO
 ' A ZERO WHEN USING VXCTLBROWSE
 ' EVEN IF YOU DON'T USE IT
 ' --
 If KeyAscii = 13 Then
 KeyAscii = 0
 Exit Sub
 End If

 ' if ESC key is received, then emulate
 ' exit button press
 ' ------------------------------------
 If KeyAscii = 27 Then
 KeyAscii = 0
 ButtonExit_Click
 Exit Sub
 End If

End Sub

Sub ButtonExit_Click ()
 Unload VYFORM2
End Sub

vxBase Page 207

Sub Form_Load ()
 ' set FirstTime switch on for Paint
 ' ---------------------------------
 FirstTime = True

 ' register the default database as the master
 ' ---
 AirPicsDbf = vxUseDbf("\vb\vxbtest\airpics.dbf")
 j% = vxSelectDbf(AirPicsDbf)

 ' first time load pictures
 j% = vxTop()

 ' the name of the bmp picture file is the
 ' same as the string in field "title" so
 ' we can import the bmps into the memo file
 ' by cocatenating ".bmp" to the trimmed field
 ' contents
 ' ---
 If Not vxIsPicture("pic") Then
 For i& = 1 To 13
 j% = vxGo(i&)
 ftitle$ = vxFieldTrim("type")
 fname$ = "c:\magic\bmp\" + ftitle$ + ".bmp"
 If Not vxPictureImport(fname$, "pic") Then
 MsgBox "Import Failed"
 End If
 Next i&
 j% = vxClose()
 AirPicsDbf = vxUseDbf("\vb\vxbtest\airpics.dbf")
 j% = vxSelectDbf(AirPicsDbf)
 End If

 ' set up the browse
 ' -----------------
 Call vxTableDeclare(VX_RED, ByVal 0&, ByVal 0&, 0, 1, 1)
 Call vxTableField(1, "Type", "type", VX_FIELD)

 Call vxBrowseCase(VX_UPPER)
 Call vxBrowseSetup(0, 0, 0, 1, "Helv", 15, VX_SEMIBOLD, 0, 0, 0, 0)
 ' If the typeface is too large on your display,
 ' CHANGE the parameter following "Helv" above to
 ' a smaller number
 ' --

 ' change the mouse pointer in the browse box
 ' from an I-Beam to an arrow to stop any flicker
 ' --
 BrowseBox.MousePointer = 1

End Sub

Sub Form_Paint ()
 ' register the database with this window
 ' --------------------------------------
 j% = vxSelectDbf(AirPicsDbf)

 ' make the form 3-d
 ' -----------------
 Call vxFormFrame(VYFORM2.hWnd)
 Call vxCtlStyle(BrowseBox, VX_RECESS)

 ' initiate the browse the first time only
 ' ---------------------------------------
 If FirstTime = True Then
 j% = vxCtlBrowse(vxCtlHwnd(BrowseBox), AirPicsDbf,

vxBase Page 208

 0, 0, 0, 0, " ")
 FirstTime = False
 End If

 ' on initial paint of the browse, middle button
 ' keydown is not sent to browse box so we want
 ' to do our dynamic display here as well as
 ' from a keydown in the browse box code
 ' ---
 Call BrowseBox_KeyDown(4, 0)
End Sub

Sub Form_Resize ()
 VYFORM2.Refresh
End Sub

Sub Form_Unload (Cancel As Integer)
' close the browse
 ' ----------------
 k& = vxCtlBrowseMsg(vxCtlHwnd(BrowseBox), VXB_CLOSE, 0)

 ' close all the files
 ' -------------------
 j% = vxCloseAll()

 ' deregister the window and release memory
 ' --
 vxWindowDereg (VYFORM2.hWnd)
End Sub

See Also
vxIsPicture, vxPictureImport, vxPicturePrint

vxBase Page 209

vxPrinterDefault
Declaration

Declare Function vxPrinterDefault lib "vxbase.dll" () As String

Purpose
Retrieve the Windows default printer string in a format suitable

for setting the default printer with vxPrinterSelect.

Parameters
None.

Returns
A Visual Basic String (or ASCIIZ string if vxSetString is 1) that

contains a string that may be used by vxPrinterSelect to set the default
Windows printer.

The format of the string returned is
PRINTER NAME,DRIVER,PORT:

Usage
Used to display the current default printer, and to re-set the

default printer if it is changed with vxPrinterSelect.

Example
 ' display the default printer
 ' ---------------------------
 PrinterBox.Text = vxPrinterDefault()

See Also
vxPrinterEnum, vxPrinterSelect, vxSetupPrinter

vxBase Page 210

vxPrinterEnum
Declaration

Declare Function vxPrinterEnum lib "vxbase.dll" (ByVal PIndex As
Integer) As String

Purpose
Enumerate printers as defined in the WIN.INI file and retrieve a

string suitable for setting the default printer with vxPrinterSelect.

Parameters
PIndex is an index number of the printer you wish to enumerate.

Returns
A Visual Basic String (or ASCIIZ string if vxSetString is 1) that

contains a string that may be used by vxPrinterSelect to set the default
Windows printer.

The format of the string returned is
PRINTER NAME,DRIVER,PORT:

If a single space is returned, there are no more printers to be
found.

Usage
Would normally be used in a loop to enumerate the printers into a

list box so the user could select the printer he wished to make current.

Example
' --
' the following is taken from the sample app VYFORM1
'
' VYFORM1 contains:
' 1. a listbox named PrinterList
' 2. a button to set the default named SelectButton
' 3. an Exit button named ExitButton
' 4. a text box named PrinterBox to display the
' selected printer
' all of the code for VYFORM1 is shown below
' --

' ------------------------------------
' unload form when exit button clicked
' ------------------------------------
Sub ExitButton_Click ()
 Unload VYFORM1
End Sub

' ---------------------------------------
' when form is loaded, enumerate printers
' and put in list box
' ---------------------------------------
Sub Form_Load ()

 ' display the default printer
 ' ---------------------------
 PrinterBox.Text = vxPrinterDefault()

 j% = 1 ' the printer index
 PrinterOk% = TRUE

vxBase Page 211

 Do
 PrinterName$ = vxPrinterEnum(j%)

vxBase Page 212

 ' all printers enumerated when vxPrinterEnum
 ' returns a single space
 ' --
 If PrinterName$ = " " Then
 PrinterOk% = FALSE
 Else
 PrinterList.AddItem PrinterName$
 j% = j% + 1
 End If
 Loop Until Not PrinterOk%
End Sub

' --------------------
' make the form pretty
' --------------------
Sub Form_Paint ()
 Call vxFormFrame(VYFORM1.hWnd)
 Call vxCtlStyle(PrinterBox, VX_RECESS)
 Call vxCtlStyle(PrinterList, VX_RAISE)
End Sub

' --
' if user resizes form, get rid of old frame
' --
Sub Form_Resize ()
 VYFORM1.Refresh
End Sub

' ----------------------------------
' if user double clicks a selection,
' emulate select button press
' ----------------------------------
Sub PrinterList_DblClick ()
 SelectButton_Click
End Sub

' ----------------------------------
' if user selects a printer, display
' it in PrinterBox and also set the
' default printer
' -----------------------------------
Sub SelectButton_Click ()
 PrinterBox.Text = PrinterList.Text

 ' change the default printer
 ' --------------------------
 If vxPrinterSelect((PrinterBox.Text)) Then
 MsgBox "Default printer changed!"
 Else
 MsgBox "Error in Printer Name"
 End If
End Sub

See Also
vxPrinterDefault, vxPrinterSelect, vxSetupPrinter

vxBase Page 213

vxPrinterSelect
Declaration

Declare Function vxPrinterSelect lib "vxbase.dll" (ByVal PrinterName
As String) As Integer

Purpose
Select a new Windows default printer.

Parameters
PrinterName is a structured string used to set the default printer.

It is of the form
PRINTERNAME,DRIVERNAME,PORT:

For example,
EPSON LQ-500,EPSON24,LPT1:

A structured string that may be used to select a printer may be
obtained with function vxPrinterEnum.

Returns
TRUE if a new printer has been correctly selected (or if the select

string matches the current default printer already). FALSE is returned
if the string does not match any printer that vxBase enumerates
internally from the [devices] section of the WIN.INI file.

Usage
Allow the user to select a new printer without the need to bring up

the Windows Control Panel.

The printer select string would normally be obtained from the user
through a list box built with the vxPrinterEnum function.

Example
See the example in vxPrinterEnum for a complete routine that lets

the user select a new printer.

See Also
vxPrinterDefault, vxPrinterEnum, vxSetupPrinter

vxBase Page 214

vxRecall
Declaration

Declare Function vxRecall Lib "vxbase.dll" () As Integer

Purpose
Remove the deleted flag from the current record.

Parameters
None.

Returns
TRUE if the operation was successful and FALSE if not. Always

returns FALSE if the file has been opened with vxUseDbfRO.

Usage
Undelete a record that was perhaps mistakenly deleted.

Example
 If vxDeleted() Then
 j% = MsgBox("Record deleted. Recall?", 52)

 If j% = 6 Then
 If vxRecall() Then
 UpdateRec
 End If
 End If
 End If

See Also

vxCopy, vxDeleted, vxDeleteRec, vxPack

vxBase Page 215

vxRecNo
Declaration

Declare Function vxRecNo Lib "vxbase.dll" () As Long

Purpose
Extract the physical record number of the current record.

Parameters
None.

Returns
A long integer that contains the current record number.

Usage
Normally used to save a record number, unlock the record, perform

some operation on the data from that record that has perhaps been stored
in form controls, and then go back to that record and update it.

vxRecNo MUST be used in this fashion when editing a memo.

NOTE: When a vxCtlBrowse is active, vxRecNo will not necessarily
return the record number of the highlighted record. Use
VXB_GETCURRENTREC passed as a parameter to vxCtlBrowseMsg to retrieve
the number of the highlighted record.

Example
 If vxSeek("ABC") Then ' find the record to update
 RecNum& = vxRecNo() ' save the record number
 Sig% = vxInteger("CustSig") ' and the signature
 Name.text = vxField("Name) ' store the form vars
 Status.text = vxfield("Stat")

 ' now unlock the record
 ' ---------------------
 j% = vxUnlock()

 ' now perform the update on the vis basic form
 ' --
 CustRecordUpdate

 ' now retrieve the record and test if anyone else
 ' has changed it
 ' ---
 j% = vxGo(RecNum&)
 If Sig% <> vxInteger("CustSig") Then
 MsgBox "Another user beat you to it. Redo!"
 Else
 Call vxReplString("Name", (Name.text))
 Call vxReplString("Stat", (Status.text))
 Call vxReplInteger("CustSig", (Sig% + 1))
 End If
 j% = vxUnlock()
 End If

See Also

vxGo, vxMemoEdit, vxSkip

vxBase Page 216

vxRecord
Declaration

Declare Function vxRecord Lib "vxbase.dll" (RecStruct As Any) As
Integer

Purpose
Copy the contents of the record buffer to a data structure or fixed

length string.

Parameters
RecStruct is a defined record structure or a predimensioned fixed

string.

Returns
TRUE if the copy was successful. Otherwise, it is FALSE. A FALSE

condition can occur if there is no selected database or if the current
record number is invalid (e.g., skip past end of file).

Usage
Use to fill a record structure defined in the global module or to

fill a fixed string variable with the complete contents of the record
buffer. If you are defining a fixed string to hold the result of
vxRecord, ensure that it is long enough to hold the entire record
(including the deletion flag field).

vxRecord MUST be used to extract the contents of a character field
that has a length exceeding 255.

All xBase data is saved on disk in character format. Numeric fields
are saved as right justified numbers. Date fields are stored as
CCYYMMDD. Memo fields are ten digit numbers that refer to the relative
block number of the memo in the .DBT file. The first character in the
record is a delete flag ('*' if deleted, blank if not).

If you use the vxRecord function, you are responsible for using the
native language data conversion functions to convert numbers and dates
to formats that the language can understand. Alternatively, you could
define a record structure, fill it with the vxRecord function, and use
only those elements that are defined as Character fields. vxBase
functions such as vxDouble and vxDateFormat could still be used to
convert the xBase ASCII data to numbers and dates. For a complete
example of vxRecord usage, see the VXFORM8 code in the sample
application.

Records extracted with vxRecord may be replaced with vxReplRecord.

vxRecord may also be used to extract data for languages other than
Visual Basic. For example, Realizer users could define a string and pass
the address of that string to the vxRecord function.

EXTERNAL "vxbase.dll" FUNC vxRecord(POINTER) As INTEGER

RString = String$(50, 0)
vxBase Page 217

j = vxRecord(RString)

Field elements can then be extracted with the MID$ function.

If languages other than Visual Basic are used, remember to use the
vxSetString(1) function as the first call to vxBase in your program.
This will ensure that a pointer to a standard ASCIIZ string is passed
from all vxBase functions that return strings instead of creating Visual
Basic variable length strings.

If you wish to use a string instead of a typedef in Visual Basic,
call the function as follows:

Buff$ = String$(512,0) ' string long enough to hold record
j% = vxRecord(ByVal Buff$)

Example
' Record structure is defined in the global module
' --

' --
' define types file record structure for
' use in vxform8 and the vxRecord function
' --
Type CatRec
 cDelFlag As String * 1
 Category As String * 3
 CatName As String * 35
End Type
' note that every xbase record structure MUST begin
' with a single character deletion flag
' ---

' CODE in VXFORM8 module
' use vxRecord instead of vxField to display
' character fields
' --
Sub Form8Display ()
 Dim Crec As CatRec

 If Not vxEof Then
 If vxRecord(Crec) Then
 CatBox.text = Crec.Category
 CatNameBox.text = Crec.CatName
 Else
 CatBox.text = ""
 CatNameBox.text = ""
 End If
 End If
End Sub

See Also
vxField, vxFieldTrim, vxReplRecord, vxSetString

vxBase Page 218

vxRecSize
Declaration

Declare Function vxRecSize Lib "vxbase.dll" () As Integer

Purpose
Extract the size of the record in the currently selected database.

Parameters
None.

Returns
An integer containing the record size.

Usage
Generally used as a statistic to determine the approximate size of

the file.

Example
 HeadSize& = (vxFieldCount() * 32) + 34
 FilSize& = (vxNumRecs() * vxRecSize()) + HeadSize&
 FileSize.text = Format$(FilSize&, "#,###,###,###")

See Also
vxFieldCount, vxNumRecs

vxBase Page 219

vxReindex
Declaration

Declare Function vxReindex Lib "vxbase.dll" () As Integer

Purpose
Recreate existing open index files.

Parameters
None.

Returns
TRUE if the operation was successful and FALSE if not. Always

returns FALSE if the file has been opened with vxUseDbfRO.

Usage
Index files are among the most volatile files in an xBase

application. They are constantly being reorganized and parts of them are
being rewritten every time we get significant changes or record movement
in large files. For this reason they are also easily corrupted,
especially by forces beyond our control (such as power failures, static
discharges, etc.).

If records don't appear in a skip procedure or a vxBrowse table that
you KNOW are there, the index is probably corrupted. You can use the
vxTestNtx function to test the integrity of an index. Always set up a
file maintenance utility that either packs the files (which
automatically reindexes them as well) or simply reindexes.

Ensure that all index files belonging to the current database are
open.

Always use vxAreaDbf to ensure that the file is not open in any
active task.

If vxSetMeters is TRUE (the default), a meter bar window is
presented that charts the progress of the reindex routine for each index
file being recreated. The programmer may alternatively specify his own
gauge control with vxSetGauge.

Always close the file after a reindex to ensure that all buffers are
flushed to disk.

Multiuser Considerations
The dbf and its indexes are locked for the duration of the

operation.

vxBase Page 220

Example
 j% = vxAreaDbf("\vb\vxbtest\airtypes.dbf")
 If j% = FALSE Then
 AirtypesDbf = vxUseDbf("\vb\vxbtest\airtypes.dbf")
 AirTypesNtx = vxUseNtx("\vb\vxbtest\airtypes.ntx")
 If Not vxReindex() Then
 MsgBox "Reindex unsuccesssful. Dbf corrupted."
 End If
 j% = vxClose()
 End If

See Also

vxAreaDbf, vxPack, vxSetGauge, vxSetMeters, vxTestNtx

vxBase Page 221

vxReplDate
Declaration

Declare Sub vxReplDate Lib "vxbase.dll" (ByVal FieldName As String,
ByVal DateString As String)

Purpose
Replace an xBase date field with a Visual Basic string formatted as

per specifications below.

Parameters
FieldName is either a string variable or a literal string that

contains a valid date field name from the currently selected database.
FieldName may be qualified with a valid alias name that points to any
open database.

DateString is a string representation of a date in the format dd-
mmm-yyyy.

Returns
Nothing.

Usage
Change a date field in the database. A Visual Basic serial date must

be formatted with the command Format$(SerialDate, "dd-mmm-yyyy") before
it is passed to vxBase.

All xBase data is stored in string format within the record. The
date could also be formatted with Format$(SerialDate, "yyyymmdd") and
replaced within the record with the vxReplString command. xBase dates
are stored as "yyyymmdd" internally.

The record buffer is not written to disk until an explicit vxWrite
is issued or a command is issued that changes the status of the record
pointer (such as vxGo, vxSkip, vxSeek, etc.). In a multiuser
environment, always use an explicit vxWrite to ensure the record is
available in its changed form as soon as possible.

This function is ignored if the file has been opened as Read Only
with vxUseDbfRO.

