
 Visual Basic for Windows: Tips & Techniques
Prepared 03/29/94

 VB Programming Using Standard Controls

 VB Programming Using Custom & Third-Party Controls

 Optimization, Memory Management, & General VB Programming

 Advanced VB Programming -- Networks, APIs, DLLs, Graphics

 Data Access & VB Database Programming

 VB Design Environment

 Running VB Applications

 General VB References & Documentation Corrections

 VB Setup, Installation, CDK, Help Compiler, DDE, & OLE

THE INFORMATION IN THE MICROSOFT KNOWLEDGE BASE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND.
MICROSOFT DISCLAIMS ALL WARRANTIES EITHER EXPRESSED OR IMPLIED, INCLUDING THE WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL MICROSOFT CORPORATION OR
ITS SUPPLIERS BE LIABLE FOR ANY DAMAGES WHATSOEVER INCLUDING DIRECT, INDIRECT, INCIDENTAL,
CONSEQUENTIAL, LOSS OF BUSINESS PROFITS, OR SPECIAL DAMAGES, EVEN IF MICROSOFT CORPORATION OR ITS
SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. SOME STATES DO NOT ALLOW THE
EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES SO THE FORGOING
EXCLUSION OR LIMITATION MAY NOT APPLY.

 Visual Basic for Windows: Tips & Techniques

 VB Programming Using Standard Controls
 How to Trap VB Form Lost Focus with GetActiveWindow API

 How to Set Tab Stops in a List Box in Visual Basic
 How to Create Scrollable Viewports in Visual Basic
 Why Output Might Not Display from VB Form_Load Procedure
 How to Create Pop-up Menus on a Visual Basic Form
 How to Create Rubber-Band Lines/Boxes in Visual Basic
 Determining Number of Lines in VB Text Box; SendMessage API

 How to Scroll VB Text Box Programmatically and Specify Lines
 Overlapping Controls Not Supported in Visual Basic
 PRB: Access Key Causes Different Event Order than Mouse Click
 Carriage Return+Linefeed to Wrap Lines in Text Box Control
 Program Example for COM Port Support in Visual Basic
 VB Procedure Form_Load Not Executed when Unload Not Used
 VB Forms with Menus Cannot Have Fixed Double BorderStyle
 PRB: Long String Assigned to Multiline Text Box Seems to Hang

 DEL Key Behavior Depends on Text Box MultiLine Property
 PRB: Clipboard.SetData Gives Invalid Format Message with Icon
 Disabling the ENTER Key BEEP in a Visual Basic Text Box
 Scope of Line Labels/Numbers in Visual Basic for Windows
 How to Make a Push Button with a Bitmap in Visual Basic
 No New Timer Events During Visual Basic Timer Event Processing
 Creating Nested Control Arrays in Visual Basic

 Parameter Mismatch Error When Pass Properties by Reference
 Double-Clicking the Control Box Causes MouseUp Event in VB
 How to Place Animated Graphics on a Minimized Form in VB
 How to Convert Units to Pixels for DrawWidth in VB
 How to Move Controls Between Forms in VB for Windows
 How to Drop Item into Specified Location in VB List Box

 How to Draw a Line or Box on a Form Using a Label in Ver 1.0
 Form Global (Static) Data Is Preserved After Form Unload
 PRB: End Task from Windows Task List Doesn't Invoke VB Unload
 How to Rotate a Bitmap in VB for Windows
 How to Clear VB Picture Property at Run Time Using LoadPicture
 How to Print Multiline Text Box Using Windows API Functions
 Common Dialog Custom Control: FilterIndex Can Be Negative

 Common Dialog Control: Pipe (|) Optional in Filter Property
 How to Use More than One Type of Font in Picture Box
 Visual Basic SendKeys Statement Is Case Sensitive
 Task List Switch to VB Application Fails After ALT+F4 Close
 Overflow Error Plotting Points Far Outside Bounds of Control
 PRB: MDI Child: Child Window May Adopt Image of Other Control
 'Text' Property is Read-Only Error as Set Combo Box Text Prop

 How to Close VB Combo Box with ENTER key
 How to Edit Grid Cells in VB Using Overlapped Text Box
 How to Make ENTER Key Move Focus Like TAB Key for VB Controls
 PRB: GotFocus Event Fails If MsgBox Invoked in LostFocus Event
 PRB: Can TAB in Error if Value of Option Button Set to False
 How to Programmatically Display or Hide a VB Combo Box List

 PRB: ChDir or ChDrive Won't Change File / Directory List Boxes
 Visual Basic Can Load RLE4 and RLE8 Bitmap Format Files
 Example to Evaluate Basic Numeric Expressions
 How to Right Justify Top-Level Menus in Visual Basic
 Unable to Display Uppercase W in Small Text Box
 PRB: SendKeys May Return Illegal Function Call Error
 PRB: SetFocus During Form Load May Cause Illegal Function Call

 PRB: Click Event Invoked When Option Button Receives Focus
 How to Detect when the Active Form Changes in Visual Basic
 How to Determine Which Option Button is Selected in VB
 How to Make a Spreadsheet-Style Grid that Allows Editing
 PRB: DropDown Combo Box May Display Partial String
 Visual Basic 3.0 Programming Questions & Answers
 Name Property Cannot Be Set When Using Implicit Property
 Making Enter Key in Directory List Box Act Like Double-Click

 How to Change the Size of the Text Cursor in a Text Box
 Explanation of the Control Box Menu
 Validating Text Box Data Causes Extra LostFocus Events
 How to Use the Forms Collection to Unload All MDI Child Forms
 How to Trap Keystrokes in the Form Instead of Form's Controls
 Non-Menu Keys Disabled When Menu Pulled Down
 If Invoked by Access Key, Click Event Handled Before LostFocus

 Using UP ARROW and DOWN ARROW Keys to Move the Focus
 PRB: Can't Use ActiveForm to Reference Data Control in VB 3.0
 How to Prevent Multiple Instances of a VB Application
 How to Move Controls at Run Time By Using Drag and Drop
 PRB: Invalid picture Error When Try to Bind Picture Control
 PRB: Out of Stack Space When One Modal Form Shows Another
 How to Program Two List Boxes to Scroll Together

 Adjusting VB FontSize at Run Time for Different Video Drivers
 PRB: PrintForm Blank Page or GPF Due to Video Color Depth >256
 PRB: Problem Changing Control's Picture to (None) in VB 3.0
 Category Keywords for All Visual Basic KB Articles
 How to Display Multiple Foreground Text Colors in VB List Box
 BackColor Erases Existing Graphics on Form or Picture Control
 PRB: MDI Child Form Painted Twice When Moved Before Loaded

 How to Distinguish a DblClick from a Click Event
 How to Automatically Select or Highlight Text Box Upon Focus
 How to Start a Visual Basic Screen Saver Using SendMessage API

 Selected Prop of List Box Can Cause Click Event & Out of Stack
 How to Right Justify Items in List Box w/ Tabs & SendMessage
 How to Right Justify/Center Text in Single-Line Text Control
 PRB: How to Prevent Flicker in the Repaint of a Label

 VB Programming Using Custom & Third-Party Controls

 Optimization, Memory Management, & General VB Programming

 Advanced VB Programming -- Networks, APIs, DLLs, Graphics

 Data Access & VB Database Programming

 VB Design Environment

 Running VB Applications

 General VB References & Documentation Corrections

 VB Setup, Installation, CDK, Help Compiler, DDE, & OLE

 Visual Basic for Windows: Tips & Techniques

 VB Programming Using Standard Controls

 VB Programming Using Custom & Third-Party Controls
 VB Custom Controls Support only Certain Picture Formats

 PRB: Grid Custom Control: Surprising Results when FillStyle=1
 PRB: Grid Control's Cell Blank When Using Str$
 VB Grid Custom Control: Text Limited to 255 Characters
 PRB: Grid Custom Control: LeftCol/TopRow Valid Values
 3-D Group Push Button: AutoSize Takes Effect Only on PictureUp

 VB Graph Control Displays Maximum of 80 Characters Per Title
 VB.EXE Error: License File for Custom Control Not Found
 How to Use HORZ1.BMP with Professional Toolkit Gauge Control
 HOME Key in VB.EXE Moves to Beginning of Code, Not Column 1
 PRB: Animated Button Control: Refresh Won't Redraw Border
 BUG: Graph Custom Control Text Disappears in EGA Video Mode

 VB Key Status: Autosize Property Affects Height and Width
 VB Graph Control: ThisPoint, ThisSet Reset to 1 at Run Time
 VB AniButton Control: Cannot Resize if PictDrawMode=Autosize
 PRB: Can't Change Minimized/Maximized MDIChild's Position/Size
 "Device Is Not Open or Is Not Known" Running VB MCITEST Sample
 "Cannot Find MMSYSTEM.DLL" Loading VB MCI.VBX in Windows 3.0
 PENCNTRL.VBX Err: Requires Microsoft Windows for Pen Computing

 PRB: MDI Child Cannot Be Maximized/Minimized While Invisible
 PRB: MDI Child Custom Control: ScaleMode Defaults to Twips
 VB Graph Custom Control: DataReset Property Resets to 0 (Zero)
 How to Use VB Graph Control to Graph Data from Grid Control
 How to Read Flag Property of VB Common Dialog Custom Controls
 How to Create Column and Row Labels in VB Grid Custom Control
 VB MCI Control Does Not Support PC Speaker Driver

 VB MCI Control Does Not Support Recording of MIDI Data
 VB Grid Custom Control Refreshes on All Cell Change Events
 VB Graph: Use XPosData to Plot Fractional X-Axis Values
 Toolkit 3-D Control (THREED.VBX) Default Property Values
 Using a Linked Sound Recorder Object with OLECLIEN.VBX
 PRB: THREED Check Box Is Not Grayed Out When Value = 2 in VB

 How to Clear All or Part of Grid in Visual Basic
 How to Make a Spreadsheet-Style Grid that Allows Editing
 Masked Edit Control, Mask Property Clarification
 Name Property Cannot Be Set When Using Implicit Property
 New Features Added to Graph Control in Versions 2.0 and 3.0
 Create .MMM Movie Files with Macromedia Director for Macintosh
 MaxFileSize Property Range in CMDDIALOG.VBX Can Be 1 to 2048

 Maximum Length of Name Property Depends on Events Supported
 Set DrawMode to 2 Or 3 to Update Changes to Graph at Run Time

 How to Right Justify Standard Numbers in a Masked Edit Field
 Playing an .AVI File with the MCITEST Example
 PRB: Some ATI Video Drivers Hang When Using MSOUTLIN.VBX
 International and U.S. Support for Crystal Reports
 How to Fill (Populate) a Grid with Database Data -- 4 Methods

 Error Listing for MCI.VBX Control
 How to Include Return Receipt Functionality w/ MAPI Control
 PRB: Default Extension Ignores File Type in VB Common Dialog
 PRB: Out of Memory Error Using VB Outline Control
 VB CDK Cannot Access the Properties of the VB System Objects
 VB ver 3.0 CDK TN002.TXT: Custom Control Version Management
 Windows 3.1 VERSIONINFO - Version-Information Resource Example

 Category Keywords for All Visual Basic KB Articles
 How to Display Multiple Foreground Text Colors in VB List Box
 PRB: Using RecordCount with VB Dynasets, Snapshots, and Tables
 Using Table Objects Versus Dynaset/Snapshot Objects in VB
 PRB: Common Dialog Open: Err=20476 Buffer lpstrFile Too Small
 VB Crystal Reports Files to Distribute with Your .EXE Program
 How to Use SizeMode Property of OLE Control to Size Display
 How to View Microsoft Word Toolbars Using OLE Control

 How to Print an Embedded Word Document in Visual Basic
 PRB: Serial Port Driver for WFW 3.11 Sends Extra Byte
 How to Save an Embedded Word Document in Visual Basic
 How to Create a Gantt Chart in VB Using a Graph Custom Control
 How to Size the Rows and Columns of a Grid to Fit Exactly
 How to Send a Mail Message Using Visual Basic MAPI Controls

 Optimization, Memory Management, & General VB Programming

 Advanced VB Programming -- Networks, APIs, DLLs, Graphics

 Data Access & VB Database Programming

 VB Design Environment

 Running VB Applications

 General VB References & Documentation Corrections

 VB Setup, Installation, CDK, Help Compiler, DDE, & OLE

 Visual Basic for Windows: Tips & Techniques

 VB Programming Using Standard Controls

 VB Programming Using Custom & Third-Party Controls

 Optimization, Memory Management, & General VB Programming
 VB Out of Stack Space Error w/ LoadPicture in Form_Paint Event

 Comments and Blank Lines Increase Size of VB 1.0 .EXE File
 How to Optimize Size and Speed of Visual Basic Applications
 How to Determine Display State of a VB Form, Modal or Modeless
 Example of Sharing a Form Between Projects in VB for Windows
 Limit of 15 or 31 Timer Controls in Visual Basic for Windows

 Redim: Array Already Dimensioned Msg After Dim w/ Subscripts
 LONG: List of VB Version 1.0 for Windows Trappable Errors
 Differences Between QuickBasic and Visual Basic Statements
 PRB: For Loop w/ Integer Counter & Increment <=.5 Causes Hang
 How to Emulate MKI$ and CVI in VB Using Windows HMemCpy
 Diagnosing General Protection Fault / UAE in VB for Windows

 Visual Basic 3.0 General Information Questions & Answers
 How to Break Long Statements into Multiple Lines
 Basic Products Can Create and Use Non-Standard File Names
 Obtaining Date or Serial Result from DateSerial or DateValue
 FileDatetime Doesn't Include Time If File Time Is Midnight
 PRB: File Not Found Error When Running .EXE on Other Computer

 Sum Of VB Strings Can Exceed 64K in Certain Circumstances
 How to Retrieve Hidden/System Files Using Dir[$]() Function
 PRB: Can't Set Formal Parameter When Setting Object Vars
 Expected Expression Error: Dynamic Array Not OK in User-Type
 Category Keywords for All Visual Basic KB Articles
 How to Capitalize the First Letter of Each Word in a String

 How to Convert a Decimal Number to a Binary Number in a String
 How to Use TABs in a VB Text Box Without Changing the Focus
 PRB: VB 3.0 AppActivate Fails on 32-Bit Windows NT Application
 How to Find Num of Days Between Dates Outside of Normal Range
 How to Scroll a Form When VB Forms Are Limited to Screen Size
 How to Speed Up Data Access by Using BeginTrans & CommitTrans

 LONG: Microsoft Consulting Services Naming Conventions for VB
 How to Encrypt a String with Password Security in VB
 Searchable Electronic VB Info: VB Help Files & MSDN CD-ROM
 How to Remove Menu Items from a Form's Control-Menu Box
 PRB: Week Starts Sunday and Ends Saturday for Format Function
 How to Get a Handle to MS-DOS Application and Change Title
 Example of NPV and IRR Financial Functions in VB for Windows

 How to Mimic HIWORD, LOWORD, HIBYTE, LOBYTE C Macros in VB
 How to Determine If a File Exists by Using DIR$

 How To Seek a CD Track by Using the MCI Control
 How To Get the Total Playing Time of an Audio CD
 How to Get or Create a Unique Audio CD Volume Label
 General Memory Management in Visual Basic Vers 3.0 for Windows

 PRB: Error When Assign DB Value to Var: Invalid Use of Null

 Advanced VB Programming -- Networks, APIs, DLLs, Graphics

 Data Access & VB Database Programming

 VB Design Environment

 Running VB Applications

 General VB References & Documentation Corrections

 VB Setup, Installation, CDK, Help Compiler, DDE, & OLE

 Visual Basic for Windows: Tips & Techniques

 VB Programming Using Standard Controls

 VB Programming Using Custom & Third-Party Controls

 Optimization, Memory Management, & General VB Programming

 Advanced VB Programming -- Networks, APIs, DLLs, Graphics
 How to Clear a VB List Box with a Windows API Function

 How to Emulate QuickBasic's SOUND Statement in Visual Basic
 How to Flood Fill (Paint) in VB using ExtFloodFill Windows API
 How to Use Windows BitBlt Function in Visual Basic Application

 How to Pass One-Byte Parameters from VB to DLL Routines
 How to Send an HBITMAP to Windows API Function Calls from VB
 How to Create a Flashing Title Bar on a Visual Basic Form
 How to Implement a Bitmap Within a Visual Basic Menu
 How to Create Rubber-Band Lines/Boxes in Visual Basic
 How to Create Flashing/Rotating Rubber-Band Box in VB
 Declare Currency Type to Be Double When Returning from DLL

 How to Create a System-Modal Program/Window in Visual Basic
 VB Out of Stack Space Error w/ LoadPicture in Form_Paint Event
 How to Limit User Input in VB Combo Box with SendMessage API
 Determining Number of Lines in VB Text Box; SendMessage API
 How VB Can Determine if a Specific Windows Program Is Running
 How to Scroll VB Text Box Programmatically and Specify Lines
 WINAPI.TXT: Windows API Declarations and Constants for VB
 PRB: Duplicate PostScript Font Names in VB Printer.Fonts List

 Determining Whether TAB or Mouse Gave a VB Control the Focus
 How to Access Windows Initialization Files Within Visual Basic
 How to Print the ASCII Character Set in Visual Basic
 How to Clear a VB Combo Box with a Windows API Function
 BUG: Bad Text in Long Right-Aligned Labels in Windows ver 3.0
 Using Windows API Functions to Better Manipulate Text Boxes
 PRB: No Events Generated When Msgbox Active

 How to Create and Use a Custom Cursor in Visual Basic; Win SDK
 Terminating Windows from a Visual Basic Application
 How to Print a VB Picture Control Using Windows API Functions
 How to Invoke GetSystemMetrics Windows API Function from VB
 Examples of Copying a Disk File in Visual Basic for Windows
 How to Determine Display State of a VB Form, Modal or Modeless
 Example of How to Read and Write Visual Basic Arrays to Disk

 How to Get Windows Master List (Task List) Using Visual Basic
 Use Common Dialog or Escape() API to Specify Number of Copies
 Lstrcpy API Call to Receive LPSTR Returned from Other APIs
 PRB: Format$ Using # for Digit Affects Right Alignment

 Use SetHandleCount to Open More than 15 Files at Once in VB
 How to Set Landscape or Portrait for Printer from VB App

 How to Kill an Application with System Menu Using Visual Basic
 How to Reset the Parent of a Visual Basic Control
 How to Add a Horizontal Scroll Bar to Visual Basic List Box
 How to Print VB Form Borders and Menus
 How to Clear VB Picture Property at Run Time Using LoadPicture
 How to Get Windows Version Number in VB with GetVersion API
 How to Copy Entire Screen into a Picture Box in Visual Basic
 VB Custom Controls Support only Certain Picture Formats

 How to Print Multiline Text Box Using Windows API Functions
 How to Use FillPolygonRgn API to Fill Shape in Visual Basic
 How to Set Windows System Colors Using API and Visual Basic
 VB AniButton Control: Cannot Resize if PictDrawMode=Autosize
 How to Disable Close Command in VB Control Menu (System Menu)
 PRB: Can't Change Minimized/Maximized MDIChild's Position/Size
 How to Create a Form with no Title Bar in VB for Windows
 How to Call LoadModule() API Function from Visual Basic

 How to Draw an Ellipse with Circle Statement in VB
 UCase$/LCase$ in Text Box Change Event Inverts Text Property
 How to Print Entire VB Form and Control the Printed Size
 Creating TOPMOST or "Floating" Window in Visual Basic
 Property or Control Not Found When Use Form/Control Data Type
 PRB: DateValue Argument Gives "Illegal Function Call" Error

 How VB Can Get Windows Status Information via API Calls
 How to Determine the Number of VB Applications Running at Once
 VB "Bad DLL Calling Convention" Means Stack Frame Mismatch
 Print Form or Client Area to Size on PostScript or PCL Printer
 How to Play a Waveform (.WAV) Sound File in Visual Basic
 VB for Windows Line Method Does Not Paint Last Pixel

 How to Invoke Search in Windows Help from Visual Basic Program
 How to Use LZCOPYFILE Function to Decompress or Copy Files
 How to Hide a Non-Visual Basic Window or Icon
 How to Compare User-Defined Type Variables in Visual Basic
 How to Extract a Windows Program Icon -- Running or Not
 Diagnosing "Error in loading DLL" with LoadLibrary

 Converting an Icon (.ICO) to Bitmap (.BMP) Format
 Visual Basic 3.0 Programming Questions & Answers
 How to Get Windows 3.1 Version Number in VB with GetVersion
 How to Establish a Network DDE Link Using Visual Basic
 Form Cannot Be Larger Than the Screen
 How to Connect to a Network Drive by Using WNetAddConnection
 Using Lstrcpy() API Function to Get Far Address of a Variable

 How to Pass Numeric Variables to a C DLL
 How to Create a Transparent Bitmap Using Visual Basic

 How Windows Versions 3.0 and 3.1 Activate Apps Differently
 How to Use Windows 3.1 APIs to Play Videos in Visual Basic
 Using PASSTHROUGH Escape to Send Data Directly to Printer
 Using an Escape to Obtain and Change Paper Size for Printer

 How to Obtain & Change the Paper Bins for the Default Printer
 How to Determine When a Shelled Process Has Terminated
 Using the Printer Object to Print a Grid Control's Contents
 How to Use SystemParametersInfo API for Control Panel Settings
 Example of calling EnumFontFamilies from a DLL
 How to Print Text Sideways in Picture Control with Windows API
 How to Play MIDI Files Using API Calls from Visual Basic

 How to Read a Large File into Memory by Calling API Functions
 How to Find Next Available Drive Letter (for Network Connect)
 How to Set the Formatting Rectangle of a TextBox
 Adjusting Form Size for Different Video Screen Resolutions
 How to Play an .AVI Video File in Full Screen in Visual Basic
 Windows Debugging Tools for Use with Visual Basic

 How to Get Control Dimensions from VBGetControlProperty
 PRB: GP Fault if Uninitialized String Passed to API Function
 Changing WIN.INI Printer Settings from VB using Windows API
 How to Create a Screen Saver in Visual Basic
 How to Write C DLLs and Call Them from Visual Basic
 How to Pass User-Defined Structure Containing Strings to DLL
 PRB: Printer.FontSize Return Value Is Not Requested Value

 Category Keywords for All Visual Basic KB Articles
 Popular Windows API Functions Used from Visual Basic 3.0
 How to Invoke MessageBeep API to Play System Alert .WAV Sounds
 Using MSGBLAST.VBX Control to Process Windows Messages from VB
 LONG: How to Call Windows API from VB - General Guidelines
 How to Create a Read-Only Text Box Using SendMessage API
 How to Add Items into Control Menu Box of Visual Basic Form
 How to Turn on Mouse Trails with Visual Basic

 How to Make Mouse Pointer (Cursor) Maintain Hourglass Shape
 How to Right Justify Items in List Box w/ Tabs & SendMessage
 How to Get a Window's Class Name and Other Window Attributes
 How To Add a Scalable Font to Windows From Visual Basic
 How to Pass & Return Unsigned Integers to DLLs from VB
 How to use functions in VER.DLL -- a Sample Application

 Data Access & VB Database Programming

 VB Design Environment

 Running VB Applications

 General VB References & Documentation Corrections

 VB Setup, Installation, CDK, Help Compiler, DDE, & OLE

 Visual Basic for Windows: Tips & Techniques

 VB Programming Using Standard Controls

 VB Programming Using Custom & Third-Party Controls

 Optimization, Memory Management, & General VB Programming

 Advanced VB Programming -- Networks, APIs, DLLs, Graphics

 Data Access & VB Database Programming
 ODBC Setup Program Gives Error: Could not open file...

 How to Keep the Current Record the Same After Using Refresh
 How to Copy Current Database Record into a Record Variable
 How to Use Data Control to Scroll Up and Down in a Recordset

 ODBC Setup & Connection Issues for Visual Basic Version 3.0
 How to Implement the DLookup Function in Visual Basic
 PRB: Can't Use ActiveForm to Reference Data Control in VB 3.0
 PRB: Visual Basic 3.0 ODBC Does Not Support OpenTable Method
 Transactions on ODBC Data Sources in Visual Basic Version 3.0
 How to Open dBASE Table with Nonstandard File Extension
 PRB: Error When Updating Fields in Dynaset That Has 2+ Tables

 How to Build Access DB & Load Data from Btrieve for Windows DB
 How to Make Access DB & Transfer Data from Btrieve for MS-DOS
 Differences Between the Object Variables in VB Version 3.0
 How to Convert a Text File into a New Access Database
 Limitations of the Data Control in Visual Basic Version 3.0
 How to Create an Access DB & Transfer Data from dBASE III DB

 Examples Show How to Query BIBLIO.MDB Database
 PRB: TableDefs Not Updated When SQL Statement Creates Table
 PRB: Error 3219 When Updating Record Set Created w/ Distinct
 How to Encrypt a Microsoft Access Database in Visual Basic
 Differences Among the Installable ISAMs
 Referential Integrity Enforced for DBs Created in Access
 How to Query for Dates Using a SQL Statement in VB 3.0

 How to Use VB Control Property or Variable in SQL Statement
 PRB: Error or GP Fault When Pass Data Control as Control
 PRB: Invalid Property Value When Binding Masked Edit Control
 How Visual Basic Handles Security Set by Microsoft Access
 PRB: Illegal to Use Find Methods w/ SQL PASSTHROUGH & ODBC DB
 PRB: Illegal to Use Find Method with Table Object Variable
 How to Call SQL Stored Procedures from Visual Basic

 PRB: Invalid Database Object after Rollback without BeginTrans
 PRB: No Current Record Error In VB When Database is Empty
 How VB Can Determine If Table Is Locked By Other Processes
 How to Change Read-Only Access of a Data Control at Run Time

 Possible Reasons for Couldn't Find Installable ISAM Error
 How to Create a Parameter Query in Visual Basic for Windows

 LONG: PERFORM.TXT - Performance Tuning Tips for VB and Access
 Microsoft Access Database RAM Cache Is Faster Data File Method
 VISDATA Example of Every Data Access Function in VB Prof 3.0
 How to Create a Microsoft Access Database using VB Prof 3.0
 How to Copy Table from One Database to Another in VB Prof 3.0
 How to Delete a Field from a Populated Table
 Comparison of Seek Versus Find Methods, for VB Data Access

 How to Count Rows Affected Before Query in VB Prof ver 3.0
 DOC: Revised Index Property (Data Access)
 LONG: Overview of Data Access in Visual Basic Version 3.0
 PRB: Find Methods Don't Use Indexes to Speed Up VB Data Access
 How to Attach an External Database Table to a VB 3.0 Database
 How to Request Exclusive Use of a Table in VB Prof 3.0

 Category Keywords for All Visual Basic KB Articles
 Basic Cannot Get Description Shown in Access Table Design View
 How to List the Fields in a Table & the Tables in a Database
 How to Use SQL Outer Join to Find All Table B Records Not in A
 How to Set VB Data Control to External ODBC Database Dynaset
 How to Speed Up Data Access by Using BeginTrans & CommitTrans
 PRB: Dynaset Loses Contents After Transaction Rollback
 How to Use Wildcards in SQL Query to Make Dynasets & Snapshots

 PRB: Closed ODBC Database Stays Open Until Time-Out or VB Ends
 How to Use Seek and MoveNext to Find a Group/Range of Records
 How to Copy a Record from One Table to Another in VB
 PRB: Couldn't Open PARADOX.NET When Opening Paradox 3.x Table
 PRB: Object Variable Not Set When Referencing Data Control
 How to Determine the Restored State of a Minimized Form

 PRB: Commit or Rollback without BeginTrans Error and VB Forms
 Documentation and Features for Visual Basic's Data Manager
 PRB: Error: Couldn't Lock File SHARE.EXE Hasn't Been Loaded
 How to Use SQL SELECT Statement Without Field Syntax Error
 Create Database with Data Manager & View w/ Text/Data Control
 How to Delete a Table from a Database Using Visual Basic
 PRB: Novell Btrieve Unexpected Error from External DB Driver

 PRB: VB Record Too Large When Add or Update Record > 2K
 How to Create Database with Memo Fields Up to 32000 Bytes
 Hitchhiker's Guide to VBSQL -- VBSQL vs ODBC API Data Access
 How to Implement ToolTips Help in Visual Basic Applications
 How to Read Database Fields Into and Out of a List Box
 PRB: Can't find Installable ISAM When Run Two DB Apps in VB

 How to Perform Microsoft Access Macro Action Via DDE from VB

 VB Design Environment

 Running VB Applications

 General VB References & Documentation Corrections

 VB Setup, Installation, CDK, Help Compiler, DDE, & OLE

 Visual Basic for Windows: Tips & Techniques

 VB Programming Using Standard Controls

 VB Programming Using Custom & Third-Party Controls

 Optimization, Memory Management, & General VB Programming

 Advanced VB Programming -- Networks, APIs, DLLs, Graphics

 Data Access & VB Database Programming

 VB Design Environment
 Clicking Toolbox/Color Palette Menu Doesn't Leave Menu Open

 No Edit Menu Access for Property Entry; Use Edit Shortcut Keys
 Deleting VB Control Moves Associated Code to Object: (General)

 PRB: VB Help Misleading Error: Unable to Find Windows Help.EXE
 Using PAGE DOWN and PAGE UP Keys Within VB.EXE Environment
 CTRL+HOME Commits Current Line to VB Syntax Checking/Parsing
 VB Forms with Menus Cannot Have Fixed Double BorderStyle
 PRB: Invalid in Immediate Window Error When Creating Variable
 PRB: ToolBox/Color Palette Menus Lose Focus After Single ESC

 PRB: Compatibility Problems with Adobe Type Manager
 Restart in VB Break Mode if Delete Blank Line Above End Sub
 PRB: Printer Error When Printing VB Form to Text-Only Printer
 PRB: Printing with HPPCL5A.DRV to HP LaserJet III Cuts Line
 High Granularity Setting Affects Windows/VB Form Resizing
 Helv and Tms Rmn FontNames Not Available in Windows 3.1

 VB Uses Bitmap Fonts when TrueType FontSize Less Than 7 Points
 VB for Windows Trappable Errors List of Changes/Additions
 How to Use Visual Basic Vers 1.0, 2.0, & 3.0 on Same Computer
 Add Graph Causes Err: GSW.EXE and GSWDLL.DLL Version Mismatch
 PRB: Placing Controls inside Container Controls
 Category Keywords for All Visual Basic KB Articles

 Running VB Applications

 General VB References & Documentation Corrections

 VB Setup, Installation, CDK, Help Compiler, DDE, & OLE

 Visual Basic for Windows: Tips & Techniques

 VB Programming Using Standard Controls

 VB Programming Using Custom & Third-Party Controls

 Optimization, Memory Management, & General VB Programming

 Advanced VB Programming -- Networks, APIs, DLLs, Graphics

 Data Access & VB Database Programming

 VB Design Environment

 Running VB Applications
 Can't Use Multiple & (for Access Keys) in a VB Menu Control

 Cannot Tile or Cascade Programs Created with Visual Basic
 Some VB.EXE Main Menu Commands Can Be Invisible at Run Time

 UAE or GP Fault with VB .EXE Acting as Windows 3.0 Shell
 F5 in Run Mode with Focus on Main Menu Bar Acts as CTRL+BREAK
 PRB: Access Key Causes Different Event Order than Mouse Click
 Determining Whether TAB or Mouse Gave a VB Control the Focus
 How to Use CodeView for Windows (CVW.EXE) with Visual Basic
 Simulating ON KEY and Key Trapping by Using the KeyDown Event

 Sending Keystrokes from Visual Basic to an MS-DOS Application
 "Error Loading DLL" if VB Compiled .EXE Has Same Name as DLL
 VB Error Using Shell: Cannot Find DLL, Insert in Drive A
 VB CURDIR$ Function Not Reliable to Determine Program Location
 How to Get Windows Version Number in VB with GetVersion API
 PRB: Device Unavailable Msg When Change Path & Drive Door Open
 How to Right Justify Numbers Using Format$

 Programming a Delay Using the Timer Function
 How to Emulate Overtype Mode in a Visual Basic Text Box
 'Error in loading DLL' When LIBRARY Name Not Same as Filename
 PRB: Some ATI Video Drivers Hang When Using MSOUTLIN.VBX
 Category Keywords for All Visual Basic KB Articles
 PRB: Making .EXE Gives Error: Wrong Version of Runtime DLL

 General VB References & Documentation Corrections

 VB Setup, Installation, CDK, Help Compiler, DDE, & OLE

 Visual Basic for Windows: Tips & Techniques

 VB Programming Using Standard Controls

 VB Programming Using Custom & Third-Party Controls

 Optimization, Memory Management, & General VB Programming

 Advanced VB Programming -- Networks, APIs, DLLs, Graphics

 Data Access & VB Database Programming

 VB Design Environment

 Running VB Applications

 General VB References & Documentation Corrections
 (Complete) Tutorial to Understand IEEE Floating-Point Errors

 How to Contribute Visual Basic Articles to the Microsoft KB
 Why Cooper Software Is Listed in Visual Basic's Copyright

 Technical Data Sheets Available for Visual Basic for Windows
 Visual Basic Online Help Example Errors
 List of Visual Basic Companion Products and Services Available
 LONG: Visual Basic Companion Products & Services (Complete)
 Cobb Group's "Inside Visual Basic" Journal Article Titles

 Visual Basic 3.0 Support Service Questions & Answers
 Name Property Cannot Be Set When Using Implicit Property
 Visual Basic MCI Control TimeFormat Property Information
 Corrections for Errors in Visual Basic Version 2.0 Manuals
 Visual Basic User Groups in the U.S.A. and Other Countries
 Differences Between VCP Version 1.0 and VB Version 2.0 or 3.0
 Data Manager Source Code Available on CompuServe

 International and U.S. Support for Crystal Reports
 LONG: Corrections for Errors in VB Version 3.0 Manuals
 README.TXT for Standard Edition of VB ver 3.0 for Windows
 README.TXT for Professional Edition of VB 3.0 for Windows
 PACKING.LST for Standard Edition of VB 3.0 for Windows
 PACKING.LST for Professonal Edition of VB 2.0 for Windows
 README.TXT for Professional Edition of VB Ver 2.0 for Windows

 PACKING.LST for Professional Edition of VB 3.0 for Windows
 Developer Services Offers Solution Provider Packages
 How to Get Entire VB KB in 2 Help Files with Full-Text Search
 How to Write C DLLs and Call Them from Visual Basic
 LONG: VB Pro 3.0 SAMPLES.TXT: Descriptions of Sample Programs
 DOC: WinHelp Declaration Incorrect in Windows Ver 3.1 API Ref

 LONG: List of Trappable Errors for Visual Basic 3.0
 LONG: VB 3.0 EXTERNAL.TXT: Using External Database Tables

 VB 3.0 CONSTANT.TXT Gives Values for Named Constants
 VB 3.0 DATACONS.TXT: Const Constant Values for Data Access
 Category Keywords for All Visual Basic KB Articles
 LONG: How to Call Windows API from VB - General Guidelines
 LONG: Microsoft Consulting Services Naming Conventions for VB
 How to Add Items into Control Menu Box of Visual Basic Form
 DOCERR: GetPrivateProfileString Declaration Incorrect in API

 Fixlist for Visual Basic for Windows as of 14-Feb-1994
 Buglist for Visual Basic for Windows as of 14-Feb-1994

 VB Setup, Installation, CDK, Help Compiler, DDE, & OLE

 Visual Basic for Windows: Tips & Techniques

 VB Programming Using Standard Controls

 VB Programming Using Custom & Third-Party Controls

 Optimization, Memory Management, & General VB Programming

 Advanced VB Programming -- Networks, APIs, DLLs, Graphics

 Data Access & VB Database Programming

 VB Design Environment

 Running VB Applications

 General VB References & Documentation Corrections

 VB Setup, Installation, CDK, Help Compiler, DDE, & OLE
 PRB: Insufficient Disk Space Error When Setup Copies Files
 Example of Client-Server DDE Between Visual Basic Applications

 DDE Example Between Visual Basic and Word for Windows
 DDE from Visual Basic for Windows to Excel for Windows
 Using DDE Between Visual Basic and Q+E for Windows
 DDE Example Between Visual Basic and Windows Program Manager
 Visual Basic and DDE/OLE with Other Windows Applications
 PRB: Workaround for Not Enough Memory to Load Tutorial Error

 VB CDK VBAPI.LIB Contains CodeView Information
 How to Subclass a VB Form Using VB CDK Custom Control
 VB CDK Custom Property Name Cannot Start with Numeric Value
 PRB: SETUP.EXE Error: Insufficient Disk Space on: C:\WINDOWS
 Call VBSetErrorMessage() In Response to VBM_ Messages Only
 Getting Program Manager Group Names into Combo Box in VB

 VB DDE to Excel with Embedded TAB Can Truncate String in Excel
 VB Example of Using DDE LinkExecute to Word for Windows 2.0
 VB CDK: Example of Subclassing a Visual Basic Form
 VB Example of Using DDE to Run a Word 2.0 for Windows Macro
 How to Use a Linked Paintbrush Object with OLECLIEN.VBX
 How to Obtain a Listing of Classes for OLE Client Control

 Visual Basic 3.0 Setup & Installation Questions & Answers
 Visual Basic 3.0 Programming Questions & Answers
 How to Establish a Network DDE Link Using Visual Basic
 Use COMPRESS-r to Avoid Error: Could not execute: SETUP1.EX 2
 DDE Conversation Can Cause Error Message: DDE Channel Locked
 How to Use DDE to Display Microsoft Access Data in VB
 OLE Embedding & Linking Word for Windows Objects into VB Apps

 PRB: Error: Setup could not be completed due to system errors

 PRB: GP Fault with Visual Basic DDE Sample & Word for Windows
 How to Change the Setup Application Name in SETUP1.EXE
 Additions to 'Determining the Files You Need to Distribute'
 How to Run a WinHelp Macro from a Help File
 How to Manipulate Groups & Items in Program Manager Using DDE
 How to Use DDE Between Excel and Visual Basic

 How to Copy and Paste DDE Links Using CF_LINK in Visual Basic
 Sample .MAK for Compiling VB Custom Control in Borland C++ 3.1
 VB Ver 3.0 CDK TN001.TXT: Support for DT_OBJECT Properties
 PRB: VB.LIC License File Not Found, Can't Load MSOUTLIN.VBX
 How VB Can Use OLE Automation with Word Version 6.0
 PRB: DDE Error When Running Setup on Norton Desktop

 PRB: Extra Repaint of VB CDK Graphical Custom Control
 Category Keywords for All Visual Basic KB Articles
 How to View Microsoft Word Toolbars Using OLE Control
 How to Navigate Excel Objects from Visual Basic Version 3.0
 How to Print an Embedded Word Document in Visual Basic
 Retrieving Groups & Items from Program Manager Using DDE in VB
 How to Find Articles On Visual Basic For Applications
 How to Create Excel Chart w/ OLE Automation from Visual Basic

 How to Save an Embedded Word Document in Visual Basic
 How VB Can Use OLE Automation with Excel Version 5.0
 POSITION.HLP File for VB OLE Automation w/ Word for Windows
 How to Perform Microsoft Access Macro Action Via DDE from VB

How to Trap VB Form Lost Focus with GetActiveWindow API
Article ID: Q69792

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows,
 versions 1.0, 2.0, and 3.0

SUMMARY
=======

The LostFocus event in Microsoft Visual Basic is useful when transferring
control within an application, and you can use the form deactivate and
activate events in versions 2.0 and 3.0 to see if the entire form has
lost the focus. However, in version 1.0, no global routine exists to check
for the entire form losing the focus. To check whether your version
1.0 application has lost the focus, periodically check the Windows API
function GetActiveWindow in a Visual Basic timer event, as explained below.

MORE INFORMATION
================

The only way that version 1.0 provides a check for loss of focus on a
form or control is by triggering the LostFocus event. A form does
support a LostFocus event; however, a form will only get focus if
there are no controls on that form. Focus goes to the controls on a
form, and when you click any other visible form, the control's
LostFocus procedure will be called. A control's LostFocus procedure
will also be called when another control on the form is activated. To
perform a routine that occurs only when the form loses focus requires
careful management of what generated a LostFocus event on each control
(such as setting a flag if another control's Click event was called).

For a simpler method to check if a whole form has lost the focus, you
can call the Windows API function GetActiveWindow, located in USER.EXE
(a DLL provided with Windows 3.0). The GetActiveWindow API call
returns the window handle of the currently active window, which is the
new window that you last clicked anywhere in Microsoft Windows. In a
timer event procedure for the form, call GetActiveWindow and compare
the handle of the currently active Window with the handle of the form
window (Form1.hWND). If the handle differs, you know the form has lost
the focus. The following program example demonstrates this technique:

Program Example

This single-form example will print "Lost Focus" on the form when you
click a different window (such as when you click another program
running in Windows).

In Visual Basic, draw one timer control (Timer1) and one command
button (Command1) on a single form (Form1).

From the VB.EXE Code menu, choose View Code, and enter the following

code for Form1, using (general) from the Object box, and
(declarations) from the Procedure box:

 Declare Function GetActiveWindow Lib "User" () As Integer
 Dim FOCUS As Integer
 Const TRUE = -1
 Const FALSE = 0

From the Object box, choose Timer1, and from the Procedure box, choose
Timer, and then put the following code in the Timer1_Timer procedure:

Sub Timer1_Timer ()
 If FOCUS = TRUE Then
 ' Compare the handle of the currently active Window with the handle
 ' of the Form1 window:
 If GetActiveWindow() <> Form1.hWND Then
 'Do form's lost-focus routines here.
 Print "Lost Focus"
 FOCUS = FALSE
 End If
 End If
End Sub

You must set FOCUS=TRUE in the Click event procedure of every control
on the form, as follows:

From the Object box, choose Command1, and from the Procedure box, choose
Click, then put the following code in the Command1_Click procedure:

 Sub Command1_Click ()
 FOCUS = TRUE
 End Sub

Double-click Form1 (at design time) and enter the following code
for the Form_Click procedure:

 Sub Form_Click ()
 FOCUS = TRUE
 Timer1.Interval = 10
 End Sub

You can now run the program.

Reference(s):

"Programming Windows: the Microsoft Guide to Writing Applications for
Windows 3," Charles Petzold. Microsoft Press, 1990.

"Microsoft Windows Software Development Kit: Reference Volume 1,"
version 3.0.

WINSDK.HLP file shipped with Microsoft Windows 3.0 Software
Development Kit.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

How to Set Tab Stops in a List Box in Visual Basic
Article ID: Q71067

The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0

SUMMARY
=======

Visual Basic does not have any intrinsic function for creating multiple-
column list boxes. To create multiple-column list boxes, you must call a
Windows API function to set tab stops within the control. The tab stops
create the multiple-column effect.

For this technique to work, the values in the tab stop array must be
cumulative. That is, for three successive tabs to occur, you need to load
the tab stop array with 100, 150, 200.

MORE INFORMATION
================

To create the multiple-column effect in list boxes, call the Windows API
SendMessage function. After you set the focus to the list box, you must
send a message to the window's message queue that will reset the tab stops
of the list box. Using the argument LB_SETTABSTOPS as the second parameter
to SendMessage will set the desired tab stops for the multicolumn effect
based on other arguments to the function. The SendMessage function requires
the following parameters to set tab stops:

 SendMessage (hWnd%,LB_SETTABSTOPS, wParam%, lparam)

where

 wParam% is an integer that specifies the number of tab stops.

 lParam is a long pointer to the first member of an array
 of integers containing the tab stop position in
 dialog units.

A dialog unit is a horizontal or vertical distance. One horizontal dialog
unit is equal to 1/4 of the current dialog base-width unit. The dialog base
units are computed based on the height and the width of the current system
font. The GetDialogBaseUnits function returns the current dialog base units
in pixels.) The tab stops must be sorted in increasing order; back tabs are
not allowed.

After setting the tab stops with the SendMessage function, return the focus
to the control that had the focus before the procedure call. PutFocus is
the Alias for the Windows API SetFocus function. The Windows API SetFocus
needs to be redefined using the "Alias" keyword because SetFocus is a
reserved word within Visual Basic.

Example Code to Create Multicolumn List Box

For example, to create a multiple-column list box in Visual Basic:

1. Start a new project in Visual Basic, and add a list box (List1) to
 Form1.

2. Declare the following Windows API function at the module level or in
 the Global section of your code as follows:

 ' Enter the Declare statement on one, single line:
 Declare Function SendMessage Lib "user" (ByVal hwnd As Integer,
 ByVal wMsg As Integer, ByVal wp As Integer, lp As Any) As Long

3. Declare the following constants:

 Const WM_USER = &H400
 Const LB_SETTABSTOPS = WM_USER + 19

4. Add the following code to the Form_Load Sub procedure:

 Sub Form_Load ()
 Const LB_SETTABSTOPS = &H400 + 19
 Static tabs(1 To 3) As Integer

 'Set up the array of defined tab stops.
 tabs(1) = 100
 tabs(2) = 150
 tabs(3) = 200

 'Send a message to the message queue.
 retVal& = SendMessage(List1.hWnd, LB_SETTABSTOPS, 3, tabs(1))
 'Enter the following two lines as one, single line:
 list1.AddItem "1" & Chr$(9) & "2" & Chr$(9) & "3" & Chr$(9)
 & "4" & Chr$(9) & "5"
 End Sub

REFERENCES
==========

"Programming Windows: the Microsoft Guide to Writing Applications for
Windows 3," Charles Petzold, Microsoft Press, 1990

"Microsoft Windows Software Development Kit: Reference Volume 1,"
version 3.0

WINSDK.HLP file shipped with Microsoft Windows 3.0 Software
Development Kit

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

How to Create Scrollable Viewports in Visual Basic
Article ID: Q71068

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

You can create scrollable viewports in Visual Basic by using standard
Basic calls. The viewports can include bitmaps, graphics, or other
controls.

MORE INFORMATION
================

This information is included with the Help file provided with Microsoft
Professional Toolkit for Visual Basic version 1.0, Microsoft Visual Basic
version 2.0, and Microsoft Visual Basic version 3.0.

To create a scrollable picture with clipping, you must have two picture
controls. The first picture control is called the stationary parent picture
control. Within the parent picture control, you need to create a movable
child picture control.

It is the child picture control that will be moved within the parent
picture control. Moving the child picture within the parent picture control
creates the clipping effect. During run time when you move the child
picture, it will be clipped by the boundaries of the parent picture.

To create these two picture controls, do the following:

1. Choose the picture box control from the Toolbox window in Visual Basic.

2. Draw a picture on the form. This is the parent picture.

3. Again choose the picture box control from the Toolbox window.

4. Draw the second picture on top of and within the boundaries of
 the first picture control. This is the child picture.

The sample application below shows how to create a scrollable bitmap
within a viewport. Perform the sequence above to create a parent/child
picture control. Add a horizontal scroll bar and a vertical scroll bar
to the form.

Make sure that the path to your bitmap is correct. Several of the
properties are set during run time, which could have been set during
design time as well.

Moving the thumb of the two scroll bars will move the child picture

within the parent picture. The handle (upper-left corner of the picture)
to the child picture will be located either at (0,0) of the parent picture
or to the left and/or right of the parent picture. Because the clipping
region is that of the parent picture, the child picture will appear to
move across the parent picture viewport.

Add the following code to the appropriate event procedures:

Sub Form_Load ()
 Const PIXEL = 3
 Add the following constant only in Visual Basic 1.0:
 ' Const TRUE = -1
 Const NONE = 0

 ' Set design properties, included here for simplicity.
 Form1.ScaleMode = PIXEL
 Picture1.ScaleMode = PIXEL

 ' AutoSize is set to TRUE so that the boundaries of
 ' Picture2 are expanded to the size of the actual bitmap.
 Picture2.AutoSize = TRUE

 ' Get rid of annoying borders.
 Picture1.BorderStyle = NONE
 Picture2.BorderStyle = NONE

 ' Load the picture that you want to display.
 Picture2.Picture = LoadPicture("c:\win\party.bmp")

 ' Initialize location of both pictures.
 Picture1.Move 0, 0, ScaleWidth - VScroll1.Width,_
 ScaleHeight - HScroll1.Height
 Picture2.Move 0, 0

 ' Position the horizontal scroll bar.
 HScroll1.Top = Picture1.Height
 HScroll1.Left = 0
 HScroll1.Width = Picture1.Width

 ' Position the vertical scroll bar.
 VScroll1.Top = 0
 VScroll1.Left = Picture1.Width
 VScroll1.Height = Picture1.Height

 ' Set the Max value for the scroll bars.
 HScroll1.Max = Picture2.Width - Picture1.Width
 VScroll1.Max = Picture2.Height - Picture1.Height

 ' Determine if child picture will fill up screen.
 ' If so, then there is no need to use scroll bars.

 VScroll1.Enabled = (Picture1.Height < Picture2.Height)
 HScroll1.Enabled = (Picture1.Width < Picture2.Width)
End Sub

Sub HScroll1_Change ()
 ' Picture2.Left is set to the negative of the value because

 ' as you scroll the scroll bar to the right, the display
 ' should move to the Left, showing more of the right
 ' of the display, and vice-versa when scrolling to the
 ' left.

 Picture2.Left = -HScroll1.Value

End Sub

Sub VScroll1_Change ()
 ' Picture2.Top is set to the negative of the value because
 ' as you scroll the scroll bar down, the display
 ' should move up, showing more of the bottom
 ' of the display, and vice-versa when scrolling up.

 Picture2.Top = -VScroll1.Value

End Sub

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

Why Output Might Not Display from VB Form_Load Procedure
Article ID: Q71101

The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
 - Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

Any graphics or output done within a Form_Load procedure will not
display on the form unless you first make the form visible with the
Form1.Show method or if you set the form's AutoRedraw property to be
true (non-zero).

MORE INFORMATION
================

When the Form_Load procedure executes (at the beginning of the
program), by default the form is not yet displayed. Therefore, during
the Form_Load event, no graphics are displayed to the nonexistent form
unless you first Show the form (at run time) or set the form's
AutoRedraw property (at design time or run time).

A better approach to drawing graphics to the form is to have the
graphics drawn to the form during a Sub Form_Paint procedure. This
allows the Form.AutoRedraw property to be set to FALSE, increasing the
speed performance of your program. Visual Basic does not have to
refresh the screen image of your form as it does when a form is
overlapped with another window. You (as the programmer) are
responsible for refreshing the form, and Sub Form_Paint is the most
logical place to handle this situation.

Listed below are three examples of drawing graphics to your form. The
first example shows how the graphics fail to be displayed to the form
when drawn from within a Form_Load event procedure. The second example
shows how you could draw a circle to the form, but the Form.AutoRedraw
property must be set to TRUE for the circle to be retained in the
event the form needs to be refreshed. The third example is the best
approach; it is the fastest and most efficient of the three.

For each example below, add the following Function procedure as a code
procedure to Form1.

Function Minimum! (n1!, n2!)
 If n1! < n2! Then
 Minimum! = n1!
 Else
 Minimum! = n2!
 End If
End Function

Example 1

No graphic is displayed to the form in the following:

Sub Form_Load
 Row = Form1.ScaleHeight / 2
 Col = Form1.ScaleWidth / 2
 Radius = Minimum(Row, Col) ' Function that returns smaller number.
 Form1.Circle (Col, Row), Radius
End Sub

Example 2

This example will work, but the AutoRedraw property of Form1 must be
TRUE for the screen to refresh properly:

Sub Form_Load
 Form1.Show
 Form1.AutoRedraw = -1
 Row = Form1.ScaleHeight / 2
 Col = Form1.ScaleWidth / 2
 Radius = Minimum(Row, Col) ' Function that returns smaller number.
 Form1.Circle (Col, Row), Radius
End Sub

Example 3

This is the best example. AutoRedraw should be set to FALSE for
better speed and efficiency.

Sub Form_Paint
 Row = Form1.ScaleHeight / 2
 Col = Form1.ScaleWidth / 2
 Radius = Minimum(Row, Col) ' Function that returns smaller number.
 Form1.Circle (Col, Row), Radius
End Sub

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

How to Create Pop-up Menus on a Visual Basic Form
Article ID: Q71279
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 2.0
- Microsoft Visual Basic programming system for Windows, version 1.0
--

SUMMARY
=======

Microsoft Visual Basic for Windows can call the Windows API function
TrackPopupMenu to display a specified menu at the location on the screen
where the user clicks with the mouse.

This information applies only to versions 1.0 and 2.0 because the new
PopupMenu command was introduced in Visual Basic version 3.0 for Windows.

MORE INFORMATION
================

The TrackPopupMenu function displays a "floating" pop-up menu at the
specified location and tracks the selection of items on the pop-up
menu. A floating pop-up menu can appear anywhere on the screen. The
hMenu parameter specifies the handle of the menu to be displayed; the
application obtains this handle by calling GetSubMenu to retrieve the
handle of a pop-up menu associated with an existing menu item.

TrackPopupMenu is defined as follows:

 TrackPopupMenu (hMenu%,wFlags%, X%, Y%, rRes%, hwnd%, lpRes&)

where:

 hMenu% - Identifies the pop-up menu to be displayed.
 wFlags% - Is not used and must be set to zero.
 x% - Specifies the horizontal position in screen coordinates
 of the left side of the menu on the screen.
 y% - Specifies the vertical position in screen coordinates
 of the top of the menu on the screen.
 nRes% - Is reserved and must be set to zero.
 hWnd% - Identifies the window that owns the pop-up menu.
 lpRes& - Is reserved and must be set to NULL.

The supporting Windows API functions needed to support the arguments
to TrackPopupMenu are:

1. GetMenu(hWnd%)

 hWnd% - Identifies the window whose menu is to be examined.

 GetMenu returns a value that identifies the menu. The return value
 is NULL if the given window has no menu. The return value is

 undefined if the window is a child window.

2. GetSubMenu(hMenu%, nPos%)

 hMenu% - Identifies the menu.
 nPos% - Specifies the position in the given menu of the pop-up
 menu. Position values start at zero for the first
 menu item.

 GetSubMenu returns a value that identifies the given pop-up menu.
 The return value is NULL if no pop-up menu exists at the given
 position.

To create a pop-up menu within Visual Basic for Windows, define a menu
system with the Menu Design window. The following is an example of a
menu system:

 Caption Name Indented

 File M_File No
 New M_New Once
 Open M_Open Once
 Close M_Close Once
 Exit M_Exit Once
 Help M_Help No

 (In Visual Basic version 1.0 for Windows, set the CtlName Property
 for the above objects instead of the Name property.)

Within the general-declaration section of your Code window, declare
the following:

' Enter each Declare statement on one, single line:
Declare Function TrackPopupMenu% Lib "user"(ByVal hMenu%, ByVal wFlags%,
 ByVal X%, ByVal Y%, ByVal r2%, ByVal hwnd%, ByVal r1&)
Declare Function GetMenu% Lib "user" (ByVal hwnd%)
Declare Function GetSubMenu% Lib "user" (ByVal hMenu%, ByVal nPos%)

Place the following code in the form's MouseUp event procedure:

Sub Form1_MouseUp (Button As Integer, Shift As Integer, X As Single,
 Y As Single)
 ' The above Sub statement must be concatenated onto one line.
 Const PIXEL = 3
 Const TWIP = 1
 ScaleMode = PIXEL
 InPixels = ScaleWidth
 ScaleMode = TWIP
 IX = (X + Left) \ (ScaleWidth \ InPixels)
 ' Enter the following IY statement on one, single line:
 IY = (Y + (Top + (Height - ScaleHeight -
 (Width - ScaleWidth)))) \ (ScaleWidth \ InPixels)
 hMenu% = GetMenu(hwnd)
 hSubMenu% = GetSubMenu(hMenu%, Button - 1)
 R = TrackPopupMenu(hSubMenu%, 0, IX, IY, 0, hwnd, 0)
End Sub

When you run the program, clicking anywhere in Form1 to display the first
menu on your menu bar at that location.

Additional reference words: 1.00 2.00 3.00 pop up popup
KBCategory:
KBSubcategory: PrgCtrlsStd

How to Create Rubber-Band Lines/Boxes in Visual Basic
Article ID: Q71488

The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
 - Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

Creating rubber bands within Visual Basic can be done using the
DrawMode property. Rubber bands are lines that stretch as you move the
mouse cursor from a specified point to a new location. This can be
very useful in graphics programs and when defining sections of the
screen for clipping routines.

MORE INFORMATION
================

The theory of drawing a rubber-band box is as follows:

1. Draw a line from the initial point to the location of the mouse
 cursor using:

 [form].DrawMode = 6. {INVERT}

2. Move the mouse cursor.

3. Save the DrawMode.

4. Set the [form].DrawMode to 6. {INVERT}

5. Draw the same line that was drawn in step 1. This will restore the
 image underneath the line.

6. Set the [form].DrawMode back to the initial DrawMode saved in step 3.

7. Repeat the cycle again.

DrawMode equal to INVERT allows the line to be created using the
inverse of the background color. This allows the line to be always
displayed on all colors.

The sample below will demonstrate the rubber-band line and the
rubber-band box. Clicking the command buttons will allow the user
to select between rubber-band line or a rubber-band box. The user will
also be able to select a solid line or a dashed line.

Create and set the following controls and properties:

 Control Name Caption Picture
 --

 Form1 Form1 c:\windows\chess.bmp
 Command1 RubberBand
 Command2 RubberBox
 Command3 Dotted
 Command4 Solid

In the general section of your code, define the following constants:

Const INVERSE = 6 '*Characteristic of DrawMode property(XOR).
Const SOLID = 0 '*Characteristic of DrawStyle property.
Const DOT = 2 '*Characteristic of DrawStyle property.
Const TRUE = -1
Const FALSE = 0
Dim DrawBox As Integer '*Boolean-whether drawing Box or Line
Dim OldX, OldY, StartX, StartY As Single '* Mouse locations

In the appropriate procedures, add the following code:

Sub Form_MouseDown (Button As Integer, Shift As Integer, X As
 Single, Y As Single)
 '* Store the initial start of the line to draw.
 StartX = X
 StartY = Y

 '* Make the last location equal the starting location
 OldX = StartX
 OldY = StartY
End Sub

Sub Form_MouseMove (Button As Integer, Shift As Integer, X As
 Single, Y As Single)
 '* If the button is depressed then...
 If Button Then
 '* Erase the previous line.
 Call DrawLine(StartX, StartY, OldX, OldY)

 '* Draw the new line.
 Call DrawLine(StartX, StartY, X, Y)

 '* Save the coordinates for the next call.
 OldX = X
 OldY = Y
 End If
End Sub

Sub DrawLine (X1, Y1, X2, Y2 As Single)
 '* Save the current mode so that you can reset it on
 '* exit from this sub routine. Not needed in the sample
 '* but would need it if you are not sure what the
 '* DrawMode was on entry to this procedure.
 SavedMode% = DrawMode

 '* Set to XOR
 DrawMode = INVERSE

 '*Draw a box or line
 If DrawBox Then

 Line (X1, Y1)-(X2, Y2), , B
 Else
 Line (X1, Y1)-(X2, Y2)
 End If

 '* Reset the DrawMode
 DrawMode = SavedMode%
End Sub

Sub Form_MouseUp (Button As Integer, Shift As Integer, X As Single,
 Y As Single)
 '* Stop drawing lines/boxes.
 StartEvent = FALSE
End Sub

Sub Command2_Click ()
 '* Boolean value to determine whether to draw a line or box.
 DrawBox = TRUE
End Sub

Sub Command1_Click ()
 '* Boolean value to determine whether to draw a line or box.
 DrawBox = FALSE
End Sub

Sub Command3_Click ()
 '* Create a dotted line
 Form1.DrawStyle = DOT
End Sub

Sub Command4_Click ()
 '* Create a solid line.
 Form1.DrawStyle = SOLID
End Sub

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgGrap PrgCtrlsStd

Determining Number of Lines in VB Text Box; SendMessage API
Article ID: Q72719
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
--

SUMMARY
=======

To determine the number of lines of text within a text box control,
call the Windows API function SendMessage with EM_GETLINECOUNT(&H40A)
as the wMsg argument.

Calling SendMessage with the following parameters will return the
amount of lines of text within a text box:

 hWd% - Handle to the text box.
 wMsg% - EM_GETLINECOUNT(&H40A)
 wParam% - 0
 lParam% - 0

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

For example, to determine the amount of lines within a text box,
perform the following steps:

1. Create a form with a text box and a command button. Change the
 MultiLine property of the text box to TRUE.

2. Declare the API SendMessage function in the global-declarations
 section of your code window (the Declare statement must be
 on just one line):

 Declare Function SendMessage% Lib "user" (ByVal hWd%,
 ByVal wMsg%,
 ByVal wParam%,
 ByVal lParam&)

3. In Visual Basic version 1.0 for Windows, you will need to declare
 another API routine to get the handle of the text box. Declare this
 routine also in your global declarations section of your code window.
 The returned value will become the hWd% argument to the SendMessage
 function. For example:

 Declare Function GetFocus% Lib "user" ()

4. Within the click event of your button, add the following code:

 Sub Command1_Click ()
 Const EM_GETLINECOUNT = &H40A ' Defined within Windows SDK
 ' file, WINDOWS.H.

 ' Command button has focus, give focus to text box.
 Text1.SetFocus

 ' For Visual Basic 1.0 for Windows get the handle of the text box.
 ' hWd% = GetFocus()

 ' Print the amount of lines to the immediate window.
 Debug.Print SendMessage(Text1.hWnd, EM_GETLINECOUNT, 0, 0)
 ' For Visual Basic 1.0 for Windows use hWd% instead of Text1.hWnd.
 End Sub

5. Run the program. Add several lines of text to the text box. Click
 the command button to see the number of lines printed out to the
 immediate window.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgOther PrgCtrlsStd

How to Scroll VB Text Box Programmatically and Specify Lines
Article ID: Q73371
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
--

SUMMARY
=======

By making a call to the Windows API function SendMessage, you can
scroll text a specified number of lines or columns within a Microsoft
Visual Basic for Windows text box. By using SendMessage, you can also
scroll text programmatically, without user interaction. This technique
extends Visual Basic for Windows' scrolling functionality beyond the
built-in statements and methods. The sample program below shows how to
scroll text vertically and horizontally a specified number of lines.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

Note that Visual Basic for Windows itself does not offer a statement for
scrolling text a specified number of lines vertically or horizontally
within a text box. You can scroll text vertically or horizontally by
actively clicking the vertical and horizontal scroll bars for the
text box at run time; however, you do not have any control over how
many lines or columns are scrolled for each click of the scroll bar.
Text always scrolls one line or one column per click the scroll bar.
Furthermore, no built-in Visual Basic for Windows method can scroll
text without user interaction. To work around these limitations, you
can call the Windows API function SendMessage, as explained below.

Example

To scroll the text a specified number of lines within a text box
requires a call to the Windows API function SendMessage using the
constant EM_LINESCROLL. You can invoke the SendMessage function from
Visual Basic for Windows as follows:

r& = SendMessage& (hWd%, EM_LINESCROLL, wParam%, lParam&)

 hWd% The window handle of the text box.
 wParam% Parameter not used.
 lParam& The low-order 2 bytes specify the number of vertical
 lines to scroll. The high-order 2 bytes specify the
 number of horizontal columns to scroll. A positive
 value for lParam& causes text to scroll upward or to the
 left. A negative value causes text to scroll downward or
 to the right.

 r& Indicates the number of lines actually scrolled.

The SendMessage API function requires the window handle (hWd% above)
of the text box. To get the window handle of the text box, you must
first set the focus on the text box using the SetFocus method from
Visual Basic. Once the focus has been set, call the GetFocus API
function to get the window handle for the text box. Below is an
example of how to get the window handle of a text box.

 ' The following appears in the general declarations section of
 ' the form:
 Declare Function GetFocus% Lib "USER" ()

 ' Assume the following appears in the click event procedure of a
 ' command button called Scroll.
 Sub Command_Scroll_Click ()
 OldhWnd% = Screen.ActiveControl.Hwnd
 ' Store the window handle of the control that currently
 ' has the focus.

 ' For Visual Basic 1.0 for Windows use the following line:
 ' OldhWnd% = GetFocus ()

 Text1.SetFocus
 hWd% = GetFocus()
 End Sub

To scroll text horizontally, the text box must have a horizontal
scroll bar, and the width of the text must be wider than the text box
width. Calling SendMessage to scroll text vertically does not require
a vertical scroll bar, but the length of text within the text box
should exceed the text box height.

Below are the steps necessary to create a text box that will scroll
five vertical lines or five horizontal columns each time you click the
command buttons labeled "Vertical" and "Horizontal":

 1. From the File menu, choose New Project (press ALT, F, N).

 2. Double-click Form1 to bring up the code window.

 3. Add the following API declaration to the General Declarations
 section of Form1. Note that you must put all Declare statements on a
 separate and single line. Also note that SetFocus is aliased as
 PutFocus because there already exists a SetFocus method within Visual
 Basic for Windows.

 Declare Function GetFocus% Lib "user" () ' For Visual Basic 1.0 only.
 Declare Function PutFocus% Lib "user" Alias "SetFocus" (ByVal
 hWd%)
 Declare Function SendMessage& Lib "user" (ByVal hWd%,
 ByVal wMsg%,
 ByVal wParam%,
 ByVal lParam&)

 4. Create a text box called Text1 on Form1. Set the MultiLine
 property to True and the ScrollBars property to Horizontal (1).

 5. Create a command button called Command1 and change the Caption
 to "Vertical".

 6. Create a another command button called Command2 and change the
 Caption to "Horizontal".

 7. From the General Declarations section of Form1, create a procedure
 to initialize some text in the text box as follows:

 Sub InitializeTextBox ()
 Text1.Text = ""
 For i% = 1 To 50
 Text1.Text = Text1.Text + "This is line " + Str$(i%)

 ' Add 15 words to a line of text.
 For j% = 1 to 10
 Text1.Text = Text1.Text + " Word "+ Str$(j%)
 Next j%

 ' Force a carriage return (CR) and linefeed (LF).
 Text1.Text = Text1.Text + Chr$(13) + Chr$(10)

 x% = DoEvents()
 Next i%
 End Sub

 8. Add the following code to the load event procedure of Form1:

 Sub Form_Load ()
 Call InitializeTextBox
 End Sub

 9. Create the actual scroll procedure within the General Declarations
 section of Form1 as follows:

 ' The following two lines must appear on a single line:
 Function ScrollText& (TextBox As Control, vLines As Integer, hLines
 As Integer)
 Const EM_LINESCROLL = &H406

 ' Place the number of horizontal columns to scroll in the high-
 ' order 2 bytes of Lines&. The vertical lines to scroll is
 ' placed in the low-order 2 bytes.
 Lines& = Clng(&H10000 * hLines) + vLines

 ' Get the window handle of the control that currently has the
 ' focus, Command1 or Command2.
 SavedWnd% = Screen.ActiveControl.Hwnd
 ' For Visual Basic 1.0 use the following line instead of the one
 ' used above.
 ' SavedWnd% = GetFocus%()

 ' Set the focus to the passed control (text control).
 TextBox.SetFocus

 ' For Visual Basic 1.0, get the handle to current focus (text

 ' control).
 ' TextWnd% = GetFocus%()

 ' Scroll the lines.
 Success& = SendMessage(TextBox.HWnd, EM_LINESCROLL, 0, Lines&)
 ' For Visual Basic 1.0 use the following line instead of the one
 ' used above.
 ' Success& = SendMessage(TextWnd%, EM_LINESCROLL, 0, Lines&)

 ' Restore the focus to the original control, Command1 or
 ' Command2.
 r% = PutFocus% (SavedWnd%)

 ' Return the number of lines actually scrolled.
 ScrollText& = Success&

 End Function

10. Add the following code to the click event procedure of Command1
 labeled "Vertical":

 Sub Command1_Click ()
 ' Scroll text 5 vertical lines upward.
 Num& = ScrollText&(Text1, 5, 0)
 End Sub

11. Add the following code to the click event procedure of Command2
 labeled "Horizontal":

 Sub Command2_Click ()
 ' Scroll text 5 horizontal columns to the left.
 Num& = ScrollText&(Text1, 0, 5)
 End Sub

12. Run the program. Click the command buttons to scroll the text five
 lines or columns at a time.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd APrgWindow

Overlapping Controls Not Supported in Visual Basic
Article ID: Q73651

The information in this article applies to:

 - Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

Overlapping Visual Basic controls may not respond as expected to mouse
events. For example, the bottom control will receive the mouse event
even when it appears that you have selected the top control. The use
of overlapping Controls is not supported in Visual Basic version 1.0,
however, in versions 2.0 and 3.0, overlapping Controls are supported.

MORE INFORMATION
================

Although the Visual Basic design editor allows you to overlap
controls, when you run the application the region of the controls that
overlap may not function as you would expect.

For example, if two Command buttons, Command1 and Command2, overlap so
that Command1 is partially on top of Command2, when you select
Command1 within the region of overlap you would expect a Click event
to be issued for Command1. However, the Click event may occur on
Command2 even though it is underneath Command1 in the overlapping
region.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

PRB: Access Key Causes Different Event Order than Mouse Click
Article ID: Q74905

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
- Microsoft Visual Basic for MS-DOS, version 1.0

SYMPTOMS
========

In Visual Basic, events may be generated in a different order if you
choose a control (such as a button, a check box, or an option box)
using an access key rather than with the mouse. The events that occur
in a different order are Click, LostFocus, and GotFocus.

WORKAROUND
==========

By inserting the DoEvents statement as the very first statement in the
Click event handler, you can cause the LostFocus and GotFocus events to be
handled before the body of the Click event handler.

STATUS
======

This behavior is by design. It is not a bug in Visual Basic.

MORE INFORMATION
================

You can create an access key at design time by changing the
Caption property of a control to include an ampersand (&). The access
key is the character after the ampersand, and at run time you press
ALT+character to choose the control. (See page 120 of the "Microsoft
Visual Basic: Programmer's Guide" version 1.0. manual.)

When you press an access key (ALT+character) to choose a control, the
Click event is generated before the LostFocus and GotFocus event;
however, when you choose a control by clicking the mouse, the
LostFocus and GotFocus events are generated before the Click event.

The example below shows this different order of events. The example
uses command buttons, but also applies to Check and Option boxes:

1. Open a new form and create two command buttons.

2. Enter the code as shown further below.

3. Change the Caption property of Command2 to "Command&2"

4. Run the program.

5. a. When Command1 has the focus and you click Command2, the
 following events are generated in the following order:

 Command1_LostFocus
 Command2_GotFocus
 Command2_Click

 b. When Command1 has the focus and you press the access key, ALT+2,
 the following events are generated in the following order:

 Command2_Click
 Command1_LostFocus
 Command2_GotFocus

Sample Code:

Sub Command1_Click ()
 Print "Command1_click"
End Sub

Sub Command1_LostFocus ()
 Print "Command1_lostfocus"
End Sub

Sub Command1_GotFocus ()
 Print "Command1_gotfocus"
End Sub

Sub Command2_Click ()
 Print "Command2_click"
End Sub

Sub Command2_LostFocus ()
 Print "Command2_lostfocus"
End Sub

Sub Command2_GotFocus ()
 Print "Command2_gotfocus"
End Sub

Additional reference words: 1.00 2.00 3.00 vbmsdos
KBCategory:
KBSubcategory: PrgCtrlsStd EnvtRun

Carriage Return+Linefeed to Wrap Lines in Text Box Control
Article ID: Q74906

The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
 - Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

Under Microsoft Windows, version 3.0, using the carriage return character,
Chr$(13), alone to create a line wrap to the next line in a Visual Basic
text box control will cause the character following the carriage return to
be removed from a multiline text box. Under Microsoft Windows, version 3.1,
it will cause a pipe character '|' to be displayed in the place of the
CHR$(13).

To correctly wrap to the next line, you must instead use both a carriage
return and a linefeed, Chr$(10). This requirement is by design.

MORE INFORMATION
================

The correct method to create a line wrap is to use a carriage return
character followed by a linefeed character, Chr$(13) + Chr$(10). The
Windows text box expects to find this sequence and assumes that the
character following the carriage return is a linefeed, thus removing
the following character as if it were a linefeed.

The following steps show the results of using just the carriage
return, and the results of using both carriage return and linefeed
characters in a text box.

1. In a new project, click the text box icon from the Toolbox
 (second tool down in the right column).

2. Click anywhere on the form and drag diagonally to create a text box
 large enough to hold more then one line of text.

3. From the Properties bar (below the main menu) scroll down to
 Multiline, then choose the Settings box for that Multiline property
 (also on the Properties bar below the menu) and choose True. The
 text box can now accommodate several lines of text.

4. Double-click anywhere in the form outside of the text box to bring
 up the Form_click code window (or use the F7 function key).

5. On the line below Sub Form_click (), type the following:

 Text1.text = "Hello" + Chr$(13) + "World"

6. Press F5 to run the newly created application, then click

 anywhere in the form outside the text box. The following text
 will appear.

 For Windows, version 3.0:

 Hello
 orld

 Note that the W of "World" is missing.

 For Windows, version 3.1:

 Hello|World

7. To obtain the desired result, you must add a linefeed following the
 carriage return character, as follows:

 Text1.text = "Hello" + Chr$(13) + Chr$ (10) + "World"

 This statement will display the expected result of:

 Hello
 World

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

Program Example for COM Port Support in Visual Basic
Article ID: Q75856

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows,
 versions 1.0, 2.0, and 3.0

SUMMARY
=======

A sample program is available to show how a Visual Basic program can use
Windows API functions for serial port communications. This program may
not be necessary in Visual Basic versions 2.0 and 3.0 for Windows
because COM support is already built into the Communications Control.

VBCOMDEM can be found in the Microsoft Software Library by searching for
the word VBCOMDEM, the Q number of this article, or S13150. VBCOMDEM
was archived using the PKware file-compression utility. When you
decompress VBCOMDEM, you will have the following four files:

 SIMPCOMM.EXE, SIMPCOMM.FRM, SIMPCOMM.GLB, SIMPCOMM.MAK

MORE INFORMATION
================

In the Visual Basic environment (VB.EXE), you can load the files in
this sample program by choosing Open Project from the File menu and
selecting the SIMPCOMM.MAK file.

You can also run SIMPCOMM.EXE in Windows as a separate program that
requires the Visual Basic run-time file VBRUN100.DLL.

This sample program is only a starting point. It does not use all of the
serial communications API functions available through Windows. This simple
example uses Windows API Comm functions, such as OpenComm, CloseComm,
ReadComm, and WriteComm. You are free to modify and extend the program to
suit your specific needs.

The SIMPCOMM program has no error trapping, and makes no allowances for
noisy communication lines or handshaking errors. Should an error occur,
Windows will suspend all reading from the communications port until
you clear the error by calling the Windows API function GetCommError.

To modify or understand this program example, you must have a reference
manual for the Windows API routines.

REFERENCES
==========

"Microsoft Windows Programmer's Reference," Microsoft Press, 1990
Microsoft Windows 3.0 Software Development Kit

Additional reference words: 1.00 2.00 3.00 COM1 COM2 asynchronous

KBCategory:
KBSubcategory: PrgCtrlsStd

VB Procedure Form_Load Not Executed when Unload Not Used
Article ID: Q76629

The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
 - Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

Code inside a Form_Load event procedure will not execute under the
circumstances described below. The example below helps clarify the
behavior of the Load event procedure.

A Load event procedure will only execute when a form is loaded, either
with the Load statement or an implicit load. An implicit load is
caused when a form is currently not loaded, and a property or method
accesses the form or associated control.

This behavior is by design in Microsoft Visual Basic programming
system version 1.0 for Windows.

MORE INFORMATION
================

Below is a demonstration of this behavior:

1. From the File menu, choose New Project.

2. From the File menu, choose New Form.

3. Place a command button on each form. Place command button 1 on form
 1 and command button 2 on form 2.

4. Place the following code in the event procedure Command1_Click
 in form 1:

 Sub Command1_Click ()
 Form1.MousePointer = 11 'Hourglass pointer
 Form2.Show
 End Sub

5. Add the following code in the event procedure Form_Load in form 1:

 Sub Form_Load ()
 Form1.MousePointer = 0 'Default pointer
 End Sub

6. Add the following code in the event procedure Command2_Click in
 form 2:

 Sub Command2_Click ()

 Form2.MousePointer = 11 'Hourglass pointer
 Form1.Show
 End Sub

7. Add the following code in the event procedure Form_Load in form 2:

 Sub Form_Load ()
 Form2.MousePointer = 0 'Default pointer
 End Sub

8. Run the program with the F5 key. You will see Form1 load up
 with the Command1 button on it. If you click the Command1 button,
 you will see the mouse cursor change to an hourglass until Form2 is
 loaded. With Form2 loaded, you can see that the mouse cursor is back
 to the default arrow. Click the Command2 button and see the mouse
 cursor change back to an hourglass until Form1 is loaded.

 This is where the behavior starts; the hourglass continues
 to be displayed instead of going back to the default arrow. This
 is because the code Form1.MousePointer = 0 in the Form_Load
 event procedure of Form1 is not being executed. You can continue
 by clicking the Command1 button again to go to Form2 and the
 hourglass continues to be displayed.

The easiest way to work around this behavior is to add an Unload
statement after each .Show statement, as shown below:

 Sub Command1_Click ()
 Form1.MousePointer = 11
 Form2.Show
 Unload Form1 'new line of code to be added
 End Sub

 Sub Command2_Click ()
 Form2.MousePointer = 0
 Form1.Show
 Unload Form2 'new line of code to be added
 End Sub

Note: This method may slow the painting of forms at run-time, but this
method will guarantee that the Form_Load event procedure is executed
when the Show method is executed.

Another workaround is to place the code

 .MousePointer = 0 statements

into the Form_Paint event procedures. Note that this method will only
work when one form is being painted over another. Use the Cut and
Paste routines from the Edit menu of Visual Basic. Cut the following
line of code

 Form1.MousePointer = 0

from the event procedure Form_Load in Form1 and paste the code into
the Form1 Form_Paint event procedure. Repeat the same Cut and Paste
task in Form2, placing the code

 Form2.MousePointer = 0

in the Form2 Form_Paint event procedure.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

VB Forms with Menus Cannot Have Fixed Double BorderStyle
Article ID: Q76630

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 1.0
- Microsoft Windows versions 3.0 and 3.1

SUMMARY
=======

Because of Windows version 3.0 and 3.1 limitations, forms with menus
cannot have the BorderStyle property set to Fixed Double. To have
menus, a form's BorderStyle property must be either None, Fixed
Single, or Sizable.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Run Visual Basic, or from the File menu, choose New Project (ALT,
 F, N) if Visual Basic is already running. Form1 is created by
 default.

2. In the Menu Design window, create a menu on Form1.

3. Set the BorderStyle of Form1 to Fixed Double.

4. Run the program.

Note that the border style is fixed single.

Because of a Windows problem with menus on forms with fixed double
borders, Visual Basic does not paint the menus correctly. For this
reason, Visual Basic does not allow this particular combination of a
menu on a form with a fixed double border.

For more information on this limitation, query on the following words
in the Microsoft Knowledge Base:

 visual basic and menu and caption and bar

Additional reference words: 1.00 3.00 3.10
KBCategory:
KBSubcategory: PrgCtrlsStd EnvtDes

PRB: Long String Assigned to Multiline Text Box Seems to Hang
Article ID: Q76635

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

On some computers, when you assign a long text string to a multiline text
box, it takes a long time (1 to 2 minutes) to update. This may give the
impression that Visual Basic is hung, when in fact it is not.

MORE INFORMATION
================

Windows has a problem inserting line breaks in multiline text boxes.
The amount of time needed to complete the process grows exponentially
as the length of the string increases.

Steps to Reproduce Problem

1. In Visual Basic, place a text box (Text1) on a new form, and change
 the MultiLine property of Text1 to True.

2. Place the following statement in the Form_Click event procedure:

 text1.text=string$(32767,"X")

3. From the Run menu, choose Start.

4. Click the form.

The application may now take up to two minutes to respond to any other
events because it is still executing the text1.text assignment.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

DEL Key Behavior Depends on Text Box MultiLine Property
Article ID: Q77737
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
--

SUMMARY
=======

Pressing the DEL key in a multiline text box generates a KeyPress
event for that text box with an ASCII code of 8 for the key. In a
standard text box, no KeyPress event is generated for the DEL key.
This behavior is inherent to Windows and is not specific to
Microsoft Visual Basic for Windows.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

Steps to Reproduce Problem

1. Place a text box on a form.

2. Set the MultiLine property for the text box to True.

3. Add the following code to the text box KeyPress event:

 Sub Text1_KeyPress (keyAscii as Integer)
 debug.print keyAscii ' This will print the generated ASCII
 ' code to VB's Immediate window.
 End Sub

4. Execute the program and press the DEL key while the focus is on the
 text box. An "8" will be printed in the Immediate window.

If the text box's MultiLine property is set to false, no KeyPress
event occurs and nothing is printed to the Immediate window when you
press the DEL key. This behavior is standard for Windows multiline
text boxes.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

PRB: Clipboard.SetData Gives Invalid Format Message with Icon
Article ID: Q78073

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

If you use the Visual Basic LoadPicture function to load an icon
file (.ICO) into a picture control, and then attempt to copy that
picture control's picture to the Clipboard by using the SetData method,
the following error message is displayed regardless of the format
specified in SetData method:

 Invalid Clipboard Format

This error also occurs if you attempt to load an icon file directly onto
the Clipboard by using this code:

 ClipBoard.SetData LoadPicture("c:\vb\icons\arrows\arw01rt.ico")

CAUSE
=====

The Microsoft Windows Clipboard in Windows has no CF_ICON format, so
the Clipboard cannot be assigned Icons.

WORKAROUND
==========

To work around the problem, set the picture control's Autoredraw
property to True (-1) and use the Picture control's Image property in
the SetData method rather than the Picture control's picture property.

'*** This code will fail with the error "Invalid Clipboard Format" ***
Picture1.Picture = LoadPicture("c:\vb\icons\arrows\arw01rt.ico")
Clipboard.SetData Picture1.Picture, 2

'*** This code will avoid the error ***
Picture1.Autoredraw = -1
Picture1.Picture = LoadPicture("c:\vb\icons\arrows\arw01rt.ico")
Clipboard.SetData Picture1.Image, 2

'*** This code will also work ***
Picture1.Picture = LoadPicture("c:\vb\icons\arrows\arw01rt.ico")
Picture1.Picture = Picture1.Image
Clipboard.SetData Picture1.Picture, 2

STATUS
======

Microsoft has confirmed this to be a limitation of the Microsoft Windows
Clipboard.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

Disabling the ENTER Key BEEP in a Visual Basic Text Box
Article ID: Q78305
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
- The Standard and Professional Editions of Microsoft Visual Basic for
 MS-DOS, version 1.0
--

SUMMARY
=======

In a Microsoft Visual Basic for Windows text box, the ENTER key causes
a warning beep to sound only if the MultiLine property is set to False
(the default) and the Warning Beep option is selected in the Sound
dialog box of the Windows Control panel. To disable the beep, in the
KeyPress event procedure for the text box, set the value of KeyAscii
(which is a parameter passed to KeyPress) equal to zero (0) when the
user presses the ENTER key.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

Specifically, use an IF statement to trap the ENTER key and the set
KeyAscii to zero (0). Setting the value to zero before the event
procedure ends prevents Windows from detecting that the ENTER key was
pressed and prevents the warning beep. This behavior is by design and
is due to the fact that a non-multiline text box is a Windows default
class of edit box.

Example

The following code will prevent the beep.

' (Set Multiline property to False).

Sub Text1_KeyPress (KeyAscii as Integer)
 If KeyAscii=13 Then
 KeyAscii=0
 End If
End Sub

Additional reference words: 1.00 return 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

Scope of Line Labels/Numbers in Visual Basic for Windows
Article ID: Q78335
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
--

SUMMARY
=======

Line labels (and line numbers) do not follow the same scoping rules as
variables and constants in Visual Basic for Windows. Line labels must
be unique within each module and form. However, you can only transfer
control to a line label or line number within the current Sub or
Function.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

When you attempt to define the same line label twice within a module
or form, you receive the error message "Duplicate label". This message
means that the label is already defined in another procedure within
the current module.

When you use a GOTO or GOSUB statement that names a line label defined
in another procedure, you receive the error message "Label not
defined." This message means that the label is not defined in the
current Sub or Function.

For more information about line labels, see the description of the
GOTO and GOSUB statements in the "Microsoft Visual Basic: Language
Reference" or in the Visual Basic for Windows online Help system.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

How to Make a Push Button with a Bitmap in Visual Basic
Article ID: Q78478
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
--

SUMMARY
=======

Command buttons in Visual Basic for Windows are limited to a single
line of text and one background color (gray). The 3D command button
shipped in the Professional Editions of Visual Basic version 2.0 and
3.0 for Windows does have the capability of displaying bitmaps within
a command button in Visual Basic for Windows. However, there is no
way to alter the background or border colors to change its appearance.
You can create the look and feel of a command button by using a picture
control and manipulating the DrawMode in conjunction with the Line
method. Using a picture control also allows you to display the
"command button" in any color with multiple lines of caption text.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

The technique (demonstrated further below) simulates the effect of
pressing a command button by using the Line method with the BF option
(Box Fill) in invert mode each time a MouseUp or MouseDown event
occurs for the picture control. To add multiline text to the "button,"
either print to the picture box or add the text permanently to the
bitmap.