Example
 ' set up date strings in preparation for replace
 ' --
 RDate$ = Format$(Now, "dd-mmm-yyyy")
 If CustReturn = BROWSE_ADD Then
 CDate$ = Format$(Now, "dd-mmm-yyyy")
 Else
 CDate$ = vxDateFormat("a_cdate")
 End If

 ' Data passed. Put it away
 ' ------------------------
 CursorWait
 If CustReturn = BROWSE_ADD Then
 j% = vxAppendBlank()
 End If

vxBase Page 222

 Call vxReplString("a_code", (CustCode.text))
 Call vxReplString("a_name", (CustName.text))
 Call vxReplDate("a_cdate", CDate$)
 Call vxReplDate("a_rdate", RDate$)
 j% = vxWrite()
 j% = vxUnlock()

Example 2
 ' using vxReplString to replace date fields
 ' with ambiguous vxDateString formatted dates
 ' (see also vxReplDateString)
 ' ---
 EstDueDate.Text = vxDateString("est_due", VX_AMERICAN)
 ...
 ...
 ' Replace due date that is formatted as mm/dd/yy
 ' --
 DateStr$ = String$(9,0)
 EvStr$ = "DTOS(CTOD(" + (EstDueDate.Text) + "))"
 vxEvalString(EvStr$, DateStr$)
 vxReplString("est_due", DateStr$)

See Also

vxDateFormat, vxDateString, vxReplDateString, vxReplString,
vxSetAlias, vxWrite

vxBase Page 223

vxReplDateString
Declaration

Declare Sub vxReplDateString lib "vxbase.dll" (ByVal FieldName As
String, ByVal DateString As String)

Purpose
Replace an xBase date field with a string formatted according to

country specific conventions. The default format is "mm/dd/yy"
(VX_AMERICAN).

Parameters
FieldName is either a string variable or a literal string that

contains a valid date field name from the currently selected database.
FieldName may be qualified with a valid alias name that points to any
open database.

DateString is a string representation of a date in the format
defined by vxSetDate (default VX_AMERICAN mm/dd/yy). This is the same
date style used to control data entry with vxCtlFortmat and used by
vxDateString as a return value.

Returns
Nothing. If the database, date, or field name is invalid, no

replacement occurs.

Usage
Use to replace date fields that have been entered and verified under

the control of vxCtlFormat.

This function is ignored if the file has been opened as Read Only
with vxUseDbfRO.

Example
 Sub Form_Load ()
 MasterDbf = vxUseDbf("myfile.dbf")
 vxSetAlias("master", MasterDbf)
 vxSetDate(VX_AMERICAN)
 DateBox.Text = vxDateString("datefld", VX_AMERICAN)
 End Sub

 Sub DateBox_GotFocus ()
 j% = vxCtlFormat(8, VX_DATE, 0)
 End Sub

 Sub SaveButton_Click ()
 Call vxReplDateString("datefld", (DateBox.Text))
 j% = vxWrite()
 j% = vxWriteHdr()
 End Sub

See Also
vxCtlFormat, vxDateFormat, vxDateString, vxDbfDate, vxReplDate,

vxSetAlias, vxSetDate

vxBase Page 224

vxReplDouble
Declaration

Declare Sub vxReplDouble Lib "vxbase.dll" (ByVal FieldName As
String, DblAmount As Double)

Purpose
Replace an xBase numeric field with a Visual Basic double value.

Parameters
FieldName is either a string variable or a literal string that

contains a valid numeric field name from the currently selected
database. FieldName may be qualified with a valid alias name that points
to any open database.

DblAmount is a Visual Basic double value.

Returns
Nothing.

Usage
Any numeric field that contains decimal positions should be replaced

with this command.

All xBase data is stored in string format within the record. The
number could also be formatted with Format$(DoubleAmt, "000000.00") (or
whatever data picture applies) and replaced within the record with the
vxReplString command.

The record buffer is not written to disk until an explicit vxWrite
is issued or a command is issued that changes the status of the record
pointer (such as vxGo, vxSkip, vxSeek, etc.). In a multiuser
environment, always use an explicit vxWrite to ensure the record is
available in its changed form as soon as possible.

This function is ignored if the file has been opened as Read Only
with vxUseDbfRO.

Example
 ' replace numeric values
 ' ----------------------
 Call vxReplDouble("c_price", Val((AirPrice.text)))

 ' Vis Basic Val() function always returns a double
 ' value but is forced into the type of the assigned
 ' variable if is is other than a double
 ' ---
 NumVal% = Val((AirTTSN.text))
 Call vxReplInteger("c_ttsn", NumVal%)

 NumVal& = Val((AirSMOH.text))
 Call vxReplLong("c_smoh", NumVal&)

 j% = vxWrite() ' locks and writes
 j% = vxUnlock() ' unlocks

See Also
vxBase Page 225

vxDouble, vxReplString, vxSetAlias, vxWrite

vxBase Page 226

vxReplInteger
Declaration

Declare Sub vxReplInteger Lib "vxbase.dll" (ByVal FieldName As
String, IntAmount As Integer)

Purpose
Replace an xBase numeric field with a Visual Basic integer value.

Parameters
FieldName is either a string variable or a literal string that

contains a valid numeric field name from the currently selected
database. FieldName may be qualified with a valid alias name that points
to any open database.

IntAmount is a Visual Basic integer value.

Returns
Nothing.

Usage
Any numeric field that contains decimal positions should not be

replaced with this command. A Visual Basic integer is a whole number
with a range of -32,768 to 32,767. If the possible value of your field
will exceed this, use vxReplLong or vxReplDouble.

All xBase data is stored in string format within the record. The
number could also be formatted with Format$(IntegerAmt, "00000") (or
whatever data picture applies) and replaced within the record with the
vxReplString command.

The record buffer is not written to disk until an explicit vxWrite
is issued or a command is issued that changes the status of the record
pointer (such as vxGo, vxSkip, vxSeek, etc.). In a multiuser
environment, always use an explicit vxWrite to ensure the record is
available in its changed form as soon as possible.

This function is ignored if the file has been opened as Read Only
with vxUseDbfRO.

Example
 ' replace numeric values
 ' ----------------------
 Call vxReplDouble("c_price", Val((AirPrice.text)))

 ' Vis Basic Val() function always returns a double
 ' value but is forced into the type of the assigned
 ' variable if is is other than a double
 ' ---
 NumVal% = Val((AirTTSN.text))
 Call vxReplInteger("c_ttsn", NumVal%)

 NumVal& = Val((AirSMOH.text))
 Call vxReplLong("c_smoh", NumVal&)

 j% = vxWrite() ' locks and writes
 j% = vxUnlock() ' unlocks

vxBase Page 227

See Also
vxInteger, vxReplString, vxSetAlias, vxWrite

vxBase Page 228

vxReplLogical
Declaration

Declare Sub vxReplLogical Lib "vxbase.dll" (ByVal FieldName As
String, ByVal BoolVal As Integer)

Purpose
Replace an xBase logical field with "T" or "F" depending on a

Boolean value.

Parameters
FieldName is either a string variable or a literal string that

contains the name of a valid logical type field in the current database.
FieldName may be qualified with a valid alias name that points to any
open database.

BoolVal is either FALSE (zero) or NOT FALSE (not zero). If FALSE,
the field will be replaced with "F". If NOT FALSE, the field will be
replaced with "T". Any non-zero value will result in a replacement of
"T".

Returns
Nothing.

Usage
Primarily used to replace logical fields depending on the value in

Visual Basic check boxes or radio buttons (checked = 1, unchecked = 0).

The record buffer is not written to disk until an explicit vxWrite
is issued or a command is used that changes the status of the record
pointer (such as vxGo, vxSkip, vxSeek, etc.). In a multiuser
environment, always use an explicit vxWrite to ensure the record is
available in its changed form as soon as possible.

This function is ignored if the file has been opened as Read Only
with vxUseDbfRO.

Example
 ' Replace logical fields
 ' ----------------------
 Call vxReplLogical("LogField1", (CheckBox1.Value))
 Call vxReplLogical("LogField2", (CheckBox2.Value))
 ' Note check box value is placed inside parentheses
 ' to extract the value
 ' ---

See Also
vxSetAlias, vxTrue

vxBase Page 229

vxReplLong
Declaration

Declare Sub vxReplLong Lib "vxbase.dll" (ByVal FieldName As String,
LongInt As Long)

Purpose
Replace an xBase numeric field with a Visual Basic long integer

value.

Parameters
FieldName is either a string variable or a literal string that

contains a valid numeric field name from the currently selected
database. FieldName may be qualified with a valid alias name that points
to any open database.

LongInt is a Visual Basic long integer value.

Returns
Nothing.

Usage
An xbase numeric field that contains decimal positions should not

be replaced with this command.

A Visual Basic long integer is a whole number that has a range of -
2,147,483,648 to 2,147,483,647. If the possible value of your field will
exceed this, use vxReplDouble.

All xBase data is stored in string format within the record. The
number could also be formatted with Format$(LongInt, "0000000") (or
whatever data picture applies) and replaced within the record with the
vxReplString command.

The record buffer is not written to disk until an explicit vxWrite
is issued or a command is issued that changes the status of the record
pointer (such as vxGo, vxSkip, vxSeek, etc.). In a multiuser
environment, always use an explicit vxWrite to ensure the record is
available in its changed form as soon as possible.

This function is ignored if the file has been opened as Read Only
with vxUseDbfRO.

vxBase Page 230

Example
 ' replace numeric values
 ' ----------------------
 Call vxReplDouble("c_price", Val((AirPrice.text)))

 ' Vis Basic Val() function always returns a double
 ' value but is forced into the type of the assigned
 ' variable if is is other than a double
 ' ---
 NumVal% = Val((AirTTSN.text))
 Call vxReplInteger("c_ttsn", NumVal%)

 NumVal& = Val((AirSMOH.text))
 Call vxReplLong("c_smoh", NumVal&)

 j% = vxWrite() ' locks and writes
 j% = vxUnlock() ' unlocks

See Also
vxLong, vxReplString, vxSetAlias, vxWrite

vxBase Page 231

vxReplMemo
Declaration

Declare Function vxReplMemo Lib "vxbase.dll" (ByVal FieldName As
String, MemoString As String) As Integer

Purpose
Replace a memo with a Visual Basic String.

Parameters
FieldName is either a string variable or a literal string that

contains a valid memo field name from the currently selected database.
FieldName may be qualified with a valid alias name that points to any
open database.

MemoString is a Visual Basic string. The memo string is usually read
into a text box with vxMemoRead. The user can then edit the string and
it can be replaced with vxReplMemo.

Returns
TRUE if the operation was successful; otherwise, FALSE. This is the

only vxRepl command that is declared as a function and that returns a
value. The memo string replaces a memo in an associated .dbt file rather
than a simple record buffer replacement. Always returns FALSE if the
associated dbf has been opened as Read Only with vxUseDbfRO.

Usage
Only use if you are gathering memo data in a Visual Basic text box

(instead of using vxMemoEdit - which is much more powerful).

If vxSetAnsi(FALSE), the string is converted to the OEM character
set before it is written to the memo file.

Example
 Dim MemoString As String
 MemoString = MemoBox.text
 j% = vxGo(RecNum&)
 If Not vxReplMemo("vxmemo", MemoString) Then
 MsgBox "Error writing memo"
 End If
 j% = vxUnlock
 j% = vxClose()

See Also
vxIsMemo, vxMemoClear, vxMemoEdit, vxMemoRead, vxSetAlias

vxBase Page 232

vxReplRecord
Declaration

Declare Sub vxReplRecord lib "vxbase.dll" (RecStruct As Any)

Purpose
Replace the contents of the internal vxBase record buffer for the

currently selected dbf with a Visual Basic record structure or string.

Parameters
RecStruct is a defined record structure or a string containing a

complete database record.

Returns
Nothing. If the current dbf is invalid, no replacement occurs.

Usage
This function is ignored if the file has been opened as Read Only

with vxUseDbfRO.

If using type definitions to describe records and to retrieve their
contents (with vxRecord), this function may be used to replace the
contents of the record buffer.

All xBase records are kept on disk as fixed length strings
containing ASCII data.

WARNING: No data validation of any kind is performed by
vxReplRecord. If using this function, all validation must be performed
by the programmer before the buffer is passed to vxReplRecord. Always
remember that all data is in ASCII format and that the first byte in an
xBase record is the deletion flag byte.

Example
 ' Record defined in Global Module
 ' --
 ' define types file record structure for
 ' use in vxform8 and the vxRecord and
 ' vxReplRecord functions
 ' --
 Type CatRec
 cDelFlag As String * 1
 Category As String * 3
 CatName As String * 35
 End Type
 ' note that every xbase record structure MUST begin
 ' with a single character deletion flag
 ' ---

Sub ChangeDeleted ()
 Dim Crec As CatRec

 If vxDeleted() Then
 If vxRecord(Crec) Then
 CatBox.Text = Crec.Category
 CatNameBox.Text = Crec.CatName

 ' we may also replace an entire
 ' record by pointing at a defined

vxBase Page 233

 ' record or string containing the record
 ' --------------------------------------
 Crec.Category = "zzz" ' if deleted, change key to hi values
 Call vxReplRecord(Crec)
 j% = vxWrite()
 j% = vxWriteHdr()
 StatBox.Text = "Key changed"
 Else
 CatBox.Text = ""
 CatNameBox.Text = ""
 EvalBox.Text = ""
 End If
 End If
End Sub

NOTE: If replacing from a string buffer instead of a defined record
type, always use BYVAL!
 Call vxReplRecord(ByVal Buffer$)

See Also
vxField, vxFieldTrim, vxRecord

vxBase Page 234

vxReplString
Declaration

Declare Sub vxChar Lib "vxbase.dll" (ByVal FieldName As String,
ByVal FieldString As String)

Purpose
Replace any xBase field with a Visual Basic string.

Parameters
FieldName is either a string variable or a literal string that

contains a valid field name from the currently selected database.
FieldName may be qualified with a valid alias name that points to any
open database.

FieldString is a string representation of the data.

Returns
Nothing.

Usage
Normally used to replace the contents of character fields.

All xBase data is stored in string format within the record. You may
use any Visual Basic data conversion functions that result in a string
to convert data before passing it to vxBase for replacement with the
vxReplString command.

The record buffer is not written to disk until an explicit vxWrite
is issued or a command is issued that changes the status of the record
pointer (such as vxGo, vxSkip, vxSeek, etc.). In a multiuser
environment, always use an explicit vxWrite to ensure the record is
available in its changed form as soon as possible.

This function is ignored if the file has been opened as Read Only
with vxUseDbfRO.

Example
 ' set up date strings in preparation for replace
 ' --
 RDate$ = Format$(Now, "dd-mmm-yyyy")
 If CustReturn = BROWSE_ADD Then
 CDate$ = Format$(Now, "dd-mmm-yyyy")
 Else
 CDate$ = vxDateFormat("a_cdate")
 End If

 ' Data passed. Put it away
 ' ------------------------
 CursorWait
 If CustReturn = BROWSE_ADD Then
 j% = vxAppendBlank()
 End If

 Call vxReplString("a_code", (CustCode.text))
 Call vxReplString("a_name", (CustName.text))
 Call vxReplDate("a_cdate", CDate$)
 Call vxReplDate("a_rdate", RDate$)

vxBase Page 235

 j% = vxWrite()
 j% = vxUnlock

See Also

vxField, vxSetAlias, vxWrite

vxBase Page 236

vxSeek
Declaration

Declare Function vxSeek Lib "vxbase.dll" (ByVal SearchKey As String)
As Integer

Purpose
Find and read the record whose index key matches the defined value.

Parameters
SearchKey is a literal string or string variable that contains the

key value you are searching for.

Returns
TRUE if the record was found and FALSE if not.

Usage
This function is a real vxBase workhorse. Most file maintenance

functions revolve around whether a particular record has a matching key
or not.

If the vxExact flag is set off (the default value), vxSeek will find
records with partial key matches. For example, to position the file to
the first record whose key field begins with the letter "A", use
vxSeek("A"). If there are no records that start with the letter "A", we
will get a FALSE return. If the search key value is not as long as the
actual key field or expression, TRUE will be returned on a partial key
match only if vxExactOff is true (either by explicitly issuing a
vxExactOff command or by never issuing a vxExactOn).

If vxExactOn has been issued, the search key must exactly match the
key field in length and content before a TRUE is returned.

If the key was found, vxFound will return true any time after the
seek (and before the next seek).

If the return is FALSE, the record pointer is undefined, the record
buffer contents are also undefined, and vxEof will return TRUE.

If a filter has been set with vxFilter, and the only record that
satisifes the seek does not satisfy the filter, the return will be
FALSE. If vxExact is OFF, and a partial key is found that satisfies both
the seek and the filter, the result will be TRUE.

Multiuser considerations
If vxSetLocks(TRUE), and if vxSeek finds a record, and that record

is locked, it will wait (forever) for the record to be released before
returning. This is as it should be because if we allow the user to abort
a seek with the standard vxBase Retry? query when a locked record is
required, the function would have to return a FALSE value. The
programmer then couldn't be sure whether the record really wasn't found
or if the user aborted because of a lock.

If a record is successfully found, that record is locked if
vxSetLocks is TRUE (the default).

vxBase Page 237

vxSetLocks(FALSE) will allow a locked record to be read by another
workstation.

Example
Sub TypeSave_Click ()

 ' verify something in the field
 ' -----------------------------
 SeekKey$ = TypeCode.text
 If EmptyString(SeekKey$) Then
 MsgBox "Field cannot be empty"
 TypeCode.SetFocus
 j% = vxUnlock()
 Exit Sub
 End If

 ' verify unique key if adding
 ' ---------------------------
 If TypeReturn = BROWSE_ADD Then

 If vxSeek(SeekKey$) Then
 MsgBox "Duplicate Key on Add"
 TypeCode.SetFocus
 j% = vxUnlock()
 Exit Sub
 End If
 End If

 ' Data passed. Put it away
 ' ------------------------
 CursorWait
 If TypeReturn = BROWSE_ADD Then
 j% = vxAppendBlank()
 End If

 ' notice the brackets around the control property
 ' below which gets at the data contained therein
 ' --
 Call vxReplString("category", (TypeCode.text))
 Call vxReplString("catname", (TypeDesc.text))
 j% = vxWrite()

 ' Update status box
 ' -----------------
 If TypeReturn = BROWSE_ADD Then
 TypeStatus.text = "Record " + LTrim$(Str$(vxRecNo())) + " added"
 Else
 TypeStatus.text = "Record " + LTrim$(Str$(vxRecNo())) + " saved"
 End If

 ' Update Button Status
 ' --------------------
 TypeSave.Enabled = TRUE
 TypeCancel.Enabled = TRUE
 TypeAdd.Enabled = TRUE
 TypeDelete.Enabled = TRUE
 TypeReturn = BROWSE_EDIT
 j% = vxUnlock() ' ensure database unlocked
 CursorArrow
End Sub

See Also

vxDescend, vxExactOff, vxExactOn, vxFound, vxLocate, vxLocateAgain,
vxSeekSoft, vxSetLocks

vxBase Page 238

vxSeekFast
Declaration

Declare Function vxSeekFast Lib "vxbase.dll" (ByVal SearchKey As
String) As Integer

Purpose
Perform significantly faster seeks in a known read-only environment.

Parameters
SearchKey is a literal string or string variable that contains the

key value you are looking for.

Returns
TRUE if the key was found and FALSE if not.

Usage
Use to fill grids, arrays, etc. from a file that you are only going

to be reading. vxUseDbfRO MUST be used to open the database. If the file
is not opened with vxUseDbfRO, vxSeekFast always returns FALSE. Should
only be used in loops where no user interaction is involved.

WARNING!
vxSeekFast performs little error trapping. It is the programmer's

responsibility to know the database environment when using vxSeekFast.

The following internal vxBase checks are disabled when using
vxSeekFast:
 (1) current database selection is assumed to be correct.
 (2) correct index is assumed to be selected and current.
 (3) there is no checking for changed dbf or ntx buffers (therefore
 if any changed buffers exist, they are not written and will
 be LOST. Open the file cleanly as read only and perhaps Lock it
 to stop any other users from updating it while it is in use).
 (4) No locking on the index is performed while reading.
 (5) filters are NOT respected.
 (6) vxExact status is NOT respected.
 (7) vxFound is NOT set.
 (8) vxEof is NOT necessarily TRUE if a seek is unsuccessful (unlike
 vxSeek).
 (9) If a seek is NOT successful, the contents of the record buffer
 are undefined.
 (10) Relations set with vxSetRelations are NOT respected by
 vxSeekFast.
 (11) File and record locks placed by other users are NOT respected.

vxBase Page 239

Example
 ' seek speed test
 ' ---------------
 j% = vxUseDbfRO("\ab2\abacus\sam\cluser.dbf")
 j% = vxUseNtx("\ab2\abacus\sam\cluser1.ntx")
 j% = vxTop()
 Key$ = "ABCDEFGHIJKLMNOPRSTUVWXYZ"
 Debug.Print Time$

 ' following loop does 3000 seeks
 For k% = 1 To 120
 For m% = 1 To 25
 ky$ = Mid$(Key$, m%, 1)
 If Not vxSeekFast(ky$) Then
 MsgBox "Seek failed"
 End If
 Next
 Next
 Debug.Print Time$
 j% = vxCloseAll()

See Also
vxDescend, vxSeek, vxSeekSoft, vxSetLocks

vxBase Page 240

vxSeekSoft
Declaration

Declare Function vxSeekSoft Lib "vxbase.dll" (ByVal SearchKey As
String) As Integer

Purpose
Find a record whose key field matches or partially matches the

defined search string. If the key is not found, position the record
pointer to the next highest key value.

Parameters
SearchKey is a literal string or string variable that contains the

key value you are searching for.

Returns
TRUE if a record is read into the buffer. The search key may or may

not match the key field depending on the type of find. If no record is
found, either partially matched, matched, or the record after, then
FALSE is returned.

Usage
vxSeekSoft differs from vxSeek in that a TRUE condition is returned

even if the key is not matched and there is a record with a key greater
than the search key in the file.

The following conditions apply:
(1) if partial or exact match, vxSeekSoft returns TRUE, vxFound

returns TRUE and vxEof returns FALSE.
(2) if not matched, and the record pointer is positioned to the

record with a key higher than the search key, vxSeekSoft returns TRUE,
vxFound returns FALSE, and vxEof returns FALSE.

(3) if there is no record with a higher key value, vxSeekSoft
returns FALSE, vxFound returns FALSE, and vxEof returns TRUE.

This command is especially useful for delimiting a subset of records
within a large database. Filters are inherently slow, and an internal
routine such as that shown in the example could speed up processing
enormously, given a file with a large number of records. There are other
ways to accomplish the same result, of course, but this is one of them.

vxExactOn has no effect on vxSeekSoft.

Multiuser Considerations
If a record is found, it is locked if vxSetLocks is TRUE (the

default).

vxBase Page 241

Example
 ' finds the range of records in this
 ' file that all have "ABC" as the first
 ' part of the key
 ' --------------------------------------
 SrchKey$ = "ABC"

 ' find the first record
 ' ---------------------
 If Not vxSeek(SrchKey$) Then
 Exit Sub
 Else
 StartRec& = vxRecNo()

 ' make the last character in the key 1 binary number
 ' greater than the actual key and do a soft seek
 ' --
 SoftKey$ = Mid$(SrchKey$,1,2) +
 Chr$(Asc(Mid$(SrchKey$,3,1)) + 1)
 j% = vxSeekSoft(SoftKey$)

 ' As long as vxEof is false, we hit something
 ' ---
 If Not vxEof() Then
 vxSkip(-1) ' back up one rec to last ABC
 EndRec& = vxRecNo()
 Else
 EndRec& = StartRec&
 End If
 ' now process the range
 ' ---------------------
 RangeProc
 End If

See Also

vxDescend, vxLocate, vxLocateAgain, vxSeek, vxSetLocks

vxBase Page 242

vxSelectDbf
Declaration

Declare Function vxSelectDbf Lib "vxbase.dll" (ByVal DbfArea As
Integer) As Integer

Purpose
Make the open database identified by the passed area handle the

current database.

Parameters
DbfArea is a valid area handle returned from vxUseDbf or one of its

variants when the file was opened.

Returns
The select area of the previously selected database or zero (0) if

there was no previously selected database. If the DbfArea parameter is
invalid, subsequent operations will be undefined (like in CRASH).

Usage
Almost every vxBase function works on the selected database only.

There is only ONE selected database at any given time, even though many
dbf files may be open. Whenever you want to work on a different
database, you must select it first.

Each database opened (with vxUseDbf) or selected (with vxSelectDbf)
while a Visual Basic form is active is automatically attached to that
window. If the user has a number of windows open, and switches between
them at will, any vxBase commands that reference a database will
automatically select the correct database. To use this automation
effectively, you MUST:

(1) select the database as the first command in the FORM_LOAD
procedure.

(2) select the database as the first command in the FORM_PAINT
procedure.

(3) use vxWindowDereg in the FORM_UNLOAD procedure.

Each of these requirements is discussed in detail in the
MultiTasking and MultiUser Considerations section.

If calling sub functions that access databases with vxBase calls, it
is always a good idea to reselect the database that should be active
immediately after returning from the call. This in effect re-registers
the database with the window.

C programmers writing DLLs or VBXs using vxBase calls may turn the
auto database selection feature off with vxSetSelect(FALSE).

Example
 OldDbf% = vxSelectDbf(AirtypesDbf)
 CurrRec& = vxRecNo()
 If OldDbf% > 0 Then
 j% = vxSelectDbf(OldDbf%)
 End If

vxBase Page 243

See Also
vxAreaDbf, vxAreaNtx, vxDbfCurrent, vxSelectNtx, vxUseDbf,

vxUseDbfAgain, vxUseDbfEX, vxUseDbfRO, vxUseNtx, vxWindowDereg

vxBase Page 244

vxSelectNtx
Declaration

Declare Function vxSelectNtx Lib "vxbase.dll" (ByVal NtxArea As
Integer) As Integer

Purpose
Make the open index file identified by the passed area handle the

current index for use with the current database.

Parameters
NtxArea is a valid area handle returned by vxUseNtx when the file

was opened or by vxAreaNtx.

Returns
The select area of the previously selected index for the current

database, or zero (0) if there was no previously selected index. If the
NtxArea parameter is invalid, subsequent operations will be use record
number ordering.

Usage
Whenever an index is opened, it is automatically attached to the

current database and selected. The last index opened is therefore the
one selected for use. If there is more than one index open, the
sequencing may be changed by selecting the new index with this command.

If another database has been selected, and then the dbf that this
index belongs to is reselected, it is not necessary to also reselect the
index. The index in use will remain the same until another is selected.

Example
 AirbuyerDbf = vxUseDbf("airbuyer.dbf")
 Airbuy1Ntx = vxUseNtx("airbuy1.ntx")
 Airbuy2Ntx = vxUseNtx("airbuy2.ntx")

 ' the current sequence is in airbuy2 order
 ' --
 DisplayBuyer

 ' change the sequence
 ' -------------------
 j% = vxSelectNtx(Airbuy1Ntx)
 DisplayBuyer

 ' now select record number order
 ' ------------------------------
 j% = vxNtxDeselect()
 DisplayBuyer

 ' and then put it back the way it was
 ' -----------------------------------
 j% = vxSelectNtx(Airbuy2Ntx)

See Also
vxAreaNtx, vxNtxCurrent, vxNtxDeselect, vxSelectDbf, vxUseNtx

vxBase Page 245

vxSetAlias
Declaration

Declare Function vxSetAlias lib "vxbase.dll" (ByVal AliasName As
String, ByVal DbfArea As Integer) As Integer

Purpose
Create an alias name for a dbf area in order to qualify field names

used in vxBase database functions. If a fieldname is qualified with an
alias, the database the alias refers to does not have to be the
currently selected dbf.

Parameters
AliasName is a string up to 8 characters long that is used as a

field qualifier.

DbfArea is the database select area returned by vxUseDbf or one of
its variants when the file is opened. This select area is automatically
selected whenever a field name that is qualified with an alias is passed
to a vxBase function.

Returns
TRUE if the alias name was set up in the array of alias names.
FALSE if the operation was not successful. FALSE is returned for the

following reasons:
 (1) DbfArea does not refer to an open database.
 (2) AliasName length is zero or greater than 8.
 (3) AliasName has already been defined with a different DbfArea.
 (4) Maximum number of alias names already defined (96 for all
 concurrent vxBase tasks).

Usage
It is recommended that all vxBase functions that take a field name

as a parameter use alias names to qualify the field. In a multitasking
(or multiwindow) environment, reference to a qualified field name will
ALWAYS ensure that the correct database is selected no matter what the
task or window.

Qualified field names allow the use of multiple databases in the
program without requiring a vxSelectDbf prior to accessing the fields
from a dbf that is already open.

Field qualifiers are essential if you use vxSetRelations to combine
two or more databases into one comprehensive table.

Alias names may be used with the following vxBase functions:
vxChar vxFieldSize vxMemoRead vxReplLong
vxCtlLength vxFieldTrim vxPictureImport vxReplMemo
vxDateFormat vxFieldType vxPictureRead vxReplString
vxDateString vxIinteger vxReplDate vxSum
vxDecimals vxIsMemo vxReplDateString vxTrue
vxDouble vxLong vxReplDouble
vxEmpty vxMemoClear vxReplInteger
vxField vxMemoEdit vxReplLogical

vxBase Page 246

Alias names are NOT used to define join expressions (in vxJoin) or
Browse columns with vxTableField. Browse columns that display data
joined with vxSetRelation are defined with vxTableFieldExt (for Extended
functionality) rather than vxTableField. In vxTableFieldExt the columnar
fields or expressions are qualified by passing the actual dbf area to
the function rather than by using an alias name. This allows the use of
xBase expressions when defining columns whose data resides in the child
files of a vxSetRelation.

xBase style alias names and alias names set with the vxSetAlias
function are supported within a vxBase xBase expression. The alias names
used must be set with vxSetAlias. File alias names are separated from
the field reference by "->" (classical xBase syntax) within an xBase
expression string. When alias names are used within vxBase functions
that refer to field names, a period delimiter is used instead (to
conform to Visual Basic syntax).
 For example,
 If Not vxEval("master->country = 'Canada'") Then
 MsgBox "Country does not exist"
 Else
 Country$ = vxField("master.country")
 End If

An alias name construct within a vxBase function call is of the form
"Alias.FieldName". A period delimiter is used between the alias and the
field name.

Example
Sub Form_Load ()
 ' vxSetRelations and vxSetAlias Example
 ' -------------------------------------
 ' We will skip through the Airbuyer file
 ' which has a many to one relationship with
 ' both the aircust.dbf file and the airtypes.dbf
 ' file.

 ' open child files first
 AircustDbf = vxUseDbf("\vb\vxbtest\aircust.dbf")
 Aircust1Ntx = vxUseNtx("\vb\vxbtest\aircust1.ntx")

 AirtypesDbf = vxUseDbf("\vb\vxbtest\airtypes.dbf")
 AirtypesNtx = vxUseNtx("\vb\vxbtest\airtypes.ntx")

 ' open parent file (has many records)
 AirbuyerDbf = vxUseDbf("\vb\vxbtest\airbuyer.dbf")
 Airbuy1Ntx = vxUseNtx("\vb\vxbtest\airbuy1.ntx")

 ' define alias names so we can use field
 ' qualifiers when extracting data
 ' --------------------------------------
 j% = vxSetAlias("buyer", AirbuyerDbf)
 j% = vxSetAlias("customer", AircustDbf)
 j% = vxSetAlias("type", AirtypesDbf)

 ' define relationship to current selection
 ' the 1st param defines the file we are setting
 ' up the relationship to (the child file)
 ' and the second param tells vxbase how to

vxBase Page 247

 ' construct a key to be used on the current
 ' index in use by the child file
 ' ---
 ErrCode% = FALSE

 ' parent file must be the current selection
 ' when defining the relationship
 If Not vxSetRelation(AircustDbf, "b_code") Then
 MsgBox "1st relation failed"
 ErrCode% = TRUE
 Else
 If Not vxSetRelation(AirtypesDbf, "b_cat") Then
 MsgBox "2nd relation failed"
 ErrCode% = TRUE
 End If
 End If

 If ErrCode% Then
 Unload VYFORM0
 Else
 ' now when we issue vxTop(), the two related
 ' file pointers will move to match the values
 ' in the parent file key fields
 j% = vxTop()
 End If
 VYForm0Display
End Sub

' display procedure uses alias names to extract
' data rather than selecting each database
' ---
Sub VYForm0Display ()
 If Not vxEof() Then
 Bcode.text = vxField("buyer.b_code")
 Bcat.text = vxField("buyer.b_cat")
 Aname.text = vxField("customer.a_name")
 Catname.text = vxField("type.catname")
 Else
 Bcode.text = ""
 Bcat.text = ""
 Aname.text = ""
 Catname.text = ""
 End If
End Sub

See Also
vxSetRelation
and all the field functions listed above

vxBase Page 248

vxSetAnsi
Declaration

Declare Sub vxSetAnsi lib "vxbase.dll" (ByVal OnOrOff As Integer)

Purpose
vxSetAnsi(FALSE) properly handles databases that were created with a

DOS based application (such as Clipper). These databases are OEM
databases. Characters with diacritical marks in the high end of the OEM
character collating sequence are NOT the same as the ANSI characters. It
is necessary for vxBase to translate the characters to ANSI (both
Windows and vxBase native mode) before they can be used in a vxBase
application. They also must be translated back again when they are
written.

Parameters
OnOrOff is either TRUE or FALSE. TRUE is the default value.

If TRUE, all data records and index entries are assumed to be in the
ANSI character set. No translation takes place.

If FALSE, data records are converted to ANSI from OEM after being
read from the file. All internal vxBase operations then take place on
the ANSI data. If a record is written, it is converted back to the OEM
character set before being written to disk.

If FALSE, index key entries are NOT converted to ANSI. Instead,
requests to seek result in the key being translated to OEM before the
seek takes place. Similarly, as the index is updated, keys are
translated back to OEM before insertion or updating.

All translation between character sets takes place in the background
and are transparent to the user.

Returns
Nothing.

Usage
vxSetAnsi would be set to FALSE if you were working with a database

that was created with a DOS based application and whose data contains
characters from the high end of the character table (i.e., those
characters with diacritical marks common to languages other than
English).

It should also be set to FALSE if the database with the diacritical
characters is going to be used by DOS based applications (e.g., running
a Clipper program on a network concurrently with a vxBase program).

The default value of vxSetAnsi is TRUE (no translation takes place).
If the database was created and is maintained by vxBase (or DataWorks)
and is only going to be used by Windows applications, vxSetAnsi should
be TRUE.

If using databases with different native character sets, vxSetAnsi
vxBase Page 249

may be used to toggle translation on and off (as long as the current
database has no relations set up to databases with a different native
character set).