The steps to create a customized "command button" are as follows:

 1. Start Visual Basic for Windows, or choose New Project from the
 File menu (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 will be created by default.

 2. Put a picture control (Picture1) on Form1.

 3. Set the properties for Picture1 as given in the chart below:

 Property Value
 -------- -----
 AutoRedraw True
 AutoSize True
 BorderStyle 0-None
 DrawMode 6-Invert

 4. Assign the Picture property of Picture1 to the bitmap of your

 choice. For example, choose ARW01DN.ICO from the ARROWS
 subdirectory of the ICONS directory shipped with Visual Basic for
 Windows. This is a good example of a bitmap with a three dimensional
 appearance.

 5. Enter the following code in the Picture1_DblClick event procedure
 of Picture1:

 Sub Picture1_DblClick ()
 Picture1.Line (0, 0)-(Picture1.width, Picture1.height), , BF
 End Sub

 Note: This code is necessary to avoid getting the bitmap stuck in
 an inverted state because of Mouse messages being processed out of
 order or from piling up due to fast clicking.

 6. Enter the following code in the Picture1_MouseDown event procedure
 of Picture1:

 Sub Picture1_MouseDown (Button As Integer, Shift As Integer, X As
 Single, Y As Single) ' Append to above line
 Picture1.Line (0, 0)-(Picture1.width, Picture1.height), , BF
 End Sub

 7. Enter the following code in the Picture1_MouseUp event procedure of
 Picture1:

 Sub Picture1_MouseUp (Button As Integer, Shift As Integer,
 X As Single, Y As Single) ' Append to above line.
 Picture1.Line (0, 0)-(Picture1.width, Picture1.height), , BF
 End Sub

 8. Add the following code to the Picture1_KeyUp event procedure for
 Picture1:

 Sub Picture1_KeyUp (KeyCode As Integer, Shift As Integer)
 '* Check to see if the ENTER key was pressed. If so, restore
 '* the picture image.
 If KeyCode = 13 Then
 Picture1.Line (0, 0)-(Picture1.width, Picture1.height), , BF
 End If
 End Sub

 9. Add the following code to the Picture1_KeyDown event procedure for
 Picture1:

 Sub Picture1_KeyDown (KeyCode As Integer, Shift As Integer)
 '* Check to see if the ENTER key was pressed. If so, invert
 '* the picture image.
 If KeyCode = 13 Then
 Picture1.Line (0, 0)-(Picture1.width, Picture1.height), , BF
 End If
 End Sub

10. From the Run menu, choose Start. Click the picture box. The
 image of the picture should be inverted while the mouse button is
 down, giving the visual effect of a button press.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

No New Timer Events During Visual Basic Timer Event Processing
Article ID: Q78599
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
--

SUMMARY
=======

Timer controls can be used to automatically generate an event at
predefined intervals. This interval is specified in milliseconds, and
can range from 0 to 65535 inclusive.

Timer event processing will not be interrupted by new timer events.
This is because of the way that Windows notifies an application that a
timer event has occurred. Instead of interrupting the application,
Windows places a WM_TIMER message in its message queue. If there is
already a WM_TIMER message in the queue from the same timer, the new
message will be consolidated with the old one.

After the application has completed processing the current timer
event, it checks its message queue for any new messages. This queue
may have new WM_TIMER messages to process. There is no way to tell if
any WM_TIMER messages have been consolidated.

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

Creating Nested Control Arrays in Visual Basic
Article ID: Q79029
--
The information in this article applies to:

 - Microsoft Visual Basic programming system for Windows,
 versions 1.0, 2.0, and 3.0
--

SUMMARY
=======

This article explains how to create an array of picture controls or frames
with an array of child controls (such as command buttons) within each
element of the parent array by using the Windows API functions SetParent
and GetFocus. This is not possible in Visual Basic for Windows without
using the Windows API functions because Visual Basic does not support
overlapping controls. In other words, in Visual Basic alone, you cannot
create controls and then simply move them into position within previously
created controls.

By using the Windows API functions in conjunction with the Load and Unload
methods, you can circumvent this problem and allow dynamic, flexible
structures to be created during execution.

MORE INFORMATION
================

This article explains how to get the following control structure:

Parent Control Child Controls on Parent
--
Picture1(1) Command1(1), Command1(2), Command1(3), Command1(4)
Picture1(2) Command1(5), Command1(6), Command1(7), Command1(8)
Picture1(3) Command1(9), Command1(10), Command1(11), Command1(12)
Picture1(4) Command1(13), Command1(14), Command1(15), Command1(16)

(where Picture1 and Command1 are control arrays).

The following example uses the two API functions (GetFocus and SetParent)
to establish the correct parent/child relationships between an array of
parents (such as picture controls) and an array of children (such as
command buttons). Each child array is placed within one element of the
parent control.

The GetFocus function requires no parameters. The SetParent function
requires two parameters as follows:

Parameter Type and Description
--
hWndChild HWND Identifies the child window
hWndNewParent HWND Identifies the new parent window

The return value identifies the previous parent window.

This example also demonstrates how Windows handles a drag and drop when
parentage was set at run time. If you drag a control to another control
of the same type as the previous parent and drop it, the released control
assumes the same relative position it had in the previous parent.

The example program demonstrates that before unloading controls nested
using SetParent and moved during the run, parentage should be returned
to the original hierarchy. This avoids the possibility of general
protection (GP) faults or Unrecoverable Application Errors (UAEs) that
could occur due to conflicting messages to Windows.

Step-by-Step Example

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add a picture box and five command buttons to Form1, giving them the
 property settings shown here:

 Control Control Name Property Setting

 Form Form1
 Picture Picture1() Index=1
 Command button Command1() Index=1
 Command button Loadall TabIndex=0, Caption="Load All"
 Command button Loadsome TabIndex=1, Caption="Load Four"
 Command button Changemode TabIndex=2, Caption="DragMode=0"
 Command button Unloadall TabIndex=3, Caption="Unload All"

 NOTE: The placement of the original picture box and command button is
 important. The picture should be created first and the command button
 drawn within the picture box. The placement of the other controls at
 design time is not critical. They are resized and moved at run time.

3. Add code to the examaple application. Here is a summary of each of
 the Sub procedures you will create:

 Code Purpose

 Loadall_Click Loads all parent controls and all child controls
 Loadsome_Click Loads all parent controls and four child controls
 Unloadall _Click Unloads all controls. Must reset parentage to the
 original first!
 Changemode_Click Changes DragMode between auto and manual modes
 Resetparent General procedure to reset parentage for Unload and
 Close
 Cplace General procedure to place the four command buttons
 Form_Resize Code to maintain original size
 Form_Load Sets initial size and properties of controls
 Form_Unload Calls Unloadall_Click to avoid conflicting Windows
 messages
 Picture1_DragDrop Handles setting of parentage to user actions
 Command1_Click Sets captions to reflect change in position and
 state

4. Add the following code to general declarations section of Form1:

 Declare Function setparent% Lib "user" (ByVal h%, ByVal h%)
 Declare Function getfocus% Lib "user" ()
 Global Handle2Child As Integer
 Global Handle2Parent As Integer
 Global dragstate, loadstate, toggle, innernum As Integer
 Global I, N, K As Integer
 Global xoffset, yoffset, cmdnum, childsize, parentsize As Integer
 Global Const maxouter = 4
 Global Const maxinner = 4
 Option Base 1
 Global storecaption(16) As String ' array=maxinner*maxouter

5. Add the following Sub procedures to the application in apprpriate events
 in Form1. Each code statement must be entered as one, single line.

 ' Enter the following two lines as one, single line:
 Sub Picture1_DragDrop (index As Integer, source As Control, X As Single,
 Y As Single)
 picture1(index).SetFocus
 ' Procedure for control array of parent Picture Boxes:
 Handle2Parent = getfocus()
 source.SetFocus
 Handle2Child = getfocus()
 ret% = setparent(Handle2Child, Handle2Parent)
 source.caption = Mid$(source.caption, 1, 1) + "/" +
 LTrim$(RTrim$(Str$(index)))
 End Sub

 Sub Form_Load ()
 form1.width = screen.width - screen.width \ 8
 form1.height = screen.height \ 2
 form1.backcolor = &HFFFF00
 form1.caption = "Nested Control Arrays"
 picture1(1).visible = 0
 command1(1).visible = 0
 parentsize = CInt((form1.width \ maxouter) * .8)
 childsize = CInt((2 * parentsize \ maxinner) * .6)
 picture1(1).height = parentsize
 picture1(1).width = parentsize
 command1(1).height = childsize
 command1(1).width = childsize
 cplace loadall, 1
 cplace loadsome, 2
 cplace changemode, 3
 cplace unloadall, 4
 End Sub

 Sub resetparent () ' Function to clean up parentage before unload.
 picture1(1).SetFocus
 Handle2Parent = getfocus()
 For I = innernum To 1 Step -1
 command1(I).SetFocus
 Handle2Child = getfocus()
 ret% = setparent(Handle2Child, Handle2Parent)
 Next I
 End Sub

 Sub Command1_Click (index As Integer) ' Procedure for control array
 ' of Buttons.
 If toggle Then
 command1(index).caption = storecaption(index)
 toggle = 0
 Else
 storecaption(index) = command1(index).caption ' Change caption to
 ' reflect state.
 command1(index).caption = "ON"
 toggle = -1
 End If
 End Sub

 Sub Form_Unload (Cancel As Integer) ' Cleans up before program exits.
 unloadall_click
 End Sub

 Sub changemode_Click () ' Toggles between automatic & manual dragmodes.
 If loadstate Then
 If Not dragstate Then
 For I = 1 To innernum
 command1(I).dragmode = 1 ' Automatic
 dragstate = -1 ' Reset flag.
 Next I
 changemode.caption = "DragMode=1"
 Else
 For I = 1 To innernum
 command1(I).dragmode = 0 ' Manual
 dragstate = 0 ' Reset flag.
 Next I
 changemode.caption = "DragMode=0"
 End If
 End If
 End Sub

 Sub unloadall_click () ' Unloads all dynamically created controls only.
 Select Case loadstate
 Case 1
 resetparent ' Must call prior to unload to avoid GP fault or UAE

 For I = maxouter To 1 Step -1
 For N = maxinner To 1 Step -1
 cmdnum = ((I - 1) * 4) + N
 If cmdnum <> 1 Then Unload command1(cmdnum)
 Next N
 If I <> 1 Then Unload picture1(I)
 Next I
 command1(1).visible = 0 ' Can't unload controls
 picture1(1).visible = 0 ' created at design time so hide!
 loadstate = 0 ' Reset flag for load routines.
 changemode.enabled = 0

 Case 2
 resetparent ' Must call prior to unload to avoid GP fault or UAE.
 For I = maxouter To 1 Step -1
 If I = 1 Then
 For N = maxinner To 2 Step -1

 Unload command1(N)
 Next N
 End If
 If I <> 1 Then Unload picture1(I)
 Next I
 command1(1).visible = 0 ' Can't unload controls
 picture1(1).visible = 0 ' created at design time so hide!
 loadstate = 0 ' Reset flag for load routines.
 changemode.enabled = 0
 End Select
 End Sub

 Sub loadsome_click () ' Loads all parents and one set of children
 If loadstate = 0 Then ' to demonstrate drag and drop.
 changemode.enabled = -1
 command1(1).Move 0, 0
 For I = 1 To maxouter
 If I <> 1 Then ' Can't load control created at design time.
 Load picture1(I)
 End If
 ' Enter the following two lines as one, single line:
 picture1(I).Move -picture1(1).width, -picture1(1).height,
 parentsize, parentsize
 picture1(I).visible = -1 ' Load off-screen /\.
 Picture1(I).SetFocus
 Handle2Parent = getfocus() ' Get handle by API call.
 If I = 1 Then
 For N = 1 To 4
 If N <> 1 Then
 Load command1(N) ' Can't load control created at
 End If ' design time.
 ' Enter the following two lines as one, single line:
 xoffset = picture1(I).scalewidth \ 4 - command1(N).width
 \ 2 + ((N - 1) Mod 2) * (picture1(I).scalewidth \ 2)
 If N > 2 Then
 ' Enter the following three lines as one, single line:
 yoffset = picture1(I).scaleheight \ 2 +
 (picture1(I).scaleheight \ 4 -
 command1(N).height \ 2)
 Else
 ' Enter the following two lines as one, single line:
 yoffset = (picture1(I).scaleheight \ 4 -
 command1(N).height\2)
 End If
 command1(N).Move xoffset, yoffset
 command1(N).visible = -1
 command1(N).SetFocus
 Handle2Child = getfocus() ' Get handle by API call.
 ' Call API function.
 ret% = setparent(Handle2Child, Handle2Parent)
 ' Enter the following two lines as one, single line:
 command1(N).caption = LTrim$(RTrim$(Str$(N))) + "/" +
 LTrim$(RTrim$(Str$(I)))
 Next N
 End If
 Next I
 xoffset = ((form1.scalewidth \ maxouter) - picture1(1).width) \ 2

 picture1(1).Move xoffset, 0
 For I = 2 To maxouter
 ' Enter the following line as one, single line:
 picture1(I).Move (I - 1) * (form1.scalewidth \ maxouter) +
 xoffset, picture1(I - 1).top ' **
 Next I
 innernum = 4 ' Set global loop maximum.
 loadstate = 2
 End If
 End Sub

 Sub loadall_click () ' Loads all parents and children in
 If loadstate = 0 Then ' nested structure.
 changemode.enabled = -1
 command1(1).Move 0, 0
 For I = 1 To maxouter ' size command button proportionally.
 If I <> 1 Then Load picture1(I) ' Can't load control created at
 ' design time.
 ' Load off-screen:
 picture1(I).Move -picture1(1).width, -picture1(1).height
 picture1(I).visible = -1
 picture1(I).SetFocus
 Handle2Parent = getfocus() ' Get handle by API call.
 For N = 1 To maxinner
 cmdnum = ((I - 1) * 4) + N
 If cmdnum <> 1 Then
 Load command1(cmdnum) ' Can't load control created at
 ' design time.
 End If
 xoffset=((N-1) Mod 2)*(picture1(I).scalewidth\(maxinner\2))
 If N > 2 Then
 yoffset = picture1(I).scaleheight \ 2
 Else yoffset = picture1(I).scaletop
 End If
 ' Enter the following command as one, single line:
 command1(cmdnum).Move picture1(I).scalewidth \ 8 +
 xoffset, picture1(I).scaleheight \ 8 + yoffset
 command1(cmdnum).visible = -1
 command1(cmdnum).SetFocus
 Handle2Child = getfocus() ' Get handle by API call.
 ' Call API function.
 ret% = setparent(Handle2Child, Handle2Parent)
 Next N
 Next I ' Caption the control array buttons.
 For K = 1 To (maxinner * maxouter)
 command1(K).caption = LTrim$(RTrim$(Str$(K)))
 Next K
 xoffset = ((form1.scalewidth \ maxouter) - picture1(1).width) \ 2
 picture1(1).Move xoffset, 0
 For I = 2 To maxouter
 picture1(I).Move (I - 1) * (form1.scalewidth \ maxouter) +
 xoffset, picture1(I - 1).top ' **
 Next I
 innernum = 16 ' Set global loop maximum.
 loadstate = 1
 End If
 End Sub

 Sub Form_Resize ()
 form1.width = screen.width - screen.width \ 8
 form1.height = screen.height \ 2
 End Sub

 Sub cplace (dummy As Control, num As Integer) ' Size static controls.
 theheight% = parentsize + childsize * 2
 ' Enter the following two lines as one, single line:
 dummy.Move (form1.width \ 4) * (num - 1) + parentsize \ 10,
 theheight%, parentsize, childsize ' **
 End Sub

4. Run the example and try all the buttons. Toggle the DragMode on and off
 and drag the command buttons from one picture to another.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

Parameter Mismatch Error When Pass Properties by Reference
Article ID: Q79597

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

Control property values in Visual Basic are stored in a formatted form
whose location is periodically changed as part of Windows memory
management. The values are accessed by handles, not addresses.
Although the values behave like their prescribed types when used
directly, they cannot be passed by reference to a SUB or FUNCTION. Any
attempt to do so will generate a "PARAMETER MISMATCH" error.

MORE INFORMATION
================

Passing by reference, the default parameter passing method in Visual
Basic, places the address of the variable on the stack. The SUB or
FUNCTION then accesses the address on the stack and uses it to refer
to that variable. Sending a control property as a parameter to a SUB
or FUNCTION will place its handle on the stack instead of an address.
Because the handle uses a different form than an address, the SUB or
FUNCTION accesses a value that it is not expecting, and will generate
a "PARAMETER MISMATCH" error.

As a workaround, pass the property by value instead of by reference.
To pass by value, place a set of parentheses around the property
variable in the SUB or FUNCTION call. This syntax will place the
actual value of the property on the stack and tell the SUB or FUNCTION
to treat it as such. Because an actual memory location is not
transferred to the SUB or FUNCTION, any changes to the value of the
property are localized to that SUB or FUNCTION.

Another workaround is to assign the property value to a temporary
variable. The temporary variable has an actual address and can be
passed to a SUB or FUNCTION in the usual manner. Because an actual
address is sent, any change to the temporary variable will be
permanent. In order for the actual property variable to reflect this
change, the value of the temporary variable must be assigned to the
property variable upon return from the SUB or FUNCTION.

Example

Create a project with one form (Form1), two command buttons (Command1
and Command2), and one text box (Text1). Add the two command Click
events as follows:

Sub Command1_Click ()

 Text1.text = "passed by value"
 CALL Mysub ((Text1.text))
 ' Notice Text1.text did not change.
End Sub

Sub Command2_Click()
 Text1.text = "passed temporary variable"
 temp$ = Text1.text
 CALL Mysub (temp$)
 Text1.text = temp$
 ' Notice Text1.text did change when assigned to temp$.
End Sub

In the General section of Form1, add the following:

Sub Mysub(A$)
 A$ = "Changed"
End Sub

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

Double-Clicking the Control Box Causes MouseUp Event in VB
Article ID: Q79599

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

Double-clicking the control box of a form to close it will cause a
MouseUp event on an enabled form or control if it is lying beneath the
control box. This is a standard behavior inherent to Windows, and is
not an error in Visual Basic.

MORE INFORMATION
================

You can prevent the above behavior in several ways:

 - Set a global flag in the MouseDown event and check the flag in the
 MouseUp event. If the flag is set, perform the event and set
 the flag to FALSE. If the flag is not set, exit the MouseUp event.

 - Set a global flag in the overlapping form's Form_Unload event, and
 then test this flag in the underlying form or control's MouseUp
 event.

 - Restrict the placement or movement of a form so that it's control
 box does not appear above an enabled form or control.

 - Avoid coding the MouseUp event of any enabled form or control over
 which a control box may appear.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

How to Place Animated Graphics on a Minimized Form in VB
Article ID: Q79601

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

You can place animated graphics onto a minimized form in Visual Basic.
Normally, when a form is minimized, the form is replaced with an icon
that had been previously set using the Icon property of that form.
This icon is an actual bitmap that cannot be manipulated. Using the
method below, the icon can be replaced with a set of graphics methods
that will draw to the minimized form.

MORE INFORMATION
================

To place animated graphics onto a minimized form, you must use a timer
event. This will allow the program to continue its animation when the
form is minimized. A minimized form is just like a non-minimized form,
except its size is decreased and certain rules apply. The following
guidelines should be followed when creating animated graphics on a
form:

 - The AutoRedraw property must be set to 0 (False).
 - The user must place routines in the Paint event procedure to handle
 cases when the Paint event occurs in the maximized form. In the
 minimized form, a Paint event never occurs, and you must depend
 upon the timer event to refresh the icon representing the
 minimized form.
 - The user must handle the painting of the background because a
 minimized form has no background, only foreground.
 - Adjust your animation to the size of the minimized form by using
 either the Scale method or the ScaleWidth and ScaleHeight property.

The following example creates an animated icon that displays random
circles every 500 milliseconds:

1. From the File menu, choose New Project.

2. Remove the icon from the Icon property. (You can do this by
 selecting the Icon property and pressing the DELETE key.)

3. Place a new timer control on the form.

4. Change the timer interval to 500.

5. Type the following code into the new timer event:

Static prevx!, prevy!
If windowstate = 1 Then 'Checks to see if form is
 'minimized.
 form1.Scale (0, 0)-(100, 100) 'Sets the max height and
 'width of the form.
 fillcolor = QBColor(0)
 Circle (prevx!, prevy!), scalewidth / 10, QBColor(0)
 fillstyle = 0
 fillcolor = QBColor(1)
 prevx! = Int(Rnd(1) * scalewidth) + 1
 prevy! = Int(Rnd(1) * scaleheight) + 1
 Circle (prevx!, prevy!), scalewidth / 10, QBColor(1)
End If

6. From the Run menu, choose Start.

7. Minimize the form by choosing Minimize from the control box menu,
 or click the minimize arrow (the minimize arrow is the down arrow)
 on the form.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

How to Convert Units to Pixels for DrawWidth in VB
Article ID: Q79604

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

The DrawWidth property controls line thickness for the graphics methods
Circle, Line, and PSet. You can only set DrawWidth in units of pixels.
Pixel size and density vary among video and printer devices.

This article describes how to set DrawWidth to the number of pixels to
correspond with measurements in units other than pixels.

MORE INFORMATION
================

The following steps describe how to calculate DrawWidth from units
other than pixels, referred to as "target units."

1. Determine the form (or printer) width in target units by setting
 the ScaleMode property to one of the values listed below and then
 retrieving the ScaleWidth property.

 ScaleMode Settings

 0 -- user-defined
 1 -- twips
 2 -- points
 4 -- characters
 5 -- inches
 6 -- millimeters
 7 -- centimeters

 For example:

 Form1.ScaleMode = 7 ' centimeters
 cm = Form1.ScaleWidth

2. Determine the form (or printer) width in pixels by setting the
 ScaleMode property to 3 (PIXELS in CONSTANT.TXT) and then
 retrieving the ScaleWidth property.

 For example:

 Form1.ScaleMode = 3
 pixel = Form1.ScaleWidth

3. Calculate the ratio of pixels per target unit by dividing the form
 (or printer) width in target units by the form (or printer) width
 in pixels.

 For example:

 pixel_per_cm = pixel / cm

4. Set DrawWidth to the number of target units multiplied by the ratio
 of pixels per target unit.

 For example:

 Form1.DrawWidth = 5 * pixel_per_cm ' 5cm thick lines

The following code example demonstrates how to calculate the DrawWidth
property in inches, for a form and the printer:

'*** In the global module: ***

' ScaleMode (form, picture box, Printer)
Global Const TWIPS = 1
Global Const POINTS = 2 ' 20 twips
Global Const PIXELS = 3
Global Const CHARACTERS = 4 ' x: 120 twips, y: 240 twips
Global Const INCHES = 5 ' 1440 twips
Global Const MILLIMETERS = 6 ' 5669 twips
Global Const CENTIMETERS = 7 ' 566.9 twips

' *** In the form: ***

Sub Form_Click ()
 Dim ptr_inch As Integer ' printer width in inches
 Dim ptr_pixel As Long ' printer width in pixels
 Dim ptr_dpi As Single ' printer dots (pixels) per inch
 Dim scn_inch As Integer ' screen width in inches
 Dim scn_pixel As Long ' screen width in pixels
 Dim scn_dpi As Single ' screen dots (pixels) per inch

 ' Determine printer pixels-per-inch ratio
 save% = Printer.ScaleMode
 Printer.ScaleMode = INCHES: ptr_inch = Printer.ScaleWidth
 Printer.ScaleMode = PIXELS: ptr_pixel= Printer.ScaleWidth
 Printer.ScaleMode = save%
 ptr_dpi = ptr_pixel / ptr_inch

 ' Determine form (screen) pixels-per-inch ratio
 save% = Form1.ScaleMode
 Form1.ScaleMode = INCHES: scn_inch = Form1.ScaleWidth
 Form1.ScaleMode = PIXELS: scn_pixel = Form1.ScaleWidth
 Form1.ScaleMode = save%
 scn_dpi = scn_pixel / scn_inch

 ' Set printer and form DrawWidth to 0.25 inches
 ' and draw a 0.25 inch thick line
 Printer.DrawWidth = .25 * ptr_dpi
 Form1.DrawWidth = .25 * scn_dpi

 Printer.Line (0, 0)-(Form1.ScaleWidth, Form1.ScaleHeight)
 Form1.Line (0, 0)-(Form1.ScaleWidth, Form1.ScaleHeight)

 ' Set printer.DrawWidth to match screen pixel size
 ' and draw a 5 screen-pixel thick line
 Form1.DrawWidth = 5
 Printer.DrawWidth = Form1.DrawWidth * ptr_dpi / scn_dpi
 Form1.Line (0, Form1.ScaleHeight)-(Form1.ScaleWidth, 0)
 Printer.Line (0, Form1.ScaleHeight)-(Form1.ScaleWidth, 0)

 Printer.EndDoc

End Sub

When run, the above sample program will cause two lines in the form of
an X to be printed to the form and printer simultaneously. The width
of the thicker diagonal line should be 0.25 inches wide on the printed
page. The other diagonal line represents a line five pixels wide.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

How to Move Controls Between Forms in VB for Windows
Article ID: Q79884

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
--

SUMMARY
=======

Microsoft Visual Basic for Windows does not support the actual movement
of controls between forms. Attempting to change the parent/child
relationship of a control from one form to another can result in
unpredictable behavior.

However, by creating a control array of the same control type on each
form, and by creating a subroutine or function in a Visual Basic for
Windows module, you can simulate the movement of a control from one form
to another. An example of how to do this is listed below.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

This example uses the Windows API functions GetFocus and GetParent to
determine the origin of the control dropped onto a form. For more
information on GetFocus and GetParent, query separately on the
following words in the Microsoft Knowledge Base:

 GetFocus
 GetParent

The following steps demonstrate how to simulate the movement of
controls between two forms. Note that you can improve this example by
Loading and Unloading the controls as they are needed.

 1. Start Visual Basic for Windows, or from the File menu, choose New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 will be created by default.

 2. From the File menu, choose New Form (press ALT, F, F). Form2 will be
 created.

 3. From the File menu, choose New Module (press ALT, F, M). Module1
 will be created.

 4. Create the following controls for both Form1 and Form2:

 Control Name Property Setting
 ------- ---------- ----------------

 Command button Command1() Index = 0
 Command button Command2 Caption = "Enable Drag"

 (In Visual Basic version 1.0 for Windows, set the CtlName Property
 for the above objects instead of the Name property.)

 5. Add the following code to the Module1 (or GLOBAL.BAS in Visual Basic
 version 1.0 for Windows):

' Windows API function declarations.
Declare Function GetFocus Lib "USER" () As Integer
Declare Function GetParent Lib "USER" (ByVal hWnd As Integer) As Integer

 6. Add the following code to the General Declarations section of
 Form1:

 Dim EnableDrag As Integer

 7. Add the following code to the Form_Load event procedure of Form1:

Sub Form_Load ()

 ' Move the form to the left half of the screen.
 Move 0, Top, Screen.Width \ 2
 Form2.Show
 EnableDrag = 0
 Command1(0).Top = 0
 Command1(0).Left = 100

 For i% = 1 To 4 ' Load Control Array.
 Load Command1(i%)
 Command1(i%).Left = Command1(i% - 1).Left
 Command1(i%).Top = Command1(i% - 1).Top + Command1(i% - 1).Height
 Next i%

 For i% = 0 To 4 ' Define Control Properties.
 Command1(i%).Caption = "Button" + Str$(i%)
 Command1(i%).Visible = -1
 Next i%
End Sub

 8. Add the following code to the Command1_Click event procedure of
 Form1:

Sub Command1_Click (Index As Integer)
 Button_Clicked Command1(Index) ' Call Routine in MODULE1.BAS.
End Sub

 9. Add the following code to the Command2_Click event procedure of
 Form1:

Sub Command2_Click ()
 If EnableDrag = 0 Then ' Toggle DragMode.
 EnableDrag = 1
 Command2.Caption = "Disable Drag"
 Else
 EnableDrag = 0

 Command2.Caption = "Enable Drag"
 End If

 For i% = 0 To 4 ' Set DragMode for Controls.
 Command1(i%).DragMode = EnableDrag
 Next i%
End Sub

10. Add the following code to the Form_DragDrop event procedure of
 Form1:

Sub Form_DragDrop (Source As Control, X As Single, Y As Single)
 Source.SetFocus ' Get Parent of Source Control.
 CtrlHnd% = GetFocus()
 Parent% = GetParent(CtrlHnd%)

 If Parent% <> Form1.hWnd Then ' If Parent is other Form.
 Index% = Source.Index
 Command1(Index%).Caption = Source.Caption
 Command1(Index%).Left = Source.Left
 Command1(Index%).Top = Source.Top
 Command1(Index%).Width = Source.Width
 Command1(Index%).Height = Source.Height
 Command1(Index%).Visible = -1
 Source.Visible = 0
 End If
End Sub

11. Add the following code to the General Declarations section of
 Form2:

Dim EnableDrag As Integer

12. Add the following code to the Form_Load event procedure of Form2:

Sub Form_Load ()
 ' Move the form to the right half of the screen.
 Move Screen.Width \ 2, Top, Screen.Width \ 2

 EnableDrag = 0
 Command1(0).Visible = 0
 For i% = 1 To 4 ' Load Control Array.
 Load Command1(i%)
 Command1(i%).Top = Command1(i% - 1).Top + Command1(i% - 1).Height
 Command1(i%).Visible = 0
 Next i%
End Sub

13. Add the following code to the Command1_Click event procedure of
 Form2:

Sub Command1_Click (Index As Integer)
 Button_Clicked Command1(Index)
End Sub

14. Add the following code to the Command2_Click event procedure of
 Form2:

Sub Command2_Click ()
 If EnableDrag = 0 Then
 EnableDrag = 1
 Command2.Caption = "Disable Drag"
 Else
 EnableDrag = 0
 Command2.Caption = "Enable Drag"
 End If

 For i% = 0 To 4
 Command1(i%).DragMode = EnableDrag
 Next i%
End Sub

15. Add the following code to the Form_DragDrop event procedure of
 Form2:

Sub Form_DragDrop (Source As Control, X As Single, Y As Single)
 Source.SetFocus ' Determine Parent of Source.
 CtrlHnd% = GetFocus()
 Parent% = GetParent(CtrlHnd%)
 If Parent% <> Form2.hWnd Then
 Index% = Source.Index
 Command1(Index%).Caption = Source.Caption
 Command1(Index%).Left = Source.Left
 Command1(Index%).Top = Source.Top
 Command1(Index%).Width = Source.Width
 Command1(Index%).Height = Source.Height
 Command1(Index%).Visible = -1
 Source.Visible = 0
 End If
End Sub

16. Add the following code to Module1:

Sub Button_Clicked (Source As Control) ' Generic Click routine.
 MsgBox "Button" + Str$(Source.Index) + " Clicked!!!"
End Sub

17. From the Run menu, choose Start (press ALT, R, S) to run the
 program.

To drag controls from one form to the other, choose the Enable Drag
button. Once this button has been activated on a form, you can drag
any of the command buttons from one form to the other. The drag mode
can be disabled by choosing the Disable Drag button. When drag mode
has been disabled, clicking any of the command buttons on the form
will cause a message box to be displayed.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

How to Drop Item into Specified Location in VB List Box
Article ID: Q80187

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

You can drag an item and drop it into a list box by using the Visual
Basic TextHeight method and the Windows API SendMessage() function
to calculate where to drop the item.

MORE INFORMATION
================

There is no standard way to determine the exact position where you are
dropping an item into a Visual Basic list box when you perform a drag
and drop operation. You must calculate the position using the TextHeight
method and the Windows API SendMessage() function with the constant
LB_GETTOPINDEX.

Using TextHeight, determine the height of each row of a list box. Divide
this by the Y value that is passed as an argument in the List_DragDrop
event procedure to determine how many lines from the top of the list box
that the Drag.Icon is located over. The SendMessage constant LB_GETTOPINDEX
gives you the index of the first visible item in the list box. Adding these
two numbers shows you the index location for the insertion point -- the
spot where you want to insert the item in the list box.

Step-by-Step Example to Demonstrate Dropping Items into List box
--
1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Add a Picture control (Picture1) to Form1 and set its DragMode property
 to Automatic. Then add a List box (List1) to Form1 and set its DragMode
 property to Manual.

3. Add the following code to the global module:

 '============= Global.Bas ===============
 'NOTE: Enter the following Declare statement as one, single line:
 Declare Function SendMessage& Lib "User" (ByVal hWnd%, ByVal wMsg%,
 ByVal wParam%, lParam As Any)
 Declare Function GetFocus Lib "User" () As Integer
 Global Const LB_GETTOPINDEX = &H400 + 15

3. Add the following code to the DragDrop event procedure of List1:

 '============== Form1.frm ==================

 Sub List1_DragDrop (Source As Control, X As Single, Y As Single)

 'get the first visible index in the list box
 List1.SetFocus
 ListHwnd = GetFocus()
 TopI& = SendMessage(ListHwnd, LB_GETTOPINDEX, 0&, 0&)
 ColumnHeight = TextHeight("A ")
 InsertI& = Y \ ColumnHeight
 If InsertI& <= List1.ListCount Then
 ' Enter the following two lines on one, single line:
 List1.AddItem "This is inserted @" + Format$(InsertI&
 + TopI&, "0"), InsertI& + TopI&
 Else
 List1.AddItem "This is inserted"
 End If

 End Sub

4. From the Run menu, choose Start (ALT, R, S) to run the program.

Drag and drop the picture box over the list box and an item should be
added to the list box. An item will be added to the list box each time
you drag and drop the picture box over the list box.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

How to Draw a Line or Box on a Form Using a Label in Ver 1.0
Article ID: Q80285

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 2.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

The Visual Basic version 1.0 Help topic "Drawing a Line or Box on a Form"
contains incorrect information regarding how to use a label control to
draw a line or box on a form. This article corrects and supplements
that information.

To draw a line or box on a form in Visual Basic version 2.0, use the Shape
control instead of a Label control.

MORE INFORMATION
================

You can use the label tool in the Toolbox in VB.EXE to draw simple lines or
solid (filled-in) boxes on forms. By using a label instead of the Line
method, you can see the line or box in design mode and you can easily
animate the line or box with the Move method.

To draw a line or box with a label control, do the following:

1. Place a label on a form.

2. Set the Caption property to null.

3. Set the BackColor property to black, or some other color.

4. Size the label. To make a line, set either the Height or Width
 property to the minimum value (1 pixel).

To find the incorrect Help topic, search Visual Basic version 1.0 Help
for "line." The topic states the following:

 To add color, set the BackColor property to the color you want.

Do not set the BorderStyle property to -1 (True) as it states in Help.

Additional reference words: 1.00 2.00
KBCategory:
KBSubcategory: PrgCtrlsStd

Form Global (Static) Data Is Preserved After Form Unload
Article ID: Q80287

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 2.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

This article lists documentation errors for Visual Basic version 1.0
manuals and provides additional information about static data, arrays
and variables.

If you have version 2.0, see page 394 of the Language Reference for more
information on the Static statement.

MORE INFORMATION
================

Visual Basic version 1.0 Documentation Errors

The information on page 226 of the "Microsoft Visual Basic: Programmer's
Guide" version 1.0 manual in the section titled "Unloading Forms" implies
that all data in a form is lost after the form is unloaded using the
Unload statement. However, this does not apply to these types of data:

 - Any variable or array that is dimensioned in the general
 Declarations section of the form.
 - Any static variable or array that has been declared within a Sub or
 Function procedure.
 - Any local variable or array that has been allocated in a static Sub
 or Function procedure.

The following statement on page 226 of the "Visual Basic: Programmer's
Guide" is incorrect:

 Any data stored in the form is lost unless you have saved it to a file.

This statement should be changed to read as follows:

 Any data stored in the form, with the exception of static variables
 and arrays, is lost unless you have saved it to a file. The values
 of static arrays and variables are preserved after the form is unloaded.

More Information on Static Data

Static data stored in a form consists of the following:

 - Arrays or variables dimensioned in the general Declarations section
 of a form.
 - Variables or arrays declared in a Sub or Function procedure using

 the Static keyword.
 - All local variables and arrays allocated in a Sub or Function
 procedure where the procedure name is preceded by the keyword Static.

All static data is allocated in a global area of memory managed by
Visual Basic. Unloading the form does not cause this memory to be
deallocated; rather, the data is preserved by Visual Basic until the
program terminates. Although the data is maintained after the form is
unloaded, you cannot access this data from any other form or module.
You must reload the form to access the data.

Static Variables and Arrays Are Not Deallocated

To demonstrate how static variables and arrays allocated from a form
do not get deallocated, do the following:

1. Start Visual Basic or if Visual Basic is already running, choose New
 Project from the File menu (ALT, F, N). Form1 is created by default.

2. Add a command button (Command1) to Form1.

3. Change the caption of Command1 to "Show Form Global Vars" (without
 the quotation marks).

4. Add the following statements to the general Declarations section of
 Form1:

 Dim varX As Integer
 Dim arrayX(10) As String

5. Add the following code to the Command1_Click event procedure of
 Command1:

 Sub Command1_Click ()

 Static StaticX

 StaticX = 1 'Initialize the form global variables.
 varX = 10
 For i = 0 To 10
 arrayX(i) = Format$(i, "#0")
 Next i

 Unload Form1
 Form1.Show 'Reload and show form.
 'Values of varX and arrayX will still be
 'preserved.
 Print StaticX 'Print the values to the form.
 Print varX
 For i = 0 To 10
 Print arrayX(i)
 Next i

 End Sub

6. Run the program (F5) and choose the Commmand1 "Show Form Global
 Vars" button.

7. The values of StaticX, varX, and arrayX will print, even though the
 form has been unloaded.

There is no way to cause static data in the general Declarations
section to be deallocated when the form is unloaded. For example, the
Erase statement will not cause memory to be deallocated for arrays
dimensioned in the general Declarations section.

To deallocate arrays, you must use the ReDim statement to dynamically
allocate the array when needed. To unload variables, use local variables
instead of static variables. If you use local variables instead of static
variables, the local variables are deallocated upon exit from the procedure
in which they were allocated.

Additional reference words: 1.00 2.00
KBCategory:
KBSubcategory: PrgCtrlsStd

PRB: End Task from Windows Task List Doesn't Invoke VB Unload
Article ID: Q80292

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

Terminating a Visual Basic program from the Windows Task List (by choosing
the End Task button) does not generate a Visual Basic Unload event in
version 1.0 but does generate a Form_Unload in versions 2.0 and 3.0.
Therefore, any code attached to the Form_Unload event procedure executes
in versions 2.0 and 3.0 but not in version 1.0 when the program terminates.

RESOLUTION
==========

This behavior is by design. The version 1.0 design is different from the
versions 2.0 and 3.0 designs. In versions 2.0 and 3.0, the form_unload
event executes when the program is closed from the task list. In version
1.0, Form_Unload does not execute when the program is closed from the task
list.

MORE INFORMATION
================

If a Visual Basic program has code in an Form_Unload event procedure,
and you exit the program by choosing Close from the system menu, the
Unload event occurs and the code in the Form_Unload event procedure
executes.

If instead, you exit the program from the Windows Task List, the Unload
event occurs only in Visual Basic version 2.0, not in 1.0. The code in
the Form_Unload event procedure executes only when the Unload event occurs.

Steps to Reproduce Behavior

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Place a command button (Command1) on Form1.

3. Add the following code to the Command1_Click event procedure for
 Command1:

 Sub Command1_Click()
 Unload Form1
 End Sub

4. Add the following code to the Form1_Unload event procedure:

 Sub Form1_Unload(Cancel as integer)
 If MsgBox("Continue to unload the form?",1) = 2 Then
 cancel = -1
 Else
 cancel = 0
 End If
 End Sub

5. From the File menu, choose Make EXE File (ALT, F, K). Enter a
 filename for the .EXE program and choose the OK button.

6. From the Windows Program Manager File menu, choose Run (ALT, F, R),
 and enter the name of the .EXE file created in step 5.

While the program is running, exit by double-clicking the system menu or
by pressing the command button. You will see the message box appear and
you will be able to abort unloading the form if you choose the Cancel
button.

Now try running the program (step 6 above) and bring up the Windows
Task List by pressing CTRL+ESC. If you select the name of the program
from the Task List and then choose the End Task button, your program
will terminate without the message box ever being displayed in Visual
Basic version 1.0.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

How to Rotate a Bitmap in VB for Windows
Article ID: Q80406

The information in this article applies to:

- Microsoft Visual Basic Programming System for Windows,
 versions 1.0, 2.0, and 3.0

SUMMARY
=======

This article contains a program example that uses Visual Basic for
Windows statements and functions to rotate a bitmap.

MORE INFORMATION
================

Steps to Create Example Program

 1. Run Visual Basic for Windows, or from the File menu, choose New
 Project (ALT, F, N) if Visual Basic for Windows is already running.
 Form1 will be created by default.

 2. Place two picture boxes named Picture1 and Picture2 on Form1. Assign
 a bitmap to the Picture property of Picture1.

 3. Set the ScaleMode property of both picture boxes to 3 - Pixel.

 4. Set the AutoSize property of Picture1 to True (-1).

 5. Set the AutoRedraw property of Picture1 and Picture2 to True (-1).

 6. Place a command button named Command1 on Form1.

 7. Enter the following code in the Command1_Click event procedure:

 ' Example of how to call bmp_rotate.
 Sub Command1_Click ()
 Const Pi = 3.14159265359

 For angle = Pi / 6 To 2 * Pi Step Pi / 6
 picture2.Cls
 Call bmp_rotate(picture1, picture2, angle)
 Next
 End Sub

 8. Enter the following code in the general Declarations section:

 ' bmp_rotate(pic1, pic2, theta)
 ' Rotate the image in a picture box.
 ' pic1 is the picture box with the bitmap to rotate
 ' pic2 is the picture box to receive the rotated bitmap
 ' theta is the angle of rotation

 '
 Sub bmp_rotate (pic1 As Control, pic2 As Control, ByVal theta!)
 Const Pi = 3.14159265359
 Dim c1x As Integer ' Center of pic1.
 Dim c1y As Integer ' "
 Dim c2x As Integer ' Center of pic2.
 Dim c2y As Integer ' "
 Dim a As Single ' Angle of c2 to p2.
 Dim r As Integer ' Radius from c2 to p2.
 Dim p1x As Integer ' Position on pic1.
 Dim p1y As Integer ' "
 Dim p2x As Integer ' Position on pic2.
 Dim p2y As Integer ' "
 Dim n As Integer ' Max width or height of pic2.

 ' Compute the centers.
 c1x = pic1.scalewidth / 2
 c1y = pic1.scaleheight / 2
 c2x = pic2.scalewidth / 2
 c2y = pic2.scaleheight / 2

 ' Compute the image size.
 n = pic2.scalewidth
 If n < pic2.scaleheight Then n = pic2.scaleheight
 n = n / 2 - 1
 ' For each pixel position on pic2.
 For p2x = 0 To n
 For p2y = 0 To n
 ' Compute polar coordinate of p2.
 If p2x = 0 Then
 a = Pi / 2
 Else
 a = Atn(p2y / p2x)
 End If
 r = Sqr(1& * p2x * p2x + 1& * p2y * p2y)

 ' Compute rotated position of p1.
 p1x = r * Cos(a + theta)
 p1y = r * Sin(a + theta)

 ' Copy pixels, 4 quadrants at once.
 c0& = pic1.Point(c1x + p1x, c1y + p1y)
 c1& = pic1.Point(c1x - p1x, c1y - p1y)
 c2& = pic1.Point(c1x + p1y, c1y - p1x)
 c3& = pic1.Point(c1x - p1y, c1y + p1x)
 If c0& <> -1 Then pic2.PSet (c2x + p2x, c2y + p2y),c0&
 If c1& <> -1 Then pic2.PSet (c2x - p2x, c2y - p2y),c1&
 If c2& <> -1 Then pic2.PSet (c2x + p2y, c2y - p2x),c2&
 If c3& <> -1 Then pic2.PSet (c2x - p2y, c2y + p2x),c3&
 Next
 ' Allow pending Windows messages to be processed.
 t% = DoEvents()
 Next
 End Sub

 9. Assign a bitmap image to the Picture1 Picture property.

10. To start the program, press F5, then click the Command1 button. The
 program rotates the image of Picture1 by 30 degrees and places the
 rotated image in Picture2. It continues to draw the image rotated
 at successive multiples of 30 degrees until it has rotated the
 picture by 360 degrees.

To save the new bitmap created in Picture2, you can use the following
statement:

 SavePicture Picture2.Image, "filename.bmp"

Additional reference words: 1.00
KBCategory:
KBSubcategory: PrgCtrlsStd

How to Clear VB Picture Property at Run Time Using LoadPicture
Article ID: Q80488

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

During execution of a Visual Basic program, you can clear the Picture
property of a form or picture control by using the LoadPicture function.
Calling LoadPicture with no parameters and assigning the result to the
Picture property of a form or control will clear the Picture property.

MORE INFORMATION
================

This information is documented in the Visual Basic Help menu under the
LoadPicture function.

Code Example

To clear the picture property at run time, do the following:

1. Start Visual Basic.

2. Make a picture box called Picture1.

3. Assign a bitmap or icon the picture1.picture property.

4. Add the following code to the form1.click event by double-clicking
 the form:

 Sub Form_Click ()
 picture1.picture = LoadPicture()
 End Sub

5. Run the program.

6. Click the form.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd APrgGrap

How to Print Multiline Text Box Using Windows API Functions
Article ID: Q80867

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

Printing the Text property of a multiline text box while maintaining
the line structure requires attention to word wrapping and carriage
return/line feeds. The programmer can either track the number of
characters and lines in code or use Windows API functions to
manipulate the Text property. This article demonstrates these
techniques in a Visual Basic example.

MORE INFORMATION
================

The example below demonstrates how to use the API function SendMessage()
to track the number of lines in a multiline text box and to select and
print the lines the way they appear -- with line breaks or word wrapping
intact. This code will work without modification even if the form and
controls are resized at run time. The actual position of word wrapping
will change.

For more information about API functions relating to text boxes, query
on the following words in the Microsoft Knowledge Base:

 API and text and box and manipulate

Step-by-Step Example

1. Create a form and place a label, text box, and command button on it.

2. Set the following properties at design time:

 Control Property Setting

 Text box TabIndex 0 (zero, or first in tab order)
 Text box MultiLine True
 Label AutoSize True
 Label Name aGetLineCount

3. Add the following code to the Global module:

 Declare Function GetFocus% Lib "user" ()
 ' Enter the following Declare statement on one, single line:
 Declare Function SendMessage% Lib "user" (ByVal hWnd%, ByVal wMsg%,
 ByVal wParam%, ByVal lParam As Any)
 Global Buffer As String

 Global resizing As Integer
 Global Const EM_GETLINE = &H400 + 20
 Global Const EM_GETLINECOUNT = &H400 + 10
 Global Const MAX_CHAR_PER_LINE = 80 ' Scale this to size of text box

4. Add the following code to the Form_Load procedure:

 Sub Form_Load ()
 ' Size form relative to screen dimensions.
 ' Could define all in move command but recursive definition causes
 ' extra paints.
 form1.width = screen.width * .8
 form1.height = screen.height * .6
 ' Enter the following form1.Move method on one, single line:
 form1.Move screen.width\2-form1.width\2,
 screen.height\2-form1.height\2
 End Sub

5. Add the following code to the Form_Resize procedure:

 Sub Form_Resize ()
 resizing = -1 ' Global flag for fGetLineCount function call
 ' Dynamically scale and position the controls in the form.
 ' This code also is executed on first show of form.
 Text1.Move 0, 0, form1.width, form1.height \ 2
 Text1.SelStart = Text1.SelStart ' To avoid UAE -see Q80669
 ' Enter the following two lines as one, single line:
 command1.Move form1.width\2-command1.width\2,
 form1.height-form1.height\4
 ' Enter the following two lines as one, single line:
 aGetLineCount.Move form1.width \ 2 - command1.width \ 2,
 Text1.height
 X% = fGetLineCount() ' Update to reflect change in text box size
 resizing = 0
 End Sub

5. Add the following code to the Command1_Click event:

 Sub Command1_Click ()
 '* Pop up an inputbox$ to allow user to specify which line
 '* in the text box to print or print all lines.
 '* Also check bounds so that a valid line number is printed
 OK = 0 ' Zero the Do Loop flag
 NL$ = Chr$(13) + Chr$(10)
 prompt$ = "Which line would you like to print?"
 prompt1$ = prompt$ + NL$ + "Enter -1 for all"
 prompt2$ = "Too many lines" + NL$ + "Try again!" + NL$ + prompt1$
 prompt$ = prompt1$
 Do
 response$ = InputBox$(prompt$, "Printing", "-1")
 If response$ = "" Then Exit Sub ' if user hits cancel then exit
 If Val(response$) > fGetLineCount&() Then
 prompt$ = prompt2$
 Else
 OK = -1 ' Line chosen is in valid range so exit DO
 End If
 Loop Until OK

 If Val(response$) = -1 Then ' Print all lines
 ndx& = fGetLineCount&()
 For N& = 1 To ndx&
 Buffer = fGetLine(N& - 1)
 printer.Print Buffer ' or print to the screen
 Next N&
 Else ' Print a line
 Buffer = fGetLine(Val(response$) - 1)
 printer.Print Buffer ' or print to the screen
 End If
 End Sub

6. Add the following code to the general Declarations section of the
 form's code:

 Function fGetLine$ (LineNumber As Long)
 ' This function fills the buffer with a line of text
 ' specified by LineNumber from the text box control.
 ' The first line starts at zero.
 byteLo% = MAX_CHAR_PER_LINE And (255) '[changed 5/15/92]
 byteHi% = Int(MAX_CHAR_PER_LINE / 256) '[changed 5/15/92]
 Buffer$ = chr$(byteLo%) + chr$(byteHi%)+Space$(MAX_CHAR_PER_LINE-2)
 ' [Above line changed 5/15/92 to correct problem.]
 text1.SetFocus 'Set focus for API function GetFocus to return handle
 x% = SendMessage(GetFocus(), EM_GETLINE, LineNumber, Buffer$)
 fGetLine$ = Left$(Buffer$,X%)
 End Function

 Function fGetLineCount& ()
 ' This function will return the number of lines
 ' currently in the text box control.
 ' Setfocus method illegal while in resize event
 ' so use global flag to see if called from there
 ' (or use setfocus prior to this function call in general case).
 If Not resizing Then
 Text1.SetFocus ' Set focus for following function GetFocus
 resizing = 0
 End If
 lcount% = SendMessage(GetFocus(), EM_GETLINECOUNT, 0&, 0&)
 aGetLineCount.caption = "GetLineCount = " + Str$(lcount%)
 fGetLineCount& = lcount%
 End Function

7. Add the following code to the Text1_Change event:

 Sub Text1_Change ()
 X% = fGetLineCount() '* Update label to reflect current line
 End Sub

8. Save the project. Then run the application.

9. Enter text into the text box and either let it wrap or use the
 ENTER key to arrange lines.

10. Choose the button or TAB and press ENTER.

11. Choose the default (which prints all lines) or enter the line

 desired. If you choose Cancel, nothing will print.

12. Resize the form and repeat steps 9 to 11 above. The text will
 appear on the printed page as you saw it in the text box. Modify
 the example to print to the screen, write to a file, and so forth.

Reference(s):

"Microsoft Windows Programmer's Reference Book and Online Resource"
(Visual Basic Add-on kit number 1-55615-413-5)

Additional reference words: 1.00 2.00 3.00 textbox
KBCategory:
KBSubcategory: PrgCtrlsStd APrgWindow

Common Dialog Custom Control: FilterIndex Can Be Negative
Article ID: Q80934

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, versions
 2.0 and 3.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SUMMARY
=======

The FilterIndex property of the Common Dialog custom control (COMMDLG.DLL)
can be any long integer value, including negative numbers and 0 (zero).

MORE INFORMATION
================

Normally, the smallest value to which you would set the FilterIndex
property is 1, because the first filter is defined as 1. If you use a
number less than 1, such as 0 or any negative number (within the range
of a long integer), you will get the same result as if you set it
equal to 1.

Likewise, if you use a number greater that the total number of
filters, the FilterIndex property will function as if you set it to
the last of the filters.

For example, if you have three filters and you set FilterIndex to -2,
it will function as if you set FilterIndex to 1. If you set FilterIndex
to 23, it will function as if you set FilterIndex to 3.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

Common Dialog Control: Pipe (|) Optional in Filter Property
Article ID: Q80935

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, versions
 2.0 and 3.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SUMMARY
=======

The pipe character (|), which is placed at the end of each selection in
the Filter property of the Common Dialog custom control, is optional
on the last item in the string.

This information applies to the Common Dialog custom control supplied
with Microsoft Professional Toolkit for Microsoft Visual Basic
programming system version 1.0 for Windows and with the Professional
Edition of Visual Basic version 2.0 for Windows.

MORE INFORMATION
================

Filter is a property of the Common Dialog custom control (COMMDLG.DLL).
The Filter property is assigned a string that contains sets of
"description" and "filter". Each set represents one entry in the List
Files of Type list box.

Each of these items in the string are followed by a pipe character (|).
The last item in the list need not be followed by a pipe, although it is
allowed.

The syntax for using the Filter property is as follows:

 CommonDialog.Filter[= desc1$|filter1$|desc2$|filter2$]

Either of the following code examples will work:

 CMDialog1.Filter = "Text Files (*.txt)|*.txt"

 -or-

 CMDialog1.Filter = "Text Files (*.txt)|*.txt|"

The Microsoft Visual Basic Professional Toolkit documentation uses
both of these methods in its code examples.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

How to Use More than One Type of Font in Picture Box
Article ID: Q81220
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
--

SUMMARY
=======

The text box control in Visual Basic for Windows displays the entire
text box with either the FontUnderline, FontBold, FontItalic, or
FontStrikethru fonts, but with only one font at a time. This behavior
is by design.

However, you may want to display a box with all four fonts at the same
time with separate words displayed in different fonts. Below is an
example of displaying the fonts FontBold, FontItalic, FontStrikethru,
and FontUnderline fonts in a picture box control in Visual Basic for
Windows to work around the limitation in text boxes.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

The example below is one way of simulating a text box's contents in a
variety of fonts.

1. Run Visual Basic for Windows, or from the File menu, choose New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 is created by default.

2. Place a picture box on Form1, and double-click the picture box
 to open the Code window. Add the following code to the Click event.
 Notice that the font properties are a Boolean type (that is,
 -1 = True and 0 = False).

Sub Picture1_Click ()

'** The word "Hello, " will be in FontBold.
 temp$ = "Hello, "
 Picture1.FontBold = -1
 Picture1.FontItalic = 0
 Picture1.FontStrikethru = 0
 Picture1.FontUnderline = 0
 Picture1.Print temp$

'** Need to program the next location to print in FontItalic.
 Picture1.Currentx = 500
 Picture1.Currenty = 0

 Picture1.FontBold = 0
 Picture1.FontItalic = -1
 Picture1.FontStrikethru = 0
 Picture1.FontUnderline = 0
 temp$ = " there!"
 Picture1.Print temp$

'** Need to program location to print in FontStrikethru.
 Picture1.Currentx = 1100
 Picture1.Currenty = 0
 Picture1.FontBold = 0
 Picture1.FontItalic = 0
 Picture1.FontUnderline = 0
 Picture1.FontStrikethru = -1
 temp$ = "This"
 Picture1.Print temp$

'** Need to program location to print in FontUnderline.
 Picture1.Currentx = 0
 Picture1.Currenty = 200
 Picture1.FontBold = 0
 Picture1.FontItalic = 0
 Picture1.FontStrikethru = 0
 Picture1.FontUnderline = -1
 temp$ = "is a test."
 Picture1.Print temp$

End Sub

Notice that the CurrentX and CurrentY properties are used to place the
text at a certain location in the picture box. This example is rather
simple, but its purpose is to give you an idea on how to simulate a
text box in Visual Basic for Windows to be more flexible with a mix of
the different types of fonts available.

The same method can be used to print more than one type of font to a
printer. To do this, modify the Picture1_Click Sub procedure by changing
Picture1. to Printer.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

Visual Basic SendKeys Statement Is Case Sensitive
Article ID: Q81466
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
--

SUMMARY
=======

The SendKeys statement in Microsoft Visual Basic for Windows is case
sensitive with regards to the keystrokes sent. Sending an uppercase
letter may be interpreted by the receiving application differently
than the lowercase version of a letter.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

The following line of code sends an ALT+F key combination to the
application that currently has the focus:

 SendKeys "%(F)"

Note that this is different than ALT+f:

 SendKeys "%(f)"

This can be a problem because some applications distinguish between an
uppercase F and lower case f when sent by the SendKeys statement.

For example, Microsoft Word versions 1.0b and earlier for Windows
(WINWORD.EXE) do not distinguish the difference. However, Microsoft
Word version 2.0 for Windows does distinguish the lowercase f sent by
SendKeys.

When SendKeys (from Visual Basic for Windows) sends the ALT+F key
combination, WINWORD.EXE version 2.0 interprets the keystroke as
ALT+Shift+f, at which Word for Windows will simply beep. However,
SendKeys using ALT+f will correctly activate the File menu.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

Task List Switch to VB Application Fails After ALT+F4 Close
Article ID: Q81469
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
--

SUMMARY
=======

Selecting the Close command from the Control menu (ALT+F4) to quit a
Visual Basic for Windows application will not necessarily unload any
other forms that have been loaded. If other forms have been loaded but
are not visible, the application may still be running under Windows. If
this is the case, the Windows Task List will still contain the name of
the application. Attempting to switch to the application from the
Windows Task List will be unsuccessful.

If you want the application to terminate as a result of unloading a
particular form, place an End statement in the Form_Unload event
procedure for the form, or use the Unload statement to unload all forms
that are loaded. This will cause all forms (visible and invisible) to
be unloaded, and the application to terminate.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

Even if the form that is closed is the designated startup form in your
application, it will not automatically unload previously loaded forms.
Therefore, the application can in fact still be running and appear in
the Windows Task List. You can terminate the application by selecting
the End Task button in the Windows Task List, but you will not be able
to switch to the task.

Below are the steps necessary to cause an application to terminate
when a particular form is closed from the Control menu (ALT+F4).

With the application loaded in VB.EXE (the Visual Basic for Windows
development environment), do the following:

1. Double-click the form to open the Code window.

2. Add an End statement to the Form_Unload event procedure for the
 form. For example:

 Sub Form_Unload (Cancel As Integer)

 ' Your code goes here.

 End ' This unloads all the forms and terminates the application.

 End Sub

Adding an End statement to the Unload event procedure of a form will
not cause the Unload event procedures for the other forms to be
called. To cause the Unload event procedures for the other forms to
be called, use the Unload statement to explicitly unload each form.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

Overflow Error Plotting Points Far Outside Bounds of Control
Article ID: Q81953
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
--

SUMMARY
=======

Visual Basic for Windows may give an Overflow error when you plot
points on a form or picture box if a point's coordinates far exceed
the borders and scale of the form or control. The point at which
overflow occurs depends on the ScaleMode property value and the points
plotted. In the case of ScaleMode = 0 (User Defined Scale), the size
of the form or picture box and the scale chosen are also determinants.

A workaround is to trap the error and use a RESUME NEXT statement to
exit the error handler. The example below contains the necessary code
to trap the Overflow error.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

Before Visual Basic for Windows can plot a point, it must first
convert the coordinates into their absolute location in twips. If,
after the conversion, one or both coordinates are greater than 32,767
or less than -32,768, an Overflow error is generated. The following
chart lists the ScaleModes, their equivalence in twips, and the values
that will cause a coordinate (z) to overflow:

 Equivalents
ScaleMode in Twips (Tp) Overflow Point (z)
--------- ------------- ------------------
0 (User defined) User defined User defined (see example)
1 (Twips) 1 twip = 1 twip (z < -32768) or (z > 32767)
2 (Point) 1 point = 20 twips (z < -1638) or (z > 1638)
3 (Pixel) System dependent System dependent
4 (Character) x-axis=120 twips/char (x < -273) or (x > 273)
 y-axis=240 twips/char (y < -136) or (y > 136)
5 (Inch) 1 Inch = 1440 twips (z < -22) or (z > 22)
6 (Millimeter) 1 mm = 56.7 twips (z < -577) or (z > 577)
7 (Centimeter) 1 cm = 567 twips (z < -57) or (z > 57)

The example below can be used to determine the value that generates
the Overflow error for ScaleMode 0 or 3.

Example

1. Run Visual Basic for Windows, or from the File menu, choose New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 is created by default.

2. Add the following controls to Form1:

 Control Name (use CtlName in Visual Basic 1.0 for Windows)
 ------- --
 Text box Text1
 Command button Command1

3. Set the MultiLine property for Text1 to True. With ScaleMode = 0
 only, the overflow value is dependent upon the size of the picture
 box or form. If you are testing the overflow value with ScaleMode =
 0, you must size the form appropriately.

4. Add the following code to the Form1 Form_Load event procedure:

 Sub Form_Load ()
 Command1.Caption = "Find Ranges"

 '* Change ScaleMode to see different results.
 Form1.ScaleMode = 3 ' PIXEL.
 End Sub

5. Add the following code to the Command1_Click event procedure:

 Sub Command1_Click ()
 CR$ = Chr$(13) + Chr$(10) ' Carriage return.

 X = FindValue("X")
 Y = FindValue("Y")

 Text1.Text = "Valid value when..."
 Text1.Text = Text1.Text + CR$ + "-" + Str$(X) + " < X < " + Str$(X)
 Text1.Text = Text1.Text + CR$ + "-" + Str$(Y) + " < Y < " + Str$(Y)
 End Sub

6. Add the following general purpose function to the general
 Declarations section:

 Function FindValue (Which$)
 On Error GoTo rlhandler

 HiValue = 100000
 LoValue = 0
 Errored = FALSE
 ' Do binary select.
 Do
 NewCheck = Value
 If Errored Then
 Value = HiValue - (HiValue - LoValue) \ 2
 Else
 Value = LoValue + (HiValue - LoValue) \ 2
 End If

 If Which$ = "X" Then

 Form1.PSet (Value, 0)
 Else
 Form1.PSet (0, Value)
 End If

 If ErrorNum = 6 Then
 HiValue = Value
 ErrorNum = 0
 Else
 LoValue = Value
 End If
 Loop Until NewCheck = Value
 FindValue = Value

 Exit Function

 rlhandler:
 ' Err = 6 is OverFlow error.
 If Err = 6 Then
 ErrorNum = Err
 Else
 Form1.Print Err
 End If
 Resume Next

End Function

7. In Visual Basic version 1.0 for Windows, add the following to the
 general declarations section of Form1:

 Const FALSE = 0
 Const TRUE = -1

8. From the Run menu, choose Start (or press the F5 key), and click
 the Command1 button to calculate the point at which the X and Y
 coordinates generate an Overflow error.

When the above Click event is triggered, Visual Basic for Windows will
try to set a point on the form. Past the border, Visual Basic for
Windows is plotting points that exceed the visual scope of the control.
Once the program traps the Overflow error, the text box will display
the valid range of coordinates you can use that will not generate the
Overflow error.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

PRB: MDI Child: Child Window May Adopt Image of Other Control
Article ID: Q81956

The information in this article applies to:

- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SYMPTOMS
========

When an MDI Child custom control is placed on a form, no other non-MDI
Child control(s) should be placed on the same form. If a non-MDI Child
control is placed directly on the parent form, the MDI child window
may appear to adopt, or "pick up," the control when the MDI child
window is minimized then maximized (so that it covers the control on
the form once maximized or sized).

RESOLUTION
==========

This article does not apply to later versions of Visual Basic. The MDI
Child custom control shipped only with version 1.0. Multiple-document
interface (MDI) forms are built into Visual Basic version 2.0 and later,
making the MDI custom control obsolete.

When using the MDI Child custom control, you should only place
controls directly on the child windows you create. The "Microsoft
Visual Basic Custom Control Reference" states on page 184 that no
controls should be placed on the form (parent window) when using MDI
child windows.

STATUS
======

The problem described in this article does not occur in Visual Basic
version 2.0 for Windows.

MORE INFORMATION
================

Steps to Reproduce Problem in Visual Basic Version 1.0
--
1. Start Visual Basic or from the File menu, choose New Project (ALT,
 F, N) if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose Add File. In the Files box, select the
 MDICHILD.VBX custom control file. The MDI Child tool appears in the
 toolbox.

3. Place an MDI Child control on Form1.

4. Place another control (for example, a command button) directly on
 the form outside the MDI child window.

5. Press F5 to run the application.

6. Move the MDI child window so that it is covering the command button
 by clicking and dragging the title bar.

7. Click the Minimize button (the down arrow) on the MDI child window
 to minimize it.

8. Double-click the icon of the minimized MDI child window to restore it.

9. The MDI child window will now appear to have a command button on it.

The MDI child window does not actually have a fully functional copy of
the control that was placed directly on the form--it has only an image
of the control (in this example, a command button).

Additional reference words: 1.00 2.00
KBCategory:
KBSubcategory: PrgCtrlsStd

'Text' Property is Read-Only Error as Set Combo Box Text Prop
Article ID: Q84056

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

If you assign a value to the Text property of a combo box with Style=2
(Dropdown list), you will receive a

 'Text' property is read-only

error message. To assign a default value to a combo box with the Style
property set to 2, you need to set the ListIndex property of the combo
box. If you assign a value to the Text property of a combo box with
Style set to 0 (Dropdown Combo) or 1 (Simple Combo), you will not get
the above error message.

MORE INFORMATION
================

A combo box combines the features of a text box and a list box. The
user can make a selection by selecting an item from its list or by
entering text in the text box portion of the combo box at the top of
the combo box.

If the Style property is set to 0 (Dropdown Combo) or 1 (Simple
Combo), the user can select an item in the list or enter text in the
text portion of the combo box. The text entered may or may not be an
item in the list. A default value for the combo box can be set either
by assigning a value to the ListIndex property or by assigning a value
to the Text property of the combo box.

However, if the Style property is set to 2 (Dropdown List), the user
can only select an item from the list. The user cannot enter text
directly in the text portion of the combo box. Therefore, a default
item for the combo box can be set by assigning a value to the
ListIndex property. The Text property of a combo box with Style set to
2 (Dropdown List) is read-only.

Reference(s):

"Microsoft Visual Basic: Language Reference," version 1.0, page 311

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

How to Close VB Combo Box with ENTER key
Article ID: Q84474
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
--

SUMMARY
=======

If you open a combo box and then use the ARROW keys to scroll through
it, pressing the ENTER key will not close the combo box like a mouse
click will. This is normal behavior. The following example
demonstrates how to make a combo box close when the ENTER key is
pressed.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

The following program makes use of the Windows API SendMessage
function to send the combo box the message to close. This is done only
after the ENTER key is detected in the KeyPress event for the combo
box.

Two Windows API Declare statements must be added to your application.
These can be added either in the GLOBAL.BAS module, or in the general
Declarations section of the form containing the combo box.

Steps to Reproduce Behavior

1. Run Visual Basic for Windows, or from the File menu, choose New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 is created by default.

2. Add the following two declarations to the global module or the
 General Declarations for Form1:

 Declare Function SendMessage% Lib "user" (ByVal hWnd%, ByVal
 wMsg%, ByVal wParam%, ByVal lParam&)
 Declare Function GetFocus Lib "user" () As Integer

 (Note that the first Declare statement must be on just one line, not
 split across two lines as it is here.)

3. Place a combo box on Form1.

4. Under the KeyPress event for the combo box, place the following
 code:

 If KeyAscii = 13 Then
 Const WM_USER = &h400
 Const CB_SHOWDROPDOWN = WM_USER + 15

 Combo1.SetFocus
 BoxwHND% = GetFocus()
 r& = SendMessage(BoxwHND%, CB_SHOWDROPDOWN, 0, 0)
 KeyAscii = 0
 End If

5. Place a command button on Form1.

6. In the Click event for Command1, place the following code:

 ' This will add some data to the combo box.
 for i =1 to 10
 Combo1.AddItem STR$(i)
 Next i

7. Press the F5 key to run the application.

8. Choose the Command1 button to fill the combo box.

9. Open the combo box with the mouse, and scroll down with the ARROW keys.
 Pressing the ENTER key will close the Combo Box.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

How to Edit Grid Cells in VB Using Overlapped Text Box
Article ID: Q85109

This information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 3.0

SUMMARY
=======

The Grid custom control does not provide any text editing capability.
The example program below shows how you can use a text box to perform
text editing in the current cell of a grid.

MORE INFORMATION
================

The example program shown below enables you to edit the contents of a grid
cell. When you press a key, the grid moves a text box to the position
of the current cell and sets the focus to the text box. When you press
the ENTER key or change focus away from the current cell, the program
transfers the text in the text box back to the grid.

Steps to Create Example Program

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose Add File. Then select the GRID.VBX file. The
 Grid tool appears in the Toolbox.

3. Place a grid (Grid1) and a text box (Text1) on Form1. Set the Grid1 Cols
 and Rows properties both to 4. Then size the grid to show all the cells.
 Set the Text1 BorderStyle property to None (0) and the Visible property
 to False (0).

4. Enter the following declarations in the general Declarations section:

 Const ASC_ENTER = 13 ' ASCII code of ENTER key.
 Dim gRow As Integer
 Dim gCol As Integer

5. Enter the following code in the Grid1_KeyPress procedure:

 Sub Grid1_KeyPress (KeyAscii As Integer)
 ' Move the text box to the current grid cell:
 Call grid_text_move(Grid1, Text1)

 ' Save the position of the grids Row and Col for later:
 gRow = Grid1.Row
 gCol = Grid1.Col

 ' Make text box same size as current grid cell:

 Text1.Width = Grid1.ColWidth(Grid1.Col) - 2 * Screen.TwipsPerPixelX
 Text1.Height = Grid1.RowHeight(Grid1.Row) - 2 * Screen.TwipsPerPixelY

 ' Transfer the grid cell text:
 Text1.Text = Grid1.Text

 ' Show the text box:
 Text1.Visible = True
 Text1.ZOrder 0
 Text1.SetFocus

 ' Redirect this KeyPress event to the text box:
 If KeyAscii <> ASC_ENTER Then
 SendKeys Chr$(KeyAscii)
 End If
 End Sub

6. Add the following code to the Text1_KeyPress procedure:

 Sub Text1_KeyPress (KeyAscii As Integer)
 If KeyAscii = ASC_ENTER Then
 Grid1.SetFocus ' Set focus back to grid, see Text_LostFocus.
 KeyAscii = 0 ' Ignore this KeyPress.
 End If
 End Sub

7. Add the following code to the Text1_LostFocus procedure:

 Sub Text1_LostFocus ()
 Dim tmpRow As Integer
 Dim tmpCol As Integer

 ' Save current settings of Grid Row and col. This is needed only if
 ' the focus is set somewhere else in the Grid.
 tmpRow = Grid1.Row
 tmpCol = Grid1.Col

 ' Set Row and Col back to what they were before Text1_LostFocus:
 Grid1.Row = gRow
 Grid1.Col = gCol

 Grid1.Text = Text1.Text ' Transfer text back to grid.
 Text1.SelStart = 0 ' Return caret to beginning.
 Text1.Visible = False ' Disable text box.

 ' Return row and Col contents:
 Grid1.Row = tmpRow
 Grid1.Col = tmpCol
 End Sub

8. In the general Declarations section or in a separate .BAS file,
 add the following Sub routine:

 Sub grid_text_move (Grid As Control, TextBox As Control)

 ' Move a text box to the position of the current cell in a grid:
 Dim X As Single ' x position of current grid cell.

 Dim Y As Single ' y position of current grid cell.
 Dim i As Integer ' Column/row index.

 ' Skip grid border:
 X = Grid.Left
 Y = Grid.Top
 If Grid.BorderStyle = 1 Then
 X = X + Screen.TwipsPerPixelX
 Y = Y + Screen.TwipsPerPixelY
 End If

 ' Skip fixed columns and rows:
 For i = 0 To Grid.FixedCols - 1
 X = X + Grid.ColWidth(i)
 If Grid.GridLines Then
 X = X + Screen.TwipsPerPixelX
 End If
 Next
 For i = 0 To Grid.FixedRows - 1
 Y = Y + Grid.RowHeight(i)
 If Grid.GridLines Then
 Y = Y + Screen.TwipsPerPixelY
 End If
 Next

 ' Find current data cell:
 For i = Grid.LeftCol To Grid.Col - 1
 X = X + Grid.ColWidth(i)
 If Grid.GridLines Then
 X = X + Screen.TwipsPerPixelX
 End If
 Next
 For i = Grid.TopRow To Grid.Row - 1
 Y = Y + Grid.RowHeight(i)
 If Grid.GridLines Then
 Y = Y + Screen.TwipsPerPixelY
 End If
 Next

 ' Move the Text Box, and make small adjustments:
 TextBox.Move X + Screen.TwipsPerPixelX, Y + Screen.TwipsPerPixelY
 End Sub

9. Press the F5 key to run the program. Press a key to begin entering text
 into a cell. Type in some text. Press the ENTER key to finish
 editing the cell. Use the arrow keys to move to another cell. You
 can press the ENTER key to begin editing a cell without changing
 the contents of the cell.

Additional reference words: 3.00
KBCategory: Prg
KBSubcategory: PrgCtrlsStd

How to Make ENTER Key Move Focus Like TAB Key for VB Controls
Article ID: Q85562

The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
 - Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

You can cause the ENTER key to move the focus to the control with the
next higher TabIndex property value, as the TAB key does.

However, using the Enter key to move the focus does not follow recommended
Windows application design guidelines. The Enter key should be used to
process the default command or to process entered information, not to move
the focus.

MORE INFORMATION
================

You can detect when the user presses ENTER from the KeyPress event
procedure by checking to see if the KeyAscii parameter is the
character code for ENTER (13). Then you can move the focus to the next
control in the TabIndex order with SendKeys "{tab}". You can move
the focus to the previous control with SendKeys "+{tab}".

This technique works with most kinds of controls. It does not work
with command button controls, because command buttons do not receive
the KeyPress event when you press ENTER.

Steps to Create Example Program

1. Start Visual Basic for Windows, or from the File menu, choose New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 is created by default.

2. Add two text boxes (Text1 and Text2) to Form1.

3. Enter the following code in the Text1 KeyPress procedure:

 Sub Text1_KeyPress (KeyAscii As Integer)
 If KeyAscii = 13 Then ' The ENTER key.
 SendKeys "{tab}" ' Set focus to next control.
 KeyAscii = 0 ' Ignore this key.
 End If
 End Sub

4. Enter the following code in the Text2 KeyPress procedure:

 Sub Text2_KeyPress (KeyAscii As Integer)

 If KeyAscii = 13 Then ' The ENTER key.
 SendKeys "{tab}" ' Set focus to next control.
 KeyAscii = 0 ' Ignore this key.
 End If
 End Sub

5. Press the F5 key to run the program. When you press ENTER, the
 focus moves between the two controls.

Additional reference words: 1.00 2.00 3.00 return key
KBCategory:
KBSubcategory: PrgCtrlsStd

PRB: GotFocus Event Fails If MsgBox Invoked in LostFocus Event
Article ID: Q85856

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

Invoking a message box from a control's LostFocus event will prevent
the GotFocus event of the next selected control from executing.

CAUSE
=====

This happens because the GotFocus event is not executed. Removing the
message box from the control's LostFocus will allow the GotFocus event
to execute as expected.

WORKAROUND
==========

To work around the problem, set a flag in the control's LostFocus event
procedure. Then call a generic test routine from the next control's
GotFocus event, as demonstrated in the following example:

1. Start Visual Basic, or from the File menu, choose New Project
 (ALT, F, N) if Visual Basic is already running. Form1 is created
 by default.

2. Create the following controls and properties for Form1:

 Control CtlName (Name in 2.0 or 3.0) Property Setting
 --
 Text Box Text1 TabIndex = 0
 Text Box Text2 TabIndex = 1

3. Add the following code to the general Declarations section of Form1:

 Dim Text1LostFocus As Integer
 Sub CheckLostFocus()
 If Text1LostFocus Then
 MsgBox "Text1 has Lost the Focus"
 Text1LostFocus = 0
 End If
 End Sub

4. Add the following code to the Text1_LostFocus event procedure:

 Sub Text1_LostFocus ()
 Text1LostFocus = -1

 End Sub

5. Add the following code to the Text2_GotFocus event procedure:

 Sub Text1_GotFocus ()
 Call CheckLostFocus
 MsgBox "Text2 has Received the Focus"
 End Sub

6. Press F5 to run the program.

Now, both message boxes should appear as expected when the focus is
changed by using the TAB key or by clicking the Text2 box.

STATUS
======

This behavior is by design. It is a limitation of Visual Basic's
MsgBox statement.

MORE INFORMATION
================

Steps to Reproduce Behavior

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Create the following controls and properties for Form1:

 Control CtlName (Name in 2.0) Property Setting

 Text Box Text1 TabIndex = 0
 Text Box Text2 TabIndex = 1

3. Add the following code to the Text1_LostFocus event procedure:

 Sub Text1_LostFocus ()
 MsgBox "Text1 has Lost the Focus"
 End Sub

4. Add the following code to the Text2_GotFocus event procedure:

 Sub Text2_GotFocus ()
 MsgBox "Text2 has Received the Focus"
 End Sub

5. Press F5 to run the program.

Notice that when you click the second text box (Text2), the message box
specified in the GotFocus event fails to display. This also occurs if you
try to tab between text boxes or set up labels and quick keys.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

PRB: Can TAB in Error if Value of Option Button Set to False
Article ID: Q85990

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

SYMPTOMS
 Setting the Value of an option button to False (0) also sets its
 TabStop property to False. If you set the Value property of an option
 button to False without setting the Value property of another option
 button to True (-1), Visual Basic will allow the user to tab over the
 other option buttons because all the TabStops are set to False.

 This is an invalid state for a group of option buttons. One of the
 option buttons should always be selected (that is, its Value property
 should be set to True, which also sets the TabStop property to True).

CAUSE
 By default, the TabStop property of option buttons is set to True. Once
 an option button is selected at run time, the Value property for the
 other option buttons not selected is set to False, which also sets the
 TabStop property to False. If you just change the Value property of one
 option button to False, and do not set the Value property of another
 option button to True, none of the other option buttons will have their
 TabStop property set to True, and these option buttons will skipped when
 the user presses the TAB key to move through controls at run time.

WORKAROUND
 To avoid this problem, ensure that one of the options in an option group
 is always selected.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic, or from the File menu, choose New Project (ALT,
 F, N) if Visual Basic is already running. Form1 is created by default.

2. Place a command button (Command1), two option buttons (Option1 and
 Option2) and another command button (Command2) on Form1.

3. Set the Value property of Option1 to True.

4. Add the following code to the Command1 Click procedure:

 Sub Command1_Click ()

 Const FALSE = 0
 Option1.Value = FALSE
 End Sub

 Note that you do not need to setup a Const FALSE = 0 in Visual Basic
 version 2.0 because FALSE is already a keyword in version 2.0.

5. Press F5 to run the program.

If you do not click Command1, you can TAB through Option1. However,
you will TAB over both option buttons if you click Command1.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

How to Programmatically Display or Hide a VB Combo Box List
Article ID: Q85991

The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
 - Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

The list of a Visual Basic drop-down combo box (Style=0 or 2) is
usually opened and closed by using a mouse. However, you can also
open and close the list of a combo box programmatically by using the
Windows SendMessage function as described below.

However, there is an easy way. In visual basic, when a drop-down combo box
has the focus, you can press ALT-DOWN to open it up. Therefore, you can use
SendKeys to send these keys to the combo box, as in this example:

To do this programmatically, use the following code to change focus to the
combo box and send the necessary keystroke:

 combo1.SetFocus
 SendKeys "%{Down}"

MORE INFORMATION
================

The CB_SHOWDROPDOWN constant can be used with the SendMessage
function to programmatically open or close the list of a Visual
Basic drop-down combo box of Style=0 or Style=2 (Style=1 always has
the list displayed). The following steps demonstrate how to open the
list of a drop-down combo box:

1. Start a new project in Visual Basic. Form1 is created by default.

2. Place a combo box (Combo1) and a command button (Command1) on Form1.

3. Add the following declarations and constants to the general
 Declarations section of Form1:

 ' Enter each Declare statement as one, single line:
 Declare Function GetFocus Lib "User" () as Integer
 Declare Function GetParent Lib "User" (ByVal hWnd as Integer)
 as Integer
 Declare Function SendMessage Lib "User" (ByVal hWnd as Integer,
 ByVal wMsg as Integer, ByVal wParam as Integer,
 ByVal lParam as Any) as Long
 Global Const WM_USER = &H400
 Global Const CB_SHOWDROPDOWN = WM_USER + 15

4. Add the following code to the Form1 Load event procedure to put

 some items in the combo box:

 Sub Form_Load ()
 Combo1.AddItem "apple"
 Combo1.AddItem "orange"
 Combo1.AddItem "banana"
 End Sub

5. Add the following code to the Command1_Click event procedure:

 Sub Command1_Click ()
 Combo1.SetFocus
 cbhWnd% = GetFocus ()
 cblisthWnd% = GetParent (cbhWnd%)
 cbFunc% = -1 'cbFunc% = -1 displays the list
 'cbFunc% = 0 hide the list
 retval& = SendMessage (cblisthWnd%, CB_SHOWDROPDOWN, cbFunc%, 0&)
 End Sub

6. Press the F5 key to run the program. Click Command1 to display the list
 of the combo box.

If Style=2 for the combo box, there is no need to use the GetParent
function. Use the return value of the GetFocus (cbhWnd% in the above
example) call as the first parameter of the SendMessage function.

NOTE: The list of a combo box with Style=0 or 2 will close when the combo
box loses focus.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

PRB: ChDir or ChDrive Won't Change File / Directory List Boxes
Article ID: Q86279

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

Using the ChDir or ChDrive statement to change the current directory
or drive does not change the listing of a file list box or a directory
list box. However, the list changes if you run the program a second
time in the VB.EXE environment.

RESOLUTION
==========

To change the contents of a file list box or directory list box, set its
Path property instead of using the ChDir or ChDrive statement.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

Steps to Reproduce Behavior:

1. Run Visual Basic, or from the File menu, choose New Project (ALT,
 F, N) if Visual Basic is already running. Form1 is created by
 default.

2. Place a label (Label1), a file list box (File1), and a directory
 list box (Dir1) on to Form1.

3. In the Form_Load event procedure, add the following code:

 Sub Form_Load ()
 ChDir "C:\DOS"
 Label1.Caption = CurDir$
 End Sub

4. Press the F5 key to run the program. The label will display "C:\DOS",
 but the files listed are still those from the directory where Visual
 Basic was started.

5. From the Run menu, choose End. Press the F5 key to run the program
 again. This time, the files listed are from the C:\DOS subdirectory.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

Visual Basic Can Load RLE4 and RLE8 Bitmap Format Files
Article ID: Q86283

The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
 - Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

Microsoft Visual Basic can load icons (.ICO), Windows metafiles
(.WMF), Windows bitmap files (.BMP), and Windows compressed bitmap
files (.RLE), both RLE4 and RLE8.

MORE INFORMATION
================

You can load an .RLE bitmap file as you would any other bitmap. For
example, at design time you can set the Picture property of a picture
box or form to an .RLE file. You can also use the LoadPicture
function at run time to load the .RLE file into a picture box or form.

Although Visual Basic can load these image formats, the SavePicture
statement can only save images in the regular Windows bitmap (.BMP) or
Windows icon (.ICO) file format.

To save an image as an icon (.ICO), you must first load it as an icon.
You can change the image using graphics methods such as Line and PSet,
and then save the Picture property of the picture box or form as an
icon (.ICO). Otherwise, you can only save images as Windows bitmap
files (.BMP).

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

Example to Evaluate Basic Numeric Expressions
Article ID: Q86688

The information in this article applies to:

 - Microsoft Visual Basic programming system for Windows, versions
 1.0, 2.0, and 3.0
 - The Standard and Professional Editions of Microsoft Visual Basic for
 MS-DOS, version 1.0

SUMMARY
=======

This article contains an example program that evaluates a numeric
expression contained in a string, mimicking the operators,
built-in functions, and order of evaluation used by Microsoft Basic
language products. This article also explains the operator
precedence rules in detail.

MORE INFORMATION
================

The example program listed below recognizes the following operators
and subexpressions, listed by precedence from highest to lowest:

 - Constants, function calls, parentheses
 - Exponentiation ^
 - Unary minus -
 - Multiplication and division *, /
 - Integer division \
 - Integer modulus MOD
 - Addition and subtraction +, -
 - Relational operators =, <>, <, >, <=, >=
 - NOT
 - AND
 - OR
 - XOR
 - EQV
 - IMP

The precedence of unary minus "-" and operator "NOT" indicate the
highest possible precedence of their operand. Unary minus and "NOT"
may occur in an expression of any precedence. The following
expressions illustrate the precedence rules for unary minus and "NOT".

 Expression Value
 ---------- -----

 -1 ^ 2 -1
 -(1 ^ 2) -1
 (-1) ^ 2 1
 2 ^ -2 .25
 NOT 0 = 1 -1
 NOT (0 = 1) -1

 (NOT 0) = 1 0
 NOT 0 AND 1 1
 (NOT 0) AND 1 1
 NOT (0 AND 1) -1

The example program listed below accepts number constants written as
decimal numbers with an optional fraction. For example, it accepts
"123" and "123.4". It is possible to modify the program to recognize
hexadecimal, scientific notation, or other formats.

This example program also recognizes the following functions: ABS,
ATN, COS, EXP, FIX, INT, LOG, RND, SNG, SIN, SQR, and TAN.

Steps to Create Example Program

1. Run Visual Basic, or from the File menu, choose New Project (press
 ALT, F, N) if Visual Basic is already running. Form1 will be created
 by default.

2. Add a text box (Text1) and a command button (Command1) to Form1.

3. Set the Text property for Text1 to the null string (empty).

4. Enter the following code in the Command1 Click event procedure:

 Sub Command1_Click ()
 Dim n As Double

 If e_eval(Text1.Text, n) Then
 MsgBox Format$(n)
 End If
 End Sub

5. Add the following code in the general Declarations section of Form1:

' To run this program in Visual Basic for MS-DOS, change the
' following Dim statements to DIM SHARED.
'
Dim e_input As String ' Expression input string.
Dim e_tok As String ' Current token kind.
Dim e_spelling As String ' Current token spelling.
Dim e_error As Integer ' Tells if syntax error occurred.

' e_eval
' Evaluate a string containing an infix numeric expression.
' If successful, return true and place result in <value>.
' This is the top-level function in the expression evaluator.
Function e_eval (ByVal s As String, value As Double) As Integer
 ' Initialize.
 e_error = 0
 e_input = s
 Call e_nxt

 ' Evaluate.
 value = e_prs(1)

 ' Check for unrecognized input.
 If e_tok <> "" And Not e_error Then
 MsgBox "syntax error, token = '" + e_spelling + "'"
 e_error = -1
 End If

 e_eval = Not e_error
End Function

' e_prs
' Parse an expression, allowing operators of a specified
' precedence or higher. The lowest precedence is 1.
' This function gets tokens with e_nxt and recursively
' applies operator precedence rules.
Function e_prs (p As Integer) As Double
 Dim n As Double ' Return value.
 Dim fun As String ' Function name.

 ' Parse expression that begins with a token (precedence 12).
 If e_tok = "num" Then
 ' number.
 n = Val(e_spelling)
 Call e_nxt
 ElseIf e_tok = "-" Then
 ' unary minus.
 Call e_nxt
 n = -e_prs(11) ' Operand precedence 11.
 ElseIf e_tok = "not" Then
 ' logical NOT.
 Call e_nxt
 n = Not e_prs(6) ' Operand precedence 6.
 ElseIf e_tok = "(" Then
 ' parentheses.
 Call e_nxt
 n = e_prs(1)
 Call e_match(")")
 ElseIf e_tok = "id" Then
 ' Function call.
 fun = e_spelling
 Call e_nxt
 Call e_match("(")
 n = e_prs(1)
 Call e_match(")")
 n = e_function(fun, n)
 Else
 If Not e_error Then
 MsgBox "syntax error, token = '" + e_spelling + "'"
 e_error = -1
 End If
 End If

 ' Parse binary operators.
Do While Not e_error
 If 0 Then ' To allow ElseIf .
 ElseIf p <= 11 And e_tok = "^" Then Call e_nxt: n = n ^ e_prs(12)
 ElseIf p <= 10 And e_tok = "*" Then Call e_nxt: n = n * e_prs(11)
 ElseIf p <= 10 And e_tok = "/" Then Call e_nxt: n = n / e_prs(11)

 ElseIf p <= 9 And e_tok = "\" Then Call e_nxt: n = n \ e_prs(10)
 ElseIf p <= 8 And e_tok = "mod" Then Call e_nxt: n = n Mod e_prs(9)
 ElseIf p <= 7 And e_tok = "+" Then Call e_nxt: n = n + e_prs(8)
 ElseIf p <= 7 And e_tok = "-" Then Call e_nxt: n = n - e_prs(8)
 ElseIf p <= 6 And e_tok = "=" Then Call e_nxt: n = n = e_prs(7)
 ElseIf p <= 6 And e_tok = "<" Then Call e_nxt: n = n < e_prs(7)
 ElseIf p <= 6 And e_tok = ">" Then Call e_nxt: n = n > e_prs(7)
 ElseIf p <= 6 And e_tok = "<>" Then Call e_nxt: n = n <> e_prs(7)
 ElseIf p <= 6 And e_tok = "<=" Then Call e_nxt: n = n <= e_prs(7)
 ElseIf p <= 6 And e_tok = ">=" Then Call e_nxt: n = n >= e_prs(7)
 ElseIf p <= 5 And e_tok = "and" Then Call e_nxt: n = n And e_prs(6)
 ElseIf p <= 4 And e_tok = "or" Then Call e_nxt: n = n Or e_prs(5)
 ElseIf p <= 3 And e_tok = "xor" Then Call e_nxt: n = n Xor e_prs(4)
 ElseIf p <= 2 And e_tok = "eqv" Then Call e_nxt: n = n Eqv e_prs(3)
 ElseIf p <= 1 And e_tok = "imp" Then Call e_nxt: n = n Imp e_prs(2)
 Else
 Exit Do
 End If
 Loop

 e_prs = n
End Function

' e_function.
' Evaluate a function. This is a helper function to simplify
' e_prs.
Function e_function (fun As String, arg As Double) As Double
 Dim n As Double

 Select Case LCase$(fun)
 Case "abs": n = Abs(arg)
 Case "atn": n = Atn(arg)
 Case "cos": n = Cos(arg)
 Case "exp": n = Exp(arg)
 Case "fix": n = Fix(arg)
 Case "int": n = Int(arg)
 Case "log": n = Log(arg)
 Case "rnd": n = Rnd(arg)
 Case "sgn": n = Sgn(arg)
 Case "sin": n = Sin(arg)
 Case "sqr": n = Sqr(arg)
 Case "tan": n = Tan(arg)
 Case Else
 If Not e_error Then
 MsgBox "undefined function '" + fun + "'"
 e_error = -1
 End If
 End Select

 e_function = n
End Function

' e_nxt
' Get the next token into e_tok and e_spelling and remove the
' token from e_input.
' This function groups the input into "words" like numbers,
' operators and function names.

Sub e_nxt ()
 Dim is_keyword As Integer
 Dim c As String ' Current input character.

 e_tok = ""
 e_spelling = ""

 ' Skip whitespace.
 Do
 c = Left$(e_input, 1)
 e_input = Mid$(e_input, 2)
 Loop While c = " " Or c = Chr$(9) Or c = Chr$(13) Or c = Chr$(10)

 Select Case LCase$(c)

 ' Number constant. Modify this to support hexadecimal, etc.
 Case "0" To "9", "."
 e_tok = "num"
 Do
 e_spelling = e_spelling + c
 c = Left$(e_input, 1)
 e_input = Mid$(e_input, 2)
 Loop While (c >= "0" And c <= "9") Or c = "."
 e_input = c + e_input

 ' Identifier or keyword.
 Case "a" To "z", "_"
 e_tok = "id"
 Do
 e_spelling = e_spelling + c
 c = LCase$(Left$(e_input, 1))
 e_input = Mid$(e_input, 2)
 is_id% = (c >= "a" And c <= "z")
 is_id% = is_id% Or c = "_" Or (c >= "0" And c <= "9")
 Loop While is_id%
 e_input = c + e_input

 ' Check for keyword.
 is_keyword = -1
 Select Case LCase$(e_spelling)
 Case "and"
 Case "eqv"
 Case "imp"
 Case "mod"
 Case "not"
 Case "or"
 Case "xor"
 Case Else: is_keyword = 0
 End Select
 If is_keyword Then
 e_tok = LCase$(e_spelling)
 End If

 ' Check for <=, >=, <>.
 Case "<", ">"
 e_tok = c
 c = Left$(e_input, 1)

 If c = "=" Or c = ">" Then
 e_tok = e_tok + c
 e_input = Mid$(e_input, 2)
 End If

 ' Single character token.
 Case Else
 e_tok = c
 End Select

 If e_spelling = "" Then
 e_spelling = e_tok
 End If
End Sub

' e_match
' Check the current token and skip past it.
' This function helps with syntax checking.
Sub e_match (token As String)
 If Not e_error And e_tok <> token Then
 MsgBox "expected " + token + ", got '" + e_spelling + "'"
 e_error = -1
 End If
 Call e_nxt
End Sub

6. Press F5 to run the program. Type an expression into Text1 such
 as "1+2*3^4". Click Command1.

The program displays the result, 163 in this case.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

How to Right Justify Top-Level Menus in Visual Basic
Article ID: Q86772

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

It is possible to right justify top-level menu items by including a
CHR$(8) (backspace) as the first character of the caption for the
left-most menu that you want to appear on the right side of the menu
bar.

MORE INFORMATION
================

Microsoft publishes a book called "The Windows Interface: An Application
Design Guide," which contains standards and guidelines for Windows 3.1. The
following guidelines for right-justified Help menu items is taken from that
book:

 "Some applications currently place the Help menu at the extreme right of
 the menu bar. The current recommendation is that the Help menu
 immediately follow the next-to-last menu item, for three reasons: (1) to
 increase the accessibility of the help menu; (2) to decrease the
 likelihood of pressing the Maximize or Minimize buttons by mistake when
 trying to access Help; and (3) to make the space at the extreme right of
 the menu bar available in MDI applications for a Restore icon for
 maximized child windows."

 Source: "The Windows Interface: An Application Design Guide"
 by Microsoft Corporation
 248 pages, plus two 3.5-inch disks
 ISBN: 1-55615-439-9
 Publication Date: October 9, 1992

Step-by-Step Example

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. From the Window menu, choose Menu Design Window.

3. Create a menu item with One as both caption and control name.

4. Choose the Next button, and repeat step 3 with using Two as the name.

5. Choose Done to exit the Menu Design Window. You now have two
 top-level menus.

6. Add the following code to the Form1 Form_Load event procedure:

 Sub Form_Load ()
 Two.Caption = Chr$(8) + Two.Caption
 End Sub

7. Press the F5 key to run the program.

The Two menu item appears on the right side of the menu bar. If you add the
backspace to the One menu caption, both menus will be right-justified.

Special Trick for Design Time

The technique given above can be done only at run time. However, here's a
trick you can use to do the same thing at design time:

1. Make a text file with ASCII character 8 in it.

2. Load the text file into NOTEPAD.EXE and copy the character to the
 clipboard.

3. Then, when you're in the Menu Design window, Press SHIFT-INS (Paste) in
 the caption field to place CHR$(8) character in it.

Additional reference words: 1.00 2.00 3.00 alignment right-aligned align
KBCategory:
KBSubcategory: PrgCtrlsStd

Unable to Display Uppercase W in Small Text Box
Article ID: Q87770

The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
 - Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

SYMPTOMS
 An uppercase W character may fail to display in the smallest possible
 size text box on a Microsoft Visual Basic for Windows form with the
 default FontSize (8.25) and FontName (Helv or Helvetica) selected. All
 other uppercase letters display correctly.

CAUSE
 Because the uppercase letter W is the widest of the uppercase letters in
 the Helv 8.25 font, and it is slightly wider then the width of the
 smallest possible Visual Basic text box, there is not enough room to
 display the letter. Therefore, nothing appears in the text box.

RESOLUTION
 This situation is limitation of the text box control in Microsoft Visual
 Basic for Windows. Avoid the problem by using a different font for the
 text box or by increasing the size of the text box.

MORE INFORMATION
================

Steps to Reproduce Behavior

1. Start Visual Basic, or from the File menu, choose New Project (ALT,
 F, N) if Visual Basic is already running. Form1 is created by default.

2. Add the smallest possible text box to display the letter T in the word
 Text1 of the text box to Form1.

3. Press F5 to run the example. Activate the CAPS LOCK key and type an
 uppercase W.

In Windows version 3.0, the letter W does not appear in the text box.
Instead, a space appears as if you had pressed the SPACEBAR.

In Windows version 3.1, the letter W appears not to be entered. It
appears as if it is ignored.

For further testing, try other uppercase letters. There should be no
problem with displaying other uppercase letters.

Additional reference words: 1.00 2.00 3.00
KBCategory:

KBSubcategory: PrgCtrlsStd

PRB: SendKeys May Return Illegal Function Call Error
Article ID: Q87773

The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
 - Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

SYMPTOMS
 The SendKeys statement reports the error "Illegal function call" when
 its argument contains an incorrectly formatted string. This article
 describes specific circumstances that cause this error, and contains
 a code example that shows how to send any string with SendKeys.

CAUSE
 The following characters have special meaning to the SendKeys statement:

 + ^ % ~ () [] { }

 The SendKeys statement reports an "Illegal function call" error if its
 argument contains one of the following, not enclosed in braces:

 - An unmatched parenthesis () or bracket {}
 - A bracket []
 - Braces containing an undefined character sequence, such as {abc}

RESOLUTION
 To prevent the SendKeys statement from interpreting a character,
 enclose the character in braces {}. For example, to send the string

 The interest rate is 5% (annually).

 Use the following SendKeys syntax:

 SendKeys "The interest rate is 5{%} {(}annually{)}."

MORE INFORMATION
================

Step-by-Step Example

The following example demonstrates how to use the SendKeys statement to
send strings that would normally cause an "Illegal function call" error:

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Place a text box (Text1) on Form1.

3. Place a command button (Command1) on Form1.

4. Enter the following code:

 Sub Command1_Click ()
 Text1.SetFocus
 SendKeys sendkeys_prepare("1+2^5% ")
 SendKeys sendkeys_prepare("[] ")
 SendKeys sendkeys_prepare("{abc}")
 End Sub

 ' The following function puts braces {} around characters that
 ' are special to the SendKeys statement.
 Function sendkeys_prepare (in As String) As String
 For i% = 1 To Len(in)
 ' Get the next character into c$.
 c$ = Mid$(in, i%, 1)
 ' If c$ is one of the special characters.
 If InStr("+^%~()[]{}", c$) Then
 out$ = out$ + "{" + c$ + "}"
 Else
 out$ = out$ + c$
 End If
 Next
 sendkeys_prepare = out$
 End Function

5. Press F5 to run the program. Click Command1. Some example text containing
 characters special to SendKeys appear in Text1.

Reference(s):

"Microsoft Visual Basic: Language Reference," version 1.0, pages 283-284

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

PRB: SetFocus During Form Load May Cause Illegal Function Call
Article ID: Q88477

The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
 - Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

SYMPTOMS
 Using the SetFocus method to set the focus to a specific control on a
 form during the form load event procedure may result in an "Illegal
 Function Call" error.

CAUSE
 This error occurs because the form that the control is on is not yet
 visible.

RESOLUTION
 To prevent this error from occurring, execute Form.Show before executing
 the SetFocus method.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Place a text box (Text1) on Form1.

3. Add the following code to the Form_Load procedure for Form1:

 Sub Form_Load ()
 Text1.SetFocus
 End Sub

4. Press F5 to run the application. The line of code in the load event
 will be highlighted with the error "Illegal Function Call."

5. If you show the form before executing SetFocus, the program will run
 as expected.

 Sub Form_Load ()
 Form1.Show
 Text1.SetFocus
 End Sub

Additional reference words: 1.00 2.00 3.00

KBCategory:
KBSubcategory: PrgCtrlsStd

PRB: Click Event Invoked When Option Button Receives Focus
Article ID: Q88792

The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
 - Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

When an option button or group of option buttons is initially placed
on a form in Microsoft Visual Basic for Windows, the buttons will
remain unselected until the focus is shifted to one of the option
buttons. This can cause unexpected results, because shifting the focus
to one of the option buttons will invoke a Click event for that option
button.

WORKAROUND
==========

To work around this feature, you must manually, in design mode, set the
Value property for one of the option buttons to True.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

In a group of option buttons, one of the buttons should be selected unless
the option buttons apply to only certain selected objects on the current
form. In this case, the option buttons, when initially displayed, would
not be selected.

Visual Basic for Windows will allow option buttons to be placed on a
form without selecting any of the option buttons. If you desire to
create a group of option buttons with none of them selected, there is
no way to prevent a Click event from being invoked when the focus is
shifted to one of them. A problem may occur when an unselected option
button is first in the tab order. The option button will automatically
get selected when the form is shown. In all cases, to prevent the
Click event from occurring, in design mode, you must set the Value
property of one of the option buttons to True.

The following steps demonstrate this feature, as well as a way to
work around this feature:

Steps to Reproduce Behavior

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Set the AutoRedraw property for Form1 to True. This prevents any text
 printed to the screen from being overwritten when Windows redraws the
 form.

3. Create one or more option buttons on Form1.

4. In the Click event procedure for the first option button, insert the
 following code:

 PRINT "Option Button Clicked"

5. From the Run menu, choose Start (ALT, R, S) to run the program.

Note that the Click event is invoked when the form is shown and the
focus is given to the first option button. To work around this
problem, after creating the option buttons in step 2, set the Value
property of one of the option buttons to True.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

How to Detect when the Active Form Changes in Visual Basic
Article ID: Q88909

The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
 - Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

A program can detect when the active form changes by monitoring
Screen.ActiveForm with a timer control. You generally cannot use the
Form_GotFocus event to detect when the active form changes because
GotFocus only occurs on forms that contain no active controls.

MORE INFORMATION
================

To determine when the user activates a new form, put a timer on one of
your active forms that continuously checks to see if a property on
Screen.ActiveForm changes. For example, Screen.ActiveForm.Caption
gives the caption of the current form. If each form has a unique
caption, Screen.ActiveForm.Caption changes as the active form changes.

Step-by-Step Example

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose New Form to create Form2.

3. Add a timer (Timer1) to Form1 and set its Interval to 100.

4. Enter the following code into the Timer1_Timer event procedure:

 Sub Timer1_Timer ()
 Static last_caption As String
 If Screen.ActiveForm.Caption <> last_caption Then
 MsgBox Screen.ActiveForm.Caption + " activated"
 last_caption = Screen.ActiveForm.Caption
 End If
 End Sub

5. Enter the following code into the Form_Load event procedure of Form1:

 Sub Form_Load ()
 Form2.Show
 End Sub

6. Press F5 to run the program. When you run the program and each time
 you activate a new form, a message box displays the caption of the
 newly activated form.

Additional reference words: 1.00 2.00 3.00 VBMSDOS
KBCategory:
KBSubcategory: PrgCtrlsStd

How to Determine Which Option Button is Selected in VB
Article ID: Q88910

The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
 - Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

This article describes a suggested method for determining which one of
a group of option buttons is selected.

MORE INFORMATION
================

You can do the following to determine which option button is selected:

1. Make the group of option buttons a control array.

2. In the Click event handler for the control array, save the index of
 the selected option button into a global variable.

3. When you want to know which option button is selected, check the
 global variable.

An alternative method to check which option button was selected is to
examine the Value property of each option button in a sequence of
If-Then statements, or in a Select Case statement.

Step-by-Step Example

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Place a command button (Command1) and option button (Option1) on Form1.

3. With Option1 selected, from the Edit menu, choose Copy.

4. From the Edit menu, choose Paste. A dialog box asks you if you want to
 create a control array. Choose Yes.

5. Change the Caption property of the two option buttons to "option 1" and
 "option 2".

6. Enter the following code into the general Declarations section of Form1:

 Dim option_index As Integer

7. Enter the following code into the Option1 control array Click event
 procedure:

 Sub Option1_Click (Index As Integer)
 option_index = Index
 End Sub

8. Enter the following code into the Command1 Click event procedure:

 Sub Command1_Click ()
 MsgBox Option1(option_index).Caption
 End Sub

9. Press F5 to run the program. When you click Command1, a dialog box
 displays the caption of the selected option button.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

How to Make a Spreadsheet-Style Grid that Allows Editing
Article ID: Q88912

The information in this article applies to:

 - Professional Edition of Microsoft Visual Basic for Windows,
 versions 2.0 and 3.00
 - Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SUMMARY
=======

The Grid custom control does not provide any text editing capability.
However, you can create a spreadsheet-style grid that allows editing by
using a picture box and a text box.

MORE INFORMATION
================

We do not recommend creating a spreadsheet-style grid with a large
matrix of text box controls because doing so will slow down your
program, and use excessive system resources.

An efficient way to create a grid is to draw vertical and horizontal
lines to represent the cells of the grid. Use a single text box to
allow editing of the active cell. Check for MouseDown events to move
the text box to the currently active cell position, and use the Print
method to draw text in a cell when the text box moves away from the
cell. Then, store the grid cell values in a two dimensional array,
indexed by the column and row.

Code can be added to allow for highlighting areas, using ARROW keys to
move between cells, and so on.

Step-by-Step Example

1. Start Visual Basic, or from the File menu, choose New Project (ALT,
 F, N) if Visual Basic is already running. Form1 is created by default.

2. Place a picture (Picture1) on Form1, and set its properties as follows:

 Property Value

 AutoRedraw True
 ScaleMode 3 - Pixel
 Height 2000
 Width 3000

3. Place a text box (Text1) in Picture1 by clicking the text box tool. The
 mouse pointer turns to cross-hairs. Click and drag inside Picture1 to
 place a gray rectangle appears in Picture1.

4. Add the following code to the general Declarations section of Form1:

 ' Maximum grid size.
 Const grid_col_max = 10
 Const grid_row_max = 20

 ' Current grid size.
 Dim grid_cols As Integer
 Dim grid_rows As Integer

 ' Current cell position.
 Dim grid_col As Integer
 Dim grid_row As Integer

 ' Grid string contents.
 Dim grid_text(grid_col_max, grid_row_max) As String

 ' Grid line positions.
 Dim grid_line_col(grid_col_max) As Integer
 Dim grid_line_row(grid_col_max) As Integer

 ' grid_edit_move.
 ' Moves the grid edit text box to a new position.
 '
 Sub grid_edit_move (col As Integer, row As Integer)
 Dim x1 As Integer ' Picture box positions.
 Dim y1 As Integer
 Dim x2 As Integer
 Dim y2 As Integer

 ' Save text box contents to grid array.
 grid_text(grid_col, grid_row) = Text1.Text

 ' Clear current cell.
 x1 = grid_line_col(grid_col) + 1
 y1 = grid_line_row(grid_row) + 1
 x2 = grid_line_col(grid_col + 1) - 1
 y2 = grid_line_row(grid_row + 1) - 1
 Picture1.Line (x1, y1)-(x2, y2), Picture1.BackColor, BF

 ' Print text box contents to current cell.
 Picture1.CurrentX = x1 + 3
 Picture1.CurrentY = y1 + 3
 Picture1.Print Text1.Text

 ' Set new grid current cell.
 grid_col = col
 grid_row = row

 ' Move text box to new cell.
 x1 = grid_line_col(grid_col)
 y1 = grid_line_row(grid_row)
 w! = grid_line_col(grid_col + 1) - x1
 h! = grid_line_row(grid_row + 1) - y1
 Text1.Move x1 + 1, y1 + 1, w! - 1, h! - 1

 ' Copy contents of new cell to text box.
 Text1.Text = grid_text(grid_col, grid_row)

 End Sub

5. Add the following code to form Load event procedure:

 Sub Form_Load ()
 ' Set grid size.
 grid_cols = 4
 grid_rows = 6

 ' Remove border.
 Picture1.BorderStyle = 0

 ' Set column widths and row heights.
 Dim i As Integer
 Dim d As Integer
 d = 0
 For i = 0 To UBound(grid_line_col)
 grid_line_col(i) = d
 d = d + 40
 Next
 d = 0
 For i = 0 To UBound(grid_line_row)
 grid_line_row(i) = d
 d = d + 20
 Next

 ' Draw grid lines.
 For i = 0 To grid_cols
 x2% = grid_line_col(i)
 y2% = grid_line_row(grid_rows)
 Picture1.Line (grid_line_col(i), 0)-(x2%, y2%)
 Next
 For i = 0 To grid_rows
 x2% = grid_line_col(grid_cols)
 y2% = grid_line_row(i)
 Picture1.Line (0, grid_line_row(i))-(x2%, y2%)
 Next

 Call grid_edit_move(0, 0)
 End Sub

6. Add the following code to the Picture1 GotFocus event procedure:

 Sub Picture1_GotFocus ()
 Text1.SetFocus
 End Sub

7. Add the following code to the Picture1 MouseDown event procedure:

 ' The following line should appear on one line.
 Sub Picture1_MouseDown (Button As Integer, shift As Integer,
 x As Single, y As Single)
 Dim col As Integer
 Dim row As Integer
 Dim i As Integer

 ' Find the cell clicked in.

 col = grid_col
 row = grid_row
 For i = 0 To grid_cols - 1
 If x>=grid_line_col(i) And x<grid_line_col(i+1) Then
 col = i
 Exit For
 End If
 Next
 For i = 0 To grid_rows - 1
 If y>=grid_line_row(i) And y<grid_line_row(i+1) Then
 row = i
 Exit For
 End If
 Next

 ' Move the text box there.
 Call grid_edit_move(col, row)
 End Sub

8. Press F5 to run the program. Click a cell and edit the text.

This example is very limited in functionality. Text can be edited in
each cell but you must click a cell to move to that particular
cell. This article shows a method of creating a grid without tying up
a large amount of system resources. Feel free to add code to increase
its functionality.

Additional reference words: 1.00 2.00 3.00 optimize
KBCategory:
KBSubcategory: PrgCtrlsStd PrgCtrlsCus

PRB: DropDown Combo Box May Display Partial String
Article ID: Q89219

The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
 - Microsoft Visual Basic programming system for Windows, version 1.0
 - Microsoft Windows versions 3.0 and 3.1
--

SYMPTOMS
========

If the Visual Basic for Windows Combo Box Style is set to "0 - Dropdown
Combo," you may see only the rightmost portion (right-aligned string) of
the text displayed in the text box portion of the combo box at run time.

This problem only occurs if the combo box is too narrow to display the
entire string.

WORKAROUND
==========

To work around the problem, set the combo box Style property to
"2 - Dropdown List" to change the Style property displays to the
left part of the string.

Another alternative is to design the combo box with a wider dimension
by increasing the width to greater than 1440 twips (the equivalent of
one inch). For example, if you set the Width property to 4320 twips,
the width increases to approximately three inches -- a size of combo
box that would hold the entire string in the example shown in the
More Information section below.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

Steps to Demonstrate Behavior

1. Start Visual Basic, or from the File menu, choose New Project (ALT,
 F, N) if Visual Basic is already running. Form1 is created by default.

2. Add a one-inch wide combo box (that is, the width is equal to 1440
 twips by default for a combo box) to Form1.

3. Double-click the form or press F7 to open the Form_Click event
 procedure. Add the following code to the Form_Click event procedure:

 Sub Form_Click ()
 Combo1.AddItem "1234567890000000000" '** 10 zeros
 End Sub

4. Press F5 to run the example, or from the Run menu, choose Start.

5. Click the form a couple of times.

6. Select the down arrow on the combo box, and click one of the entries.
 You should see the entry being placed in the text box portion of the
 combo box, but instead the entry only displays zeros. The digits 1
 through 9 are not displayed.

7. If you change the Style property of the combo box to "2 - Dropdown
 List," and try the example, the left-aligned string displays in the
 combo box.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

Visual Basic 3.0 Programming Questions & Answers
Article ID: Q92550

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic
 programming system for Windows, version 3.0

1. Q. I use the picture control to group other controls. However when
 I select the picture control, the other controls do not remain on
 top of the picture control. How can I correct this problem?

 A. This problem occurs if you place the controls on the form in the
 same place as the picture control but not in the picture control.
 itself. To group the controls in a picture control, you must first
 select the Picture control and then draw the desired control within
 the Picture control. For more information, please see Chapter 3 of
 the "Microsoft Visual Basic version 3.0 Programmer's Guide."

2. Q. How can I make calls from Visual Basic to the functions in the
 Windows Application Programming Interface (API) or other dynamic
 link libraries (DLLs)?

 A. To call a subroutine or function from one of the Windows APIs
 or any other DLL, you need to first provide a Declare statement for
 that subroutine or function in your Visual Basic application. The
 exact syntax for the declaration for each Windows API function
 can be found in the WIN31API.HLP help file included with the
 Professional Edition of Visual Basic. For more information, please
 see Chapter 24 of the "Microsoft Visual Basic version 3.0
 Programmer's Guide."

3. Q. Is there a reference available that lists the correct Visual Basic
 declarations for the Multimedia API functions?

 A. Yes, the file is called WINMMSYS.TXT. It comes with the Professional
 edition of Visual Basic. You can find it in the \VB\WINAPI directory.

4. Q. Is there a reference available that lists the correct Visual Basic
 declarations for the Windows for Workgroups API functions?

 A. No, at this time such a file is not available from Microsoft.
 However, you can obtain a copy of the Windows for Workgroups SDK from
 the WINEXT forum on CompuServe.

5. Q. I followed the examples in the manuals and in the help file on how to
 use Domain functions such as DSum and DCount, but I keep receiving
 this error:

 Reference to undefined function or array.

 Why?

 A. The examples provided for the Domain Aggregate functions are

 incorrect. These functions must be used within an SQL Statement
 just as SQL Aggregate functions such as Sum and Count are used.
 Please look at the SQL Aggregate examples to see how to use these
 functions within an SQL Statement. For more information, query
 on the following words in the Microsoft Knowledge Base:

 DOMAIN and FUNCTION and SQL

6. Q. I want to sort the records referenced by the Data Control in my
 application. I tried to use the Index Property as described in
 the example in the manual and in the help file, but I receive the
 following error message:

 Property 'Index' not found

 Why?

 A. The examples provided in the Index Property are incorrect. The Index
 property does not apply to the Data Control. To sort the records
 referenced by the Data Control, use the ORDER BY Clause within an
 SQL Statement in the RecordSource property of the Data Control.

7. Q. Is there a better way than the Print Form method to print Forms
 and Controls in a program?

 A. Yes, it is possible to print forms and/or controls and specify
 the printed size by using various Windows API function calls.
 This process is documented in Microsoft Knowledge Base article
 Q85978. You can also find this article in the top 10 Microsoft
 Knowledge Base articles that are in the Visual Basic help file.
 To view these articles, select "Technical Support" from the
 Contents screen in the Visual Basic help file. Then select
 "Knowledge Base Articles on Visual Basic."

Additional reference words: 3.00 ivrfax fasttips
KBCategory:
KBSubcategory: PrgCtrlsStd APrgOther TlsCDK

Name Property Cannot Be Set When Using Implicit Property
Article ID: Q93214

The information in this article applies to:

 - Microsoft Visual Basic for Windows, version 2.0

SUMMARY
=======

On Page 126 of the Visual Basic Programmer's Guide, it incorrectly states
that all controls have an implicit property you can use for storing or
retrieving values. Some controls supplied with the Professional Edition of
Visual Basic for Windows use the Name property as their implicit property,
which you cannot use at run-time.

MORE INFORMATION
================

The following controls from the Visual Basic Professional Edition use the
Name property as their implicit property:

 Common dialog
 MAPI session
 MAPI message
 Spin button

Attempting to access the implicit property of these controls results in one
of the following errors:

 'Name' property cannot be read at run time
 'Name' property cannot be set at run time

You access the implicit property of a control (also known as the "value of
a control" or the "default value of a control") by writing the control name
with no property. For example, with a text box named Text1, you can write
the following statement to assign a value to the Text property:

 Text1 = "hello world"

The following list shows the implicit properties for all the controls in
both the Standard and Professional Editions:

Standard Control Implicit Property

Check box Value
Combo box Text
Command button Value
Directory list box Path
Drive list box Drive
File list box FileName
Frame Caption
Grid Text
Image Picture

Label Caption
Line Visible
List box Text
Menu Enabled
OLE client Action
Option button Value
Picture box Picture
Scroll bar vertical Value
Scroll bar horizontal Value
Shape Shape
Text box Text
Timer Enabled

Professional Control Implicit Property

3D check box Value
3D command button Value
3D frame Caption
3D group push button Value
3D option button Value
3D panel Caption
Animated button Value
Common dialog Name (not usable)
Communications Input
Gauge Value
Graph QuickData
Key status Value
MAPI session Name (not usable)
MAPI message Name (not usable)
Masked edit Text
Multimedia MCI Command
Pen BEdit Text
Pen HEdit Text
Pen ink on bitmap Picture
Pen on-screen keyboard Visible
Picture clip Picture
Spin button Name (not usable)

Additional reference words: 2.00 docerr
KBCategory:
KBSubcategory: RefsDoc PrgCtrlsStd PrgCtrlsCus

Making Enter Key in Directory List Box Act Like Double-Click
Article ID: Q93215

The information in this article applies to:

 - Microsoft Visual Basic for Windows, versions 1.0, 2.0, and 3.0
 - The Standard and Professional Editions of Microsoft Visual Basic
 for MS-DOS, version 1.0

SUMMARY
=======

When you double-click an item in a directory list box control, it
opens the directory and displays its subdirectories.

The directory list box control ignores the Enter key by default. To
cause a directory list box to treat the Enter key the same way as a
double-click, set the Path property to List(ListIndex) from within the
KeyPress event handler.

MORE INFORMATION
================

The following code shows how to cause a directory list box to open the
selected directory when the user presses the ENTER key. This code causes a
Change event, just as when you double-click an item.

 Sub Dir1_KeyPress (KeyAscii As Integer)
 If KeyAscii = 13 Then
 Dir1.Path = Dir1.List(Dir1.ListIndex)
 End If
 End Sub

If your form contains a command button with the Default property set to
True, pressing the ENTER key clicks the command button instead of firing
the KeyPress event. In this case, set the Path property to List(ListIndex)
from within the button Click event handler. For example:

 Sub Command1_Click ()
 Dir1.Path = Dir1.List(Dir1.ListIndex)
 End Sub

Additional reference(s):

Chapter 18, "Using the File-System Controls" of the "Microsoft Visual Basic
for Windows Programmer's Guide"

Chapter 10, "Using the File-System Controls" of the "Microsoft Visual Basic
for MS-DOS Programmer's Guide"

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

How to Change the Size of the Text Cursor in a Text Box
Article ID: Q94318
--
The information in this article applies to:

- Microsoft Visual Basic programming system for Windows,
 versions 1.0, 2.0, and 3.0
--

SUMMARY
=======

Although there is no property that will allow you to change the
appearance of the text cursor (text caret) in a Visual Basic text box,
you can use the Windows API call CreateCaret() function to do so.

MORE INFORMATION
================

API Calls

In the example below, API calls change the size of the text cursor.
The CreateCaret() function creates a new shape for the system caret
and assigns ownership of the caret to the given window. The caret
shape can be a line, block, or bitmap. Here's the syntax:

 Void CreateCaret(hwnd, hbmp,nwidth,nheight)

 HWND hwnd - handle of owner window
 HBITMAP hbmp - handle of bitmap for caret shape
 int nwidth - caret width
 int nheight - caret height

The ShowCaret() function shows the caret on the screen at the caret's
current position. Once shown, the caret begins flashing automatically.

 Void ShowCaret(hwnd)

 HWND hwnd - handle of window with caret

The GetFocus() function retrieves the handle of the window that
currently has the input focus.

 HWND GetFocus(void)

Example Code

To see these API calls in action do the following:

1. Start Visual Basic or start a new project (ALT, F, N).

2. Add two text boxes to Form1.

3. Add the following declarations to the General Declarations section of
 Form1. Note that you must enter each declaration on a single line even
 though, for readability, the first declaration is shown on two lines:

 Declare Sub CreateCaret Lib "user" (ByVal w%, ByVal x%,
 ByVal y%, ByVal z%)
 Declare Function showcaret% Lib "user" (ByVal x%)
 Declare Function getfocus% Lib "user" ()

4. Add the following code to the Command1_Click event:

 Sub Text1_GotFocus ()
 h% = getfocus%() ' get the handle to the text box
 Call createcaret(h%, 0, 3, 24) ' create new caret size
 x% = showcaret%(h%) ' show the new caret
 End Sub

5. Run the program.

You will see that while the focus is on Text1 the size of the text
caret in the text box appears larger than normal.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

Explanation of the Control Box Menu
Article ID: Q94936

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
- The Standard and Professional Editions of Microsoft Visual Basic
 for MS-DOS, version 1.0

SUMMARY
=======

This article describes how to cause the control box menu to drop down
and retract as well as how to use the Microsoft Windows versions 3.0
and 3.1 Size and Move options with Visual Basic for MS-DOS.

In Windows, the control box in the upper left corner of a window has a
drop-down menu that appears when you click the control box. The drop-down
menu contains items such as Move, Size, Minimize, and Maximize. Depending
on the position of the mouse, when you hold down the mouse button, the
drop-down menu either remains down or retracts to its original position.

MORE INFORMATION
================

If you click a window's control box, the menu remains down. To create the
same effect in Visual Basic for Windows, press ALT+SPACE on the keyboard.
In Visual Basic for MS-DOS, press ALT+- (the ALT and minus keys).

If you simply depress the mouse button over the control box instead of
clicking the control box, the resulting behavior depends on where you
release the mouse button:

 - If the button is released over a grayed item, the menu remains
 dropped to indicate that the selection is not currently active.

 - If the button is released outside of the menu or control box, the
 menu is dismissed and no action is taken

 - If the button is released over an enabled menu item, then the menu
 is dismissed and the appropriate action is invoked.

The purpose of the Size and Move menu commands located in the control box
on a window (form) can be confusing. They provide a way to move or size a
window by using the keyboard. When you click the control box and choose
either Move or Size, the outline of the window is displayed to indicate
that you can now move or size the window by using the arrow keys on the
keyboard. You must use the arrow keys; if you try to drag the outline with
the mouse, you will cancel out the Move or Size operation and resume
normal mouse operations. Once you have sized or moved the window to the
correct position while it still has an outline, you can lock the window
into its new position by pressing the ENTER key.

Additional reference words: B_VBmsdos
KBCategory:
KBSubcategory: PrgCtrlsStd

Validating Text Box Data Causes Extra LostFocus Events
Article ID: Q96846

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
- Standard and Professional Editions of Microsoft Visual Basic for
 MS-DOS, version 1.0

SUMMARY
=======

Using the LostFocus event to validate data in a text box can cause excess
LostFocus events after the data is determined invalid and focus is set back
to the text box. Setting the focus back to the text box, as is the custom
when data is invalid, causes a LostFocus event to occur in the control that
just received the focus. If that control is also validating data in its
LostFocus event and no data (or invalid data) is entered, that control
could set the focus back to itself, triggering a LostFocus event in the
text box.

MORE INFORMATION
================

To work around the problem, you need to handle the intended LostFocus event
and ignore those generated as a side-effect of handling invalid data. Using
a Dim Shared variable in Visual Basic for Windows or Visual Basic for
MS-DOS, you can use the LostFocus event to validate text box data. A Dim
Shared variable holding either the TabIndex of the next control to be
validated or a flag indicating that any control can be validated next,
allows you to ignore unintended LostFocus events in other controls.

The example below demonstrates how to use a Dim Shared variable to validate
Text box data in the LostFocus event. The example gives step-by-step
instructions for Visual Basic for Windows, but you can use the exact same
code and controls in Visual Basic for MS-DOS without modification.

Steps to Create Example

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Add two text boxes (Text1 and Text1) to Form1.

3. Add the following code to the General Declarations section of Form1. (In
 Visual Basic for MS-DOS, add the code to the form-level code.)

 Dim Shared Focus As Integer

 Function IsValid (t1 As TextBox) As Integer
 If t1.Text = "" Then
 IsValid = False

 Else ' add other data restrictions here
 IsValid = True
 End If
 End Function

4. Add the following code to the Form_Load event procedure of Form1:

 Sub Form_Load ()
 Focus = -1
 End Sub

5. Add the following code to the Text1_LostFocus event procedure:

 Sub Text1_LostFocus ()
 If Not IsValid(Text1) And (Focus = -1 Or Focus = Text1.TabIndex) Then
 MsgBox "Text in Text1 invalid"
 Focus = Text1.TabIndex
 Text1.SetFocus
 Else
 Focus = -1
 End If
 End Sub

6. Add the following code to the Text2_LostFocus event procedure:

 Sub Text2_LostFocus ()
 If Not IsValid(Text2) And (Focus = -1 Or Focus = Text2.TabIndex) Then
 MsgBox "Text in Text2 invalid"
 Focus = Text2.TabIndex
 Text2.SetFocus
 Else
 Focus = -1
 End If
 End Sub

7. From the Run menu, choose Start (ALT, R, S) to run the program. Text
 boxes Text1 and Text2 both contain the default text, their Name
 property.

8. Delete the text in Text1.

9. Press the Tab key to move the focus to Text2. The Text1_LostFocus event
 detects that there is no text in the text box, displays a message box
 stating that the text in the Text1 box is invalid, and sets the focus
 back to the Text1 box.

Additional reference words: 1.00 2.00 3.00 b_vbmsdos
KBCategory:
KBSubcategory: PrgCtrlsStd

How to Use the Forms Collection to Unload All MDI Child Forms
Article ID: Q97620

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0

SUMMARY
=======

You can use Visual Basic code to close all MDI children by using the forms
collection. The forms collection contains references to all forms -- the
MDI parent form, MDI children forms, and non-MDI forms. To unload or close
all MDI forms, loop through the forms collection testing the value of the
MDIChild property on each form. If the MDIChild property is true, unload
the form.

MORE INFORMATION
================

Steps to Create Example

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Change the MDIChild property of Form1 to True.

3. From the File menu, choose New MDI Form (Alt+F+I). This creates the
 MDIForm1 MDI parent form.

4. From the Window menu, choose Menu Design (ALT+W+M), and create the
 following menu with two menu items on MDIForm1:

 Caption Name Indent

 File mFile no
 New mNew once
 Close All mCloseAll once

5. Add the following code to the general declarations section of MDIForm1.

 Dim ChildCount As Integer

6. Add the following code to the mNew event handler.

 Sub mNew_Click ()
 Dim newWindow As New Form1
 ChildCount = ChildCount + 1
 newWindow.Caption = "Child " & Str$(ChildCount)
 newWindow.Show
 End Sub

7. Add the following code to the mCloseAll_Click event handler.

 Sub mCloseAll_Click ()
 i = 1
 Do While i < Forms.Count
 If forms(i).MDIChild Then
 ' *** Do not increment i% since a form was unloaded
 Unload forms(i)
 Else
 ' Form isn't an MDI child so go to the next form
 i = i + 1
 End If
 Loop
 ChildCount = 0
 End Sub

8. From the Options menu, choose Project. Make MDIForm1 the Start Up Form.

9. From the Run menu, choose Start (ALT, R, S) to run the program.

10. From the File menu on MDIForm1, choose New. Repeat this several times.

11. From the File menu on MDIForm1, choose Close All to unload all the MDI
 children.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

How to Trap Keystrokes in the Form Instead of Form's Controls
Article ID: Q99688

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.00 and 3.00

SUMMARY
=======

To trap most keystrokes (see NOTE below) at the form level instead of
passing them to the form's controls, set the form's KeyPreview property to
True and use KeyAscii=0 in the Form_KeyPress event. This prevents
keystrokes from going to the form's controls.

NOTE: the technique described in this article will not intercept the ENTER
key on command buttons. Command buttons are subclassed Windows push button
controls and the ENTER key is an accelerator key that is passed to the
superclass; Visual Basic never receives it.

Also note that KeyCode=0 in the Form_KeyDown event won't prevent keystrokes
going to the form's controls. This behavior is by design.

MORE INFORMATION
================

A form's KeyPreview property determines whether form keyboard events are
invoked before control keyboard events. The keyboard events are KeyDown,
KeyUp, and KeyPress.

You can use the KeyPreview property to create a keyboard-handling procedure
for a form. For example, when an application uses function keys, it's
likely that you'll want to process the keystrokes at the form level rather
than writing code for each control that might receive keystroke events. If
a form has no visible and enabled controls, it automatically receives all
keyboard events.

To handle keyboard events only at the form level and not allow controls
to receive keyboard events, set KeyAscii to 0 in the form's KeyPress event.

Using Form_KeyPress Versus Form_KeyDown to Prevent Text Box Input

This example demonstrates the difference between Form_KeyPress and
Form_KeyDown to attempt to trap and prevent all keyboard input for
a text box.

1. Start Visual Basic or from the File menu, choose New Project if Visual
 Basic is already running. Form1 is created by default.

2. Set the KeyPreview property of Form1 to True.

3. Add a text box (Text1) to Form1.

4. Add the following code to the Form_KeyDown event of Form1:

 KeyCode = 0

5. From the Run menu, choose Start or press the F5 key.

The Text1 box still accepts input, which you may not have expected. This
behavior is by design.

To prevent the Text1 box from accepting input, add KeyAscii = 0 to the
Form_KeyPress event of Form1. This traps and disables all input to all the
controls on the form, as desired. The Form_KeyPress event enables you to
handle the keystrokes the way you want.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

Non-Menu Keys Disabled When Menu Pulled Down
Article ID: Q99811

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

When a Visual Basic menu is pulled down, all non-menu keystrokes are
disabled and keystrokes cannot be detected. This behavior is by design.
When a menu is down, all keystrokes just beep or do nothing, except
for the keystrokes that control the menu.

You cannot determine which menu item the user chose, until after the
user clicks the menu item or presses ENTER. The Click event for the
menu item will then give you the chosen menu item.

MORE INFORMATION
================

Access Keys Give a User Keyboard Access to Menu Items

To give a user keyboard access to a menu item, insert an
ampersand (&) immediately in front of a letter in the Caption
by using the Menu Design Window. At run time, this letter
(called the access key) is underlined. The user can change
the focus to a menu or command by pressing ALT plus the letter
(access key).

You can use an access key such as ALT+F to give focus quickly
to a menu, command, or control by using the keyboard as an
alternative to the mouse.

Unlike shortcut keys (such as F10 or CTRL+T, which are also
assigned in the Menu Design Window), access keys do not execute
commands when pressed, until the ENTER key is pressed. If you
open a menu with an access key, then all non-menu keystrokes
are disabled until you press a menu-control key such as ENTER,
ESC, or ALT.

Step-by-Step Example

To trap all keystrokes in the form instead of the form's controls, you can
set the form's KeyPreview property to True. However, because menu controls
disable non-menu key presses when the menu is down, you won't be able to
preview or trap keys that are pressed when the menu is down, as this
example demonstrates:

1. Set the KeyPreview property to True for Form1.

2. Using the Menu Design window, add a Main menu with two submenus:

 Mainmenu
 Submenu1
 Submenu2

3. In the KeyPress event for the form, print trapped key values as follows:

 Sub Form_KeyPress (KeyAscii As Integer)
 Print Str$(KeyAscii)
 End Sub

4. Run the program. Press any alphanumeric key, and its ASCII value
 will be trapped by Form_KeyPress and be printed.

5. Click the Mainmenu menu to drop it down. While the menu is down,
 non-menu key strokes cause the computer to either beep or do nothing.
 For example, pressing the x key causes the computer to beep; pressing
 the F1 key causes the computer to do nothing; but pressing the s key
 toggles the menu selection between Submenu1 and Submenu2 because both
 begin with the letter s.

6. Press ESC, ALT, ENTER, or click the menu to make the menu go away and
 reenable trapping of keystrokes.

While the menu is down, the Form_KeyPress event detects no keys.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

If Invoked by Access Key, Click Event Handled Before LostFocus
Article ID: Q99875

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
- Standard and Professional Editions of Microsoft Visual Basic for
 MS-DOS, version 1.0

SUMMARY
=======

Below is an example showing that the Click and LostFocus events occur in
different order depending upon whether you cause the click event with the
mouse or the keyboard (with an access key). This behavior is by design.

When the focus changes between controls, the Click event can occur
before the LostFocus event in some situations. This is mainly because
certain events (including GotFocus, LostFocus, and clicking the button
with the mouse) are posted to a message queue and other events, such as
ALT+V from the keyboard, are issued directly.

To force the code for the LostFocus event to always execute before the
Click event code, place a DoEvents statement at the beginning of the Click
event code.

MORE INFORMATION
================

Steps to Reproduce Behavior

1. Draw a text box (Text1) and a command button (Command1) on the default
 Form1.

2. Set the Caption property of Command1 to &Valid. The &V sets up the ALT+V
 as a way to execute the Command1 button from the keyboard.

3. Add a Beep statement to the Text1_LostFocus event procedure.

4. Add an End statement to the Command1_Click event procedure.

5. Press F5 to run the program. The focus starts by default on the Text1
 box. Click the Command1 button, and notice that the LostFocus event
 occurs and you hear a Beep before the program ends.

6. Press F5 to run the program again. The focus starts by default on the
 Text1 box. Type ALT+V to activate the Command1 button. Notice that the
 program ends with no LostFocus event (no beep).

The difference in behavior is not a bug. It is by design.

In order make the Text1_LostFocus event occur first, place a DoEvents

statement (or function) at the beginning of the Click event code for
the Command1 button.

Additional reference words: 1.00 2.00 3.00 B_VBMSDOS
KBCategory:
KBSubcategory: PrgCtrlsStd

Using UP ARROW and DOWN ARROW Keys to Move the Focus
Article ID: Q100413

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
- Standard and Professional Edition of Microsoft Visual Basic for
 MS-DOS, version 1.0

SUMMARY
=======

You can trap for the UP ARROW and DOWN ARROW extended keyboard keys in some
Visual Basic controls by placing code in the KeyDown event procedure. The
code uses KeyCode values to trap the UP ARROW and DOWN ARROW keys. You
cannot, however, trap the keys in all Visual Basic controls because some
controls already have built-in functionality for the UP ARROW and DOWN
ARROW keys, so there is no KeyDown event generated.

MORE INFORMATION
================

The information in this article is provided to show that it is possible to
trap the UP ARROW and DOWN ARROW keys, however Microsoft does not recommend
that you implement it because the UP ARROW and DOWN ARROW keys have
standard, predefined behavior on some controls. Microsoft recommends that
you use the standard method for using the keyboard to move the focus; that
is, use the TAB and SHIFT+TAB keys or use the access keys.

Step-by-Step Example for Moving the Focus Using UP ARROW and DOWN ARROW

1. Start Visual Basic or from the File menu, choose New Project
 (ALT, F, N) if Visual Basic is already running.

2. Add a Picture box and two Text boxes to Form1.

3. In the Picture1_KeyDown event procedure, add this code:

 Sub Picture1_KeyDown(KeyCode AS INTEGER, Shift AS INTEGER)
 IF KeyCode = 38 Then '* 38 = up arrow key
 Text2.SetFocus
 Text2.SelStart = 0 '* set the cursor to the start
 END IF

 IF KeyCode = 40 Then '* 40 = down arrow key
 Text1.SetFocus
 Text1.SelStart = 0 '* set the cursor to the start
 END IF
 END SUB

4. In the Text1_KeyDown event procedure, add this code:

 Sub Text1_KeyDown(KeyCode AS INTEGER, Shift AS INTEGER)
 If KeyCode = 38 Then '* 38 = UP ARROW key
 Picture1.SetFocus
 End If

 If KeyCode = 40 Then '* 40 = DOWN ARROW key
 Text2.SetFocus
 Text2.SelStart = 0 '* set the cursor to the start
 End If
 End Sub

5. In the Text2_KeyDown event procedure, add this code:

 Sub Text2_KeyDown(KeyCode AS INTEGER, Shift AS INTEGER)
 If KeyCode = 38 Then '* 38 = UP ARROW key
 Text1.SetFocus
 Text1.SelStart = 0 '* set the cursor to the start
 End If

 If KeyCode = 40 Then '* 40 = DOWN ARROW key
 Picture1.SetFocus
 End If
 End Sub

6. Choose Start from the Run menu or press F5 to run the example.
 Press the UP ARROW or DOWN ARROW key to see the focus move to a
 different control.

If you use the LEFT ARROW or RIGHT ARROW keys, you can scroll in a
Text box, but these keys are ignored in the Picture box in this example.

Additional reference words: 2.00 3.00 B_VBmsdos 1.00
KBCategory:
KBSubcategory: PrgCtrlsStd

PRB: Can't Use ActiveForm to Reference Data Control in VB 3.0
Article ID: Q101252

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 3.0

SYMPTOMS
========

Using the ActiveForm Property of the Screen control or an MDI Parent
form to reference a Data control causes a "Type Mismatch" error in
Visual Basic.

CAUSE
=====

This behavior is by design. This is not a bug in Visual Basic. The
Visual Basic environment does not know in advance that the Active form
will actually contain a Data control, so it generates a "Type mismatch"
error.

WORKAROUND
==========

To avoid the error message, use global objects to reference the local
controls. The "More Information" section below demonstrates one method
for doing this.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

Steps to Correct Problem

This example shows how to correct the problem. First, create the
problem by following the steps listed in "Steps to Reproduce Problem."
Then correct the problem with these steps:

1. Add the following code to the Form_Activate Event:

 Sub Form_Activate ()
 Set CurrentDS = Data1.Recordset
 End Sub

2. Change two lines of code into comments by adding a single quotation
 mark to the beginning of the line. Change the Set CurrentDS statement
 in the Set_CurrentDS Sub in Module1 to a comment, and do the same to
 the Call Set_CurrentDS statement in the Form_Click event of Form1.

Steps to Reproduce Problem

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Add a data control (Data1) to Form1.

3. Set the DatabaseName Property of Data1 to BIBLIO.MDB.

4. From the File menu, choose New Module (ALT, F, M). Module1 is created.

5. Add the following code to the General section of Module1:

 Global CurrentDS As DynaSet

6. Add the following code to Module1:

 Sub Set_CurrentDS ()
 Set CurrentDS = Screen.ActiveForm.Data1.Recordset
 End Sub

7. Add the following code to the Form_Click event procedure of Form1:

 Sub Form_Click ()
 Call Set_CurrentDS
 End Sub

8. From the Run menu, choose start (ALT, R, S) or press the F5 key.

A "Type mismatch" error will occur on the Set statement.

Additional reference words: 3.00 errmsg
KBCategory:
KBSubcategory: APrgDataIISAM PrgCtrlsStd

How to Prevent Multiple Instances of a VB Application
Article ID: Q102480

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0

SUMMARY
=======

This article describes how to avoid loading a second instance of an
application when the user already has one instance running. It also sets
the focus to the first instance of the Visual Basic .EXE application when
you attempt to start a second instance of the same application.

MORE INFORMATION
================

With Microsoft Windows applications, you usually want only one instance
of each application running at the same time. If, for example, you try
to start the Windows File Manager when an instance is already running,
the first instance of File Manager is activated and its window is opened.
By using the following example, you can achieve the same effect with a
Visual Basic application.

Step-by-Step Example

1. On the startup form (Form1), put the following code in the Form_Load
 event:

 Sub Form_Load ()
 If App.PrevInstance Then
 SaveTitle$ = App.Title
 App.Title = "... duplicate instance."
 Form1.Caption = "... duplicate instance."
 AppActivate SaveTitle$
 SendKeys "% R", True
 End
 End If
 End Sub

2. From the File menu, choose Make EXE File.

3. Exit Visual Basic for Windows.

4. Start your program through Program Manager or double-click the .EXE file
 name under Windows File Manager.

5. Minimize the program you started in step 4.

6. Attempt to start another instance of the program by repeating step 4.

When you try to launch a second instance of the program, the Visual Basic
application executes the following logic:

1. It checks the App object property PrevInstance to see if there is a
 previous instance of an application with the same App.Title property.

2. If there is, the new instance of the program saves its App.Title
 property to a local string to be used to activate the first instance
 of the same name.

3. Then it changes its own name to avoid an ambiguous reference in the
 AppActivate call.

4. Next, it performs AppActivate which causes the first instance of the
 application to be the current window.

5. Now that the first instance of the application has the focus, the
 second instance uses SendKeys to send the equivalent keystrokes to
 restore the first instance's window state.

6. Finally, the second instance of the application Ends itself leaving
 the first instance with the focus.

Additional reference words: 2.00 3.00
KBCategory: Prg
KBSubcategory: PrgCtrlsStd

How to Move Controls at Run Time By Using Drag and Drop
Article ID: Q103062

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 1.0, 2.0, and 3.0

SUMMARY
=======

You can move controls at run time by using manual dragging with the Drag
method. Automatic dragging (DragMode = 1) does not work well for
repositioning controls at run time.

MORE INFORMATION
================

The key points to remember when using drag and drop to move controls at run
time are:

 - In the MouseDown event, save the X and Y parameters. This position is
 relative to the upper left corner of the control to drag. Note that
 the MouseDown event only occurs when DragMode is set to Manual (0).

 - In the DragDrop event, move the control to the position of the mouse
 pointer adjusted by the position saved in MouseDown.

Example Program

The following example program demonstrates how to reposition a picture box
at run time. Place the pieces of the program in the appropriate event
procedures.

Dim Save_X As Single
Dim Save_Y As Single

' Enter the following Sub as one, single line:
Sub Picture1_MouseDown (Button As Integer, Shift As Integer, X As
 Single, Y As Single)
 Save_X = X ' save mouse position (relative to this control)
 Save_Y = Y
 Picture1.Drag 1 ' begin dragging
End Sub

' Enter the following Sub as one, single line:
Sub Picture1_MouseUp (Button As Integer, Shift As Integer, X As
 Single, Y As Single)
 Picture1.Drag 2 ' end dragging, do DragDrop event
End Sub

Sub Form_DragDrop (Source As Control, X As Single, Y As Single)
 ' Move the control to the position of the mouse pointer.

 ' Adjust it by the distance the mouse pointer to the upper
 ' left corner of the control.
 Source.Move X - Save_X, Y - Save_Y
End Sub

Sub Picture1_DragDrop (Source As Control, X As Single, Y As Single)
 ' This handles the case when the control is dropped on itself
 ' as would happen if it was only moved a small amount.
 ' This is similar to Form_DragDrop except that the X and Y
 ' parameters are relative to this control, not the form.
 Source.Move Picture1.Left + X - Save_X, Picture1.Top + Y - Save_Y
End Sub

Additional reference words: 1.00 2.00 3.00 runtime run-time
KBCategory:
KBSubcategory: PrgCtrlsStd

PRB: Invalid picture Error When Try to Bind Picture Control
Article ID: Q103115

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, version 3.0

SYMPTOMS
========

If you try to bind a picture control to a Microsoft Access database field
that contains an OLE object such as a PaintBrush bitmap, you will
correctly receive the error "Invalid picture."

CAUSE
=====

This error occurs because the picture control can only bind to a bitmap,
metafile, or icon stored in the database field -- not to an OLE object.

RESOLUTION
==========

Using the method described below, you can simulate the binding of a picture
control to a PaintBrush OLE (or bitmap) object.

MORE INFORMATION
================

If you use Microsoft Access to store a PaintBrush picture in an OLE
field, there is no way to bind any control provided with Visual Basic
version 3.0 to the OLE field. Ideally you could bind the MSOLE2
control to the data control, but no features were added to the MSOLE2
control to allow you to bind to a database field.

From Visual Basic, you can use a bound picture control to store and
retrieve bitmaps, metafiles, and icons directly in a long binary or OLE
database field. However, Microsoft Access will not be able to display
the bitmap, metafile, or icon that you've stored.

Step-by-Step Example

The following example demonstrate how you can create an application that
retrieves and displays a bitmap from an OLE field containing a PaintBrush
object. To get it to work, you need to have the NWIND.MDB sample database
provided with Microsoft Access.

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose New Module (ALT, F, M). Module1 is created.

3. Add a picture control (Picture1) to Form1.

4. Add a data control (Data1) to Form1.

5. Set the Data1.Databasename property to NWIND.MDB and include the full
 path to this file. This file is a sample database that ships with
 Microsoft Access versions 1.0 and 1.1. Look for it in your Microsoft
 Access directory -- for example, C:\ACCESS.

6. Set the Data1.RecordSource property to Employees.

7. Add the following code to the Data1_Reposition event procedure in Form1:

 '**
 '* Title
 '* Data1_Reposition ()
 '*
 '* Description
 '* Each time the data control is being repositioned to a new
 '* record, the bitmap contained in the "Photo" is displayed
 '* in Picture1. Therefore, it simulates binding the picture
 '* control to an OLE field containing a Microsoft Paint Brush
 '* picture object.
 '*
 '* The code requires a field named Photo, and it requires that
 '* the embedded OLE object be a Microsoft Paint Brush picture.
 '**
 Sub Data1_Reposition ()

 Screen.MousePointer = 11

 'Make sure this is the current record:
 If Not (Data1.Recordset.EOF And Data1.Recordset.BOF) Then

 'Change Photo to the name of the OLE field
 'for the record set you are using:
 DisplayOleBitmap Picture1, Data1.Recordset("Photo")

 End If

 Screen.MousePointer = 0

 End Sub

8. Add the following code to Module1:

 '**
 '* OLEACCES.BAS
 '*
 '* general-declarations section
 '**
 Option Explicit

 Global Const LENGTH_FOR_SIZE = 4
 Global Const OBJECT_SIGNATURE = &H1C15
 Global Const OBJECT_HEADER_SIZE = 20
 Global Const CHECKSUM_SIGNATURE = &HFE05AD00
 Global Const CHECKSUM_STRING_SIZE = 4

 'PT : Window sizing information for object
 ' Used in OBJECTHEADER type
 Type PT
 Width As Integer
 Height As Integer
 End Type

 'OBJECTHEADER : Contains relevant information about object
 '
 Type OBJECTHEADER
 Signature As Integer 'Type signature (0x1c15)
 HeaderSize As Integer 'Size of header (sizeof(struct
 'OBJECTHEADER) + cchName +
 'cchClass)
 ObjectType As Long 'OLE Object type code (OT_STATIC,
 'OT_LINKED, OT_EMBEDDED)
 NameLen As Integer 'Count of characters in object
 'name (CchSz(szName) + 1)
 ClassLen As Integer 'Count of characters in class
 'name (CchSz(szClass) + 1)
 NameOffset As Integer 'Offset of object name in
 'structure (sizeof(OBJECTHEADER))
 ClassOffset As Integer 'Offset of class name in
 'structure (ibName + cchName)
 ObjectSize As PT 'Original size of object (see
 'code below for value)
 OleInfo As String * 256
 End Type

 Type OLEHEADER
 OleVersion As Long
 Format As Long
 OleInfo As String * 512
 End Type

 'Enter the following Declare statement as one, single line:
 Declare Function GetTempFileName Lib "Kernel" (ByVal cDriveLetter
 As Integer, ByVal lpPrefixString As String, ByVal wUnique As
 Integer, ByVal lpTempFileName As String) As Integer

 'Enter the following Declare statement as one, single line:
 Declare Sub hmemcpy Lib "Kernel" (dest As Any, source As Any,
 ByVal bytes As Long)

 '**
 '* Title
 '* DisplayOleBitmap
 '*
 '* Description
 '* Causes the OLE bitmap in the given data field to be
 '* copied to a temporary file. The bitmap is then
 '* displayed in the given picture.
 '*
 '* Parameters
 '* ctlPict Picture control in which to display the
 '* bitmap image

 '* OleField Database field containing the OLE
 '* embedded Microsoft Paint Brush bitmap
 '**
 Sub DisplayOleBitmap (ctlPict As Control, OleField As Field)

 Const DT_LONGBINARY = 11

 Dim r As Integer
 Dim Handle As Integer
 Dim OleFileName As String

 If OleField.Type = DT_LONGBINARY Then

 OleFileName = CopyOleBitmapToFile(OleField)

 If OleFileName <> "" Then

 'Display the bitmap:
 ctlPict.Picture = LoadPicture(OleFileName)

 'Delete the temporary file:
 Kill OleFileName

 End If

 End If

 End Sub

 '**
 '* Title
 '* CopyOleBitmapToFile
 '*
 '* Description
 '* Copies the bitmap contained in a OLE field to a file.
 '**
 Function CopyOleBitmapToFile (OleField As Field) As String

 Const BUFFER_SIZE = 8192

 Dim tempFileName As String
 Dim Handle As Integer
 Dim Buffer As String

 Dim BytesNeeded As Long

 Dim Buffers As Long
 Dim Remainder As Long

 Dim OLEHEADER As OBJECTHEADER
 Dim sOleHeader As String

 Dim ObjectOffset As Long
 Dim BitmapOffset As Long
 Dim BitmapHeaderOffset As Integer

 Dim r As Integer

 Dim i As Long

 tempFileName = ""
 If OleField.FieldSize() > OBJECT_HEADER_SIZE Then

 'Get the Microsoft Access OLE header:
 sOleHeader = OleField.GetChunk(0, OBJECT_HEADER_SIZE)
 hmemcpy OLEHEADER, ByVal sOleHeader, OBJECT_HEADER_SIZE

 'Calculate the offset where the OLE object starts:
 ObjectOffset = OLEHEADER.HeaderSize + 1

 'Get enough bytes after the OLE header so that we get the
 'bitmap header
 Buffer = OleField.GetChunk(ObjectOffset, 512)

 'Make sure the class of the object is a Paint Brush object
 If Mid(Buffer, 12, 6) = "PBrush" Then

 BitmapHeaderOffset = InStr(Buffer, "BM")

 If BitmapHeaderOffset > 0 Then

 'Calculate the beginning of the bitmap:
 BitmapOffset = ObjectOffset + BitmapHeaderOffset -1

 'Calculate the size of the bitmap:
 'Enter the following BytesNeeded statement as a single line:
 BytesNeeded = OleField.FieldSize() - OBJECT_HEADER_SIZE -
 BitmapHeaderOffset - CHECKSUM_STRING_SIZE + 1

 'Calculate the number of buffers needed to copy
 'the OLE object based on the bitmap size:
 Buffers = BytesNeeded \ BUFFER_SIZE
 Remainder = BytesNeeded Mod BUFFER_SIZE

 'Get a unique, temp filename:
 tempFileName = Space(255)
 r = GetTempFileName(0, "", -1, tempFileName)

 'Copy the bitmap to the temporary file chunk by chunk:
 Handle = FreeFile
 Open tempFileName For Binary As #Handle

 For i = 0 To Buffers - 1
 'Enter the following Buffer statement as a single line:
 Buffer = OleField.GetChunk(BitmapOffset + i *
 BUFFER_SIZE, BUFFER_SIZE)
 Put #Handle, , Buffer
 Next

 'Copy the remaining chunk of the bitmap to the file:
 'Enter the following Buffer statement as a single line:
 Buffer = OleField.GetChunk(BitmapOffset + Buffers *
 BUFFER_SIZE, Remainder)
 Put #Handle, , Buffer

 Close #Handle

 End If

 End If

 End If

 CopyOleBitmapToFile = Trim(tempFileName)

 End Function

9. From the Run menu, choose Start (ALT, R, S) or press the F5 key to run
 the program.

You should see the photo of the first employee displayed in the picture
box. By clicking the directional arrows on the data control, you can view
the other employee photos.

Additional reference words: 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

PRB: Out of Stack Space When One Modal Form Shows Another
Article ID: Q103461

The information in this article applies to:

 - The Standard and Professional Editions of Microsoft Visual Basic
 for Windows, versions 1.0, 2.0, and 3.0
 - The Standard and Professional Editions of Microsoft Visual Basic
 for MS-DOS, version 1.0

SYMPTOMS
========

Any of the following error messages can occur when two or more forms in a
program repeatedly show each other modally (SHOW 1).

 - Out of stack space.
 - Out of memory.
 - Out of overlay stack space.

CAUSE
=====

This can happen even if you unload the form, which in turn shows the next
form. A form is not actually unloaded by the Unload statement until all its
event procedures return (End Sub or Exit Sub). Showing a form modally
suspends execution and, like a procedure call, maintains information on the
stack. Further explanation is given in the MORE INFORMATION section below.

WORKAROUNDS
===========

 - Show the forms non-modally (SHOW 0). It is acceptable practice to have
 forms show each other non-modally.

 - Do not have modal forms call each other continually. Instead, have an
 initial form call all the other forms. Think of this initial form
 (probably your startup form) as your foundation with all other forms
 called from the foundation.

MORE INFORMATION
================

The following example gives an Out of stack space error message. Remove
the apostrophe from (uncomment) the MsgBox statements in Visual Basic for
MS-DOS to see the amount of remaining stack space.

' Form1:
Sub Form_Click ()
 ' MsgBox STR$(FRE(-2))
 Unload Form1
 Form2.Show 1
End Sub

' Form2:
Sub Form_Click ()
 ' MsgBox STR$(FRE(-2))
 Unload Form2
 Form1.Show 1
End Sub

When a function or a subroutine is called, the variables in the calling
procedure get pushed onto the stack. This way these values are preserved.
When the function or subroutine ends on an End Function, End Sub, or Exit
Sub statement, these variables get popped off the stack, and program
execution returns to the statement that follows the call. Only then are
the variables once again usable.

If a subroutine or function calls another function, program execution is
halted within that subroutine or function, and the stack used is not
cleared up until an End Function, End Sub, or Exit Sub is encountered.
This is why you should not have two subroutines repeatedly call each
other with no stopping condition.

The behavior of event procedures within forms is similar to subroutines in
that when a form is shown, information is pushed onto the stack, and when
forms are unloaded, information is popped off the stack. Modal forms halt
program execution of all other events. However, a form is not actually
unloaded by the Unload statement until all of its event procedures return
with an End Sub or Exit Sub. When a modal form displays a second modal
form, the second modal form puts a hold on program execution, so the
first modal form cannot proceed to the rest of its code, thus making it
impossible to ever reach the End Sub or Exit Sub statement. This is why you
should not have modal forms show each other repeatedly.

Additional reference words: 1.00 2.00 3.00 B_VBMSDOS
KBCategory:
KBSubcategory: PrgCtrlsStd

How to Program Two List Boxes to Scroll Together
Article ID: Q103809

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows,
 versions 2.0 and 3.0

SUMMARY
=======

You can give two list boxes the ability to scroll together in unison. In
other words, you can program your Visual Basic application so that when the
user scrolls the List1 box, the contents of the List2 box will scroll in
the same direction automatically -- without using the List2 scroll bar.

MORE INFORMATION
================

The example below uses two list boxes, side by side, to demonstrate this
technique to simulate the appearance of two list boxes scrolling together.

Step-by-Step Example

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Add two list boxes, one timer control, and one command button to Form1.
 For the best visual effect, place the list boxes side by side with the
 List1 box on the left.

3. Add the following code to the (general) (declarations) section of Form1:

 DefInt A-Z

4. Add the following code to the Form Load event procedure of Form1:

 Sub Form_Load ()
 'Initialize two list boxes with the alphabet
 For i = 1 To 26
 list1.AddItem Chr$(i + 64)
 Next i
 For i = 1 To 26
 list2.AddItem Chr$(i + 64)
 Next i
 Timer1.Interval = 1
 Timer1.Enabled = True
 End Sub

5. Add the following code to the Command1 Click event procedure of Form1:

 Sub Command1_Click ()
 End

 End Sub

6. Add the following code to the Timer1_Timer event procedure of Form1:

 Sub Timer1_Timer ()
 Static PrevTI_List1
 'Get the index for the first item in the visible list
 TopIndex_List1 = list1.TopIndex
 'See if the top index has changed
 If TopIndex_List1 <> PrevTI_List1 Then
 'Set the top index of List2 equal to List1 so that the list boxes
 'scroll to the same relative position
 list2.TopIndex = TopIndex_List1
 'Keep track of the current top index
 PrevTI_List1 = TopIndex_List1
 End If
 'Select the item in the same relative position in both list boxes
 If list1.ListIndex <> list2.ListIndex Then
 list2.ListIndex = list1.ListIndex
 End If
 End Sub

7. Press the F5 key to run the program. Select a letter in the List1 box.
 Then try the scroll bar of the List1 box. You should see the same letter
 highlighted in the List2 box when you select a letter from the List1
 box. Then when you try the scroll bar of the List1 box, you should see
 the List2 box scroll in unison with the List1 box.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

Adjusting VB FontSize at Run Time for Different Video Drivers
Article ID: Q106164

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SUMMARY
=======

Text on controls and labels may have a different size or appearance at run
time depending on the video device and driver. For example, many video
drivers have a large-fonts option and a small-fonts option. This article
describes how to automatically adjust text at run time to fit the design-
time label size, independent of the video driver.

MORE INFORMATION
================

Predicting how fonts will appear on different display devices is not easy.
However, you can calibrate the appropriate FontSize to use at run time
by using the following example. This example adjusts the form's FontSize so
that a particular label caption fits best inside its Width. The label's
Width can be set at design time to adjust how big the fonts ought to appear
at run time. This example assumes a True Type FontName setting, which can
be set to almost any size needed.

Step-by-Step Example

1. Start Visual Basic, and begin a new project.

2. Draw a label on a form.

3. Add the following code to the form's Load event:

 Sub Form_Load ()

 ' This procedure determines the appropriate FontSize to display
 ' text in a label that was sized at design time.

 Const SMALLESTFONTSIZE = 3 'Enter smallest available font size

 ' 1. Assign the FontName properties of the label to the Form:
 ' use Me (a reserved word describing the current form) instead of
 ' the name of the label control because you are comparing sizes
 ' using the TextWidth property. TextWidth returns the width as if
 ' it was printed directly on an object (the form). The TextWidth
 ' property does not apply to controls.
 Me.FontName = Label1.FontName
 Me.FontSize = Label1.FontSize

 ' 2. Increase FontSize until Caption is too wide too fit in label:

 i = Me.FontSize
 Do Until Me.TextWidth(Label1.Caption) >= Label1.Width
 i = i + 1
 Me.FontSize = i
 'Debug.Print Me.FontSize
 Loop

 ' 3. Decrease FontSize until Caption fits width-wise in label.
 ' NOTE: If the fontsize becomes less than SMALLESTFONTSIZE below,
 ' the Caption is too big for the current label size, even with
 ' the smallest available fontsize.

 i = Me.FontSize
 Do Until Me.TextWidth(Label1.Caption) <= Label1.Width
 i = i - 1
 If i < SMALLESTFONTSIZE Then
 MsgBox "Caption width truncated to fit label - smallest font."
 Exit Sub
 End If
 Me.FontSize = i
 'Debug.Print "width:" & i; Me.FontSize
 Loop

 ' 4. Decrease FontSize until Caption fits height-wise in label:
 i = Me.FontSize
 Do Until Me.TextHeight(Label1.Caption) <= Label1.Height
 i = i - 1
 If i < SMALLESTFONTSIZE Then
 MsgBox "Caption height truncated to fit label - smallest font."
 Exit Sub
 End If
 Me.FontSize = i
 'Debug.Print "height" & i; Me.FontSize
 Loop

 ' 5. Assign Font properties from the Form back to the label:
 Label1.FontName = Me.FontName
 Label1.FontSize = Me.FontSize

 End Sub

If you need several different font sizes, set up a label to calibrate each
font size needed. The labels used to make this adjustment do not have to be
visible. Optionally, you can set the Visible property to False.

You can also have the program size label controls depending on the
Screen.Height and Screen.Width properties at run time. Once you determine
the correct size of the label, size the text inside the label.

Example of How Fonts May Differ on Different Hardware

You can call Windows API functions to obtain the enumerated FontSize list.
This is useful to know for fixed, non-TrueType fonts. Visual Basic also
offers font properties (Fonts, FontName, FontSize, and FontCount) to
determine font information.

The enumerated FontSize list for non-TrueType fonts may vary from one
screen resolution to another. This can happen because the number of
logical pixels per inch can vary between resolutions. This means that
the number of points per pixel can also vary. The point size of a font
is adjusted to the nearest pixel.

The point size on a screen is based on logical inches. Logical inches
are somewhat arbitrary because Windows has no way of really knowing
how big a pixel is on your screen. For example, you could be hooked up
to a projection TV or a tiny monitor. Usually the logical inch is
overly large; tiny text is often difficult to read on a video display.

Because the point size is based on the logical pixels per inch of a
device, not all point sizes can be represented. For example, on a
standard VGA, Windows will tell you that the device has 96 pixels per
logical inch (according to the Windows API GetDeviceCaps(hDC, LOGPIXELSY)
function). A 96-pixel tall glyph is 72 points because each point is about
1/72 of an inch. This means each pixel is 72/96 point or 0.75 point per
pixel. The system could theoretically represent fonts of the following
heights:

 1 pixel = 0.75 point
 2 pixels = 1.50 point
 3 pixels = 2.25 point
 4 pixels = 3.00 point

Rounding errors are unavoidable in this scheme. Even if the device
displayed exactly 96 dots per inch (DPI), it could not represent a
font that was exactly 2 points. The closest it could come would be
2.25 points. Usually, this small difference is not noticeable. However,
if two screen drivers have different logical pixels-per-inch, you
might see different point sizes in the enumerated list in Windows.

Additional reference words: 3.00
KBCategory: Prg
KBSubcategory: PrgCtrlsStd

PRB: PrintForm Blank Page or GPF Due to Video Color Depth >256
Article ID: Q108470

The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SYMPTOMS
========

The PrintForm method in Visual Basic is designed to send a bit-for-bit
image of a non-MDI form to the printer.

Using the PrintForm method to print a form to a Hewlett-Packard (HP)
LaserJet Series II can give a general protection (GP) fault from
Windows due to the cause described below. An HP LaserJet Series IV can
print a blank page due to the cause described below. Similar behavior
may occur with other printers.

The problem can occur even on a simple form, such as a form with a
PrintForm method in the click event of a single command button.

CAUSE
=====

This memory problem can be caused by using a video driver with a color
depth setting greater than 256 colors, or greater than 8 bits per pixel.

For example, a color depth setting of 65,000 colors, or 16 bits per
pixel, can cause this memory management problem. A color depth setting
of 24 bits per pixel for the video driver can also cause this memory
problem.

WORKAROUND
==========

To eliminate the GP fault or blank page problem, reset the color depth
of the video driver on your system to 256 colors or less, or 8 bits per
pixel or less.

STATUS
======

This behavior is caused by memory management limitations between the
video driver and Windows.

Additional reference words: 3.00 lock freeze GP Fault hang fail IIp laser
KBCategory: Prg
KBSubcategory: PrgCtrlsStd

PRB: Problem Changing Control's Picture to (None) in VB 3.0
Article ID: Q108602

The information in this article applies to:

 - Professional Edition of Microsoft Visual Basic for Windows, version 3.0

SYMPTOMS
========

You can attach a graphic to a form or picture control using the Picture
property in Visual Basic. By default, Visual Basic gives a value of
(none) for the Picture property in the Properties window. After you
attach a graphic to a form or picture control, the Picture property has
a value of (bitmap), (icon), or (metafile).

However, Visual Basic can prevent your attempts to detach the graphic.
Highlighting the (bitmap), (icon), or (metafile) value and pressing DEL
can fail to change the value to (none).

NOTE: The three dots on the right of the Settings box for the Picture
property do not pop up a choice for (none). Visual Basic requires you
to use the DEL key to change the Picture property value to (none).

CAUSE
=====

Visual Basic requires you to click the Picture property in the
Properties list immediately before highlighting the (bitmap), (icon),
or (metafile) value for deletion. Visual Basic requires that click
even if the Picture property has the focus from a previous operation.

WORKAROUND
==========

To work around this behavior, click the Picture property in the
Properties list before highlighting the (bitmap), (icon), or (metafile)
value. Or, change the focus to any other property on the Properties
window, then reselect the Picture property. The DEL key then
correctly deletes the (bitmap), (icon), or (metafile) value and changes
the value to (none). The graphic correctly disappears from the form or
picture control.

STATUS
======

This behavior is under review and will be considered for correction in a
future release.

MORE INFORMATION
================

Steps to Reproduce the Behavior

The following steps set the Picture property to (bitmap), (icon), or
(metafile):

1. Start a new project in Visual Basic. Form1 is created by default.

2. Press the F4 key. Select the Picture property from the list in the
 Properties window.

3. Click the three dots on the right of the Settings box. Visual Basic
 displays a dialog box from which you select a picture file. The
 graphic from the picture file displays on the form.

4. Click the form to see the graphic. This changes the focus to the form.

5. Press the F4 key to give focus back to the Properties window.

 NOTE: The Picture property is still highlighted on the list in the
 Properties window. To duplicate the behavior, don't click the Picture
 property until the workaround is explained further below.

6. In the Settings box in the Properties window, highlight or double-click
 the word (bitmap), (icon), or (metafile). Press the DEL key. This fails
 to change the value to (none).

To work around this behavior, click the Picture property in the
Properties list before highlighting the (bitmap), (icon), or (metafile)
value. Or, change the focus to any other property on the Properties
window, then reselect the Picture property. Then highlight the (bitmap),
(icon), or (metafile) value. Press the DEL key to delete the value. This
successfully changes the value to (none) and removes the graphic from
the form.

REFERENCES
==========

 - "Microsoft Visual Basic Version 3.0: Programmer's Guide", Page 324.

Additional reference words: 3.00 bitmap bitmaps .BMP .WMF .ICO .DIB
KBCategory: Prg
KBSubcategory: PrgCtrlsStd

Category Keywords for All Visual Basic KB Articles
Article ID: Q108753

The information in this article applies to:

- Microsoft Visual Basic for Windows, versions 2.0 and 3.0

SUMMARY
=======

Each article in the Visual Basic for Windows collection contains at least
one keyword (called a KBSubcategory keyword) that places the article in an
appropriate category. This article lists all the KBSubcategory keywords.

MORE INFORMATION
================

Category & Subcategory Description KBSubcategory Keyword
--
Setup / Installation (Setins) Setins

Environment-specific Issues (Envt)
 VB Design Environment EnvtDes
 Run-Time Environment EnvtRun

Programming (Prg)
 Visual Basic Forms and Controls
 Standard Controls / Forms PrgCtrlsStd
 Custom Controls PrgCtrlsCus
 Third-Party Controls PrgCtrlsThird

 Optimization
 Memory Management PrgOptMemMgt
 General Optimization Tips PrgOptTips

 General VB Programming PrgOther

Advanced programming (APrg)
 Network APrgNet

 Windows Programming (APIs / DLLs)
 Printing APrgPrint
 Graphics APrgGrap
 Windowing APrgWindow
 INI Files APrgINI
 Other API / DLL Programming APrgOther

 Data Access
 ODBC APrgDataODBC
 IISAM APrgDataIISAM
 Access APrgDataAcc
 General Database Programming APrgDataOther

 3rd Party DLL's APrgThirdDLL

Inter-Application Programmability (IAP)
 OLE IAPOLE
 DDE IAPDDE
 3rd Party Interoperability IAPThird

Tools (Tls)
 Setup Toolkit / Wizard TlsSetWiz
 Control Development Kit (CDK) TlsCDK
 Help Compiler (HC) TlsHC

References (Refs)
 Documentation / Help File Fixes RefsDoc
 Product Information RefsProd
 Third-Party Information RefsThird
 PSS-Only Information RefsPSS

Using Keywords to Query the KB

At Microsoft, we use the subcategory keywords to organize the articles for
Help files and for the FastTips Catalog. You can use them to query the
Microsoft Knowledge Base for Visual Basic articles that apply to that
category or subcategory. For example, you can find all the general database
programming articles by querying on the following words in the Microsoft
Knowledge Base:

 visual and basic and APrgDataOther

Use the asterisk (*) wildcard to find articles that fall into the general
categories or into an intermediate subcategory. The first element in each
keyword is the category. For example, to find all the articles that apply
to Visual Basic Forms and Controls regardless of whether they are standard,
custom, or third-party controls, use the following words to query the
Microsoft Knowledge Base:

 visual and basic and PrgCtrls*

To find all advanced programming articles, query on these words:

 visual and basic and APrg*

Add KBSubcategory Keyword to Each Article

When contributing an article to the Visual Basic Knowledge Base, add the
appropriate KBSubcategory keyword to the bottom of the article on the
KBSubcategory line. Each article in the Visual Basic for Windows
collection contains the following section at the bottom of the article:

Additional reference words:
KBCategory:
KBSubcategory: <keyword>

An article usually has only one subcategory keyword, but it may have more.