Example
 Sub Form_Load ()
 Call vxInit
 Call vxCtlGraySet
 Call vxCtlGraySet
 Call vxSetLanguage(VX_GERMAN)
 Call vxSetLocks(FALSE)
 Call vxSetString(0)
 j% = vxCloseAll()

 ' using OEM databases
 ' -------------------
 Call vxSetAnsi(FALSE)

 ' create descending collating sequence table
 ' --
 i% = 255
 For j% = 1 To 256
 CharMap(j%) = i%
 i% = i% - 1
 Next j%
 Call vxCollate(CharMap(1))

 ' turn off table usage until required
 ' -----------------------------------
 Call vxSetCollate(FALSE)
 End Sub

vxBase Page 250

Example ANSI-OEM Conversion
 You may wish to convert a vxBase database created with vxSetAnsi(TRUE)
into an OEM database for use with DOS based applications such as R&R
Report Writer.
 The following routine was written by Dr. Alain Spaite of France:
Sub AnsiOem_Click ()
Dim FileOrigin As String, FileDest As String
Dim Buffer As String, LenRec As Integer

 FileOrigin = NomPSI(0).Caption ' ANSI file name already opened
 FileDest = NimPSI(1).Caption ' OEM file not yet opened
 Ret% = MsgBox("Please confirm translation", 36)
 If Ret% = 6 Then
 j% = vxSelectDbf(DBFArea(0))
 DBFArea(1) = vxUseDbf(FileDest)
 If DBFArea(1) = FALSE Then
 MsgBox "ERROR: Destination file cannot be opened"
 Exit Sub
 End If
 j% = vxSelectDbf(DBFArea(0))
 j% = vxTop()
 LenRec = vxRecSize()
 Do While Not vxEof()
 Buffer = String$(LenRec, 0)
 j% = vxSelectDbf(DBFArea(0))
 j% = vxRecord(ByVal Buffer)
 Call vxSetAnsi(FALSE)
 j% = vxSelectDbf(DBFArea(1))
 If Not vxAppendBlank() Then
 MsgBox "Error in append"
 Exit Sub
 End If
 Call vxReplRecord(ByVal Buffer)
 j% = vxWrite()
 j% = vxWriteHdr()
 Call vxSetAnsi(TRUE)
 j% = vxSelectDbf(DBFArea(0))
 j% = vxSkip(1)
 Loop
 End If
 j% = vxCloseAll()
End Sub

See Also
vxCollate, vxSetCollate

vxBase Page 251

vxSetCollate
Declaration

Declare Sub vxSetCollate lib "vxbase.dll" (ByVal OnOrOff As Integer)

Purpose
Toggle the use of a defined collating sequence table.

Parameters
OnOrOff is either TRUE or FALSE. When a collating sequence table is

defined with vxCollate, the value is set to TRUE (its default value is
FALSE).

Returns

Nothing.

Usage
Turn an alternate collating sequence table on or off. If no table

has been defined with vxCollate, this function has no effect.

You can build a special collating sequence table that only applies
to a given index and then turn that table on or off depending on whether
the index is in use or not.

Example
 Sub Form_Load ()
 Call vxInit
 Call vxCtlGraySet
 Call vxCtlGraySet
 Call vxSetLanguage(VX_GERMAN)
 Call vxSetLocks(FALSE)
 Call vxSetString(0)
 j% = vxCloseAll()

 ' using OEM databases
 ' -------------------
 Call vxSetAnsi(FALSE)

 ' create descending collating sequence table
 ' --
 i% = 255
 For j% = 1 To 256
 CharMap(j%) = i%
 i% = i% - 1
 Next j%
 Call vxCollate(CharMap(1))

 ' turn off table usage until required
 ' -----------------------------------
 Call vxSetCollate(FALSE)
 End Sub

See Also
vxCollate, vxSetAnsi

vxBase Page 252

vxSetDate
Declaration

Declare Sub vxDateString Lib "vxbase.dll" (ByVal DateType As
Integer)

Purpose
Set the date display format to be used by xBase date functions

(CTOD(), DATE(), and DTOC()) and also by vxBrowse columnar displays of
dates and as an input edit mask when editing fields from a browse
window.

Parameters
DateType is a country identifier as defined in vxbase.txt. It is one

of the following:
VX_AMERICAN format mm/dd/yy
VX_ANSI format yy.mm.dd
VX_BRITISH format dd/mm/yy
VX_FRENCH format dd/mm/yy
VX_GERMAN format dd.mm.yy
VX_ITALIAN format dd-mm-yy
VX_SPANISH format dd-mm-yy

Returns
Nothing.

Usage
This function is provided to conform with international date

conventions. The default value is VX_AMERICAN (MM/DD/YY).

The call should be issued in your initialization procedure.

Warning: If you have used the international section of the WIN.INI
file to set Windows dates to a format other than American, beware that
the Visual Basic Date$ Function always returns a string in the format
"mm-dd-yyyy" and the Visual Basic DateValue Function expects a date in
the format defined in the WIN.INI international section. The twain shall
not meet. If they do, Visual Basic returns with an "Illegal Function
Call" error. If you have set the date to, for example, British format
(dd-mmm-yyyy), use code as in the sample below to handle today's date
and forget about the Date$ Function:

XDate$ = Format$(Now, "dd-mmm-yyyy")
DaysOnFile% = DateValue(XDate$) - DateValue(DateCreate$)) + 1

Example
Call vxSetDate(VX_BRITISH)

See Also

vxCtlFormat, vxDateFormat, vxDateString, vxReplDateString,
vxSetErrorCaption, vxSetLanguage

vxBase Page 253

vxSetErrorCaption
Declaration

Declare Sub vxSetErrorCaption Lib "vxbase.dll" (ByVal CaptionString
As String)

Purpose
Change the caption presented on vxBase error message boxes to

whatever the user desires. The default value is "vxBase Error".

Parameters
CaptionString is the new string that will be displayed as the

caption in every vxBase error message box.

Returns
Nothing.

Usage
Should be issued in the FORM_LOAD procedure of your startup form.

Example
 Call vxSetErrorCaption("Real Estate System Error")

See Also
vxSetDate, vxSetLanguage

vxBase Page 254

vxSetErrorMethod
Declaration

Declare Sub vxSetErrorMethod lib "vxbase.dll" (VBorVX As Integer)

Purpose
Activate or deactivate the alternate vxBase error method.

Parameters
VBorVX set to TRUE turns on the alternate error method. FALSE sets

the error reporting method to the vxBase default (run time errors are
reported via message boxes).

If VBorVX (the alternate error method) is TRUE, vxBase internal
errors MUST be trapped with vxErrorTest.

Returns
Nothing.

Usage
See vxErrorTest for details on using the alternate error method.

Example
 ' test alternate error method VB 1.0
 ' ----------------------------------
 Call vxSetErrorMethod(TRUE)
 jj% = vxUseNtx("\vb\vxbtest\testerr.ntx")
 If vxErrorTest(vxError) Then
 ProcessError
 End If
 Call vxSetErrorMethod(FALSE)

 For an example of use with VB 2.0, see vxErrorTest.

See Also
vxErrorTest

vxBase Page 255

vxSetGauge
Declaration

Declare Sub vxSetGauge Lib "vxbase.dll" (ByVal Hwnd As Integer)

Purpose
Sets up an alternative method for generating analog or digital gauge

information on time consuming indexing and pack procedures. If
vxSetMeters is FALSE, and a window handle representing a gauge control
(or any other valid window) is passed to vxBase via vxSetGauge, a
KeyDown event is triggered for the defined control or window whenever
the completion percentage of the active procedure changes.

The KeyCode parameter passed to the KeyDown event procedure contains
the percentage complete instead of a key value. This percentage is
passed as a NEGATIVE number so the programmer can distinguish between
normal key codes and key codes sent by the vxBase procedure.

Parameters
Hwnd is a window handle to the gauge or textbox control. If the

form element KeyDown event being triggered is for a Visual Basic
control, use vxCtlHwnd to convert the control handle to a window handle.

Returns
Nothing.

Usage
The sample below shows how to use the vxSetGauge function to control

the progress of a gauge control (the one included in the Visual Basic
Professional kit).

The following functions will generate KeyDown events for the defined
control: vxCreateNtx, vxCreateSubNtx, vxPack, and vxReindex (note the
absence of vxTestNtx from this list).

With vxCreateNtx and vxCreateSubNtx we are working with a single
file at a time so the absolute value of the percentage number generated
may be used to directly set the gauge control value.

With vxPack and vxReindex, you must use a method like the one shown
in the example below to generate meaningful gauge information. For
example, if packing a dbf file with 3 indexes and an attached memo (dbt)
file, vxBase will generate percentage progress from 0 to 100 for EACH of
the 5 files involved (1 dbf, 3 ntxs, 1 dbt). If you use a method to
factor the passed percentage and also track the total progress then the
gauge information will be properly presented to the user.

Example
' This example uses a general form that contains nothing but
' a gauge control (in the form of a speedometer) to present
' analog progress information to the user. The gauge form is
' shown and set up from a PackFiles_Click menu item on the
' project's main form

vxBase Page 256

' The gauge form is VXFORMG and the gauge control is generated
' by GAUGE.VBX included with the Visual Basic Professional
' toolkit. The same control is also available from MicroHelp.

' The Gauge control uses default properties EXCEPT for the
' following:
' Name = Gauge
' Picture = (Bitmap) (\vb\bitmqaps\gauge\speedo.bmp)
' Style - 2-'Semi' Needle

' the following Globals are defined to enable proper multifile
' gauging during the pack operation:

Global GaugeFactor As Integer
Global GaugeTotal As Integer

' The user clicks the PackFiles menu item
' ---------------------------------------
Sub PackFiles_Click ()
 vxSetMeters False ' turn off default meters
 VXFORMG.Show ' show the form with the gauge on it
 VXFORMG.Caption = "Pack vxUser" ' set the caption
 DoEvents ' allows the bitmap to be drawn on the gauge
 vxSetGauge vxCtlHwnd(VXFORMG.Gauge) ' tell vxBase about the gauge
 GaugeTotal = 0 ' global total progess variable

 ' pack user file
 ' --------------
 j% = vxAreaDbf(DirName + "vxuser.dbf")
 If j% > 0 Then
 MsgBox "vxuser in use!"
 Else
 vxClientDbf = vxUseDbf(DirName + "vxuser.dbf")
 vxWhere = vxUseNtx(DirName + "vxwhere.ntx")
 vxCl1Ntx = vxUseNtx(DirName + "vxuser.ntx")
 vxNorthNtx = vxUseNtx(DirName + "vxnorth.ntx")
 vxPhoneNtx = vxUseNtx(DirName + "vxphone.ntx")
 vxNameNtx = vxUseNtx(DirName + "vxname.ntx")
 vxCompNtx = vxUseNtx(DirName + "vxcomp.ntx")

 ' GaugeFactor is 8 (one for each file above PLUS a dbt
 ' which this file has attached)
 GaugeFactor = 8
 j% = vxSelectDbf(vxClientDbf)
 j% = vxPack(VXFORM1.hWnd)
 j% = vxClose()
 End If

 ' pack fax file
 ' -------------
 VXFORMG.Caption = "Pack vxFax" ' new caption
 VXFORMG.Gauge.Value = 0 ' reset gauge to 0
 j% = vxAreaDbf(DirName + "vxfax.dbf")
 If j% > 0 Then
 MsgBox "vxfax in use!"
 Else
 GaugeTotal = 0 ' reset total progress var
 GaugeFactor = 3 ' this file has 3 elements (dbf, ntx, dbt)
 vxFaxDbf = vxUseDbf(DirName + "vxfax.dbf")
 vxFaxNtx = vxUseNtx(DirName + "vxfax.ntx")
 j% = vxSelectDbf(vxFaxDbf)
 j% = vxPack(VXFORM1.hWnd)
 j% = vxClose()
 End If
 Unload VXFORMG ' unload the gauge form
 vxSetGauge 0 ' turn off the gauge setting
 vxSetMeters True ' set default meters back on

vxBase Page 257

End Sub

' This is ALL of the code associated with the generic gauge form
' --
Sub Form_Paint ()
 Call vxFormFrame(VXFORMG.hWnd)
End Sub

vxBase Page 258

Sub Gauge_KeyDown (KeyCode As Integer, Shift As Integer)
 Dim pValue As Integer

 ' NOTE: --------------------------------------
 ' vxBase sends the KeyCode as a negative value
 ' so the user can distinguish between normal
 ' keydown events and those triggered by the
 ' vxSetGauge function. This is especially
 ' important if the Form KeyPreview property
 ' is set to TRUE. You can then ignore all
 ' key values that are less than 0
 ' --
 If KeyCode < 0 Then
 If GaugeFactor > 0 Then
 If Abs(KeyCode) = 100 Then
 GaugeTotal = (100 / GaugeFactor) + GaugeTotal
 pValue = 0
 Else
 pValue = Abs(KeyCode) / GaugeFactor
 End If
 Else
 pValue = Abs(KeyCode)
 End If
 Gauge.Value = pValue + GaugeTotal

 ' --
 ' you could also set a digital value into a text
 ' box or label here
 ' --
 End If
End Sub

See Also
vxCreateNtx, vxCreateSubNtx, vxPack, vxReindex, vxSetMeters

vxBase Page 259

vxSetHandles
Declaration

Declare Function vxSetHandles Lib "vxbase.dll" (ByVal NumHandles As
Integer) As Integer

Purpose
Change the number of file handles available to a task. By default,

the Windows maximum number of file handles available to a task is 20 (15
useable).

Parameters
NumHandles is the number of file handles you wish to allocate to the

task.

Returns
An integer that specifies the number of handles actually available

to the application (usually 255).

Usage
If you are going to have more than 15 files open simultaneously

(DBF, NTX, DBT) in a vxBase application, then you must increase the
number of handles using this function.

The call to vxSetHandles should be in your initialization sequence.

SHARE.EXE must be loaded at the workstation.

The maximum number of dbf-ntx-dbt files that can be opened in all
concurrent vxBase tasks is about 75. This is a memory constraint.

Example
If vxSetHandles(32) < 32 Then
 MsgBox "Not enough handles available"
 End
End If

See Also

vxUseDbf, vxUseNtx

vxBase Page 260

vxSetLanguage
Declaration

Declare Sub vxSetLanguage Lib "vxbase.dll" (ByVal LangType As
Integer)

Purpose
Change the language in which vxBase displays Browse menus, memo

menus, dialog boxes, and error messages. The default is VX_ENGLISH.

Parameters
LangType is one of the following:
 VX_ENGLISH defined as Global Const VX_ENGLISH = 0 (default).
 VX_FRENCH defined as Global Const VX_FRENCH = 3.
 VX_GERMAN defined as Global Const VX_GERMAN = 4.

 VX_ITALIAN defined as Global Const VX_ITALIAN = 5.
 VX_DUTCH defined as Global Const VX_DUTCH = 6.

 VX_SPANISH defined as Global Const VX_SPANISH = 7.

Returns
Nothing.

Usage
Any call to vxSetLanguage sets an initialization file variable.

Future tasks will display menus, dialog boxes, and error messages in the
language last selected by vxSetLanguage unless vxSetLanguage is called
again.

Example
 Sub Form_Load()
 vxInit
 vxCtlGraySet
 Call vxSetLanguage(VX_FRENCH)
 End Sub

See Also
vxSetDate, vxSetErrorCaption

vxBase Page 261

vxSetLocks
Declaration

Declare Sub vxSetLocks Lib "vxbase.dll" (ByVal OnOrOff As Integer)

Purpose
Change the record locking mechanism used by all vxBase tasks.

Parameters
OnOrOff is either TRUE or FALSE. The default value is TRUE, which

means that every operation that results in a record being read into the
vxBase record buffer also locks that record (e.g., vxGo, vxSkip, vxSkip,
etc). Traditionally, records in a multiuser system are not locked unless
a specific record locking function is called. This is what happens if
you set OnOrOff to FALSE.

If FALSE, vxBase locking is 100% compatible with Clipper style
record locking protocols (Clipper version 5.1 and below).

Returns
Nothing.

Usage
Call vxSetLocks in your initialization routine.

You should also set OnOrOff to FALSE when you are testing your
application in Visual Basic Design Mode (and remove the command if you
really want the default locking mechanism when you create your .EXE).
This will ensure that any locks that normally would be in place are not
there if your program fails to run to completion and you wish to try it
again in the same session. See Visual Basic and VXLOAD.EXE for more
information.

Example
 Sub Form_Load()
 vxInit
 vxCtlGraySet
 Call vxSetLanguage(VX_FRENCH)
 Call vxSetLocks(FALSE)
 End Sub

See Also
vxBottom, vxBrowse, vxCopy, vxGo, vxIsRecLocked, vxLockDbf,

vxLocked, vxLockRecord, vxSeek, vxSeekSoft, vxSkip, vxTop, vxUnlock

vxBase Page 262

vxSetMeters
Declaration

Declare Sub vxSetMeters lib "vxbase.dll" (ByVal OnOrOff As Integer)

Purpose
Set analog meter bars on or off for vxCreateNtx, vxCreateNtx,

vxReindex, vxPack, and vxTestNtx.

Parameters
OnOrOff passed as TRUE will turn meter bars on, which allows the

user to gauge the progress of the functions listed above. TRUE is the
default value.

 If OnOrOff is passed as FALSE, meter bars will NOT be displayed. It is
the programmer's responsibilty to display an hourglass or otherwise
inform the user that something is going on when one of the functions
that use meter bars is called with vxSetMeters(FALSE).

Returns
Nothing.

Usage
Use to stop meter bar windows from appearing - especially in very

small files. They come and go so quickly in small files that they may
disconcert the user (because they can't even be read).

If setting FALSE, it is good practice to set the value back to TRUE
when the operation is complete.

An alternative gauge setting may be used via vxSetGauge.

Example
 Call vxSetMeters(FALSE) ' set meter bar off
 j% = vxAreaDbf("\vb\vxbtest\airtypes.dbf")
 If j% > 0 Then
 MsgBox "airtypes in use!"
 Else
 AirtypesDbf = vxUseDbf("\vb\vxbtest\airtypes.dbf")
 AirtypesNtx = vxUseNtx("\vb\vxbtest\airtypes.ntx")
 j% = vxPack(VXFORM1.hWnd)
 j% = vxClose()
 End If
 Call vxSetMeters(TRUE) ' set meter bars back on

See Also
vxCreateNtx, vxCreateSubNtx, vxPack, vxReindex, vxSetGauge,

vxTestNtx

vxBase Page 263

vxSetRelation
Declaration

Declare Function vxSetRelation Lib "vxbase.dll" (ByVal ToDbfArea As
Integer, ByVal KeyConstruct As String) As Integer

Purpose
Define a relationship between a parent file and a child file based

on a key that may be constructed from parent data into an index
controlled by the child file.

Parameters
ToDbfArea is the database select area of the child file returned

from vxUseDbf or one of its variants when the file was opened.

Note: to clear relations set up to child files without closing
the parent, ToDbfArea may be passed as a zero.