If you are interested in contributing, please obtain the guidelines by

querying on the following words in the Microsoft Knowledge Base:

 visual and basic and kbguide and kbartwrite

Additional reference words: 3.00 dskbguide subcatkey
KBCategory:
KBSubcategory: RefsPSS

How to Display Multiple Foreground Text Colors in VB List Box
Article ID: Q108811

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SUMMARY
=======

To set the foreground and background color of a list box control, set the
ForeColor and BackColor properties at either design time or run time. All
text in a list box uses the color set by the ForeColor property. The text
is printed against a background color set by the BackColor property.

Visual Basic doesn't directly support the display of text of different
colors simultaneously in the list box. This article describes how to
display words of different colors simultaneously in a list box by using an
indirect technique.

MORE INFORMATION
================

You can display lines or words of different colors simultaneously in a
list box by using one of the following indirect techniques.

1. Simulate the list box with a picture box control. You can store the
 desired text strings in an array of strings, and use the Print
 method to write the array entries into the picture box with different
 ForeColor properties. For example:

 picture1.BackColor = QBColor(14) ' 14=Light yellow
 picture1.ForeColor = QBColor(4) ' 4=Red
 picture1.Print "in living red"
 picture1.ForeColor = QBColor(2) ' 2=Green
 picture1.Print "in living green"

 You can also add a vertical scroll bar next to the picture box. When the
 scroll bar is scrolled, your code needs to redraw the picture box. The
 ForeColor property of the picture box controls the current color used
 by the Print method. The picture box will not let you highlight text.
 NOTE: The BackColor method erases any pre-existing text on the picture
 control.

2. For coloring list box entries with multiple foreground colors, the
 Desaware company provides two solutions:

 a. The MLIST2.VBX control file is included with the Custom Control
 Factory product from Desaware. MLIST2.VBX allows each line in a list
 box to be colored independently. All words on the same line must be
 the same color. MLIST2.VBX comes with full source code.

 b. A more flexible and advanced solution is to turn Visual Basic's list

 box into an owner-draw list box. Desaware says that you can make true
 owner-draw list boxes with their SpyWorks-VB product. SpyWorks-VB
 allows you to color each entry of the list box with the full power of
 the Windows API drawing functions. SpyWorks-VB comes with sample
 source code for an owner-draw list box and command button, along with
 explanations of how to turn the standard controls into owner-draw
 controls. See the section on owner-draw controls further below.

How to Contact Desaware

NOTE: Desaware products are manufactured independent of Microsoft.
Microsoft makes no warranty, implied or otherwise, regarding these
products' performance or reliability.

Desaware
5 Town & Country Village #790
San Jose, CA 95128
Contact: Gabriel Appleman (213) 943-3305
 Dan Appleman (408) 377-4770
Fax: (408) 371-3530

The Desaware company offers the following products:

1. Custom Control Factory -- an interactive development tool for creating
 custom controls including Animated Pushbuttons, Multistate Buttons,
 enhanced buttons, check box, and option button controls for Windows
 applications.

2. CCF-Cursors -- provides you with complete control over cursors (mouse
 pointers) in Visual Basic applications. Create your own cursors or
 convert icons to cursors, and much more. Includes over 50 cursors.

3. SpyWorks-VB -- an advanced development tool for use with Visual Basic.

Owner-Draw Controls in Windows

The owner-draw list capability is appropriate for advanced programmers
for Microsoft Windows. You will need a good reference for the Windows
API to learn the required drawing functions.

Owner-draw controls were introduced in Windows version 3.0. Because your
application does all the drawing of the contents of the controls, you
can customize them any way you like. Owner-draw controls are similar to
predefined controls in that Windows will handle the control's
functionality and mouse and keyboard input processing. However, you are
responsible for drawing the owner-draw control in its normal, selected,
and focus states.

You can create owner-draw controls from the menu, button, and list-box
classes. You can create owner-draw combo boxes, but they must have the
CBS_DROPDOWNLIST style, which equates to a static text item and a list
box. The elements of an owner-draw control can be composed of strings,
bitmaps, lines, rectangles, and other drawing functions in any
combination, in your choice of colors.

REFERENCES
==========

 - "Microsoft Windows Programmer's Reference"

Additional reference words: 3.00
KBCategory: Prg
KBSubcategory: PrgCtrlsCus PrgCtrlsStd PrgCtrlsThird

BackColor Erases Existing Graphics on Form or Picture Control
Article ID: Q108812

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0

SUMMARY
=======

Setting the BackColor property on forms or picture boxes at run time
erases all previous printed graphics and output, including a persistent
bitmap. This behavior is by design. Setting the ForeColor property does
not affect the graphics or print output that are already drawn.

Setting the BackColor property on other controls, such as list boxes,
text boxes, or combo boxes, does not erase previously added items.

MORE INFORMATION
================

NOTE: A persistent bitmap is a bitmap, accessed with the Image property,
that stores output from graphics methods in memory. For more information,
see the following items in the Visual Basic Help menu:

 - AutoRedraw property
 - persistent bitmap

Steps to Reproduce Behavior

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add a list box and a picture box to Form1.

3. Double-click the form to open the code window. Add the following code to
 the Form Load event:

 Sub Form_Load ()
 form1.Show 'In Load event, must show form before Print works

 picture1.ForeColor = QBColor(1)
 picture1.BackColor = QBColor(11)
 picture1.Print "color1"
 form1.ForeColor = QBColor(1)
 form1.BackColor = QBColor(12)
 form1.Print "color1"
 list1.ForeColor = QBColor(1)
 list1.BackColor = QBColor(11)
 list1.AddItem "color1"

 MsgBox "click to see next color"
 picture1.ForeColor = QBColor(2)

 picture1.BackColor = QBColor(10) 'This BackColor erases picture1
 picture1.Print "color1"
 form1.ForeColor = QBColor(2)
 form1.BackColor = QBColor(13) 'This BackColor erases form1
 form1.Print "color1"
 list1.ForeColor = QBColor(2)
 list1.BackColor = QBColor(10) 'This BackColor doesn't erase List1
 list1.AddItem "color2"

 MsgBox "click to see next color"
 picture1.ForeColor = QBColor(4)
 picture1.BackColor = QBColor(14) 'This BackColor erases picture1
 picture1.Print "color1"
 form1.ForeColor = QBColor(4)
 form1.BackColor = QBColor(8) 'This BackColor erases form1
 form1.Print "color1"
 list1.ForeColor = QBColor(4)
 list1.BackColor = QBColor(14) 'This BackColor doesn't erase List1
 list1.AddItem "color3"

 End Sub

4. Start the program or press the F5 key. Click OK to see the next color.
 To end the program, close the form.

Here are the results:

 - Changing the Form1.BackColor property erases the text that you
 previously printed on Form1.
 - Changing the Picture1.BackColor property erases the text that you
 previously printed on Picture1.
 - Changing the List1.BackColor property does not erase the text that you
 previously added to the List1 list box.

All of this behavior is by design.

Additional reference words: 2.00 3.00 delete remove blank out
KBCategory: Prg
KBSubcategory: PrgCtrlsStd

PRB: MDI Child Form Painted Twice When Moved Before Loaded
Article ID: Q109801

The information in this article applies to:

- The Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0
--

SYMPTOMS
========

If you Load an MDI child form and then change the position or size of the
MDI child form, it gets painted twice -- once in a default starting
position and then in its final position.

CAUSE
=====

When you access any properties of a form that is not currently loaded, the
form is loaded immediately. Note that the Move method simply sets the Left,
Top, Width, and Height form properties. Since MDI child forms cannot have
their Visible property False, they cannot be loaded without being Visible.
Therefore, when you try to set the position or size properties of an MDI
child form before showing it, the MDI child form appears in a default
position before your new settings take effect.

RESOLUTION
==========

Initialize the position of MDI child forms from within their own Form_Load
event handler. The Form_Load event handler is executed before the form
actually becomes visible.

MORE INFORMATION
================

Steps to Reproduce Behavior

1. Start a new project. Form1 is created by default.

2. Set the Form1.MDIChild property to True.

3. From the File menu, choose New MDI Form.

4. From the Options menu, choose Project, and set the Start Up Form to
 MDIForm1.

5. Add the following code to the MDIForm1 Load event procedure:

 Sub MDIForm_Load ()
 Form1.Move 0, 0, MDIForm1.ScaleWidth, MDIForm1.ScaleHeight
 End Sub

6. Run the program. Form1 appears briefly in the upper-left region of
 MDIForm1, then resizes to fill MDIForm1.

7. To fix this problem, remove the code from the MDIForm1 Load event and
 place the following code in the MDIForm1 and Form1 event procedures:

 ' MDIForm1:
 Sub MDIForm_Load ()
 Form1.Show
 End Sub

 ' Form1:
 Sub Form_Load ()
 Form1.Move 0, 0, MDIForm1.ScaleWidth, MDIForm1.ScaleHeight
 End Sub

8. Run the program. Now Form1 appears once, in its final position and size.

Additional reference words: 3.00
KBCategory: Prg
KBSubcategory: PrgCtrlsStd

How to Distinguish a DblClick from a Click Event
Article ID: Q109865

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic
 programming system for Windows, versions 1.0, 2.0, and 3.0

SUMMARY
=======

Usually when you issue two consecutive mouse clicks on a form or object,
you will receive a click event for the first mouse click and another click
event or a double-click event for the second mouse click -- depending on
the period of time between the mouse clicks.

At times, you may want to receive only the double-click event without the
preceding click event. This article describes how to write code to
accomplish this.

MORE INFORMATION
================

The following example demonstrates how to receive only a DblClick
event on a form rather than a Click and then a DblClick event.

Step-by-Step Example

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add a Timer control (Timer1) to Form1.

3. Add the following code to the (general) (declarations) section of
 Form1:

 ' The following Function gets the DoubleClickSpeed form the WIN.INI
 ' file. Windows uses this setting to determine how close together two
 ' consecutive mouse clicks must occur for it to be interpreted as
 ' a double-click.
 ' Enter the following Declare statement on one, single line:
 Declare Function GetProfileInt% Lib "Kernel" (ByVal lpAppName$,
 ByVal lpKeyName$, ByVal nDefault%)

4. Add the following code to the specified event procedures:

 Sub Form_Load ()
 clickSpeed% = GetProfileInt("Windows", "DoubleClickSpeed", 0)
 Timer1.Enabled = False ' Timer should be off to begin with.
 Timer1.Interval = clickSpeed% ' After the timer is turned on
 ' it will trigger the Timer Event
 ' after a specific amount of time
 ' equal to that of DoubleClickSpeed.
 End Sub

 Sub Form_Click ()
 Timer1.Enabled = True ' Turn the timer on. If another mouse
 ' click does not occur within the
 ' DoubleClickSpeed interval, the
 ' Timer1_Timer Event will fire.
 End Sub

 Sub Form_DblClick ()
 Timer1.Enabled = False ' Turn off the timer. This
 ' prevents the Timer1_Timer event
 ' from firing and thus the code
 ' for a single click will not be
 ' processed.
 Print "This is a double-click" ' Code for double-click goes here.
 End Sub

 Sub Timer1_Timer ()
 ' If this event occurs then there has not been another mouse
 ' click since the previous one within the DoubleClickSpeed
 ' time interval. Thus there will be two Click events rather
 ' than a DblClick Event.
 Timer1.Enabled = False ' Turn off the timer so the
 ' Timer1_Timer Event does not
 ' continue to fire.
 Print "This is a Single Click" ' Code for single click goes here.
 End Sub

5. Run the program.

6. Click once, wait a while, click again to receive two single clicks.

7. Click twice quickly to receive a double-click with no preceding single
 click.

NOTE: The single click code will not occur until the DoubleClickSpeed
interval passes and the Timer1_Timer event is fired.

Additional reference words: 1.00 2.00 3.00
KBCategory: Prg
KBSubcategory: PrgCtrlsStd

How to Automatically Select or Highlight Text Box Upon Focus
Article ID: Q110394

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SUMMARY
=======

The sample program below automatically selects (highlights) all text in a
text box whenever the text box gets the focus. This is done by using the
SelStart and SelLength properties in the GetFocus event for the text box.

Automatic highlighting is useful in data entry boxes where you want to give
the user the option to quickly overwrite the existing contents by pressing
any character key.

To avoid overwriting the highlighted text after giving focus to the text
box, the user can single-click the text, or press an arrow (direction) key
or cursor-movement key (such as END or HOME) to remove the highlighting
from the text and allow editing.

MORE INFORMATION
================

Example How to Automatically Select Text Whenever Given the Focus

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add two text boxes to Form1.

3. Add the following code to the Form Load event:

 Sub Form_Load ()
 text1.Text = "This sentence is highlighted whenever given the focus."
 text2.Text = "This is not highlighted."
 End Sub

4. Add the following code to the Text1 GotFocus event:

 Sub Text1_GotFocus ()
 text1.SelStart = 0 ' Start selection at beginning.
 text1.SelLength = Len(text1.Text) ' Length of text in Text1.
 End Sub

5. Start the program, or press the F5 key. Click the text in Text1 to
 remove its highlighting. Click Text2 to change the focus. Click Text1
 again and notice that the complete contents of Text1 are automatically
 highlighted again. Close the form to end the program.

Syntax of SelLength, SelStart, and SelText Properties

The SelLength, SelStart, and SelText properties apply to combo boxes and
text boxes, and behave as follows:

 - SelLength determines the number of characters selected.

 - SelStart determines the starting point of text selected. SelStart
 indicates the position of the insertion point if no text is currently
 selected.

 - SelText determines the string containing the currently selected text;
 consists of an empty string ("") if no characters are currently
 selected.

The SelLength, SelStart, SelText properties are not available at design
time. They are only available at run time. They have the following syntax:

 [form.]{combobox|textbox}.SelLength[= length]
 [form.]{combobox|textbox}.SelStart[= index]
 [form.]{combobox|textbox}.SelText[= stringexpression]

For SelLength and SelStart, the valid range of settings is 0 to the text
length -- the total number of characters in the edit area of a combo box or
text box.

Use these properties for tasks such as setting the insertion point,
establishing an insertion range, selecting substrings in a control, or
clearing text. Used in conjunction with the Clipboard object, these
properties are useful for copy, cut, and paste operations. When working
with these properties:

 - Setting SelLength less than 0 causes a run-time error.

 - Setting SelStart greater than the text length sets the property to the
 existing text length; changing SelStart changes the selection to an
 insertion point and sets SelLength to 0.

 - Setting SelText to a new value sets SelLength to 0 and replaces the
 selected text with the new string.

For example, to position the insertion point at the end of a text box
whenever the box gets the focus, use the following code:

 text1.SelStart = Len(text1.Text)
 text1.SelLength = 1 ' Length of selection

SelLength and SelStart have a Long data type. SelText has a String data
type.

Additional reference words: 3.00
KBCategory: Prg
KBSubcategory: PrgCtrlsStd

How to Start a Visual Basic Screen Saver Using SendMessage API
Article ID: Q110589
--
The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0
--

SUMMARY
=======

The sample code below shows how to start a Visual Basic screen saver by
sending a Windows message to the Control-menu box on the form.

MORE INFORMATION
================

Microsoft Windows starts screen savers through the System-menu box on a
form. The System-menu box is also known as the Control-menu box in Visual
Basic. You can send Windows messages to the Control-menu box by using the
SendMessage Windows API (application programming interface) function.

Add the following to the general declarations section of Form1, or to
a .Bas module file, in Visual Basic:

 ' The following Declare statement must be on one, single line:
 Declare Function SendMessage Lib "User" (ByVal hWnd As Integer,
 ByVal wMsg As Integer, ByVal wParam As Integer, lParam As Any) As
 Long

In the following example, a command button starts the Form1 screen saver:

 Sub Command1_Click ()
 Dim result As Long
 Const WM_SYSCOMMAND = &H112
 Const SC_SCREENSAVE = &HF140
 result = SendMessage(Form1.hWnd, WM_SYSCOMMAND, SC_SCREENSAVE, 0&)
 End Sub

You can find two sample programs and a complete explanation showing how to
write your own screen savers in Visual Basic in the following book:

 "Visual Basic Workshop 3.0" by John C. Craig, published by Microsoft
 Press.

Additional reference words: 3.00 .SCR TOPMOST SETWINDOWPOS SCRNSAVE timer
KBCategory: Prg
KBSubcategory: PrgCtrlsStd

Selected Prop of List Box Can Cause Click Event & Out of Stack
Article ID: Q110957

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SUMMARY
=======

The Selected property applies to list box and file list box controls. When
you change the selected state of a list box item by using code to set the
Selected property at run time, a Click event occurs -- just as if you had
actually clicked with the mouse. A Click event does not occur if you set
the item's Selected property to a value that keeps the item's current
selected or unselected state.

You need to take care when changing the Selected property within the Click
event procedure for a list or file list box. Clicking an item in a list
control causes a Click event and can change a selection. That changed
selection can affect whether your code's subsequent change to an item's
Selected property causes another Click event. The resulting second click
event can cause recursion and "Out of Stack Space" or other errors if you
designed your Click event procedure incorrectly. The More Information
section below provides examples showing how to avoid recursion problems.

This behavior is by design.

MORE INFORMATION
================

The Selected property determines the selection status of an item in a list
box or file list box control. The Selected property is an array of Boolean
values with the same number of items as the List property. The Selected
property is available at run time, but not at design time. Here is the
syntax:

 [form.]{filelistbox|listbox}.Selected(index)[= {True|False}]

The Selected property settings are:

 True = The item is selected.
 False = (Default) The item is not selected.

The Selected property is particularly useful where users can make multiple
selections. You can quickly check which items in a list are selected. Your
code can use this property to select or deselect items in a list.

If only one item is selected, you can use the ListIndex property to get the
index of the selected item. However, in a multiple selection, the
ListIndex property returns the index of the item contained within the focus
rectangle, whether or not the item is actually selected. Multiple selection
mode can be set with the MultiSelect property.

Changing Item's Selected Property Can Cause Second Click Event
--

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add a list box (list1) to Form1. (Or you can use a file list box.)

3. Add the following code to the Form Load event:

 Sub Form_Load ()
 For i = 1 To 5
 list1.AddItem Str$(i) 'Add more than 2 items to the list box.
 Next
 End Sub

4. Add the following code to the List1 Click event:

 Sub List1_Click ()
 Static x ' Preserve the value of x between Click events.
 x = x + 1 ' Increment the count of Click events.
 Print x ' Print the cumulative number of click events.
 ' The following statement only causes a second event when an item
 ' other than the first item is clicked. Clicking the first item
 ' (item 0) does not cause a second event, because list1.Selected(0)
 ' is already True:
 list1.Selected(0) = True ' Selects the first item.
 End Sub

5. Start the program, or press the F5 key. Click any list box item other
 than the first. That causes two Click events. Click the first item in
 the list box. That causes just one Click event. Click more items to
 repeat the same behavior. Close the form to end the program.

How to Make File List Box Items That Can Be Scrolled, But Not Selected
--

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add a file list box to Form1.

3. a. Add the following code to the File1 Click event:

 Sub File1_Click ()
 ' If no item is selected in the file list box, exit the sub:
 If File1.ListIndex = -1 Then Exit Sub
 File1.Selected(File1.ListIndex) = False
 End Sub

 NOTE: If you left out the above If statement, then the
 File1.Selected(File1.ListIndex) statement would give the following
 error when you click the file list box:

 Invalid property array index (Error 381)

 The index value of the File1.Selected() property must be greater
 than 0. By default, File1.ListIndex starts as -1.

 b. Instead, you can add the following code to the File1 Click event. In
 this example, the focus always reverts to the first item when you
 click any other item. The first item remains unselected (without
 highlight). The focus is indicated by a dotted box around the item.

 Sub File1_Click ()
 ' NOTE: If you delete the following line, you get "Out of Stack
 ' Space" due to recursion (about 30 iterations):
 If File1.ListIndex = -1 Then Exit Sub
 File1.Selected(0) = True
 File1.Selected(0) = False 'Resets first item to nonselected.
 End Sub

4. Start the program, or press the F5 key. Now you can click items in the
 file list box, but they won't be selected or highlighted.

Additional reference words: 3.00
KBCategory: Prg
KBSubcategory: PrgCtrlsStd

How to Right Justify Items in List Box w/ Tabs & SendMessage
Article ID: Q110958

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SUMMARY
=======

The sample program below shows how to right justify items in a list box.

MORE INFORMATION
================

This program calls the SendMessage Windows API function to set a tab stop
at every character position in the list box. The program prefixes
the appropriate number of tabs to right justify each string in the list
box. You need to set the maximum allowed string length in the program.

Step-by-Step Example

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add a large list box (List1) to Form1.

3. Add the following to the Form Load event code:

 Sub Form_Load ()

 Const WM_USER = &H400
 Const LB_SETTABSTOPS = WM_USER + 19
 Const maxlen = 10 ' Maximum expected string length in list box.
 tabchar = Chr$(9) ' ASCII code for a tab
 ReDim a$(maxlen) ' String array to right justify in list box.
 form1.Show ' Must Show form in Load event before Print
 ' will become visible.

 ' GetDialogBaseUnits() API function lets you calculate the average
 ' width of characters in the system font.
 bu& = GetDialogBaseUnits()
 hiword = bu& \ (2 ^ 16) ' 16 pixels high in default system font.
 loword = bu& And &HFFFF& ' 8 pixels wide in default system font.
 Print "System font width and height, in pixels: " & loword, hiword

 'Assign the array of defined tab stops.
 Static tabs(1 To maxlen) As Integer
 For j = 1 To maxlen ' Set tabs every 4 dialog units (one character):
 tabs(j) = (loword * j) / 2
 ' On most Windows systems, you need only this: tabs(j) = j * 4
 Next

 'Send message to the List1 control through the Windows message queue:
 retVal& = SendMessage(List1.hWnd, LB_SETTABSTOPS, maxlen, tabs(1))

 For j = 1 To maxlen
 a$(j) = String$(j, "a") ' Assign an arbitrary character string.
 ' Add the appropriate number of tabstops to right justify:
 tabstring = String$(maxlen + 1 - Len(a$(j)), Chr$(9))
 List1.AddItem tabstring & a$(j)
 Next

 End Sub

4. Add the following Windows API declarations to the General Declarations
 section:

 Declare Function GetDialogBaseUnits Lib "User" () As Long
 ' Enter the following Declare statement on one, single line:
 Declare Function SendMessage Lib "user" (ByVal hWnd As Integer,
 ByVal wMsg As Integer, ByVal wp As Integer, lp As Any) As Long

5. Start the program, or press the F5 key. All strings are right-justified
 in the list box. Close the form to end the program.

Additional reference words: 3.00 alignment right-align align
KBCategory:
KBSubcategory: APrgOther PrgCtrlsStd

How to Right Justify/Center Text in Single-Line Text Control
Article ID: Q111952

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SUMMARY
=======

To center or right justify (align) the text in a text control that contains
a single line of text, set the multiline property to True and the Alignment
property to the desired value. Then trap the KeyPress event and use the
multiline and MaxLength properties to trap the carriage return and convert
it to another character.

MORE INFORMATION
================

Step-by-Step Example to Demonstrate a Right-Justified Text Control
--

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Add a text control (Text1) to Form1. Set its Alignment property to
 1 - Right Justify. Set the Multiline property to True. Set the MaxLength
 property to some arbitrary value equal to the width of the text box
 in characters (15). Be sure to make the text controls height
 property large enough to display the first line of text. The actual
 height of the text box may need to be a little bigger than normal.

3. Add the following code to the KeyDown event procedure of Text1:

 '============== Form1.frm ==================

 Sub Text1_KeyPress (KeyAscii As Integer)
 If KeyAscii = 13 Then
 KeyAscii = 7 ' Beep - no effect on text
 End If
 End Sub

4. From the Run menu, choose Start (ALT, R, S) to run the program.

Type text into the text control, and press the ENTER key. The keystroke
is trapped, and the text does not change.

Additional reference words: 3.00 align format
KBCategory:
KBSubcategory: PrgCtrlsStd

PRB: How to Prevent Flicker in the Repaint of a Label
Article ID: Q112675

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SYMPTOMS
========

When a label control fires a change event, the Caption tends to flicker as
it is repainted within the control -- more so when the font size is large.

WORKAROUND
==========

The flicker can be avoided if a picture control (with its AutoRedraw
property set to true) is used instead of the label control. However, note
that a picture control uses considerably more resources than a label. If
you're going to replace a lot of labels, replace them all with one picture
control (and multiple print statements) rather than with multiple picture
controls. Otherwise, you'll run out of system resources.

The following example demonstrates the use of the picture control to
prevent the flicker.

1. Start a new project in Visual Basic, Form1 is created by default.

2. Add a picture box (Picture1) to the form, and set its autoredraw
 property to True.

3. Add a timer control (Timer1) to the form and set its interval property
 to 100.

4. Add the following code to the Timer1_Timer event:

 Sub Timer1_Timer ()
 ' Reset the picture in Picture1:
 Picture1.Cls
 ' Specify the top and left coordinates for the text:
 Picture1.CurrentX = 100
 Picture1.CurrentY = 100
 ' Enter the text (in this case the current time):
 Picture1.Print = Format$(Now, "h:mm:ss AM/PM")
 End Sub

5. Run the program.

An Alternative to the Picture Control

Flicker in a label can be reduced considerably by only updating it when
absolutely necessary. For example, update it at the end by using code

similar to this:

 Sub Timer1_Timer ()
 Dim TimeStr As String
 TimeStr = Format$(Now, "h:mm:ss AM/PM")
 If Label1.Caption <> TimeStr Then Label1.Caption = TimeStr
 End Sub

Or by using code similar to this slightly more efficient code:

 Sub Timer1_Timer ()
 Static LastSecond As Integer
 If Seconds(Now) <> LastSecond Then
 LastSecond = Seconds(Now)
 Label1.Caption = Format$(Now, "h:mm:ss AM/PM")
 End If
 End Sub

MORE INFORMATION
================

Steps to Reproduce Behavior

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add a label control (Label1) to Form1.

3. Add a timer control (Timer1) to Form1.

4. Add the following code to the Timer1_Timer event:

 Sub Timer1_Timer ()
 Label1.Caption = Format$(Now, "h:mm:ss AM/PM")
 End Sub

5. Run the program.

You will notice a flicker of the caption of the label control. If you
have trouble seeing the flicker, try increasing the fontsize.

Additional reference words: 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

VB Custom Controls Support only Certain Picture Formats
Article ID: Q80779

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 versions 2.0 and 3.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SUMMARY
=======

The Load Picture dialog box for the 3-D Command Button, 3-D Group Push
Button, Gauge, and Picture Clip custom controls include the extensions
for picture formats that are invalid formats for these controls.

MORE INFORMATION
================

The 3-D Command Button, 3-D Group Push Button, Gauge, and Picture Clip
custom controls use the same dialog box that Visual Basic uses to assign
pictures to certain properties. However, not all .BMP, .ICO, and .WMF files
are valid picture formats for the properties of these controls.

The following table lists the valid formats for the picture properties
of custom controls and the error messages displayed if an invalid
picture format is used:

 Valid Error Message if
Control Property Formats Invalid Format
--

3-D Command Button Picture .BMP, "Only Picture
 .ICO Formats '.BMP' and
 '.ICO' supported."

3-D Group Push Button PictureUp, .BMP "Only Picture Format
 PictureDn, '.BMP' supported."
 PictureDisabled

Gauge Picture .BMP, "Invalid Picture."
 .ICO

Picture Clip Picture .BMP "Only Picture Format
 '.BMP' supported."

For additional information on Visual Basic version 2.0 custom controls,
review the Professional Features manual.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus APrgGrap

PRB: Grid Custom Control: Surprising Results when FillStyle=1
Article ID: Q80849

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 versions 2.0 and 3.0
- Microsoft Professional Toolkit for Microsoft Visual Basic
 Programming System for Windows, version 1.0

SYMPTOMS
========

When the Grid custom control has its FillStyle property set to 1
(repeat), assignments to the Text and Picture properties store a value
in all the cells within the selected region (determined by
SelStartCol, SelStartRow, SelEndCol, and SelEndRow). However, the
value returned from Text and Picture comes from the current cell
(determined by the Col and Row properties).

This behavior can produce surprising results when the current cell
is located outside the selected region.

When FillStyle is 0 (single), the Text and Picture properties store to
the current cell and retrieve from the current cell.

RESOLUTION
==========

To cause the Text property to return the same value assigned when
FillStyle=1, set the current cell location to a cell inside the
selected region. For example, use this code:

 Grid1.Text = "hello"
 Grid1.Col = Grid1.SelColStart
 Grid1.Row = Grid1.SelRowStart
 ' Length of Text is 5
 MsgBox "Len(Text)=" + Format$(Len(Grid1.Text))

STATUS
======

This behavior is by design.

MORE INFORMATION
================

The CellSelected property returns True (-1) if the current cell is
within the grid's selected region; otherwise, CellSelected returns
False (0).

Steps to Reproduce Problem

1. Start Visual Basic, or if Visual Basic is already running, choose New
 Project from the File menu (ALT, F, N). Form1 is created by default.

2. From the File menu, choose Add File, and select GRID.VBX. The Grid
 tool will appear in the Toolbox.

3. Select the Grid tool from the Toolbox, and place a grid (Grid1)
 on Form1.

4. On the Properties bar (Properties window in Visual Basic version 2.0),
 set the grid properties Cols and Rows each to 4. In Visual Basic 2.0,
 you will need to press the F4 key to display the Properties Window,
 so you can set the Cols and Rows properties.

5. Size the grid so that you can see all the cells.

6. Double-click the form to bring up the Code window. In the Procedure
 box, select Load. Enter the following code:

 Sub Form_Load ()
 Grid1.FillStyle = 1 ' Repeat.

 ' Set selected region.
 Grid1.SelStartCol = 2
 Grid1.SelStartRow = 2
 Grid1.SelEndCol = 3
 Grid1.SelEndRow = 3

 ' Set current cell, outside of selected region.
 Grid1.Col = 1
 Grid1.Row = 1

 ' Assign to Text.
 Grid1.Text = "hello"

 ' Length of Text is 0, not 5.
 Show
 MsgBox "Len(Text)=" + Format$(Len(Grid1.Text))
 End Sub

7. Press the F5 key to run the program.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

PRB: Grid Control's Cell Blank When Using Str$
Article ID: Q80904

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Professional Toolkit for Visual Basic for Windows, version 1.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

With the Microsoft Professional Toolkit for Visual Basic Grid control,
when you use the Str$ function to store numeric values in a grid cell,
the cell appears blank if it is not wide enough to completely display
the value.

CAUSE
=====

This behavior occurs because of word wrapping. The Str$ function
returns a string that begins with a space character. When this string
does not fit in a grid cell, it wraps to the next line, breaking on
the leading space so that no text remains on the first line of the cell.

WORKAROUND
==========

To avoid the problem, use Format$ instead of Str$, or Ltrim$ with Str$. To
work around the problem, change the assignment to Grid1.Text to one of the
following:

 Grid1.Text = Format$(123456)

 -or-

 Grid1.Text = Ltrim$(Str$(123456))

This will eliminate the leading space, and the information in the cell
will be displayed up to the width of the cell. You can also increase
the width of the cell to allow all characters to be visible.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic or, if Visual Basic is already running, choose New
 Project from the File menu (ALT, F, N). Form1 is created by default.

2. From the File menu, choose Add File, and select GRID.VBX to add the
 Grid tool. The Grid tool appears in the Toolbox.

3. Place a grid named Grid1 on Form1.

4. Set the grid properties Cols and Rows each to 4.

5. Size the grid so that you can see all the cells.

6. Enter the following code. To enter the code, double-click Grid1, select
 Click in the Procedure box, and enter the code into the code template.

 Sub Grid1_Click ()
 Grid1.Text = Str$(123456)
 Debug.Print Grid1.Text
 End Sub

7. Press F5 to run the program.

8. Each time you click a cell in Grid1, this code prints "123456"
 in the Immediate window, but the cell remains blank.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

VB Grid Custom Control: Text Limited to 255 Characters
Article ID: Q80906

The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
 - Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

The Text property for the Grid custom control can hold a string of up
to 255 characters. If you assign a string longer than 255 characters
to the grid Text property, the string is truncated.

This behavior is by design in Visual Basic. This behavior is similar
to a text box control with the MultiLine property set to FALSE (0).

This information applies to Microsoft Professional Toolkit for
Microsoft Visual Basic programming system version 1.0 for Windows.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

PRB: Grid Custom Control: LeftCol/TopRow Valid Values
Article ID: Q80911

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 versions 2.0 and 3.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SYMPTOMS
========

The LeftCol and TopRow grid properties control the position of the
scrollable region of a Grid custom control. When you attempt to set
the LeftCol or TopRow grid properties to display the lower right
region of a grid, you may receive the error "Invalid Column Value"
(30010) or "Invalid Row Value" (30009), respectively.

WORKAROUND
==========

The example given below in the More Information section shows how to
determine the range of values that do not give errors.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

A program can determine the maximum values allowed for LeftCol and
TopRow by setting these properties to each valid column and row
number, respectively, and then determining if the assignment caused an
error. The example code below shows how to use this method.

The minimum values allowed for LeftCol and TopRow are always given by
the values of the Grid custom control properties FixedCols and FixedRows,
respectively.

Step-by-Step Example

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose Add File, and select the GRID.VBX custom
 control file. The Grid tool will appear in the Toolbox.

3. Select the Grid tool from the Toolbox, and add a grid (Grid1) to Form1.

4. Size the Grid and choose values for the Cols and Rows properties of

 the Grid.

5. Place a command button (Command1) on Form1.

6. Enter the following code in the Command1_Click event procedure:

 ' Example of how to call Grid_Scroll_Range to determine the
 ' range of values for Grid properties LeftCol and TopRow.
 Sub Command1_Click ()
 Dim msg As String ' message string
 Dim max_LeftCol As Single ' maximum LeftCol
 Dim max_TopRow As Single ' maximum TopRow

 Call grid_scroll_range(grid1, max_LeftCol, max_TopRow)

 msg = "Valid Grid.LeftCol: "
 msg = msg + Format$(grid1.FixedCols) + ".."
 msg = msg + Format$(max_LeftCol) + Chr$(13) + Chr$(10)
 msg = msg + "Valid Grid.TopRow: "
 msg = msg + Format$(grid1.FixedRows) + ".."
 msg = msg + Format$(max_TopRow)

 MsgBox msg
 End Sub

7. Enter the following code in the general Declarations section:

 ' grid_scroll_range
 ' Determines the maximum values allowable for grid LeftCol
 ' and TopRow. Minimum values are FixedCols and FixedRows.
 ' Parameters:
 ' grid -- a Grid control
 ' LftMax -- return value, maximum LeftCol value
 ' TopMax -- return value, maximum TopRow value
 '
 Sub grid_scroll_range (grid As Control, LftMax!, TopMax!)
 Dim save As Integer ' for restoring grid properties

 ' Calculate LftMax
 ' Try each column number to see if it causes a run-time
 ' error. Go in reverse order to minimize the number of
 ' tries to the number of columns displayed in the grid.
 save = grid.LeftCol
 On Error Resume Next
 For LftMax = grid.Cols - 1 To grid.FixedCols + 1 Step -1
 Err = 0
 grid.LeftCol = LftMax
 If Err = 0 Then
 Exit For
 End If
 Next
 grid.LeftCol = save

 ' Calculate TopMax
 ' Try each row number to see if it causes a run-time
 ' error. Go in reverse order to minimize the number of
 ' tries to the number of rows displayed in the grid.

 save = grid.TopRow
 On Error Resume Next
 For TopMax = grid.Rows - 1 To grid.FixedRows + 1 Step -1
 Err = 0
 grid.TopRow = TopMax
 If Err = 0 Then
 Exit For
 End If
 Next
 grid.TopRow = save
 End Sub

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

3-D Group Push Button: AutoSize Takes Effect Only on PictureUp
Article ID: Q80938

The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
 - Microsoft Visual Basic programming system for Windows, version 1.0
--

SUMMARY
=======

The 3-D Group Push Button (THREED.VBX) custom control will not
automatically size itself to the bitmap assigned to the PictureDown
property. When the AutoSize property is set to "2 - Adjust Button Size
to Picture," the 3-D Group Push Button custom control will
automatically size itself to the bitmap assigned to the PictureUp
property. This behavior is by design.

This information applies to Microsoft Professional Toolkit for
Microsoft Visual Basic programming system version 1.0 for Windows.

MORE INFORMATION
================

The Visual Basic 3-D Group Push Button custom control can have a
bitmap assigned to the button when it is in the down position, and
another bitmap when the button is in the up position (the PictureUp
and PictureDown properties are set to different .BMP files at design
time). However, the 3-D Group Push Button control will not
automatically size itself to the size of the picture assigned to the
PictureDown property even if the AutoSize property is set to "2 -
Adjust Button Size to Picture."

When the AutoSize property is set to "2 - Adjust Button Size to
Picture," the 3-D Group Push Button custom control will automatically
size itself to the bitmap assigned to the PictureUp property. This
means that the button will size itself to the picture it is supposed
to display only when it is in the up position. If there is a bitmap
assigned to the PictureDown property and this picture is bigger than
the 3-D Group Push Button control, this picture will appear clipped
when the button is pressed.

The following steps demonstrate how the 3-D Group Push Button custom
control does not size itself to the bitmap assigned to the PictureDown
property even when the AutoSize property for the control is set to
"2 - Adjust Button Size to Picture."

Example

1. Run Visual Basic, or from the File menu, choose New Project (ALT,
 F, N) if Visual Basic is already running. Form1 is created by
 default.

2. From the File menu, choose Add File. In the Files box, select the
 THREED.VBX custom control file.

3. Click the Toolbox to select the 3-D Group Push Button control.

4. Click and drag on the form to place a 3-D Group Push Button
 control.

5. Change the AutoSize property in the Properties Bar to
 "2 - Adjust Button Size to Picture" (this is the default setting).

6. Change the PictureDown property in the Properties Bar by choosing a
 bitmap file from the Properties list box. Note that "(none)" is
 first displayed, because no picture is assigned by default. You can
 click the button with three dots on the right of the Properties
 list box to choose a bitmap file.

7. From the Run menu, choose Start to run the application.

8. Click the 3-D Group Push Button to push it into the down position.

The picture that is assigned to the PictureDown property is displayed.
If the picture happens to be larger than the 3-D Group Push Button
control, the picture will appear clipped. If the picture chosen was
smaller, the background of the 3-D Group Push Button control will
show. In either case, the 3-D Group Push Button control did not resize
itself to the picture once the button was pressed.

If you assign a picture to the PictureUp property of the 3-D Group
Push Button control, the button will automatically size itself to this
picture. Nonetheless, the 3-D Group Push Button control will not size
itself to the picture assigned to the PictureDown property once the
button is pressed.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

VB Graph Control Displays Maximum of 80 Characters Per Title
Article ID: Q81450

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 versions 2.0 and 3.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SUMMARY
=======

The Graph custom control has an 80 character maximum limit on all
displayed strings such as labels and legends. However, the combined
length of the actual string may be longer than 80 characters.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

The Graph custom control can display strings by using several
different properties. For example, the BottomTitle and LeftTitle
properties may be set from the Properties bar in the programming
environment.

The following example sets the BottomTitle property of a Graph to 90
characters:

1. Run Visual Basic for Windows, or from the File menu, choose New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 is created by default.

2. From the File menu, choose Add File. In the Files box, select the
 GRAPH.VBX custom control file. The Graph tool will appear in the
 toolbox.

3. Select the Graph icon on the toolbox and place it on Form1, and
 expand it to the largest size possible.

4. Double-click the Graph control to open the Code window for the
 Click event.

5. Add the following code to the Click event:

 Graph1.BottomTitle = String$(79, "i") + "*"
 Debug.Print Len(Graph1.BottomTitle)
 Graph1.DrawMode = 2 ' Update Graph.

6. Run the program and click on the graph control. If your Graph is
 expanded to the largest possible size, you should be able to see
 the string of 80 characters.

7. Change the code as follows:

 Graph1.BottomTitle = String$(80, "i") + "*"
 Debug.Print Len(Graph1.BottomTitle)
 Graph1.DrawMode = 2 ' Update Graph.

You should not be able to see the last character, the asterisk (*).

In this example, 80 characters at most will show on the screen even
though you set the BottomTitle property to a larger character string.
The actual BottomTitle property, however, contains more characters.
Whether or not the actual strings are displayed also depends on
other factors, such as the width and height of the control, or the
strings that are placed in the other properties of the control.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

VB.EXE Error: License File for Custom Control Not Found
Article ID: Q81458

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SUMMARY
=======

If you distribute the source code (.FRM) of a program that uses a
custom control, you must also distribute the necessary custom control
files for that control (.VBX, .DLL, and/or .EXE support files).

If a user has not purchased the Professional Edition of Microsoft
Visual Basic versions 2.0 or 3.0 for Windows, or the Microsoft
Professional Toolkit for Microsoft Visual Basic programming system
version 1.0 for Windows, and the user receives a program containing an
.FRM file written with the Professional Edition or Professional Toolkit,
then the Visual Basic for Windows programming environment (VB.EXE) will
not be able to load the program, and will display the following error
message:

 License file for custom control not found. You do not have
 an appropriate license to use this custom control in the
 design environment.

Note that anyone who acquires a program in the form of an executable
(.EXE) file that uses the custom controls from versions 2.0 or 3.0 of
the Professional Edition of Visual Basic for Windows, or from version
1.0 of the Professional Toolkit for Visual Basic for Windows, will be
able to run that program with no error.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

The licensing file, VB.LIC is installed by the SETUP.EXE program
included in the Professional Edition of Visual Basic for Windows, or
the SETUP.EXE included in the Visual Basic for Windows Professional
Toolkit. This licensing file is installed into the Windows' \SYSTEM
subdirectory. You are NOT allowed to distribute this file with any
application that you develop and distribute.

A custom control's startup code checks to see if this VB.LIC licensing
file exists when the control is loaded into the environment. If the
file does not exist, or is corrupt, the control aborts the loading
process and displays the following Alter message box:

 License file for custom control not found. You do not have
 an appropriate license to use this custom control in the
 design environment.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

How to Use HORZ1.BMP with Professional Toolkit Gauge Control
Article ID: Q81459

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 versions 2.0 and 3.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SUMMARY
=======

This article contains a program example of using the Visual Basic for
Windows Gauge custom control (GAUGE.VBX) with the HORZ1.BMP bitmap file.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

Note: The GAUGE.VBX custom control file can be found in the
\Windows\System subdirectory. The HORZ1.BMP bitmap file can be found
in the \BITMAPS\GUAGE subdirectory that was created during installation.

Example Program

1. Run Visual Basic for Windows, or from the File menu, choose New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 is created by default.

2. From the File menu, choose Add File. In the Files box, select the
 GAUGE.VBX custom control file. The Gauge tool will appear in the
 toolbox.

3. Create the following controls for Form1:

 Control Name Property Setting
 ------- -------- ----------------
 Timer Timer1 Interval = 1
 Gauge Gauge1 Picture = "Horz1.BMP"
 Max = 50
 InnerBottom = 16
 InnerLeft = 38
 InnerRight = 2
 InnerTop = 14
 ForeColor = &HFF&

 (In Visual Basic version 1.0 for Windows, set the CtlName Property
 for the above objects instead of the Name property.)

4. Add the following line to the General Declarations section:

 Dim YoYo As Integer

5. Add the following code to the Form_Load event procedure:

Sub Form_Load ()
 Form1.Caption = "YoYo Gauge Demo"
 Gauge1.Value = Gauge1.Min
End Sub

6. Add the following code to the Timer1_Timer event procedure:

Sub Timer1_Timer ()
 If Gauge1.Value = Gauge1.Max Then YoYo = -1
 If Gauge1.Value = Gauge1.Min Then YoYo = 1
 Gauge1.Value = Gauge1.Value + YoYo
End Sub

When run, this program example will alternately fill and empty the
gauge control's fill area, as controlled by the Timer event procedure.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

HOME Key in VB.EXE Moves to Beginning of Code, Not Column 1
Article ID: Q81465

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOM
=======

Pressing the HOME key while in the Code window in the VB.EXE environment
will move the insertion point (cursor) to the beginning of the code on a
line instead of to the first column of the line

STATUS
======

This behavior is by design even though it does differ from most other
Windows-based products.

MORE INFORMATION
================

If the insertion point is on a line of code indented with spaces, and
you press HOME, the insertion point will not be moved to the beginning
of the line, but will instead move to the beginning of the code.

In many Windows-based applications, including Microsoft Word for Windows,
Notepad, and Write, pressing the HOME key moves the insertion point to
the beginning of the line, not to the beginning of the characters on the
line.

Steps to Reproduce Behavior

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Double-click Form1 to open the Code window.

3. In the Form1_Click event, press TAB to indent the next statement, and
 add the following code:

 Print "Hello"

4. Press the HOME key. The insertion point moves to the P in Print.

5. Press the HOME key again.

You might expect the insertion point will move to the beginning of the
line, but it remains on the P.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

PRB: Animated Button Control: Refresh Won't Redraw Border
Article ID: Q81471

The information in this article applies to:

- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SYMPTOMS
========

When two Animated Button (ANIBUTON.VBX) custom controls are overlapped
and the BorderStyle is set to 1 - Single, then when one of the controls
is refreshed, the border of that control is not redrawn.

WORKAROUND
==========

To work around this behavior, set the BorderStyle property to 0 - None
for the controls. Avoid using overlapped controls.

STATUS
======

This behavior is by design. However, it does not apply to Microsoft Visual
Basic version 2.0 or 3.0 because these later versions support overlapping
controls.

MORE INFORMATION
================

The standard picture control shows the same behavior when overlapped.
Either using the Refresh method or causing an implicit refresh by
clicking the control being overlapped will demonstrate the behavior.

Note that Visual Basic versions 1.0 and 2.0 do not support overlapping
controls. If you want to overlap controls, set BorderStyle to 0 - None.

Steps to Reproduce Behavior

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose Add File. In the Files list box, select
 the ANIBUTON.VBX custom control file. The Animated Button tool will
 appear in the toolbox.

3. Add two Animated Button controls to the form with one overlapping
 the other, and set the BorderStyle property for both to 1 - Single.

4. From the VB.EXE Run menu, choose Start, then choose Break.

5. In the Immediate window, enter Anibutton1.Refresh or Anibutton2.Refresh,

 depending on which control is overlapped by the other.

The formerly overlapped border is not redrawn when the control is
repainted.

Alternatively, in run mode, click the overlapped control; the result is
the same.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

BUG: Graph Custom Control Text Disappears in EGA Video Mode
Article ID: Q81949

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, versions
 2.0 and 3.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SYMPTOMS
========

When using the Visual Basic Graph custom control in an EGA video mode
with the Graph control Background property value set to dark gray and
the Foreground property value set to light gray, the text on the graph
will disappear.

CAUSE
=====

This is a known problem with Windows versions 3.0 and 3.1. This is not
a problem with the Graph custom control or with Visual Basic.

STATUS
======

Microsoft has confirmed this to be a problem with Microsoft Windows
versions 3.0 and 3.1. We are researching this problem and will post
new information here in the Microsoft Knowledge Base as it becomes
available.

MORE INFORMATION
================

Windows defines dark gray as the color created when red=128, blue=128, and
green=128. Windows defines light gray as the color created when red=192,
blue=192, and green=192.

Windows, when given light gray text on a dark gray background in EGA video
mode, alters the value of the text color to dark gray, which is the closest
representation it can make in that video mode. The subsequent dark gray
text on a dark gray background makes it appear as though the text has
disappeared.

The Visual Basic Graph custom control allows you to set the background
and foreground colors to 16 predefined colors. Colors 7 and 8 are
light gray and dark gray, respectively. Graph uses Windows values for
dark gray and light gray, and so displays the same video problems as
Windows itself.

Steps to Reproduce Problem

1. Set the video mode of Windows to EGA.

2. Re-enter Windows if necessary and start Visual Basic.

3. In the Visual Basic environment with the VB Graph custom control
 loaded, create a form (Form1).

4. Add a Graph custom control (Graph1).

5. Set Graph1.DrawMode=2 (draw).

6. Set Graph1.Background=8 (dark gray) and Graph1.Foreground=7 (light
 gray).

The text disappears, leaving colored bars on a dark gray background.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

VB Key Status: Autosize Property Affects Height and Width
Article ID: Q81952

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 versions 2.0 and 3.0
- Microsoft Professional Toolkit for Microsoft Visual Basic
 programming system for Windows, version 1.0

In the products listed above, you can use the Key Status control
(KEYSTAT.VBX) to show and set the current status of the CAPS LOCK,
NUM LOCK, SCROLL LOCK, and INSERT keys. One of the features of the Key
Status control is its ability to size itself (the Autosize property) to
its original dimensions.

If the Autosize property is set to True (the default setting), the
control's Height and Width properties will remain at, or be reset to its
predetermined values. The size of the control cannot be changed if Autosize
is set to True. If the Autosize property is set to False, the Height and
Width properties can be changed to reflect the desired control size.
Autosize can be set at both design time and run time.

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

VB Graph Control: ThisPoint, ThisSet Reset to 1 at Run Time
Article ID: Q82155

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 versions 2.0 and 3.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SUMMARY
=======

The Graph version 1.2 custom control in the Professional Edition of
Microsoft Visual Basic versions 2.0 or 3.0 for Windows, and in the
Microsoft Professional Toolkit for Visual Basic version 1.0 for Windows,
allows you to set the values of the ThisPoint and ThisSet properties at
design time to aid in the development of your graphs. However, when you
run the project, the Graph custom control resets the property values of
ThisPoint and ThisSet to 1.

This behavior is a design feature of the Graph custom control to help
avoid logic errors in your code. If your program requires ThisPoint
and ThisSet to be a value other than 1 upon execution of the project,
you will need to specifically set these property values in the
program's code.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

The example below demonstrates that ThisPoint and ThisSet are reset to
1 at run time.

Example

1. With Visual Basic for Windows running and Graph loaded, create a form
 (Form1).

2. On Form1 create a graph control (Graph1).

3. Change the following properties:

Control Property Value
------- -------- -----
Command1 Caption Show values
Graph1 Top 2000
Graph1 NumSet 2
Graph1 ThisPoint 2
Graph1 ThisSet 2

4. Add the following code to the Command1 button Click event:

Sub Command1_Click ()
 Form1.Print "Graph1.ThisPoint = "; Graph1.ThisPoint
 Form1.Print "Graph1.ThisSet = "; Graph1.ThisSet
End Sub

5. Press the F5 key to run the program.

When you run the program and click the Command1 button, the program
will display the current values of Graph1.ThisPoint and
Graph1.ThisSet. These values should have changed from 2 to 1.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

VB AniButton Control: Cannot Resize if PictDrawMode=Autosize
Article ID: Q82159
--
The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 versions 2.0 and 3.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SUMMARY
=======

Resizing an Animated Button custom control by setting the Width or
Height property at run time will not work if the PictDrawMode property
is set to Autosize (1). This is by design. When the PictDrawMode
property is in autosize mode, the size is determined by the size of
the images loaded, not by the design time setting of Width or Height
nor the run time setting of those values.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

Steps to Reproduce Behavior

1. Run Visual Basic for Windows, or from the File menu, choose New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 is created by default.

2. From the Files menu, choose Add File. In the Files box, select the
 ANIBUTON.VBX custom control file. The Animated Button tool appears
 in the toolbox.

3. Add the following code to the Form_Load procedure:

Sub Form_Load ()
 Form1.BackColor = &HFFFF00 ' To make the size of the control more
 ' visible.
 AniButton1.Move Form1.Width \ 4, 0, 1600, 1600
 AniButton1.TextPosition = 3 ' Put caption at top for clarity.
End Sub

4. Add the following code to the Form_Click procedure:

 Sub Form_Click ()
 AniButton1.Caption = "This is a very very long caption"
 AniButton1.PictDrawMode = 1 ' Autosize control.
 'AniButton1.PictDrawMode = 0 ' As Defined.
 'AniButton1.PictDrawMode = 2 ' Stretches image to fit.
 End Sub

4. Add the following code to the Form_DoubleClick event:

 Sub Form_DblClick ()
 Print AniButton1.Width
 AniButton1.Width = 400
 Print AniButton1.Width
 Print AniButton1.PictDrawMode
 End Sub

5. Run the project with the PictDrawMode setting of 0 uncommented and
 the other two commented out.

6. Click once to see the effect of changing the mode. Then double-
 click the form to see the changes due to changing the Width
 property. Because the caption is the largest object in an unloaded
 Animated Button, the autosize adjusts to it.

7. Access the Frame property and load a bitmap into the first frame
 and an icon in the second, or vice versa.

8. Repeat steps 5 and 6. Notice that the larger object (the bitmap)
 causes the control to resize to it.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus APrgGrap

PRB: Can't Change Minimized/Maximized MDIChild's Position/Size
Article ID: Q82878

The information in this article applies to:

- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SUMMARY
=======

SYMPTOMS
 When a MDI Child custom control is minimized (reduced to an icon),
 attempting to change its position or size at run time by setting the
 Top, Left, Height, or Width property will generate the following
 Visual Basic error message:

 Cannot Change MDIChild Position Or Size While Minimized Or Maximized.

 This valid error message will also be generated if the MDI child
 window is maximized and you attempt to change the size of position of
 the MDI child.

RESOLUTION
 This article does not apply to later versions of Visual Basic. The MDI
 Child custom control shipped only with version 1.0. Multiple-document
 interface (MDI) forms are built into Visual Basic version 2.0 and later,
 making the MDI custom control obsolete.

 You cannot change the position or size of a Visual Basic version 1.0
 MDI child window when it is minimized or maximized. These properties
 can be set at run time in code or at design time for any MDI child
 window that is not maximized or minimized to an icon.

 However, you can set the properties in Visual Basic version 2.0 for
 Windows. You do not get an error. Note though that MDI is different in
 Visual Basic version 2.0 because it is built in to both the Standard and
 Professional Editions rather than being a separate custom control, as it
 is in Visual Basic version 1.0.

MORE INFORMATION
================

The following steps demonstrate that an error message is generated in
Visual Basic version 1.0 when you attempt to change (at run time in code)
the Left property of an MDI child window that has been either reduced to
an icon or maximized (to the full size of the parent form).

Steps to Reproduce Problem

1. Start Visual Basic or from the File menu, choose New Project (ALT,
 F, N) if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose Add File. In the Files box, select the
 MDICHILD.VBX custom control file. The MDI Child tool appears in the
 toolbox.

3. Place an MDI Child window control on Form1.

4. Double-click the form outside the MDI child window to open the
 Code window.

5. Add the following code to the Form1 Click event:

 Sub Form_Click ()
 MDIchild1.Left = 0
 End Sub

6. Press F5 to run the application.

7. Click the Control-menu box (in the upper left corner) of the MDI child
 window, and choose Minimize.

8. Click directly on the form.

The following error message dialog box is generated:

 Cannot Change MDIChild Position Or Size While Minimized Or Maximized

Additional reference words: 1.00 2.00
KBCategory:
KBSubcategory: PrgCtrlsCus APrgGrap

"Device Is Not Open or Is Not Known" Running VB MCITEST Sample
Article ID: Q83756

The information in this article applies to:

- Professional Editions of Microsoft Visual Basic for Windows,
 versions 2.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SUMMARY
=======

If you run the MCITEST sample program included with the Microsoft
Visual Basic Professional Edition programming system version 2.0
for Windows; or the Professional Toolkit for Microsoft Visual Basic
programming system version 1.0 for Windows, and receive the following
error message:

 The device is not open or is not known

it is possible that you have not installed the multimedia movie player
driver that is on Disk 1 of the Professional Edition, or Professional
Toolkit. These drivers are not automatically installed because of their
large sizes. If you need these files, you must install them using the
Windows Control Panel.

MORE INFORMATION
================

The drivers needed to run the animation portion of the MCITEST are
MCIMMP.DRV and MMP.DLL. These files are archived on Disk 1 of the
Visual Basic for Windows Professional Edition or Professional Toolkit. To
install these drivers, you must use the Windows 3.1 Control Panel. If you
have Multimedia Extensions for Windows 3.0, you must rename the following
files on Disk 1 before installing using the Control Panel:

 MCIMMP.DR_ to MCIMMP.DRV
 MMP.DL_ to MMP.DLL

To install the drivers, do the following:

1. Run Control Panel from the Windows Program Manager either by clicking
 on the icon or by choosing Run from the File menu.

2. In the Control Panel, double-click the Drivers icon.

3. In the Drivers dialog box, choose the Add button.

4. In the Add dialog box, select Unlisted or Updated Driver and choose
 the OK button.

5. In the Install Driver dialog box, specify the drive containing Disk
 1 of the Visual Basic for Windows Professional Edition or Professional

 Toolkit, and choose the OK button.

6. In the Add Unlisted or Updated Driver dialog box, select the
 "[MCI] Multimedia Movie Player" driver and choose the OK button.

The driver is now installed. You should now be able to run the
animation portion of the MCITEST program.

Additional reference words: 1.00 2.00
KBCategory:
KBSubcategory: PrgCtrlsCus

"Cannot Find MMSYSTEM.DLL" Loading VB MCI.VBX in Windows 3.0
Article ID: Q83758

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 versions 2.0 and 3.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SUMMARY
=======

The Microsoft Professional Toolkit for Microsoft Visual Basic version
1.0 for Windows comes with a custom control that gives you easy access
to writing applications for multimedia. Without Windows 3.1 or
Multimedia Extensions for Windows 3.0, you will not be able to load
the MCI.VBX custom control file into the Visual Basic programming
environment.

If you try to load MCI.VBX into Windows 3.0 without Multimedia
Extensions, you will receive the following error message:

 Cannot find MMSYSTEM.DLL, Please insert in drive A:

For more information about Multimedia Extensions for Windows 3.0,
contact your local subsidiary, or call Microsoft End User Sales and
Service at (800) 426-9400. A better solution is to upgrade to Windows
version 3.1.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

PENCNTRL.VBX Err: Requires Microsoft Windows for Pen Computing
Article ID: Q83800

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 versions 2.0 and 3.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SUMMARY
=======

The Microsoft Professional Edition of Microsoft Visual Basic versions
2.0 and 3.0 for Windows, and Microsoft Professional Toolkit for
Microsoft Visual Basic programming system version 1.0 for Windows,
includes a custom control that gives you easy access to writing
applications for Microsoft Windows for Pen Computing. Without Microsoft
Windows for Pen Computing, PENCNTRL.VBX cannot be loaded into the Visual
Basic for Windows programming environment.

If you try to load the PENCNTRL.VBX custom control without having
installed Microsoft Windows for Pen Computing, the process will abort
with the following message box:

 This program requires Microsoft Windows for Pen Computing

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

For more information about Microsoft Windows for Pen Computing, call
Microsoft End User Sales and Service at (800) 426-9400. If calling
from outside the United States, contact your local Microsoft
subsidiary.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

PRB: MDI Child Cannot Be Maximized/Minimized While Invisible
Article ID: Q83803

The information in this article applies to:

- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SYMPTOMS
========

If you try to set an MDI Child custom control WindowState property to
Maximized (2) or Minimized (1) while its Visible property is set to
False (invisible), you will receive one of the following errors:

 MDIChild cannot be maximized while invisible

 -or-

 MDIChild cannot be minimized while invisible

RESOLUTION
==========

An MDI Child control with a WindowState property set to Maximized (2)
or Minimized (1) will revert to Normal (0) if the control's Visible
property is set to False. You must determine if you want the MDI Child
control WindowState property set to Maximized when you make the MDI
Child visible.

This article does not apply to later versions of Visual Basic. The MDI
Child custom control shipped only with version 1.0. Multiple-document
interface (MDI) forms are built into Visual Basic version 2.0 and later,
making the MDI custom control obsolete.

STATUS
======

This behavior is by design.

Additional reference words: 1.00 2.00
KBCategory:
KBSubcategory: PrgCtrlsCus

PRB: MDI Child Custom Control: ScaleMode Defaults to Twips
Article ID: Q83905

The information in this article applies to:

- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SYMPTOMS
========

The MDI Child custom control (MDICHILD.VBX) does not have a ScaleMode
property. Therefore, child controls of an MDI Child control will
default to twips, regardless of whether the child control has a
ScaleMode property. To confirm this, you can check the Height and
Width properties of the child controls.

CAUSE
=====

Some controls in Visual Basic have a ScaleMode property (for example,
picture box), while other controls do not (for example, text boxes,
label controls, and command buttons).

A child control (a control placed within other controls) takes many
of its properties from the parent control. In addition, the default
ScaleMode for Visual Basic is twips. Because the MDI Child control
does not have its own ScaleMode property, it takes the default Visual
Basic ScaleMode (twips). As a result, whenever you make a control a
child of an MDI Child control, it uses twips as the ScaleMode for its
dimensions (for example, Height and Width properties). However, if you
place a control on a control that is already a child and whose ScaleMode
is set to pixels, it will use pixels as the default ScaleMode. The
example below illustrates this.

WORKAROUND
==========

You can work around the problem by placing a control that has a
ScaleMode property (such as a picture control) inside the MDI Child
custom control, change its ScaleMode to something else (for example,
pixels), then place subsequent controls inside it rather than in
the MDI Child custom control.

RESOLUTION
==========

This article does not apply to later versions of Visual Basic. The MDI
Child custom control shipped only with version 1.0. Multiple-document
interface (MDI) forms are built into Visual Basic version 2.0 and later,
making the MDI custom control obsolete.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic or from the File menu, choose New Project (ALT,
 F, N) if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose Add File. In the Files box, select the
 MDICHILD.VBX custom control file. The MDI Child tool appears in the
 Toolbox.

3. Place an MDI Child control (MDIChild1) on Form1.

4. Size the MDI control for a larger viewable area.

5. Place a picture control in the MDI control. To do this, click the
 picture control tool in the Toolbox. Place the mouse cursor in the
 MDI control. Notice that the cursor changes to a cross hair when you
 move it over Form1. Place the cross hair in MDIChild1, and size the
 picture control accordingly.

 Notice that the Height and Width properties of MDIChild1 and
 Picture1 are in twips.

6. Click Form1 to give it the focus. Set the ScaleMode property to
 3 - Pixel.

Notice that the Height and Width properties of MDIChild1 are now
expressed in pixels, while the Height and Width properties of the
Picture control inside MDIChild1 are still expressed in twips.

If you change the ScaleMode of Picture1 to 3 - Pixel and place a
command button control in Picture1, the Height and Width properties of
Command1 will be expressed in pixels. The workaround above uses this
method to work around the MDI Child control's limitation.

Additional reference words: 1.00 2.00 MDIChild MDI Child
KBCategory:
KBSubcategory: PrgCtrlsCus

VB Graph Custom Control: DataReset Property Resets to 0 (Zero)
Article ID: Q84058

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 versions 2.0 and 3.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SUMMARY
=======

When you assign a value to the DataReset property of the Graph version
1.2 custom control, the value of DataReset always resets to 0 - None.
This is by design. Although DataReset is listed in the Properties box,
it also has characteristics of a method. A value assigned to DataReset
is transient, which means that it causes a one-time action and then
resets to 0 - None.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

In Visual Basic for Windows, a property is an attribute of the control
that you can set to define one of the object's characteristics. DataReset
is a property because you can set its value which, depending on that
value, defines one or more of the Graph control's characteristics.
Because it defines a Graph's characteristics by resetting the chosen
property array to its default values, DataReset is found in the
Properties list box.

A method in Visual Basic for Windows behaves similarly to a statement
in that it always acts on an object. DataReset can also be considered
a method because it does perform an action on the graph. Namely, it
resets the chosen property array to its default values. DataReset
performs the assigned action as soon as its value does not equal 0. If
it retained its assigned value, it would continually generate an
endless loop and lock the system. To prevent this from occurring, it is
automatically reset to 0 - None upon the first execution of its call.

The example below demonstrates the behavior of DataReset.

Example

1. Run Visual Basic for Windows, or from the File menu, choose New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 is created by default.

2. From the File menu, choose Add File. In the Files box, select the
 GRAPH.VBX custom control file. The Graph tool will appear in the
 Toolbox.

3. Add a Graph control (Graph1) to Form1.

4. In the Properties list box, select the DataReset property. The
 value that appears in the Settings box will be 0 - None.

5. Change the value of DataReset to a number between 1 and 9. The
 values 1-9 refer to Graph property arrays that can be reset by
 using the DataReset property.

6. Graph1 will update to display the default values in the property
 array you chose in step 5.

7. In the Properties list box, select DataReset. The value of
 DataReset is 0 - None. It did not retain the value from step 5.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

How to Use VB Graph Control to Graph Data from Grid Control
Article ID: Q84063

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 versions 2.0 and 3.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SUMMARY
=======

This article contains an example of how to use a Graph custom control
to graph the data contained in a Grid custom control.

In order to use either the Grid or the Graph control, you must add
them to the Toolbox in the Visual Basic for Windows environment (in
VB.EXE). You do this by selecting Add File from the File menu. From
here select the Graph.VBX file, and then repeat the process for Grid.VBX.
Graph.VBX and Grid.VBX should be found in your Windows\System directory.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

To create the example, do the following:

1. Run Visual Basic for Windows, or from the File menu, choose New
 Project (ALT, F, N) if Visual Basic for Windows is already running.
 Form1 is created by default.

2. From the File menu, choose Add File. In the Files box, select the
 GRAPH.VBX custom control file. The Graph tool appears in the
 Toolbox.

3. Repeat step 2 for the GRID.VBX custom control file.

4. Add a Grid control (Grid1), a Graph control (Graph1), and a command
 button (Command1) to Form1.

5. In the Load event for Form1, add the following code:

 Sub Form_Load ()
 ' This Sub will do all the configuration for the Grid.
 ConfigureGrid
 ' This Sub will do all the configuration for the Graph.
 ConfigureGraph
 End Sub

6. Create the following subroutine in the general Declarations section
 of Form1 to make it callable from anywhere in the form:

 Sub ConfigureGrid ()

 ' Set the number of cols and rows for the grid.
 Grid1.Rows = 11
 Grid1.Cols = 4

 ' Set the alignment for the fixed col to centered.
 Grid1.FixedAlignment(0) = 2

 ' Set the alignment for the variable cols to centered.
 Grid1.ColAlignment(1) = 2
 Grid1.ColAlignment(2) = 2
 Grid1.ColAlignment(3) = 2

 Grid1.ScrollBars = 0

 ' Add the row labels.
 Grid1.Col = 0
 For i = 1 To 10
 Grid1.Row = i
 Grid1.Text = Str$(i)
 Next i

 ' Add the Col labels.
 Grid1.Row = 0
 Grid1.Col = 1
 Grid1.Text = "May"
 Grid1.Col = 2
 Grid1.Text = "June"
 Grid1.Col = 3
 Grid1.Text = "July"

 ' Set the starting cell on the Grid.
 Grid1.Row = 1
 Grid1.Col = 1
 End Sub

7. Create the following subroutine in the general Declarations section
 of Form1 to make it callable from anywhere on the form:

 Sub ConfigureGraph ()
 ' Set the Graph to auto increment.
 Graph1.AutoInc = 1
 Graph1.BottomTitle = "Months"
 Graph1.GraphCaption = "Graph Caption"
 ' Set the number of data groupings.
 Graph1.NumPoints = 10
 ' Set the number of data points per group.
 Graph1.NumSets = 3
 End Sub

8. Place the following line of code into the KeyPress event for Grid1:

 Sub Grid1_KeyPress (KeyAscii As Integer)
 ' This adds each keystroke to the data in the current cell.
 Grid1.Text = Grid1.Text + Chr$(KeyAscii)

 End Sub

9. For the Click event of Command1, enter the following code:

 Sub Command1_Click ()
 ' This Sub graphs the data in the Grid using the Graph control.
 ' Set the graph to the first point.
 Graph1.ThisSet = 1
 Graph1.ThisPoint = 1
 ' Load the GraphData array with all the values from the Grid,
 ' in order.
 For i = 1 To 3
 For j = 1 To 10
 Grid1.Row = j
 Grid1.Col = i
 Graph1.GraphData = Val(Grid1.Text)
 Next j
 Next i

 ' This actually graphs the array to the Graph control.
 Graph1.DrawMode = 2
 End Sub

This example will give you a grid with three columns (Months) and 10
rows. After you enter the data into the columns, choose the command
button (with the mouse or keys). The data will be taken from the grid
and graphed as a line graph.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

How to Read Flag Property of VB Common Dialog Custom Controls
Article ID: Q84068
--
The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 versions 2.0 and 3.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0
--

SUMMARY
=======

The Flags property of a Common Dialog control can be read by examining
individual bit values of the Flag property and comparing them with
the predefined constant values in CONSTANT.TXT (or CONST2.TXT for
Visual Basic version 1.0 for Windows). This applies to the following
Visual Basic for Windows Common Dialogs:

 - File Open Dialog
 - File Save Dialog
 - Color Dialog
 - Choose Font Dialog
 - Print Dialog

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

The Flags property can be set at design time or run time.

To set the value of the Flags property, assign it a value. This is
most commonly done using a predefined constant (found in CONSTANT.TXT
or CONST2.TXT). For example, to set the PRINTTOFILE flag on the Print
Dialog box, use the following code:

 CMDialog1.Flags = PD_PRINTTOFILE

To set more than one flag, OR the two flags (the pipe [|] character
acts the same as the OR statement):

 CMDialog1.Flags = PD_PRINTTOFILE | PD_SHOWHELP

The settings of the Flags property can also be changed at run time by
the user making various selections in the dialog box. When a selection
is made, or the status of a check box or option button is changed, the
Flags property reflects this change. You can then read the value of
the Flags property and determine if a specific flag has been set.

For example, in the above sample code, two flags are set in the Flags
property. The value of PD_PRINTTOFILE = &H00000020& and the value of
PD_SHOWHELP = &H00000800&.

The binary equivalent of the two is the following:

 PD_PRINTTOFILE = 00000000000000000000000000100000
 PD_SHOWHELP = 00000000000000000000100000000000

Thus the value:

 Flags = 00000000000000000000100000100000

Note how each flag setting has its own bit setting within the Flags
property.

To determine if a specific flag is set, you only need to AND the flag
with the Flags property. If the result is 0, then the flag is not set;
if the result is the same as the flag value, then the flag is set.

For example:

 Form1.Print (CMDialog1.Flags AND PD_PRINTTOFILE)

The output is decimal 32. Thus, broken down:

 Flags = 00000000000000000000100000100000
 AND
 PD_PRINTTOFILE = 00000000000000000000000000100000

 Result = 00000000000000000000000000100000

Thus, the flag for PRINTTOFILE is one of the flags that are set in the
Flags property:

If (CMDialog1.Flags AND PD_PRINTTOFILE) Then
 ' Code for printing to file goes here.
Else
 ' Code for printing to printer goes here.
End If

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

How to Create Column and Row Labels in VB Grid Custom Control
Article ID: Q84113
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SUMMARY
=======

The example program below demonstrates how you can display labels in
the top row and left column of the Grid custom control at run time. It
is not possible to assign labels in a grid at design time.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

The example program below assigns labels to a grid from the Form_Load
event procedure. It puts numbers down the left, labeling the first
non-fixed row as "1". It puts letters across the top, labeling the
first 26 non-fixed columns as "A" through "Z" then subsequent columns
with "AA", "AB", and so on.

Steps to Create Example Program

1. Run Visual Basic for Windows, or from the File menu, choose New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 is created by default.

2. From the File menu, choose Add File. In the Files box, select the
 GRID.VBX. The Grid tool appears in the Toolbox.

3. Select the Grid tool from the Toolbox, and place a grid (Grid1)
 on Form1.

4. On the Properties bar, set the Grid Cols and Rows properties to 30.

5. Double-click the form to open the Code window. In the Procedure
 box, select Load. Enter the following code:

Sub Form_Load ()
 Dim i As Integer

 ' Make sure grid has at least one fixed column and row.
 If Grid1.FixedCols < 1 Or Grid1.FixedRows < 1 Then
 Stop
 End If

 ' Put letters across top.
 For i = 0 To Grid1.Cols - 2
 Grid1.Col = i + 1
 Grid1.Row = 0
 Grid1.Text = Chr$(i Mod 26 + Asc("A"))
 ' If more than 26 columns, use double letter labels.
 If i + Asc("A") > Asc("Z") Then
 Grid1.Text = Chr$(i \ 26 - 1 + Asc("A")) + Grid1.text
 End If
 Grid1.FixedAlignment(Grid1.Col) = 2 ' Centered.
 Next

 ' Put numbers down left edge.
 For i = 1 To Grid1.Rows - 1
 Grid1.Col = 0
 Grid1.Row = i
 Grid1.Text = Format$(i)
 Next
 Grid1.FixedAlignment(0) = 2 ' Centered.
End Sub

6. Press the F5 key to run the program.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

VB MCI Control Does Not Support PC Speaker Driver
Article ID: Q84268

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 versions 2.0 and 3.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SUMMARY
=======

The MCI custom does not support playing wave (.WAV) sound files
through a PC speaker driver such as SPEAKER.DRV. The MCI custom
control (and the Windows Media Player application) uses the MCI sound
drivers, which do not support the PC speaker. The Windows default
sounds and the Sound Recorder application are the only way to play
sounds through the SPEAKER.DRV PC speaker driver.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

The MCI control manages the recording and playback of multimedia files
on Media Control Interface (MCI) devices, such as audio boards, MIDI
sequencers, CD-ROM drives, audio CD players, video disc players, and
videotape recorders and players.

Although the MCI control will not allow you to play .WAV files through
the PC speaker, you can use the Object Linked and Embedding (OLE)
Client custom control provided with the Professional Edition of the
Microsoft Visual Basic for Windows, or with the Microsoft Visual Basic
for Windows Professional Toolkit to create and play a linked Sound
Recorder object from your Visual Basic for Windows program. The
following is an example of this behavior. (Note that you must have the
appropriate Windows sound drivers loaded in order to run this program):

1. Run Visual Basic for Windows, or from the File menu, choose New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 is created by default.

2. From the File menu, choose Add File. In the Files box, select the
 OLECLIEN.VBX custom control file. The OLE Client tool appears in
 the Toolbox.

3. Double-click the OLE Client control on the tool bar to create an
 OLE Client control on your form.

4. Double-click the form to open the Code window, and enter the
 following code in the Form_Click event:

 OLEClient1.Class = "SoundRec"
 OLEClient1.Protocol = "StdFileEditing"
 OLEClient1.SourceDoc = "C:\windows\chimes.wav" ' Name of .WAV file.
 OLEClient1.SourceItem = "LINK"
 OLEClient1.ServerType = 0 ' Linked object.

 OLEClient1.Action = 1 ' Create object from source file.
 OLEClient1.Action = 7 ' Activate Sound Recorder - plays sound.
 OLEClient1.Action = 10 ' Delete the object.

5. Press the F5 key to run the program.

The specified .WAV file should be played each time you click the form.

For more information on SPEAKER.DRV, query on the following words in
the Microsoft Knowledge Base:

 SPEAKER.DRV and WDL AND windows AND 3.10

Additional reference words: 1.00 2.00 3.00 MCI.VBX
KBCategory:
KBSubcategory: PrgCtrlsCus

VB MCI Control Does Not Support Recording of MIDI Data
Article ID: Q84473

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 versions 2.0 and 3.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SUMMARY
=======

The Multimedia Device control called MCI (MCI.VBX), consists of a set of
high level, device-independent commands that control audio and visual
peripherals. However, the MCI control cannot record standard MIDI
(Musical Instrument Data Interface) input. This is a limitation of the
MCI control, not of Visual Basic for Windows.

Below is an example of using the MCI control to play back a MIDI file.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

The MCI custom control can play back MIDI files if you have the
necessary hardware and software installed. Typically, you need a sound
board that supports MIDI and Windows, version 3.1 to use the MCI
control to play back MIDI files. Windows 3.1 or (Windows 3.0 with
Multimedia Extensions version 1.0) supplies MIDI drivers for several
well-known hardware add-on boards that support MIDI.

The following is an example of using the MCI control to play back a
MIDI file called TEST.MID.

1. Run Visual Basic for Windows, or from the File menu, choose New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 is created by default.

2. From the File menu, choose Add File. In the Files box, select the
 MCI.VBX custom control file. The MCI tool appears in the Toolbox.

3. Add the following code to the Form_Load event procedure:

 Sub Form_Load ()
 MMControl1.PlayVisible = -1
 MMControl1.StopVisible = -1
 MMControl1.FileName = "c:\midi\bach.mid"
 MMControl1.Wait = -1
 MMControl1.DeviceType = "sequencer"
 MMControl1.Command = "open"
 End Sub

4. Add the following code to your Form_Unload event procedure:

 Sub Form_Unload (Cancel As Integer)
 MMControl1.Command = "close"
 End Sub

5. Press the F5 key to run the program. Click the play arrow of the
 MCI control to play the MIDI file.

Note: An MIDI file may play, but may not be audible due to MIDI
configuration issues such as the MIDI channel and instrument.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

VB Grid Custom Control Refreshes on All Cell Change Events
Article ID: Q84584

The information in this article applies to:

- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, versions 1.0, 2.0, and 3.0

SUMMARY
=======

The Grid custom control (GRID.VBX) will refresh (update the control's
contents) on all change events occurring to cells in the grid. So, for
example, when you enter text into a cell in the grid, a refresh of the
grid occurs after every letter of a word is entered. This behavior is
by design.

MORE INFORMATION
================

It is normal behavior for the Grid control to refresh whenever a
change occurs to a cell contained in it. This is desirable behavior,
because it ensures that current information is always displayed in the
grid.

However, slowdowns due to the refreshing time can be a problem. If a
grid is large enough, it can take a significant amount of time to
refresh it. If there is a large number of data items to enter, the
wait is compounded. There is no way to toggle the refresh of the grid
when text is entered into a cell; it always occurs. However, there are
methods to minimize the number of change events that occur to the grid,
thus minimizing the wait. Two of these methods are shown below.

Steps to Reproduce Behavior

1. Start Visual Basic for Windows or from the File menu, choose New
 Project (ALT F N) if Visual Basic for Windows is already
 running. Form1 is created by default.

2. From the File menu, choose Add File. In the Files box, select the
 GRID.VBX custom control file. The Grid tool appears in the
 Toolbox.

3. Add a Grid control to default Form1 by double-clicking its icon
 in the Toolbox. Also add a text box control in the same manner.

4. Set the following properties for Grid1: Cols = 10, Rows = 20. Size
 the grid so that you can see all the columns and rows. Also, set
 the Text property of Text1 to "" (blank).

5. Add the following code:

 Sub Form_Load ()

 Form1.Show ' This code fills the grid with ASCII values
 For columns = 0 To 9 ' to show the effect of refreshing Grid1.
 For rows = 0 To 9
 Grid1.Row = rows
 Grid1.Col = columns
 Grid1.Text = Chr$(63 + rows + columns)
 Next rows
 Next columns
 Text1.SetFocus
 End Sub

 Sub Text1_KeyPress (KeyAscii As Integer)
 Grid1.Text = Text1.Text ' This sets the contents of Grid1.Text to
 End Sub ' what is entered into Text1.

6. Press the F5 key to run the program.

 Enter some text into Text1. Notice how every entry on the keyboard
 causes the grid to update. You can tell this is occurring by the
 flickering of the contents of Grid1 on every key press.

 If direct entry of data into a cell is desired, a slight
 modification to the code above significantly reduces the number of
 times the grid refreshes. The code below allows entry of text into
 a text box, and the contents are transferred to a cell in the grid
 when the user presses the ENTER key. To demonstrate this behavior,
 change the code in the Text1_KeyPress event to the following:

 Sub Text1_KeyPress (KeyAscii As Integer)
 If KeyAscii = 13 Then ' Did the user press the ENTER key?
 Grid1.Text = Text1.Text ' Yes - assign Text1.Text to Grid1.Text.
 KeyAscii = 0 ' Suppresses the default "beep" sound.
 Text1.Text = "" ' Clear the text box for the next entry.
 End If
 End Sub

 This change filters the input somewhat by only updating Grid1.Text
 when the user presses the ENTER key. (If you want to change it to
 some other value, use a different KeyAscii value.) The benefit of
 this method is that an update only occurs whenever the user presses
 the ENTER key, not on every key press event.

 Yet another alternative is to first store the data entered in the
 text box into an array. Then, when data entry is complete,
 transfer the contents of the array to the grid. This forces all
 changes to the grid to be done in one refresh, thus reducing the
 total waiting time required for the grid to refresh. To
 accomplish this, do the following:

7. Add a command button to Form1. Set the Caption property to "Place
 array items into grid".

8. Add the following code to the general Declarations section of Form1:

 Dim Words$(100)
 Dim GridNum As Integer
 ' (Add the following to the Command1 Click event procedure:)

 Sub Command1_Click ()
 For y = 0 To (GridNum - 1)
 Grid1.Row = Int(19 * Rnd + 1) ' Sets the row & column to a random
 Grid1.Col = Int(9 * Rnd + 1) ' place in the grid, and prints the
 Grid1.Text = Words$(y) ' item there.
 Next y
 Erase Words$ ' Clears the array.
 GridNum = 0 ' Resets the array item counter.
 Text1.SetFocus ' Sets the focus back to the text box.
 End Sub

9. Replace the code in the Text1_KeyPress event of Form1 with the
 following:

 Sub Text1_KeyPress (KeyAscii As Integer)
 If KeyAscii = 13 Then
 Words$(GridNum) = Text1.Text ' Transfers contents of Text1.Text
 ' to a string array.
 Text1.Text = ""
 GridNum = GridNum + 1 ' Increments the array item counter to
 ' prepare for the next word to be
 ' entered.
 Debug.Print GridNum ' Prints the current record number in
 ' the immediate window. (optional)
 KeyAscii = 0
 End If
 End Sub

10. Press the F5 key to run the program. Enter a few words, pressing the
 ENTER key after each word. Notice that the grid does not refresh after
 the ENTER key is pressed. The items are being placed into an array with
 each press of the ENTER key. When you are finished, choose Command1 to
 place the new items in the grid. The grid will refresh only once now,
 as the new items are randomly placed in the grid.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

VB Graph: Use XPosData to Plot Fractional X-Axis Values
Article ID: Q85264

The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
 - Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

You can use the Graph custom control (GRAPH.VBX) XPosData property to
give independent X-axis values for graphs. That is, the graph is not
forced to plot on the X-axis, and has the ability to plot fractional
data points between X-axis values. This property can be used with all
graphs types except pie.

MORE INFORMATION
================

By default, graphs use a dependent X-axis scale. This means data
points plotted conform to the whole-number increments shown on the X-
axis. To plot fractional X-axis values, use the XPosData property.
The XPosData values are set for each data point, allowing fractional
X-axis plotted values to appear in the graph. XPosData sets the X
coordinate, and GraphData sets the Y coordinate. The example below
demonstrates this by plotting three different data points on a scatter
graph:

Example

1. Run Visual Basic, or from the File menu, choose New Project (ALT,
 F, N) if Visual Basic is already running. Form1 is created by
 default.

2. From the File menu, choose Add File. In the Files box, select the
 GRAPH.VBX custom control file. The GRAPH tool appears in the
 Toolbox.

3. Place a Graph (Graph1) on Form1 by double-clicking the Graph tool
 in the Toolbox.

4. In the Properties box, set the following properties for Graph1:

 - AutoInc = 0 (Off)
 - GraphType = 9 (Scatter)
 - NumPoints = 3
 - SymbolData = 3 (Solid triangle - up)

5. Add the following code to Form1:

 Sub Form_Load ()

 Graph1.ThisPoint = 1 'This indicates which datapoint to work on
 Graph1.GraphData = 10 'This sets the Y-axis value for this point
 Graph1.XPosData = .2 'This sets the X-axis value for this point

 Graph1.ThisPoint = 2
 Graph1.GraphData = 5
 Graph1.XPosData = 1.3

 Graph1.ThisPoint = 3
 Graph1.GraphData = 3
 Graph1.XPosData = 2.4

 End Sub

6. Press F5 to run the code.

This example, when run, plots three data points in (X,Y) format. In
this case, XPosData is used to provide non-integer X-axis values. The
three triangles are plotted using the following coordinates:

 (.2, 10), (1.3, 5), (2.4, 3)

XPosData works for other graph types too, except pie, for which X-axis
data has no meaning. To try this example with another graph type,
change the GraphType property of Grid1 to "4 - 3D Bar". Notice how the
bars orient against the X-axis when you run the code.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

Toolkit 3-D Control (THREED.VBX) Default Property Values
Article ID: Q87766

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, versions
 2.0 and 3.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SUMMARY
=======

The 3-D Check Box, 3-D Command Button, 3-D Frame, 3-D Group Push Button,
3-D Option Button, and 3-D Panel custom controls retain custom properties
from the control drawn before them. When the properties are customized for
a particular 3-D control, they become the default properties for
subsequent 3-D controls of the same type.

MORE INFORMATION
================

The example below demonstrates that the properties of THREED controls
are retained from one control to the next.