KeyConstruct is an xBase expression (which may be as simple as a
field name) that tells vxBase how to construct a key into the child file
index. The maximum length of the KeyConstruct string is 511 characters.
KeyConstruct MUST evaluate as a character string.

Whenever a record pointer is moved in the parent file, a key into
the child file index is constructed and a seek is performed into the
child file. An exact match or a partial match moves the record pointer
in the child file. If the key is not found, the child file record buffer
is cleared, the record pointer is positioned to the last record + 1, and
vxEof() on the child returns TRUE.

If the child has any relations defined and there was no match, all
record buffers in the relational cascade will be cleared and pointers
moved as above.

If clearing a set of relationships (i.e., ToDbfArea is passed as
zero), pass this parameter as 0& (NULL long integer).

Returns
TRUE if the relationship was properly set up. FALSE for any of the

following reasons:
 (1) no database selected
 (2) ToDbfArea is the current selection
 (3) there are already 8 relations set up for this file
 (4) ToDbfArea is not open
 (5) not enough memory
 (6) unable to evaluate KeyConstruct
 (7) KeyConstruct does not evaluate as a character string.

 Numeric and date indexes are not supported by vxBase.
 Indexes on numeric and date fields may be created
 by using the xBase STR() and DTOS() functions to
 convert numbers and dates to character strings. The
 same functions may be used in KeyConstruct to build
 keys into the child file.

vxBase Page 264

Usage
The parent file must have a many to one or one to one relationship

to the child file.

The parent file must be the current selection when vxSetRelation is
invoked.

The child file must be open and have an index selected.

Up to eight relations per select area may be defined. Cascading
relationships are supported; cyclical relations are not. You may not
relate a database either directly or indirectly to itself. vxBase traps
direct relationships. Indirect relationships are not trapped and if
defined will result in a system hang (an infinite loop will be entered
because the record reading routine is recursive).

Example
Sub BuyBrowse_Click ()
 ' example of using vxSetRelation
 ' and vxTableFieldExt to produce
 ' a browse table with fields from
 ' multiple databases included on each row
 ' ---------------------------------------

 ' open child files first
 AircustDbf = vxUseDbf("\vb\vxbtest\aircust.dbf")
 Aircust1Ntx = vxUseNtx("\vb\vxbtest\aircust1.ntx")

 AirtypesDbf = vxUseDbf("\vb\vxbtest\airtypes.dbf")
 AirtypesNtx = vxUseNtx("\vb\vxbtest\airtypes.ntx")

 ' open parent file (has many records)
 AirbuyerDbf = vxUseDbf("\vb\vxbtest\airbuyer.dbf")
 Airbuy1Ntx = vxUseNtx("\vb\vxbtest\airbuy1.ntx")

 ' define alias names so we can use field
 ' qualifiers when extracting data
 ' --------------------------------------
 j% = vxSetAlias("buyer", AirbuyerDbf)
 j% = vxSetAlias("customer", AircustDbf)
 j% = vxSetAlias("type", AirtypesDbf)

 ' define relationship to current selection
 ' the 1st param defines the file we setting
 ' up the relationship to (the child file)
 ' and the second param tells vxbase how to
 ' construct a key to be used on the current
 ' index in use on the child file
 ' ---
 ErrCode% = FALSE
 If Not vxSetRelation(AircustDbf, "b_code") Then
 MsgBox "1st relation failed"
 ErrCode% = TRUE
 Else
 If Not vxSetRelation(AirtypesDbf, "b_cat") Then
 MsgBox "2nd relation failed"
 ErrCode% = TRUE
 End If
 End If

 If ErrCode% Then
 j% = vxCloseAll()

vxBase Page 265

 Exit Sub
 Else
 ' now when we issue vxTop(), the two related
 ' file pointers will move to match the values
 ' in the parent file key fields
 j% = vxTop()
 End If

 ' define the browse table with the extended
 ' vxTableFieldExt function
 ' --
 Call vxTableDeclare(VX_RED, ByVal 0&, ByVal 0&, 0, 1, 6)
 Call vxTableFieldExt(1, "Cust", "b_code", VX_FIELD, 0, AirbuyerDbf)
 Call vxTableFieldExt(2, "Name", "a_name", VX_FIELD, 0, AircustDbf)
 Call vxTableFieldExt(3, "Cat", "b_cat", VX_FIELD, 0, AirbuyerDbf)
 Call vxTableFieldExt(4, "Description", "catname", VX_FIELD, 0,
 AirtypesDbf)
 Call vxTableFieldExt(5, "Low", "b_low", VX_FIELD, 0, AirbuyerDbf)
 Call vxTableFieldExt(6, "High", "b_high", VX_FIELD, 0, AirbuyerDbf)

 BuyerReturn = 0
 BuyerRec = vxRecNo()

 ' Execute the browse routine (onscreen editor ON)
 ' ---
 Call vxBrowse(VXFORM1.hWnd, AirbuyerDbf, Airbuy1Ntx, TRUE, FALSE,
 FALSE, BuyerRec, "Buyer Records", BuyerReturn)

 j% = vxCloseAll()
End Sub

See Also
vxSetAlias, vxTableFieldExt

vxBase Page 266

vxSetSelect
Declaration

Declare Sub vxSetSelect Lib "vxbase.dll" (ByVal OnOrOff As Integer)

Purpose
Turn off vxBase automatic database selection. Whenever a vxBase

database function is called, the last database selected for the current
window is used to perform the database function. If there was no
database active for the current window, then the last selected database
for the current task is automatically selected instead.

Parameters
If OnOrOff is TRUE (the default), automatic database selection

according to the active window takes place whenever a vxBase function
that accesses a database is called. If FALSE, the last selection is used
without regard to window or task.

Returns
Nothing.

Usage
Used within Visual Basic sub functions where code attached to a

particular form does not come into play. Turning the auto select off
ensures there will be no incorrect selection going on that the
programmer is not aware of. Care must be taken when using this function
because, if the programmer allows the user to open a number of windows
each accessing a different database, the selection process may become
totally unhinged.

vxSetSelect(FALSE) is normally used by C programmers writing DLLs or
VBXs which use vxBase calls. In a DLL, there is commonly no window that
can act as controller and even if there were, the programmer knows
exactly what database he is using and can reselect at every opportunity
to ensure the correct data comes into play.

Example
 ' sub function that does not interfere
 ' with (or get interfered with by)
 ' auto selection of database in
 ' main line
 ' ------------------------------------
 Sub GetMasterNum()
 Call vxSetSelect(FALSE)
 PrevDbf% = vxSelectDbf(MasterDbf)
 MasterNum = vxInteger("masternum")
 Call vxSetSelect(TRUE)
 j% = vxSelectDbf(PrevDbf%)
 End Sub

See Also
vxSelectDbf

vxBase Page 267

vxSetString
Declaration

"C"
void FAR PASCAL vxSetString(int);

"Realizer"
EXTERNAL "vxbase.dll" PROC vxSetString(INTEGER)

"Visual Basic"
Declare Sub vxSetString Lib "vxbase.dll" (ByVal StrType As Integer)

Purpose
Set the string type returned by all vxBase string functions to

ASCIIZ (NULL terminated) or to Visual Basic variable string types.

Parameters
If StrType is 0 (zero), the strings returned will be Visual Basic

Strings. This is the default value and need not be called if you are
writing your vxBase application in Visual Basic.

If StrType is 1, then all vxBase functions that return strings will
return a pointer to an ASCIIZ string instead of a Visual Basic string.

Returns
Nothing.

Usage
Used to set the string type so that vxBase may be used with

languages other than Visual Basic. A call to this function should always
be the first call to vxBase from within your application.

If the string type is changed to ASCIIZ with vxSetString(1), all
vxBase functions return a pointer to a global string variable contained
within vxBase. The returned pointer will always be the same. If a vxBase
string function is called immediately after another string function, the
contents of the string buffer from the previous function will be
overwritten. Always COPY the result of a string function to a variable
local to your program.

See Also
vxRecord, vxReplRecord

vxBase Page 268

vxSetupPrinter
Declaration

Declare Sub vxSetupPrinter Lib "vxbase.dll" (ByVal Hwnd As Integer)

Purpose
Access standard Windows printer setup dialog.

Parameters
Hwnd is the hWnd property of an active Visual Basic form. This

window acts as parent to the printer select dialog box. It must be
enabled.

Returns
Nothing.

Usage
Especially useful for setting form lengths or changing printers (if

you have more than one printer port) from within your vxBase
application. The user doesn't have to go to the Windows control panel to
change printer configuration.

It is not possible to activate another printer with this function if
you have more than one printer defined for the same port. See
vxPrinterEnum and vxPrinterSelect to change the default printer.

Note: The vxSetupPrinter list box always highlights the current
default printer.

Example
 ' PrSetup is a menu item or a button
 ' ----------------------------------
 Sub PrSetup_Click ()
 Call vxSetupPrinter(VXFORM1.hWnd)
 End Sub

See Also
vxPrinterDefault, vxPrinterEnum, vxPrinterSelect

vxBase Page 269

vxSkip
Declaration

Declare Function vxSkip Lib "vxbase.dll" (ByVal NumRecs As Long) As
Integer

Purpose
Skip forwards or backwards the specified number of records.

Parameters
NumRecs is the number of records to skip. If negative, the skip is

backwards. If positive, the skip is forwards.

Returns
TRUE if successful and FALSE if not.

Usage
Always used to control record by record processing. If an index is

selected, the skip follows the index sequence, otherwise record number
sequence is employed.

If a filter is active, vxSkip skips by records that don't pass the
filter.

Always use vxEof and vxBof to test whether the end of file has been
reached (when skipping forwards) or the beginning of file has been
reached (when skipping backwards). Note that if vxEof is true, it will
be necessary to position the record to the last record in the file with
vxBottom if you wish to have a valid record in the buffer. If vxBof is
TRUE, then the record buffer will contain the first record in the file.

Multiuser Considerations
If the skip was successful, the record is locked if vxSetLocks is

TRUE.

Example
 ' skip forward one record
 ' -----------------------
 Do
 If Not vxSkip(1) Then

 ' if skip error, exit
 ' -------------------
 MsgBox "Error on Skip Next. Try Reindex."
 Exit Sub
 End If

 If vxEof() Then Exit Do
 Loop Until Not vxDeleted()

 ' test for end of file
 ' --------------------
 If vxEof() Then
 Beep
 TypeStatus.text = "End of File!"
 j% = vxBottom()
 Else
 TypeStatus.text = "Skipped to record " +

vxBase Page 270

 LTrim$(Str$(vxRecNo()))
 End If

See Also

vxBof, vxEof, vxGo, vxSeek, vxSeekSoft, vxSetLocks

vxBase Page 271

vxSum
Declaration

Declare Sub vxSum Lib "vxbase.dll" (ByVal FieldName As String,
DblAmount As Double)

Purpose
Sum the contents of a numeric field for all records that satisfy the

filter condition (if any).

Parameters
FieldName is either a string variable or a literal string that

contains a valid numeric field name from the currently selected
database. FieldName may be qualified with a valid alias name that points
to any open database.

DblAmount is a pre-dimensioned Visual Basic double variable that
will hold the result of the procedure.

Returns
No explicit return. The sum is stored in the variable sent in the

call to the procedure.

Usage
Extract the sum of the defined field. May be used with a filter to

limit the sum to a subset of records in the database.

After the operation has completed, the record pointer is restored to
its condition prior to the call.

Multiuser Considerations
The database is locked for the duration of the operation.

Example
 Dim CalifTotal As Double

 ' this routine adds up the amounts owing by customers
 ' in California
 ' ---
 Call vxFilter("(.NOT. deleted()) .AND. (state = 'CA')")
 CalifTotal = 0
 j% = vxTop()
 Call vxSum("amtowing", CalifTotal)
 TotalBox.text = Format$(CalifTotal, "#######0.00")
 vxFilterReset

See Also

vxFilter, vxSetAlias

vxBase Page 272

vxTableDeclare
Declaration

Declare Sub vxTableDeclare Lib "vxbase.dll" (ByVal ColorRef As Long,
BofExpr As Any, EofExpr As Any, ByVal Scope As Integer, ByVal Quick As
Integer, ByVal Columns As Integer)

Purpose
Set up a custom table for use by the vxBrowse or vxCtlBrowse

functions. The vxTableDeclare command must be followed by vxTableField
commands (as many as specified in the Columns parameter) to define the
browse table columns.

Parameters
ColorRef is the color to be used for the browse table column heads.

There are three Global constants defined in vxbase.txt which may be used
with 3d style browse tables: VX_RED, VX_BLUE, and VX_GRAY. VX_WHITE may
also be used if the browse table will be displayed in flat style (see
vxBrowseSetup).

BofExpr is an xBase expression controlling beginning of file logic
(in addition to vxBof() - which is automatic). BofExpr is defined "As
Any" because in most cases it will be passed as NULL (i.e., ByVal 0&).
This parameter is especially useful in limiting the browse table to a
subset of the records contained in the file being browsed. For example,
suppose you had an accounts receivable subledger with a file key that
was composed of two fields, CustCode + InvoiceNo. Now suppose you wish
to limit the display to only those subledger records that belonged to
customer "ABCDEF". You could either set a filter (which is not very
efficient - especially if its a big file -in that a user pressing a page
up key when he is at the first record in the file may have to wait a few
minutes before vxBase satisfied itself that there were no records above
that met the filter) or you can define a BofExpr as "CustCode <
'ABCDEF'". If a BofExpr is defined, every record must pass the BofExpr
test. Now when our user is at the first record in the subset and presses
the page up key, vxBrowse will skip back one record and test the
BofExpr. If it fails, vxBrowse goes back to where it was and beeps. The
artificial beginning of file set in this manner is evaluated and acted
upon virtually instantaneously. A filter would skip backwards until it
reached the real beginning of file before determining that there was
nothing left to display. Notice that it is not necessary to add the
phrase " .OR. BOF()" to the xBase expression because vxBrowse always
evaluates the actual BOF() in addition to BofExpr.

EofExpr is an xBase expression controlling end of file logic (in
addition to vxEof() - which is automatic). It is normally used in
conjunction with BofExpr to limit the vxBrowse display to a subset of
records in the file. In the example shown above, EofExpr would be
"CustCode > 'ABCDEF'". Now when the user hits the page down key, the
first record that has a CustCode greater than "ABCDEF" would effectively
stop the display, just as the BofExpr does when moving in the opposite
direction. Notice that it is not necessary to add the phrase " .OR.
EOF()" to the xBase expression because vxBrowse always evaluates the
actual EOF() in addition to EofExpr. If the scope of the display is

vxBase Page 273

every record in the file, you would pass a NULL value (i.e., ByVal 0&).

Scope is an integer that effectively controls the action vxBrowse
takes when the user presses the Home or End keys (or uses the vertical
scroll bar thumb to position the file to the top or bottom).

Always use 0 (zero) when the scope you are interested in is every
record in the file, or when every record in the file has a unique single
element key. If you wish to limit the scope to a subset of records as in
the discussion of BofExpr and EofExpr above, then set Scope to the
length of the key prefix that is common to the subset. In the example
above, the subledger key is composed of two elements - CustCode +
InvoiceNo. There are probably many records in the file with the same
CustCode but different InvoiceNos and we only want to look at the ones
with CustCode = "ABCDEF". This is the common prefix in every key we are
interested in; therefore, the Scope parameter is set to 6 (the length of
the common part of the key).

When a Scope other than zero is passed to vxBrowse via the
vxTableDeclare command, vxBrowse reacts to a Home request by issuing a
vxSeek to the file with a value in the searchkey that is equal to the
current key for the length specified by Scope. This will position the
record pointer to the first record in our subset (because we get a
partial match). When the user requests a positioning to End, the partial
key is extracted from the current record ("ABCDEF") and a binary 1 is
added to the last character (which makes it a "G"). A vxSeekSoft is then
issued which positions the record pointer to the record immediately
following our defined subset and vxBrowse then skips back one record
and, voila , we are at the end of our subset. Slick! Sure beats filters.

Quick is an integer that specifies the character position of the key
vxBrowse uses to construct Quick keys. A zero will turn quick key off
(and we don't want to do that on indexed files). If the key to be used
for the quick search starts at the first character position of the
current index expression, use 1 (which will be most of the time). If we
are interested in only a subset of records (as in the example above),
then the unique part of the key - InvoiceNo - is what the user should
enter to find the record he is looking for. If we defined the quick key
as 1 in this case, and the user wanted to find InvoiceNo "1001", then he
would have to enter "ABCDEF1" just to position the file to the first
invoice that started with a "1". When all of the records in our subset
have a common prefix, we use the length of that prefix plus one (in this
case 7) to tell vxBrowse that the first 6 positions are always the same
so it automatically prepends them to the entered quick key. We don't
even have to display the CustCode field in our table and we can find any
invoice we want that belongs to this customer by actually entering the
invoice number.

Columns is an integer that specifies how many columns our table will
have. This number determines the amount of memory to allocate to hold
our table definition and it also indicates that this many vxTableField
commands will immediately follow. We need 1 vxTableField command for
every number passed in this parameter.

Returns
Nothing.

vxBase Page 274

Usage
Some of the concepts discussed above in relation to limiting your

displays to a subset of records without having to set a filter may seem
confusing at first, but a little study of the example shown below and
its effect in the sample program will add clarity to the situation.

When scoping a browse display, the only thing you MUST do is
position the record pointer to the first record in the group and then
pass that record number to the vxBrowse proc (the StartRec& parameter).
See the Scoped Complex Example below.

Declared tables attached to a database are also used by vxBrowse if
this file happens to be the object of a relational Join.

 vxTableDeclare, vxTableField, vxJoin, and vxBrowse provide you with a
browse object that is unparalleled in the xBase world.

NOTE: if your table will contain expressions dependent on the value
in fields residing in the current database, you MUST position the record
pointer to a valid record with vxTop, vxGo, etc. BEFORE declaring the
table and its fields and expressions. vxTableField validates expressions
by parsing and executing them to see if they return a valid result.

Simple Example
' Open aircraft types file
' ------------------------
 AirtypesDbf = vxUseDbf("\vb\vxbtest\airtypes.dbf")
 If AirtypesDbf = FALSE Then
 MsgBox "Error Opening airtypes.dbf. Aborting."
 Exit Sub
 End If
 AirtypesNtx = vxUseNtx("\vb\vxbtest\airtypes.ntx")
 If AirtypesNtx = FALSE Then
 MsgBox "Error Opening airtypes.ntx. Aborting."
 j% = vxClose()
 Exit Sub
 End If

' Declare types table to get nice headings
' (TableDeclare works on currently selected DBF)
' --
 Call vxTableDeclare(VX_RED, ByVal 0&, ByVal 0&, 0, 1, 2)
 Call vxTableField(1, "Type", "category", VX_FIELD)
 Call vxTableField(2, "Description", "catname", VX_FIELD)

 ' Open a browse table with full editing capabilities
 ' --
 TypeReturn = 0 ' declared as GLOBAL so VXFORM2 can
 ' interrogate

 ' The menu Form VXFORM1 must be visible because we need a
 ' parent for our browse
 ' ---
 If Not VXFORM1.Visible Then VXFORM1.Show

 ' Execute the browse routine (using table declared above)
 ' ---
 Call vxBrowse(VXFORM1.hWnd, AirtypesDbf, AirtypesNtx,
 TRUE, TRUE, TRUE, 0, "Aircraft Types",
 TypeReturn)

vxBase Page 275

Scoped Complex Example
Sub BuyRecs_Click ()

 ' Close states file to free some handles
 ' --------------------------------------
 j% = vxSelectDbf(AirstateDbf)
 j% = vxClose() ' also does vxTableReset

 ' open airtypes file and buyer file
 ' ---------------------------------
 TypesOpen
 BuyerOpen

 j% = vxSelectDbf(AirbuyerDbf)
 j% = vxSelectNtx(Airbuy1Ntx)
 CustKey = CustCode.text

 ' Set up browse table limited to buyer records
 ' that match the CustKey. We do this by sending
 ' the vxTableDeclare proc a beginning of
 ' file expression and an end of file expression.
 ' ---
 BofExpr$ = "b_code < '" + CustKey + "'"
 EofExpr$ = "b_code > '" + CustKey + "'"

 Call vxTableDeclare(VX_RED, ByVal BofExpr$, ByVal
 EofExpr$, 6, 7, 4)

 ' The vxBrowse object now knows to limit the
 ' records in the table to those that have b_code
 ' values equal to CustKey. We also scope the records
 ' with the "6" following the EofExpr and set the quick
 ' key index to "7". An explanation follows:
 '
 ' The key we are going to use to browse this file is
 ' b_code + b_cat, whose elements are 6 long and 3 long
 ' respectively. Every record we are interested in has
 ' the same b_code (i.e., they all belong to the same
 ' customer). Setting the scope index to 6 determines
 ' the action to be taken when the HOME or END keys
 ' are depressed. The normal value is 0, which takes
 ' you to the first and last logical records in the
 ' file when HOME or END is hit. If other than
 ' zero, then the HOME key will result in a softseek
 ' on the file to the current key for the length
 ' specified by the scope index. The END key will
 ' softseek to the current key plus 1 and then skip
 ' back one record to position the record pointer to
 ' the last record in the group.
 '
 ' The quick index is set to 7, which is the first
 ' position of the aircraft type code in the key. We
 ' aren't even going to display the b_code for the
 ' buyer records. Setting the quick index to 7 means
 ' that the common part of the key for the group of
 ' records we are interested in (the first 6 which form
 ' the customer code), will be prepended to the
 ' quick keys entered at the keyboard before a seek
 ' is done on the file. Makes sense, huh?

 ' When scoping a file in this fashion, the only thing you
 ' MUST do is position the record pointer to the first
 ' record in the group and then pass that record number
 ' to the vxBrowse proc (the StartRec& parameter).
 Call vxTableField(1, "Type", "b_cat", VX_FIELD)
 Call vxTableField(2, "Description", "b_desc", VX_FIELD)

vxBase Page 276

 Call vxTableField(3, "Low", "b_low", VX_FIELD)
 Call vxTableField(4, "High", "b_high", VX_FIELD)

vxBase Page 277

 ' Because we are interested in only a subset of the
 ' possible records in the buyer file, we have to
 ' determine ourselves whether there are any records in
 ' the file that match the group. If not, we ask the user
 ' if he wants to add a record. vxBrowse normally does
 ' this, but the file must be empty before it asks the
 ' question and sets the return value accordingly.
 ' --
 BuyerRec = 0 ' global var
 If vxSeek(CustKey) Then
 BuyerRec = vxRecNo() ' set for browse start rec
 VXFORM3.Hide
 BrowseBuyers
 Else
 j% = MsgBox("No buyer records. Add?", 52)
 If j% = 6 Then
 VXFORM3.Hide
 BuyerReturn = BROWSE_ADD
 VXFORM4.Show
 Else
 j% = vxClose()
 StatesOpen
 j% = vxSelectDbf(AircustDbf)
 End If
 End If
End Sub

See Also

vxBrowse, vxBrowseSetup, vxCtlBrowse, vxCtlBrowseMsg, vxJoin,
vxTableField, vxTableFieldExt, vxTableReset

vxBase Page 278

vxTableField
Declaration

Declare Sub vxTableField Lib "vxbase.dll" (ByVal ColIndex As
Integer, ByVal ColHead As String, ByVal ColExpr As String, ByVal ColType
As Integer)

Purpose
Define the contents of table columns declared by vxTableDeclare for

use with vxBrowse and vxCtlBrowse.

Parameters
ColIndex is the sequence number of the column from left to right.

The first index number is 1 (NOT ZERO).

ColHead is a string representing the column header. The width of the
column is calculated by using the greater of the width of the column
head and the data represented by the field or expression.

ColExpr is a string defining the data to be displayed. It may be as
simple as a field name (not a memo) or a complex xBase expression. Alias
field qualifiers are NOT allowed in ColExpr. If defining a browse window
with relations set up (via vxSetRelation), use vxTableFieldExt to define
column expressions that refer to a child dbf.

Arithmetic operations may be performed on groups of fields with the
appropriate expression (e.g., "Current + PastDue"). Conditional IIF
expressions are also allowed. For example, the expression
"IIF(DTOC(RecdDate) = ' / / ', 'No Date ', DTOC(RecdDate))" would
display "No Date " if the field was empty or the actual date if it was
not empty. Notice in this example that both the true and false results
of the IIF expression are character strings and that they both would
result in displays that are 8 characters long. Any xBase expression
resulting in a character, numeric, or date data type is allowed.
Expressions that return logical results or that reference memo fields
are not allowed.

NOTE: If the result of an xBase expression is numeric, it must be
passed enclosed in the STR() function. This enables vxBrowse to set the
column width properly (e.g., STR(CurrAmt+PastDue,11,2)).

ColType defines the type of ColExpr to vxBrowse. Use one of the
Global constants VX_FIELD or VX_EXPR defined in vxbase.txt to tell
vxBrowse that the data being defined is simply a field or an xBase
expression. This speeds processing somewhat because simple fields do not
have to go through an evaluation and pseudo compilation.

Returns
Nothing.

Usage
The number of field definitions following the vxTableDeclare

statement must conform to the number sent to vxBase in the
vxTableDeclare Columns parameter.

vxBase Page 279

If soliciting an XBase expression from the user for use in
vxTableField, always test the expression with vxEval before passing it
as a parameter in this function.

If onscreen editing is allowed in your vxBrowse table that will use
these field definitions, remember that data resulting from an expression
(ColType = VX_EXPR) may not be edited in this fashion. You can use this
to your advantage by defining columns you do not want the user to edit
as VX_EXPR.

 Tables declared and then used as a resultant Join window may not have
any fields edited onscreen. This is an obvious point because joined
relational windows are not explicitly called by a vxBrowse statement
anyway.

NOTE: The record buffer must be filled with a valid record from the
database that the expression applies to BEFORE vxTableField is called.
The database must be open and selected.

The TRIM() Function
If you wish to use the xBase TRIM() function in your table display,

the resultant expression length MUST be fixed. For example, suppose your
database has fields for LastName and FirstName. Instead of displaying
SMITH and JOHN in two separate columns. you wish to display them in one
column as "SMITH, JOHN".

The following is ILLEGAL:

vxTableField(6,"Name","TRIM(LastName)+', '+TRIM(FirstName)",VX_EXPR)

This would result in variable length column widths because every
first and last name would result in a different number of characters.
Use the SUBSTR() function to properly define a fixed column width while
still using TRIM() to concatenate two variable length items:

vxTableField(6,"Name","SUBSTR((TRIM(LastName)+', ' + TRIM(FirstName)
+ SPACE(25)),1,25)",VX_EXPR)

Ensure that there are enough spaces included after the last TRIMmed
element to always result in a length at least as long as the length
parameter of the SUBSTR() function (in this case, 25).

Example
 SEE THE EXAMPLES IN vxTableDeclare
 ON THE PREVIOUS PAGE.

See Also
vxBrowse, vxBrowseSetup, vxCtlBrowse, vxCtlBrowseMsg, vxEval,

vxJoin, vxTableDeclare, vxTableFieldExt, vxTableReset

vxBase Page 280

vxTableFieldExt
Declaration

Declare Sub vxTableFieldExt Lib "vxbase.dll" (ByVal ColIndex As
Integer, ByVal ColHead As String, ByVal ColExpr As String, ByVal ColType
as Integer, ByVal ColWidth As Integer, ByVal DbfArea As Integer)

Purpose
Define the contents of table columns declared by vxTableDeclare for

use with vxBrowse and vxCtlBrowse. vxTableFieldExt provides the same
functionality as vxTableField and extended functionality with the
addition of the ColWidth and DbfArea parameters. vxTableFieldExt MUST be
used if defining a browse table that includes data from child files
whose relationship to the parent file has been defined by vxSetRelation.

Parameters
Parameters ColIndex through ColType are as defined in the

documentation for vxTableField.

ColWidth allows the programmer to explicitly specify the width of a
vxBrowse column in number of characters. Passing a zero width results in
vxBrowse using the default calculated width. Numeric fields displayed
with the STR() xBase function use the length as defined in the STR()
function (i.e., specifying a width via the ColWidth parameter is the
same as passing a zero width - the default is used instead).

If the width passed through ColWidth is insufficient to display the
column header, ColWidth is again ignored.

Note that the data displayed in the column will NOT be truncated if
the column is not wide enough. This parameter is provided mainly for the
purpose of fine tuning your browse displays to match the type of data
being displayed.

DbfArea is the database select area returned from vxUseDbf or one of
its variants when the file is opened. This parameter may be the select
area of the parent file or of any child files defined as possessing a
relationship to the parent through vxSetRelation.

Returns
Nothing.

Usage
Must always be used if defining a browse table that contains

relational data.

Alias field qualifiers are NOT allowed in ColExpr. The expression or
field is instead qualified through the DbfArea parameter.

See the vxTableField documentation for a thorough discussion of
usage.

vxBase Page 281

Example
 ' define the browse table with the extended
 ' vxTableFieldExt function
 ' --
 Call vxTableDeclare(VX_RED, ByVal 0&, ByVal 0&, 0, 1, 6)
 Call vxTableFieldExt(1, "Cust", "b_code", VX_FIELD, 0, AirbuyerDbf)
 Call vxTableFieldExt(2, "Name", "a_name", VX_FIELD, 0, AircustDbf)
 Call vxTableFieldExt(3, "Cat", "b_cat", VX_FIELD, 0, AirbuyerDbf)
 Call vxTableFieldExt(4, "Description", "catname", VX_FIELD, 0,
 AirtypesDbf)
 Call vxTableFieldExt(5, "Low", "b_low", VX_FIELD, 0, AirbuyerDbf)
 Call vxTableFieldExt(6, "High", "b_high", VX_FIELD, 0, AirbuyerDbf)

 BuyerReturn = 0
 BuyerRec = vxRecNo()

 ' Execute the browse routine (onscreen editor ON)
 ' ---
 Call vxBrowse(VXFORM1.hWnd, AirbuyerDbf, Airbuy1Ntx, TRUE, FALSE,
 FALSE, BuyerRec, "Buyer Records", BuyerReturn)

 j% = vxCloseAll()

See Also
vxBrowse, vxBrowseSetup, vxCtlBrowse, vxCtlBrowseMsg, vxEval,

vxJoin, vxTableDeclare, vxTableField, vxTableReset

vxBase Page 282

vxTableReset
Declaration

Declare Sub vxTableReset Lib "vxbase.dll" ()

Purpose
Remove a browse table definition attached to the current vxBase

descriptor block and free the associated memory.

Parameters
None.

Returns
Nothing.

Usage
This statement is only necessary if you wish to leave the file open

and perhaps define a different table somewhere else in your program. If
the file is closed with vxClose or vxCloseAll, the allocated memory is
freed automatically.

Example
 Call vxTableDeclare(VX_RED, ByVal 0&, ByVal 0&, 0, 1, 2)
 Call vxTableField(1, "Type", "category", VX_FIELD)
 Call vxTableField(2, "Description", "catname", VX_FIELD)
 TypeReturn = 0 ' declared as GLOBAL so VXFORM2 can
 ' interrogate
 If Not VXFORM1.Visible Then VXFORM1.Show

 ' Execute the browse routine (using table declared above)
 ' ---
 Call vxBrowse(VXFORM1.hWnd, AirtypesDbf, AirtypesNtx,
 TRUE, TRUE, TRUE, 0, "Aircraft Types",
 TypeReturn)
 vxTableReset

See Also

vxClose, vxCloseAll, vxJoinReset, vxMenuDeclare, vxMenuItem,
vxTableDeclare

vxBase Page 283

vxTestNtx
Declaration

Declare Function vxTestNtx "vxbase.dll" (ByVal NtxArea As Integer)
As Integer

Purpose
Test the integrity of the defined index.

Parameters
NtxArea is a valid area handle returned by vxUseNtx when the file

was opened.

Returns
TRUE if the index passes all tests. Index integrity is most often

compromised by the programmer failing to open the index when an update
to the dbf file is made that should affect the index in question. FALSE
is returned for any of the following reasons:

(1) no index key for an existing dbf record (most common cause).
(2) index key collating sequence is incorrect.
(3) an index key was built from an index expression that no longer

matches the expression contained in the index header.
(4) more than one index entry for the same record.
(5) no dbf record for an existing index key.
(6) memory allocation error due to too many records in the database.
(7) index or dbf could not be locked.

Usage
Usually used in a file maintenance function. If the index does not

pass, it should be reindexed (or the file should be packed).

Always reselect the dbf following a call to this function.

Note that if a record is appended and not yet written after its
fields are filled when this function is called, vxTestNtx will return
FALSE. It is good practice to only call this function on a database that
has just been opened.

A meter bar window is presented to the user during the operation so
the user can gauge the testing progress if vxSetMeters is TRUE (the
default).

NOTE: A sub index (created with vxCreateSubNtx) should NOT be tested
with this function. It will always fail test (1) abaove.

Multiuser Considerations
The index file and its corresponding dbf are locked for the duration

of the operation.

vxBase Page 284

Example
 If NOT vxTestNtx(NtxArea1) Then
 If Not vxReindex() Then
 MsgBox "Reindex unsuccessful!"
 End If
 End If
 j% = vxSelectDbf(DbfArea)

See Also

vxPack, vxReindex, vxSetMeters

vxBase Page 285

vxTop
Declaration

Declare Function vxTop Lib "vxbase.dll" () As Integer

Purpose
Position the record pointer to the first record in the current

database. If an index is active, this is the first logical record. If
there is no index active, the first physical record is retrieved.

Parameters
None.

Returns
TRUE if the operation was successful and FALSE if not. If the file

is empty, FALSE will be returned. FALSE will also be returned if the
record is locked and the user chose not to retry the operation.

Usage
After opening a file (both dbf and ntx), vxTop is called internally

by vxBase to position the record pointer to the first record in the
file. When a dbf is opened, this is the first physical record. When an
ntx file is opened, this is the first logical record.

If a filter is active, vxTop will attempt to find the first record
in the file that satisfies the filter.

Multiuser Considerations
A successful vxTop locks the record if vxSetLocks is TRUE.

Example
 ' test for beginning of file
 ' --------------------------
 If vxBof() Then
 Beep
 TypeStatus.text = "Beginning of File!"
 j% = vxTop()
 Else
 TypeStatus.text = "Skipped to record " +
 LTrim$(Str$(vxRecNo()))
 End If

See Also

vxBottom, vxSetLocks

vxBase Page 286

vxTrue
Declaration

Declare Function vxTrue Lib "vxbase.dll" (ByVal FieldName As String)
As Integer

Purpose
Determine whether a logical field in the current database contains a

true or false value.

Parameters
FieldName is either a string variable or a literal string that

contains a valid logical field name from the currently selected
database. FieldName may be qualified with a valid alias name that points
to any open database.

Returns
TRUE if the field contains an xBase logical true value (t, T, y, Y)

or FALSE if not (either f, F, n, N, or blank).

Usage
Logical fields can easily be used to set form check boxes or radio

buttons.

Example
 ' Return from logical field interrogation
 ' vxTrue() is -1 (TRUE) or 0 (FALSE).
 ' By using the unary negation operator
 ' we will transform any -1 values to the
 ' checkbox value 1, which means "selected"
 ' --
 CustBuyer.Value = -vxTrue("a_buyer")
 CustSeller.Value = -vxTrue("a_seller")

See Also
vxField, vxReplLogical, vxSetAlias

vxBase Page 287

vxUnlock
Declaration

Declare Function vxUnlock Lib "vxbase.dll" () As Integer

Purpose
Remove all locks on the currently selected database, including file,

record, and index locks.

Parameters
None.

Returns
TRUE if the operation was successful and FALSE if not.