Step-by-Step Example

1. Load the THREED.VBX file into Form1 in Visual Basic.

2. Add a 3-D Command Button.

3. Select the BevelWidth property from the property bar. The default
 value is 2.

4. Set the BevelWidth to a value of 4.

5. Add a second 3-D Command Button.

6. Select the BevelWidth property from the property bar.
 The default value will now be 4.

Additional reference words: 1.00 2.00 3.00 three dimension 3d
KBCategory:
KBSubcategory: PrgCtrlsCus

Using a Linked Sound Recorder Object with OLECLIEN.VBX
Article ID: Q87768

The information in this article applies to:

 - Professional Edition of Microsoft Visual Basic for Windows, version 2.0
 - Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SUMMARY
=======

The following program demonstrates the use of the Microsoft Visual
Basic OLECLIEN.VBX custom control to create a linked Sound Recorder
object.

The following OLEClient property settings are required to create a
Sound OLE object:

 Setting Definition

 Class - "SoundRec"

 SourceDoc - The full path of the "wave" file to use (for example:
 C:\WINDOWS\CHIMES.WAV)

 SourceItem - The type of sound file object. "Wave" is the only
 sound format supported by the Windows operating
 system version 3.1 Sound Recorder.

Note: Sound Recorder does not come with Microsoft Windows version 3.0. You
must have Windows version 3.1 to use this example. You must also have a
computer capable of playing wave audio sounds (.WAV files). If you do not
have a sound board, you can obtain a Windows sound driver for your PC
Speaker. For information on obtaining this driver, query on the following
words in the Microsoft Knowledge Base:

 win31 and driver and speak.exe

MORE INFORMATION
================

The following program demonstrates how to create a linked Sound Recorder
object in Microsoft Visual Basic for Windows by using the OLECLIEN.VBX
custom control:

Step-by-Step Example

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose Add File. In the Files box, select the
 OLECLIEN.VBX custom control file. The OLE Client tool appears in
 the Toolbox.

3. Place a command button and an OLEClient control on Form1.

4. Enter the following code:

 Sub Command1_Click ()
 OLEClient1.Class = "SoundRec"
 OLEClient1.Protocol = "StdFileEditing"
 OLEClient1.SourceDoc = "c:\windows\chimes.wav"

 ' Source Item for Sound Recorder is 'Wave', but
 ' Sound Recorder does not check this property so
 ' any value will do.
 OLEClient1.SourceItem = "Wave"

 OLEClient1.ServerType = 0 ' Linked.
 OLEClient1.Action = 1 ' CreateFromFile.
 Command1.Enabled = 0
 End Sub

 Sub OleClient1_DblClick ()
 OLEClient1.Action = 7 ' Activate (open for editing).
 End Sub

 Sub Form_Unload (Cancel As Integer)
 OLEClient1.Action = 9 ' Close (terminate connection).
 End Sub

5. Press the F5 key to run the program. Choose the Command button to create
 the OLE object. Double clicking the OLEClient control starts Sound
 Recorder and plays the OLE sound.

Reference(s):

"Microsoft Professional Toolkit for Visual Basic: Custom Control
Reference," pages 196-232

Additional reference words: 1.00 2.00
KBCategory:
KBSubcategory: PrgCtrlsCus

PRB: THREED Check Box Is Not Grayed Out When Value = 2 in VB
Article ID: Q87771

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 versions 2.0 and 3.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SYMPTOMS
========

If the Value property of a THREED Check Box is set to 2, the check box is
not made unavailable (grayed out), as you might expect. Instead, an X is
displayed in the THREED Check Box. If the Value property of a standard
Visual Basic for Windows check box is set to 2, the check box is made
unavailable.

CAUSE
=====

There is no disabled state for a THREED check box. The value property of
a THREED check box can only be true or false (0 or 1) whereas the
standard check box can have a value of 0, 1, or 2.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

Steps to Reproduce Behavior

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose Add File. In the Files box, select the
 THREED.VBX custom control file.

3. Place one THREED Check Box, one standard check box, and three command
 buttons on Form1.

4. Enter the following code in the appropriate event procedures:

 Sub Form_Load ()
 Command1.Caption = "Value = 0"
 Command2.Caption = "Value = 1"
 Command3.Caption = "Value = 2"
 End Sub

 Sub Command1_Click ()
 Check1.Value = 0
 Check3D1.Value = 0
 End Sub

 Sub Command2_Click ()
 Check1.Value = 1
 Check3D1.Value = 1
 End Sub

 Sub Command3_Click ()
 Check1.Value = 2
 Check3D1.Value = 2
 End Sub

5. Press F5 to run the program. First, click the Value = 0 button.
 Then click the Value = 1 button. Finally, click the Value = 2 button.
 When you click the Value = 2 button, the standard check box is
 disabled (grayed) but the THREED check box is not.

Additional reference words: 1.00 2.00 3.00 grey greyed 3d
KBCategory:
KBSubcategory: PrgCtrlsCus

How to Clear All or Part of Grid in Visual Basic
Article ID: Q88911

The information in this article applies to:

 - Professional Edition of Microsoft Visual Basic for Windows,
 versions 2.0 and 3.00
 - Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SUMMARY
=======

You can clear all or part of a grid by first selecting the region to clear
using the SelStartCol, SelStartRow, SelEndCol, and SelEndRow properties,
and then clearing the region by assigning a null string to the Clip
property.

MORE INFORMATION
================

The example below demonstrates how to clear all the non-fixed cells of
a grid.

Step-by-Step Example

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose Add File, and select GRID.VBX. The Grid
 tool appears in the Toolbox. (This step is automatic in version 2.0.)

3. Place a grid (Grid1) on Form1.

4. Set the Grid1 property Cols to 4, and Rows to 4. Size the grid so
 that you can see all the cells.

5. Enter the following code into the Form1 Load event procedure:

 Sub Form_Load ()
 ' Load some data into the grid.
 For i% = Grid1.FixedCols To Grid1.Cols - 1
 For j% = Grid1.FixedRows To Grid1.Rows - 1
 Grid1.Col = i%
 Grid1.Row = j%
 Grid1.Text = Format$(i% + j%)
 Next
 Next
 End Sub

6. Enter the following code into the Form1 Click event procedure:

 Sub Form_Click ()
 ' Select all non-fixed grid cells.

 Grid1.SelStartCol = Grid1.FixedCols
 Grid1.SelStartRow = Grid1.FixedRows
 Grid1.SelEndCol = Grid1.Cols - 1
 Grid1.SelEndRow = Grid1.Rows - 1

 ' Clear the cells.
 Grid1.Clip = ""

 ' Clean up the grid.
 Grid1.Col = Grid1.FixedCols
 Grid1.Row = Grid1.FixedRows
 Grid1.SelEndCol = Grid1.SelStartCol
 Grid1.SelEndRow = Grid1.SelStartRow
 End Sub

7. Press F5 to run the program. The grid appears with numbers in the
 cells. Click Form1. The grid is cleared.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

How to Make a Spreadsheet-Style Grid that Allows Editing
Article ID: Q88912

The information in this article applies to:

 - Professional Edition of Microsoft Visual Basic for Windows,
 versions 2.0 and 3.00
 - Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SUMMARY
=======

The Grid custom control does not provide any text editing capability.
However, you can create a spreadsheet-style grid that allows editing by
using a picture box and a text box.

MORE INFORMATION
================

We do not recommend creating a spreadsheet-style grid with a large
matrix of text box controls because doing so will slow down your
program, and use excessive system resources.

An efficient way to create a grid is to draw vertical and horizontal
lines to represent the cells of the grid. Use a single text box to
allow editing of the active cell. Check for MouseDown events to move
the text box to the currently active cell position, and use the Print
method to draw text in a cell when the text box moves away from the
cell. Then, store the grid cell values in a two dimensional array,
indexed by the column and row.

Code can be added to allow for highlighting areas, using ARROW keys to
move between cells, and so on.

Step-by-Step Example

1. Start Visual Basic, or from the File menu, choose New Project (ALT,
 F, N) if Visual Basic is already running. Form1 is created by default.

2. Place a picture (Picture1) on Form1, and set its properties as follows:

 Property Value

 AutoRedraw True
 ScaleMode 3 - Pixel
 Height 2000
 Width 3000

3. Place a text box (Text1) in Picture1 by clicking the text box tool. The
 mouse pointer turns to cross-hairs. Click and drag inside Picture1 to
 place a gray rectangle appears in Picture1.

4. Add the following code to the general Declarations section of Form1:

 ' Maximum grid size.
 Const grid_col_max = 10
 Const grid_row_max = 20

 ' Current grid size.
 Dim grid_cols As Integer
 Dim grid_rows As Integer

 ' Current cell position.
 Dim grid_col As Integer
 Dim grid_row As Integer

 ' Grid string contents.
 Dim grid_text(grid_col_max, grid_row_max) As String

 ' Grid line positions.
 Dim grid_line_col(grid_col_max) As Integer
 Dim grid_line_row(grid_col_max) As Integer

 ' grid_edit_move.
 ' Moves the grid edit text box to a new position.
 '
 Sub grid_edit_move (col As Integer, row As Integer)
 Dim x1 As Integer ' Picture box positions.
 Dim y1 As Integer
 Dim x2 As Integer
 Dim y2 As Integer

 ' Save text box contents to grid array.
 grid_text(grid_col, grid_row) = Text1.Text

 ' Clear current cell.
 x1 = grid_line_col(grid_col) + 1
 y1 = grid_line_row(grid_row) + 1
 x2 = grid_line_col(grid_col + 1) - 1
 y2 = grid_line_row(grid_row + 1) - 1
 Picture1.Line (x1, y1)-(x2, y2), Picture1.BackColor, BF

 ' Print text box contents to current cell.
 Picture1.CurrentX = x1 + 3
 Picture1.CurrentY = y1 + 3
 Picture1.Print Text1.Text

 ' Set new grid current cell.
 grid_col = col
 grid_row = row

 ' Move text box to new cell.
 x1 = grid_line_col(grid_col)
 y1 = grid_line_row(grid_row)
 w! = grid_line_col(grid_col + 1) - x1
 h! = grid_line_row(grid_row + 1) - y1
 Text1.Move x1 + 1, y1 + 1, w! - 1, h! - 1

 ' Copy contents of new cell to text box.
 Text1.Text = grid_text(grid_col, grid_row)

 End Sub

5. Add the following code to form Load event procedure:

 Sub Form_Load ()
 ' Set grid size.
 grid_cols = 4
 grid_rows = 6

 ' Remove border.
 Picture1.BorderStyle = 0

 ' Set column widths and row heights.
 Dim i As Integer
 Dim d As Integer
 d = 0
 For i = 0 To UBound(grid_line_col)
 grid_line_col(i) = d
 d = d + 40
 Next
 d = 0
 For i = 0 To UBound(grid_line_row)
 grid_line_row(i) = d
 d = d + 20
 Next

 ' Draw grid lines.
 For i = 0 To grid_cols
 x2% = grid_line_col(i)
 y2% = grid_line_row(grid_rows)
 Picture1.Line (grid_line_col(i), 0)-(x2%, y2%)
 Next
 For i = 0 To grid_rows
 x2% = grid_line_col(grid_cols)
 y2% = grid_line_row(i)
 Picture1.Line (0, grid_line_row(i))-(x2%, y2%)
 Next

 Call grid_edit_move(0, 0)
 End Sub

6. Add the following code to the Picture1 GotFocus event procedure:

 Sub Picture1_GotFocus ()
 Text1.SetFocus
 End Sub

7. Add the following code to the Picture1 MouseDown event procedure:

 ' The following line should appear on one line.
 Sub Picture1_MouseDown (Button As Integer, shift As Integer,
 x As Single, y As Single)
 Dim col As Integer
 Dim row As Integer
 Dim i As Integer

 ' Find the cell clicked in.

 col = grid_col
 row = grid_row
 For i = 0 To grid_cols - 1
 If x>=grid_line_col(i) And x<grid_line_col(i+1) Then
 col = i
 Exit For
 End If
 Next
 For i = 0 To grid_rows - 1
 If y>=grid_line_row(i) And y<grid_line_row(i+1) Then
 row = i
 Exit For
 End If
 Next

 ' Move the text box there.
 Call grid_edit_move(col, row)
 End Sub

8. Press F5 to run the program. Click a cell and edit the text.

This example is very limited in functionality. Text can be edited in
each cell but you must click a cell to move to that particular
cell. This article shows a method of creating a grid without tying up
a large amount of system resources. Feel free to add code to increase
its functionality.

Additional reference words: 1.00 2.00 3.00 optimize
KBCategory:
KBSubcategory: PrgCtrlsStd PrgCtrlsCus

Masked Edit Control, Mask Property Clarification
Article ID: Q93129

The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0

SUMMARY
=======

This article clarifies the description of the Masked Edit Control's Mask
property given in "Microsoft Visual Basic Professional Features" on pages
233-234, and in the help file CTRLREF.HLP.

MORE INFORMATION
================

Example Mask Settings

The description of the Mask property includes the following statement:

 ..., the following standard, predefined input masks are
 available at design time.

The statement is followed by a list of possible Mask settings such as:

 ##-???-## Medium date (US). Example: 20-May-92

The settings listed are example settings. The Masked Edit control does
not handle these particular settings specially, either at design time or
run time. In this sense, they are neither standard nor predefined as the
description states.

For instance, the setting ##-???-## does not restrict the user to valid
dates. This setting only requires two digits, three letters, and two more
digits. So, for example, an input of 99ZZZ99 is valid with this setting.

Mask Character Place Holder "&"

The description of the place holder "&" is given as:

 & Character placeholder. The valid value for the placeholder is
 any symbol or alphanumeric character.

This means that "&" is a place holder for any printable character.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

Name Property Cannot Be Set When Using Implicit Property
Article ID: Q93214

The information in this article applies to:

 - Microsoft Visual Basic for Windows, version 2.0

SUMMARY
=======

On Page 126 of the Visual Basic Programmer's Guide, it incorrectly states
that all controls have an implicit property you can use for storing or
retrieving values. Some controls supplied with the Professional Edition of
Visual Basic for Windows use the Name property as their implicit property,
which you cannot use at run-time.

MORE INFORMATION
================

The following controls from the Visual Basic Professional Edition use the
Name property as their implicit property:

 Common dialog
 MAPI session
 MAPI message
 Spin button

Attempting to access the implicit property of these controls results in one
of the following errors:

 'Name' property cannot be read at run time
 'Name' property cannot be set at run time

You access the implicit property of a control (also known as the "value of
a control" or the "default value of a control") by writing the control name
with no property. For example, with a text box named Text1, you can write
the following statement to assign a value to the Text property:

 Text1 = "hello world"

The following list shows the implicit properties for all the controls in
both the Standard and Professional Editions:

Standard Control Implicit Property

Check box Value
Combo box Text
Command button Value
Directory list box Path
Drive list box Drive
File list box FileName
Frame Caption
Grid Text
Image Picture

Label Caption
Line Visible
List box Text
Menu Enabled
OLE client Action
Option button Value
Picture box Picture
Scroll bar vertical Value
Scroll bar horizontal Value
Shape Shape
Text box Text
Timer Enabled

Professional Control Implicit Property

3D check box Value
3D command button Value
3D frame Caption
3D group push button Value
3D option button Value
3D panel Caption
Animated button Value
Common dialog Name (not usable)
Communications Input
Gauge Value
Graph QuickData
Key status Value
MAPI session Name (not usable)
MAPI message Name (not usable)
Masked edit Text
Multimedia MCI Command
Pen BEdit Text
Pen HEdit Text
Pen ink on bitmap Picture
Pen on-screen keyboard Visible
Picture clip Picture
Spin button Name (not usable)

Additional reference words: 2.00 docerr
KBCategory:
KBSubcategory: RefsDoc PrgCtrlsStd PrgCtrlsCus

New Features Added to Graph Control in Versions 2.0 and 3.0
Article ID: Q93322

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 versions 2.0 and 3.0

SUMMARY
=======

In Visual Basic versions 2.0 and 3.0, the Graph Control now includes most
of the major features that were requested with the Microsoft Visual Basic
Professional Toolkit for Windows, version 1.0.

For example, in versions 2.0 and 3.0, the user has control over the
labeling of the X axis and the minimum and maximum range of the Y
axis. More information on the Graph Control is included in the
"Professional Features" manual provided with the Professional Edition of
Microsoft Visual Basic for Windows, versions 2.0 and 3.0.

New features of the Graph Control include the following:

New Properties

 FontSize 'Standard FontSize property.
 FontStyle 'Standard FontStyle property.
 FontUse 'Other font properties are applied against.
 HelpContextID 'Help file topic ID.
 hWnd 'Window handle.
 IndexStyle 'Enhanced usage of ThisSet and ThisPoint.
 LabelEvery 'Frequency of labels on the X axis.
 TickEvery 'Tick interval on X axis.
 Ticks 'Check if X or Y axis ticks are displayed.
 YAxisMax 'Maximum range of Y axis.
 YAxisMin 'Minimum range of Y axis.
 YAxisPos 'Position of Y axis, right or left.
 YAxisStyle 'Auto or manual.
 YAxisTicks 'Number of ticks on Y axis.

New Events

 Events are the same as the Graph Control included with the Microsoft
 Visual Basic Professional Toolkit for Windows, version 1.0.

New Methods

 ZOrder 'Standard ZOrder method.

Additional reference words: 2.00 3.00 z-order
KBCategory:
KBSubcategory: PrgCtrlsCus

Create .MMM Movie Files with Macromedia Director for Macintosh
Article ID: Q94186

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 versions 2.0 and 3.0
- Microsoft Professional Toolkit for Microsoft Visual Basic
 programming system for Windows, version 1.0

SUMMARY
=======

Microsoft does not provide any product that can create .MMM movie files
(multimedia animation files for use with the MCI.VBX control).

You can use Macromedia Director for Macintosh to create multimedia
animation and use Macromedia Windows Player to convert the animation
to a file in MMM movie file format.

MORE INFORMATION
================

For more information, contact the following company:

Macromedia (previously Macromind), Inc.
600 Townsend St
San Francisco CA 94103
(800)288-4797

Reference(s):

"Microsoft Multimedia Development Kit Programmer's Reference" and
"Microsoft Multimedia Development Kit Programmer's Workbook"

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

MaxFileSize Property Range in CMDDIALOG.VBX Can Be 1 to 2048
Article ID: Q95765

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 2.0

SUMMARY
=======

The MaxFileSize property for the file open and file save common dialog
boxes has a range of 1 to 2048 bytes not 1 to 32767 bytes.

MORE INFORMATION
================

The 1 to 2048 bytes is an internal limit of the Windows COMMDLG.DLL.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

Maximum Length of Name Property Depends on Events Supported
Article ID: Q96151

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

The maximum length of the Name (CtlName in version 1.0) property for
controls varies from control to control depending on the character length
of its longest event name. Event procedures names are limited to a length
of 40 characters including the control's Name property, the underscore, and
the event name. Therefore, the longer the event name, the shorter the Name
property can be.

In Visual Basic versions 2.0 and 3.0, the Label, Picture Box, and Text Box
controls add support for the LinkNotify event, which is one character
longer than any event supported in version 1.0 for these controls. The
maximum length of the Name property for these controls is therefore one
character fewer in versions 2.0 and 3.0. A table showing the maximum length
of the Name property for all of the standard controls in Visual Basic
versions 2.0 and 3.0 is listed below.

MORE INFORMATION
================

The Name property of forms are not dependent on the events supported
because the property is not used in the name of form event procedures.
Event procedures for forms all begin with Form and therefore can be up to
the 40-character maximum in length.

Maximum length of Name properties for Version 2.0 and 3.0 controls
--
Control Name Length Limit

Check Box 30
Combo Box 30
Command Button 30
Directory List Box 30
Drive List Box 30
File List Box 26
Frame 31
Grid 27
Image 30
Label 29
Line 39
List Box 30
Menu 34
OLE Client 30
Option Button 30

Picture Box 25
Scroll Bars 30
Shape 39
Text Box 29
Timer 34

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

Set DrawMode to 2 Or 3 to Update Changes to Graph at Run Time
Article ID: Q96450

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0

SUMMARY
=======

Changing properties of the graph control at run time does not update
the control until DrawMode is set to 2 (Draw) or 3 (Blit).

MORE INFORMATION
================

The DrawMode property documentation states that at design time, when
you change a property value, the graph is automatically redrawn to
show the effect of the change. At run time, the graph is only redrawn
when you set DrawMode to 2 or 3. This allows you to change as many
property values as you want before displaying the graph. However, when
the form containing a graph is first displayed, the graph is automatically
displayed according to the current DrawMode value.

For more information, see the "Microsoft Visual Basic Programming System
for Windows Professional Edition Professional Features," version 2.0,
"Custom Control Reference," pages 149-150.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

How to Right Justify Standard Numbers in a Masked Edit Field
Article ID: Q97141

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0

SUMMARY
=======

The Masked edit control does not provide a method to right justify numbers.
Ordinary methods and the Format$ function do not work because the Masked
edit control uses the underscore character to represent blanks in the text
property. For example, if 300 is entered in a Masked edit field with a mask
of #####, the text property would contain "__300" instead of " 300."

However, you can use the technique described in this article to right
justify a Masked edit field using a standard number mask and format. This
is done in three steps:

1. Create a string of underscore characters that matches the length of the
 mask in the Masked edit control.

2. Concatenate the text entered in the Masked edit control to the end of'
 the underscore string. This result is a string longer than the mask of
 the Masked edit control.

3. Use the Right$ function to remove the extra underscore characters from
 the beginning of the string.

MORE INFORMATION
================

The following example demonstrates this process:

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add the MSMASKED.VBX control to the project.

3. Create the following controls on Form1, and assign the indicated
 properties:

 Default Name Caption Mask Format
 --
 MaskedEdit1 (Not applicable) #### ####
 Command1 Right Justify

4. Add the following code to the Command1_Click event:

 ' Ensure that the string is not already right-justified.
 If InStr((Len(MaskedEdit1.Text)), MaskedEdit1.Text, "_") =
 Len(MaskedEdit1.Text) Then

 ' The first String$ function creates the underscore string. The
 ' Format$ trims the text property of the MaskedEdit control.
 ' Enter the following two lines as one, single line:
 MaskedEdit1.text = Right$(String$(Len(MaskedEdit1.Text), "_") &
 Format$(Val(MaskedEdit1.Text)), Len(MaskedEdit1.Text))

 End If

5. Press the F5 key to run the program.

6. Enter two numbers into the Masked edit field, and click the Right
 Justify button. Notice that the numbers are right-justified in the
 field.

Additional reference words: 2.00 3.00 alignment align right-align
KBCategory:
KBSubcategory: PrgCtrlsCus

Playing an .AVI File with the MCITEST Example
Article ID: Q98769

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.00 and 3.00

SUMMARY
=======

This article shows how to modify the multimedia sample project MCITEST.MAK
to load and play Microsoft Video for Windows files (.AVI files). To apply
the information in this article, you must have Video for Windows drivers
correctly installed and a valid .AVI file available.

More Information:

1. Open the project VB\SAMPLES\MCI\MCITEST.MAK.

2. Select MCITEST.FRM in the Project Window. From the View menu, choose
 Code. In the Object combo box, select AI_ANIMATION to display the
 AI_ANIMATION_Click event handler.

3. Modify the common dialog Filter to display .AVI files:

 change: OpenDlg.CMDialog1.Filter = "Movie File (*.mmm)|*.mmm"
 to: OpenDlg.CMDialog1.Filter = "Movie File (*.avi)|*.avi"

 Modify the DeviceType to access the AVI drivers:

 change: Animate.MMControl1.DeviceType = "MMMovie"
 to: Animate.MMControl1.DeviceType = "AVIVideo"

4. Select ANIMATE.FRM in the Project Window. From the View menu, choose
 Code. In the Object combo box, select AI_OPEN to display the
 AI_OPEN_Click event handler.

5. Modify the DeviceType to access the AVI drivers. Scroll down by pages
 to find the location for this change.

 change: Animate.MMControl1.DeviceType = "MMMovie"
 to: Animate.MMControl1.DeviceType = "AVIVideo"

6. Save the work, and run the application.

Additional reference words: 2.00 3.00 mci control multimedia multi media
KBCategory:
KBSubcategory: PrgCtrlsCus

PRB: Some ATI Video Drivers Hang When Using MSOUTLIN.VBX
Article ID: Q100194

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic programming system for
 Windows, version 3.0

SYMPTOMS
========

If you use an OutLine control in a Visual Basic project and you are
using an ATI Mach 32 video driver this could cause your computer to
hang (stop responding to input).

CAUSE
=====

This is a problem with the ATI video driver not a problem with Visual
Basic. The m32-86.drv and Mach32.drv drivers have been reported to
cause this problem.

RESOLUTION
==========

An updated driver may solve the problem. To contact ATI Technologies
concerning an updated driver call the following number.

 ATI Technologies Inc. (416) 756-0711 ATI technical support

Additional reference words: 3.00
KBCategory:
KBSubcategory: EnvtRun PrgCtrlsCus

International and U.S. Support for Crystal Reports
Article ID: Q100368

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, version 3.0

SUMMARY
=======

Microsoft supports setup and installation for the Crystal Reports product
shipped with the Professional Edition of Microsoft Visual Basic version 3.0
for Windows. For other Crystal Reports support, please contact Crystal
Services, not Microsoft.

MORE INFORMATION
================

The following lists international and U.S. telephone numbers you can call
to get technical support for Crystal Reports. Also listed is the CompuServe
ID and mailing address for Crystal Reports support.

Canada/US
 Crystal Services
 Suite 2200 - 1050 West Pender Street
 Vancouver, BC, Canada V6E 3S7

 Phone: 604-669-8379 (8:00am - 5:00pm pacific time)
 Fax: 604-681-7163
 BBS: 604-681-9516

 Product support via CompuServe:
 Send CompuServe mail to : 71035,2430

England
 Company: Contemporary Software
 Phone: 273-483-979
 Fax: 273-486-224

Netherlands
 Company: Microscope
 Phone 10-456-3799
 Fax 10-456-5549

Australia
 Company: Sourceware
 Phone: 2-427-7999
 Fax: 2-427-7255
 "Ask for Tony Johnson"

For a complete list of Crystal Reports support offerings see the last three
pages (PSS 1 - PSS 3) of the "Microsoft Visual Basic Professional Features
Book 2" manual

Additional reference words: 3.00
KBCategory:
KBSubcategory: RefsProd PrgCtrlsCus

How to Fill (Populate) a Grid with Database Data -- 4 Methods
Article ID: Q103437

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 3.0

SUMMARY
=======

This article gives you four separate examples demonstrating how to use
Visual Basic to fill a grid control with data coming from database tables.

 - The first example uses a data control to fill the grid.
 - The second example uses a Dynaset object to fill the grid.
 - The third example uses a Snapshot object to fill the grid.
 - The fourth example uses a Table object to fill the grid.

MORE INFORMATION
================

Example One

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Add one Data1 control, one Grid control, one Command button and two
 Text boxes to Form1.

3. Using the following table as a guide, set the properties of the
 controls you added in step 2.

 Control Name Property New Value Comment
 --
 Data1 DatabaseName BIBLIO.MDB Provide the full path to
 this file, which
 should be in the Visual
 Basic directory -- C:\VB
 Data1 RecordSource Authors
 Data1 Visible False
 Text1 DataSource Data1
 Text1 DataField AU_ID
 Text1 Visible False
 Text2 DataSource Data1
 Text2 DataField Author
 Text2 Visible False
 Grid1 Cols 3
 Grid1 Rows 50
 Command1 Caption Press to Load Grid

4. Place the following code in the Form1 Load event procedure:

 Sub Form_Load ()

 'Initialize the colwidths for the grid and supply headers
 Show
 grid1.ColWidth(1) = 3000 'For Author name
 grid1.ColWidth(2) = 1000 'For Author ID
 grid1.Col = 1
 grid1.Row = 0
 grid1.Text = "Author Name" 'Header for Author Name
 grid1.Col = 2
 grid1.Row = 0
 grid1.Text = "Author ID" 'Header for Author ID
 End Sub

5. Place the following code in the Command1 Click event procedure:

 Sub Command1_Click ()
 ' The routine to load data into grid
 Dim counter%
 counter% = 1 'Start counter at Row=1
 Do Until data1.Recordset.EOF
 grid1.Col = 1
 grid1.Row = counter%
 grid1.Text = data1.Recordset(1) 'Load the Author Name
 grid1.Col = 2
 grid1.Row = counter%
 grid1.Text = data1.Recordset(0) 'Load the Author ID
 counter% = counter% + 1
 data1.Recordset.MoveNext
 Loop
 data1.Recordset.Close
 End Sub

6. From the Run menu, choose Start (ALT, R, S), or press the F5 key
 to run the program. Click the Command1 button.

Example Two

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Add one Grid control and one Command button to Form1.

3. Using the following table as a guide, set the properties of the
 controls you added in step 2.

 Control Name Property New Value

 Grid1 Cols 3
 Grid1 Rows 50
 Command1 Caption Press to Load Grid

4. Place the following code in the Form1 Load event procedure:

 Sub Form_Load ()
 'Initialize the colwidths for the grid and supply headers
 Show
 grid1.ColWidth(1) = 3000 'For Author name

 grid1.ColWidth(2) = 1000 'For Author ID
 grid1.Col = 1
 grid1.Row = 0
 grid1.Text = "Author Name" 'Header for Author Name
 grid1.Col = 2
 grid1.Row = 0
 grid1.Text = "Author ID" 'Header for Author ID
 End Sub

5. Place the following code in the Command1 Click event procedure:

 Sub Command1_Click ()
 ' The routine to load data into grid
 Dim db as Database
 Dim ds as Dynaset
 Dim counter%
 Set db = OpenDatabase("BIBLIO.MDB")
 Set ds = db.CreateDynaset("Authors")
 counter% = 1 'Start counter at Row=1
 Do Until ds.EOF
 grid1.Col = 1
 grid1.Row = counter%
 grid1.Text = ds(1) 'Load the Author Name
 grid1.Col = 2
 grid1.Row = counter%
 grid1.Text = ds(0) 'Load the Author ID
 counter% = counter% + 1
 ds.MoveNext
 Loop
 ds.Close
 db.Close
 End Sub

6. From the Run menu, choose Start (ALT, R, S), or press the F5 key
 to run the program. Click the Command1 button.

Example Three

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Add one Grid control and one Command button to Form1.

3. Using the following table as a guide, set the properties of the
 controls you added in step 2.

 Control Name Property New Value
 --
 Grid1 Cols 3
 Grid1 Rows 50
 Command1 Caption Press to Load Grid

4. Place the following code in the Form1 Load event procedure:

 Sub Form_Load ()
 'Initialize the colwidths for the grid and supply headers

 Show
 grid1.ColWidth(1) = 3000 'For Author name
 grid1.ColWidth(2) = 1000 'For Author ID
 grid1.Col = 1
 grid1.Row = 0
 grid1.Text = "Author Name" 'Header for Author Name
 grid1.Col = 2
 grid1.Row = 0
 grid1.Text = "Author ID" 'Header for Author ID
 End Sub

5. Place the following code in the Command1 Click event procedure:

 Sub Command1_Click ()
 ' The routine to load data into grid
 Dim db as Database
 Dim Snap1 as Snapshot
 Dim counter%
 Set db = OpenDatabase("BIBLIO.MDB")
 Set Snap1 = db.CreateSnapshot("Authors")
 counter% = 1 'Start counter at Row=1
 Do Until Snap1.EOF
 grid1.Col = 1
 grid1.Row = counter%
 grid1.Text = Snap1(1) 'Load the Author Name
 grid1.Col = 2
 grid1.Row = counter%
 grid1.Text = Snap1(0) 'Load the Author ID
 counter% = counter% + 1
 Snap1.MoveNext
 Loop
 Snap1.Close
 db.Close
 End Sub

6. From the Run menu, choose Start (ALT, R, S), or press the F5 key
 to run the program. Click the Command1 button.

Example Four

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Add one Grid control and one Command button to Form1.

3. Using the following table as a guide, set the properties of the
 controls you added in step 2.

 Control Name Property New Value
 --
 Grid1 Cols 3
 Grid1 Rows 50
 Command1 Caption Press to Load Grid

4. Place the following code in the Form1 Load event procedure:

 Sub Form_Load ()
 'Initialize the colwidths for the grid and supply headers
 Show
 grid1.ColWidth(1) = 3000 'For Author name
 grid1.ColWidth(2) = 1000 'For Author ID
 grid1.Col = 1
 grid1.Row = 0
 grid1.Text = "Author Name" 'Header for Author Name
 grid1.Col = 2
 grid1.Row = 0
 grid1.Text = "Author ID" 'Header for Author ID
 End Sub

5. Place the following code in the Command1 Click event procedure:

 Sub Command1_Click ()
 ' The routine to load data into grid
 Dim db as Database
 Dim t as Table
 Dim counter%
 Set db = OpenDatabase("BIBLIO.MDB")
 Set t = db.Opentable("Authors")
 counter% = 1 'Start counter at Row=1
 Do Until t.EOF
 grid1.Col = 1
 grid1.Row = counter%
 grid1.Text = t(1) 'Load the Author Name
 grid1.Col = 2
 grid1.Row = counter%
 grid1.Text = t(0) 'Load the Author ID
 counter% = counter% + 1
 t.MoveNext
 Loop
 t.Close
 db.Close
 End Sub

6. From the Run menu, choose Start (ALT, R, S), or press the F5 key
 to run the program. Click the Command1 button.

Additional reference words: 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

Error Listing for MCI.VBX Control
Article ID: Q103647

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 3.0

SUMMARY
=======

Below is a listing of the error codes and numbers that are related to the
MCI.VBX control. This listing is presently missing from Microsoft Visual
Basic version 3.0 for Windows, but it can be found in the MMSYSTEMS.H file
from the Windows version 3.1 Software Development Kit and it can be found
in the WINMMSYS.TXT file.

MORE INFORMATION
================

MCI Errors Defined MCI Error Number
--

#define MCIERR_BASE 256

#define MCIERR_INVALID_DEVICE_ID 257
#define MCIERR_UNRECOGNIZED_KEYWORD 259
#define MCIERR_UNRECOGNIZED_COMMAND 261
#define MCIERR_HARDWARE 262
#define MCIERR_INVALID_DEVICE_NAME 263
#define MCIERR_OUT_OF_MEMORY 264
#define MCIERR_DEVICE_OPEN 265
#define MCIERR_CANNOT_LOAD_DRIVER 266
#define MCIERR_MISSING_COMMAND_STRING 267
#define MCIERR_PARAM_OVERFLOW 268
#define MCIERR_MISSING_STRING_ARGUMENT 269
#define MCIERR_BAD_INTEGER 270
#define MCIERR_PARSER_INTERNAL 271
#define MCIERR_DRIVER_INTERNAL 272
#define MCIERR_MISSING_PARAMETER 273
#define MCIERR_UNSUPPORTED_FUNCTION 274
#define MCIERR_FILE_NOT_FOUND 275
#define MCIERR_DEVICE_NOT_READY 276
#define MCIERR_INTERNAL 277
#define MCIERR_DRIVER 278
#define MCIERR_CANNOT_USE_ALL 279
#define MCIERR_MULTIPLE 280
#define MCIERR_EXTENSION_NOT_FOUND 281
#define MCIERR_OUTOFRANGE 282
#define MCIERR_FLAGS_NOT_COMPATIBLE 283
#define MCIERR_FILE_NOT_SAVED 286
#define MCIERR_DEVICE_TYPE_REQUIRED 287
#define MCIERR_DEVICE_LOCKED 288
#define MCIERR_DUPLICATE_ALIAS 289
#define MCIERR_BAD_CONSTANT 290

#define MCIERR_MUST_USE_SHAREABLE 291
#define MCIERR_MISSING_DEVICE_NAME 292
#define MCIERR_BAD_TIME_FORMAT 293
#define MCIERR_NO_CLOSING_QUOTE 294
#define MCIERR_DUPLICATE_FLAGS 295
#define MCIERR_INVALID_FILE 296
#define MCIERR_NULL_PARAMETER_BLOCK 297
#define MCIERR_UNNAMED_RESOURCE 298
#define MCIERR_NEW_REQUIRES_ALIAS 299
#define MCIERR_NOTIFY_ON_AUTO_OPEN 300
#define MCIERR_NO_ELEMENT_ALLOWED 301
#define MCIERR_NONAPPLICABLE_FUNCTION 302
#define MCIERR_ILLEGAL_FOR_AUTO_OPEN 303
#define MCIERR_FILENAME_REQUIRED 304
#define MCIERR_EXTRA_CHARACTERS 305
#define MCIERR_DEVICE_NOT_INSTALLED 306
#define MCIERR_GET_CD 307
#define MCIERR_SET_CD 308
#define MCIERR_SET_DRIVE 309
#define MCIERR_DEVICE_LENGTH 310
#define MCIERR_DEVICE_ORD_LENGTH 311
#define MCIERR_NO_INTEGER 312

#define MCIERR_WAVE_OUTPUTSINUSE 320
#define MCIERR_WAVE_SETOUTPUTINUSE 321
#define MCIERR_WAVE_INPUTSINUSE 322
#define MCIERR_WAVE_SETINPUTINUSE 323
#define MCIERR_WAVE_OUTPUTUNSPECIFIED 324
#define MCIERR_WAVE_INPUTUNSPECIFIED 325
#define MCIERR_WAVE_OUTPUTSUNSUITABLE 326
#define MCIERR_WAVE_SETOUTPUTUNSUITABLE 327
#define MCIERR_WAVE_INPUTSUNSUITABLE 328
#define MCIERR_WAVE_SETINPUTUNSUITABLE 329

#define MCIERR_SEQ_DIV_INCOMPATIBLE 336
#define MCIERR_SEQ_PORT_INUSE 337
#define MCIERR_SEQ_PORT_NONEXISTENT 338
#define MCIERR_SEQ_PORT_MAPNODEVICE 339
#define MCIERR_SEQ_PORT_MISCERROR 340
#define MCIERR_SEQ_TIMER 341
#define MCIERR_SEQ_PORTUNSPECIFIED 342
#define MCIERR_SEQ_NOMIDIPRESENT 343

#define MCIERR_NO_WINDOW 346
#define MCIERR_CREATEWINDOW 347
#define MCIERR_FILE_READ 348
#define MCIERR_FILE_WRITE 349

#define MCIERR_CUSTOM_DRIVER_BASE 512

Additional reference words: 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

How to Include Return Receipt Functionality w/ MAPI Control
Article ID: Q104624

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic programming system
 for Windows, version 3.0

SUMMARY
=======

This article explains how to install return receipt functionality on
a message sent in a Visual Basic application. When a message has return
receipt functionality, it means that when the message you sent is opened
by the recipient, a message is sent back to you to confirm that the
message was opened by the recipient. The returned message typically
contains the date, time, and original message subject.

MORE INFORMATION
================

In Visual Basic, you can send a message by calling the automatic dialog
box or by manually programming the message properties.

Using the automatic dialog box, the sender can select the Return Receipt
option in the Send Note dialog box.

To manually program Return Receipt functionality, use the following
example as a guide:

 ' set up a session associated with the message:
 Const SESSION_SIGNON = 1
 mapisession1.Action = SESSION_SIGNON
 mapimessages1.SessionID = mapisession1.SessionID

 ' Send the message
 Const MESSAGE_SEND = 3
 mapimessages1.MsgIndex = -1 ' The compose buffer
 mapimessages1.MsgNoteText = "How's it going?" ' The message text
 mapimessages1.MsgOrigAddress = "FredBloggs" ' Sender's alias
 mapimessages1.MsgSubject = "Hi" ' The message title
 mapimessages1.RecipDisplayName = "JoSmith" ' Recipient's alias
 mapimessages1.MsgReceiptRequested = True ' Request receipt
 mapimessages1.Action = MESSAGE_SEND ' Send message

Below is the example code that traps whether Request Receipt has been set.
Place this code at the point where the user reads the message.

 If mapimessages1.MsgReceiptRequested Then ' Check Return
receipt
 mapimessages1.MsgIndex = -1 ' Compose buffer
 mapimessages1.RecipDisplayName = sender$ ' Set sender to
receiver
 mapimessages1.MsgSubject = "RECEIVED " + title$ ' Set message title

 mapimessages1.Action = MESSAGE_SEND ' Send Return Receipt
 End If

The variables sender$ and title$ contain the alias and the message title of
the original message.

Additional reference words: 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

PRB: Default Extension Ignores File Type in VB Common Dialog
Article ID: Q106682

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0

SYMPTOMS
========

The common dialog custom control (CMDIALOG.VBX) cannot determine which file
type you choose in the Open or Save As dialog box under List Files of Type.
Your chosen file type correctly displays existing files of that type and
filters out other files. However, Visual Basic code cannot detect which
file type you chose.

Also, the default file name extension set by the DefaultExt property is not
affected by changes you make under List Files of Type. As a result, a file
name that you enter without an extension will take the extension of
DefaultExt instead of your choice under List Files of Type.

The above behavior of File Open and File Save As is different from many
other Windows applications, such as Microsoft Excel. Excel determines which
file-type filter you choose and automatically appends that extension to
any file name that you may enter without an extension.

CAUSE
=====

This behavior is by design in the common dialog control in Visual Basic.

WORKAROUND
==========

Instead of using Visual Basic's common dialog custom control, you can write
your own DLL routine in C to call the Windows common dialog routines
located in COMMDLG.DLL. Then you can call that DLL from Visual Basic.

STATUS
======

This behavior is by design. A change in the design is under review and
will be considered for inclusion in a future release.

MORE INFORMATION
================

Steps to Reproduce Behavior

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add a common dialog control to Form1. This requires CMDIALOG.VBX to

 be loaded in Visual Basic. You can load CMDIALOG.VBX automatically
 through your AUTOLOAD.MAK file or by choosing Add File from the File
 menu.

3. Add the following to the Form Load event code:

 Sub Form_Load ()

 ' Enter the following two lines as one, single line:
 CMDialog1.Filter = "Text Files *.Txt|*.Txt|Basic Files *.Bas|*.Bas|
 All Files *.*|*.*"
 CMDialog1.FilterIndex = 1 'Sets default filter to *.txt.

 CMDialog1.DefaultExt = "TXT" 'Default extension if you enter none.
 ' In the dialog box, the default extension will be applied only if
you
 ' enter the filename with no period. If you type the file name with
 ' a period and no extension (such as FILEX.), then CMDialog1.Filename
 ' always returns a blank extension.

 ' Set the common dialog Action property to 1 to execute the File Open
 ' dialog or 2 to execute the File Save As dialog:
 CMDialog1.Action = 1 ' 1=Invokes the File Open common dialog box.

 ' Limitation: The value of FilterIndex doesn't change even if you
change
 ' the file type in the Open common dialog box:
 Debug.Print CMDialog1.FilterIndex

 ' The Filename property displays the filename and path that you
entered
 ' in the Open dialog:
 Debug.Print CMDialog1.Filename 'Prints filename with path prefix
 ' Debug.Print CMDialog1.Filetitle 'Prints filename without path

 End Sub

4. Start the program or press the F5 key. The Open dialog now displays.

5. Under List Files of Type, select Basic Files *.Bas. Under File Name,
 enter a filename such as TESTFILE without an extension and without
 a period. Click OK.

 The debug window now shows the following limitations:

 a. The CMDialog1.FilterIndex property keeps its value of 1.
 CMDialog1.FilterIndex does not change in response to your changing
 the file type in the Open dialog box. This is by design in the
 common dialog custom control in Visual Basic.

 b. The CMDialog1.Filename property returns C:\VB\TESTFILE.TXT, which is
 the filename you entered plus the default extension .TXT. Notice that
 the program cannot detect the file type you chose in the Open dialog
 box. The default extension .TXT set by the DefaultExt property is
 independent of changes under List Files of Type. These are design
 limitations in the common dialog custom control in Visual Basic.

NOTE: File names that you enter with an extension keep that extension as
desired.

Workaround for Windows API Programmers

Visual Basic's common dialog custom controls for Open and Save As pass
their FilterIndex property to the Windows API function GetOpenFileName.
GetOpenFileName is located in the Windows COMMDLG.DLL file. However, Visual
Basic ignores the nFilterIndex value that the GetOpenFileName function
returns. By design, your Visual Basic program cannot access the structure
returned by the GetOpenFileName function, even by calling API routines.

You can write your own DLL routine in C to call the Windows common dialog
routines located in COMMDLG.DLL. Then call this DLL from Visual Basic.
The following documentation from the Windows Software Development Kit (SDK)
explains how to use the nFilterIndex element of the structure passed to
GetOpenFileName:

 nFilterIndex:
 Specifies an index into the buffer pointed to by the lpstrFiler member.
 The system uses the index value to obtain a pair of strings to use as
 the initial filter description and filter pattern for the dialog box.
 The first pair of strings has an index value of 1. When the user chooses
 the OK button to close the dialog box, the system copies the index of
 the selected filter strings into this location. If the nFilterIndex
 member is 0, the filter in the buffer pointed to by the
 lpstrCustomFilter member is used. If the nFilterIndex member is 0 and
 the lpstrCustomFilter member is NULL, the system uses the first filter
 in the buffer pointed to by the lpstrFilter member. If each of the three
 members is either 0 or NULL, the system does not use any filters and
 does not show any files in the File Name list box of the dialog box.

Additional reference words: 2.00 3.00
KBCategory: Prg
KBSubcategory: PrgCtrlsCus

PRB: Out of Memory Error Using VB Outline Control
Article ID: Q107769
--
The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 version 3.0
--

SYMPTOMS
========

MSOUTLIN.VBX is the outline custom control file in Visual Basic. An out
of memory error can occur with an outline control for the reasons shown
in the Cause section below.

CAUSE
=====

An outline custom control can give an out of memory error if it contains
more than 6537 items or uses too much string space. Each item cannot
exceed 1K.

Each form is limited to a single 64K data segment for all properties of
the form and all properties of controls on that form. All data that you
add at run time to the outline controls on a form is stored in this
same, shared 64K data segment. String space for outline controls will
thus be limited by memory used by other controls on that form.

If the out of memory error occurs at design time instead of run time,
you may be running into a code size limitation.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

The size allowed for the List property of an outline control is smaller
than for the following controls that store data in separate segments of
memory:

 - The List property of a combo box control or list box control.

 - The Text property of a text box control that has the MultiLine
 property set to True.

Steps to Reproduce Behavior

1. If the MSOUTLIN.VBX custom control file is not already loaded in
 Visual Basic, choose Add File from the File menu to load it.

2. Add three outline controls to Form1.

3. Design the program to fill up the controls with 300 outline records
 of 60 bytes each at run time. Use the AddItem method to add records.

4. Start the program.

A customer reported an out of memory error while populating the third
control with the 200th item. The point at which you receive an error
will depend upon the memory usage of other controls on the form.

REFERENCES
==========

 - "Visual Basic 3.0: Programmer's Guide," pages 641-642 of "Appendix D:
 Specifications and Limitations."

Additional reference words: 3.00
KBCategory: Prg
KBSubcategory: PrgCtrlsCus

VB CDK Cannot Access the Properties of the VB System Objects
Article ID: Q107850

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 version 3.0

SUMMARY
=======

The Microsoft Visual Basic Control Development Kit (CDK) provides no
mechanism to access the properties of the system objects. The Visual
Basic system objects are Screen, Printer, App, Clipboard, and Debug.

This feature is under review and will be considered for inclusion in a
future release.

MORE INFORMATION
================

The five Visual Basic system objects are as follows:

 Object Use
 --
 Screen Supplies data on current form, control, and screen display.
 Printer Enables printing text and graphics to the printer.
 App Supplies information specific to the application.
 Clipboard Gives access to the Windows Clipboard.
 Debug Enables printing to the Debug window in Visual Basic.

Because the system objects are global, you can use them in code anywhere
in your application. You cannot declare object variables for any of
these system objects, and you cannot pass the system objects to a
procedure.

The Control Development Kit is provided with the professional edition of
Visual Basic for Windows. Support for the Microsoft Control Development
Kit is currently provided only through CompuServe in the MSBASIC forum
in section 16 or through service requests in Microsoft OnLine support
services. For more information about CompuServe, please call CompuServe
at (800)848-8990. For more information about the Microsoft OnLine
support services, please call (800)443-4672.

REFERENCES
==========

 - "Visual Basic 3.0: Programmer's Guide," version 3.0, page 206, "System
 Objects."

Additional reference words: 3.00
KBCategory: Prg
KBSubcategory: PrgCtrlsCus

VB ver 3.0 CDK TN002.TXT: Custom Control Version Management
Article ID: Q107873

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, version 3.0

SUMMARY
=======

The following article contains the complete contents of the TN002.TXT file
installed in the CDK directory of the Professional Edition of Visual
Basic version 3.0 for Windows.

MORE INFORMATION
================

TN002.TXT

Microsoft Visual Basic version 3.00 for Windows
Microsoft Corporation Technical Notes

TN002.TXT: Custom Control Version Management

This note describes how to use the version management functionality for
custom controls.

==

Introduction

Visual Basic provides upward compatibility for custom controls. This means
that a custom control created for Visual Basic version 1.0 will run in
Visual Basic versions 2.0 and 3.0. If a custom control uses version-
specific features, a custom control can always explicitly test for a
specific version during initialization and thereby determine whether or not
to load.

There are cases, however, when a Visual Basic application created with
a new version of a custom control runs on a system with an older version
of the custom control. Depending on the features and implementation
of the custom control, the application may not work correctly -- or worse,
may cause VB.EXE or VBRUNx00.DLL to crash.

The following sections describe Visual Basic version 3.0's custom control
version management system, which can help avoid potential application
failure.

MODEL Structure

This is the definition of the MODEL structure used in Visual Basic version
3.0. Note the addition of the last field (USHORT usCtlVersion).

typedef struct tagMODEL
 {
 USHORT usVersion; // VB version used by control
 FLONG fl; // Bitfield structure
 PCTLPROC pctlproc; // The control procedure
 FSHORT fsClassStyle; // Window class style
 FLONG flWndStyle; // Default window style
 USHORT cbCtlExtra; // Number of bytes allocated
 // for control structure
 USHORT idBmpPalette; // BITMAP ID for tool palette
 PSTR npszDefCtlName; // Default control name prefix
 PSTR npszClassName; // Visual Basic class name
 PSTR npszParentClassName; // Parent window class, if subclassed
 NPPROPLIST npproplist; // Property list
 NPEVENTLIST npeventlist; // Event list
 BYTE nDefProp; // Index of default property
 BYTE nDefEvent; // Index of default event
 BYTE nValueProp; // Index of control value property
 USHORT usCtlVersion; // Identifies current version of the
 // custom control. The values 1 and
 // 2 are reserved for custom controls
 // created with VB1.0 and VB2.0
} MODEL;

Control Version

A custom control developer who wants to take advantage of the version
management feature in Visual Basic version 3.0 needs to provide a valid
version number in the usCtlVersion field. This value must be an unsigned
integer (USHORT), and it should be changed any time the custom control
changes its backward compatibility with previous versions.

Although any nonzero value is valid, the values 1 and 2 should not be used.
Because Visual Basic versions 1.0 and 2.0 do not support version
management, Visual Basic automatically assigns values 1 and 2 to any custom
control that has the usVersion field in the control's MODEL structure set
to VB100_VERSION and VB200_VERSION, respectively.

In order to take advantage of version management, you must set the
usVersion field of the control's MODEL structure to VB300_VERSION or
greater, or use VB_VERSION defined in a Visual Basic version 3.0 VBAPI.H
file. This allows Visual Basic to determine whether the usCtlVersion field
is defined in the MODEL structure of a given custom control.

If the custom control contains a value of 0 in the usCtlVersion field,
no version control checks are made on this custom control.

How the System Works

When you create a Visual Basic executable (.EXE) file that uses a custom

control, Visual Basic retrieves the control version number (usCtlVersion)
for that control and stores it in a special section of the .EXE file.

When you execute the application, the Visual Basic run-time support file
(VBRUN300.DLL or greater) checks the control version number recorded
in the .EXE file against the version number found in the custom control
when it is loaded into the system. If the version found in the .EXE file
is greater than the version of the control loaded into the system,
Visual Basic displays a notification that the particular custom control
(.VBX file) is out of date and will not load, consequently forcing
the application to terminate.

Additional reference words: 3.00
KBCategory: Prg
KBSubcategory: PrgCtrlsCus

Windows 3.1 VERSIONINFO - Version-Information Resource Example
Article ID: Q107992

The information in this article applies to:

 - Professional Edition of Microsoft Visual Basic for Windows, version 3.0
 - Microsoft Windows version 3.1

SUMMARY
=======

This article describes the version-information resource and the
VERSIONINFO statement.

The VERSIONINFO statement is found in the file installation library
found in Windows version 3.1. The VERSIONINFO statement creates a
version-information resource in an application. The resource contains
such information about the file as its version number, its intended
operating system, and its original filename. The resource is intended to
be used with the Windows file installation library functions.

MORE INFORMATION
================

For more information on the VERSIONINFO statement, double-click the "Win
SDK Help" icon installed with the Professional Edition of Visual Basic
version 3.0. This loads the VB3\WINAPI\WIN31WH.HLP Help file. Click the
Search button, press V to scroll to topics that begin with V, then read
the following topics:

 - VERSIONINFO
 - Version-Information Resource
 - Version Functions (3.1)

Example of the VERSIONINFO Resource

An example of the VERSIONINFO resource can be found by decompiling a
program's resources and looking for the word VERSIONINFO. For example,
you could use Resource Workshop, from Borland International, to find or
enter the VERSIONINFO resource. You can design an application's setup
program to read the resource information to detect and handle existing
old copies of your installed application.

1 VERSIONINFO LOADONCALL MOVEABLE FILEVERSION 1, 0, 0, 5 PRODUCTVERSION 1,
0, 0, 10 FILEOS VOS__WINDOWS16 FILETYPE VFT_APP BEGIN

BLOCK "StringFileInfo"
 BEGIN
 BLOCK "040904E4"
 BEGIN
 VALUE "CompanyName", "Some Company\000"
 VALUE "FileDescription", "What it is\000"
 VALUE "FileVersion", "03.00.0005\000"

 VALUE "InternalName", "XYZ.EXE\000"
 VALUE "LegalCopyright", "Copyright) abcdefg"
 VALUE "LegalTrademarks", "Whatever you want\000"
 VALUE "ProductName", "asdfg\000"
 VALUE "ProductVersion", "see above"
 VALUE "Comments", "Some comments"
 END
 END
END

The File Installation Library in Windows Version 3.1
--

The file installation library in the Microsoft Windows version 3.1
operating system makes it easier for applications to install files
properly and enables utility programs to analyze files that are
currently installed.

The file installation library includes functions that determine where a
file should be installed, identify conflicts with currently installed
files, and perform the installation process. These functions enable
installation programs to avoid the following problems:

 - Installing older versions of components over newer versions

 - Changing the language in a mixed-language system without notification

 - Installing multiple copies of a library in different directories

 - Copying files to network directories shared by multiple users

The file installation library also includes functions that enable
applications to query a version resource for information about a file
and present the information to the user in a clear format. This
information includes the file's purpose, author, version number, and so
on.

A version-information resource contains data that identifies the
version, language, and distribution of the application, dynamic-link
library, driver, or device containing the resource. Installation
programs use the functions in the file installation library (VER.DLL) to
retrieve the version-information resource from a file and to extract the
version-information blocks from the resource.

For more information about the file installation library, see the
"Microsoft Windows Version 3.1 Programmer's Reference," Volume 1.

Additional reference words: 3.00 3.10 setup set up install
KBCategory: Prg
KBSubcategory: PrgCtrlsCus

Category Keywords for All Visual Basic KB Articles
Article ID: Q108753

The information in this article applies to:

- Microsoft Visual Basic for Windows, versions 2.0 and 3.0

SUMMARY
=======

Each article in the Visual Basic for Windows collection contains at least
one keyword (called a KBSubcategory keyword) that places the article in an
appropriate category. This article lists all the KBSubcategory keywords.

MORE INFORMATION
================

Category & Subcategory Description KBSubcategory Keyword
--
Setup / Installation (Setins) Setins

Environment-specific Issues (Envt)
 VB Design Environment EnvtDes
 Run-Time Environment EnvtRun

Programming (Prg)
 Visual Basic Forms and Controls
 Standard Controls / Forms PrgCtrlsStd
 Custom Controls PrgCtrlsCus
 Third-Party Controls PrgCtrlsThird

 Optimization
 Memory Management PrgOptMemMgt
 General Optimization Tips PrgOptTips

 General VB Programming PrgOther

Advanced programming (APrg)
 Network APrgNet

 Windows Programming (APIs / DLLs)
 Printing APrgPrint
 Graphics APrgGrap
 Windowing APrgWindow
 INI Files APrgINI
 Other API / DLL Programming APrgOther

 Data Access
 ODBC APrgDataODBC
 IISAM APrgDataIISAM
 Access APrgDataAcc
 General Database Programming APrgDataOther

 3rd Party DLL's APrgThirdDLL

Inter-Application Programmability (IAP)
 OLE IAPOLE
 DDE IAPDDE
 3rd Party Interoperability IAPThird

Tools (Tls)
 Setup Toolkit / Wizard TlsSetWiz
 Control Development Kit (CDK) TlsCDK
 Help Compiler (HC) TlsHC

References (Refs)
 Documentation / Help File Fixes RefsDoc
 Product Information RefsProd
 Third-Party Information RefsThird
 PSS-Only Information RefsPSS

Using Keywords to Query the KB

At Microsoft, we use the subcategory keywords to organize the articles for
Help files and for the FastTips Catalog. You can use them to query the
Microsoft Knowledge Base for Visual Basic articles that apply to that
category or subcategory. For example, you can find all the general database
programming articles by querying on the following words in the Microsoft
Knowledge Base:

 visual and basic and APrgDataOther

Use the asterisk (*) wildcard to find articles that fall into the general
categories or into an intermediate subcategory. The first element in each
keyword is the category. For example, to find all the articles that apply
to Visual Basic Forms and Controls regardless of whether they are standard,
custom, or third-party controls, use the following words to query the
Microsoft Knowledge Base:

 visual and basic and PrgCtrls*

To find all advanced programming articles, query on these words:

 visual and basic and APrg*

Add KBSubcategory Keyword to Each Article

When contributing an article to the Visual Basic Knowledge Base, add the
appropriate KBSubcategory keyword to the bottom of the article on the
KBSubcategory line. Each article in the Visual Basic for Windows
collection contains the following section at the bottom of the article:

Additional reference words:
KBCategory:
KBSubcategory: <keyword>

An article usually has only one subcategory keyword, but it may have more.

If you are interested in contributing, please obtain the guidelines by

querying on the following words in the Microsoft Knowledge Base:

 visual and basic and kbguide and kbartwrite

Additional reference words: 3.00 dskbguide subcatkey
KBCategory:
KBSubcategory: RefsPSS

How to Display Multiple Foreground Text Colors in VB List Box
Article ID: Q108811

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SUMMARY
=======

To set the foreground and background color of a list box control, set the
ForeColor and BackColor properties at either design time or run time. All
text in a list box uses the color set by the ForeColor property. The text
is printed against a background color set by the BackColor property.

Visual Basic doesn't directly support the display of text of different
colors simultaneously in the list box. This article describes how to
display words of different colors simultaneously in a list box by using an
indirect technique.

MORE INFORMATION
================

You can display lines or words of different colors simultaneously in a
list box by using one of the following indirect techniques.

1. Simulate the list box with a picture box control. You can store the
 desired text strings in an array of strings, and use the Print
 method to write the array entries into the picture box with different
 ForeColor properties. For example:

 picture1.BackColor = QBColor(14) ' 14=Light yellow
 picture1.ForeColor = QBColor(4) ' 4=Red
 picture1.Print "in living red"
 picture1.ForeColor = QBColor(2) ' 2=Green
 picture1.Print "in living green"

 You can also add a vertical scroll bar next to the picture box. When the
 scroll bar is scrolled, your code needs to redraw the picture box. The
 ForeColor property of the picture box controls the current color used
 by the Print method. The picture box will not let you highlight text.
 NOTE: The BackColor method erases any pre-existing text on the picture
 control.

2. For coloring list box entries with multiple foreground colors, the
 Desaware company provides two solutions:

 a. The MLIST2.VBX control file is included with the Custom Control
 Factory product from Desaware. MLIST2.VBX allows each line in a list
 box to be colored independently. All words on the same line must be
 the same color. MLIST2.VBX comes with full source code.

 b. A more flexible and advanced solution is to turn Visual Basic's list

 box into an owner-draw list box. Desaware says that you can make true
 owner-draw list boxes with their SpyWorks-VB product. SpyWorks-VB
 allows you to color each entry of the list box with the full power of
 the Windows API drawing functions. SpyWorks-VB comes with sample
 source code for an owner-draw list box and command button, along with
 explanations of how to turn the standard controls into owner-draw
 controls. See the section on owner-draw controls further below.

How to Contact Desaware

NOTE: Desaware products are manufactured independent of Microsoft.
Microsoft makes no warranty, implied or otherwise, regarding these
products' performance or reliability.

Desaware
5 Town & Country Village #790
San Jose, CA 95128
Contact: Gabriel Appleman (213) 943-3305
 Dan Appleman (408) 377-4770
Fax: (408) 371-3530

The Desaware company offers the following products:

1. Custom Control Factory -- an interactive development tool for creating
 custom controls including Animated Pushbuttons, Multistate Buttons,
 enhanced buttons, check box, and option button controls for Windows
 applications.

2. CCF-Cursors -- provides you with complete control over cursors (mouse
 pointers) in Visual Basic applications. Create your own cursors or
 convert icons to cursors, and much more. Includes over 50 cursors.

3. SpyWorks-VB -- an advanced development tool for use with Visual Basic.

Owner-Draw Controls in Windows

The owner-draw list capability is appropriate for advanced programmers
for Microsoft Windows. You will need a good reference for the Windows
API to learn the required drawing functions.

Owner-draw controls were introduced in Windows version 3.0. Because your
application does all the drawing of the contents of the controls, you
can customize them any way you like. Owner-draw controls are similar to
predefined controls in that Windows will handle the control's
functionality and mouse and keyboard input processing. However, you are
responsible for drawing the owner-draw control in its normal, selected,
and focus states.

You can create owner-draw controls from the menu, button, and list-box
classes. You can create owner-draw combo boxes, but they must have the
CBS_DROPDOWNLIST style, which equates to a static text item and a list
box. The elements of an owner-draw control can be composed of strings,
bitmaps, lines, rectangles, and other drawing functions in any
combination, in your choice of colors.

REFERENCES
==========

 - "Microsoft Windows Programmer's Reference"

Additional reference words: 3.00
KBCategory: Prg
KBSubcategory: PrgCtrlsCus PrgCtrlsStd PrgCtrlsThird

PRB: Using RecordCount with VB Dynasets, Snapshots, and Tables
Article ID: Q109053

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 version 3.0.

SYMPTOMS
========

The RecordCount property, when used with a Dynaset or Snapshot, can
sometimes return an incorrect number of records. This applies to the
Microsoft Access database engine that is built into Visual Basic
version 3.0.

CAUSE
=====

For Dynasets and Snapshots, the RecordCount property does not
automatically return the number of records that exist in the recordset.
RecordCount returns the number of records accessed. If you don't do a
MoveLast method immediately before checking the record count, you will
get an incorrect, smaller count.

RESOLUTION
==========

To determine the number of records in a Dynaset or Snapshot, use the
MoveLast method before checking the RecordCount property. This
requirement is by design.

A faster way to find the number of records in a whole table is to use
the RecordCount property of a Table. See examples below.

NOTE: If you add or delete records to a table within a transaction, and
then roll back the transaction, the value of the RecordCount property is
not adjusted accordingly.

STATUS
======

This behavior is by design because otherwise, Visual Basic would have to do
an implicit MoveLast. This would be very slow with large record sets and
especially with remote databases, so the decision is left up to the
programmer.

MORE INFORMATION
================

NOTE: If your data is displayed in a Grid control, the RecordCount will
be one greater than the last line number in the grid because the grid
starts at zero.

How to Count Records in Whole Table Quickly by Using RecordCount Property
--

1. Start a new project in Visual Basic. Form1 is created by default.

2. Double-click the form to open the code window. Add the following code to
 the Form Load event:

 Sub Form_Load ()
 Dim MyDB As Database
 Dim tb As Table
 Set MyDB = OpenDatabase("C:\VB3\BIBLIO.MDB")
 Set tb = MyDB.OpenTable("authors")
 form1.Show ' Must Show form1 in Load event before Print works.
 Print "Table record count=" & tb.RecordCount
 End Sub

4. Start the program (or press F5). The BIBLIO.MDB file shipped with
 Visual Basic 3.0 contains 46 records in the Authors table. Close
 the form to end the program.

How to Count Records in Whole Table Quickly by Using ListTables Method
--

The following steps count the number of records in a table without
opening the table:

1. Create a Snapshot of the Tabledefs collection using the ListTables
 method. The ListTables method creates a Snapshot with one record for
 each Table or QueryDef in a specified database.

2. Examine the RecordCount field of the record corresponding to your table
 in that Snapshot. That RecordCount field is not a property; it is a
 field in a record in a Snapshot that is returned by the ListTables
 method.

The following sample program performs the above two steps:

 Sub Form_Load ()
 Const DB_TABLE = 1 ' Constant taken from DATACONS.TXT file.
 Dim db As Database
 Dim snap As Snapshot
 Set db = OpenDatabase("C:\VB3\BIBLIO.MDB")
 Set snap = db.ListTables() ' Copy Table information to Snapshot.
 Do While Not snap.EOF
 If snap("TableType") = DB_TABLE Then
 'Enter the Table name for which you want a record count:
 If snap("Name") = "Authors" Then
 MyRecordCount = snap("RecordCount")
 End If
 End If
 snap.MoveNext ' Move to next record.
 Loop
 snap.Close
 form1.Show ' Must Show form1 in Load event before Print works.
 Print MyRecordCount
 End Sub

How to Count Records in Snapshot, Dynaset, or Data Control
--

NOTE: A MoveLast will be slow on a large table or set. Only use the
method in the section below for counting subsets of the table. To count
the number of records that comprise the whole table, use one of the
above table RecordCount techniques.

If you are using a Snapshot, Dynaset, or the data control, you can count
the records in the current recordset by first doing a MoveLast. Then
use the RecordCount property. This count is only accurate for that
instant, because another user could be simultaneously adding or deleting
records to the underlying table. By design, a data control is linked to
a Dynaset.

A MoveLast on a recordset variable (a Dynaset or Snapshot) is faster
than MoveLast on a data control. You can create a separate Snapshot
variable of your data control's recordset and invoke a MoveLast on that
Snapshot.

The following program shows how to use MoveLast and the RecordCount
property to count the number of records in a Dynaset.

 Sub Form_Load ()
 Dim MyDB As Database, MyDyna As Dynaset
 Set MyDB = OpenDatabase("C:\VB3\BIBLIO.MDB")
 Set MyDyna = MyDB.CreateDynaset("Authors")
 MyDyna.MoveLast
 MyRecordCount = MyDyna.RecordCount
 MyDyna.Close
 form1.Show
 Print MyRecordCount
 End Sub

Records Must Be Properly Added Before They Are Counted
--

The Addnew method allocates space for a new record in your database. You
then add data to the various table fields in the new record. You then do
an Update method to write the new record to the table.

The Update method saves the contents of the copy buffer to a specified
Table or Dynaset. Use Update to save any changes to a record after using
Edit or AddNew. With a data control, if an Edit or AddNew operation is
pending when you move to another record or close the recordset, Update
is automatically invoked if not stopped during the Validate event.

NOTE: In the Professional Edition, if you are not using a data control
and move to another record or close the recordset while an Edit or
AddNew operation is pending, any existing changes will be lost and no
error will occur.

Loops and RecordCount

Use EOF instead of RecordCount in loops. For example, don't use this:

 For i = 1 to ds.RecordCount ' Bad code
 ...
 Next

Use the following instead:

 Do Until ds.EOF ' Good code
 ...
 Loop

REFERENCES
==========

 - "Microsoft Visual Basic Version 3.0: Professional Features Book 2: Data
 Access Guide," page 24 (RecordCount field) and pages 61-63 (RecordCount
 property).

Additional reference words: 3.00
KBCategory: Prg
KBSubcategory: PrgCtrlsCus

Using Table Objects Versus Dynaset/Snapshot Objects in VB
Article ID: Q109218

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, version 3.0

SUMMARY
=======

This article discusses the advantages and disadvantages of using Table
objects versus Dynaset and Snapshot objects for finding and updating data
in a database table. This applies to the Microsoft Access database engine
used in Visual Basic version 3.0.

MORE INFORMATION
================

The three types of recordsets are Tables, Dynasets, and Snapshots. All
recordsets have records (rows) and fields (columns). The Professional
Edition of Visual Basic lets you create object variables of type Dynaset,
Snapshot, and Table. The Standard Edition supports Dynaset object variables
but not Snapshot or Table object variables.

A table is a fundamental part of a Database and contains data about a
particular subject. A Table object is a logical representation of a
physical table.

To make a Snapshot or Dynaset, use the CreateSnapshot or CreateDynaset
method on a Database or any recordset. A Snapshot is a static, read-only
picture of a set of records that you can use to find data or generate
reports. The records in a Snapshot cannot be updated (or modified), whereas
records in a Dynaset can be updated.

The move methods (MoveFirst, MoveLast, MoveNext, and MoveLast) apply to all
three types of recordsets (Dynasets, Snapshots, and Tables).

The find methods (FindFirst, FindLast, FindNext, and FindPrevious) apply
to Dynaset objects and Snapshot objects, but not to Table objects. The
Seek method applies only to Table objects.

For intensive searches, you may want to use both Table and Dynaset objects
on the same base table. You can use the Seek method on the Table objects
and the find methods on any open Dynasets.

Visual Basic data controls always use Dynasets. Data controls don't use
Snapshot objects or Table objects.

Dynaset objects are a set of record pointers to those records which existed
in the base table in the Database at the time the Dynaset was created. Your
Dynaset also adds pointers to any new records which you add to the Dynaset,
and deletes pointers of deleted records.

If you add a record to a base table, the record does not immediately appear

in any currently existing Dynaset based on that table. You would need to
recreate the Dynaset to see a new record that was added to the base table
after the Dynaset was created. However, if you add a new record to a
Dynaset, the record appears immediately in both the Dynaset and the base
table. Deleting a record is reflected in a similar way.

Dynasets Versus Tables in Multiuser and Single-User Environments

Table objects connect directly to base tables that are globally accessible
to all users on a multiuser system. All users using Table object variables
can see all records in the base table at all times. In contrast, Dynasets
are local to each program. Your local additions and deletions are reflected
in the Dynaset. Dynasets don't reflect records that other users added or
deleted after the local Dynaset was created.

In a multiuser environment (computer network), Dynasets may not be
suitable for updating shared tables. Data controls, because they use
Dynasets, are unsuitable for such applications as a multiuser order entry
system. NOTE: Two programs simultaneously using the same table on a single
computer act as a multiuser environment.

If another user on a multiuser system updates a record for which you have
a pointer in your Dynaset, you will see the changes whenever you request
that record. If another user adds a record to the table, you cannot see
that record because the current Dynaset doesn't contain a pointer to that
record. If another user of the base table deletes a record that is in your
Dynaset, your Dynaset keeps a pointer to that non-existent record. Your
subsequent attempts to access that non-existent record will give an error.

Data controls are suitable for most types of data browsing (read-only
access) and many types of simple data entry.

In a single-user environment, Table Objects and Dynaset Objects both update
the base table in a similar fashion when records are added or deleted. Data
controls are thus quite suitable for updating databases in single-user
environments.

Dynaset Objects:

 - Dynasets are set-oriented. You can create any arbitrary set of records
 from a single Table, or set of records joined from multiple Tables
 using an SQL SELECT statement. If you need to join tables or use
 subsets, a Dynaset is required. The only way to join more than one
 table is with a Dynaset object.

 - When Visual Basic creates a Dynaset, the Dynaset's records are ordered
 using indexes for greater speed. After the Dynaset is created, find and
 move methods within a Dynaset are non-indexed, sequential, and
 relatively slow. Using the Dynaset will be faster if you limit its size
 to a small subset of the records in the base table. Recreating the
 Dynaset with a different subset of records is faster than creating a
 huge Dynaset and navigating it using find and move methods.

 - You can sort a Dynaset on any arbitrary field, including expressions,
 such as mid([myfield],2,3), whether the field is indexed or not.

 - Using a Dynaset, you can attach external database tables to a Microsoft
 Access format database, which is the format native to Visual Basic. An
 attached table is a table from an external database linked at run time
 to a Microsoft Access format database. You cannot create a Table object
 on an attached table.

Table Objects:

 - Table objects are record-oriented rather than set-oriented. The methods
 for Table objects let you only retrieve one row at a time, and only from
 one Table at a time. Table objects don't support SQL queries or subsets,
 unless you create a Dynaset or Snapshot from the Table.

 - The Seek method finds a given record very quickly because it uses the
 Table's indexes. The Seek method is significantly faster than the find
 methods. For speed and flexibility, you can change the Index property of
 the Table object to change the order of the Seek. The Seek method can
 find values that are in indexed fields, but not in non-indexed fields.

 - You can only order the data in Table objects based on existing indexes.

Example Showing Speed of Seek in a Table Versus SQL SELECT in a Dynaset

The fastest way to find a specific record in a recordset is usually a Seek
method on a Table object. The equivalent SQL SELECT statement on a Dynaset
object is usually very close in performance, as long as the SELECT finds
just one record. A SQL SELECT that finds more than one record may be
slower.

1. Start a new project in Visual Basic. Form1 is created by default.

2. Double-click the form to open the code window. Add the following code to
 the Form Load event:

 Sub Form_Load ()
 form1.Show ' In form Load event, must show form before Print works.
 Dim t As Table
 Dim ds As Dynaset
 Dim db As database
 Set db = OpenDatabase("C:\ACCESS\NWIND.MDB")
 Set t = db.OpenTable("Customers")
 t.Index = "PrimaryKey"

 ' The following Seek is about as fast as the SQL SELECT below:
 Print Time$
 t.Seek "=", "WOLVH"
 Print Time$
 Print t("Customer ID") 'Print Customer ID value of current record

 Print Time$
 ' Enter the following two lines as one, single line:
 Set ds = db.CreateDynaset(
 "SELECT * FROM Customers WHERE 'Customer ID' = 'WOLVH' ")
 Print Time$
 End Sub

3. Start the program (or press the F5 key). Close the form to end the
 program.

REFERENCES
==========

 - Visual Basic online Help for the Table, Dynaset, and Snapshot objects,
 and their methods and properties.

 - Microsoft Visual Basic version 3.0 "Professional Features Book 2,"
 Data Access Guide section, Chapter 3.

 - The VISDATA.MAK file installed in the VB3\SAMPLES\VISDATA directory
 loads extensive examples of data access. The VISDATA sample program
 uses every data access function in Visual Basic. You can refer to the
 VISDATA source code for examples of how to use each data access
 function.

Additional reference words: 3.00 pros and cons multi-user
KBCategory: Prg
KBSubcategory: PrgCtrlsCus

PRB: Common Dialog Open: Err=20476 Buffer lpstrFile Too Small
Article ID: Q110185
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0
--

SYMPTOMS
========

The following behavior occurs with the Open file dialog box of the Common
Dialog custom control when you set the Flags property to &H200& or
OFN_ALLOWMULTISELECT, to allow selection of more than one file at once.

If you highlight more than about 20 files at once in the Open file dialog
box, the following error message displays when you click the OK button:

 The buffer at which the member lpstrFile points is too small.

Or, if error trapping is on, the Err function reports error number 20476.

In the Visual Basic environment, if you press F5 or choose Continue from
the Run menu after getting this error, you get the following error message:

 Invalid filename.

CAUSE
=====

This behavior occurs when the length of the Open dialog string containing
the file names exceeds 256, the default MaxFileSize property value.

RESOLUTION
==========

To resolve the problem, increase the MaxFileSize property to 2048:

 CMDialog1.MaxFileSize = 2048

2048 is the maximum string size for the Common Dialog File-Open box. 256 is
the default.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

You can set the Flags property of the Common Dialog to &H200&, or
OFN_ALLOWMULTISELECT, to allow multiple selections in the File Name list
box. You can select more than one file at run time by pressing the SHIFT

key and using the UP and DOWN ARROW keys to select the desired files. The
FileName property returns a string containing the names of all selected
files. The names in the string are delimited by spaces.

Steps to Reproduce Behavior

1. Start a new project in Visual Basic. Form1 is created by default.

 If the common dialog CMDIALOG.VBX file is not automatically loaded by
 AUTOLOAD.MAK in Visual Basic, load CMDIALOG.VBX as follows: choose Add
 File from the File menu, and select CMDIALOG.VBX from your
 WINDOWS\SYSTEM directory.

2. Add a Common Dialog custom control to Form1.

3. Add the following to the Form Load event code:

 Sub Form_Load ()
 CMDialog1.Flags = &H200& ' Allows selection of more than 1 file.
 CMDialog1.Filter = "ALL|*.*" ' File types to list in file box.
 ' CMDialog1.MaxFileSize = 2048 ' Add this to correct the behavior.
 CMDialog1.Action = 1 ' Action 1 = standard Open file dialog box
 End Sub

4. Start the program (or press F5). Select 20 or files at once by selecting
 the first article then pressing SHIFT+END. That highlights all files
 down to the last article. Choose the OK button. The following error
 message displays if the number of characters in all the selected file
 names, plus one character for each file name, exceeds 256:

 The buffer at which the member lpstrFile points is too small.

 If error trapping (On Error Goto) is on, the Err function reports error
 number 20476. In the Visual Basic environment, if you press F5 or choose
 Continue from the Run menu after getting this error, you get the
 following error message:

 Invalid filename.

To improve this behavior, add the CMDialog1.MaxFileSize=2048 statement
before setting the CMDialog1 Action property to 1. This increases the
maximum allowed returned string size from 256 to 2048.

REFERENCES
==========

The following corrections apply to the "Language Reference":

 - On page 363 for the MaxFileSize property, change the "Applies to:"
 section to read "Common dialog (file dialogs)." Also say that the
 maximum MaxFileSize property value is 2048.

 - On page 89, add MaxFileSize and FilterIndex to the Common Dialog
 Control "Properties (File Dialogs)" section.

Additional reference words: 3.00

KBCategory: Prg
KBSubcategory: PrgCtrlsCus

VB Crystal Reports Files to Distribute with Your .EXE Program
Article ID: Q110721

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SUMMARY
=======

You cannot distribute the CRW.EXE file to other users. CRW.EXE is the
Crystal report-designer environment for making custom reports.

To distribute custom reports that you made using CRW.EXE, add a Crystal
Custom Control to your program. You can attach your custom report to the
Crystal Custom Control by using the ReportFileName property. Visual Basic
can compile that program into an executable .EXE file. If you want to
distribute that program to other people who do not have Visual Basic
version 3.0 installed, you need to include additional files listed in the
More Information section below.

For an example showing how to use the Crystal Custom Control, run the
CRVBXSAM.MAK sample project located in the Report directory in Visual
Basic.

MORE INFORMATION
================

You can run the Crystal Reports design environment in any of the following
ways:

 - From the Window menu in Visual Basic, choose Report Designer.

 - In the Visual Basic 3.0 program group in Windows Program Manager,
 double-click the "Crystal Reports for Visual Basic" icon.

 - In File Manager in Windows, double-click the CRW.EXE file located in
 the Report directory in your Visual Basic directory.

 - You can use the Shell function to invoke the Crystal Reports design
 environment from an executable program written in Visual Basic. For
 example:

 x = Shell("CRW.EXE")

Microsoft does not allow you to distribute the Crystal Reports design
environment (CRW.EXE) with your application. To access Crystal Reports from
executable program written in Visual Basic, add a Crystal Custom Control to
your program. You can make executable .EXE program files from programs that
contain a Crystal Custom Control. If you want to distribute, sell, or test
that .EXE file on another computer that does not have Visual Basic version
3.0 for Windows installed, you need to distribute the following files with
that .EXE file:

 CRYSTAL.VBX Crystal Custom Control file
 CRPE.DLL Interface to the print engine.
 COMMDLG.DLL Printer and file selection dialog box routines.
 CRXLATE.DLL Only needed if your program uses ToWords() function.

 * PDIRJET.DLL Crystal engine DLL.
 * PDBJET.DLL Crystal engine DLL.
 * MSAJT110.DLL Microsoft Access engine DLL.
 * MSAES110.DLL Microsoft Access engine DLL.
** MSABC110.DLL Microsoft Access engine DLL.
** CTL3D.DLL Microsoft Access engine DLL.
 VB.INI Visual Basic initialization file.

NOTES:

 * Files marked with one or two asterisks should be added to the list on

 page 582 in the "Visual Basic Version 3.0: Programmer's Guide."

** Files marked with two asterisks need to be added to the list in
 Appendix A of the "Crystal Reports for Visual Basic User's Manual."

Visual Basic's run-time dynamic link library must also be distributed with
any executable Visual Basic program:

 VBRUN300.DLL

If you are making reports with ODBC, ODBC SQL Server, ODBC Oracle, Paradox,
dBASE, or Btrieve, you will need to distribute additional database-specific
files. See the REFERENCES section below.

REFERENCES
==========

 - See the "Runtime file requirements" topic in the Index of the Help menu
 topic for Crystal Reports. This is more up-to-date than the printed
 User's Manual.

 - Microsoft Visual Basic Version 3.0 "Professional Features Book 2",
 Crystal Reports for Visual Basic User's Manual.

Additional reference words: 3.00
KBCategory: Prg
KBSubcategory: PrgCtrlsCus

How to Use SizeMode Property of OLE Control to Size Display
Article ID: Q112043

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SUMMARY
=======

This article shows by example how to use the SizeMode property of the
OLE Control for Visual Basic version 3.0 to obtain a proportional display
in a limited screen space.

MORE INFORMATION
================

The SizeMode property of the OLE Control determines how the OLE control
is sized or how its image is displayed when it contains an object.

Here are the valid settings for the SizeMode property:

 0 (Default) Clip -- The object is displayed in actual size. If the
 object is larger than the OLE control, its image is clipped by
 the control's borders, showing the upper-left portion of the image.

 1 Stretch -- The object's image is sized to fill the OLE control. The
 height of the image is stretched (or shrunk) to fit the OLE control.
 The same thing happens to the width. As a result, you may get a
 distorted image. Height and width are independent, not proportional.

 2 Autosize -- The OLE control is resized to display the entire object.
 The object is displayed in actual size. By using the resize event of
 the OLE control, you can adjust the HeightNew and WidthNew parameters
 to maintain size limits of the OLE control. However, the display
 behaves as if you had used the clip setting.

Step-by-Step Example

The goal of this example is to obtain a proportional display that is
restricted to a limited screen space, that of the size of the form the OLE
control is on.

The example uses AutoSize and Stretch settings to find a proportional best
fit. The height and width of the container form supply the maximum height
and width of the image. The Autosize property supplies best-fit
information.

Then the Autosize property is set to Stretch mode for display.

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Add an MSOLE2 control to the form. When the Insert Object dialog box
 asks what type of object to insert, select the Create From File
 option and a Microsoft Word .DOC file.

3. Set the SizeMode property of the OLE control to 1 (Stretch).

4. Add the following code to the Form_Load event:

 Sub Form_Load()
 OLE1.Top = 0
 OLE1.Left = 0
 End Sub

5. Add the following code to the Resize event of the OLE control:

 Sub OLE1_Resize (heightNew As Single, WidthNew As Single)
 Dim wRatio As Single, hRatio As Single, cRatio As Single
 Dim MaxHeight As Single, MaxWidth As Single

 If OLE1.SizeMode = 2 Then
 MaxHeight = Me.Height
 MaxWidth = Me.Width
 'Calculate hRatio
 If heightNew > MaxHeight Then
 hRatio = 1 - (heightNew - MaxHeight) / heightNew
 Else
 hRatio = 1 + (MaxHeight - heightNew) / heightNew
 End If
 'Calculate wRatio
 If WidthNew > MaxWidth Then
 wRatio = 1 - (WidthNew - MaxWidth) / WidthNew
 Else
 wRatio = 1 + (MaxWidth - WidthNew) / WidthNew
 End If
 'Pick best ratio for cRatio
 If hRatio < wRatio Then
 cRatio = hRatio
 Else
 cRatio = wRatio
 End If
 'Apply changes
 OLE1.Height = CInt(cRatio * heightNew)
 OLE1.Width = CInt(cRatio * WidthNew)
 OLE1.SizeMode = 1
 ElseIf OLE1.SizeMode = 1 Then
 'Use AutoSize to recalculate ratio.
 OLE1.SizeMode = 2
 End If
 End Sub

6. Run the program.

When you double-click the OLE control and make changes to your document,
you should see the control itself change size to fit proportionally on
your form.