Usage
If vxSetLocks is TRUE, all vxBase record positioning functions

automatically lock the record after it has been read into the record
buffer. In a multiuser situation, you should get the record, transfer
the fields you wish to use to form controls, and then unlock the record
to make it and the file available to other users. See the Multiuser
Considerations section in this manual for methods that ensure proper
record maintenance in a multiuser environment.

If vxSetLocks is FALSE, you should explicitly lock a record
immediately prior to updating it and writing it. You should then use
vxUnlock to remove the record lock after the write.

Example
 ' vxSetLocks is TRUE
 ' ------------------
 If vxSeek("ABC") Then ' find the record to update
 RecNum& = vxRecNo() ' save the record number
 Sig% = vxInteger("CustSig") ' and the signature
 Name.text = vxField("Name) ' store the form vars
 Status.text = vxfield("Stat")

 ' now unlock the record
 ' ---------------------
 j% = vxUnlock()

 ' now perform the update on the vis basic form
 ' --
 CustRecordUpdate

 ' now retrieve the record and test if anyone else
 ' has changed it
 ' ---
 j% = vxGo(RecNum&)
 If Sig% <> vxInteger("CustSig") Then
 MsgBox "Another user beat you to it. Redo!"
 Else
 Call vxReplString("Name", (Name.text))
 Call vxReplString("Stat", (Status.text))
 Call vxReplInteger("CustSig", (Sig% + 1))
 End If
 j% = vxUnlock()
 End If

vxBase Page 288

See Also
vxIsRecLocked, vxLockDbf, vxLocked, vxLockRecord, vxSetLocks

vxBase Page 289

vxUseDbf
Declaration

Declare Function vxUseDbf Lib "vxbase.dll" (ByVal DbfName As String)
As Integer

Purpose
Open a database file for reading and writing.

Parameters
DbfName is a either a string variable that contains the name of the

file (including an optional path specification) or a literal string. If
no file extension is supplied, vxUseDbf defaults to ".dbf".

Returns
FALSE if the open attempt was not successful. Otherwise, an integer

greater than zero is returned that defines the select area handle to the
file to be used in all subsequent vxBase operations. If the same file
has a vxUseDbf command issued more than once without closing, the same
integer is returned. If you wish to open another instance of the same
file, use vxUseDbfAgain instead.

If an attempt is made to open a vxUseDbf file with vxUseDbfRO
without closing the the first instance, the file will not be read only.
Only one instance of a vxUseDbf, vxUseDbfEX, or vxUseDbfRO file can be
active at a given time. vxUseDbf opens a file for Read/Write access. If
the current user has read only access rights, use vxUseDbfRO to open the
file. No updating may be performed on a read only file of course.

Usage
The file is opened, selected, and registered with the vxBase Task-

Window manager. The select area handle should be retained in a GLOBAL
integer for use with that file throughout your application. Use variable
names that describe the file.

The first time the file is opened, the result should be tested to
ensure that a valid file exists where you think it should be.

After a file is opened, the record pointer is positioned to the
first record in the file.

See the discussion under "Multitasking and Multiuser Considerations"
for more information on how vxBase controls databases attached to
multiple windows.

vxBase Page 290

Example
 ' open aircraft file
 ' ------------------
 AircraftDbf = vxUseDbf("\vb\vxbtest\aircraft.dbf")
 If AircraftDbf = FALSE Then
 MsgBox "Error Opening aircraft.dbf. Aborting."
 End
 End If
 Aircraf1Ntx = vxUseNtx("\vb\vxbtest\aircraf1.ntx")
 Aircraf2Ntx = vxUseNtx("\vb\vxbtest\aircraf2.ntx")

See Also
vxAreaDbf, vxAreaNtx, vxSelectDbf, vxSetHandles, vxUseDbfAgain,

vxUseDbfEX, vxUseDbfRO, vxUseNtx

vxBase Page 291

vxUseDbfAgain
Declaration

Declare Function vxUseDbfAgain lib "vxbase.dll" (ByVal DbfName As
String) As Integer

Purpose
Opens a database that has already been opened IN ANOTHER AREA. Any

indexes attached to this database with vxUseNtx are also opened in areas
separate from any other instances of the same files. The file is opened
for reading and writing.

Parameters
DbfName is a either a string variable that contains the name of the

file (including an optional path specification) or a literal string. If
no file extension is supplied, vxUseDbfAgain defaults to ".dbf".

Returns
FALSE if the open attempt was not successful. Otherwise, an integer

greater than zero is returned that defines the select area handle to the
file to be used in all subsequent vxBase operations.

Usage
The file is opened, selected, and registered with the vxBase Task-

Window manager. The select area handle should be retained in a GLOBAL
integer for use with that file throughout your application. Use variable
names that describe the file.

After a file is opened, the record pointer is positioned to the
first record in the file.

See the discussion under "Multitasking and Multiuser Considerations"
for more information on how vxBase controls databases attached to
multiple windows.

Updates performed on one instance of an open file will not appear in
the second and subsequent instances until the updated or added record is
re-read.

Example
 ' open aircraft file
 ' ------------------
 AircraftDbf = vxUseDbf("\vb\vxbtest\aircraft.dbf")
 If AircraftDbf = FALSE Then
 MsgBox "Error Opening aircraft.dbf. Aborting."
 End
 End If
 Aircraf1Ntx = vxUseNtx("\vb\vxbtest\aircraf1.ntx")

 ' now open another instance with a different
 ' controlling index
 ' ---
 AirCraftDbf2 = vxUseDbfAgain("\vb\vxbtest\aircraft.dbf")
 Aircraf2Ntx = vxUseNtx("\vb\vxbtest\aircraf2.ntx")

See Also
vxBase Page 292

vxUseDbf

vxBase Page 293

vxUseDbfEX
Declaration

Declare Function vxUseDbfEX lib "vxbase.dll" (ByVal DbfName As
String) As Integer

Purpose
Opens a database for EXCLUSIVE use. If any other user or task is

currently using the database, this function will fail (zero is returned
as the select area). This function should be used to open a database
that will be undergoing critical operations (e.g., vxPack, vxReindex).

Parameters
DbfName is a either a string variable that contains the name of the

file (including an optional path specification) or a literal string. If
no file extension is supplied, vxUseDbfEX defaults to ".dbf".

Returns
FALSE if the open attempt was not successful. Otherwise, an integer

greater than zero is returned that defines the select area handle to the
file to be used in all subsequent vxBase operations.

Usage
The file is opened, selected, and registered with the vxBase Task-

Window manager. The select area handle should be retained in a GLOBAL
integer for use with that file throughout your application. Use variable
names that describe the file.

The first time the file is opened, the result should be tested to
ensure that a valid file exists where you think it should be.

After a file is opened, the record pointer is positioned to the
first record in the file.

See the discussion under "Multitasking and Multiuser Considerations"
for more information on how vxBase controls databases attached to
multiple windows.

Example
 ' pack file
 ' ---------
 j% = vxAreaDbf("\vb\vxbtest\airtypes.dbf")
 If j% = FALSE Then
 AirtypesDbf = vxUseDbfEX("\vb\vxbtest\airtypes.dbf")
 AirTypesNtx = vxUseNtx("\vb\vxbtest\airtypes.ntx")
 j% = vxPack(VXFORM1.hWnd)
 j% = vxClose()
 End If

See Also
vxUseDbf

vxBase Page 294

vxUseDbfRO
Declaration

Declare Function vxUseDbfRO Lib "vxbase.dll" (ByVal DbfName As
String) As Integer

Purpose
Open a database file in Read Only mode.

Parameters
DbfName is a either a string variable that contains the name of the

file (including an optional path specification) or a literal string. If
no file extension is supplied, vxUseDbfRO defaults to ".dbf".

Returns
FALSE if the open attempt was not successful. Otherwise, an integer

greater than zero is returned that defines the select area handle to the
file to be used in all subsequent vxBase operations. If the same file
has a vxUseDbf or vxUseDbfRO command issued more than once without
closing, the same integer is returned. The attributes in effect are
those of the first successful open. Only one instance of an open file
can be active at a given time in a given task. vxUseDbf opens a file for
Read/Write access. If the current user has read only access rights, use
vxUseDbfRO to open the file. No updating may be performed on a read only
file of course.

Usage
The file is opened, selected, and registered with the vxBase Task-

Window manager. The select area handle should be retained in a GLOBAL
integer for use with that file throughout your application. Use variable
names that describe the file.

The first time the file is opened, the result should be tested to
ensure that a valid file exists where you think it should be.

After a file is opened, the record pointer is positioned to the
first record in the file.

See the discussion under "Multitasking and Multiuser Considerations"
for more information on how vxBase controls databases attached to
multiple windows.

Any auxiliary files opened that are attached to a database opened
Read Only are also opened Read Only (i.e., index and memo files). No
updates are allowed on the database, the indexes, or the memo files.
Memos may be edited and exported to ASCII files.

The actual file attributes do not necessarily have to be read only
to use this function. If you open a dbf with this function, all write
functions are disabled whether the DOS file attributes (or Network
rights or flags) are read only or not.

If the file flags are read only, then vxUseDbf will fail where this
function will succeed.

vxBase Page 295

Example
 ' open aircraft file
 ' ------------------
 AircraftDbf = vxUseDbf("\vb\vxbtest\aircraft.dbf")
 If AircraftDbf = FALSE Then
 AircraftDbf = vxUseDbfRO("\vb\vxbtest\aircraft.dbf")
 If AircraftDbf = FALSE then

 MsgBox "Error Opening aircraft.dbf. Aborting."
 End
 Else
 Aircraf1Ntx = vxUseNtx("\vb\vxbtest\aircraf1.ntx")
 Aircraf2Ntx = vxUseNtx("\vb\vxbtest\aircraf2.ntx")
 Call DisplayOnly
 Exit Sub
 End If
 End If
 Aircraf1Ntx = vxUseNtx("\vb\vxbtest\aircraf1.ntx")
 Aircraf2Ntx = vxUseNtx("\vb\vxbtest\aircraf2.ntx")
 Call UpdateRoutine

See Also
vxAreaDbf, vxAreaNtx, vxSelectDbf, vxSetHandles, vxUseDbf, vxUseNtx

vxBase Page 296

vxUseNtx
Declaration

Declare Function vxUseNtx Lib "vxbase.dll" (ByVal NtxName As String)
As Integer

Purpose
Open an index file and attach it to the currently selected database.

Parameters
NtxName is a either a string variable that contains the name of the

file (including an optional path specification) or a literal string. If
no file extension is supplied, vxUseNtx defaults to ".ntx".

Returns
FALSE if the file could not be opened. If the open is successful, an

index area handle is returned that should be retained for all subsequent
operations using this index file.

Usage
The defined index file must belong to the database that is currently

selected. The last opened index file becomes the selected index until
changed with vxSelectNtx or vxNtxDeselect.

The select area handle should be retained in a GLOBAL integer for
use with that file throughout your application. Use variable names that
describe the file.

A successful open positions the record pointer to the first record
(pointed to by the first index entry in this file) in the database.
Filters and relations are respected.

Example
' open aircraft file
' ------------------
 AircraftDbf = vxUseDbf("\vb\vxbtest\aircraft.dbf")
 If AircraftDbf = FALSE Then
 MsgBox "Error Opening aircraft.dbf. Aborting."
 End
 End If
 Aircraf1Ntx = vxUseNtx("\vb\vxbtest\aircraf1.ntx")
 Aircraf2Ntx = vxUseNtx("\vb\vxbtest\aircraf2.ntx")

See Also
vxAreaNtx, vxNtxDeselect, vxSelectNtx, vxSetHandles, vxTestNtx

vxBase Page 297

vxWindowDereg
Declaration

Declare Sub vxWindowDereg Lib "vxbase.dll" (ByVal Hwnd As Integer)

Purpose
Deregister a database select area from the vxBase Task-Window

manager and also release vxCtlFormat memory (if any).

Parameters
Hwnd is the hWnd property of the Visual Basic form that you are

deregistering.

Returns
Nothing.

Usage
The vxBase Task-Window manager can keep track of up to 96 task-

window-select area combinations. vxWindowDereg is used to ensure that
all references to this database in this window are removed when the form
is closed. Always issue this command in your FORM_UNLOAD procedure after
closing any databases. It will ensure that the Task manager does not
overflow.

See the discussion under "Multitasking and Multiuser Considerations"
for more information.

vxBase can also keep format information for up to 256 active text
boxes. If vxCtlFormat is used for this purpose, vxWindowDereg must
always be called in the Form Unload procedure to release format memory
and to clear references to active text boxes for re-use.

Example
 If CustReturn <> BROWSE_USER Then
 j% = vxSelectDbf(vxClientDbf)
 j% = vxClose()
 j% = vxSelectDbf(vxStateDbf)
 j% = vxClose()
 vxWindowDereg (VXFORM3.hWnd)
 VXFORM1.OpenVx.Enabled = TRUE
 VXFORM1.PackFiles.Enabled = TRUE
 VXFORM1.TestMEmo.Enabled = TRUE
 End If

See Also
vxCtlFormat, vxSelectDbf

vxBase Page 298

vxWrite
Declaration

Declare Function vxWrite Lib "vxbase.dll" () As Integer

Purpose
Write the contents of the current record buffer to disk.

Parameters
None.

Returns
TRUE if the operation was successful or FALSE if not. Always returns

FALSE if the associated dbf has been opened as Read Only with
vxUseDbfRO.

Usage
Record fields are changed with the vxReplxxx functions. These

changes occur internally in a record memory buffer. The contents of that
buffer are written out whenever another record operation occurs (such as
vxGo, vxSkip, vxTop, etc.) or when the file is closed.

vxWrite explicitly writes the record as soon as the replacements are
complete. In a multiuser environment, always use vxWrite to write the
record contents as soon as possible after changes have been made, and
then unlock the file to make the record available to other users.

Warning: DO NOT use this function as an all purpose buffer clearing
function. If the record pointer is in an undefined state, a blank record
will be appended to your database.

Example
 If CustReturn = BROWSE_ADD Then
 j% = vxAppendBlank()
 Else
 vxGo(SaveRec&)
 End If

 Call vxReplString("a_code", (CustCode.text))
 Call vxReplString("a_name", (CustName.text))
 Call vxReplDate("a_cdate", CDate$)
 Call vxReplDate("a_rdate", RDate$)
 j% = vxWrite()
 j% = vxUnlock()

See Also
vxAppendBlank, vxSetLocks, vxWriteHdr

vxBase Page 299

vxWriteHdr
Declaration

Declare Function vxWriteHdr Lib "vxbase.dll" () As Integer

Purpose
Explicitly write XBase header information.

Parameters
None.

Returns
TRUE if the operation was successful and FALSE if not.

Usage
vxBase only updates the XBase file header information when the file

is closed. This information includes a date and time stamp, and the
number of records in the database.

If you are using a concurrent third party XBase file management
program to monitor the results of your vxBase application, it will
probably not recognize the addition of records to the database because
it relies on the header record count to determine the database extent.

Use vxWriteHdr after every record update or addition to make vxBase
100% compatible with other XBase file programs.

Example
 ' vxSetLocks is TRUE
 ' ------------------
 If vxSeek("ABC") Then ' find the record to update
 RecNum& = vxRecNo() ' save the record number
 Sig% = vxInteger("CustSig") ' and the signature
 Name.text = vxField("Name) ' store the form vars
 Status.text = vxfield("Stat")

 ' now unlock the record
 ' ---------------------
 j% = vxUnlock()

 ' now perform the update on the vis basic form
 ' --
 CustRecordUpdate

 ' now retrieve the record and test if anyone else
 ' has changed it
 ' ---
 j% = vxGo(RecNum&)
 If Sig% <> vxInteger("CustSig") Then
 MsgBox "Another user beat you to it. Redo!"
 Else
 Call vxReplString("Name", (Name.text))
 Call vxReplString("Stat", (Status.text))
 Call vxReplInteger("CustSig", (Sig% + 1))
 End If
 j% = vxUnlock()
 j% = vxWriteHdr()
 End If

See Also
vxBase Page 300

vxWrite

vxBase Page 301

vxZap
Declaration

Declare Function vxZap Lib "vxbase.dll" () As Integer

Purpose
Physically delete all of the records in the file.

Parameters
None.

Returns
TRUE if the operation was successful and FALSE if not. Always

returns FALSE if the associated dbf has been opened as Read Only with
vxUseDbfRO.

Usage
Would normally be used to delete the contents of a permanent batch

file after the batch records have been appended to a master file.

Ensure that all index files associated with the file are open. The
file is reindexed after the vxZap (i.e., the index files are cleaned out
as well).

Multiuser Considerations
The file and all of its index files are locked for the duration of

the operation.

Example
 TrMasterDbf% = vxUseDbf("Transmas.dbf")
 TrMasterNtx% = vxUseNtx("Transmas.ntx")
 j% = vxSelectDbf(TrMasterDbf%)
 vxAppendFrom("Transbat.dbf")
 j% = vxClose() ' close master file

 ' reopen transaction batch because the From
 ' file is closed by vxAppendFrom
 ' --
 TransDbf% = vxUseDbf("Transbat.dbf")
 TransNtx% = vxUseNtx("Transbat.ntx")
 j% = vxDbfSelect(TransDbf%)
 j% = vxZap() ' clear the batch

See Also

vxDeleteRange, vxPack

vxBase Page 302

Error Messages
150 Arithmetic overflow

Numeric field not long enough to hold the result of an xBase
arithmetic expression.

200 Unable to evaluate expression.
One or more errors found in xBase expression string. Unable to continue.

230 Logical values ynYNtfTF only allowed.
vxBrowse onscreen edit of logical field. Characters shown above are

the only ones allowed.

290 Cannot access specified print driver.
Error occurred in vxSetupPrinter dialog. The print driver selected

cannot be found.

302 Close active join links before closing this window.
Windows created with the JOIN browse menu item must be closed before

the main window.

305 Active browse tables. vxCloseAll illegal.
All active browse tables for this task must be closed before the

files may be closed.