Additional reference words: 3.00 OLE Automation OA OLE2
KBCategory:
KBSubcategory: PrgCtrlsCus

How to View Microsoft Word Toolbars Using OLE Control
Article ID: Q112044

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0
- Microsoft Word for Windows, version 6.0

SUMMARY
=======

This article shows by example how to make a Visual Basic program display
Microsoft Word version 6.0 toolbars. It is not possible to display the
toolbars using the OLE control alone, so the following example uses an
OLE object in combination with the OLE control.

MORE INFORMATION
================

When editing a Microsoft Word document that is in an OLE control, you
may find it helpful to use the Microsoft Word toolbars. However, if you
close all your toolbars, there is no way to use the OLE control alone
to get the toolbars back. The following example shows how to access
the Word toolbars after closing them.

Step-by-Step Example

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Add an MSOLE2 control (OLE1) to Form1. When the Insert Object dialog box
 asks what type of object to insert, choose the Create From File option.
 and select a Microsoft Word .DOC file.

3. Set the SizeMode property of the OLE1 control to 1 (Stretch).

4. Add a command button (Command1) to Form1.

5. Add the following code to the click event of the Command1 button:

 Sub Command1_Click()
 Dim wbObject As Object
 ole1.Action = 7
 Set wbObject = CreateObject("Word.basic")
 wbObject.ViewToolbars "Standard", , , , , , , 1
 End Sub

6. Run the program.

7. Double-click the OLE1 control. If you see the toolbars, close them and
 press the ESC key to return control to Visual Basic. Double-click the
 OLE1 control again. This time the toolbars are gone. Now click the

 Command1 button to bring up the Standard toolbar. To bring up any of
 the other toolbars from this point, move the mouse pointer over the
 Standard toolbar. Then click the right mouse button, and choose the
 toolbar you want.

Additional reference words: 3.00
KBCategory:
KBSubcategory: IAPOLE PrgCtrlsCus

How to Print an Embedded Word Document in Visual Basic
Article ID: Q112196

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0
- Microsoft Word for Windows, version 6.0

SUMMARY
=======

Microsoft Word for Windows version 6.0 disables the ability to use the
FilePrint and FilePrintDefault methods while an object is being edited in
an OLE container. While the menu options may not be enabled, it is
still possible to get around this in code. This article explains how.

MORE INFORMATION
================

Commands that are part of the workspace are the responsibility of the top
container (the Visual Basic application). That is, the application is
responsible for the organization of windows, file level operations, and how
edits are ultimately saved. The top container must supply a single File
menu that contains file level commands such as Open, Close, Save, and
Print. If the object is an opened object server application, the commands
in its File menu are modified to show containership (Close & Return to
<container doc>, Exit & Return to <container doc>).

A well-behaved OLE server will not allow workspace commands to be executed.
This is why they are disabled. To work around the problem, edit the object
in the server application instead of using in-place editing. In the server
workspace, commands are enabled. Therefore, you can edit the object in the
server workspace and use OLE Automation to control the server to execute
the Workspace commands.

Example Program Using OLE Automation

The following example activates the Word object in the server, and uses
OLE Automation to execute the FilePrintDefault method.

NOTE: By default, Word sets background printing On. If Word quits before
printing is completed, the print job is aborted. There are two ways to
work around this:

 - Define the Word Objects globally. The objects will remain in memory
 until the container application (Visual Basic) quits. This is the
 easiest way to do it.

 -or-

 - Disable background printing in Word. You can do this by using OLE
 automation. The command is not available during in-place editing. The

 following example shows how to do this in code.

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Add a command button (Command1) to Form1.

3. Add an MSOLE2.VBX control (OLE1) to Form1. When the Insert Object
 dialog comes up, choose the Create From File option button, and select a
 Word for Windows document.

4. Add the following code to the Command1_Click event:

 Sub Command_Click()
 ' Open application in separate application Window:
 ole1.Verb = -2
 ' Activate Object:
 ole1.Action = 7
 Dim WB As object
 ' Alias WordBasic Object:
 Set WB = ole1.Object.application.wordbasic
 ' Disable background printing:
 WB.ToolsOptionsPrint , , , , , , , , , , , 0
 WB.FilePrintDefault 'Print the Word Object.
 ' Hint: it may be necessary to check page layout parameters before
 ' printing. If parameters are outside of the printable region, Word
 ' will display an error message.
 End Sub

5. Run the program, and click the Command1 button.

Additional reference words: 3.00
KBCategory:
KBSubcategory: IAPOLE PrgCtrlsCus

PRB: Serial Port Driver for WFW 3.11 Sends Extra Byte
Article ID: Q112418

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 3.0

SYMPTOMS
========

The MSCOMM.VBX custom control may appear to send an unexpected byte
when the port is closed by setting the PortOpen property to false.

CAUSE
=====

There is a known problem with the miniport driver SERIAL.386 that was
released with Windows for Workgroups 3.11. This is not a problem with
the MSCOMM control since it can be reproduced by calling the CloseComm
Windows API function directly.

STATUS
======

Microsoft has confirmed this to be a problem in Windows for Workgroups
version 3.11. We are researching this problem and will post new
information here in the Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Connect two machines using a null modem cable. You must run Windows
 for Workgroups 3.11 on the machine running Visual Basic.

2. Start a new project in Visual Basic, Form1 is created by default.

3. Add an MSCOMM (Comm1) control and a command button (Command1) to Form1.

4. Add the following code to the Command1 Click event procedure:

 Sub Command1_Click ()
 comm1.PortOpen = True
 comm1.PortOpen = False
 End Sub

5. Start the Terminal application on the second machine. In Terminal
 choose Settings Communications (ALT, S, C) and change the Baud Rate
 to 9600.

6. From the Run menu in Visual Basic on the first machine, choose Start
 (ALT, R, S) or press the F5 key to run the program. Click the

 Command1 button and the machine running Terminal will indicate that a
 byte has been transmitted from closing the port.

The problem can also be reproduced with the following method.

1. Connect two machines using a null modem cable. You must run Windows
 for Workgroups 3.11 on the machine running Visual Basic.

2. Start a new project in Visual Basic. Form1 is created by default.

3. Add a command button (Command1) to Form1.

4. Add the following Declare statements to the General declarations
 section of Form1:

 ' Enter each of the following Declare statements on one, single line:
 Declare Function OpenComm Lib "User" (ByVal lpComName As String, ByVal
 wInQueue As Integer, ByVal wOutQueue As Integer) As Integer
 Declare Function CloseComm Lib "User" (ByVal nCid As Integer)
 As Integer

5. Add the following code to the Command1 Click event procedure:

 Sub Command1_Click ()
 Dim id As Integer, success As Integer
 id = OpenComm("COM1", 1024, 128)
 success = CloseComm(id)
 End Sub

6. Start the Terminal application on the second machine. In Terminal
 choose Settings Communications (Alt, S, C) and change the Baud Rate
 to 9600.

7. From the Run menu in Visual Basic on the first machine, choose Start
 (ALT, R, S) or press the F5 key to run the program. Click the
 Command1 button and the machine running Terminal will indicate that a
 byte has been transmitted from closing the port.

Additional reference words: serial comm port
KBCategory:
KBSubcategory: PrgCtrlsCus

How to Save an Embedded Word Document in Visual Basic
Article ID: Q112440

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Word for Windows, version 6.0

SUMMARY
=======

Word version 6.0 for Windows disables the ability to do a FileSaveAs while
an object is being edited in an OLE container. While these methods may not
be enabled, it is possible to work around this limitation in code. This
article explains how.

MORE INFORMATION
================

Commands that are part of the workspace are the responsibility of the top
container (the Visual Basic application). That is, the application is
responsible for the organization of windows, file level operations, and how
edits are ultimately saved. The top container must supply a single File
menu that contains file level commands such as Open, Close, Save, and
Print.

If the object is an opened object server application, the commands in its
File menu are modified to show containership (Close & Return to <container
doc>, Exit & Return to <container doc>).

A well-behaved OLE server will not allow workspace commands to be executed.
This is why they are disabled. To work around the problem, edit the object
in the server application -- without using in-place editing. In the server,
you'll find that the workspace commands are enabled. Therefore edit the
object in the server and use OLE Automation to control the server to
execute

the Workspace commands.

Step-by-Step Example

The following example uses an OLE2 control called OLE1, which contains an
embedded Word version 6.0 document and a CommonDialog control called
CMDialog1. To make the code generic, the OLE1 control is passed to the
WordFileSave subroutine.

1. Start a new project in Visual Basic, Form1 is created by default.

2. Add a command button (Command1), MSOLE2.VBX (OLE1) control, and a
 CMDIALOG.VBX (CMDialog1) control to Form1.

3. Add the following code to the Command1_Click event:

 Sub Command1_Click ()
 ' Pass the name of the Control to WordFileSave subroutine.
 WordFileSave OLE1
 End Sub

4. Add the following code to the general declarations section of Form1:

 Sub WordFileSave (OLECtrl As Control)
 'Purpose: Example of how to save an embedded Word object from
 'Visual Basic as a Word Document.

 'Overview of technique: '
 'Activate Object. Select its contents. Copy contents to clipboard.
 'Launch a hidden instance of Word. Create a new file.
 'Paste clipboard into document. Save document.

 Dim Word As Object 'Alias to Hidden instance of Word.
 'Only if Word is not already running.
 Dim WB As Object 'alias to WordBasic object.

 OLECtrl.Action = 7 'Activate OLE control. This must be done in order
 'to have the Word Basic alias act on the correct
 'instance of Word.
 Set WB = CreateObject("Word.Basic") 'Set the object variable.

 WB.editselectall 'Select the contents of the embedded object.
 WB.EditCopy 'Copy the selection to the clipboard.
 OLECtrl.Action = 9 'Deactivate the OLE control. This must be
 'done before the following set statements to
 'reference the correct instances of Word.

 'Use the Common dialog control to display a SaveAs dialog.
 CMDialog1.Filter = "Word Document (*.Doc)|*.doc" 'Set the filter
 CMDialog1.DefaultExt = "*.doc" 'Set the default extension
 CMDialog1.FileName = OLECtrl.SourceDoc 'Set default filename
 CMDialog1.Action = 2 'Display the dialog.

 Set WB = Nothing 'Free the WB object reference.
 Set Word = GetObject("", "Word.Document.6") 'Create a hidden inst.
 Set WB = Word.application.Wordbasic 'Set WB to the WordBasic object
 'of the new instance of Word.

 WB.filenew 'Create a New file in hidden instance of Word.
 WB.editpaste 'Paste contents of clipboard into new document.
 WB.filesaveas CMDialog1.Filename 'Save file as selected by user.
 WB.fileclose 'Close document.

 Set WB = Nothing 'Free WordBasic object
 Set Word = Nothing 'Free Word Document object, if Word wasn't
 'running previously, Word will shut itself down
 'from memory; otherwise, it is up to the user to
 'shut Word down.
 End Sub

5. Run the program. The program will ask you to input a name and then save

 the document to the name that you input.

Additional reference words: 3.00
KBCategory:
KBSubcategory: IAPOLE PrgCtrlsCus

How to Create a Gantt Chart in VB Using a Graph Custom Control
Article ID: Q112650

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, version 3.0

SUMMARY
=======

A Gantt chart is a horizontal bar chart used for project planning and
reporting. The Graph custom control that comes with the Professional
Edition of Visual Basic for Windows can be used to create a Gantt chart.
This article shows by examnple how to create a Gantt chart.

MORE INFORMATION
================

To create a Gantt chart using the Graph custom control, you need to know
how many bars your graph will require. Typically this includes one project
bar and several activity bars. You will also need to know the number of
sections required in each bar. Typically each bar is divided into two
sections -- one to show actual progress on the project, the other to show
plans for the time remaining.

In the graph custom control, NumPoints represents the number of horizontal
bars needed, so the following is true:

 NumSets = (Number of Bars) * (Sections on a Bar)

 or

 NumSets = NumPoints * (typically 2)

To make the graph more readable, you can set the range of the horizontal
axis using YAxisStylealong with YAxisMax. To place tick marks, use
YAxisTicks. To clear previous data assigned to the graph, use DataReset.

To plot the bars on the graph, you need to assign values to the GraphData
property of Graph1. GraphData values that follow ThisSet = 1 assignment
indicate the beginning of the section on a bar, and the corresponding
GraphData values following the ThisSet = 2 assignment, indicate the end of
the section. For example:

To plot the following Gantt chart:

 | 5 7 11
 1 | [------------]<-------------->
 |
 | 6 8 15
 2 | [-----------]< --------------------->
 |
 |__

Make the following assignments:

 Graph1.ThisSet = 1 ' Beginning of intervals
 Graph1.GraphData = 5
 Graph1.GraphData = 6
 Graph1.GraphData = 7
 Graph1.GraphData = 8
 Graph1.ThisSet = 2 ' End of intervals
 Graph1.GraphData = 7
 Graph1.GraphData = 8
 Graph1.GraphData = 11
 Graph1.GraphData = 15

After assigning values to the graph, set the GraphType to 5 to indicate a
Gantt chart, and set GraphStyle to 1 if you want spaced bars. Set DrawMode
to 2 and DrawStyle to 1 if you want color.

Step-by-Step Example

This example creates the Gantt chart.

1. Start a new project in Visual Basic. Form1 is created by default.

2. Place a graph control (Graph1) on Form1.

3. Add the following code to the Form_Load event:

 Sub Form_Load ()
 Graph1.NumSets = 4
 Graph1.YAxisStyle = 2
 Graph1.YAxisMax = 20
 Graph1.YAxisTicks = 10
 Graph1.DataReset = 1
 End Sub

4. Add the following code to the Graph1_Click event:

 Sub Graph1_Click ()
 Graph1.ThisSet = 1 ' Set starting values for bar sections
 Graph1.GraphData = 5 ' Left half
 Graph1.GraphData = 6
 Graph1.GraphData = 7 ' Right half
 Graph1.GraphData = 8

 Graph1.ThisSet = 2 ' Set ending values for bar sections
 Graph1.GraphData = 7 ' Left half
 Graph1.GraphData = 8
 Graph1.GraphData = 11 ' Right half
 Graph1.GraphData = 15

 Graph1.GraphType = 5
 Graph1.GraphStyle = 1

 Graph1.DrawMode = 2
 Graph1.DrawStyle = 1

 End Sub

5. Run the program, and click the graph.

Additional reference words: 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

How to Size the Rows and Columns of a Grid to Fit Exactly
Article ID: Q112861

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic Programming System
 for Windows, version 2.0
- Standard and Professional Editions of Microsoft Visual Basic
 Programming System for Windows, version 3.0

SUMMARY
=======

This article explains how to size the rows and columns of a Visual Basic
grid control to allow for the display of all cells in the grid within the
current bounds of the grid. This technique is useful when the number of
rows and columns in the grid changes dynamically and you need to see all
the cells at once.

MORE INFORMATION
================

To allow all cells to be proportional and sized so that all can be seen
within the current grid, you need to set the ScaleMode property of the
grid's parent window to pixels. If the grid is on a form, the grid's parent
window is the form. However, if the grid is nested within a picture box,
then the picture box is the grid's parent window. Changing the parent's
ScaleMode property to pixels changes the grid control's Height and Width
properties to pixels. Once the grid's height and width are in pixels, it is
possible to calculate the row height and column width in pixels. The
example routine given below changes the form's ScaleMode to pixels
temporarily, and then changes it back after it is done.

To calculate the height of a row in pixels, the example code uses this
formula:

 PixelRowHeight = (Grd.Height - 2) \ nRows

The formula subtracts two pixels from the grid height to take into account
the top and bottom border. Then it divides the result by the number of rows
to get the height in pixels.

To make the rows fit exactly into the grid, the example code calculates the
remaining pixels. The number of remaining pixels is the remainder of the
division used to calculate the row height. The remaining pixels are
calculated by using this formula:

 PixelsRemaining = (Grd.Height - 2) Mod nRows

The example distributes one pixel of the remaining pixels to the height of
each row until it runs out of pixels.

Once you determine the height of a row in pixels, you can set the row
height. The RowHeight property expects the height in twips. So it is

necessary to multiply the pixel height by Screen.TwipsPerPixelY to convert
to twips. The row height does not include the border, so one pixel must be
subtracted from the row height prior to converting the height to twips and
assigning it.

Similar methods are used to calculate the width of each row in pixels and
assign it to the grid.

Step-by-Step Example

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add the following controls and set their properties using the following
 table as a guide:

 Name Properties Value

 Text1 Text 2
 Text2 Text 2
 Command1 Caption Resize
 Grid1 ScrollBars 0-None

3. Put the following code in the General Declarations section of the form:

 ' Enter the following two lines as one, single line:
 Sub SizeGrid (Frm As Form, Grd As Grid, nRows As Integer,
 nCols As Integer)

 Dim FormScaleMode As Integer 'Used to save ScaleMode

 'Save ScaleMode of form and change to pixels:
 FormScaleMode = Frm.ScaleMode
 Frm.ScaleMode = 3 'Pixels

 'Determine the height of a row in pixels and the remaining pixels:
 PixelRowHeight = (Grd.Height - 2) \ nRows
 PixelsRemaining = (Grd.Height - 2) Mod nRows

 'Set the height of each column:
 Grd.Rows = nRows
 For i = 0 To nRows - 1
 If i < PixelsRemaining Then
 'Set the height of a row:
 'One pixel is added to eat up remainder and get a perfect fit.
 Grd.RowHeight(i) = PixelRowHeight * Screen.TwipsPerPixelY
 Else
 'Set the height of a row
 Grd.RowHeight(i) = (PixelRowHeight - 1) * Screen.TwipsPerPixelY
 End If
 Next

 'Determine the width of a column and the remaining pixels:
 PixelColWidth = (Grd.Width - 2) \ nCols
 PixelsRemaining = (Grd.Width - 2) Mod nCols

 'Set the width of each column:

 Grd.Cols = nCols
 For i = 0 To nCols - 1
 If i < PixelsRemaining Then
 'Set the width of a column:
 'One pixel is added to eat up remainder and get a perfect fit
 Grd.ColWidth(i) = PixelColWidth * Screen.TwipsPerPixelX
 Else
 'Set the width of a column:
 Grd.ColWidth(i) = (PixelColWidth - 1) * Screen.TwipsPerPixelX
 End If
 Next

 'Return form to original ScaleMode:
 Frm.ScaleMode = FormScaleMode

 End Sub

4. Add the following code to the command button's click event:

 Sub Command1_Click ()
 Call SizeGrid(Form1, Grid1, CInt(Text1), CInt(Text2))
 End Sub

5. Save the project.

6. Run the example.

Enter values for the number of rows and columns in the two text boxes and
click the command button. The grid should have the exact number of rows and
columns that you specified. Also, the rows and columns should fit exactly
into the grid.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

How to Send a Mail Message Using Visual Basic MAPI Controls
Article ID: Q113033

The information in this article applies to:

- Professional Editions of Microsoft Visual Basic for Windows,
 versions 2.0 and 3.0

SUMMARY
=======

This article demonstrates how to create a Microsoft Mail message
programmatically and send it by using the Visual Basic MAPI controls. You
can use this technique to automate the process of sending messages.

MORE INFORMATION
================

The professional editions of Visual Basic versions 2.0 and 3.0 come with
the custom control MSMAPI.VBX, which contains two controls (MAPI
session control and MAPI message control) for creating Microsoft Mail
enabled applications. The MAPI session control is used to manipulate a
Microsoft Mail session, and the MAPI message control is used to create and
manipulate mail messages. It is possible to use these two controls to
automate the process of sending mail messages.

The following example illustrates the use of the MAPI controls to send
messages. The example creates a mail message with an attachment and sends
it to a recipient.

Step-by-Step Example

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add MSMAPI.VBX to the project.

3. Add a MAPI session control (MAPISession1) and a MAPI message control
 (MAPIMessages1) to the form.

4. Add a command button (Command1) to the form.

5. Put the following code in the command button click event.

 Sub Command1_Click()
 'MAPI constants from CONSTANT.TXT file:
 Const SESSION_SIGNON = 1
 Const MESSAGE_COMPOSE = 6
 Const ATTACHTYPE_DATA = 0
 Const RECIPTYPE_TO = 1
 Const MESSAGE_RESOLVENAME = 13
 Const MESSAGE_SEND = 3
 Const SESSION_SIGNOFF = 2

 'Open up a MAPI session:
 MapiSession1.Action = SESSION_SIGNON
 'Point the MAPI messages control to the open MAPI session:
 MapiMessages1.SessionID = form1.MapiSession1.SessionID

 MapiMessages1.Action = MESSAGE_COMPOSE 'Start a new message

 'Set the subject of the message:
 MapiMessages1.MsgSubject = "This is the subject."
 'Set the message content:
 MapiMessages1.MsgNoteText = " This is the mail message."

 'The following four lines of code add an attachment to the message,
 'and set the character position within the MsgNoteText where the
 'attachment icon will appear. A value of 0 means the attachment will
 'replace the first character in the MsgNoteText. You must have at
 'least one character in the MsgNoteText to be able to attach a file.
 MapiMessages1.AttachmentPosition = 0
 'Set the type of attachment:
 MapiMessages1.AttachmentType = ATTACHTYPE_DATA
 'Set the icon title of attachment:
 MapiMessages1.AttachmentName = "System Configuration File"
 'Set the path and file name of the attachment:
 MapiMessages1.AttachmentPathName = "C:\CONFIG.SYS"

 'Set the recipient type. RECIPTYPE_TO sends message to recipient:
 MapiMessages1.RecipType = RECIPTYPE_TO
 'Set the recipient's E-Mail name.
 'You can have multiple recipients separated by semicolons
 '*Change to a valid e-mail name*
 MapiMessages1.RecipDisplayName = "EddieSpaghetti"
 'MESSAGE_RESOLVENAME checks to ensure the recipient is valid and puts
 'the recipient address in MapiMessages1.RecipAddress
 'If the E-Mail name is not valid, a trappable error will occur.
 MapiMessages1.Action = MESSAGE_RESOLVENAME
 'Send the message:
 MapiMessages1.Action = MESSAGE_SEND

 'Close MAPI mail session:
 MapiSession1.Action = SESSION_SIGNOFF
 End Sub

6. Save the project.

7. Run the code, and click the command button.

The program should start a MAPI session, create a message, send the
message, and then close the session.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

VB Out of Stack Space Error w/ LoadPicture in Form_Paint Event
Article ID: Q72675

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

An "Out of stack space" error can occur when you use a LoadPicture
method within a Form_Paint event.

MORE INFORMATION
================

The Visual Basic stack can be exhausted when the LoadPicture method is
executed within a [control/form]_Paint event. The LoadPicture method
generates a [control/form]_Paint event itself, and when performed
within a _Paint event, the program will repeat the cycle until the
stack is exhausted.

The following code example demonstrates that the Form_Paint event is a
recursive procedure when a LoadPicture method is included in the
_Paint event code.

After you add the code to your program, run the program and notice how
many times the message "Form_Paint Count :" is displayed within the
Immediate Window before you receive the "Out of stack space" error
message.

Sub Form_Paint ()
 Static Count
 Count = Count + 1
 Debug.Print "Form_Paint Count : "; Count
 Form1.picture = LoadPicture("c:\windows\chess.bmp")
End Sub

To remedy the situation, move the LoadPicture to another event
handler, such as the Form_Load event. Since these bitmaps are
automatically refreshed when needed, you don't have to maintain the
picture within a Paint event.

The Visual Basic stack is limited to 16K bytes, and cannot be changed.

Additional reference words: 1.00 2.00
KBCategory:
KBSubcategory: APrgGrap PrgOptMemMgt

Comments and Blank Lines Increase Size of VB 1.0 .EXE File
Article ID: Q73697

The information in this article applies to:

 - Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

Each line containing blank space or a comment in any code window of a
Visual Basic for Windows, version 1.0 application adds 2 bytes to the size
of the compiled executable file (.EXE).

This behavior does not occur in Microsoft Visual Basic programming system
for Windows, versions 2.0 and 3.0.

MORE INFORMATION
================

The 2 byte overhead for each line containing blank space or a comment
is generated as part of the pseudo-code for the application in the
VB.EXE development environment. The program is run in "interpreted
mode" based on this pseudo-code. Because an .EXE program is generated
based on this pseudo-code (in other words, Visual Basic for Windows
does not use a compiler and linker), the 2 byte overhead is copied
to the .EXE program. The only workaround for this behavior is to
remove comments and blank lines before compiling the Visual Basic
for Windows project.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgOptTips

How to Optimize Size and Speed of Visual Basic Applications
Article ID: Q73798

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

This article describes how to optimize Visual Basic applications for size
and speed.

MORE INFORMATION
================

Below are guidelines to help increase speed, available resources,
available RAM, and available disk space in Visual Basic:

Increase Speed

 - Preload forms.
 - Store graphics as bitmaps.
 - Place debug routines in a separate module.
 - Use Dynamic Link Library (DLL) routines.

Increase Available Resources

 - Create simulated controls using a graphic object.
 - Draw graphics images during run time.

Increase Available RAM

 - Use Integer variables whenever possible.
 - Create dynamic arrays to free arrays when not needed.
 - Drop/unload controls and forms when not needed.
 - Use local variables.

Increase Disk Space

 - Build controls at load time.
 - Minimize header size.
 - Delete unnecessary functions and subroutines.
 - Delete unused objects and associated methods.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgOptTips

How to Determine Display State of a VB Form, Modal or Modeless
Article ID: Q77316

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
--

SUMMARY
=======

The Show method in the Visual Basic for Windows language can display a
form either as modal or modeless. No direct support exists in the
language to determine the display state of the form without maintaining
global variables that contain the display state of the form. However,
the Windows API function GetWindowLong can be used to check the display
state of the form.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

When Visual Basic for Windows displays a modal form (.Show 1), all other
forms will be modified to contain the Window Style WS_DISABLED. The
Windows API function GetWindowLong can be used to return the Window
Style of another form to check for the WS_DISABLED style.

The following code demonstrates this process:

Add the following to the General Declarations section of Form1 and
Form2:

DefInt A-Z
Global Const GWL_STYLE = (-16)
Global Const WS_DISABLED = &H8000000
Declare Function GetWindowLong& Lib "user" (ByVal hWnd, ByVal nIndex)

Form1.Frm

Sub Form_Click ()
 ' Flip between "Modeless" and "Modal" display states.
 Static ShowStyle
 Unload form2
 form2.Show ShowStyle
 ShowStyle = (ShowStyle + 1) Mod 2
End Sub

Form2.Frm

Sub Form_Paint ()
 ' Get the Window Style for Form1.

 WinStyle& = GetWindowLong(Form1.hWnd, GWL_STYLE)
 If WinStyle& And WS_DISABLED Then
 ' The WS_DISABLED style is set on "FORM1" when "FORM2"
 ' is displayed with the Modal flag (Show 1).
 Print "Modal - Show 1"
 Else
 ' The WS_DISABLED style is not set on "FORM1" when "FORM2"
 ' is displayed with the Modeless flag (Show or Show 0).
 Print "Modeless - Show"
 End If
End Sub

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgWindow PrgOptTips

Example of Sharing a Form Between Projects in VB for Windows
Article ID: Q81222

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

Microsoft Visual Basic for Windows allows you to share forms between
projects. When you make a change to a shared form in one project, that
change will be automatically updated in the other projects that share
the form.

A workaround is also available if you want to change a shared form but
do not want to update the form in other projects.

Further below is an example of how to use this shared form feature in
Visual Basic for Windows, and an example of how to change a shared form
without updating it in shared projects.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

Below are two examples: the first shows how to update shared forms,
and the second demonstrates how to change a shared form without having
those changes affect the same form in other projects.

Example 1

1. Run Visual Basic for Windows, or from the File menu, choose New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 is created by default.

2. Add a couple text boxes and command buttons to Form1 by
 double-clicking the appropriate tools in the toolbox and placing
 the controls at certain locations on the form. From the Properties
 Bar, change the FormName property of Form1 to Test1.

3. From the File menu, choose Save Project As. Save Test1 as TEST1.FRM
 and save the project as TEST1.MAK.

4. Start a new project by choosing New Project from the File menu.

5. From the File menu, choose Add File, and select TEST1.FRM.

6. Once TEST1.FRM is loaded into the project, delete the command
 buttons, and replace them with picture boxes.

7. From the File menu, choose Save Project As. Save the project as
 TEST2.MAK, and save TEST1.FRM with the same name.

8. From the File menu, choose Open Project. In the Files box, select
 TEST1.MAK.

Notice that the form has been updated to include picture boxes and the
command buttons were deleted.

Example 2

(Note that the following steps are very similar to the example above,
but with a change in step 5.)

This example demonstrates how to share forms between projects, but
with the forms being designed differently.

1. Run Visual Basic for Windows, or from the File menu, choose New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 is created by default.

2. Add a couple text boxes and command buttons to Form1 by
 double-clicking the appropriate tools in the toolbox and placing
 the controls at certain locations on the form. From the Properties
 Bar, change the FormName property of Form1 to Test3.

3. From the File menu, choose Save Project As. Save Test3 as TEST3.FRM
 and save the project as TEST3.MAK.

4. From the File menu, choose New Project.

5. From the File menu, choose Add File. In the Files box, select
 TEST3.FRM. Once the file is loaded, delete the command buttons
 and replace them with picture boxes.

6. From the File menu, choose Save File As, and save the form as
 TEST4.FRM.

7. From the File menu, choose Save Project As, and save the project as
 TEST4.MAK.

8. From the File menu, choose Open Project. In the Files box, select
 TEST3.MAK.

Notice that the form's controls have NOT been updated with picture
boxes.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgOptTips

Limit of 15 or 31 Timer Controls in Visual Basic for Windows
Article ID: Q81455

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
- Microsoft Windows versions 3.0 and 3.1

SUMMARY
=======

The Visual Basic timer control is very useful for initiating specific
code at certain time intervals. Microsoft Windows version 3.0 allows up
16 timers, and Microsoft Windows version 3.1 allows up to 32 timers.
Windows requires the use of one of the timers for itself, so you can
have up to 15 timers in a Visual Basic version 1.0 or 2.0 application in
Windows version 3.0 and up to 31 timers in Microsoft Windows version 3.1.

Additional reference words: 1.00 2.00 3.00 3.10
KBCategory:
KBSubcategory: PrgOptTips

Redim: Array Already Dimensioned Msg After Dim w/ Subscripts
Article ID: Q83238

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

You can use the ReDim statement to redimension a dynamic array only if
the array has been previously dimensioned with empty parentheses (no
subscripts), or if the array has been previously redimensioned with
ReDim. If you specified subscripts to originally dimension the array
in a Global or Dim statement, or if you previously dimensioned the
array using the Static statement in a Sub or Function, redimensioning
the array will cause an "Array already dimensioned" error.

MORE INFORMATION
================

You can use the ReDim statement to dimension an array that you have
already declared with empty parentheses either in the Global module or
in the general Declarations section. You can also use ReDim to
redimension arrays that you have dimensioned with ReDim previously
from any Sub or Function procedure.

Therefore, if you need to redimension an array in your program after
using the array, first dimension the array in the Global module using
the Global statement, or in the general Declarations section using Dim
with no subscripts. Then use ReDim with the original dimensions.
Later on, you can redimension this array again with different
subscripts.

This will enable you to change the number of subscripts in each
dimension of an array [for example, from x(15, 15) to x(32, 24)].
However, you cannot use ReDim to change the number of dimensions in an
array. For example, you cannot redimension an array from two
dimensions, such as x(15, 15), to three dimensions, such as
x(64, 1, 5).

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgOptTips

LONG: List of VB Version 1.0 for Windows Trappable Errors
Article ID: Q87003

The information in this article applies to:

 - Microsoft Visual Basic Programming System for Windows, version 1.0

SUMMARY
=======

This article lists error codes, messages, and explanations of the
errors that you can trap at run-time using the On Error statement and
the Err function in Microsoft Visual Basic.

MORE INFORMATION
================

The following information was taken from the help file VB.HLP.

Trappable Errors

 3 Return without GoSub

 A Return statement doesn't have a corresponding GoSub statement.

 Unlike For...Next, While...Wend, and Sub...End Sub, which are
 matched at compile time, GoSub and Return are matched at run time.

 5 Illegal function call

 Possible causes:

 - A statement or function has an improper or out-of-range
 argument. For example:

 - A negative or unreasonably large subscript.
 - A negative number raised to a non-integer power.
 - A negative record number in a Get or Put statement.
 - An I/O function or statement (Loc or LOF, for example)
 performed on a device that does not support it.

 - Strings are concatenated to create a string greater than 65,535
 characters in length.
 - Invalid method call, such as an inappropriate method argument.
 See Help on the method for the valid arguments.

 6 Overflow

 Possible causes:

 - The result of an assignment, calculation, or data type
 conversion is too large to be represented within the range
 allowed for that type of variable.
 - An assignment to a property exceeds the maximum value the

 property can accept. The assignment may not necessarily be one
 that you have made in your code. Some methods make automatic
 assignments to properties. For example, in the course of
 execution, the Print method changes CurrentX and CurrentY
 properties. Any attempt to print at an invalid CurrentX or
 CurrentY results in an Overflow error.

 7 Out of memory

 More memory was required than is available. To prevent this error
 you should try the following:

 - Close any unneeded applications, documents, or source files
 that are in memory.
 - If you have extremely large modules or procedures, consider
 breaking them into smaller ones. This doesn't save memory but
 it can prevent hitting 64K segment boundaries.
 - If you are running Windows in standard mode on a 386 or 486
 computer, try enhanced mode.
 - If you are running Windows in enhanced mode, free up some disk
 space, or least ensure that some space is available.
 - Eliminate terminate-and-stay-resident programs.
 - Eliminate unneeded device drivers.
 - Reduce the size of your MS-DOS buffers. To do this, reset the
 "Buffers =" setting in your CONFIG.SYS file and reboot.

 9 Subscript out of range

 Possible causes:

 - Reference to a non-existent array element. The subscript may be
 larger or smaller than the range of possible subscripts, or the
 array may not have dimensions assigned at this point in the
 program.
 - You are trying to Dim or ReDim an array to a size greater than
 64K (65,535) bytes.

 10 Duplicate definition

 The specified name is already used at this level of scope. You can
 use the Find command on the Code menu to help you locate the
 duplicate name. Before you do this, remove the type declaration
 character, if there is one, since a conflict occurs if the names
 are the same and the type declaration characters are different.

 Possible causes:

 - A new variable or procedure has the same name as an existing
 variable or procedure.
 - A Const statement uses the same name as an existing variable or
 procedure.
 - You declared a fixed array more than once.
 - You tried to use Dim or ReDim to declare the dimensions of an
 already-dimensioned dynamic array without first using Erase to
 deallocate the array.

 11 Division by zero

 This error is caused by dividing by zero in an expression.

 13 Type mismatch

 Possible causes:

 - The variable or property is not of the correct type. For
 example, a variable that requires an integer value cannot
 accept a string value.
 - An If TypeOf statement was used with something other than a
 control.
 - An object that is not a form has been passed to a procedure
 that is expecting a form as an argument.
 - An object that is not a control has been passed to a procedure
 that is expecting a control as an argument.

 14 Out of string space

 Possible causes:

 - You tried to exceed the 64K string space allowed for all your
 global and module-level string variables.
 - You tried to exceed the 64K string space allowed for all your
 local (procedure-level) string variables.
 - You tried to create a single string array larger than 64K.
 - You may have run out of memory, which has prevented a 64K
 string space from being allocated.

 16 String formula too complex

 A string expression is too complicated. Strings not assigned to
 variables (such as those returned by functions) are assigned to
 temporary locations during string expression evaluation. Having a
 large number of such strings can cause this error. Try assigning
 these strings to variables and use the variables in the expression
 instead.

 17 Can't continue

 You have made a change to the code that prevents execution from
 continuing. Choose Restart or End from the Run menu.

 19 No Resume

 The program encountered the end of the program while the program
 was executing an error-handling routine. Add a Resume statement to
 the error-handling routine. If you want to exit the error-handling
 routine without resuming, use an Exit statement.

 20 Resume without error

 A Resume statement has been encountered but there is no active
 error-handling routine because there is no On Error statement.

 28 Out of stack space

 Possible Causes:

 - Too many active Function or Sub calls. Check that both event
 and general recursive procedures are not nested too deeply and
 that they terminate properly.
 - Any cascading events.
 - Local variables require more local variable space than is
 available. Try declaring some variables at the module level
 instead. You can also use the Static keyword with Sub or
 Function to declare the entire procedure, in which case all
 local variables will be static. Or you can use the Static
 statement to declare static variables within individual
 procedures.
 - Fixed-length strings use more stack space than variable-length
 strings. Try redefining some of your fixed-length strings as
 variable-length strings.
 - Too many nested DoEvents.

 35 Sub or Function not defined

 A Sub or Function procedure is called but is not defined.

 Possible causes:

 - The specified procedure is not visible to the calling
 procedure. Procedures in forms cannot be called from procedures
 outside the form. Use Find on the Code menu to locate the
 procedure.
 - You have declared a dynamic-link library routine, but the
 routine is not in the specified library.
 - You have misspelled the name of your procedure.

 48 Error in loading DLL

 The specified DLL cannot be loaded. This is usually because the
 file specified with the Lib clause in the Declare statement is not
 a valid DLL.

 Possible causes:

 - The file is not DLL executable.
 - The file is not a Windows DLL.
 - The file is an old Windows DLL incompatible with Windows
 protect mode.

 51 Internal error

 An internal malfunction occurred in Visual Basic. Use the Product
 Assistance Request form included with your documentation to report
 to Microsoft the conditions under which the message appeared.

 52 Bad file name or number

 A statement or command refers to a file with a file number or
 filename that is not specified in the Open statement or is out of
 the range of file numbers specified earlier in the program.

 53 File not found

 Possible causes:

 - A Kill, Name, or Open statement refers to a file that does not
 exist.
 - An attempt has been made to call a procedure in a DLL and the
 library filename specified in the Lib clause of the Declare
 statement cannot be found.

 54 Bad file mode

 Possible causes:

 - A Put or Get statement specified a sequential file.
 - A Print # statement specified a sequential file opened for
 input.
 - An Input # statement specified a file opened for output or
 appending.

 55 File already open

 Possible causes:

 - A sequential-output-mode Open statement was executed for a
 file that is already open.
 - A Kill statement refers to an open file.

 57 Device I/O error

 An input or output error occurred while your program was using a
 device such as the printer or disk drive.

 58 File already exists

 The filename specified in a Name statement is identical to a
 filename that already exists.

 59 Bad record length

 The length of a record variable for a Get or Put statement does
 not match the length specified in the corresponding Open
 statement. Because a 2-byte descriptor is always added to a
 variable-length string Put to a random access file, the
 variable-length string must at least two characters shorter than
 the record length specified in the Len clause of the Open
 statement.

 61 Disk full

 Possible causes:

 - There isn't enough room on the disk for the completion of a
 Print #, Write #, or Close operation.
 - There isn't enough room on the disk for Visual Basic to create
 files it requires for successful operation.

 Move some files to another disk, or delete some files.

 62 Input past end of file

 An Input # statement is reading from a null (empty) file, or from
 a file in which all data has already been read. To avoid this
 error, use the EOF function to detect the end-of-file just before
 the Input # statement.

 63 Bad record number

 The record number in a Put or Get statement is less than or equal
 to zero.

 64 Bad file name

 A filename does not follow MS-DOS naming conventions.

 67 Too many files

 Possible causes:

 - There is a limit to the number of disk files that can be open
 at one time. This limit is a function of the "Files=" setting
 in your CONFIG.SYS file. Increase that number and reboot.
 - The operating system has a limit to the number of files in the
 root directory (usually 512). If your program is opening,
 closing, and/or saving files in the root directory, change
 your program so it uses a subdirectory.

 68 Device unavailable

 The device you are trying to access is not online or does not
 exist.

 70 Permission denied

 An attempt was made to write to a write-protected disk, or to
 access a locked file. For example, this error will occur if an
 Open For Output statement is performed on a write-protected file.

 71 Disk not ready

 There is no disk in the drive specified, or the drive door is
 open. Insert a disk in the drive, close the door, and retry the
 operation.

 74 Can't rename with different drive

 You cannot use the Name statement to rename a file with a new
 drive designation. Write the file to another drive and delete the
 old file with the Kill statement.

 75 Path/File access error

 During an Open, MkDir, ChDir, or RmDir operation, the operating
 system could not make a connection between the path and the

 filename.

 Make sure the file specification is formatted correctly. A
 filename can contain a fully qualified or relative path. A fully
 qualified path starts with the drive name (if the path is on
 another drive) and lists the explicit path from the root to the
 file. Any path that is not fully qualified is relative to the
 current drive and directory.

 This error can also occur while attempting to save a file that
 would replace an existing read-only file.

 76 Path not found

 During an Open, MkDir, ChDir, or RmDir operation, the operating
 system was unable to find the specified path. Make sure the path
 is typed correctly.

260 No timer available

 Possible causes:

 - There are too many timer controls active. There is a limit of 16
 timer controls in the environment.
 - There is not enough memory to load a timer control. Try to free
 some memory by closing some applications.

280 DDE channel not fully closed; awaiting response from foreign
 application

 Your Visual Basic application has terminated one DDE conversation
 with another application and has attempted to start another, but
 the other application has not finished handling the termination of
 the first conversation.

 Possible causes:

 - The foreign application is waiting for a response from the
 user. Switch to that application and take an action appropriate
 to the message it is displaying.
 - Your code is not yielding to allow other applications to handle
 events. Call the DoEvents function and try establishing the link
 again.

281 No More DDE channels

 Too many DDE conversations active at the same time. Terminate some
 existing DDE conversations by setting LinkMode to 0 (None) before
 attempting to establish new conversations.

282 No foreign application responded to a DDE initiate

 Visual Basic could not find an application and topic corresponding
 to the application name and topic in the LinkTopic property.

 Possible causes:

 - The application specified in LinkTopic is not running.
 - The application is running, but doesn't recognize the topic of
 the link.

283 Multiple applications responded to a DDE initiate

 At least two running applications responded to the application
 name and topic you specified in the LinkTopic property. This can
 happen if several instances of the same application are running
 and you attempt to initiate a DDE conversation on a topic more
 than one of them recognize. To establish a DDE conversation, the
 combination of application and topic must be unique.

284 DDE channel locked

 You have attempted to initiate a new DDE conversation or perform a
 DDE method on a DDE link that another application has not freed.
 Try calling the DoEvents function before setting LinkTopic to Hot
 (1) or Cold (2) or before performing a LinkExecute, LinkPoke,
 LinkRequest, or LinkSend method.

285 Foreign application won't perform DDE method or operation

 An application refused to perform the DDE method or operation you
 attempted.

 Possible causes:

 - You supplied data or commands that the other application did not
 recognize. Check the application's documentation to see what
 data or commands it recognizes.
 - The LinkItem property is not set to an item that the other
 application recognizes as valid for the topic of the
 conversation. Check the application's documentation to see what
 items it recognizes.

286 Timeout while waiting for DDE response

 The other application in a DDE conversation did not respond in the
 time specified by the LinkTimeout property.

 Possible causes:

 - The other application is not responding because it is waiting
 for a response from the user. Switch to that application and
 close the dialog box or take an action appropriate to the
 message it is displaying.
 - The LinkTimeout property is set to a value that is too low. Try
 increasing the value.
 - The other application is too busy to respond to DDE messages.
 Try calling the DoEvents function before performing this DDE
 operation.

287 User pressed Alt key during DDE operation

 You pressed the Alt key while waiting for a DDE operation to be
 completed. If DDE operations are taking too long, try setting the

 LinkTimeout property to a lower value.

288 Destination is busy

 The other application in the DDE conversation is busy and cannot
 perform a DDE operation. Try calling DoEvents and attempt the DDE
 operation again.

289 Data not provided in DDE operation

 Visual Basic has encountered an unexpected error while attempting
 to perform a DDE operation. The other application informed Visual
 Basic it was supplying data in a DDE conversation but did not
 provide it when requested. The other application may not be
 performing DDE correctly.

290 Data in wrong format

 An application in a DDE conversation supplied data in an
 unexpected format. It may not be performing DDE correctly.

 Possible causes:

 - The application is supplying data in a format that Visual Basic
 does not recognize. Try initiating the conversation with a
 different topic.
 - The application is supplying text data to a picture box or
 picture data to a text box. Try initiating the conversation with
 a different control.

291 Foreign application quit

 The other application in a DDE conversation quit unexpectedly. A
 DDE operation can't take place unless the other application is
 running.

292 DDE conversation closed or changed

 The other application has closed or changed the DDE conversation
 unexpectedly. Terminate this conversation and attempt to establish
 a new conversation with the application.

293 DDE method invoked with no channel open

 A DDE method (LinkExecute, LinkPoke, LinkRequest, or LinkSend) was
 performed on a control that is not involved in a valid DDE
 conversation.

 Possible causes:

 - Changing the LinkTopic property terminates an existing DDE
 conversation but does not automatically establish a new
 conversation. After changing the LinkTopic property for a
 control, you must set the LinkMode property to 1 (Hot) or 2
 (Cold) before executing a DDE method on this control.
 - You executed a DDE method on a control with LinkMode set to 0
 (None). Set the LinkMode to 1 (Hot) or 2 (Cold) and try again.

294 Invalid DDE Link format

 The other application in a DDE conversation passed data in CF_LINK
 format but it is not valid link data.

295 Message queue filled; DDE message lost

 Visual Basic cannot keep up with the number of DDE operations
 attempted.

 Possible causes:

 - Too many DDE conversations. Try terminating some DDE
 conversations.
 - Too much code in event procedures is executing because of
 incoming DDE data. Reduce the amount of code being called as a
 result of DDE changes, or try calling the DoEvents function.

296 PasteLink already performed on this control

 You have already performed a Paste Link on this control. To paste
 a new link, first set the LinkMode property of this control to 0
 (None), then use the Paste Link command.

297 Can't set LinkMode; invalid LinkTopic

 You've tried to set the LinkMode property but can't because no
 valid LinkTopic property has been specified.

320 Can't use character device names in filenames: 'item'

 From within Visual Basic, you cannot give a file the same name as
 a character device driver, such as AUX, CON, COM1, COM2, LPT1,
 LPT2, LPT3, LPT4, or NUL.

321 Invalid file format

 The form file is damaged. Try replacing it with an undamaged copy.

340 Control array element 'item' does not exist

 You used an index value that does not correspond to an existing
 element in this control array. Adjust the value or Load a control
 into the array with an index equal to the value.

341 Invalid object array index

 The index for an object array element cannot be greater than
 32,767 or less than 0.

342 Not enough room to allocate control array 'item'

 There isn't enough memory to create all the elements of a control
 array. If a control array has discontiguous indexes, such as 0, 2,
 and 4, Visual Basic will use more memory than if the indexes were
 contiguous (0, 1, 2). Check either how you've assigned indexes at

 design time or how your program assigns indexes as it creates new
 control array elements, and make them contiguous.

343 Object not an array

 A control that is not part of any array was referred to as if it
 had an index, for example, Command1(3).Caption and Command1.Text.
 You can refer to an object as an array element only if it is
 defined to be part of an control array. See the online Help topic
 titled "Creating a Control Array."

344 Must specify index for object array

 The control referred to is part of a control array. Refer to it
 using CtlName(index). If you created the control at design time,
 you can determine the index of the control by selecting it and
 viewing its Index property on the Properties bar.

345 Reached limit: cannot create any more controls on this form

 No more than 255 controls are allowed on each form. The total of
 all menu items and controls on your form would exceed 255 if any
 more were added.

360 Object already loaded

 The control in the control array has already been loaded. If it
 was loaded during run time, it can be removed with the Unload
 statement.

361 Can't load or unload this object

 Possible causes:

 - You've attempted to Load or Unload a system object - Screen,
 Printer, or Clipboard.
 - You've attempted to Load or Unload a control that is not an
 element of an existing control array. For example, Load
 CtlArray will produce this error, while Load CtlArray(3) will
 not. If a control is already loaded, you can make it visible
 with the Visible property.

362 Can't unload controls created at design time

 Only control array elements loaded at run time can be unloaded. If
 a control is created at design time, it cannot later be unloaded,
 even if it is part of a control array. However, you can hide any
 control by setting the Visible property to True.

363 Custom control 'item' not found

 The form being loaded contains a custom control that is not part of
 the current project. Use the Add File command on the File menu to
 add the custom control to the project.

364 Object was unloaded

 A form was unloaded from its own Form_Load procedure. The form that
 was unloaded may have been implicitly loaded. For example, the
 following will implicitly load Form2:

 Form2.BackColor = Form1.BackColor

365 Unable to unload within this context

 In some situations you are not allowed to unload a form or a
 control on a form. Some examples of when this error occurs include
 trying to unload a form or control on the form:

 - During any Paint event for the form or any control on the form.
 - Whenever a Combo Box is pulled down on the form being unloaded
 or containing the control being unloaded.

380 Invalid property value

 An inappropriate value is assigned to a property. To find out find
 out what values are valid for a property, see Remarks in the
 property's Help topic.

381 Invalid property array index

 You tried to use an inappropriate property array index value. List
 Property and Fonts Property index values must be greater than 0
 and less than 32,767. For example, List1.List(3) is valid.

382 'item' property can't be set at run time

 The following properties can't be set at run time:

 ActiveControl
 ActiveForm
 BorderStyle (for form and text box only)
 ControlBox
 CtlName
 FontCount
 Fonts
 FormName
 hDC
 hWnd
 Image
 Index
 List
 ListCount
 MaxButton
 MinButton
 MultiLine
 Parent
 ScrollBars
 Sorted
 Style
 Text (for list box and combo box only)
 Width (for Screen only)

383 'item' property is read-only

 The following properties are read-only at both design and run time:

 Property Object
 --
 hDC Form, picture box, Printer
 Height Combo box (with Style =1), drive, Printer
 hWnd Form
 Image Form, picture box
 List Dir, drive, file
 ListCount Combo box, dir, drive, file, list box
 Page Printer
 Parent Any control
 Text Combo box (with Style = 2), list box
 Width Printer

384 'item' property can't be modified when form is minimized or
 maximized

 The Left, Top, and Height, Width properties cannot be changed on a
 minimized or maximized form. You can set or return the state of a
 form with the WindowState property. You can prevent a user from
 maximizing or minimizing a form by setting the MaxButton or
 MinButton form properties to False (0).

385 Must specify index when using property array

 You must specify an index when using the List property or the
 Fonts property. Index values must be greater than 0 and less than
 32,767. For example, List1.List is invalid because no index is
 specified. However, List1.List(3) is valid.

386 'item' property not available at run time

 The CtlName and FormName properties are not available at runtime.

387 'item' property can't be set on this control

 Possible causes:

 - The Checked box for a Menu control can't be selected when that
 control is a parent or top-level menu.
 - The separator bar on a menu control can't be set when the
 control is a parent or top-level menu item.
 - The Visible property can't be set to False (0) for the last
 visible submenu on a parent menu. You can't have a parent menu
 with no visible submenu items.

388 Can't set Visible property from a parent menu

 The Visible property of a submenu item cannot be set from its
 parent's menu code.

400 Form already displayed; can't show modally

 You cannot use the Show method to display a modal form if the form
 is already visible. Either Unload or Hide the form before

 attempting to show it as a modal form. Don't try to display it as
 a modal form.

401 Can't show non-modal form when a modal form is displayed

 You cannot show a non-modal form when a modal form is displayed.
 Unload or Hide the modal form before attempting to use the Show
 method on another form.

402 Must close or hide topmost modal form first

 The modal form you are trying to close or hide is not on top; you
 need to Unload or Hide all modal forms that are on top of this one
 before you can continue. A modal form is a form displayed by the
 Show method with the style% argument equal to 1.

420 Invalid object reference

 The object that is referred to is not loaded.

421 Method not applicable for this object

 Object.Method is referred to, but the Method is not appropriate
 for the object. For example, Command1.AddItem produces this error
 because the AddItem method is used only with a list box or combo
 box.

422 Property 'item' not found

 Control.property or Control(index).property is referred to, but
 property is not defined for this control or you may have
 misspelled the name of the property. To see what properties are
 defined for this control, see Properties, Events and Methods in
 Help for complete information on a specific control.

423 Property or control 'item' not found

 Form.control or Form.property is referred to, but control or
 property is not defined for this form or you may have misspelled
 the name of the control or property. To see what properties are
 defined for a form, see the Form topic in Help for complete
 information. To see what controls are on this form, look at the
 list in the Code window's Object box.

424 Object required

 Property.property is referred to; you need to specify
 object.property, where object is either a form or control.

425 Invalid object use

 You've attempted an invalid assignment using a form or control. If
 you want to assign a value to a property or a property value to a
 variable, remember to include the property name in the object
 specification. For example Form1.Command1.Caption = "OK" instead
 of Form1.Command1 = "OK".

430 No currently active control

 Because no control has the focus, the reference to ActiveControl
 has no effect. You can use the SetFocus method to set the focus to
 a specified object.

431 No currently active form

 Because no form has the focus, the reference to ActiveForm has no
 effect. You can use the SetFocus method to set the focus to a
 specified object.

460 Invalid Clipboard format

 The specified Clipboard format is incompatible with the method
 being executed. GetText and SetText can be used only with CF_TEXT
 or CF_LINK formats. GetData and SetData can be used only with
 CF_BITMAP, CF_METAFILEPICT (Windows metafile picture), or CF_DIB
 (device independent bitmap) formats.

 Note: The Clipboard formats, such as CF_TEXT, and CF_BITMAP, are
 global constants that must be set to numerical values found in
 CONSTANT.TXT. If you do not initialize these in your code, Visual
 Basic treats them as variables and initializes them to zero.

 See Also
 GetFormat

461 Specified format does not match format of data

 In a GetData or SetData method, the Clipboard format you specified
 does not match the actual data. For example, you might have
 specified CF_BITMAP for the format, but the data is in the Windows
 metafile format (CF_METAFILEPICT). Make sure you specify the
 correct format for the data.

 Note: The Clipboard formats, such as CF_TEXT, and CF_BITMAP, are
 global constants that must be set to numerical values found in
 CONSTANT.TXT. If you do not initialize these in your code, Visual
 Basic treats them as variables and initializes them to zero.

 See also
 GetFormat

480 Can't create AutoRedraw image

 There isn't enough available memory to create a persistent bitmap
 for automatic redraw of the form or picture. Make the picture box
 control or form smaller, or reset the AutoRedraw property and
 perform your own redraw in the Paint event procedure.

481 Invalid picture

 You attempted to assign something to the Picture property of a
 form or picture box that Visual Basic doesn't recognize as an
 icon, bitmap, or Windows metafile.

482 Printer error

 There is some problem that prevents printing. Some possible causes
 are:

 - You don't have a printer selected from the Windows Control
 Panel.
 - Your printer is not online.
 - Your printer is jammed or out of paper.
 - You tried to print a form to a printer than can accept only
 text.

520 Can't empty Clipboard

 Another application is using the Clipboard and will not release it
 to your application.

521 Can't open Clipboard

 Another application is using the Clipboard and will not release it
 to your application.

Additional reference words: 1.00 2.00
KBCategory:
KBSubcategory: PrgOptTips

Differences Between QuickBasic and Visual Basic Statements
Article ID: Q87004
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
--

SUMMARY
=======

The following is a list of statements and functions not shared between
Microsoft QuickBasic version 4.5 for MS-DOS, Microsoft Visual Basic
programming system version 1.0 for Windows, and the Standard and
Professional Editions of Microsoft Visual Basic version 2.0 for Windows.

MORE INFORMATION
================

The following table compares reserved words in QuickBasic for MS-DOS
to those in Visual Basic for Windows.

Note that in many cases a statement or function is not supported in
one language or the other due to a different approach to achieve
the same result. A good example of this is the LPRINT statement in
QuickBasic. Visual Basic has a Printer object that handles the
output to the system printer.

In some cases, a statement or function is not supported because it
is a low level MS-DOS operation that conflicts with Windows, or it is
a function that is only supported in Windows.

 QuickBasic 4.5 Visual Basic 1.0 Visual Basic 2.0
Keyword for MS-DOS for Windows for Windows

BLOAD Yes No No
BSAVE Yes No No

CALL ABSOLUTE Yes No No
CALLS Yes No No
CCur No Yes Yes
CDbl No Yes Yes
CHAIN Yes No No
ChDrive No Yes Yes
CInt No Yes Yes
CLEAR Yes No No
CLng No Yes Yes
COLOR Yes No No
COM Yes No No
CSng No Yes Yes
CSRLIN Yes No No
CVD Yes No No
CVDMBF Yes No No

CVI Yes No No
CVS Yes No No
CVSMBF Yes No No

DATA Yes No Yes
DateSerial No Yes Yes
DateValue No Yes Yes
Day No Yes Yes
DEF FN Yes No No
DEF SEG Yes No No
Dir$ No Yes Yes
DoEvents No Yes Yes
DRAW Yes No No

ERDEV Yes No No
ERDEV$ Yes No No
Error$ No Yes Yes

FIELD Yes No No
FILES Yes No No
FRE Yes No No

Global No Yes Yes

Hour No Yes Yes

INKEY$ Yes No No
INP Yes No No
InputBox$ No Yes Yes
IOCTL Yes No No
IOCTL$ Yes No No

KEY Yes No No

Load No Yes Yes
LoadPicture No Yes Yes
LOCATE Yes No No
LPOS Yes No No
LPRINT Yes No No

Minute No Yes Yes
MKD$ Yes No No
MKI$ Yes No No
MKL$ Yes No No
MKS$ Yes No No
MKSMBF$ Yes No No
Month No Yes Yes
MsgBox No Yes Yes

Now No Yes Yes

ON COM Yes No No
ON KEY Yes No No
ON PLAY Yes No No
ON STRIG Yes No No
ON TIMER Yes No No
OUT Yes No No

PAINT Yes No No
PALETTE Yes No No
PCOPY Yes No No
PEEK Yes No No
PEN Yes No No
PLAY Yes No No
PMAP Yes No No
POKE Yes No No
POS Yes No No
PRESET Yes No No

QBColor No Yes Yes

RESTORE Yes No No
RGB No Yes Yes
RUN Yes No No

SADD Yes No No
SavePicture No Yes Yes
SCREEN Yes No No
Second No Yes Yes
SendKeys No Yes Yes
SETMEM Yes No No
SLEEP Yes No No
SOUND Yes No No
STICK Yes No No
STRIG Yes No No
SWAP Yes No No

TimeSerial No Yes Yes
TimeValue No Yes Yes
TROFF Yes No No
TRON Yes No No

Unload No Yes Yes
USING$ Yes No No

VARPTR Yes No No
VARPTR$ Yes No No
VARSEG Yes No No
VIEW Yes No No

WAIT Yes No No
WeekDay No Yes Yes
WIDTH Yes No No
WINDOW Yes No No

Year No Yes Yes

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgOptMemMgt

PRB: For Loop w/ Integer Counter & Increment <=.5 Causes Hang
Article ID: Q87769
--
This information applies to the following Microsoft Basic products:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
- Microsoft QuickBasic for MS-DOS, versions 4.0, 4.0b, and 4.5
- Microsoft Basic Professional Development System (PDS) for MS-DOS,
 versions 7.0 and 7.1
--

SYMPTOMS
========

If you write a FOR loop with an INTEGER or LONG variable as the FOR
loop counter and use a floating point value less than or equal to 0.5
as the FOR loop increment, the loop never terminates. This causes the
computer to hang (stop responding to input).

CAUSE
=====

All Basic programs convert floating point values less than 0.5 to the
integer value 0.

RESOLUTION
==========

To stop a program that is executing in this type of an endless loop,
press CTRL+BREAK.

STATUS
======

This behavior is by design. In other words, this is not a problem with
the FOR statement; this is the way Basic is designed to operate.

MORE INFORMATION
================

Steps to Reproduce Behavior in Visual Basic for Windows

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Add the following code to the Form_Click event procedure for Form1:

 Sub Form_Click ()
 For j& = .005 To .0062 Step .0001
 total! = total! + j&
 Next j&
 Print total!

 End Sub

3. Press F5 to run the example.

No value appears on the form. The program is in an endless loop. You cannot
access any menus. Press CTRL+BREAK to stop the program.

To change this example program so that the loop terminates, change the
type of the counter variable from LONG to SINGLE (change j& to j!).

Additional reference words: 1.00 2.00 4.00 4.00b 4.50 7.00 7.10 b_quickbas
b_basiccom
KBCategory:
KBSubcategory: PrgOptMemMgt

How to Emulate MKI$ and CVI in VB Using Windows HMemCpy
Article ID: Q87970

The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
 - Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

Visual Basic for Windows does not support the MKx$ and CVx family of
conversion functions found in earlier versions of Microsoft QuickBasic
and Basic Professional Development System (PDS) for MS-DOS. However,
you can write functions that provide this support using the hmemcpy
API routine provided by Windows version 3.1.

This article provides example routines that simulate the MKI$, MKL$, MKS$,
MKD$, CVI, CVL, CVS, and CVD functions.

MORE INFORMATION
================

The MKx$ functions convert numeric values to strings by placing the ASCII
value of each byte that represents the numeric value into a string.

Function Description
--
MKI$ Converts an integer to a 2-byte string
MKL$ Converts a long-integer to a 4-byte string
MKS$ Converts a single precision variable to a 4-byte string
MKD$ Converts a double-precision variable to an 8-byte string

The CVx functions convert strings created with the MKx$ functions back
into numeric values.

Function Description
--
CVI Converts a 2-byte string created with MKI$ to an integer
CVL Converts a 4-byte string created with MKL$ to a long integer
CVS Converts a 4-byte string created with MKS$ to a single-
 precision number
CVD Converts an 8-byte string created with MKD$ to a double-
 precision number

The hmemcpy API function can be used to emulate these functions as
demonstrated in the example below. Note that the hmemcpy API function
is not provided with Windows version 3.0, so the example below requires
Windows version 3.1.

The hmemcpy routine copies bytes from a source buffer to a destination
buffer. You can use this routine to copy the value of each byte in a
numeric value to a corresponding byte in a string to emulate the MKx$

functions. Similarly, you can use the same technique to copy the bytes
from a string to a numeric value, to emulate the CVx functions.

Note that the hmemcpy routine requires the addresses pointing to the
actual location of the data to be copied from and written to. Therefore,
it is necessary to pass strings by value (ByVal) in order to pass the
location of the string data, as opposed to passing the location of the
string descriptor. Similarly, it is necessary to initialize the string
size by assigning the string to an appropriate number of characters.

To use the following routines in your Visual Basic for Windows
application, you must Declare the hmemcpy routine. Add the
following code to the general declarations section of the form:

 ' Enter the following Declare statement on one, single line.
 Declare Sub hmemcpy Lib "kernel" (hpvDest As Any, hpvSource As Any,
 ByVal cbCopy As Long)

 Function MKI$ (x As Integer)
 temp$ = Space$(2)
 hmemcpy ByVal temp$, x%, 2
 MKI$ = temp$
 End Function

 Function CVI (x As String) As Integer
 If Len(x) <> 2 Then
 MsgBox "Illegal Function Call"
 Stop
 End If
 hmemcpy temp%, ByVal x, 2
 CVI = temp%
 End Function

 Function MKL$ (x As Long)
 temp$ = Space$(4)
 hmemcpy ByVal temp$, x&, 4
 MKL$ = temp$
 End Function

 Function CVL (x As String) As Long
 If Len(x) <> 4 Then
 MsgBox "Illegal Function Call"
 Stop
 End If
 hmemcpy temp&, ByVal x, 4
 CVL = temp&
 End Function

 Function MKS$ (x As Single)
 temp$ = Space$(4)
 hmemcpy ByVal temp$, x!, 4
 MKS$ = temp$
 End Function

 Function CVS (x As String) As Single
 If Len(x) <> 4 Then
 MsgBox "Illegal Function Call"

 Stop
 End If
 hmemcpy temp!, ByVal x, 4
 CVS = temp!
 End Function

 Function MKD$ (x As Double)
 temp$ = Space$(8)
 hmemcpy ByVal temp$, x, 8
 MKD$ = temp$
 End Function

 Function CVD (x As String) As Double
 If Len(x) <> 8 Then
 MsgBox "Illegal Function Call"
 Stop
 End If
 hmemcpy temp#, ByVal x, 8
 CVD = temp#
 End Function

Reference(s):

"Microsoft Windows SDK: Programmer's Reference," Volume 2: Functions,"
version 3.1

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgOptMemMgt

Diagnosing General Protection Fault / UAE in VB for Windows
Article ID: Q90871
--
This information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
 - Microsoft Visual Basic programming system for Windows, version 1.0
 - Microsoft Windows, versions 3.0 and 3.1
--

SUMMARY
=======

This article describes steps you can take to determine the cause of
and possibly fix a General Protection Fault (GPF) under Windows
version 3.1, or an Unrecoverable Application Error (UAE) under Windows
version 3.0. The problems listed below can cause a GPF/UAE.

 - Calling a dynamic-link library (DLL) or Windows API routine with
 incorrect parameters

 - Using a faulty DLL routine or custom control

 - Loading corrupted Visual Basic forms or modules

MORE INFORMATION
================

To determine if a GPF/UAE is caused by a call to a Windows API
routine, a DLL routine, or by a custom control, temporarily remove
references to the DLL routine or custom control and re-run the program
to see if the GPF/UAE still occurs. You may need to replace such
references with statements that simulate return values.

To determine if a GPF/UAE is caused by corrupted code, save the code
in your forms and modules as text, then load the code as text. This
process cleans the internal representation of the code (P-code).

Steps to Clean Code

1. In the Project window, select the form or module to clean.

2. From the Code menu, choose Save Text... and select OK.

3. From the Code menu, choose View Code.

4. From the Code menu, choose Load Text..., select the same file, and
 click Replace.

To determine if a GPF/UAE is caused by a corrupted form, recreate the
form. To recreate a form, add a new form to your project and create
new controls and menus to match the old form. Copy the code by saving
code as text from the old form and loading as text into the new form.

Finally, remove the old form, and rename the new form.

Steps to Recreate Form

1. From the File menu, choose Add Form. Create the same controls and
 menus on this new form as are on the old form.

2. In the Project window, select the old form or module.

3. From the Code menu, choose Save Text... and select OK.

4. From the File menu, choose Remove File.

5. In the Project window, select the new form.

6. From the Code menu, choose View Code.

7. From the Code menu, choose Load Text..., select the same code text
 file, and click Replace.

8. Set the new form CtlName property to the old form's value.

You can also clean a project file (.MAK) by starting a new
project, then adding all the forms and modules to the new project.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgOptMemMgt

Visual Basic 3.0 General Information Questions & Answers
Article ID: Q92545

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic
 programming system for Windows, version 3.0

1. Q. What are the new features in Microsoft Visual Basic version 3.0
 for Windows?

 A. The following is a list of some of the main new features:

 - Microsoft Access version 1.1 database engine provides direct
 connectivity to Access, FoxPro, dBASE, Paradox, and Btrieve
 databases.

 - Two new controls:

 - Data control provides a visual and semi-automated method to
 connect to databases.
 - Outline control provides an easy way to create hierarchical
 list boxes.

 - Full ODBC support for SQL, Sybase, and Oracle.

 - Three new tools:

 - Crystal Reports report generator.
 - Data Manager for easily generating a database file.
 - Setup Wizard for automating the creation of setup and
 distribution disks.

 - Pop-up menus.

 - OLE 2.0 Automation.

 For additional information on these and other product features,
 please call Microsoft Visual Basic startup and installation
 support at (206)646-5105.

2. Q. What are the system requirements for Microsoft Visual Basic
 version 3.0 for Windows?

 A. To use Microsoft Visual Basic version 3.0 for Windows, you need:

 1. Microsoft Windows operating system version 3.0 or higher running
 in standard or 386 enhanced mode.

 2. An IBM PC or compatible computer, or an IBM PS/2 with an 80286 or
 better microprocessor.

 3. 2 Megabytes (MB) of available memory (4 MB or higher recommended)
 for the design environment

 4. Hard Drive with 32 MB available.

 5. A 5.25-inch or 3.5-inch high-density disk drive.

 6. A Microsoft mouse or compatible pointing device.

 7. EGA or higher resolution monitor.

3. Q. Does Microsoft Visual Basic version 3.0 for Windows work with
 the new Microsoft Windows NT operating system?

 A. Yes. However, Visual Basic version 3.0 for Windows will not take
 advantage of the 32 bit features of Microsoft Windows NT. Visual
 Basic runs in the 16 bit emulation layer in Windows NT.

4. Q. Where can I get information on available 3rd-party custom controls
 or 3rd-party books for use with Microsoft Visual Basic?

 A. Included with Microsoft Visual Basic version 3.0 for Windows is
 a catalog called "Custom Controls and Other Companion Products
 and Services for Visual Basic for Windows." In addition, you can
 find this information in an article in the Microsoft Knowledge
 Base titled "List of Visual Basic Companion Products and
 Services Available." The item identification number for this
 article is Q78962. You can have the article faxed to you by
 calling Microsoft FastTips (800)936-4300.

Additional reference words: 3.00 ivrfax fasttips
KBCategory: Prg
KBSubcategory: PrgOptTips

How to Break Long Statements into Multiple Lines
Article ID: Q94696

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 2.0
- Microsoft Visual Basic programming system for Windows, version 1.0
- The Standard and Professional Editions of Microsoft Visual Basic
 for MS-DOS, version 1.0
- Microsoft Basic Professional Development System (PDS) for MS-DOS,
 version 7.1
- Microsoft QuickBASIC for MS-DOS, version 4.5

SUMMARY
=======

This article describes how to break lengthy control-flow statements such
as IF/THEN statements or WHILE loops into multiple shorter statements
while retaining their functionality. There is no line continuation
character in Basic or Visual Basic. It is useful to break up lines of code
so they are easy to view in the edit window without scrolling and are
within the compiler's (BC.EXE) line limit of 255 characters.

MORE INFORMATION
================

The following examples show how to use temporary variables to break up an
IF/THEN statement and a WHILE loop into multiple shorter lines:

The IF/THEN statement is a control-flow statement that branches
if a condition is true. A long IF/THEN statement such as:

 MAX = 3
 VALUE = 2
 CURRENTVALUE = 1

 IF ((VALUE > CURRENTVALUE) OR (VALUE < CURRENTVALUE)) AND (VALUE < MAX)
 THEN 'Combine with previous line -- Should all be on a single line
 PRINT "VALUE is not equal to CURRENTVALUE and less than MAX"
 END IF

Can be broken down using temporary variables to:

 MAX = 3
 VALUE = 2
 CURRENTVALUE = 1

 TEMPVAL = (VALUE > CURRENTVALUE) OR (VALUE < CURRENTVALUE)
 TEMPVAL = TEMPVAL AND (VALUE < MAX)
 IF TEMPVAL THEN
 PRINT "VALUE is not equal to CURRENTVALUE and less than MAX"
 END IF

These two code fragments are equivalent. They evaluate and execute the

PRINT statement under the same conditions.

The following demonstrates the same technique with a WHILE loop:

 MAX = 10
 VALUE = 5
 CURRENTVALUE = 1

 WHILE ((VALUE > CURRENTVALUE) OR (VALUE < CURRENTVALUE)) AND (
 VALUE < MAX) ' This should all be on one line
 MAX = MAX - 1
 WEND
 PRINT "Out of WHILE Loop"

This is the revised version using temporary values:

 MAX = 10
 VALUE = 5
 CURRENTVALUE = 1

 TEMPVAL = (VALUE > CURRENTVALUE) OR (VALUE < CURRENTVALUE)
 TEMPVAL = TEMPVAL AND (VALUE < MAX)
 WHILE TEMPVAL
 MAX = MAX - 1
 TEMPVAL = (VALUE > CURRENTVALUE) OR (VALUE < CURRENTVALUE)
 TEMPVAL = TEMPVAL AND (VALUE < MAX)
 WEND
 PRINT "Out of WHILE Loop"

In both code examples, the TEMPVAL variable contains a value of 0 or -1
to signify a logical TRUE or FALSE.

Additional reference words: 1.00 2.00 VBMSDOS QUICKBAS 4.50 BASICCOM 7.10
KBCategory:
KBSubcategory: PrgOther

Basic Products Can Create and Use Non-Standard File Names
Article ID: Q94783

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
- The Standard and Professional Editions of Microsoft Visual Basic
 for MS-DOS, version 1.0
- Microsoft Basic Professional Development System (PDS) for MS-DOS,
 version 7.1
- Microsoft QuickBASIC for MS-DOS, version 4.5

SUMMARY
=======

Microsoft Visual Basic and other Basic products can create and use
non-standard MS-DOS file names. For example, a file name with an embedded
space is a non-standard file name. However, Microsoft doesn't recommend
that you use non-standard file names because they can cause problems
with other software.

MORE INFORMATION
================

According to the MS-DOS documentation, file names must:

 - Have no more than eight characters.

 - Contain only the letters A through Z, the numbers 0 through 9, and
 the following special characters: underscore (_), caret (^), dollar
 sign ($), tilde (~), exclamation point (!), number sign (#), percent
 sign (%), ampersand (&), hyphen (-), braces ({}), parentheses (), at
 sign (@), apostrophe ('), and the accent grave (`). No other special
 characters are acceptable.

 - Not contain spaces, commas, backslashes, or periods except for the
 period that separates the name from the extension.

 - Not be the following reserved filenames: CLOCK$, CON, AUX, COMn
 (where n=1-4), LPTn (where n=1-3), NUL, and PRN.

The Basic OPEN command allows you to open a file name that breaks some
of these rules. For example, you can open a file that has a space embedded
in its name.

The following example creates a file giving it a name that contains a
space. Then it writes data to the file, reopens it, and prints the data
on the screen:

 OPEN "A B" FOR OUTPUT AS #1 'There is a space between A and B
 PRINT #1, "HELLO THERE"
 CLOSE #1

 OPEN "A B" FOR INPUT AS #1
 INPUT #1, A$
 PRINT A$
 CLOSE #1

Additional reference words: 1.00 2.00 3.00 4.50 7.10
KBCategory:
KBSubcategory: PrgOther

Obtaining Date or Serial Result from DateSerial or DateValue
Article ID: Q95510

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

In Visual Basic version 2.0 and 3.0, the DateSerial and DateValue functions
return a variant data type of VarType 7 (Date) instead of a date serial
number. The date is still stored internally in the serial number format
returned by the DateSerial and DateValue functions in Visual Basic version
1.0 and can be obtained by using the CDbl function in versions 2.0 and 3.0.

This is not a bug. This is a special feature of versions 2.0 and 3.0.

MORE INFORMATION
================

The return value for DateSerial and DateValue is a formatted date string
in the format MM/DD/YY. If you pass it as an argument to the Print Method,
Print # and Write # statements are printed as such. The line of code below
prints the date as a formatted date string:

 Form1.Print DateSerial(1992,1,1)

To use the underlying serial number, use the Visual Basic CDbl statement to
convert the variant return value to a double precision number. This can be
useful for storing dates in a random access file because a double precision
variable uses eight 8 bytes and a variant uses 16. The line of code below
prints the date in serial number format:

 Form1.Print CDbl(DateSerial(1992,1,1))

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: PrgOptTips

FileDatetime Doesn't Include Time If File Time Is Midnight
Article ID: Q96098

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic
 for Windows, versions 2.0 and 3.0

SUMMARY
=======

Passing a file name with a time stamp of midnight to the function
FileDateTime, returns a string containing only the date, not the time.
This is consistent with the Format/Format$ function's General Date
format, which when passed a DateTime string with a time of midnight
returns a string containing only the date.

If your program needs to display a DateTime string with midnight
represented by 12:00 AM or 00:00 (in 24-hour format), use the Format($)
functions to perform the necessary conversion. By using Format$ or
Format with the time format symbols h, m, and s, you can cause the
Format($) functions to include a time format for midnight.

In the example below, a message box showing both the date and time of
VB.EXE, which is midnight for version 2.0, is displayed with a time stamp.

 MsgBox Format$(FileDateTime("VB.EXE"), "mm/dd/yy hh:mm AMPM")

MORE INFORMATION
================

The internal structure of a serial number is a double precision number. The
integral portion represents the number of days since December 30, 1899 and
the fractional portion represents the time as a fraction of a day. Midnight
is the beginning of a day and therefore it's represented by the fraction
zero.

For example the serial number for 10/21/92 6:00 AM is represented by:

 33898.25

The date is 33898 days since 12/30/1899. The time is represented as
one-fourth of the 24-hour day passed since midnight. One-fourth of 24 is
exactly 6, so the time is 6 hours, 0 minutes, 0 seconds.

Using the General Date format for a DateTime string without using a time
in Format($), automatically returns a formatted string without a time
portion. This is by design. Because both midnight and DateTime strings
without a time are represented internally as the same number, the General
Date format processes the strings identically.

Steps to Reproduce Problem

1. Run Visual Basic, or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Add the following code to the Form_Click procedure for Form1:

 Sub Form_Click
 MsgBox FileDateTime("VB.EXE")
 End Sub

A message box appears with the date 10/21/92, but the time stamp is not
displayed.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: PrgOther

PRB: File Not Found Error When Running .EXE on Other Computer
Article ID: Q101580

The information in this article applies to:

- Professional and Standard Editions of Microsoft Visual Basic
 Programming System for Windows, version 3.0

SYMPTOMS
========

When you try to use the IIf function in Visual Basic version 3.0 for
Windows, you receive a "File Not Found" error when you try to run your
executable program on a separate computer that does not contain the file
MSAFINX.DLL.

CAUSE
=====
The "File Not Found" error occurs because the IIf function is not included
in VBRUN300.DLL file but is located in the MSAFINX.DLL file.

RESOLUTION
==========

To prevent the error, install the MSAFINX.DLL file on the customer's
computer in the \WINDOWS\SYSTEM subdirectory.

MORE INFORMATION
================

Here is a list of all the financial functions in the MSAFINX.DLL file:

DATEPART DATEDIFF DATEADD DDB FV
IIF IPMT IRR MIRR NPER
NPV PARTITION PMT PPMT PV
RATE SLN SYD

A "File Not Found" error occurs if you use any of the these functions in
your program and then use the program on a computer that does not contain
the MSAFINX.DLL file.

MORE INFORMATION
================

Steps to Reproduce Behavior

The following steps cause the "File Not Found" error in Visual Basic
version 3.00 for Windows.

1. Start Visual Basic (VB.EXE).

2. Add a text box (Text1) and a label (Label1) to Form1.

3. Enter the line of code on page 274 in the Language Reference manual:

 Sub Label1_Click ()
 Label1.Caption = IIf(Val(text1.text) > 1000, "Large", "Small")
 '*** note you may want to add the Val statement for numbers
 End Sub

4. Run the example and enter a number in the Text1 text box. Then click
 Label1 to see if the example works in the environment.

5. From the File menu, choose Make Exe File... Name the executable
 IIFTEST.EXE. Save the project as IIFTEST.MAK, and save the form as
 IIFTEST.FRM.

6. Copy the IIFTEST.EXE and VBRUN300.DLL files to a floppy disk.

7. Take the floppy disk to a computer that does not have Visual Basic
 version 3.0 installed. Try and run the IIFTEST.EXE file from File
 Manager on that computer. You should get the "File Not Found" error.

8. If you add the file MSAFINX.DLL to the floppy disk, and then run
 the IIFTEST.EXE file, no error will occur.

Additional reference words: 3.00
KBCategory:
KBSubcategory: PrgOther

Sum Of VB Strings Can Exceed 64K in Certain Circumstances
Article ID: Q104554

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0

SUMMARY
=======

In all cases, individual variable length strings have a maximum size of 64K
worth of characters. However, the sum of the lengths of multiple strings
can exceed 64K in the circumstances described in this article.

MORE INFORMATION
================

Visual Basic for Windows goes beyond any previous Microsoft Basic product
in its flexibility when dealing with string variables. As documented in the
"Microsoft Visual Basic Programmer's Guide," Appendix D: Individual
strings always have a maximum size of 64K characters. However, this is
not an absolute limit when dealing with multiple strings. The sum of the
lengths of multiple strings can exceed 64K in the circumstances described
below:

1. Global strings declared at the module level and assigned values
 elsewhere can each have a value of up to 64K and their total can exceed
 that. For example, if you have the following module-level declarations:

 Global a as string
 Global b as string
 Global c as string

 you could have the following code in a Sub procedure:

 a = Space(64000)
 b = Space(64000)
 c = Space(64000)

2. The sum of all module level variable length strings can exceed 64K. For
 example, if you have the following module-level declarations:

 Dim a as string
 Dim b as string
 Dim c as string

 you could have the following code in a Sub procedure in the same module:

 a = Space(64000)
 b = Space(64000)
 c = Space(64000)

3. The sum of all local variable-length string variables can exceed 64K,
 but only across different Sub procedures. The limit within a single Sub
 procedure is 64K for all local variable-length strings. For example, the
 following code would work correctly:

 Sub MySub1()
 Dim a As String
 Dim b As String
 a = Space(32000)
 b = Space(32000)
 End Sub

 Sub MySub2()
 Dim a As String
 Dim b As String
 a = Space(32000)
 b = Space(32000)
 End Sub

 This is true even when more than one of the Sub procedures are currently
 active such as when MySub1 is called and it calls MySub2. Both are in
 memory and each has a 64K segment available for local variable-length
 strings.

 The following code would not work. It would respond correctly with an
 "Out of String Space" error message because it tries to exceed 64K of
 local variable-length strings.

 Sub MySub3()
 Dim a As String
 Dim b As String
 Dim c As String
 a = Space(32000)
 b = Space(32000)
 c = Space(32000)
 End Sub

4. The variable-length string elements of a user defined type are
 individually limited to 64K each, but their sum may exceed 64K. For
 example, if you have the following module-level declarations:

 Type Test
 a As String
 b As String
 c As String
 End Type
 Dim x as Test

 you can have the following code in a Sub procedure:

 x.a = Space(64000)
 x.b = Space(64000)
 x.c = Space(64000)

5. Assigning more than 64K to an array of variable-length strings causes
 an "Out of String Space" error.

 For example, if you have the following module-level declaration:

 Dim MyArray(12) as String

 The following code in a Sub procedure would cause an error:

 MyArray(1) = Space(64000)
 MyArray(2) = Space(64000)

 To solve the problem, dimension the array as type Variant:

 Dim MyArray(12) as Variant

 Then the following Sub procedure code will correctly create two 64K
 variants tagged as strings.

 MyArray(1) = Space(64000)
 MyArray(2) = Space(64000)

Reference(s):

"Microsoft Visual Basic for Windows Programmer's Guide," version 3.0,
Appendix D, pages 644-647.

Additional reference words: 2.00 3.00
KBCategory: Prg
KBSubCategory: PrgOther

How to Retrieve Hidden/System Files Using Dir[$]() Function
Article ID: Q104685

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows,
 versions 2.0 and 3.0

SUMMARY
=======

This article shows by example how to use the Dir[$]() function in
conjunction with the GetAttr() function to retrieve read-only, hidden,
or system files.

MORE INFORMATION
================

The Dir[$] functions take a filespec and an attrmask as optional
arguments.

If the attrmask argument specifies the volume label, the Dir[$] functions
ignores all other attributes. If the attrmask argument is ATTR_HIDDEN,
ATTR_SYSTEM, or ATTR_DIRECTORY, the functions also return the files that
do not have any special attributes.

If the filespec argument is used, the functions return files that do not
have any hidden, system, or directory attributes and meet the filespec
requirements.

To retrieve only read-only, hidden, or system files, use the Dir[$]()
functions in conjunction with the GetAttr() function. The following shows
by example how to retrieve only hidden files (files that have the HIDDEN
or ATTR_HIDDEN+ATTR_ARCHIVE attributes) by using the Dir() function in
conjunction with the GetAttr() function.

Step-by-Step Example

1. Start Visual Basic or begin a new project if Visual Basic is already
 running. Form1 is created by default.

2. Place the following code in the general declarations area for Form1:

 Const ATTR_NORMAL = 0
 Const ATTR_READONLY = 1
 Const ATTR_HIDDEN = 2
 Const ATTR_SYSTEM = 4
 Const ATTR_VOLUME = 8
 Const ATTR_DIRECTORY = 16
 Const ATTR_ARCHIVE = 32

3. Add a List box and a command button to Form1.

4. Add the following code to the command button's click event procedure:

 Sub Command1_Click ()
 Dim filename As String
 Dim attr As Integer
 ' retrieve hidden and normal files
 filename = Dir$("c:\", ATTR_HIDDEN)
 Do Until filename = ""
 attr = GetAttr("c:\" & filename)
 ' if the file has the hidden attribute
 If (attr And ATTR_HIDDEN) Then
 ' select it
 List1.AddItem filename
 End If
 filename = Dir$
 Loop

 End Sub

5. Run the program and click the command button to see any existing
 hidden files in the root directory.

Additional reference words: 2.00 3.00 Dir Dir$ GetAttr
KBCategory: Prg
KBSubcategory: PrgOther

PRB: Can't Set Formal Parameter When Setting Object Vars
Article ID: Q105230

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 3.0

SYMPTOMS
========

Trying to use a Set statement on an object variable that is a formal
parameter of a procedure results in this error:

 Can't Set Formal Parameter.