340 Create database error
Either a DOS error (e.g., out of disk space) or an error in the

field structure passed to the vxCreateDbf function.

420 Dialog box in use!
An attempt has been made to activate a dialog box that is currently

in use (perhaps by another task). vxBase dialog boxes may be used by
only one task at a time.

501 Cannot edit result of expression.
Attempt made to onscreen edit a vxBrowse column that is the result

of an xBase expression rather than a field.

502 Cannot edit memo with onscreen editor
Attempt made to onscreen edit a memo field displayed with vxBrowse.

Use vxMemoEdit or vxMemoRead/vxReplMemo instead.

504 Field Edit not allowed on joined windows.
vxBrowse onscreen edit of fields only allowed on the parent window

originating the first join link.

505 Only one active field edit allowed.
Finish the first onscreen edit before proceeding to another.

530 Error in Printer setup.
An error occurred in accessing the selected Windows print driver

during vxSetupPrinter.

vxBase Page 303

550 Expression length error
vxBase could not evaluate an expression because the return length is

zero.

555 Expression too long
xBase expression length is limited to 127 characters.

560 Expression type check error
Mismatched data type within xBase expression. Comparisons require

same data type on either side of the relational operator. Functions
require set data type (e.g., SUBSTR() takes a character value).

600 File creation error
DOS could not create the file. Either disk space problem or network

security violation or not enough handles allocated with vxSetHandles.

605 File name or path invalid.
Import memo file function failed because the entered file could not

be found.

610 File lock error
DOS could not lock the requested record bytes.

620 File open error
File may not exist or not enough handles allocated with vxSetHandles

or a network security violation or SHARE /f parameter not large enough.

625 File positioning error
DOS could not position its read/write pointer to a valid location in

the file. Record number may be larger than the number of records in the
file.

640 File read error
DOS could not read the file. Either a disk error occurred or there

was a network security violation or SHARE violation (SHARE is not loaded
a the workstation).

670 File unlock error
DOS could not unlock the requested record bytes. DOS internal error.

680 File write error
DOS could not write to the file. Either a disk problem, out of

space, or a network security violation.

690 Field replace type mismatch
The data type of the replacement data does not match the defined

field type.

694 From file cannot be found
vxAppendFrom could not find the file it is supposed to append data

from.

900 Incomplete expression
xBase expression is incomplete or unsupported.

vxBase Page 304

904 Index close error
DOS could not close the index file. Could be due to an invalid index

select area.

908 Index corrupted
vxBase detected a corrupted index. Use vxReindex to repair.

914 Out of memory in index sort
The file is too large to index with vxBase. Try cutting down the

number of key elements.

918 Internal index invalid key pointer
Destroy the index and try vxReindex.

920 Internal index block size error
Destroy the index and try vxReindex.

922 Internal index node position error
Destroy the index and try vxReindex.

924 Internal index read error
Destroy the index and try vxReindex.

926 Internal index root seek error
Destroy the index and try vxReindex.

928 Internal index skip error
Destroy the index and try vxReindex.

930 Internal index leaf size error
Destroy the index and try vxReindex.

932 Invalid record number. Record not written!
The contents of the record buffer cannot be written to the specified

location because that record does not exist. New records require
vxAppendBlank to create an empty record.

934 File has zero length
DOS directory entry error. File was not closed properly.

935 Invalid column index
vxTableField column index is out of the range specified by

vxTableDeclare.

936 Invalid date
Date passed back to vxBase cannot be translated into an xBase date,

or a date entered into a vxBrowse onscreen edit of a date field or text
box formatted with vxCtlFormat was invalid.

938 Invalid Dbf Area
Attempt was made to access a select area that does not contain a

valid database.

vxBase Page 305

940 Invalid number of delimiters
xBase expression evaluation error. Mismatched parentheses or

quotation marks.

942 Invalid field number
A relative field access cannot be completed because the field number is
greater than vxFieldCount.

944 Invalid field name
The referenced field could not be found in the current select area.

If multiple windows are present on the screen, or multiple select areas
are being used in one form's logic, vxBase may have changed the select
area in response to a user transparent message passed to Visual Basic
from Windows. If the field name is spelled correctly, try inserting an
explicit vxSelectDbf in front of the offending field reference.

946 Invalid Index Area
The index select area passed to a vxBase function is invalid.

948 Invalid record length
Maximum record length is 32666.

952 Invalid memo file name
A .dbt file could not be found that matches the name of the .dbf.

953 Invalid menu index
vxMenuItem index parameter is out of the range specified by

vxMenuDeclare.

954 Invalid menu level
vxMenuItem level param must be greater than or equal to zero.

955 Invalid menu type
vxMenuItem type parameter must be VX_RETURN (0), VX_MENUHEAD (1), or

VX_SEPBAR (2).

956 Invalid number in expression
An xBase expression element contains an invalid number (e.g.,

negative number as index to SUBSTR()) OR there are illegal mixed data
types on either side of an xBase operator (e.g., trying to add a
character field to a date field).

960 Invalid operator
An xBase expression contains an unrecognized operator, or an

operator that does not work on the data types involved (e.g., 5 $
NumField is invalid because the "is contained in" operator only works on
character fields).

964 Incorrect number of parameters
An xBase function was passed the wrong number of parameters (e.g.,

LEFT(FieldName) is invalid because a number must follow the FieldName).

vxBase Page 306

970 Invalid record number on vxGo
The record number is not within the file range (negative or greater

than that returned by vxBottom).

975 Invalid registration number
The shareware license number entered is invalid. Try again or call

to confirm the number issued.

980 Invalid seek. No index open.
vxSeek only allowed on indexed files.

984 Invalid select area
The select area sepcified does not contain a valid database

descriptor block.

990 Invalid date format expression
An xBase expression evaluation could not decipher the date format

contained within the expression.

1000 No records found that match join key.
User message. The record pointer in the vxBrowse master window was

moved to a record that has no matching records in the joined file.
Information only.

1100 Key does not match expression
The key in the index does not match the expression that the index

was built with. If a file structure is modified, and the type of a field
that is an element in a key expression changes, then the index becomes
invalid. Rebuild the index with vxCreateNtx.

1110 Key max length exceeded (338 chars)
The maximum length of a key is 338 characters.

1120 Key must evaluate as a string
vxBase keys must evaluate as strings. Use the STR() function to

convert numeric values to strings, and the DTOS() function to convert
dates to strings.

1290 Maximum submenus exceeded
Only 64 VX_MENUHEAD types are allowed within a single defined menu

structure.

1300 Windows memory allocation error
Windows could not allocate the requested memory. Buy more.

1305 Memory deallocation error
A memory handle has become invalid for some reason. A UAE will

usually occur before we ever get this message (Windows 3.0).

1307 Memo max length (65534) exceeded
The maximum length of a memo is 65534 (unsigned integer max - 1).

1310 Memo type not supported
Only Clipper or dBase III type memo files are supported by vxBase.

vxBase Page 307

1315 Memo write error
DOS error or network security violation.

1317 Menu structure error
A vxMenuItem level parameter refers to a menu index that is not

defined as VX_MENUHEAD.

1320 String delimiter missing
xBase expression string delimiters are double or single quotes. They

must be matched.

1347 Must declare menu before vxMenuItem
vxMenuDeclare must be used to allocate memory for the upcoming menu

structure defined by a series of vxMenuItem commands.

1350 Must declare table before vxTableField
vxTableDeclare must be issued on the selected database before the

fields in the table can be defined.

1400 Expression must evaluate as Character string.
Key expessions passed to vxCreateNtx must evaluate as character

strings. See error code 1120 above.

1406 Expression must evaluate as logical TRUE or FALSE.
xBase expressions to be used as filters must evaluate as logical

results.

1409 No database currently selected
Field references and file statistical references require an open,

selected database. The file you think is selected may have been attached
to another task (e.g., a print job) or another window in the same task.
Issue another vxSelectDbf immediately following calls to subroutines
that may deselect the database from the current window or task or
immediately following a Print.EndDoc statement.

1412 No browse handles available
Up to eight vxBrowse windows may be open at one time (for all active

tasks).

1415 No index active
Attempt made to perform an index function (e.g., vxReindex) while no

index was active.

1418 No records found that pass filter.
Information only. vxBrowse reports that there are no records that

qualify for display given the current filter.

1420 No matching fields
An attempt was made to vxAppendFrom a file that contains no matching

field names in the currently selected database.

1422 Cannot allocate memory for memo edit
Not enough memory to edit the memo. At least 65535 bytes must be

vxBase Page 308

free.

1424 Edit control out of space.
A memo was read into an edit control (vxMemoEdit) that is not large

enough to hold the memo.

1430 Search string not found.
Information only. A search string entered in the Query Search

vxBrowse menu item could not be found.

1436 Not a memo field!
An attempt was made to pass a field name to a memo function that is

not a memo type.

1442 Not an NTX format index
Invalid index format. NDX and CDX files are not supported in this

version of vxBase.

1448 Not an xBase database
The requested file open was not performed because the database

header was not a dBase III or Clipper type file. dBase II and dBase IV
file formats are not supported.

1450 Number of columns required
vxTableDeclare requires the number of columns that will be contained

in the vxBrowse table.

1454 Numbers only allowed.
Onscreen edit of a numeric field error message if a non-numeric

character was entered.

1500 Out of memory
Self explanatory.

1602 Internal Pack Error
We may have run out of disk space in the pack. The database could be

corrupted.

1620 Parentheses mismatched in expression
Self expanatory.

1630 Sign must be in first position
If a sign is entered into a numeric field with the vxBrowse onscreen

editor or in a vxCtlFormat numeric text box, it must precede the numeric
portion of the field.

1650 Printer error!
Self explanatory.

1900 Record skip error
Should never happen. If it does, the database is probably corrupted.

1950 Too many params in expression
The xBase expression is too complex to evaluate. Simplify and try

vxBase Page 309

again or call for help.

vxBase Page 310

1990 Task closure sequence error.
An attempt has been made to close a vxBase task that controls the

shared memory among all concurrently running vxBase tasks. This task was
the first task among the set of vxBase tasks currently running and as
such it must be the last one to be closed becuase it controls all of the
memory allocted to database functions by vxBase. See vxInit and
vxDeallocate for more information.

2002 Task list overflow!
The vxBase Task manager may contain up to 96 task-window-select area

entries. Use vxWindowDereg in your FORM_UNLOAD procedure to deregister
windows when they are closed.

2004 Too many decimals
vxBrowse onscreen edit of a numeric field or vxCtlFormat numeric

text box found too many decimal points (e.g., 34.56.7).

2010 Too many signs
vxBrowse onscreen edit of a numeric field or vxCtlFormat numeric

text box found too many signs (e.g., -34.56-)

2050 Type mismatch
Attempt to compare apples to oranges in an xBase expression or a

wrong data type was used as a parameter to an xBase function.

2100 Unsupported function in expression
vxBase does support this function. Request its addition via

Compuserve if you absolutely must have it.

2120 User aborted print
Information only. User cancelled print job (either memo print or

vxBrowse print).

vxBase Page 311

Software License Agreement

vxBase is not and never has been public domain software, nor is it
free software.

The software product and user's manual are copyrighted and all
rights are reserved by vxBase Systems.

Non-licensed users are granted a limited license to use vxBase on a
thirty day trial basis for the purpose of determining whether vxBase is
suitable for their needs. The use of vxBase beyond the thirty day trial
period requires registration and the issuing of a license number. The
use of unlicensed copies of vxBase beyond the thirty day evaluation
period by any person, business, corporation, government agency, or any
other entity is strictly prohibited.

A license permits a user to use vxBase on any single computer, or,
in a LAN environment, one copy may be installed on one server and this
copy may be shared among the workstations connected to the LAN that are
under the same roof as the LAN server.

Licensed users may use the program on different computers, but may
not use the program on more than one computer at the same time.

No one may modify or patch the vxBase files in any way, including
but not limited to decompiling, disassembling, or otherwise reverse
engineering the program.

A limited license is granted to copy and distribute vxBase for the
trial use of others, subject to the above limitations, and to those
below:

(1) vxBase must be copied in unmodified form, complete with the file
containing this license information.

(2) vxBase may not be distributed in licensed form to any person
using an application written in Visual Basic that makes use of the
vxBase function calls. It MUST be distributed as an unlicensed copy
except as noted under Developer Distribution License below.

(3) No fee, charge, or other compensation may be requested or
accepted for distributing vxBase, except as follows:

 (a) operators of electronic bulletin board systems may make vxBase
available for downloading. A time-dependent charge for the use of the
bulletin board is permitted so long as there is no specific charge for
the download of any vxBase files.

 (b) vendors of Shareware may distribute vxBase, subject to the
above conditions, and may charge a disk duplication and handling fee,
not to exceed ten dollars.

vxBase Page 312

Developer Distribution License
A Developer Distribution License may be granted to developers in

consideration of the payment of $195.00 U.S. (less the shareware
registration fee if one has been paid). This license allows the
developer to distribute a special run-time only version of vxbase.dll to
end users for their use with the developer's application. The run-time
version of vxbase.dll plus a printed copy of the vxBase manual will be
forwarded to any developer who pays the Developer Distribution License
fee. The run-time version of vxbase.dll may be distributed in unlimited
quantities by the developer who has been granted such a license. The
run-time version of vxbase.dll is free of all nagware and has been
disabled for use in Visual Basic Design mode.

vxBase Page 313

Limited Warranty

vxBase Systems guarantees your satisfaction with this product for a
period of sixty days from the date of original purchase. If you are
dissatisfied with vxBase within that time period, return the package in
saleable condition to vxBase Systems for a full refund.

vxBase Systems warrants that all disks provided are free from
defects in material and workmanship, assuming normal use, for a period
of sixty days from the date of purchase.

vxBase Systems warrants that vxBase will perform in substantial
compliance with the documentation supplied with the software product. If
a significant defect in the product is found, the Purchaser may return
the product for a refund. In no event will such a refund exceed the
purchase price of the product.

The product and all updates are provided on an "as is" basis without
warranty of any kind, express or implied, except as stated above
including, but not limited to the implied warranties of merchantibility
or fitness for a particular purpose. The entire risk as to the
selection, quality, results, and performance of the product is with the
Licensee. Should the product prove defective, then the Licensee (and not
vxBase Systems or its dealer) assumes all liability and expense incurred
as a result thereof. Some jurisdictions do not allow the exclusion of
certain implied warranties so in such jurisdictions, the above exclusion
of implied warranties may not apply to you. The limited warranty gives
you specific legal rights. You may also have other rights which vary
from jurisdiction to jurisdiction.

vxBase Systems shall have no liability or responsibility to you or
to any other person or entity with respect to any liability, loss or
damage caused or alleged to be caused directly or indirectly by the
product or your use, misuse or inability to use the product, including
but not limited to, any interruption of service, loss of business,
anticipatory or actual profits or consequential damages resulting from
the use, misuse or inability to use the product.

vxBase Systems does not warrant that the functions contained in the
product or updates will meet your requirements.

Use of this product for any period of time constitutes your
acceptance of this agreement and subjects you to its contents.

vxBase Page 314

vxBase Ordering Information
You may order vxBase and DataWorks directly from vxBase Systems via

check, money order, Visa, or Mastercard. You may also order vxBase and
Dataworks from Public (software) Library with your Mastercard, Visa,
AmEx, or Discover card by calling 1-800-242-4PsL (from overseas: 713-
524-6394) or by FAX to 713-524-6398 or by CompuServe to 71355,470. These
numbers are for ordering from PsL only. vxBase Systems can NOT be
reached at those numbers. Shareware disks may be ordered from PsL with
item number 7614/3946. vxBase and DataWorks may also be registered
through PsL by quoting item numbers 10473 for vxBase or 10472 for
DataWorks. Shipping will originate from vxBase.

For technical support, shipping status, direct licenses, and
developer distribution licenses, contact vxBase Systems at the address,
phone, or FAX listed below.

When ordering from vxBase Systems, please provide the following
information:

(1) Company
(2) Programmer name
(3) Street address
(4) City and State/Province
(5) Country
(6) Zip/Postal Code
(7) Telephone (overseas include country code)
(8) FAX number
(9) if paying by credit card,

credit card type (Visa or Mastercard ONLY)
Credit card number
Expiration date
Signature

(10) Disk preference (3-1/2" or 5-1/4")

Pricing:
vxBase $59.95 U.S.
vxBase Manual $20.00 U.S.

 DataWorks $49.95 U.S.
Developer's Kit* $195.00 U.S.

Air Mail Shipping (No Manual):
U.S./Canada Shipping $10.00 U.S.
Overseas Shipping $15.00 U.S.

Air Mail Shipping (Developer's Kit or vxBase with Manual):
U.S./Canada Shipping $17.00 U.S.
Overseas Shipping $28.00 U.S.

Canadian orders add 7% GST (GST# R133247296)

*The Developer's Kit includes vxBase, vxBase RunTime Unlimited
Distribution, vxBase manual, and Dataworks. If you have already
registered vxBase and/or DataWorks, deduct your registration fee(s) from

vxBase Page 315

$195.00 and include your license number(s).

vxBase Page 316

For Priority Courier Service, substitute the following for
Shipping and Handling:

W/Manual No Manual
Canada and the U.S. $ 37.00 $ 31.00
United Kingdom 70.00 55.00
France 70.00 55.00
Western Europe 77.00 60.00
Australia 88.00 70.00
Pacific Rim 88.00 70.00
Central America 88.00 70.00
Eastern Europe 117.00 95.00
Middle East 117.00 95.00
India & Japan 117.00 95.00
South America 124.00 100.00
Korea 124.00 100.00
Africa/Indian Ocean 134.00 110.00
Mainland Asia 134.00 110.00

Mail, phone, or fax your order to:
vxBase Systems

#488, 9707 - 110 Street
Edmonton, Alberta, Canada

T5K 2L9
Phone (403) 488-8100
Fax (403) 488-8150
BBS (403) 488-8365

Purchase orders accepted with prior approval.

vxBase Page 317