CAUSE
=====

Object variables can be parameters of a Sub or Function procedure, but if
an object variable is a parameter, its value cannot be changed inside the
called procedure.

RESOLUTION
==========

If you make the object variable Global instead of passing it as a
parameter,
you can use Set statements inside procedures.

MORE INFORMATION
================

Objects as parameters can be thought of as a copy of the structure that
defines the object. If Set statements were allowed on these objects, this
would change the value inside the routine, but upon returning from the
routine the changes would be lost and the object variable would revert back
to its original value.

Steps to Reproduce Behavior

1. Start a new project in Visual Basic and add the following procedure to
 the application:

 Sub s (tb As Table)
 Set tb = Nothing
 End Sub

2. Press the F5 key to run the application. The error "Can't Set Formal
 Parameter" should occur immediately.

Trying to force these objects to be passed by value by setting the ByVal
keyword results in this error:

 Expected: Integer or Long or Single or Double or Currency or
 String or Variant.

ByVal is allowed with the variable types listed in the error message,
but it is not allowed with any other variable type.

Additional reference words: 3.00
KBCategory:
KBSubCategory: PrgOther

Expected Expression Error: Dynamic Array Not OK in User-Type
Article ID: Q108709
--
The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
--

SYMPTOMS
========

An "Expected: expression" error occurs within a Type statement in Visual
Basic when you follow an array name with empty parentheses ().

You can use the Type ... End Type statement block to define your own data
type using Basic's predefined data types as components. You can dimension
variables or arrays using that user-defined type.

CAUSE
=====

Visual Basic interprets the empty parentheses () that follow a variable
name in the Type statement as a declaration of a dynamic array. Visual
Basic does not allow dynamic arrays to be declared within a user-defined
Type statement block.

RESOLUTION
==========

Within the Type ... End Type statement block, parentheses that follow a
variable name must contain a number to indicate the number of elements
in a static array. Visual Basic allows Type statements to contain static
arrays but not dynamic arrays.

NOTE: Once you correctly define a user-defined type, you can dimension a
dynamic array of that type. See further below for an example.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

Steps to Reproduce Behavior

1. Start a new project in Visual Basic. Form1 is created by default.

2. From the File menu, choose New Module.

3. Add the following code to the new module, MODULE1.BAS:

 Type newinfo
 tarray() as string 'Gives "Expected: Expression" error on ()
 numstores As Long
 End Type

4. Edit the line containing tarray(). Then select any other line. The
 automatic syntax checker in Visual Basic correctly highlights the () and
 gives the following error:

 Expected: Expression

 Running the program by pressing the F5 key also correctly reports this
 syntax error.

5. To correct this programming error, add a number of array elements in the
 empty parentheses. For example, change tarray() to tarray(10). This
 changes the array from dynamic to static.

Visual Basic interprets the empty parentheses in tarray() in the Type
statement as a declaration of a dynamic array. Visual Basic does not
allow dynamic arrays to be declared within a user-defined Type ... End
Type statement block. The parentheses () must contain a number to
indicate the number of elements in a static array.

How to Make a Dynamic Array of User-Defined Type
--

1. Start a new project in Visual Basic. Form1 is created by default.

2. From the File menu, choose New Module.

3. Add the following code to the new module, MODULE1.BAS:

 Type newinfo
 tarray(20) As String 'Static array declared in user-defined type
 numstores As Long
 End Type

4. Double-click Form1 to display the form's code window. Add the following
 to the form load event:

 Sub Form_Load ()
 ' Use ReDim to declare or redimension a dynamic array:
 ReDim arrayx(20) As newinfo 'Make dynamic array of user-defined type
 arrayx(18).tarray(12) = "Ruby slippers" ' Assign value.
 arrayx(18).numstores = 999 ' Assign value.
 form1.Show ' In load event, must Show form before Print can work.
 Print arrayx(18).tarray(12) ' Print value.
 Print arrayx(18).numstores ' Print value.
 End Sub

NOTE: You cannot change the number of elements in static arrays at run
time, but you can use the ReDim statement to change the number of elements
in dynamic arrays.

REFERENCES
==========

 - Visual Basic version 3.0 for Windows, "Programmer's Guide," Chapter 7,
 "User-Defined Types (Structures)", pages 176-178. A user-defined type
 can contain an ordinary (fixed-size) array, but not a dynamic array.

Additional reference words: 2.00 3.00
KBCategory: Prg
KBSubcategory: PrgOther

Category Keywords for All Visual Basic KB Articles
Article ID: Q108753

The information in this article applies to:

- Microsoft Visual Basic for Windows, versions 2.0 and 3.0

SUMMARY
=======

Each article in the Visual Basic for Windows collection contains at least
one keyword (called a KBSubcategory keyword) that places the article in an
appropriate category. This article lists all the KBSubcategory keywords.

MORE INFORMATION
================

Category & Subcategory Description KBSubcategory Keyword
--
Setup / Installation (Setins) Setins

Environment-specific Issues (Envt)
 VB Design Environment EnvtDes
 Run-Time Environment EnvtRun

Programming (Prg)
 Visual Basic Forms and Controls
 Standard Controls / Forms PrgCtrlsStd
 Custom Controls PrgCtrlsCus
 Third-Party Controls PrgCtrlsThird

 Optimization
 Memory Management PrgOptMemMgt
 General Optimization Tips PrgOptTips

 General VB Programming PrgOther

Advanced programming (APrg)
 Network APrgNet

 Windows Programming (APIs / DLLs)
 Printing APrgPrint
 Graphics APrgGrap
 Windowing APrgWindow
 INI Files APrgINI
 Other API / DLL Programming APrgOther

 Data Access
 ODBC APrgDataODBC
 IISAM APrgDataIISAM
 Access APrgDataAcc
 General Database Programming APrgDataOther

 3rd Party DLL's APrgThirdDLL

Inter-Application Programmability (IAP)
 OLE IAPOLE
 DDE IAPDDE
 3rd Party Interoperability IAPThird

Tools (Tls)
 Setup Toolkit / Wizard TlsSetWiz
 Control Development Kit (CDK) TlsCDK
 Help Compiler (HC) TlsHC

References (Refs)
 Documentation / Help File Fixes RefsDoc
 Product Information RefsProd
 Third-Party Information RefsThird
 PSS-Only Information RefsPSS

Using Keywords to Query the KB

At Microsoft, we use the subcategory keywords to organize the articles for
Help files and for the FastTips Catalog. You can use them to query the
Microsoft Knowledge Base for Visual Basic articles that apply to that
category or subcategory. For example, you can find all the general database
programming articles by querying on the following words in the Microsoft
Knowledge Base:

 visual and basic and APrgDataOther

Use the asterisk (*) wildcard to find articles that fall into the general
categories or into an intermediate subcategory. The first element in each
keyword is the category. For example, to find all the articles that apply
to Visual Basic Forms and Controls regardless of whether they are standard,
custom, or third-party controls, use the following words to query the
Microsoft Knowledge Base:

 visual and basic and PrgCtrls*

To find all advanced programming articles, query on these words:

 visual and basic and APrg*

Add KBSubcategory Keyword to Each Article

When contributing an article to the Visual Basic Knowledge Base, add the
appropriate KBSubcategory keyword to the bottom of the article on the
KBSubcategory line. Each article in the Visual Basic for Windows
collection contains the following section at the bottom of the article:

Additional reference words:
KBCategory:
KBSubcategory: <keyword>

An article usually has only one subcategory keyword, but it may have more.

If you are interested in contributing, please obtain the guidelines by

querying on the following words in the Microsoft Knowledge Base:

 visual and basic and kbguide and kbartwrite

Additional reference words: 3.00 dskbguide subcatkey
KBCategory:
KBSubcategory: RefsPSS

How to Capitalize the First Letter of Each Word in a String
Article ID: Q109220

The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0

SUMMARY
=======

This article shows by example how to capitalize the first letter of
each word in a string.

MORE INFORMATION
================

Step-by-Step Example

The following example capitalizes the first word, and any word preceded
by a space or carriage-return-plus-linefeed sequence.

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add a text box and a command button to Form1.

3. Double-click the text box to open the code window. Add the following
 code to the LostFocus event for the Text box:

 Sub Text1_LostFocus ()

 Dim t As String
 t = Text1.Text ' Put contents of text box into a string variable.
 If t <> "" Then
 Mid$(t, 1, 1) = UCase$(Mid$(t, 1, 1))
 For i = 1 To Len(t) - 1
 If Mid$(t, i, 2) = Chr$(13) + Chr$(10) Then
 ' Capitalize words preceded by carriage return plus
 ' linefeed combination. This only applies when the
 ' text box's MultiLine property is set to True:
 Mid$(t, i + 2, 1) = UCase$(Mid$(t, i + 2, 1))
 End If
 If Mid$(t, i, 1) = " " Then
 ' Capitalize words preceded by a space:
 Mid$(t, i + 1, 1) = UCase$(Mid$(t, i + 1, 1))
 End If
 Next
 Text1.Text = t
 End If

 End Sub

4. Start the program or press the F5 key.

5. Enter lowercase words in the text box. Click the command button or
 press TAB to cause the text box to lose the focus. The first letter of
 each word in the text box will be capitalized. You may continue to enter
 more text and change the focus as often as you want. Close the form to
 end the program.

Additional reference words: 2.00 3.00
KBCategory: Prg
KBSubcategory: PrgOther

How to Convert a Decimal Number to a Binary Number in a String
Article ID: Q109260

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0

SUMMARY
=======

The following sample program shows how to convert a decimal number into its
equivalent binary representation stored in a string.

This program accepts a nine-digit positive decimal number and returns a 32-
character string that represents the number in binary notation. Negative
numbers are converted into the 32-digit, twos-complement binary format used
by long integers in Basic.

MORE INFORMATION
================

In decimal numbers (base-ten numbers), every decimal place is a power
of 10. Decimal digits can have values from zero to nine. In binary numbers
(base-two numbers), every decimal place is a power of two. Binary digits
can only have values of 0 or 1.

Sample Program

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add two text boxes to Form1. Make each text box more than 32
 characters wide.

3. Double-click the Text1 text box to open its code window. Choose the
 Change event from the Proc box. Add the following code to the Text1
 Change event:

 Sub Text1_Change ()

 Dim i As Long, x As Long, bin As String
 Const maxpower = 30 ' Maximum number of binary digits supported.
 text1.MaxLength = 9 ' Maximum number of decimal digits allowed.
 text2.Enabled = False ' Prevent typing in second text box.
 bin = "" 'Build the desired binary number in this string, bin.
 x = Val(text1.Text) 'Convert decimal string in text1 to long integer

 If x > 2 ^ maxpower Then
 MsgBox "Number must be no larger than " & Str$(2 ^ maxpower)
 text2.Text = ""
 Exit Sub
 End If

 ' Here is the heart of the conversion from decimal to binary:

 ' Negative numbers have "1" in the 32nd left-most digit:
 If x < 0 Then bin = bin + "1" Else bin = bin + "0"

 For i = maxpower To 0 Step -1
 If x And (2 ^ i) Then ' Use the logical "AND" operator.
 bin = bin + "1"
 Else
 bin = bin + "0"
 End If
 Next
 text2.Text = bin ' The bin string contains the binary number.

 End Sub

4. Start the program, or press the F5 key. Enter decimal numbers into the
 first text box. The binary equivalent number displays in the second text
 box.

NOTE: This program converts negative decimal numbers into the internal
twos-complement binary format used by Basic. In that format, the left-most
binary digit (the thirty-second digit in a long integer) will always be 1
for a negative number and 0 for a positive number.

Decimal Value Binary Value

0 00000000000000000000000000000000
21 00000000000000000000000000010101
1024 00000000000000000000010000000000
32767 00000000000000000111111111111111
32768 00000000000000001000000000000000
65536 00000000000000010000000000000000
16777216 00000001000000000000000000000000
999999999 00111011100110101100100111111111
-1 11111111111111111111111111111111
-3 11111111111111111111111111111101

Additional reference words: 2.00 3.00
KBCategory: Prg
KBSubcategory: PrgOther

How to Use TABs in a VB Text Box Without Changing the Focus
Article ID: Q109261

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SUMMARY
=======

This article shows by example how to use the TAB keypress within a control,
such as a text box. Normally, the TAB key causes the focus to move away
from that control. The sample program in this article shows you how to
change this behavior so you can use the TABs within a text box.

The sample program does this by setting the TabStop property of all
controls on the form to False when the text box has the focus. Tabbing
changes focus between any controls which have a TabStop property equal to
True, which is the default. When the TabStop property is true for one or
more controls on a form, Visual Basic does not allow tabs to be entered
directly into a control.

MORE INFORMATION
================

Step-by-Step Example

In the example below, the Text2 box will accept and hold TAB keystrokes,
keeping them in the Text property along with the other entered characters.
The Text1 and Text3 boxes will not accept TAB keystrokes. When Text1 and
Text3 have the focus, pressing the TAB key changes the focus to the next
control in the tab order.

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add three text boxes (Text1, Text2, and Text3) to Form1. Select the
 Text2 box and press the F4 key to display the Properties window. Set the
 MultiLine property of Text2 to True.

 NOTE: When you press the TAB key, single-line text boxes beep and do not
 accept the TAB keystroke, but multiLine text boxes do accept TAB
 keystrokes.

3. Double-click the Text2 box to open the code window. Choose the GotFocus
 event from the Proc box. Add the following code to the Text2 GotFocus
 event:

 Sub Text2_GotFocus ()
 ' When Text2 gets the focus, clear all TabStop properties on all
 ' controls on the form. Ignore all errors, in case a control does
 ' not have the TabStop property.
 On Error Resume Next

 For i = 0 To Controls.Count - 1 ' Use the Controls collection
 Controls(i).TabStop = False
 Next
 End Sub

 NOTE: See the "Controls Collection" section below for an explanation of
 the Controls collection.

4. Choose the LostFocus event from the Proc box. Add the following code to
 the Text2 LostFocus event:

 Sub Text2_LostFocus ()
 ' When Text2 loses the focus, make the TabStop property True for all
 ' controls on the form. That restores the ability to tab between
 ' controls. Ignore all errors, in case a control does not have the
 ' TabStop property.
 On Error Resume Next
 For i = 0 To Controls.Count - 1 ' Use the Controls collection
 Controls(i).TabStop = True
 Next
 End Sub

5. Start the program, or press the F5 key. Press the TAB key to give focus
 to Text2. Enter text into the Text2 box, pressing the TAB key as needed.
 Whenever Text1 or Text3 has the focus, pressing the TAB key moves the
 focus to the next control. Whenever Text2 has the focus, TAB keystrokes
 remain with the text in the text box. Close the form to end the program.

Tab Order

By default, Visual Basic assigns tab order to controls in the order you
draw them on a form. Each new control is placed last in the tab order. You
can control the order that controls gain focus in your application by
changing the tab order at design time through the Properties window, or at
run time through code.

To change tab order at design time:

1. Click a control to select it.

2. From the Properties window, select TabIndex. Visual Basic displays the
 current tab position in the Settings box.

3. Type the number for the tab order position you want the control to have.

4. Click the Enter button. You can test the tab order at design time by
 pressing Tab.

To enable or disable a tab stop at design time:

1. Click a control to select it.

2. From the Properties window, select TabStop. Visual Basic displays the
 current Boolean value in the Settings box.

3. Select True to designate the control as a tab stop, or select False to

 bypass the control in the tab order.

4. Click the Enter button.

When you change a control's tab order position, Visual Basic automatically
renumbers the tab order positions of other controls to reflect insertions
and deletions.

A control whose TabStop property has been set to False maintains its
position in the actual tab order as set by the TabIndex property, even
though the control is skipped when you cycle through the controls by using
the TAB key. If the TabStop property is False for all controls on the form,
you can enter TAB keystrokes into MultiLine text boxes.

Controls Collection

The Controls collection is a collection whose elements represent each
control on a form, including elements of control arrays. The Controls
collection has a single property (Count) that specifies the number of
elements in an array.

The Controls collection enumerates loaded controls on a form and is useful
for iterating through them. The index in the syntax is between 0 and
Controls.Count-1.

NOTE: Controls is a keyword but not a reserved word. It identifies an
intrinsic form-level variable named Controls. If you omit the optional form
reference, you must include the Controls keyword. If you include a form
reference, you can omit the Controls keyword. For example, the following
two lines have the same effect:

MyForm.Controls(6).Top = MyForm.Controls(5).Top + increment
MyForm(6).Top = MyForm(5).Top + increment

Additional reference words: 3.00
KBCategory: Prg
KBSubcategory: PrgOther

PRB: VB 3.0 AppActivate Fails on 32-Bit Windows NT Application
Article ID: Q109262

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SYMPTOMS
========

Visual Basic's AppActivate statement fails to make a 32-bit application the
active window under Windows NT.

To reproduce this behavior under Microsoft Windows NT, run Notepad
(NOTEPAD.EXE). Then run the following code in Visual Basic:

Sub Form_Load ()
 AppActivate "Notepad - (Untitled)"
End Sub

Visual Basic fails to give focus to the Notepad session.

CAUSE
=====

Under the 32-bit Windows NT system, 16-bit Windows-subsystem applications
may not be fully available to other 16-bit programs. Visual Basic version
3.0 is a 16-bit program originally designed for the 16-bit Windows
operating environment, so this behavior is by design.

WORKAROUND
==========

To work around this behavior, use the FindWindow and SetWindowPos Windows
API functions as follows:

1. Start a new project in Visual Basic. Form1 is created by default.

2. Double-click the form to open the code window. Select (general) from
 the Object box. Enter the following in the (general) (declarations)
 window:

 Declare Function FindWindow% Lib "USER" (ByVal Class&, ByVal Caption$)
 ' The following Declare statement must be on one, single line:
 Declare Sub SetWindowPos Lib "user" (ByVal hwnd%, ByVal hwndAfter%,
 ByVal x%, ByVal y%, ByVal cx%, ByVal cy%, ByVal swp%)

3. Select form from the Object box. Add the following code to the Form
 Click event:

 Sub Form_Click ()

 Const SWP_NOSIZE% = &H1

 Const SWP_NOMOVE% = &H2
 AppActivate "Notepad - (Untitled)"
 x = FindWindow(0, "Notepad - (Untitled)")
 SetWindowPos x, 0, 0, 0, 0, 0, SWP_NOSIZE Or SWP_NOMOVE
 Debug.Print Hex$(x) ' Print return code from FindWindow API function.

 End Sub

4. Start Notepad in Windows NT version 3.1.

5. Start the Visual Basic program, or press the F5 key. Click the form to
 activate Notepad. When finished, close the form to end the Visual Basic
 program.

STATUS
======

This behavior is by design. It is under review and will be considered for
enhancement in a future release of Visual Basic.

Additional reference words: 3.00
KBCategory: Prg
KBSubcategory: PrgOther

How to Find Num of Days Between Dates Outside of Normal Range
Article ID: Q109451

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SUMMARY
=======

To find the number of days between any two dates, you can take the
difference between the values returned by the DateSerial function for two
dates. However, the DateSerial function only supports dates from January 1,
100 through December 31, 9999.

To support a much wider range of dates, use the AstroDay function as in
this example:

 Function AstroDay(inyear, inmonth, inday)
 ' The AstroDay function returns the Astronomical Day for any given date.
 y = inyear + (inmonth - 2.85) / 12
 AstroDay=Int(Int(Int(367*y)-1.75*Int(y)+inday)-.75*Int(.01*y))+1721119
 ' NOTE: Basic's Int function returns the integer part of a number.
 End Function

For example, the number of days between February 28, 12000 and March 1,
12000 is 2 because the year 12000 is a leap year:

 Print AstroDay(12000, 3, 1) - AstroDay(12000, 2, 28) 'Prints 2

In addition, the AstroWeekDay function defined farther below returns the
day of the week, Sunday through Monday, for any given AstroDay.
AstroWeekDay supports dates outside the range (January 1, 100 through
December 31, 9999) of Visual Basic's WeekDay function.

MORE INFORMATION
================

The AstroDay function defined in this article is a modified version of the
Julian date formula used by astronomers.

Visual Basic's DateSerial function returns a Variant of VarType 7 (Date)
containing a date that is stored internally as a double-precision number.
This number represents a date from January 1, 100 through December 31,
9999, where January 1, 1900 is 2. Negative numbers represent dates prior to
December 30, 1899.

Leap years are accurately handled by both Visual Basic's DateSerial
function and the Astronomical Day function (AstroDay) defined in this
article.

A leap year is defined as all years divisible by 4, except for years
divisible by 100 that are not also divisible by 400. Years divisible by 400

are leap years. 2000 is a leap year. 1900 is not a leap year.

Step-by-Step Example

1. Start a new project in Visual Basic. Form1 is created by default.

2. Double-click the form to open the code window. Add the following code to
 the Form Load event:

 Sub Form_Load ()

 form1.Show ' Must first Show form in Load event for Print to work.
 Print AstroDay(12000, 3, 1) - AstroDay(12000, 2, 28) 'Prints 2
 Print AstroDay(-12400, 3, 1) - AstroDay(-12400, 2, 28) 'Prints 2
 Print AstroDay(12000, 3, 1) - AstroDay(-12000, 2, 28) 'Prints 8765822
 Print AstroDay(1902, 2, 28) - AstroDay(1898, 3, 1) 'Prints 1459 days
 Print AstroWeekDay(AstroDay(1993, 12, 1)) ' Prints Wednesday
 Print AstroWeekDay(AstroDay(12000, 3, 2)) ' Prints Thursday

 ' You can also use Visual Basic's DateSerial function as follows to
 ' find the number of days between two dates:
 Print DateSerial(1902, 2, 28) - DateSerial(1898, 3, 1)

 ' Visual Basic's WeekDay function returns an integer betw 1 (Sunday)
 ' and 7 (Saturday), which represents the day of the week for a date
 ' argument:
 Print "Day of week = " & Weekday(DateSerial(1898, 3, 1))

 End Sub

3. In the Object box on the Form1.Frm code window, select (general).
 Add the following functions:

 Function AstroDay(inyear, inmonth, inday)
 ' The AstroDay function returns the Astronomical Day for any given date.
 y = inyear + (inmonth - 2.85) / 12
 AstroDay=Int(Int(Int(367*y)-1.75*Int(y)+inday)-.75*Int(.01*y))+1721119
 ' NOTE: Basic's Int function returns the integer part of an number.
 End Function

 Function AstroWeekDay (aday)
 ' The AstroWeekDay function returns the day of the week, Sunday through
 ' Monday, for any given AstroDay. The aday parameter must be a day
 ' number returned by the AstroDay function.
 weekdayx = (aday - 3) Mod 7
 Select Case weekdayx
 Case 0
 AstroWeekDay = "Sunday"
 Case 1
 AstroWeekDay = "Monday"
 Case 2
 AstroWeekDay = "Tuesday"
 Case 3
 AstroWeekDay = "Wednesday"
 Case 4
 AstroWeekDay = "Thursday"

 Case 5
 AstroWeekDay = "Friday"
 Case 6
 AstroWeekDay = "Saturday"
 End Select
 End Function

4. Start the program (or press the F5 key). Close the form to end the
 program.

Additional reference words: 3.00
KBCategory: Prg
KBSubcategory: PrgOther

How to Scroll a Form When VB Forms Are Limited to Screen Size
Article ID: Q109741

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SUMMARY
=======

A Visual Basic form cannot be sized larger than the screen. This article
explains how to scroll the contents of a form to enlarge the usable area of
a form.

The sample program below works by scrolling a picture box control which is
larger than the form and contains attached controls. When the picture box
scrolls, all the attached controls scroll together.

MORE INFORMATION
================

Step-by-Step Example

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add a horizontal scroll bar control and a vertical scroll bar control to
 Form1. (The size doesn't matter because the program automatically sizes
 the scroll bars in the Form Resize event code.)

3. Add a picture box control to Form1. Draw a text box control inside the
 upper left corner of the picture box such that when the picture box
 moves, the text box moves with it.

 Select the Text1 box and press the F4 key to display the Properties
 window. Set the Text1 Index property to 0, which is required at design
 time to make an array of text controls.

 You can also enhance this sample program by placing more controls into
 the picture box. When the picture box scrolls, all the controls scroll.

4. Add the following code to the Form Load event:

 Sub Form_Load ()
 ' Make the picture box bigger than the form:
 Picture1.Move 0, 0, 1.4 * ScaleWidth, 1.2 * ScaleHeight
 ' Place some sample controls in the picture box:
 Dim i As Integer
 For i = 1 To 20
 Load Text1(i)
 Text1(i).Visible = True
 Text1(i).Left = i * Picture1.Height / 20
 Text1(i).Top = Text1(i).Left

 Next
 End Sub

5. Add the following code to the Form Resize event:

 Sub Form_Resize ()
 ' Position the scroll bars:
 hscroll1.Left = 0
 vscroll1.Top = 0
 If Picture1.Width > scalewidth Then
 hscroll1.Top = ScaleHeight - hscroll1.Height
 Else
 hscroll1.Top = ScaleHeight
 End If
 If Picture1.Height > hscroll1.Top Then
 vscroll1.Left = scalewidth - vscroll1.Width
 If Picture1.Width > vscroll1.Left Then
 hscroll1.Top = ScaleHeight - hscroll1.Height
 End If
 Else
 vscroll1.Left = scalewidth
 End If
 hscroll1.Width = scalewidth
 vscroll1.Height = hscroll1.Top

 ' Set the scroll bar ranges
 hscroll1.Max = Picture1.Width - vscroll1.Left
 vscroll1.Max = Picture1.Height - hscroll1.Top
 hscroll1.SmallChange = Abs(hscroll1.Max \ 16) + 1
 hscroll1.LargeChange = Abs(hscroll1.Max \ 4) + 1
 vscroll1.SmallChange = Abs(vscroll1.Max \ 16) + 1
 vscroll1.LargeChange = Abs(vscroll1.Max \ 4) + 1
 hscroll1.ZOrder 0
 vscroll1.ZOrder 0

 End Sub

6. Add the following code to the HScroll1 Change event:

 Sub HScroll1_Change ()
 Picture1.Left = -HScroll1.Value
 End Sub

7. Add the following code to the VScroll1 Change event:

 Sub VScroll1_Change ()
 Picture1.Top = -VScroll1.Value
 End Sub

8. Start the program (or press the F5 key). Click the scroll bars to scroll
 the form. Close the form to end the program.

Additional reference words: 3.00
KBCategory: Prg
KBSubcategory: PrgOther

How to Speed Up Data Access by Using BeginTrans & CommitTrans
Article ID: Q109830

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SUMMARY
=======

You can speed up database operations by many times in a Microsoft Access
database by using transactions. A transaction starts with a BeginTrans
statement and ends with a CommitTrans or Rollback statement.

The sample program below is more than 17 times faster when using
BeginTrans/CommitTrans. Performance may vary on different computers.

MORE INFORMATION
================

You can tune the performance of Visual Basic by using transactions for
operations that update data. A transaction is a series of operations that
must execute as a whole or not at all. You mark the beginning of a
transaction with the BeginTrans statement. You use the Rollback or
CommitTrans statement to end a transaction.

You can usually increase the record updates per second (throughput) of an
application by placing operations that update data within an Access Basic
transaction.

Because Visual Basic locks data pages used in a transaction until the
transaction ends, using transactions will prevent access to those data
pages by other users while the transaction is pending. If you use
transactions in a multi-user environment, try to find a balance between
data throughput and data access.

If database operations are not within a transaction, every Update method
causes a disk write.

Transactions are very fast because they are written to a buffer in memory
instead of to disk. CommitTrans writes the changes in the transaction
buffer to disk. The size of the transaction buffer can be set in your
MSACCESS.INI file, found in your Windows directory. See the PERFORM.TXT
file in your Visual Basic directory for more information. Robust error
trapping is important when using transactions to avoid losing writes if the
program gets an error in the middle of a transaction.

For more performance tuning tips for data access in Microsoft Visual Basic
version 3.0, see the PERFORM.TXT file.

Step-by-Step Example

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add the following to the Form Load event code:

 Sub Form_Load ()
 Dim Starttime, Endtime
 Dim db As Database
 Dim t As Table
 Dim i As Integer
 Dim tempName As String
 Dim temphone As String
 Set db = OpenDatabase("c:\BIBLIO.MDB") ' Uses a copy of BIBLIO.MDB
 Set t = db.OpenTable("Publishers")
 Starttime = Now
 'BeginTrans ' Add this and CommitTrans (below) for greater speed.
 For i = 1 To 100
 tempName = "testname" & Str$(i) 'Make an arbitrary unique string.
 tempPhone = Str$(i) 'Make arbitrary number.
 t.AddNew 'AddNew clears copy buffer to prepare for new record.
 t!PubID = 30 + i ' Set primary key to unique value.
 t!Name = tempName ' Set Name field to unique value.
 t!Telephone = tempPhone ' Set Telephone field to unique value.
 t.Update ' Write the record to disk or to transaction buffer.
 Next i
 'CommitTrans ' Add this and BeginTrans (above) for greater speed.
 Endtime = Now
 MsgBox "Time required= " & Format(Endtime - Starttime, "hh:mm:ss")
 t.Close
 db.Close
 End
 End Sub

 The above code adds 100 new records to the BIBLIO.MDB database file.
 Add the records to a copy of BIBLIO.MDB instead of to the original.

3. Start the program (or press the F5 key). A message box reports the time
 required to add 100 new records. Close the form to end the program.

If you don't use the BeginTrans and CommitTrans statements, this program
reports 17 seconds to add 100 records on a 486/66 PC. When you add
BeginTrans and CommitTrans as shown in the program comments above, the
program takes less than 1 second on that computer. Performance may vary on
different computers.

REFERENCES
==========

 - "Microsoft Developer Network News" newspaper, January 1994, Volume 3,
 Number 1, published by Microsoft Corporation.

Additional reference words: 3.00
KBCategory: APrg
KBSubcategory: APrgDataAcc PrgOptTips

LONG: Microsoft Consulting Services Naming Conventions for VB
Article ID: Q110264

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0

SUMMARY
=======

It is a good idea to establish naming conventions for your Visual Basic
code. This article gives you the naming conventions used by Microsoft
Consulting Services (MCS).

This document is a superset of the Visual Basic coding conventions
found in the Visual Basic "Programmer's Guide."

NOTE: The third-party controls mentioned in this article are manufactured
by vendors independent of Microsoft. Microsoft makes no warranty, implied
or otherwise, regarding these controls' performance or reliability.

MORE INFORMATION
================

Naming conventions help Visual Basic programmers:

 - Standardize the structure, coding style and logic of an application.
 - Create precise, readable, and unambiguous source code.
 - Be consistent with other language conventions (most importantly,
 the Visual Basic Programmers Guide and standard Windows C Hungarian
 notation).
 - Be efficient from a string size and labor standpoint, thus
 allowing a greater opportunity for longer and fuller object names.
 - Define the minimal requirements necessary to do the above.

Setting Environment Options

Use Option Explicit. Declare all variables to save programming time by
reducing the number of bugs caused by typos (for example, aUserNameTmp
vs. sUserNameTmp vs. sUserNameTemp). In the Environment Options dialog, set
Require Variable Declaration to Yes. The Option Explicit statement
requires you to declare all the variables in your Visual Basic program.

Save Files as ASCII Text. Save form (.FRM) and module (.BAS) files as
ASCII text to facilitate the use of version control systems and minimize
the damage that can be caused by disk corruption. In addition, you can:

 - Use your own editor
 - Use automated tools, such as grep
 - Create code generation or CASE tools for Visual Basic
 - Perform external analysis of your Visual Basic code

To have Visual Basic always save files as ASCII text, from the
Environment Options dialog, set the Default Save As Format option to Text.

Object Naming Conventions for Standard Objects
--

The following tables define the MCS standard object name prefixes.
These prefixes are consistent with those documented in the Visual Basic
version 3.0 Programmers Guide.

Prefix Object Type Example
--
ani Animation button aniMailBox
bed Pen Bedit bedFirstName
cbo Combo box and drop down list box cboEnglish
chk Checkbox chkReadOnly
clp Picture clip clpToolbar
cmd (3d) Command button (3D) cmdOk (cmd3dOk)
com Communications comFax
ctr Control (when specific type unknown) ctrCurrent
dat Data control datBiblio
dir Directory list box dirSource
dlg Common dialog control dlgFileOpen
drv Drive list box drvTarget
fil File list box filSource
frm Form frmEntry
fra (3d) Frame (3d) fraStyle (fra3dStyle)
gau Gauge gauStatus
gpb Group push button gpbChannel
gra Graph graRevenue
grd Grid grdPrices
hed Pen Hedit hedSignature
hsb Horizontal scroll bar hsbVolume
img Image imgIcon
ink Pen Ink inkMap
key Keyboard key status keyCaps
lbl Label lblHelpMessage
lin Line linVertical
lst List box lstPolicyCodes
mdi MDI child form mdiNote
mpm MAPI message mpmSentMessage
mps MAPI session mpsSession
mci MCI mciVideo
mnu Menu mnuFileOpen
opt (3d) Option Button (3d) optRed (opt3dRed)
ole OLE control oleWorksheet
out Outline control outOrgChart
pic Picture picVGA
pnl3d 3d Panel pnl3d
rpt Report control rptQtr1Earnings
shp Shape controls shpCircle
spn Spin control spnPages
txt Text Box txtLastName
tmr Timer tmrAlarm
vsb Vertical scroll bar vsbRate

Object Naming Convention for Database Objects

Prefix Object Type Example

db ODBC Database dbAccounts
ds ODBC Dynaset object dsSalesByRegion
fdc Field collection fdcCustomer
fd Field object fdAddress
ix Index object ixAge
ixc Index collection ixcNewAge
qd QueryDef object qdSalesByRegion
qry (suffix) Query (see NOTE) SalesByRegionQry
ss Snapshot object ssForecast
tb Table object tbCustomer
td TableDef object tdCustomers

NOTE: Using a suffix for queries allows each query to be sorted with its
associated table in Microsoft Access dialogs (Add Table, List Tables
Snapshot).

Menu Naming Conventions

Applications frequently use an abundance of menu controls. As a result,
you need a different set of naming conventions for these controls. Menu
control prefixes should be extended beyond the initial mnu label by adding
an additional prefix for each level of nesting, with the final menu
caption at the end of the name string. For example:

Menu Caption Sequence Menu Handler Name

Help.Contents mnuHelpContents
File.Open mnuFileOpen
Format.Character mnuFormatCharacter
File.Send.Fax mnuFileSendFax
File.Send.Email mnuFileSendEmail

When this convention is used, all members of a particular menu group are
listed next to each other in the object drop-down list boxes (in the code
window and property window). In addition, the menu control names clearly
document the menu items to which they are attached.

Naming Conventions for Other Controls

For new controls not listed above, try to come up with a unique three
character prefix. However, it is more important to be clear than to stick
to three characters.

For derivative controls, such as an enhanced list box, extend the prefixes
above so that there is no confusion over which control is really being
used. A lower-case abbreviation for the manufacturer would also typically
be added to the prefix. For example, a control instance created from the
Visual Basic Professional 3D frame could uses a prefix of fra3d to avoid
confusion over which control is really being used. A command button from
MicroHelp could use cmdm to differentiate it from the standard command
button (cmd).

Third Party Controls

Each third party control used in an application should be listed in the
application's overview comment section, providing the prefix used for the
control, the full name of the control, and the name of the software vendor:

Prefix Control Type Vendor

cmdm Command Button MicroHelp

Variable and Routine Naming

Variable and function names have the following structure:

<prefix><body><qualifier><suffix>

Part Description Example
--
<prefix> Describes the use and scope of the variable. iGetRecordNext
<body> Describes the variable. iGetNameFirst
<qualifier> Denotes a derivative of the variable. iGetNameLast
<suffix> The optional Visual Basic type character. iGetRecordNext%

Prefixes:

The following tables define variable and function name prefixes that are
based on Hungarian C notation for Windows. These prefixes should be used
with all variables and function names. Use of old Basic suffixes (such as
%, &, #, etc.) are discouraged.

Variable and Function Name Prefixes:

Prefix Converged Variable Use Data Type Suffix

b bln Boolean Integer %
c cur Currency - 64 bits Currency @
d dbl Double - 64 bit Double #
 signed quantity
dt dat Date and Time Variant
e err Error
f sng Float/Single - 32 Single !
 bit signed
 floating point
h Handle Integer %
i Index Integer %
l lng Long - 32 bit Long &
 signed quantity
n int Number/Counter Integer %
s str String String $
u Unsigned - 16 bit Long &
 unsigned quantity
 udt User-defined type
vnt vnt Variant Variant
a Array

NOTE: the values in the Converged column represent efforts to pull
together the naming standards for Visual Basic, Visual Basic for
Applications, and Access Basic. It is likely that these prefixes will
become Microsoft standards at some point in the near future.

Scope and Usage Prefixes:

Prefix Description

g Global
m Local to module or form
st Static variable
(no prefix) Non-static variable, prefix local to procedure
v Variable passed by value (local to a routine)
r Variable passed by reference (local to a routine)

Hungarian notation is as valuable in Visual Basic as it is in C.
Although the Visual Basic type suffixes do indicate a variable's data
type, they do not explain what a variable or function is used for, or
how it can be accessed. Here are some examples:

iSend - Represents a count of the number of messages sent
bSend - A Boolean flag defining the success of the last Send operation
hSend - A Handle to the Comm interface

Each of these variable names tell a programmer something very different.
This information is lost when the variable name is reduced to Send%.
Scope prefixes such as g and m also help reduce the problem of name
contention especially in multi-developer projects.

Hungarian notation is also widely used by Windows C programmers and
constantly referenced in Microsoft product documentation and in industry
programming books. Additionally, the bond between C programmers and
programmers who use Visual Basic will become much stronger as the Visual
C++ development system gains momentum. This transition will result in
many Visual Basic programmers moving to C for the first time and many
programmers moving frequently back and forth between both environments.

The Body of Variable and Routine Names

The body of a variable or routine name should use mixed case and should
be as long as necessary to describe its purpose. In addition, function
names should begin with a verb, such as InitNameArray or CloseDialog.

For frequently used or long terms, standard abbreviations are
recommended to help keep name lengths reasonable. In general, variable
names greater than 32 characters can be difficult to read on VGA
displays.

When using abbreviations, make sure they are consistent throughout the
entire application. Randomly switching between Cnt and Count within
a project will lead to unnecessary confusion.

Qualifiers on Variable and Routine Names
--

Related variables and routines are often used to manage and manipulate a
common object. In these cases, use standard qualifiers to label the
derivative variables and routines. Although putting the qualifier after
the body of the name might seem a little awkward (as in sGetNameFirst,
sGetNameLast instead of sGetFirstName, sGetLastName), this practice will
help order these names together in the Visual Basic editor routine lists,
making the logic and structure of the application easier to understand.

The following table defines common qualifiers and their standard meaning:

Qualifier Description (follows Body)

First First element of a set.
Last Last element of a set.
Next Next element in a set.
Prev Previous element in a set.
Cur Current element in a set.
Min Minimum value in a set.
Max Maximum value in a set.
Save Used to preserve another variable that must be reset later.
Tmp A "scratch" variable whose scope is highly localized within the
 code. The value of a Tmp variable is usually only valid across
 a set of contiguous statements within a single procedure.
Src Source. Frequently used in comparison and transfer routines.
Dst Destination. Often used in conjunction with Source.

User Defined Types

Declare user defined types in all caps with _TYPE appended to the end of
the symbol name. For example:

 Type CUSTOMER_TYPE
 sName As String
 sState As String * 2
 lID as Long
 End Type

When declaring an instance variable of a user defined type, add a prefix to
the variable name to reference the type. For example:

 Dim custNew as CUSTOMER_TYPE

Naming Constants

The body of constant names should be UPPER_CASE with underscores (_)
between words. Although standard Visual Basic constants do not include
Hungarian information, prefixes like i, s, g, and m can be very useful in
understanding the value and scope of a constant. For constant names,
follow the same rules as variables. For Example:

 mnUSER_LIST_MAX ' Max entry limit for User list (integer value,
 ' local to module)
 gsNEW_LINE ' New Line character string (global to entire
 ' application)

Variant Data Type

If you know that a variable will always store data of a particular type,
Visual Basic can handle that data more efficiently if you declare a
variable of that type.

However, the variant data type can be extremely useful when working with
databases, messages, DDE, or OLE. Many databases allow NULL as a valid
value for a field. Your code needs to distinguish between NULL, 0 (zero),
and "" (empty string). Many times, these types of operations can use a
generic service routine that does not need to know the type of data it
receives to process or pass on the data.

For example:

 Sub ConvertNulls(rvntOrg As Variant, rvntSub As Variant)
 ' If rvntOrg = Null, replace the Null with rvntSub
 If IsNull(rvntOrg) Then rvntOrg = rvntSub
 End Sub

The are some drawbacks, however, to using variants. Code statements
that use variants can sometimes be ambiguous to the programmer.

For example:

 vnt1 = "10.01" : vnt2 = 11 : vnt3 = "11" : vnt4 = "x4"
 vntResult = vnt1 + vnt2 ' Does vntResult = 21.01 or 10.0111?
 vntResult = vnt2 + vnt1 ' Does vntResult = 21.01 or 1110.01?
 vntResult = vnt1 + vnt3 ' Does vntResult = 21.01 or 10.0111?
 vntResult = vnt3 + vnt1 ' Does vntResult = 21.01 or 1110.01?
 vntResult = vnt2 + vnt4 ' Does vntResult = 11x4 or ERROR?
 vntResult = vnt3 + vnt4 ' Does vntResult = 11x4 or ERROR?

The above examples would be much less ambiguous and easier to read,
debug, and maintain if the Visual Basic type conversion routines were
used instead.

For Example:

 iVar1 = 5 + val(sVar2) ' use this (explicit conversion)
 vntVar1 = 5 + vntVar2 ' not this (implicit conversion)

Commenting Your Code

All procedures and functions should begin with a brief comment describing
the functional characteristics of the routine (what it does). This
description should not describe the implementation details (how it does
it) because these often change over time, resulting in unnecessary comment
maintenance work, or worse yet, erroneous comments. The code itself and
any necessary in-line or local comments will describe the implementation.

Parameters passed to a routine should be described when their functions are
not obvious and when the routine expects the parameters to be in a specific
range. Function return values and global variables that are changed by the

routine (especially through reference parameters) must also be described at
the beginning of each routine.

Routine header comment blocks should look like this (see the next
section "Formatting Your Code" for an example):

Section Comment Description

Purpose What the routine does (not how).
Inputs Each non-obvious parameter on a separate line with
 in-line comments
Assumes List of each non-obvious external variable, control, open file,
 and so on.
Returns Explanation of value returned for functions.
Effects List of each effected external variable, control, file, and
 so on and the affect it has (only if this is not obvious)

Every non-trivial variable declaration should include an in-line comment
describing the use of the variable being declared.

Variables, controls, and routines should be named clearly enough that in-
line commenting is only needed for complex or non-intuitive
implementation details.

An overview description of the application, enumerating primary data
objects, routines, algorithms, dialogs, database and file system
dependencies, and so on should be included at the start of the .BAS module
that contains the project's Visual Basic generic constant declarations.

NOTE: The Project window inherently describes the list of files in a
project, so this overview section only needs to provide information on
the most important files and modules, or the files the Project window
doesn't list, such as initialization (.INI) or database files.

Formatting Your Code

Because many programmers still use VGA displays, screen real estate must
be conserved as much as possible, while still allowing code formatting
to reflect logic structure and nesting.

Standard, tab-based, block nesting indentations should be two to four
spaces. More than four spaces is unnecessary and can cause statements to
be hidden or accidentally truncated. Less than two spaces does not
sufficiently show logic nesting. In the Microsoft Knowledge Base, we
use a three-space indent. Use the Environment Options dialog to set the
default tab width.

The functional overview comment of a routine should be indented one
space. The highest level statements that follow the overview comment
should be indented one tab, with each nested block indented an
additional tab.

For example:

'**
'Purpose: Locate first occurrence of a specified user in UserList array.

'Inputs: rasUserList(): the list of users to be searched
' rsTargetUser: the name of the user to search for
'Returns: the index of the first occurrence of the rsTargetUser
' in the rasUserList array. If target user not found, return -1.
'**
'Enter the next two lines as one, single line:
Function iFindUser (rasUserList() As String, rsTargetUser as String)
 As Integer
 Dim i As Integer ' loop counter
 Dim bFound As Integer ' target found flag
 iFindUser = -1
 i = 0
 While i <= Ubound(rasUserList) and Not bFound
 If rasUserList(i) = rsTargetUser Then
 bFound = True
 iFindUser = i
 End If
 Wend
End Function

Variables and non-generic constants should be grouped by function rather
than by being split off into isolated areas or special files. Visual
Basic generic constants such as HOURGLASS should be grouped in a single
module (VB_STD.BAS) to keep them separate from application-specific
declarations.

Operators

Always use an ampersand (&) when concatenating strings, and use the plus
sign (+) when working with numerical values. Using a plus sign (+) with
nonnumerical values, may cause problems when operating on two variants.

For example:

 vntVar1 = "10.01"
 vntVar2 = 11
 vntResult = vntVar1 + vntVar2 ' vntResult = 21.01
 vntResult = vntVar1 & vntVar2 ' vntResult = 10.0111

Scope

Variables should always be defined with the smallest scope possible.
Global variables can create enormously complex state machines and make
the logic of an application extremely difficult to understand. Global
variables also make the reuse and maintenance of your code much more
difficult.

Variables in Visual Basic can have the following scope:

Scope Variable Declared In: Visibility

Procedure-level Event procedure, sub, or Visible in the
 function procedure in which
 it is declared
Form-level, Declarations section of a form Visible in every

Module-level or code module (.FRM, .BAS) procedure in the
 form or code
 module
Global Declarations section of a code Always visible
 module (.BAS, using Global
 keyword)

In a Visual Basic application, only use global variables when there is
no other convenient way to share data between forms. You may want to
consider storing information in a control's Tag property, which can be
accessed globally using the form.object.property syntax.

If you must use global variables, it is good practice to declare all of
them in a single module and group them by function. Give the module a
meaningful name that indicates its purpose, such as GLOBAL.BAS.

With the exception of global variables (which should not be passed),
procedures and functions should only operate on objects that are passed
to them. Global variables that are used in routines should be identified
in the general comment area at the beginning of the routine. In addition,
pass arguments to subs and functions using ByVal, unless you explicitly
want to change the value of the passed argument.

Write modular code whenever possible. For example, if your application
displays a dialog box, put all the controls and code required to perform
the dialog's task in a single form. This helps to keep the application's
code organized into useful components and minimizes its runtime overhead.

Third Party Controls

NOTE: The products discussed below are manufactured by vendors
independent of Microsoft. Microsoft makes no warranty, implied or
otherwise, regarding these products' performance or reliability.

The following table lists standard third party vendor name prefix
characters to be used with control prefixes:

Vendor Abbv

MicroHelp (VBTools) m
Pioneer Software p
Crescent Software c
Sheridan Software s
Other (Misc) o

The following table lists standard third party control prefixes:

Control Control Abbr Vendor Example VBX File
Type Name Name

Alarm Alarm almm MicroHelp almmAlarm MHTI200.VBX
Animate Animate anim MicroHelp animAnimate MHTI200.VBX
Callback Callback calm MicroHelp calmCallback MHAD200.VBX
Combo Box DB_Combo cbop Pioneer cbopComboBox QEVBDBF.VBX
Combo Box SSCombo cbos Sheridan cbosComboBox SS3D2.VBX
Check Box DB_Check chkp Pioneer chkpCheckBox QEVBDBF.VBX

Chart Chart chtm MicroHelp chtmChart MHGR200.VBX
Clock Clock clkm MicroHelp clkmClock MHTI200.VBX
Button Command cmdm MicroHelp cmdmCommandButton MHEN200.VBX
 Button
Button DB_Command cmdp Pioneer cmdpCommandButton QEVBDBF.VBX
Button (Group) Command cmgm MicroHelp cmgmBtton MHGR200.VBX
 Button
 (multiple)
Button Command cmim MicroHelp cmimCommandButton MHEN200.VBX
 Button
 (icon)
CardDeck CardDeck crdm MicroHelp crdmCard MHGR200.VBX
Dice Dice dicm MicroHelp dicmDice MHGR200.VBX
List Box (Dir) SSDir dirs Sheridan dirsDirList SS3D2.VBX
List Box (Drv) SSDrive drvs Sheridan drvsDriveList SS3D2.VBX
List Box (File) File List film MicroHelp filmFileList MHEN200.VBX
List Box (File) SSFile fils Sheridan filsFileList SS3D2.VBX
Flip Flip flpm MicroHelp flpmButton MHEN200.VBX
Scroll Bar Form Scroll fsrm MicroHelp fsrmFormScroll ???
Gauge Gauge gagm MicroHelp gagmGauge MHGR200.VBX
Graph Graph gpho Other gphoGraph XYGRAPH.VBX
Grid Q_Grid grdp Pioneer grdpGrid QEVBDBF.VBX
Scroll Bar Horizontal hsbm MicroHelp hsbmScroll MHEN200.VBX
 Scroll Bar
Scroll Bar DB_HScroll hsbp Pioneer hsbpScroll QEVBDBF.VBX
Graph Histo hstm MicroHelp hstmHistograph MHGR200.VBX
Invisible Invisible invm MicroHelp invmInvisible MHGR200.VBX
List Box Icon Tag itgm MicroHelp itgmListBox MHAD200.VBX
Key State Key State kstm MicroHelp kstmKeyState MHTI200.VBX
Label Label (3d) lblm MicroHelp lblmLabel MHEN200.VBX
Line Line linm MicroHelp linmLine MHGR200.VBX
List Box DB_List lstp Pioneer lstpListBox QEVBDBF.VBX
List Box SSList lsts Sheridan lstsListBox SS3D2.VBX
MDI Child MDI Control mdcm MicroHelp mdcmMDIChild ???
Menu SSMenu mnus Sheridan mnusMenu SS3D3.VBX
Marque Marque mrqm MicroHelp mrqmMarque MHTI200.VB
Picture OddPic odpm MicroHelp odpmPicture MHGR200.VBX
Picture Picture picm MicroHelp picmPicture MHGR200.VBX
Picture DB_Picture picp Pioneer picpPicture QEVBDBF.VBX
Property Vwr Property pvrm MicroHelp pvrmPropertyViewer MHPR200.VBX
 Viewer
Option (Group) DB_RadioGroup radp Pioneer radqRadioGroup QEVBDBF.VBX
Slider Slider sldm MicroHelp sldmSlider MHGR200.VBX
Button (Spin) Spinner spnm MicroHelp spnmSpinner MHEN200.VBX
Spreadsheet Spreadsheet sprm MicroHelp sprmSpreadsheet MHAD200.VBX
Picture Stretcher strm MicroHelp strmStretcher MHAD200.VBX
Screen Saver Screen Saver svrm MicroHelp svrmSaver MHTI200.VBX
Switcher Switcher swtm MicroHelp swtmSwitcher ???
List Box Tag tagm MicroHelp tagmListBox MHEN200.VBX
Timer Timer tmrm MicroHelp tmrmTimer MHTI200.VBX
ToolBar ToolBar tolm MicroHelp tolmToolBar MHAD200.VBX
List Box Tree trem MicroHelp tremTree MHEN200.VBX
Input Box Input (Text) txtm MicroHelp inpmText MHEN200.VBX
Input Box DB_Text txtp Pioneer txtpText QEVBDBF.VBX
Scroll Bar Vertical vsbm MicroHelp vsbmScroll MHEN200.VBX
 Scroll Bar
Scroll Bar DB_VScroll vsbp Pioneer vsbpScroll QEVBDBF.VBX

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: PrgOther RefsDoc

How to Encrypt a String with Password Security in VB
Article ID: Q110308

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0

SUMMARY
=======

To restrict access by computer hackers, you can encrypt strings, such as
strings stored in your compiled executable .EXE program. Encryption helps
protect your program from unauthorized modifications.

The sample Visual Basic code below encrypts a string with the XOR operator
using password security. You can also adapt this technique to other
dialects of Basic or other languages.

MORE INFORMATION
================

Software tools for debugging and viewing binary code can easily find ASCII
strings stored in compiled executable .EXE programs. If you want to hide or
protect strings in .EXE programs, you can use techniques such as these:

 - Append a series of Chr$() functions in your Basic code. For example,
 the following string concatenates ASCII values 65 through 68, which
 represent the capital letters A through D:

 A$ = Chr$(65) + Chr$(66) + Chr$(67) + Chr$(68)
 Print A$

 This code prints ABCD. Since the ABCD is stored in code instead of in a
 string constant, it is not directly visible when viewed in a debugger.
 This method is okay for small amounts of data, but is inefficient for
 larger strings.

 - Add or subtract a constant or a letter's position value to the
 ASCII/ANSI value of each character in the string.

 NOTE: Don't exceed the byte value range of 0 to 255. For example, if you
 add 50 to the extended-ASCII character CHR$(230) and assign it to a
 string in Basic, you get an "Illegal function call" error.

 - Use the Xor function in a formula using a key or password string. Byte
 values changed with Xor always stay within the byte value range 0 to
 255. This technique is flexible and elegant. See the sample program in
 the next section below.

 NOTE: The Xor function is also known as the exclusive-OR function. An
 exclusive-OR means A or B, but not both. For example, if A is true,
 and B is false, then A Xor B is true, but if both A and B are true,
 then A Xor B is false.

 - Use third-party compression and encryption software, such as LZEXE or
 PKLITE, on the compiled executable EXE file. For secure encryption
 routines, see the QuickPak Professional Library from Crescent Software,
 Inc., shown in the Reference section below.

 - Keep a checksum to protect against viruses or hackers. You can keep a
 checksum of various important values in the program, and the program can
 refuse to run if any checksums have changed.

 NOTE: A checksum is an error-detection scheme that involves creating a
 sum of the bits in a set of bytes of data, then using that sum to later
 check for a change in the data.

Example of String Encryption Using Xor Function

Calling the Encrypt routine below encrypts a string using a password.
Calling the routine again decrypts the encrypted string.

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add the following code to the Form Load event:

 Sub Form_Load ()
 form1.Show ' Must Show form in Load event before Print is visible.
 secret$ = "This is the string that will be encrypted."
 PassWord$ = "password"

 Call Encrypt(secret$, PassWord$) 'Encrypt the string.
 Print " After encrypting it once: " 'Print the result.
 Print secret$
 Print

 Call Encrypt(secret$, PassWord$) 'A second encryption decrypts it.
 Print "After a second encryption: "
 Print secret$
 End Sub

3. Add the following Encrypt procedure to the general declarations section:

 Sub Encrypt (secret$, PassWord$)
 ' secret$ = the string you wish to encrypt or decrypt.
 ' PassWord$ = the password with which to encrypt the string.
 L = Len(PassWord$)
 For X = 1 To Len(secret$)
 Char = Asc(Mid$(PassWord$, (X Mod L) - L * ((X Mod L) = 0), 1))
 Mid$(secret$, X, 1) = Chr$(Asc(Mid$(secret$, X, 1)) Xor Char)
 Next
 End Sub

4. Start the program, or press the F5 key. Close the form to end the
 program.

Xor: The Exclusive-OR Operator

The exclusive-OR operator (Xor in the Basic language) performs a logical
exclusion on two expressions. For example:

 Result = expr1 Xor expr2

A useful behavior of Xor is that the first expression expr1 is returned
without losing any bits when you perform Result Xor expr2. This ability to
restore the first expression from the Result combined with the second
expression is why the Xor function is useful for encryption.

The Xor operator performs a bit-wise comparison of identically positioned
bits in two numeric expressions and sets the corresponding bit in the
result according to the following truth table:

 If bit in expr1 is: And bit in expr2 is: The result is:

 0 0 0
 0 1 1
 1 0 1
 1 1 0

ASCII and ANSI Character Sets

For a listing of the ASCII and ANSI character sets, see the Help menu in
Visual Basic.

American Standard Code for Information Interchange (ASCII) is the 7-bit
character set widely used to represent letters and symbols found on a
standard United States keyboard. The ASCII character set is the same as the
first 128 characters (0 to 127) in the American National Standards
Institute (ANSI) character set. The ANSI character set uses all 8 bits in a
byte, and includes 256 characters (0 to 255). ANSI characters 128 to 255
are sometimes referred to as the extended-ASCII characters.

REFERENCES
==========

The following company offers encryption software and other products for
Basic:

 Crescent Software, Inc.
 11 Bailey Ave
 Ridgefield, CT 06877 USA
 Contact: Don Malin (203) 438-5300
 Fax: (203) 431-4626
 Ask about the QuickPak Professional Library for Windows.

Products from Crescent Software are manufactured independent of Microsoft.
Microsoft makes no warranty, implied or otherwise, regarding these
products' performance or reliability.

Additional reference words: 2.00 3.00
KBCategory: Prg
KBSubcategory: PrgOther

Searchable Electronic VB Info: VB Help Files & MSDN CD-ROM
Article ID: Q110392

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0

SUMMARY
=======

The Professional Edition of Visual Basic, versions 2.0 and 3.0, contains
the VBKNOWLG.HLP Help file, "Microsoft Visual Basic Knowledge Base
Articles." VBKNOWLG.HLP contains a subset of the Visual Basic portion
of the Microsoft Knowledge Base that was available at the time that the
product shipped.

You can get the complete and most current Microsoft Visual Basic for
Windows Knowledge Base in two help files (VB_BUGS.HLP and VB_TIPS.HLP) with
or without full-text search. These help files are updated regularly. For
information about these Help files and how to obtain them, please see the
following article in the Microsoft Knowledge Base:

ARTICLE-ID:Q105541
TITLE :How to Get Entire VB KB in 2 Help Files with Full-Text Search

Another source of recent information on Visual Basic is available
in the Microsoft Developer Network (MSDN) Compact Disk (CD), and in other
sources listed farther below. The MSDN CD is updated quarterly. You can
perform full-text searches across all information in the MSDN CD.

MORE INFORMATION
================

The Microsoft Knowledge Base

The Microsoft Knowledge Base is a primary Microsoft product information
source for Microsoft support engineers and customers. This comprehensive
article collection contains over 40,000 detailed how-to articles, bug
lists, fix lists, documentation errors, and answers to technical support
questions. Over 600 Visual Basic articles are available.

The Microsoft Knowledge Base is available and updated weekly through
CompuServe, the Internet, GEnie, and Microsoft OnLine. The Microsoft
Knowledge Base is also available in the bimonthly Microsoft TechNet CD-ROM
disk, and in the quarterly Microsoft Developer Network (MSDN) CD-ROM disk.

VBKNOWLG.HLP Shipped with Visual Basic Version 3.0
--

The VBKNOWLG.HLP online-Help file ships with the Professional Edition of
Visual Basic versions 2.0 and 3.0 for Windows.

You can load VBKNOWLG.HLP by running the "Knowledge Base" icon in your
"Visual Basic 3.0" group in the Program Manager for Windows. The Help file
title bar says "Microsoft Visual Basic Knowledge Base Articles."

VB_TIPS.HLP and VB_BUGS.HLP Are Available for Download
--

There are nearly 600 categorized articles in the Visual Basic for Windows
collection. The two help files (VB_TIPS.HLP and VB_BUGS.HLP) that hold
these articles have been placed in a self-extracting file that you can
download from CompuServe, the Internet, or the Microsoft Download Service
(MSDL). Choose to download either VBKB_FT.EXE or VBKB.EXE, not both.

The Help files in VBKB_FT.EXE have an additional Find button that allows
full-text search. The Help files in VBKB.EXE do not have the Find button
and do not allow full-text search. The technical content in VBKB.EXE is
identical to that in VBKB_FT.EXE. VBKB.EXE is less than a megabyte in size
while VBKB_FT.EXE is approximately 2.5 megabytes. VBKB_FT.EXE is larger
because it includes index and .DLL files needed for full-text search.

Download VBKB.EXE or VBKB_FT.EXE (both are self-extracting files) from the
Microsoft Software Library (MSL) on the following services:

 - CompuServe
 GO MSL and download VBKB.EXE (without full-text search).

 -or-

 GO MSL and download VBKB_FT.EXE (with full-text search).

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download VBKB.EXE or VBKB_FT.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \softlib\mslfiles directory
 Get VBKB.EXE

 -or-

 Get VBKB_FT.EXE

Microsoft Developer Network (MSDN) CD-ROM Disk
--

Here's what the MSDN CD contains specifically for Visual Basic:

 - Complete electronic copy of the printed documentation that ships with
 the Professional Edition of Visual Basic.
 - Articles from "BasicPro" magazine.
 - Articles from the Cobb Group's "Inside Visual Basic" monthly magazine.
 - Articles written by the Developer Network Technology Group.

The MSDN CD contains the entire Windows SDK documentation as well as
Charles Petzold's "Programming Windows 3.1." This is very useful if you are
calling Windows API functions from Visual Basic.

How to Join the Microsoft Developer Network (MSDN)
--

The Microsoft Developer Network (MSDN) provides technical information and
development toolkits for all developers who write applications for
Microsoft operating systems. MSDN members receive a quarterly CD-ROM disk
and a bimonthly newsletter. The CD contains code samples, technical
articles, development tools, and the Microsoft Knowledge Base.

To join the Microsoft Developer Network (MSDN):

 - In the U.S. and Canada, call (800) 759-5474; this number is available
 24 hours a day, 7 days a week.

 - In France, call 05 90 59 04 (toll-free).

 - In Germany, call 0130 81 02 1.

 - In the Netherlands, call 06 022 24 80 (toll-free).

 - In the United Kingdom, call 0800 96 02 79 (toll-free).

 - In Japan, call 03 5461-2617.

 - For any other country in Europe, call +31 10 258 88 64.

 - Outside Europe, the U.S., Canada, or Japan, call (402) 691-0173.

This information was taken from the "Microsoft Developer Network News"
newsletter dated January 1994. This information is subject to change.

Additional reference words: 2.00 3.00
KBCategory: Prg
KBSubcategory: PrgOther

How to Remove Menu Items from a Form's Control-Menu Box
Article ID: Q110393

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SUMMARY
=======

The Control-menu box is located in the upper-left corner of a Visual Basic
form. You can remove certain menu items from the Control-menu box by using
the using form's MaxButton, MinButton, and BorderStyle properties. You can
also remove Control-menu items by using Windows API functions, as shown in
a sample program in the More Information section below.

To completely remove the Control-menu box, set the form's ControlBox
property to False.

MORE INFORMATION
================

The default Control-menu box in the upper left-hand corner of a Visual
Basic form contains the following nine entries, including separators:

 Restore
 Move
 Size
 Minimize
 Maximize

 Close Alt+F4

 Switch to... Ctrl+Esc

You can remove certain menu items from the Control-menu box by using a
form's MaxButton, MinButton, and BorderStyle properties:

MaxButton property:

Setting the MaxButton property to False at design time removes the Maximize
item in the Control-menu box and also removes the Maximize arrow in the
upper right corner of the form. Setting MaxButton to be False also prevents
a double-click on the title bar from maximizing the form.

MinButton property:

Setting the MinButton property to False at design time removes the Minimize
item in the Control-menu box and also removes the minimize arrow in the
upper right corner of the form.

BorderStyle property:

 Setting Description
 --
 0 No border and no related border elements.

 1 Fixed Single. Can include Control-menu box, title bar,
 Maximize button, and Minimize button. Resizable only using
 Maximize and Minimize buttons.

 2 (Default) Sizable. Resizable using any of the optional border
 elements listed for setting 1.

 3 Fixed Double. Can include Control-menu box and title bar;
 cannot include Maximize or Minimize buttons. Not resizable.

Example Uses API Functions to Remove Control-Menu Items

The following program invokes Windows API functions to remove all items in
the Control-menu box except for Restore and Minimize.

1. Start a new project in Visual Basic. Form1 is created by default.

 NOTE: In this program, the following Form properties should be left with
 their design-time defaults: ControlBox = True, MaxButton = True,
 MinButton = True. The API functions will make the necessary changes to
 the form's properties.

2. Add the following to the Form Load event code:

 Sub Form_Load ()

 Dim hSysMenu%, r%, j%, dw&, rr&
 Const MF_BYPOSITION = &H400
 ' Me refers to the form where code is currently executing:
 hSysMenu = GetSystemMenu(Me.hWnd, 0)
 For j = 8 To 4 Step -1
 r = RemoveMenu(hSysMenu, j, MF_BYPOSITION)
 Next j
 For j = 2 To 1 Step -1
 r = RemoveMenu(hSysMenu, j, MF_BYPOSITION)
 Next j
 ' Leave the Restore and Minimize items.
 dw& = GetWindowLong(Me.hWnd, -16) 'Window style
 dw& = dw& And &HFFFEFFFF 'Turn off bits for Maximize arrow button
 rr& = SetWindowLong(Me.hWnd, -16, dw&)

 End Sub

 The default Control-menu items are numbered 0 through 8 from the top
 down. You may remove any or all items using Windows API functions. Be
 sure to remove items in reverse sequence, from 8 to 0, or else the
 numbering will become confused.

3. Add a command button to the form. Double-click the command button and
 add the following code to the Command1 click event:

 Sub Command1_Click ()

 End
 End Sub

 This button lets you end the program, since Close is removed from the
 Control-menu box.

4. Add the following Declare statements to the general declarations
 section:

 ' Enter each of the following Declare statements as one, single line:
 Declare Function RemoveMenu% Lib "User" (ByVal hMenu%, ByVal nPosition%,
 ByVal wFlags%)
 Declare Function GetSystemMenu% Lib "User" (ByVal hWnd%, ByVal revert%)
 Declare Function GetWindowLong Lib "User" (ByVal hWnd As Integer,
 ByVal nIndex As Integer) As Long
 Declare Function SetWindowLong Lib "User" (ByVal hWnd As Integer,
 ByVal nIndex As Integer, ByVal dwNewLong As Long) As Long

5. Start the program, or press the F5 key.

The form's Control menu shows Restore (grayed) and Minimize. Double-
clicking the title-bar doesn't maximize the form, as desired.

Clicking the Minimize arrow or choosing the Minimize menu item minimizes
the form to an icon. A single-click on that icon does not open a control-
menu, unlike normal Visual Basic application icons. A double-click is
required to restore the form to its full-screen state.

Creating a Form with No Title Bar

To create a Microsoft Visual Basic for Windows form with a border but
with no title bar, the Caption property of a form must be set to a
zero-length string; the BorderStyle property must be set to Fixed
Single (1), Sizable (2) or Fixed Double; and the ControlBox, MaxButton
and MinButton properties must be set to False (0).

If any text (including spaces) exists for the Caption property or if the
ControlBox, MaxButton, or MinButton property is set to True, a title bar
will appear on the form. Note that setting the BorderStyle property to None
(0) will always make a form with no title bar.

REFERENCES
==========

 - "Microsoft Visual Basic Version 3.0: Programmer's Guide" pages 97-98.

 - "PC Magazine's Visual Basic Programmer's Guide to the Windows API" by
 Daniel Appleman (of Desaware), published by Ziff-Davis Press, pages 414
 and 418. This reference describes most Windows API functions that can
 be used from within Visual Basic.

Additional reference words: 3.00
KBCategory: Prg
KBSubcategory: PrgOther

PRB: Week Starts Sunday and Ends Saturday for Format Function
Article ID: Q110667

The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SYMPTOMS
========

For the date of Sunday January 2, 1994, the Format("01/02/94","ww")
function returns week number 2 instead of week number 1.

NOTE: Visual Basic handles dates according to the Country settings in the
International option of the Windows Control Panel. When the Country is set
to United States, dates such as "01/05/94" are by default interpreted with
the month followed by the day, as in mm/dd/yy. For most other Country
settings, the day precedes the month, and "05/01/94" is interpreted as
dd/mm/yy.

CAUSE
=====

In the Format function, weeks start on a Sunday and go through the
following Saturday. In 1994, January 1 is a Saturday, which is the only day
in week 1. Week 2 of 1994 starts on Sunday January 2.

Therefore, the Format("01/01/94","ww") function returns 1, and
Format("01/02/94","ww") returns 2.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

Below are some of the format expressions for the day, week, month, and
quarter, as supported by the Format function:

dd Displays the day as a number with a leading zero (01-31).

ddd Displays the day as an abbreviation (Sun-Sat).

dddd Displays the day as a full name (Sunday-Saturday).

w Displays the day of the week as a number (1 for Sunday through 7 for
 Saturday.)

ww Displays the week of the year as a number (1-53).

m Displays the month as a number without a leading zero (1-12). If m

 immediately follows h or hh, the minute rather than the month is
 displayed.

mm Displays the month as a number with a leading zero (01-12). If m
 immediately follows h or hh, the minute rather than the month is
 displayed.

mmm Displays the month as an abbreviation (Jan-Dec).

mmmm Displays the month as a full month name (January-December).

q Displays the quarter of the year as a number (1-4).

For more information, see the Format and Format$ function topics in the
Visual Basic Help menu.

Steps to Reproduce Behavior

1. Start a new project in Visual Basic. Form1 is created by default.

2. Double-click the form. Add the following to the Form Load event code:

 Sub Form_Load ()
 form1.Show
 Print Format("01/01/94", "ww dddd")
 Print Format("01/05/94", "ww dddd")
 End Sub

3. Start the program, or press the F5 key to see the following print:

 1 Saturday
 2 Wednesday

 The Format function correctly shows Wednesday January 5 as being in week
 2 of 1994. Close the form to end the program.

Additional reference words: 3.00
KBCategory: Prg
KBSubcategory: PrgOther

How to Get a Handle to MS-DOS Application and Change Title
Article ID: Q110701

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SUMMARY
=======

This article shows by example how to get the handle to a MS-DOS
application, and then use that handle to change the MS-DOS Window title or
automatically unload the MS-DOS Window from Visual Basic.

MORE INFORMATION
================

Step-by-Step Example

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add two command buttons (Command1 and Command2) to Form1.

3. Enter the following code in the General Declarations of a form or
 module:

 ' Enter each of the following Declare statements on one, single line:
 Declare Function PostMessage Lib "User"
 (ByVal hWnd As Integer, ByVal wMsg As Integer,
 ByVal wParam As Integer, lParam As Any) As Integer
 Declare Sub SetWindowText Lib "User"
 (ByVal hWnd As Integer, ByVal lpString As String)
 Declare Function GetActiveWindow Lib "User" () As Integer
 Dim MhWnd as Integer

4. Enter the following code in the Click Event of Command1:

 Sub Command1_Click()
 Dim X as Integer
 X = Shell("c:\windows\dosprmpt.pif", 1) ' Open an MS-DOS Window
 For X = 0 To 100
 DoEvents
 ' a bunch of DOEVENTS to wait for the MS-DOS Window to open.
 Next X

 ' Get the handle when the MS-DOS Window has the focus:
 Mhwnd = GetActiveWindow()

 ' Now pass the handle to the window with a new title:
 Call SetWindowText(Mhwnd, "My Application!")
 End Sub

5. Place the following code in the Click Event of Command2:

 Sub Command2_Click()
 Dim X as Integer
 ' Note: In order for this to work on a MS-DOS Window, you have
 ' to have a PIF setup that will allow an MS-DOS Window to be closed.
 ' In the PIF editor, select "Advanced", then click "Close When
 ' Active". This allows MS-DOS applications to be closed
 ' programatically
 X = PostMessage(MhWnd, WM_CLOSE, 0, 0) ' Return greater than zero
 ' if successful.
 If X > 0 Then
 MsgBox "Application did not close!"
 End If
 End Sub

6. Start the program, or press the F5 key.

7. Click the Command1 button to see the title change.

Additional reference words: 2.00 3.00
KBCategory: Prg
KBSubcategory: PrgOther

Example of NPV and IRR Financial Functions in VB for Windows
Article ID: Q110888

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic programming system
 for Windows, version 3.0

SUMMARY
=======

This article explains the NPV and IRR financial functions and gives a
sample program.

MORE INFORMATION
================

The NPV, IRR, and MIRR functions are used for investments that are a series
of nonconstant cash payments made at equal intervals. You pass the series
of nonconstant payments in an array.

The nonconstant-payment functions (NPV, IRR, and MIRR) are in a different
category than the financial functions for annuity investments (FV, IPmt,
Rate, NPer, PV, Pmt, and PPmt). In an annuity, each cash payment is the
same constant amount, made at equal intervals.

The present value (PV) of a future cash receipt is the amount of money
that, if received today, would be considered equivalent to the future
receipt, at a given interest rate. The present value is less than the
future receipt because you can earn interest on money received today. NPV
(Net Present Value) compares (subtracts) the current value of a series of
future cash flows with an amount invested today.

NPV is useful to compare investment opportunities at a given discount
(interest) rate. The discount rate (found with the Rate function) can be
viewed as the rate of return you want out of your investment. If NPV is
greater than or equal to 0, the investment equals or exceeds your interest
(discount) rate requirement; if NPV is less than 0, the investment does not
meet your interest rate requirement.

The IRR function returns Internal Rate of Return. IRR returns the discount
rate at which NPV would return 0 (zero). For a given array of cash flow
values, IRR can be thought of as an average interest rate (which compounds
at each period). If IRR is lower than the interest rate you desire for this
investment, then it is not a good investment.

The first element of the input cash-flow array should usually be negative,
indicating your initial investment. A high (positive) income early in the
value array will make IRR higher than if the same high income instead
occurred later in the array. This is an example of the time value of money.

Please refer to an Accounting textbook for more information about these
standard Accounting functions.

Step-by-Step Example with Code

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add the following code to the General Declarations section of Form1:

 DefDbl A-Z
 ' Enter each Declare statement on one, single line:
 Declare Function NPVC Lib "MSAFINx.DLL" (ByVal Rate1#, values#,
 ByVal cvalues%) As Double
 Declare Function IRRC Lib "MSAFINx.DLL" (values#, ByVal cvalues%,
 ByVal Guess#) As Double

 Function IRR (values() As Double, ByVal Guess As Double) As Double
 On Error GoTo IrrErr
 iArgMin% = LBound(values)
 cArg% = UBound(values) - iArgMin%
 IRR = IRRC#(values(iArgMin%), cArg%, Guess)
 Exit Function
 IrrErr:
 MsgBox "Error " & (Str$(Err))
 Exit Function
 End Function

 Function NPV (ByVal Rate1 As Double, values() As Double) As Double
 On Error GoTo NpvErr
 iArgMin% = LBound(values)
 cArg% = UBound(values) - iArgMin%
 NPV = NPVC#(Rate1, values(iArgMin%), cArg%)
 Exit Function
 NpvErr:
 MsgBox "Error " & (Str$(Err))
 Exit Function
 End Function

3. Add the following code to the form Load event:

 Sub Form_Load ()

 form1.Show ' Must Show form in Load event for Print to work.
 ' Array holds cash flow values, one value per period (such as year):
 ReDim valuearray(5) As Double
 guess = .05 ' Guess the IRR (use .1 if in doubt).

 valuearray(0) = -70000 ' 0. First value negative initial investment
 valuearray(1) = 22000 ' 1. Return on investment after 1 period.
 valuearray(2) = 25000 ' 2. (Pos value is return on investment.)
 valuearray(3) = 28000 ' 3. (Neg value is additional investment.)
 valuearray(4) = 31000 ' 4. Return on investment after 4 periods.
 ' For the above values, IRR returns 17.7% return per period

 irreturn = IRR(valuearray(), guess)

 discountrate = 0 ' If discountrate = 0,
 ' NPV returns sum of valuearray().
 netpresval = NPV(discountrate, valuearray())

 ' Notes for NPV() function:
 ' If discountrate = value returned by IRR(), then NPV returns zero.
 ' If discountrate = zero, NPV returns sum of values in valuearray().
 ' If discountrate > zero, NPV returns an amount smaller than sum of
 ' values in valuearray() due to the discount effect at each period.
 ' If discountrate < zero, NPV returns an amount larger than the sum
 ' of the values in valuearray().

 Print "IRR (fractional return on investment per period) = "; irreturn
 Print "NPV = "; Format$(netpresval, "Standard")

 End Sub

4. Press the F5 key to run the program.

For the above values, IRR returns .177 (17.7% return per period).

NOTE: By definition, IRR returns the discount rate at which NPV returns 0.

NPV, IRR, MIRR: Reference to Undefined Function or Array
--

For more information, see the following article in the Microsoft Knowledge
Base:

 ARTICLE-ID: Q101245
 TITLE : BUG: Ref to NPV / IRR / MIRR Gives Undefined Functions Error

If you try to run an application that contains a reference to the NPV, IRR,
or MIRR financial function, Visual Basic for Windows generates this error:

 Reference to undefined Function or Array

Visual Basic does not recognized these as Visual Basic functions because
they were incorrectly referenced in the financial DLL file (MSAFINX.DLL)
that ships with Visual Basic version 3.0.

To work around the problem, you can declare the NPVC, IRRC, and MIRRC
functions located in MSAFINX.DLL and alias them as NPV, IRR, and MIRR
respectively, as shown farther above.

Additional reference words: 3.00
KBCategory: Prg
KBSubcategory: PrgOther

How to Mimic HIWORD, LOWORD, HIBYTE, LOBYTE C Macros in VB
Article ID: Q112651

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic
 programming system for Windows, versions 2.0 and 3.0

SUMMARY
=======

Visual Basic does not provide any bitwise functions for pulling apart
numeric values. In C, there are macros (HIBYTE, LOBYTE, HIWORD, and
LOWORD) to separate parts of long integers into two parts, or separate
integers into two parts. This article shows by example how to do the
same thing in a Visual Basic program.

MORE INFORMATION
================

The HIBYTE, LOBYTE, HIWORD, and LOWORD macros are defined in C in the
WINDOWS.H file. The HIBYTE and LOBYTE macros are used to retrieve the
high-order or low-order byte of the integer passed to them. The HIWORD
and LOWORD macros retrieve the high-order or low-order word from a
long integer value passed to them.

Step-by-Step Example

This example uses Visual Basic to mimic the HIBYTE, LOBYTE, HIWORD,
and LOWORD macros

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add two command buttons (Command1 and Command2) to Form1.

3. Add the following code to the Comamnd1_Click event:

 Sub Command1_Click ()
 Dim wParam As Integer
 Dim LOBYTE As Integer
 Dim HIBYTE As Integer
 ' Set wParam to a value:
 wParam = &H77FF
 ' Make call to function:
 ret = gethilobyte(wParam, LOBYTE, HIBYTE)
 ' Print out return values:
 Print LOBYTE, HIBYTE
 End Sub

4. Add the following code to the Comamnd2_Click event:

 Sub Command2_Click ()
 Dim lParam As Long

 Dim LOWORD As Long
 Dim HIWORD As Long
 ' Set lParam to a value:
 lParam = &H7777FFFF
 ' Make call to function:
 ret = gethiloword(lParam, LOWORD, HIWORD)
 ' Print out return values:
 Print LOWORD, HIWORD
 End Sub

5. Add the following code to the general declarations section of Form1:

 ' Enter the following Function statement as one, single line:
 Function gethilobyte(wparam as integer, LOWORD as integer,
 HIWORD as integer)
 ' This is the LOBYTE of the wParam:
 LOBYTE = wParam And &HFF&
 ' This is the HIBYTE of the wParam:
 HIBYTE = lParam \ &H100 And &HFF&
 gethilobyte = 1
 End Function

6. Add the following code to the general declarations section of Form1:

 Function gethiloword(lparam as long, LOWORD as long, HIWORD as long)
 ' This is the LOWORD of the lParam:
 LOWORD = lParam And &HFFFF&
 ' LOWORD now equals 65,535 or &HFFFF
 ' This is the HIWORD of the lParam:
 HIWORD = lParam \ &H10000 And &HFFFF&
 ' HIWORD now equals 30,583 or &H7777
 gethiloword = 1
 End Function

7. Run the program. Click the Command1 button to pull apart an integer
 value into its high-order and low-order bytes. Click the Command2 button
 to pull apart a long integer into its high-order and low-order words.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: PrgOther

How to Determine If a File Exists by Using DIR$
Article ID: Q112674

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0
--

SUMMARY
=======

Visual Basic does not have any built-in functions that tell if a file
exists or not. This article demonstrates how to find out if a file exists
or not by using a Visual Basic program.

MORE INFORMATION
================

There are two different methods you can use to determine if a file exists:

 - Use the DIR/DIR$ command to determine if a file exists. This
 method is shown in the example below. The example performs a DIR
 on the filename and checks the return value. If the return value
 is "" (nothing), then the file doesn't exist.

 - Use the OPEN statement to open a file for input and an error trap.
 This method can run into problems when dealing with SHARE in Windows.
 If the file does not exist, a trappable error occurs. The only
 problem with this method is if the file that is being opened with
 the OPEN statement is in use, you will generate a sharing violation,
 which is a system level error that is not trappable from Visual Basic.

Step-by-Step Example

This example show how to check for the existence of a file by using the
DIR$ function.

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add a command button (Command1) to Form1.

3. Place the following code in the Command1_Click Event:

 Sub Command1_Click()
 Dim TheFile as String
 Dim Results as String

 TheFile = "C:\AUTOEXEC.BAT"
 Results = Dir$(TheFile)

 If Results = "" Then
 MsgBox "File Doesn't Exist!"
 Else

 MsgBox "File does Exist!"
 End If
 End Sub

4. Run the program, and click the Command1 button.

5. Stop the program and make the TheFile variable point to a file that
 doesn't exist.

6. Run the program again, and click the Command1 button.

REFERENCES
==========

For more information, see the Programmer's Reference, File
Manipulation and the DIR/DIR$ commands.

Additional reference words: 1.00 2.00 3.00
KBCategory: Prg
KBSubcategory: PrgOther

How To Seek a CD Track by Using the MCI Control
Article ID: Q112732

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
--

SUMMARY
=======

The MCI Control supports seeking a certain Track by using the Commmand
and To properties. In order to seek to a specific track, specify which
track in the TO property of the MCI Control. Then, using the Command
property, perform the seek. This article gives an example.

MORE INFORMATION
================

The To property of the MCI Control will allow the seek to move to
another position based on the current time format. If you set the
TimeFormat property to MCI_FORMAT_TMSF (10), it will allow you to
move to the beginning of specific tracks.

Step-by-Step Example

The following example shows how to seek through all tracks on a CD
and play them for five seconds with the MCI Control.

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add an MCI Control (MMControl1) to Form1.

3. Place the following code in the Form_Load event of Form1:

 Sub Form_Load()
 MMControl1.Device = "CDAudio"
 MMControl1.Command = "Open"
 End Sub

4. Add the following code to the Command1_Click event:

 Sub Command1_Click()
 ' Set the timeformat to allow seek to move between tracks:
 mmcontrol1.TimeFormat = 10
 ' Loop through all tracks and play each for five seconds:
 For i = 1 To MMControl1.Tracks
 MMControl1.To = Str$(i)
 MMControl1.Command = "Seek"
 MMControl1.Command = "Play"
 x = Timer
 While Timer < x + 5
 DoEvents

 Wend
 Next
 ' Stop the CD:
 MMControl1.Command = "pause"
 End Sub

5. Run the program. The MCI Control should start playing Track 2

NOTE: Before starting this program, a CD must be inserted and ready
to play. Therefore, you should add code to detect when a CD has
been inserted and then run the above code.

REFERENCES
==========

For more information, see the Multimedia Programmer's Reference,
CDAudio.

Additional reference words: 2.00 3.00
KBCategory: Prg
KBSubcategory: PrgOther

How To Get the Total Playing Time of an Audio CD
Article ID: Q112766

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SUMMARY
=======

The MultiMedia Application Programming Interface (API) and the MCI Control
have built-in methods that retrieve the total playing time of a CD. The
Length property of the MCI Control will retrieve total playing time of
the current media.

MORE INFORMATION
================

After setting the MCI Control's TimeFormat property to MCI_FORMAT_TMSF(10)
and summing the values returned by the DateAdd function to add the total
time values for minutes and seconds together, you can calculate a CD's
total playing time.

DateAdd starts adding from 12:00:00 AM, so you need to check to see if the
total time is less than one hour. If it is, strip off the first three
characters (12:) and the AM. If the time is greater than one hour, strip
off the AM so that the return value looks like this:

1:09:43

 - or -

57:45

Step-by-Step Example

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add a text box (Text1) and an MCI Control (MMControl1) to Form1.

3. Place the following code in the Form_Load event of Form1:

 Sub Form_Load ()
 ' Initialize the CD:
 mmcontrol1.TimeFormat = 10
 mmcontrol1.DeviceType = "CDAudio"
 mmcontrol1.Command = "Open"
 ' Dimension variables:
 Dim Length As Variant
 Dim CDSeconds As Integer, CDMinutes As Integer
 ' Calculate minutes and seconds:
 CDSeconds = CDSeconds + (mmcontrol1.Length And &HFF00&) / &H100

 CDMinutes = CDMinutes + (mmcontrol1.Length And &HFF)
 ' Sum minutes and seconds:
 Length = DateAdd("s", CDSeconds, Length) ' Add Seconds
 Length = DateAdd("n", CDMinutes, Length) ' Add Minutes
 ' Determine if total running time is less than one hour:
 If (Left$(Length, 2)) = "12" Then ' Less than 1 hour
 Text1.Text = Mid(Length, 4, (Len(Length) - 4))
 Else ' Greater than 1 hour:
 Text1.Text = Left(Length, (Len(Length) - 3))
 End If
 End Sub

4. Run the program. You should see the total playing displayed in the
 Text1 box.

NOTE: Before starting this program, a CD must be inserted and ready to
play. Therefore, you should add code to detect when a CD has been inserted
and then run the above code.

REFERENCES
==========

For more information, see the Multimedia Programmer's Reference, CDAudio

Additional reference words: 3.00
KBCategory: Prg
KBSubcategory: PrgOther

How to Get or Create a Unique Audio CD Volume Label
Article ID: Q112768

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SUMMARY
=======

Part of the Multimedia standard calls for all Audio CDs to have a unique
volume identifier following a specific (suggested) format of:

 XXXX-#####

XXXX is the alpha vendor code, and ##### is a five-digit unique number
for the CD. This information is stored on the inner track of the CD and
is also usually etched on the inner edge of the inside ring of the CD.
Not all manufacturers have a unique volume identifier, nor do all follow
this standard volume label format. Although this is a standard, at this
time the MultiMedia Application Programming Interface (API) does not have
a built-in function that will retrieve this information. This article
shows you how to retrieve or create this information programmatically.

MORE INFORMATION
================

In order to retrieve the unique volume identifier from the CD, you need to
call MSCDEX directly. The information on how to do this is contained within
the MSCDEX 2.20 specification.

Because some manufacturers aren't including this unique identifier on their
CDs, Microsoft recommends that you create a unique volume identifying
number based on the track information already included on the CD. The
following example shows you how.

Step-by-Step Example

This example shows a method for creating a unique number to identify an
audio CD based on track information. The purpose of this number is to make
it possible for Visual Basic programs to recognize a loaded CD and retrieve
information from it.

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add a text box (Text1) and an MCI control (MMControl1) to Form1.

3. Place the following code in the Form_Load event of Form1:

 Sub Form_Load ()
 Dim DiskID As Long
 Dim Track As Integer

 ' Initialize CD:
 mmcontrol1.DeviceType = "CDAudio"
 mmcontrol1.Command = "open"
 ' Make unique number based on tracks and tracklength:
 DiskID = mmcontrol1.Tracks
 For Track = 1 To mmcontrol1.Tracks
 mmcontrol1.Track = Track
 DiskID = DiskID + mmcontrol1.TrackLength ' Add 4-byte TrackLength
 DiskID = DiskID + mmcontrol1.Length ' Add 4-byte CD Length
 Next Track
 ' Set text to unique value:
 Text1.Text = DiskID
 End Sub

4. Load a CD.

5. Start the program, or press the F5 key.

6. The Text1 box should have a unique identifying number for the CD.

NOTE: Before starting the program, a CD must be inserted and ready to play.
Therefore, you should add code to detect when a CD has been inserted and
then run the above code.

REFERENCES
==========

For more information, see the MultiMedia Programmer's Reference, CDAudio

Additional reference words: 3.00
KBCategory: Prg
KBSubcategory: PrgOther

General Memory Management in Visual Basic Vers 3.0 for Windows
Article ID: Q112860

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SUMMARY
=======

This article outlines how various memory areas in Visual Basic are managed.
It covers the following areas:

 - General Memory Management:

 - Windows Limits
 - Application Limits
 - Form Limits
 - Data Limits
 - Global Name Table
 - Global Symbol Table
 - Global Data Segment
 - Module Name Table
 - Module Symbol Table
 - Module Data Segment
 - Module Code Segment
 - System Resources
 - Stack Space
 - When Code and Resources are Loaded/Unloaded

 - "Out of Memory" and Related Error Messages:

 - Common Ways to Avoid "Out of Memory"
 - Common Ways to Diagnose "Out of Memory"
 - Verifying a Memory Leak

MORE INFORMATION
================

GENERAL MEMORY MANAGEMENT
=========================

Windows Limits

 - Windows version 3.1 imposes a limit of 600 windows in existence at one
 time. All windows in all applications running in Windows count toward
 this limit. In Visual Basic, each form and non-graphical control (all
 controls except shape, line, image, and label) counts as one window.

Application Limits

 - Maximum of 256 distinct objects in a project

 - Maximum of approximately 230 forms in a project, with up to 80 loaded at
 one time

 - The total count of all procedures, form and code modules, and DLL
 declarations must be less than 5,200 -- not counting event procedures
 that are empty of code.

Form Limits

 - Maximum of 470 controls on a single form depending on control type.

 - Maximum of 254 different control names per form. A control array counts
 as one name.

 - The data in all form properties and all control properties on a given
 form is stored in a single data segment limited to 64K, except for the
 List property of combo and list box controls and the Text property of
 multiline text box controls.

Data Limits

 - Specific data limits for Visual Basic version 3.0 are well documented in
 Appendix D of the Microsoft Visual Basic "Programmer's Guide." Please
 look there for information on data limits.

Global Name Table

Each application uses a single Global name table (up to 64K in size)
that contains all global names. Global names include:

 - The actual text of the Form or Code module name.

 - The actual text of each event procedure name goes in the global symbol
 table only once. For example, two different forms each have a Form_Load
 event procedure, but only one entry for the event procedure is made in
 the global symbol table.

 - The actual text of each non-event Sub or Function procedure name in a
 form module (.FRM file). Even though these Sub or Function procedures
 are private to the form, within the application, their names are listed
 globally but with a flag set to indicate that they are private to that
 form.

 - The actual text of each non-event Sub or Function procedure name in a
 code module (.BAS file). As with Sub or Function procedure names in a
 form module, the code module Sub and Function procedure names are listed
 globally but with a flag set to indicate that they are global to the
 application -- unless the Private key word is used, in which case the
 flag is set to indicate that they are private to that code module.

 - The actual text for the name of each Global constant.

 - The actual text for the name of each Global variable.

 - The actual text for the name of each user-defined type definition.

 - The actual text for the name of each Global DLL Sub or Function
 procedure declaration.

 - Four bytes of overhead for each of the above listed global names in the
 global name table as well as approximately 100 bytes of overhead for the
 hash table for these Global names.

NOTE: When your project is made into an .EXE file, the Global name table is
not needed. It is needed only within the Visual Basic environment to create
the .EXE file. However, in some special cases, some global symbols (such as
DLL function names) may be required in the .EXE file.

Global Symbol Table

Each application has a single Global symbol table that is up to 64K in
size. This table contains descriptive information about each of the items
named in the Global name table. Specifically, this table contains:

 - Type definitions: 4 bytes for the type + 4 bytes for each element.

 - Type variables: 12 bytes

 - Fixed String Variables: 12 bytes

 - Object variables: 8 bytes (approximately)

 - Everything else: 10 bytes (approximately)

 - In addition, there is overhead (approximately 100 bytes) for the hash
 table within the Global symbol table.

NOTE: As with the Global name table, when your project is made into an .EXE
file, the Global symbol table is not needed. It is only needed within the
Visual Basic environment to create the .EXE file itself. However in some
special cases (such as names of DLL functions), some global symbol
information may be required in the .EXE itself.

Global Data Segment

Each application has a single 64K Global data segment that contains all
global data for all global variables and global constants.

Module Name Table

Each form and code module has a single Module name table that is up to 64K
in size. The Module name table includes:

 - The actual text for the name of each module-level and local variable
 name.

 - The actual text for the name of each module-level DLL Sub or Function
 procedure declaration.

 - The actual text used for line numbers and line labels.

 - As with the global name table, there is an additional four-byte overhead
 for each of the above listed module-level names in the Module name table
 as well as about 100 bytes overhead for the hash table for these module-
 level names.

NOTE: As with the Global name table, when your project is made into an .EXE
file, most of the Module name table is not needed.

Module Symbol Table

Each form and code module has a single Module symbol table that is up to
64K in size. The module symbol table contains much of the same information
as the Global symbol table, except for Type definitions.

NOTE: As with the Module symbol table, when your project is made into an
.EXE file most of the Module name table is not needed.

Module Data Segment

Each form and code module has their own 64K module data segment. The
contents of the module data segment includes:

 - Local variables declared with the Static key word.

 - Local variables declared within a Static Sub or Function procedure.

 - Module-level fixed-length string variables.

 - Module-level variables other than arrays and variable-length strings.

 - Module-level constants.

 - Tracking data for arrays and variable-length strings (two-byte pointer
 each).

 - Tracking data for controls referenced in code for a form (two-byte
 pointer each).

 - Tracking data for non-static local variables (two-byte pointer each).

Module Code Segment

Each form and code module has one 64K code segment. This code segment
contains the p-code (the internal representation of your code) for all
procedure code and module level declarations in a given form or code
module. The amount of p-code in a procedure or the declarations section of
a module is roughly equivalent to the number of ASCII text characters in
the code. The Visual Basic documentation recommends that you save your
forms and modules as ASCII text and that you keep the size of each of the

form and code modules in your application to under 64K. However, practical
experience by Visual Basic programmers has shown it is best to keep the
size of these files to under about 45K to 50K in size.

System Resources

The data space (heap) attached to the Windows libraries USER.EXE and
GDI.EXE is the space allocated for system resources. The data space used by
the GDI library contains graphics information regarding brushes, fonts,
icons, and so on. The data space used by the USER library contains style
information pertaining to windows (forms) and controls. The data space for
each of these libraries is limited to 64K. The "About Program Manager" menu
option displays, as a percentage, the lower of these two areas of memory.
If you run out of either of these two heaps you will receive an "Out of
Memory" error message.

Visual Basic uses Windows resources shared with other Windows applications,
so it's important to make efficient use of these resources to avoid "Out of
memory" messages. For larger applications, you should reduce the number of
forms and controls loaded at any one time. Forms should be loaded only when
needed. Here are some ways to reduce the number of controls:

 - Use the Visual Basic Load and Unload statements to load forms only when
 needed at run time.

 - Use so called light-weight controls (labels, images, lines, and shapes
 in Visual Basic version 3.0) when possible. These controls are similar
 to other controls in that they do use system resources when they are
 being drawn or updated in the screen. But unlike other controls, the
 light-weight controls release resources back to the system when
 finished.

 - Replace controls such as command buttons that react to mouse events,
 with an image control that has a picture of a control in it. This
 provides your application with similar functionality but uses less
 memory (system resources).

 - Try to replace several related controls with a single, larger control.
 For example, if several text boxes were placed on a form to represent
 the cells of a spreadsheet, you could replace these controls with a
 single picture control containing an image of the cells -- lines drawn
 vertically and horizontally. Hit testing could be performed at run time
 from within the MouseDown event of the picture control. In other words,
 you could use the x and y coordinates passed to the MouseDown event to
 determine which "cell" was clicked (hit). The cell image on the picture
 control could be temporarily replaced by a real text box -- positioned
 by using the Move method -- to allow for user input. In this manner,
 only two controls would be required to simulate input on a spreadsheet,
 a picture control and a text box.

Stack Space

Each Visual Basic application uses a single stack limited to 20K in size.
The 20K size cannot be changed, so an "Out of Stack Space" error can easily
occur if your program performs uncontrolled recursion, such as a cascading

event.

Arguments and local variables in Sub and Function procedures take up stack
space at runtime. However, global, module-level, and static variables don't
take up stack space because they're allocated in the Module Data Segment
for form and code modules.

When Code and Resources Are Loaded or Unloaded
--

When an application is executed, memory is allocated for the Global Data
Segment and the appropriate data is loaded into it. This stays persistent
until the application terminates.

When a form is loaded, system resources are allocated for the Form and all
controls on that form. In addition Memory is allocated for the Module data
segment and the appropriate data is loaded into it.

When an event, Sub, or Function procedure is called, the code for that Form
or code module is loaded. Note that once code for a code module is loaded
into memory, the code remains in memory until the application terminates.

When a form is unloaded, the code for that form is unloaded, as well
as all resources used by that form and the controls on that form. However,
when a Form is unloaded the Module Data Segment is not unloaded. It remains
in memory until the application terminates. This means that if you load
Form2, change the values of some module level variables, unload Form2, and
then load Form2 again, the value you last assigned to the module level
variable in Form2 will still be present. In order to deallocate memory used
by the Module data segment in the form, use the following line of code
after you unload the form:

 Unload Form2
 Set Form2 = Nothing

This will clear all data in the Module code segment for the form.

"OUT OF MEMORY" AND RELATED ERROR MESSAGES
==

Common Ways to Avoid "Out of Memory"

Here are some tips to help you avoid the "Out of Memory" error:

 - Read Appendix D (Specifications and Limits) of the "Programmers Guide."
 The discussion of the Global Symbol Table in the manual is enhanced
 by details presented below.

 - Read Chapter 11, "Optimizing Your Applications for Size and Speed," in
 the "Programmer's Guide." This offers a good starting place in its
 discussion of optimizing your applications memory requirements.

 - Keep the number of forms loaded at any given time to as few as possible.
 While the specifications indicate that 80 forms can be loaded into
 memory, in practice you will want to avoid pushing this upper limit.

 - If possible, take advantage of non-graphical controls (shape, line,
 image, and label). These controls use less system resources as well as
 memory.

 - Use control arrays if possible rather than a large number of static
 controls of the same type.

 - Minimize the number of controls on a form. The upper limit of
 controls on a form is 470, however they can use only 254 control
 names (making control arrays necessary). In practice, a form this
 heavily laden with controls would be slow in performance. Minimize the
 number and type of custom controls on a given form.

 - Minimize the size of the names used in event, private, and global Sub
 and Function procedures. See the "Global Name Table" discussion above
 for details.

 - Save your forms and modules as text. See the "Module Code Segment"
 discussion above for details.

 - Ensure that the declaration for any API or other DLL calls you make
 are correct. Ensure that memory allocated by routines inside a DLL is
 actually deallocated when the process using it is finished.

 - Explicitly turn off timer controls when your application exits. If
 you do not, it is possible the parent form will not be unloaded, and
 the timer will continue firing.

 - Explicitly unload forms -- especially when the application terminates.
 The End statement does not trigger the Unload event of a form. The
 only way to ensure that a form is actually unloaded is to issue the
 Unload statement. The Forms Collection is useful for being certain
 that all forms, loaded or not, are unloaded.

Tips for Diagnosing "Out of Memory" Problems
--

When you receive an "Out of Memory" error, there may be few limits to the
lengths you will have to go to diagnose and locate the actual source of the
problem. Make a backup of your project and place it in a temporary
directory. Take any drastic measures on that backup copy. The following are
some tips to help you narrow the focus in finding the cause of the "Out of
Memory" error:

 - Remove any and all unnecessary device drivers from the CONFIG.SYS file.
 Is there any particular problem that seems to induce the error?

 - Remove any TSR (terminate and stay resident) programs from the
 AUTOEXEC.BAT file. Again, is there any particular TSR that induces the
 error?

 - Use Program Manager as the Windows desktop.

 - Do not run anything else in Windows that is not necessary. Check
 this by bringing up the task list (CTRL-ESC). Are Visual Basic and
 the Program Manager the only tasks running?

 - Change the Windows Video driver to standard VGA. It may be necessary
 to check if your display's vendor has released an update to the
 display driver. There may an incompatibility with your video driver
 and Visual Basic causing video memory to be incorrectly allocated or
 referenced.

 - Change any API or DLL calls you are making into comments by adding a
 single quotation mark as the first character on the line. This may not
 be conclusive, as the error can be generated as a result of the values
 returned by the calls, and not the calls themselves. In that case,
 hard code the return values, or provide some mechanism to simulate
 their action so you can test the code that responds to them.

 - Remove any custom controls you are using from the form.

Verifying a Memory Leak

Memory leaks can occur when memory is allocated to perform a particular
process, but is not deallocated when the process concludes.

You can use a tool such as HeapWalker from the Windows Software
Development kit or Visual C/C++. HeapWalker allows you to analyze your
application's memory requirements and memory profile by seeing how many
code segments from your application are in memory at any given time.

The Windows API GetFreeSpace() function scans the global heap and returns
the number of bytes of memory currently available. However, use of this
function in a large application can be misleading. The best way to use this
function is to create a demonstration program that tracks memory before and
after a given process. It is important to minimize the scope of that
process as much as possible or else the results will be inconclusive.

REFERENCES
==========

 - Visual Basic version 3.0 for Windows "Programmer's Guide," Appendix D,
 "Specifications and Limitations," pages 641-646.

 - Visual Basic version 3.0 for Windows "Programmer's Guide," Chapter 11,
 "Optimizing your Application for Size and Speed," pages 255-263.

 - Microsoft Windows Software Development Kit "Programmer's Reference,"
 Volume 2, "Functions."

Additional reference words: 3.00
KBCategory: Prg
KBSubcategory: PrgOptMemMgt

PRB: Error When Assign DB Value to Var: Invalid Use of Null
Article ID: Q113032

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic
 Programming System for Windows, version 3.0

SYMPTOMS
========

It is possible to receive the error message "Invalid Use of Null" when
assigning data from an empty field in a database to a variable or control.
This article explains why this error occurs and how to work around it.

CAUSE
=====

The variant data type can hold several types of data. It can also be Null
or Empty. It is important to distinguish between Null and Empty. A Null
variant contains no valid data, while an Empty variant has not been
initialized.

When an Empty variant is assigned to a string it is converted to "". When
an Empty variant is assigned to a numeric it is converted to 0. The Null
variant on the other hand has no valid data, so it cannot be assigned to a
string or a numeric. Trying to assign a Null variant generates the "Invalid
Use of Null" error. The following example demonstrates this behavior.

 Dim a as Variant
 Dim b as Integer
 a = Null
 b = a

Some properties, functions, and methods also return Null. An obvious
example is the Null function. To avoid the "Invalid Use of Null" error,
don't assign a function or method that returns Null to a string or numeric.
The following example demonstrates this behavior:

 Dim b as Integer
 b = Null

The "Invalid Use of Null" error can also occur when assigning a value to a
string or numeric property of a control. The text property of a text box is
a string property. The following example shows how the "Invalid Use of
Null" error can occur with a text box.

 Text1.Text = Null

In database programming, you may also receive the "Invalid Use of Null"
error when assigning the value of a field to a text box. This happens
because the Value property returns Null when the field contains no valid
data. Here's an example that demonstrates this:

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add a data control (Data1) and a text box (Text1) to the form.

3. Add the following code to the Form_Load event:

 Sub Form_Load()
 Data1.DatabaseName = "C:\VB\BIBLIO.MDB"
 Data1.RecordSource = "Authors"
 Data1.Refresh
 Data1.Recordset.AddNew
 Data1.Recordset.Update
 Data1.Recordset.Bookmark = Data1.Recordset.LastModified
 Text1.Text = Data1.Recordset("Author")
 End Sub

4. Run the program.

WORKAROUND
==========

Visual Basic provides two mechanisms for working around the error.

 - The IsNull() function method.
 - The ampersand (&) concatenation method.

The IsNull() Function Method

The IsNull() function allows you to detect Null. Here's how you could use
IsNull() in a database program:

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add a data control (Data1) and a text box (Text1) to the form.

3. Add the following code to the Form_Load event:

 Sub Form_Load()
 Data1.DatabaseName = "C:\VB\BIBLIO.MDB"
 Data1.RecordSource = "Authors"
 Data1.Refresh
 Data1.Recordset.AddNew
 Data1.Recordset.Update
 Data1.Recordset.Bookmark = Data1.Recordset.LastModified
 If IsNull(Data1.RecordSet("Author")) Then
 Text1.Text=""
 Else
 Text1.Text = Data1.Recordset("Author")
 End If
 End Sub

4. Run the program.

The Ampersand (&) Concatenation Method

The other method is to take advantage of Visual Basic's string
concatenation operator -- the ampersand (&). If one of the arguments in a
concatenation is valid and the other is Null, a concatenation will convert
the null value to "". You can take advantage of this behavior when
assigning values that might return Null. When concatenating a valid string
with a value that could return null, the result will always be a valid
string. Here's an example that uses string concatenation:

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add a data control (Data1) and a text box (Text1) to the form.

3. Add the following code to the Form_Load event:

 Sub Form_Load()
 Data1.DatabaseName = "C:\VB\BIBLIO.MDB"
 Data1.RecordSource = "Authors"
 Data1.Refresh
 Data1.Recordset.AddNew
 Data1.Recordset.Update
 Data1.Recordset.Bookmark = Data1.Recordset.LastModified
 Text1.Text = "" & Data1.Recordset("Author")
 End Sub

4. Run the program.

Additional reference words: 3.00
KBCategory: Prg
KBSubcategory: PrgOther

How to Clear a VB List Box with a Windows API Function
Article ID: Q71069

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0

SUMMARY
=======

Customers often ask how to quickly clear the contents of a list box
without clearing one item at a time. The following article shows how
to instantly clear the contents of a list box in Visual Basic version 2.0
by sending the list box a LB_RESETCONTENT message.

The Clear method was introduced in Visual Basic version 3.0. You can use
the Clear method to clear the contents of a list box or combo box, or to
clear the contents of the Clipboard.

MORE INFORMATION
================

Clearing a List Box in Visual Basic Version 3.0
--

In version 3.0, you can use the Clear method to clear all items from a list
box. The following example shows you how.

Version 3.0 Example

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add a List box (List1) to Form1.

3. Add the following code to the Declarations section of Form1.

 Sub Form_Click ()

 Dim Entry, I, Msg ' Declare variables
 Msg = "Choose OK to add 100 items to your list box."
 MsgBox Msg ' Display message.
 For I = 1 To 100 ' Count from 1 to 100.
 EEntry = "Entry " & I ' Create entry.
 LList1.AddItem Entry ' Add the entry.
 Next I
 Msg = "Choose OK to remove every other entry."
 MsgBox Msg ' Display message.
 For I = 1 To 50 ' Determine how to remove every other item.
 LList1.RemoveItem I
 Next I
 Msg = "Choose OK to remove all items from the list box."
 MsgBox Msg ' Display message.

 List1.Clear ' Clear list box.

 End Sub

4. Press the F5 key to run the program and click anywhere in the form to
 clear the contents of List1.

Clearing a List Box in Visual Basic Version 2.0
--

No single command in Visual Basic version 2.0 will clear out the entries of
a list box, but a simple While Loop will, as follows:

 Do While List1.ListCount > 0
 List1.RemoveItem 0
 Loop

If you want a single command to clear all list box entries at once in
version 2.0, you can use the SendMessage Windows API function. The
arguments to SendMessage with the LB_RESETCONTENT parameter are

 SendMessage(hWnd%, wMsg%, wParam%, lParam&)

where:

 hWnd% Identifies the window that is to receive the message
 wMsg% The message to be sent (&H405)
 wParam% Is not used (NULL)
 lParam& Is not used (NULL)

Setting wMsg% equal to &H405 removes all strings from the list box
and frees any memory allocated for those strings.

To get hWnd%, you must call the Windows API function GetFocus(). This
method will return the handle to the control that currently has focus,
in this case the list box that you want to clear.

Version 2.0 Example

The following shows by example how to delete entries from a list box in
version 2.0.

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add a list box (List1) to Form1.

3. Declare the following Windows API functions at the module level or
 in the Global section of your code as follows:

 ' Enter the following Declare statement as one, single line:
 Declare Function SendMessage% Lib "user" (ByVal hWnd%,
 ByVal wMsg%, ByVal wParam%, ByVal lParam&)
 Declare Function GetFocus% Lib "user" ()
 Declare Function PutFocus% Lib "user" Alias "SetFocus" (ByVal hWnd%)

4. Declare the following constants in the same section:

 Const WM_USER = &H400
 Const LB_RESETCONTENT = WM_USER + 5

5. Create the following Sub procedure in the (Declarations) section of the
 Code window:

 Sub ClearListBox (Ctrl As Control)
 hWndOld% = GetFocus()
 Ctrl.SetFocus
 x = SendMessage%(GetFocus(), LB_RESETCONTENT, 0, 0)
 Suc% = PutFocus(hWndOld%)
 End Sub

6. Within an event procedure, call ClearListBox with the name of the
 list box as a parameter:

 Sub Form_Click ()
 ClearListBox List1
 End Sub

7. Place some entries into the list box:

 Sub Form_Load ()
 For i = 1 To 10
 List1.AddItem Format$(i) 'Put something into list box.
 Next
 End Sub

8. Run the program and click anywhere on Form1 to clear the list box.

REFERENCES
==========

"Programming Windows: the Microsoft Guide to Writing Applications for
Windows 3," by Charles Petzold, Microsoft Press, 1990

"Microsoft Windows Software Development Kit: Reference Volume 1"
version 3.0

WINSDK.HLP file shipped with Microsoft Windows 3.0 Software
Development Kit

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: APrgOther

How to Emulate QuickBasic's SOUND Statement in Visual Basic
Article ID: Q71102

The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
 - Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

The SOUND statement found in Microsoft QuickBasic is not implemented
within Microsoft Visual Basic. You can perform sound through a Windows
3.00 API call that is equivalent to the QuickBasic SOUND statement.

MORE INFORMATION
================

The QuickBasic version of the SOUND statement can be executed by
calling several Windows 3.0 API function calls. Within Windows, you
must open up a VoiceQueue with the OpenSound call routine. Using the
function SetVoiceSound, place all of the values corresponding to the
desired frequencies and durations. Once the VoiceQueue has the desired
frequencies and durations, you start the process by calling
StartSound. After the sounds have been played, you must free up the
VoiceQueue by calling CloseSound. If you plan on placing a large
amount of information into the VoiceQueue, you may need to resize the
VoiceQueue buffer by calling the SetVoiceQueueSize function.

After executing the StartSound function, you cannot place any more
sound into the VoiceQueue until the VoiceQueue is depleted. Placing
more sound into the queue will overwrite any information that was
previously in the VoiceQueue. If you are going to place sound into the
VoiceQueue after a StartSound statement, you will need to call
WaitSoundState with an argument of one. When WaitSoundState returns
NULL, the VoiceQueue is empty and processing can continue.

Below is an example of using the Windows API function calls, which will
imitate the QuickBasic SOUND statement:

In the general section place the following:

Declare Function OpenSound Lib "sound.drv" () As Integer
Declare Function VoiceQueueSize Lib "sound.drv"
 (ByVal nVoice%, ByVal nBytes%) As Integer
Declare Function SetVoiceSound Lib "sound.drv"
 (ByVal nSource%, ByVal Freq&, ByVal nDuration%) As Integer
Declare Function StartSound Lib "sound.drv" () As Integer
Declare Function CloseSound Lib "sound.drv" () As Integer
Declare Function WaitSoundState Lib "sound.drv" (ByVal State%) As Integer

Note: All Declare statements above each must be placed on one line.

The SetVoiceSound takes two arguments. The first variable, Freq, is a
two WORD parameter. The HIGH WORD will hold the actual frequency in
hertz. The LOW WORD will hold the fractional frequency. The formula, X
* 2 ^ 16, will shift the variable "X" into the HIGH WORD location. The
second variable, Duration%, is the duration in clock ticks. There are
18.2 tick clicks per second on all Intel computers.

The following simplistic example shows how you can place several
frequencies and durations into the VoiceQueue before starting the
sound by calling the StartSound function:

Sub Form_Click ()
 Suc% = OpenSound()
 S% = SetVoiceSound(1, 100 * 2 ^ 16, 100) ' Frequency = 100 hz
 S% = SetVoiceSound(1, 90 * 2 ^ 16, 90) ' Frequency = 90 hz
 S% = SetVoiceSound(1, 80 * 2 ^ 16, 90) ' Frequency = 80 hz
 S% = StartSound()
 While (WaitSoundState(1) <> 0): Wend ' Wait for sound to play.
 Succ% = CloseSound()
End Sub

The following is another simple example, which creates a siren sound:

1. Within the general section, place the following Sound procedure:

Sub Sound (ByVal Freq as Long, ByVal Duration%)
 Freq = Freq * 2 ^ 16 ' Shift frequency to high byte.
 S% = SetVoiceSound(1, Freq, Duration%)
 S% = StartSound()
 While (WaitSoundState(1) <> 0): Wend
End Sub

2. Place the code below into any event procedure. The example below
 uses the Form_Click event procedure. Clicking any position on the
 form will create a police siren.

Sub Form_Click ()
 Suc% = OpenSound()
 For j& = 440 To 1000 Step 5
 Call Sound(j&, j& / 100)
 Next j&
 For j& = 1000 To 440 Step -5
 Call Sound(j&, j& / 100)
 Next j&
 Succ% = CloseSound()
End Sub

Reference(s):

"Programming Windows: the Microsoft Guide to Writing Applications for
Windows 3," Charles Petzold, Microsoft Press, 1990

"Microsoft Windows Software Development Kit: Reference Volume 1,"
version 3.0

WINSDK.HLP file shipped with Microsoft Windows 3.0 Software
Development Kit

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgOther

How to Flood Fill (Paint) in VB using ExtFloodFill Windows API
Article ID: Q71103
--
The information in this article applies to:

- Microsoft Visual Basic programming system for Windows,
 versions 1.0, 2.0, and 3.0
--

SUMMARY
=======

You can fill an area on a window in Visual Basic through a Windows API
function call. Depending on the type of fill to be performed, you can
use the ExtFloodFill function to achieve the desired effect. This
feature is similar to the paint feature found in painting programs.

This information applies to Microsoft Visual Basic programming system
version 1.0 for Windows.

MORE INFORMATION
================

The Windows API ExtFloodFill function call fills an area of the
display surface with the current brush, as shown in the example below.

Code Example

From the VB.EXE Code menu, choose View Code, and enter the following
code (on just one line) for Form1 (using [general] from the Object box
and [declarations] from the Procedure box):

Declare Function ExtFloodFill Lib "GDI" (ByVal hdc%, ByVal i%,
 ByVal i%, ByVal w&, ByVal i%) As Integer

To demonstrate several fill examples, create a picture box called
Picture1. Set the following properties:

AutoSize = TRUE ' Scale picture to size of imported picture.
ScaleMode = 3 ' Set the scale mode to pixels, not twips
FillColor = &HFF00FF ' This will be the selected fill color.
FillStyle = Solid ' Necessary to create a fill pattern.
Picture = Chess.bmp ' This should be in your Windows directory.

Create a push button in a location that will not be overlapped by
Picture1. Within the Click event, create the following code:

Sub Command1_Click ()
 ' Make sure that the FillStyle is not transparent.
 ' crColor& specifies the color for the boundary.
 Const FLOODFILLBORDER = 0 ' Fill until crColor& color encountered.
 Const FLOODFILLSURFACE = 1 ' Fill surface until crColor& color not
 ' encountered.
 X% = 1

 Y% = 1
 crColor& = RGB(0, 0, 0)
 wFillType% = FLOODFILLSURFACE
 Suc% = ExtFloodFill(picture1.hDC, X%, Y%, crColor&, wFillType%)
End Sub

When you click the push button, the black background will change to
the FillColor. The fill area is defined by the color specified by
crColor&. Filling continues outward from (X%,Y%) as long as the color
is encountered.

Now change the related code to represent the following:

 crColor& = RGB(255, 0, 0) 'Color to look for.
 wFillType% = FLOODFILLBORDER
 Suc% = ExtFloodFill(picture1.hDC, X%, Y%, crColor&, wFillType%)

Executing the push button will now fill the area until crColor& is
encountered. In the first example, the fill was performed while the
color was encountered; in the second example, the fill was performed
while the color was not encountered. In the last example, everything
is changed except the "floating pawn".

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgGrap

How to Use Windows BitBlt Function in Visual Basic Application
Article ID: Q71104

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

Windows GDI.EXE has a function called BitBlt that will move the source
device given by the hSrcDC parameter to the destination device given by
the hDestDC parameter. This article explains in detail the arguments of
the Windows BitBlt function call.

MORE INFORMATION
================

This information is included with the Help file provided with Microsoft
Professional Toolkit for Visual Basic version 1.0, Microsoft Visual Basic
version 2.0, and Microsoft Visual Basic version 3.0.

To use BitBlt within a Visual Basic application, you must Declare the
BitBlt function in one of these places:

 - Global module if using Visual Basic version 1.0.
 - Declaration section of any code module if using Visual Basic version
 2.0 or higher.
 - Declaration section of a code window for the form.

Use the following Declare statement to declare the Function. Enter the
entire Declare statement on one, single line:

Declare Function BitBlt Lib "GDI" (ByVal hDestDC%, ByVal X%, ByVal Y%,
 ByVal nWidth%, ByVal nHeight%, ByVal hSrcDC%, ByVal XSrc%, ByVal YSrc%,
 ByVal dwRop&) As Integer

The following defines each of the formal parameters used in the Declare:

 Parameter Definition
 --
 hDestDC Specifies the device context that is to receive the bitmap.

 X,Y Specifies the logical x-coordinate and y-coordinate of the
 upper-left corner of the destination rectangle.

 nWidth Specifies the width (in logical units) of the destination
 rectangle and the source bitmap.

 nHeight Specifies the height (in logical units) of the destination
 rectangle and the source bitmap.

 hSrcDC Identifies the device context from which the bitmap will be
 copied. It must be NULL(zero) if the dwRop& parameter
 specifies a raster operation that does not include a source.

 XSrc Specifies the logical x-coordinate and the y-coordinate of
 the upper-left corner of the source bitmap.

 dwRop Specifies the raster operation to be performed as defined
 below.

The following Raster operations are defined using the predefined constants
found in the WINDOWS.H file supplied with the Microsoft Windows Software
Development Kit (SDK). The value in the parentheses () is the value to
assign to the dwRop& variable.

 Code/Value (hex) Description
 --
 BLACKNESS (42) Turn output black.

 DSINVERT(550009) Inverts the destination bitmap.

 MERGECOPY(C000CA) Combines the pattern and the source bitmap using
 the Boolean AND operation.

 MERGEPAINT(BB0226) Combines the inverted source bitmap with the
 destination bitmap using the Boolean OR operator.

 NOTSRCCOPY(330008) Copies the inverted source bitmap to the
 destination.

 NOTSRCERASE(1100A6) Inverts the result of combining the destination
 and source bitmap using the Boolean OR operator.

 PATCOPY(F00021) Copies the pattern to the destination bitmap.

 PATINVERT(5A0049) Combines the destination bitmap with the
 pattern using the Boolean XOR operator.

 PATPAINT(FB0A09) Combines the inverted source bitmap with the
 pattern using the Boolean OR operator. Combines
 the result of this operation with the destination
 bitmap using the Boolean OR operator.

 SRCAND(8800C6) Combines pixels of the destination and source
 bitmap using the Boolean AND operator.

 SRCCOPY(CC0020) Copies the source bitmap to destination bitmap.

 SRCERASE(4400328) Inverts the destination bitmap and combines the
 results with the source bitmap using the Boolean
 AND operator.

 SRCINVERT(660046) Combines pixels of the destination and source
 bitmap using the Boolean XOR operator.

 SRCPAINT(EE0086) Combines pixels of the destination and source
 bitmap using the Boolean OR operator.

 WHITENESS(FF0062) Turns all output white.

Step-by-Step Example

Here is an example showing how to copy the contents of a picture control
to the contents of another picture control.

1. Define a form (Form1) and place two picture controls (Picture1 and
 Picture2) on Form1.

2. Display some graphics on Picture1 by loading from a picture file or
 by pasting from the clipboard at design time. You can load a picture
 from a file as follows:

 - Select Picture from the Properties list box and click the arrow at
the
 right of the Settings box.
 - Then select the desired picture file such as a .BMP or .ICO file
 supplied with Microsoft Windows from the dialog box.

3. Add the following code to the Form_Click procedure:

 Sub Form_Click ()

 ' Assign information of the destination bitmap. Note that Bitblt
 ' requires coordinates in pixels.
 Const PIXEL = 3
 Picture1.ScaleMode = PIXEL
 Picture2.ScaleMode = PIXEL
 hDestDC% = Picture2.hDC
 X% = 0: Y% = 0
 nWidth% = Picture2.ScaleWidth
 nHeight% = Picture2.ScaleHeight

 ' Assign information of the source bitmap.
 hSrcDC% = Picture1.hDC
 XSrc% = 0: YSrc% = 0

 ' Assign the SRCCOPY constant to the Raster operation.
 dwRop& = &HCC0020

 Suc% = BitBlt(hDestDC%, X%, Y%, nWidth%, nHeight%,_
 hSrcDC%, XSrc%, YSrc%, dwRop&)
 End Sub

4. Run the program.

Click the form. The contents of the first picture will be displayed on the
the second picture.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgGrap

How to Pass One-Byte Parameters from VB to DLL Routines
Article ID: Q71106
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
--

SUMMARY
=======

Calling some routines in dynamic link libraries (DLLs) requires BYTE
parameters in the argument list. Visual Basic for Windows possesses
no BYTE data type as defined in other languages such as C, which can
create DLLs. To pass a BYTE value correctly to an external FUNCTION
(in a DLL), which requires a BYTE data type, you must pass an integer
data type for the BYTE parameter.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

Visual BASIC for Windows has the ability to call external code in the
form of dynamic link libraries (DLLs). Some of these libraries require
BYTE parameters in the argument list. An example of this is located in
the KEYBOARD.DRV FUNCTION as defined below:

 FUNCTION GetTempFileName (BYTE cDrive,
 LPSTR lpPrefix,
 WORD wUnique,
 LPSTR lpTempFileName)

GetTempFileName is documented on page 4-217 of the "Microsoft Windows
3.0 Software Development Kit, Reference - Volume 1." In Visual Basic
for Windows, declare the FUNCTION on one line in the main module of
your code:

 DECLARE FUNCTION GetTempFileName LIB "keyboard.drv"
 (BYVAL A%, BYVAL B$, BYVAL C%, BYVAL D$)

Because the architecture of the 80x86 stack is segmented into word
boundaries, the smallest type pushed onto the stack will be a word.
Therefore, both the BYTE and the integer will be pushed onto the stack
in the same manner, and require the same amount of memory. This is the
reason you can use an integer data type for a BYTE data type in these
types of procedure calls.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgOther

How to Send an HBITMAP to Windows API Function Calls from VB
Article ID: Q71260
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
--

SUMMARY
=======

Several Windows API functions require the HBITMAP data type. Visual
Basic for Windows does not have a HBITMAP data type. This article
explains how to send the equivalent Visual Basic for Windows HBITMAP
handle of a picture control to a Windows API function call.

MORE INFORMATION
================

This information is also included with the Microsoft Knowledge Base Help
file provided with the Professional Edition of Microsoft Visual Basic
version 3.0 for Windows.
The HBITMAP data type represents a 16-bit index to GDIs physical
drawing object. Several Windows API routines need the HBITMAP data
type as an argument. Sending the [picture-control].Picture as an
argument is the equivalent in Visual Basic for Windows.

The code sample below demonstrates how to send HBITMAP to the Windows
API function ModifyMenu:

' Enter the following Declare statement as one, single line:
Declare Function SetMenuItemBitMaps% Lib "user" (ByVal hMenu%, ByVal nPos%,
 ByVal wFlag%, ByVal BitmapUnChecked%, ByVal hBitmapChecked%)

The SetMenuItemBitMap takes five arguments. The fourth and fifth
arguments are HBITMAP data types.

The following code segment will associate the specified bitmap
Picture1.Picture in place of the default check mark:

X% = SetMenuItemBitMap(hMenu%, menuID%,0,0, Picture1.Picture)

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgGrap

How to Create a Flashing Title Bar on a Visual Basic Form
Article ID: Q71280
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
--

SUMMARY
=======

When calling a Windows API function call, you can create a flashing
window title bar on the present form or any other form for which you
know the handle.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

Visual Basic for Windows has the ability to flash the title bar on any
other form if you can get the handle to that form. The function
FlashWindow flashes the specified window once. Flashing a window means
changing the appearance of its caption bar, as if the window were
changing from inactive to active status, or vice versa. (An inactive
caption bar changes to an active caption bar; an active caption bar
changes to an inactive caption bar.)

Typically, a window is flashed to inform the user that the window
requires attention when that window does not currently have the input
focus.

The function FlashWindow is defined as

 FlashWindow(hWnd%, bInvert%)

where:

 hWnd% - Identifies the window to be flashed. The window can be
 either open or iconic.
 bInvert% - Specifies whether the window is to be flashed or
 returned to its original state. The window is flashed
 from one state to the other if the bInvert parameter is
 nonzero. If the bInvert parameter is zero, the window
 is returned to its original state (either active or
 inactive).

FlashWindow returns a value that specifies the window's state before
the call to the FlashWindow function. It is nonzero if the window was
active before the call; otherwise, it is zero.

The following section describes how to flash a form while that form

does not have the focus:

1. Create two forms called Form1 and Form2.

2. On Form1, create a timer control and set the Interval Property to
 1000. Also set the Enabled Property to FALSE.

3. Within the general-declarations section of Form1, declare the
 FlashWindow function as follows:

 ' The following Declare statement must appear on one line.
 Declare Function FlashWindow% Lib "user" (ByVal hWnd%,
 ByVal bInvert%)

4. In Visual Basic version 1.0 for Windows, define the following
 constants in the declarations section:

 Const TRUE = -1
 Const FALSE = 0

5. In the Form_Load event procedure, add the following code:

 Sub Form_Load ()
 Form2.Show
 End Sub

6. In the Sub Timer1_Timer () procedure of Form1, add the following
 code:

 Sub Timer1_Timer ()
 Succ% = FlashWindow(Form1.hWnd, 1)
 End Sub

7. In the GotFocus event procedure of Form1, create the following code:

 Sub Form_GotFocus ()
 Timer1.Enabled = False
 End Sub

8. In the Click event for Form2, add the following code:

 Sub Form_Click ()
 Form1.Timer1.Enabled = True
 End Sub

9. Run the program. Form1 will be in the foreground with Form2 in the
 background. Click anywhere in Form2; Form1's Caption Bar will flash
 until you click Form1.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgWindow APrgOther

How to Implement a Bitmap Within a Visual Basic Menu
Article ID: Q71281

The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
 - Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

No command provided by the Visual Basic language can add a bitmap to
the menu system. However, you can call several Windows API functions
to place a bitmap within the menu system of a Visual Basic program. You
may also change the default check mark displayed.

MORE INFORMATION
================

There are several Windows API functions you can call that will display
a bitmap instead of text in the menu system.

Below is a list of the required Windows API functions:

 - GetMenu% (hwnd%)

 hwnd% - Identifies the window whose menu is to be examined
 Returns: Handle to the menu

 - GetSubMenu% (hMenu%, nPos%)

 hMenu% - Identifies the menu
 nPos% - Specifies the position (zero-based) in the
 given menu of the pop-up menu
 Returns: Handle to the given pop-up menu

 - GetMenuItemID% (hMenu%, nPos%)

 hMenu% - Identifies the handle to the pop-up menu that
 contains the item whose ID is being retrieved
 nPos% - Specifies the position (zero-based) of the menu
 whose ID is being retrieved
 Returns: The item ID for the specified item in the pop-
 up menu

 - ModifyMenu% (hMenu%, nPos%, wFlags%, wIDNewItem%, lpNewItem&)

 hMenu% - Identifies the handle to the pop-up menu that
 contains the item whose ID is being retrieved
 nPos% - Specifies the menu item to be changed. The
 interpretation of the nPos parameter depends
 on the wFlags parameter.
 wFlags% - BF_BITMAP = &H4

 wIDNewItem% - Specifies the command ID of the modified menu item
 lpNewItem& - 32-bit handle to the bitmap
 Returns: TRUE (-1) if successful, FALSE (0) if unsuccessful

 - SetMenuItemBitmaps% (hMenu%, nPos%, Flags%, hBitmapUnchecked%,
 hBitmapChecked%)

 hMenu% - Identifies menu to be changed
 nPos% - Command ID of the menu item
 wFlags% - &H0
 hBitmapUnchecked% - Handle to "unchecked" bitmap.
 hBitmapChecked%) - Handle to the "check" bitmap.
 Returns: TRUE (-1) if successful, FALSE (0) if unsuccessful.

There are two different ways to implement bitmaps within Visual Basic:
the first method is to use static bitmaps; the other method is to use
dynamic bitmaps.

A static bitmap is fixed and does not change during the execution of
the program (such as when it is taken from an unchanging .BMP file). A
dynamic bitmap changes during execution of your program. You may
change dynamic bitmap attributes such as color, size, and text. The
sample code below describes how to create both types of menus.

Define a menu system using the Menu Design window. Create a menu
system such as the following:

 Caption Control Name Indented Index
 --
 BitMenu TopMenu No
 Sub Menu0 SubMenu Once 0
 Sub Menu1 SubMenu Once 1
 Sub Menu2 SubMenu Once 2

Create a picture control array with three bitmaps by creating three
picture controls with the same control Name using the Properties list box.

 Control Name Caption Index FontSize
 --
 Picture1 0 N/A
 Picture1 1 N/A
 Picture1 2 N/A
 Picture2 N/A N/A 'check BMP
 Picture3 0 'set Picture3 FontSize all
 different
 Picture3 1 9.75
 Picture3 2 18
 Command1 Static
 Command2 Dynamic

For each control index of Picture1, add a valid bitmap to the Picture
property. Because these bitmaps will be displayed in the menu, you
should use smaller bitmaps. Add a bitmap to the Picture2 Picture
property that you want to be your check mark when you select a menu
option.

Both types of bitmap implementations will need to have the following

declarations in the declaration or global section of your code:

' Enter each Declare statement on one, single line:
Declare Function GetMenu% Lib "user" (ByVal hwnd%)
Declare Function GetSubMenu% Lib "user" (ByVal hMenu%, ByVal nPos%)
Declare Function GetMenuItemID% Lib "user" (ByVal hMenu%, ByVal nPos%)
Declare Function ModifyMenu% Lib "user" (ByVal hMenu%, ByVal nPosition%,
 ByVal wFlags%, ByVal wIDNewItem%, ByVal lpNewItem&)
Declare Function SetMenuItemBitmaps% Lib "user" (ByVal hMenu%,
 ByVal nPosition%, ByVal wFlags%, ByVal hBitmapUnchecked%,
 ByVal BitmapChecked%)
Const MF_BITMAP = &H4
Const CLR_MENUBAR = &H80000004 ' Defined for dynamic bitmaps only.
Const TRUE = -1, FALSE = 0
Const Number_of_Menu_Selections = 3

The following Sub will also need to be defined to handle the actual
redefinition of the "check" bitmap:

Sub SubMenu_Click (Index As Integer)
' Uncheck presently checked item, check new item, store
' index
 Static LastSelection%
 SubMenu(LastSelection%).Checked = FALSE
 SubMenu(Index).Checked = TRUE
 LastSelection% = Index
End Sub

Sub Command1_Click ()
 '* example to create a static bitmap menu
 hMenu% = GetMenu(hWnd)
 hSubMenu% = GetSubMenu(hMenu%, 0)
 For i% = 0 To Number_of_Menu_Selections - 1
 menuId% = GetMenuItemID(hSubMenu%, i%)
 x% = ModifyMenu(hMenu%, menuId%, MF_BITMAP, menuId%,
 CLng(picture1(i%).Picture))
 x% = SetMenuItemBitmaps(hMenu%, menuId%, 0, 0,
 CLng(picture2.Picture))
 Next i%
End Sub

'This code sample will change the actual menu bitmaps size,
'font size, color, and caption. Run the application and
'select the BitMenu and view the selections. Then click
'the form and revisit the BitMenu.
'---
Sub Command2_Click ()
 '* Example to create a dynamic menu system
 hMenu% = GetMenu(hWnd)
 hSubMenu% = GetSubMenu(hMenu%, 0)
 For i% = 0 To Number_of_Menu_Selections - 1
 '* Place some text into the menu.

 SubMenu(i%).Caption = Picture3(i%).FontName +
 Str$(Picture3(i%).FontSize) + " Pnt"

 '* 1. Must be AutoRedraw for Image().

 '* 2. Set Backcolor of Picture control to that of the
 '* current system Menu Bar color, so Dynamic bitmaps
 '* will appear as normal menu items when menu bar
 '* color is changed via the control panel
 '* 3. See the bitmaps on screen, this could all be done
 '* at design time.

 Picture3(i%).AutoRedraw = TRUE
 Picture3(i%).BackColor = CLR_MENUBAR
 '* You can uncomment this
 '* Picture3(i%).Visible = FALSE

 '* Set the width and height of the Picture controls
 '* based on their corresponding Menu items caption,
 '* and the Picture controls Font and FontSize.
 '* DoEvents() is necessary to make new dimension
 '* values to take affect prior to exiting this Sub.

 Picture3(i%).Width = Picture3(i%).TextWidth(SubMenu(i%).Caption)
 Picture3(i%).Height = Picture3(i%).TextHeight(SubMenu(i%).Caption)
 Picture3(i%).Print SubMenu(i%).Caption

 '* - Set picture controls backgroup picture (Bitmap) to
 '* its Image.
 Picture3(i%).Picture = Picture3(i%).Image
 x% = DoEvents()
 Next i%

 '* Get handle to forms menu.
 hMenu% = GetMenu(Form1.hWnd)

 '* Get handle to the specific menu in top level menu.
 hSubMenu% = GetSubMenu(hMenu%, 0)

 For i% = 0 To Number_of_Menu_Selections - 1

 '* Get ID of sub menu
 menuId% = GetMenuItemID(hSubMenu%, i%)

 '* Replace menu text w/bitmap from corresponding picture
 '* control
 x% = ModifyMenu(hMenu%, menuId%, MF_BITMAP, menuId%,
 CLng(Picture3(i%).Picture)) 'append this to previous line

 '* Replace bitmap for menu check mark with custom check
 '* bitmap
 x% = SetMenuItemBitmaps(hMenu%, menuId%, 0, 0, CLng(picture2.Picture))
 Next i%
End Sub

Reference(s):

"Programming Windows: the Microsoft Guide to Writing Applications for
Windows 3," Charles Petzold, Microsoft Press, 1990

"Microsoft Windows Software Development Kit: Reference Volume 1,"
version 3.0

WINSDK.HLP file shipped with Microsoft Windows 3.0 SDK

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgGrap

How to Create Rubber-Band Lines/Boxes in Visual Basic
Article ID: Q71488

The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
 - Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

Creating rubber bands within Visual Basic can be done using the
DrawMode property. Rubber bands are lines that stretch as you move the
mouse cursor from a specified point to a new location. This can be
very useful in graphics programs and when defining sections of the
screen for clipping routines.

MORE INFORMATION
================

The theory of drawing a rubber-band box is as follows:

1. Draw a line from the initial point to the location of the mouse
 cursor using:

 [form].DrawMode = 6. {INVERT}

2. Move the mouse cursor.

3. Save the DrawMode.

4. Set the [form].DrawMode to 6. {INVERT}

5. Draw the same line that was drawn in step 1. This will restore the
 image underneath the line.

6. Set the [form].DrawMode back to the initial DrawMode saved in step 3.

7. Repeat the cycle again.

DrawMode equal to INVERT allows the line to be created using the
inverse of the background color. This allows the line to be always
displayed on all colors.

The sample below will demonstrate the rubber-band line and the
rubber-band box. Clicking the command buttons will allow the user
to select between rubber-band line or a rubber-band box. The user will
also be able to select a solid line or a dashed line.

Create and set the following controls and properties:

 Control Name Caption Picture
 --

 Form1 Form1 c:\windows\chess.bmp
 Command1 RubberBand
 Command2 RubberBox
 Command3 Dotted
 Command4 Solid

In the general section of your code, define the following constants:

Const INVERSE = 6 '*Characteristic of DrawMode property(XOR).
Const SOLID = 0 '*Characteristic of DrawStyle property.
Const DOT = 2 '*Characteristic of DrawStyle property.
Const TRUE = -1
Const FALSE = 0
Dim DrawBox As Integer '*Boolean-whether drawing Box or Line
Dim OldX, OldY, StartX, StartY As Single '* Mouse locations

In the appropriate procedures, add the following code:

Sub Form_MouseDown (Button As Integer, Shift As Integer, X As
 Single, Y As Single)
 '* Store the initial start of the line to draw.
 StartX = X
 StartY = Y

 '* Make the last location equal the starting location
 OldX = StartX
 OldY = StartY
End Sub

Sub Form_MouseMove (Button As Integer, Shift As Integer, X As
 Single, Y As Single)
 '* If the button is depressed then...
 If Button Then
 '* Erase the previous line.
 Call DrawLine(StartX, StartY, OldX, OldY)

 '* Draw the new line.
 Call DrawLine(StartX, StartY, X, Y)

 '* Save the coordinates for the next call.
 OldX = X
 OldY = Y
 End If
End Sub

Sub DrawLine (X1, Y1, X2, Y2 As Single)
 '* Save the current mode so that you can reset it on
 '* exit from this sub routine. Not needed in the sample
 '* but would need it if you are not sure what the
 '* DrawMode was on entry to this procedure.
 SavedMode% = DrawMode

 '* Set to XOR
 DrawMode = INVERSE

 '*Draw a box or line
 If DrawBox Then

 Line (X1, Y1)-(X2, Y2), , B
 Else
 Line (X1, Y1)-(X2, Y2)
 End If

 '* Reset the DrawMode
 DrawMode = SavedMode%
End Sub

Sub Form_MouseUp (Button As Integer, Shift As Integer, X As Single,
 Y As Single)
 '* Stop drawing lines/boxes.
 StartEvent = FALSE
End Sub

Sub Command2_Click ()
 '* Boolean value to determine whether to draw a line or box.
 DrawBox = TRUE
End Sub

Sub Command1_Click ()
 '* Boolean value to determine whether to draw a line or box.
 DrawBox = FALSE
End Sub

Sub Command3_Click ()
 '* Create a dotted line
 Form1.DrawStyle = DOT
End Sub

Sub Command4_Click ()
 '* Create a solid line.
 Form1.DrawStyle = SOLID
End Sub

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgGrap PrgCtrlsStd

How to Create Flashing/Rotating Rubber-Band Box in VB
Article ID: Q71489

The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
 - Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

Several programs, such as Excel, create a flashing border (which
appears to rotate) when selecting items of the windows when using the
Edit Copy selection of the menu system. You can create a flashing,
rotating border with the DrawMode and DrawStyle properties of a Visual
Basic form.

MORE INFORMATION
================

By drawing a dashed line on the form and then within a timer event
creating a solid line on the dashed line with DrawMode set to INVERSE,
you can create a special effect of a flashing border that appears to
rotate.

You can draw a rotating rubber-band box as follows:

1. Draw a line using:

 DrawStyle = 2 {Dot}

2. Save the [form].DrawMode and the [form].DrawStyle.

3. Set the [form].DrawMode = 6 {Inverse}.

4. Set [form].DrawStyle = 0 {Solid}.

5. Draw the same line as in step 1.

6. Reset the properties saved in step 2.

7. Delay some time interval.

8. Repeat starting at step 2.

The following code demonstrates the rotating (flashing) border.
Pressing the mouse button and then dragging the cursor some distance
will create a dotted line. Releasing the button will display a
rotating rubber-band box.

In VB.EXE, create a form called Form1. On Form1, create a timer
control with the name Timer1 and with an interval of 100.

Duplicate the following code within the general declaration section of
your code window:

Const INVERSE = 6 'Characteristic of DrawStyle property(Inverse).
Const SOLID = 0 'Characteristic of DrawMode property.
Const DOT = 2 'Characteristic of DrawMode property.
Const TRUE = -1
Const FALSE = 0
Dim OldX, OldY, StartX, StartY As Single

Add the following code in the appropriate event procedures for Form1:

Sub Form_Load ()
 '* Must draw a dotted line to create effect. Load a bitmap. Not
 required but shows full extent of line drawing.
 DrawStyle = DOT
End Sub

Sub Timer1_Timer ()
 SavedDrawStyle% = DrawStyle

 '* Solid is need to create the inverse of the dashed line.
 DrawStyle = SOLID

 '* Invert the dashed line.
 Call DrawLine(StartX, StartY, OldX, OldY)

 '* Restore the DrawStyle back to what it was previously.
 DrawStyle = SavedDrawStyle%
End Sub

Sub Form_MouseDown (Button As Integer, Shift As Integer, X As
 Single, Y As Single)
' The above Sub statement must be on just one line.
 '* Don't add effect as you draw box.
 Timer1.Enabled = FALSE
 '* Save the start locations.
 StartX = X
 StartY = Y
 '* Set the last coord. to start locations.
 OldX = StartX
 OldY = StartY
End Sub

Sub Form_MouseMove (Button As Integer, Shift As Integer, X As
 Single, Y As Single)
' (The above Sub statement must be on just one line.)
'* If button is depress then...
If Button Then
 '* Restore previous lines background.
 Call DrawLine(StartX, StartY, OldX, OldY)
 '* Draw new line.
 Call DrawLine(StartX, StartY, X, Y)
 '* Save coordinates for next call.
 OldX = X : OldY = Y
 End If
End Sub

Sub DrawLine (X1, Y1, X2, Y2 As Single)
 '* Save the current mode so that you can reset it on
 '* exit from this sub routine. Not needed in the sample
 '* but would need it if you are not sure what the
 '* DrawMode was on entry to this procedure.
 SavedMode% = DrawMode

 '* Set to XOR
 DrawMode = INVERSE

 '*Draw a box
 Line (X1, Y1)-(X2, Y2), , B

 '* Reset the DrawMode
 DrawMode = SavedMode%
End Sub

Sub Form_MouseUp (Button As Integer, Shift As Integer, X As Single,
 Y As Single)
' (The above Sub statement must be on just one line.)
 StartEvent = FALSE
 Timer1.Enabled = TRUE
End Sub

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgGrap

Declare Currency Type to Be Double When Returning from DLL
Article ID: Q72274

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

When using Microsoft Visual Basic for Windows, if you want to pass a
parameter to a dynamic link library (DLL) routine, or receive a
function return value of type Currency from a DLL routine written in
Microsoft C, the parameter or function returned should be declared as a
"double" in the C routine.

Note that C does not support the Basic Currency data type, and
although specifying the parameter as type "double" in C will allow it
to be passed correctly, you will have to write your own C routines to
manipulate the data in the Currency variable. For information on the
internal format of the Currency data type, query in the Microsoft
Knowledge Base using the following words:

Basic and Currency and internal and format

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

When creating a DLL function that either receives or returns a
Currency data type, it may be useful to include the following
declaration:

 typedef double currency;

Based on this typedef, a sample DLL routine to return a currency value
might be declared as follows:

 currency FAR pascal test(...);

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgOther

How to Create a System-Modal Program/Window in Visual Basic
Article ID: Q72674
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
--

SUMMARY
=======

From a Microsoft Visual Basic for Windows program, you can disable the
ability to switch to other Windows programs by calling the Windows API
function SetSysModalWindow.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

Microsoft Windows is designed so that the user can switch between
applications without terminating one program to run another program.
There may be times when the program needs to take control of the
entire environment and run from only one window, restricting the user
from switching to any other application. An example of this is a
simple security system, or a time-critical application that may need
to go uninterrupted for long periods of time.

Passing the handle to the window through the argument of
SetSysModalWindow will limit the user to that particular window. This
will not allow the user to move to any other applications with the
mouse or use ALT+ESC or CTRL+ESC to bring up the Task Manager. You can
even remove the system menu if you do not want the user to exit
through the ALT+F4 (Close) combination.

All child windows that are created by the system-modal window become
system-modal windows. When the original window becomes active again,
it is system-modal. To end the system-modal state, destroy the
original system-modal window.

Care must be taken when using the SetSysModalWindow API from within
the Visual Basic for Windows programming environment. Pressing
CTRL+BREAK to get to the [break] mode leaves your modal form with no
way to exit unless you restart your system. When using the
SetSysModalWindow within the environment, be sure to exit your
application by destroying the window with either the ALT+F4 in the
system menu, or by some other means from within your running program.

To use the SetSysModalWindow API function, declare the API call in
your global section, as follows:

 Declare Function SetSysModalWindow Lib "User" (ByVal hwnd%) As Integer

At an appropriate place in your code, add the following:

 Success% = SetSysModalWindow(hwnd)

Once this line is executed, your window will be the only window that
can get focus until that window is destroyed.

Note: Because Visual Basic for Windows was not designed with system modal
capabilities in mind, using a MsgBox, InputBox, or Form.Show of
another form from a system modal window will not work correctly. If
you want to show another window from a system modal form, use another
Visual Basic for Windows form and call SetSysModalWindow for this second
form also, so that it becomes the system modal window. When the second
form is unloaded, the original system modal form will again become the
system modal window. Note that because the window(s) shown from a
system modal window must also call SetSysModalWindow, and since
MsgBox/InputBox windows cannot have associated code, you should not
call the MsgBox or InputBox functions from a system modal window.

Additional reference words: 1.00 2.00 3.00 dialog
KBCategory:
KBSubcategory: APrgOther

VB Out of Stack Space Error w/ LoadPicture in Form_Paint Event
Article ID: Q72675

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

An "Out of stack space" error can occur when you use a LoadPicture
method within a Form_Paint event.

MORE INFORMATION
================

The Visual Basic stack can be exhausted when the LoadPicture method is
executed within a [control/form]_Paint event. The LoadPicture method
generates a [control/form]_Paint event itself, and when performed
within a _Paint event, the program will repeat the cycle until the
stack is exhausted.

The following code example demonstrates that the Form_Paint event is a
recursive procedure when a LoadPicture method is included in the
_Paint event code.

After you add the code to your program, run the program and notice how
many times the message "Form_Paint Count :" is displayed within the
Immediate Window before you receive the "Out of stack space" error
message.

Sub Form_Paint ()
 Static Count
 Count = Count + 1
 Debug.Print "Form_Paint Count : "; Count
 Form1.picture = LoadPicture("c:\windows\chess.bmp")
End Sub

To remedy the situation, move the LoadPicture to another event
handler, such as the Form_Load event. Since these bitmaps are
automatically refreshed when needed, you don't have to maintain the
picture within a Paint event.

The Visual Basic stack is limited to 16K bytes, and cannot be changed.

Additional reference words: 1.00 2.00
KBCategory:
KBSubcategory: APrgGrap PrgOptMemMgt

How to Limit User Input in VB Combo Box with SendMessage API
Article ID: Q72677
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
--

SUMMARY
=======

You can specify a limit to the amount of text that can be entered into
a combo box by calling SendMessage (a Windows API function) with the
EM_LIMITTEXT constant.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

The following method can be used to limit the length of a string
entered into a combo box. Check the length of a string inside a
KeyPress event for the control, if the length is over a specified amount,
then the formal argument parameter KeyAscii will be set to zero.

Or, the preferred method of performing this type of functionality is
to use the SendMessage API function call. After you set the focus to
the desired edit control, you must send a message to the window's
message queue that will reset the text limit for the control. The
argument EM_LIMITTEXT, as the second parameter to SendMessage, will
set the desired text limit based on the value specified by the third
arguments. The SendMessage function requires the following parameters
for setting the text limit:

 SendMessage (hWnd%,EM_LIMITTEXT, wParam%, lParam)

 wParam% Specifies the maximum number of bytes that can be
 entered. If the user attempts to enter more characters,
 the edit control beeps and does not accept the characters.
 If the wParam parameter is zero, no limit is imposed on
 the size of the text (until no more memory is available).

 lParam Is not used.

The following steps can be used to implement this method:

1. Create a form called Form1.

2. Add a combo box called Combo1 to Form1.

3. Add the following code to the general declarations section of Form1:

 '*** Note: Each Declare statement must be on just one line:

 Declare Function GetFocus% Lib "user" ()
 Declare Function SendMessage& Lib "user" (ByVal hWnd%,
 ByVal wMsg%,
 ByVal wParam%,
 lp As Any)
 Const WM_USER = &H400
 Const EM_LIMITTEXT = WM_USER + 21

4. Add the following code to the Form_Load event procedure:

 Sub Form_Load ()
 Form1.Show ' Must show form to work on it.
 Combo1.SetFocus ' Set the focus to the list box.
 cbhWnd% = GetFocus() ' Get the handle to the list box.
 TextLimit% = 5 ' Specify the largest string.
 retVal& = SendMessage(cbhWnd%, EM_LIMITTEXT, TextLimit%, 0)
 End Sub

5. Run the program and enter some text into the combo box. You will
 notice that you will only be able to enter a string of five
 characters into the combo box.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgOther

Determining Number of Lines in VB Text Box; SendMessage API
Article ID: Q72719
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
--

SUMMARY
=======

To determine the number of lines of text within a text box control,
call the Windows API function SendMessage with EM_GETLINECOUNT(&H40A)
as the wMsg argument.

Calling SendMessage with the following parameters will return the
amount of lines of text within a text box:

 hWd% - Handle to the text box.
 wMsg% - EM_GETLINECOUNT(&H40A)
 wParam% - 0
 lParam% - 0

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

For example, to determine the amount of lines within a text box,
perform the following steps:

1. Create a form with a text box and a command button. Change the
 MultiLine property of the text box to TRUE.

2. Declare the API SendMessage function in the global-declarations
 section of your code window (the Declare statement must be
 on just one line):

 Declare Function SendMessage% Lib "user" (ByVal hWd%,
 ByVal wMsg%,
 ByVal wParam%,
 ByVal lParam&)

3. In Visual Basic version 1.0 for Windows, you will need to declare
 another API routine to get the handle of the text box. Declare this
 routine also in your global declarations section of your code window.
 The returned value will become the hWd% argument to the SendMessage
 function. For example:

 Declare Function GetFocus% Lib "user" ()

4. Within the click event of your button, add the following code:

 Sub Command1_Click ()
 Const EM_GETLINECOUNT = &H40A ' Defined within Windows SDK
 ' file, WINDOWS.H.

 ' Command button has focus, give focus to text box.
 Text1.SetFocus

 ' For Visual Basic 1.0 for Windows get the handle of the text box.
 ' hWd% = GetFocus()

 ' Print the amount of lines to the immediate window.
 Debug.Print SendMessage(Text1.hWnd, EM_GETLINECOUNT, 0, 0)
 ' For Visual Basic 1.0 for Windows use hWd% instead of Text1.hWnd.
 End Sub

5. Run the program. Add several lines of text to the text box. Click
 the command button to see the number of lines printed out to the
 immediate window.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgOther PrgCtrlsStd

How VB Can Determine if a Specific Windows Program Is Running
Article ID: Q72918

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

To determine if a specific program is running, call the Windows API
function FindWindow.

FindWindow returns the handle of the window whose class is given by the
lpClassname parameter and whose window name (caption), is given by the
lpCaption parameter. If the returned value is zero, the application is
not running.

MORE INFORMATION
================

This information is included with the Help file provided with Microsoft
Professional Toolkit for Visual Basic version 1.0, Microsoft Visual Basic
version 2.0, and Microsoft Visual Basic version 3.0.

By calling FindWindow with a combination of a specific program's class
name and/or the title bar caption, your program can determine whether
that specific program is running.

When an application is started from the Program Manager, it registers the
class name of the form. The window class provides information about the
name, attributes, and resources required by your form. MDI forms in Visual
Basic have ThunderMDIForm as their class name, and all other Visual Basic
forms have ThunderForm as their class name.

You can determine the class name of an application by using SPY.EXE that
comes with the Microsoft Windows Software Development Kit (SDK) version
3.0 or 3.1.

If the window has a caption bar title, you can also use the title to
locate the instance of the running application. This caption text is
valid even when the application is minimized to an icon.

Because another instance of your Visual Basic program will have the
same class name and may have the same title bar caption, you must use
dynamic data exchange (DDE) to determine if another instance of your
Visual Basic program is running. (This DDE technique is not shown in
this article).

Step-by-Step Example

The following example shows three ways to determine if the Windows

Calculator is running. To create the program, do the following:

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Declare the Windows API function FindWindow in the Global declarations
 section of Form1. The variables are declared as "Any" because you can
 pass either a pointer to a string, or a NULL (or 0&) value. You are
 responsible for passing the correct variable type.

 ' Enter the following Declare statement on one, single line:
 Declare Function FindWindow% Lib "user" (ByVal lpClassName As Any,
 ByVal lpCaption As Any)

3. Add the following code to the form's Click event. This example
 demonstrates how you can find the instance of the application with a
 combination of the class name and/or the window's caption. In this
 example, the application will find an instance of the Windows
 calculator (CALC.EXE).

 Sub Form_Click ()
 lpClassName$ = "SciCalc"
 lpCaption$ = "Calculator"

 Print "Handle = ";FindWindow(lpClassName$, 0&)
 Print "Handle = ";FindWindow(0&, lpCaption$)
 Print "Handle = ";FindWindow(lpClassName$,lpCaption$)
 End Sub

4. Run this program with CALC.EXE running and without CALC.EXE
 running. If CALC.EXE is running, your application will print an
 arbitrary handle. If CALC.EXE is not running, your application will
 print zero as the handle.

Below are some class names of applications that are shipped with Windows:

Class Name Application

SciCalc CALC.EXE
CalWndMain CALENDAR.EXE
Cardfile CARDFILE.EXE
Clipboard CLIPBOARD.EXE
Clock CLOCK.EXE
CtlPanelClass CONTROL.EXE
XLMain EXCEL.EXE
Session MS-DOS.EXE
Notepad NOTEPAD.EXE
pbParent PBRUSH.EXE
Pif PIFEDIT.EXE
PrintManager PRINTMAN.EXE
Progman PROGMAN.EXE (Windows Program manager)
Recorder RECORDER.EXE
Reversi REVERSI.EXE
#32770 SETUP.EXE
Solitaire SOL.EXE
Terminal TERMINAL.EXE
WFS_Frame WINFILE.EXE

MW_WINHELP WINHELP.EXE
#32770 WINVER.EXE
OpusApp WINWORD.EXE
MSWRITE_MENU WRITE.EXE

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgOther

How to Scroll VB Text Box Programmatically and Specify Lines
Article ID: Q73371
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
--

SUMMARY
=======

By making a call to the Windows API function SendMessage, you can
scroll text a specified number of lines or columns within a Microsoft
Visual Basic for Windows text box. By using SendMessage, you can also
scroll text programmatically, without user interaction. This technique
extends Visual Basic for Windows' scrolling functionality beyond the
built-in statements and methods. The sample program below shows how to
scroll text vertically and horizontally a specified number of lines.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

Note that Visual Basic for Windows itself does not offer a statement for
scrolling text a specified number of lines vertically or horizontally
within a text box. You can scroll text vertically or horizontally by
actively clicking the vertical and horizontal scroll bars for the
text box at run time; however, you do not have any control over how
many lines or columns are scrolled for each click of the scroll bar.
Text always scrolls one line or one column per click the scroll bar.
Furthermore, no built-in Visual Basic for Windows method can scroll
text without user interaction. To work around these limitations, you
can call the Windows API function SendMessage, as explained below.

Example

To scroll the text a specified number of lines within a text box
requires a call to the Windows API function SendMessage using the
constant EM_LINESCROLL. You can invoke the SendMessage function from
Visual Basic for Windows as follows:

r& = SendMessage& (hWd%, EM_LINESCROLL, wParam%, lParam&)

 hWd% The window handle of the text box.
 wParam% Parameter not used.
 lParam& The low-order 2 bytes specify the number of vertical
 lines to scroll. The high-order 2 bytes specify the
 number of horizontal columns to scroll. A positive
 value for lParam& causes text to scroll upward or to the
 left. A negative value causes text to scroll downward or
 to the right.

 r& Indicates the number of lines actually scrolled.

The SendMessage API function requires the window handle (hWd% above)
of the text box. To get the window handle of the text box, you must
first set the focus on the text box using the SetFocus method from
Visual Basic. Once the focus has been set, call the GetFocus API
function to get the window handle for the text box. Below is an
example of how to get the window handle of a text box.

 ' The following appears in the general declarations section of
 ' the form:
 Declare Function GetFocus% Lib "USER" ()

 ' Assume the following appears in the click event procedure of a
 ' command button called Scroll.
 Sub Command_Scroll_Click ()
 OldhWnd% = Screen.ActiveControl.Hwnd
 ' Store the window handle of the control that currently
 ' has the focus.

 ' For Visual Basic 1.0 for Windows use the following line:
 ' OldhWnd% = GetFocus ()

 Text1.SetFocus
 hWd% = GetFocus()
 End Sub

To scroll text horizontally, the text box must have a horizontal
scroll bar, and the width of the text must be wider than the text box
width. Calling SendMessage to scroll text vertically does not require
a vertical scroll bar, but the length of text within the text box
should exceed the text box height.

Below are the steps necessary to create a text box that will scroll
five vertical lines or five horizontal columns each time you click the
command buttons labeled "Vertical" and "Horizontal":

 1. From the File menu, choose New Project (press ALT, F, N).

 2. Double-click Form1 to bring up the code window.

 3. Add the following API declaration to the General Declarations
 section of Form1. Note that you must put all Declare statements on a
 separate and single line. Also note that SetFocus is aliased as
 PutFocus because there already exists a SetFocus method within Visual
 Basic for Windows.

 Declare Function GetFocus% Lib "user" () ' For Visual Basic 1.0 only.
 Declare Function PutFocus% Lib "user" Alias "SetFocus" (ByVal
 hWd%)
 Declare Function SendMessage& Lib "user" (ByVal hWd%,
 ByVal wMsg%,
 ByVal wParam%,
 ByVal lParam&)

 4. Create a text box called Text1 on Form1. Set the MultiLine
 property to True and the ScrollBars property to Horizontal (1).

 5. Create a command button called Command1 and change the Caption
 to "Vertical".

 6. Create a another command button called Command2 and change the
 Caption to "Horizontal".

 7. From the General Declarations section of Form1, create a procedure
 to initialize some text in the text box as follows:

 Sub InitializeTextBox ()
 Text1.Text = ""
 For i% = 1 To 50
 Text1.Text = Text1.Text + "This is line " + Str$(i%)

 ' Add 15 words to a line of text.
 For j% = 1 to 10
 Text1.Text = Text1.Text + " Word "+ Str$(j%)
 Next j%

 ' Force a carriage return (CR) and linefeed (LF).
 Text1.Text = Text1.Text + Chr$(13) + Chr$(10)

 x% = DoEvents()
 Next i%
 End Sub

 8. Add the following code to the load event procedure of Form1:

 Sub Form_Load ()
 Call InitializeTextBox
 End Sub

 9. Create the actual scroll procedure within the General Declarations
 section of Form1 as follows:

 ' The following two lines must appear on a single line:
 Function ScrollText& (TextBox As Control, vLines As Integer, hLines
 As Integer)
 Const EM_LINESCROLL = &H406

 ' Place the number of horizontal columns to scroll in the high-
 ' order 2 bytes of Lines&. The vertical lines to scroll is
 ' placed in the low-order 2 bytes.
 Lines& = Clng(&H10000 * hLines) + vLines

 ' Get the window handle of the control that currently has the
 ' focus, Command1 or Command2.
 SavedWnd% = Screen.ActiveControl.Hwnd
 ' For Visual Basic 1.0 use the following line instead of the one
 ' used above.
 ' SavedWnd% = GetFocus%()

 ' Set the focus to the passed control (text control).
 TextBox.SetFocus

 ' For Visual Basic 1.0, get the handle to current focus (text

 ' control).
 ' TextWnd% = GetFocus%()

 ' Scroll the lines.
 Success& = SendMessage(TextBox.HWnd, EM_LINESCROLL, 0, Lines&)
 ' For Visual Basic 1.0 use the following line instead of the one
 ' used above.
 ' Success& = SendMessage(TextWnd%, EM_LINESCROLL, 0, Lines&)

 ' Restore the focus to the original control, Command1 or
 ' Command2.
 r% = PutFocus% (SavedWnd%)

 ' Return the number of lines actually scrolled.
 ScrollText& = Success&

 End Function

10. Add the following code to the click event procedure of Command1
 labeled "Vertical":

 Sub Command1_Click ()
 ' Scroll text 5 vertical lines upward.
 Num& = ScrollText&(Text1, 5, 0)
 End Sub

11. Add the following code to the click event procedure of Command2
 labeled "Horizontal":

 Sub Command2_Click ()
 ' Scroll text 5 horizontal columns to the left.
 Num& = ScrollText&(Text1, 0, 5)
 End Sub

12. Run the program. Click the command buttons to scroll the text five
 lines or columns at a time.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd APrgWindow

WINAPI.TXT: Windows API Declarations and Constants for VB
Article ID: Q73694

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

The file WINAPI.TXT supplies declarations for Microsoft Visual Basic
programmers who want to call Windows API routines.

WINAPI.TXT can be found in the Software/Data Library by searching on
the word BV0447, the Q number of this article, or S13104. BV0447 was
archived using the PKware file-compression utility. After you
decompress BV0447, you will obtain the following two files:

 WINAPI.TXT
 README.NOW

WINAPI.TXT is provided here in the assumption that you already have a
reference for Windows API calls, such as the documentation provided
with the Microsoft Windows Software Development Kit (SDK).

If you don't have a reference manual for Windows API calls, you can
obtain the Visual Basic add-on kit number 1-55615-413-5, "Microsoft
Windows Programmer's Reference" and Online Resource (which includes
WINAPI.TXT on disk), available at a charge from Microsoft.

MORE INFORMATION
================

WINAPI.TXT can be found on CompuServe in the MSLANG forum (GO MSLANG),
as well as in the Microsoft Software Library on CompuServe.

Contents of README.NOW

WINAPI.TXT is an ASCII text file containing the functions and
constants in the Microsoft Windows 3.0 API, declared in the format
used by Microsoft Visual Basic.

To use WINAPI.TXT, you must have the book "Microsoft Windows
Programmer's Reference" for Windows version 3.0 (published by
Microsoft Press, 1990), or you must have the reference manuals
provided with the Microsoft Windows SDK.

WINAPI.TXT includes the following:

 - External procedure declarations for all the Microsoft Windows API
 functions that can be called from Visual Basic.

 - Global constant declarations for all the constants used by the
 Microsoft Windows API.
 - Type declarations for the user-defined types (structures) used by
 the Microsoft Windows API.

WINAPI.TXT is too large to be loaded directly into a Visual Basic
module. Attempting to load it directly into Visual Basic will cause an
"Out of Memory" error message.

WINAPI.TXT is also too large for the Notepad editor supplied with
Microsoft Windows, but it can be loaded by Microsoft Write. To use
WINAPI.TXT, load it into an editor (such as Microsoft Write) that can
handle large files. Copy the declarations you want and paste them into
the global module in your Visual Basic application.

Note: Some of the Windows API declarations are very long. Some editors
will wrap these onto a second line, and will copy them as multiple
lines rather than a single line. Declarations in Visual Basic cannot
span lines, so if you paste these as multiple lines, Visual Basic will
report an error. If an error occurs, you can either adjust the margins in
the editor before copying or remove the line break after pasting.

The global module is the recommended place for the declarations that
you copy from the WINAPI.TXT file; however, you can place the external
procedure declarations in the Declarations section of any form or
module. You can also place the constant declarations anywhere in any
module or form code if you remove the Global keyword. Type
declarations must be placed in the global module.

Once you have pasted the declaration for a Windows API routine (as
well as any associated constant and type declarations) into your
application, you can call that routine as you would call any Visual
Basic procedure.

For more information about declaring and calling external procedures,
see Chapter 23, "Extending Visual Basic," in "Microsoft Visual
Basic: Programmer's Guide."

Warning

Visual Basic cannot verify the data you pass to Microsoft Windows API
routines. Calling a Microsoft Windows API routine with an invalid
argument can result in unpredictable behavior: your application,
Visual Basic, or Windows may crash or hang. When experimenting with
Windows API routines, save your work often.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgOther

PRB: Duplicate PostScript Font Names in VB Printer.Fonts List
Article ID: Q75092

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 2.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

When a PostScript printer driver is active in Microsoft Windows version
3.0, the Fonts(index%) property of Visual Basic's Printer object may
return one or more duplicate font names at run time. This will not occur
in either Visual Basic version 1.0 or 2.0 if you are using Microsoft
Windows version 3.1.

CAUSE
=====

This problem is caused by Microsoft Windows version 3.0 itself, not by
Microsoft Visual Basic.

STATUS
======

Microsoft has confirmed this to be a problem with Microsoft Windows
version 3.0. The problem was corrected in Microsoft Windows version 3.1.

MORE INFORMATION
================

The following program displays the list of font names available for
the PostScript printer currently selected in the Windows Control Panel:

 Sub Form_Click ()
 For J% = 0 to Printer.FontCount - 1
 Print Printer.Fonts(J%)
 Next J%
 End Sub

In some cases, when a PostScript printer is active in Windows, one or
more fonts are listed twice.

Additional reference words: 1.00 2.00
KBCategory:
KBSubcategory: APrgPrint

Determining Whether TAB or Mouse Gave a VB Control the Focus
Article ID: Q75411

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

You can determine whether a Microsoft Visual Basic for Windows control
received the focus from a mouse click or a TAB keystroke by calling
the Microsoft Windows API function GetKeyState in the control's
GotFocus event procedure. By using GetKeyState to check if the TAB key
is down, you can determine if the user pressed the TAB key to get to
the control. If the TAB key was not used and the control does not have an
access key, the user must have used the mouse to click the control to set
the focus.

MORE INFORMATION
================

The GetKeyState Windows API function takes an integer parameter
containing the virtual key code for the desired key states.
GetKeyState returns an integer. If the return value is negative, the
key has been pressed.

The following is a code example. To use this example, start with a new
project in Visual Basic for Windows. Add a text box and a command
button to Form1. Enter the following code in the project's GLOBAL.BAS
module:

 ' Global Module.
 Declare Function GetKeyState% Lib "User" (ByVal nVirtKey%)
 Global Const VK_TAB = 9

Add the following code to the GotFocus event procedure for the Text1
text box control:

 Sub Text1_GotFocus()
 If GetKeyState(VK_TAB) < 0 Then
 Text1.SelStart = 0
 Text1.SelLength = Len(Text1.Text)
 Else
 Text1.SelLength = 0
 End If
 End Sub

Run the program. If you use the TAB key to move the focus from the
command button to the text box, you should see the text in the text
box selected. If you change the focus to the text box by clicking it
with the mouse, the text will not be selected.

An access key is assigned by using an ampersand (&) in the control's
caption property. If the control has an access key, you may also want to
check the state of the virtual ALT key by using GetKeyState to see if the
user used the access key to change the focus. The virtual key code for ALT,
actually known as VK_MENU, is 12H (&H12).

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: EnvtRun APrgOther

How to Access Windows Initialization Files Within Visual Basic
Article ID: Q75639
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
--

SUMMARY
=======

There are several Microsoft Windows API functions that can manipulate
information within a Windows initialization file. GetProfileInt,
GetPrivateProfileInt, GetProfileString, and GetPrivateProfileString
allow a Microsoft Visual Basic for Windows program to retrieve
information from a Windows initialization file based on an application
name and key name. WritePrivateProfileString and WriteProfileString are
used to create/update items within Windows initialization files.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

Windows initialization files contain information that defines your
Windows environment. Examples of Windows initialization files are
WIN.INI and SYSTEM.INI, which are commonly found in the C:\WINDOWS
subdirectory. Microsoft Windows and applications for Microsoft Windows
can use the information stored in these files to configure themselves
to meet your needs and preferences. For a description of initialization
files, review the WIN.INI file that comes with Microsoft Windows.

An initialization file is composed of at least an application name and
a key name. The contents of Windows initialization files have the
following format:

 [Application name]
 keyname=value

There are four API function calls (GetProfileInt, GetPrivateProfileInt,
GetProfileString, and GetPrivateProfileString) that you can use to
retrieve information from these files. The particular function to call
depends on whether you want to obtain string or numerical data.

The GetProfile family of API functions is used when you want to get
information from the standard WIN.INI file that is used by Windows.
The WIN.INI file should be part of your Windows subdirectory
(C:\WINDOWS). The GetPrivateProfile family of API functions is used
to retrieve information from any initialization file that you specify.
The formal arguments accepted by these API functions are described
farther below.

The WriteProfileString and WritePrivateProfileString functions write
information to Windows initialization files. WriteProfileString is
used to modify the Windows initialization file, WIN.INI.
WritePrivateProfileString is used to modify any initialization file
that you specify. These functions search the initialization file for
the key name under the application name. If there is no match, the
function adds to the user profile a new string entry containing the
key name and the key value specified. If the key name is found, it will
replace the key value with the new value specified.

To declare these API functions within your program, include the
following Declare statements in the global module or the General
Declarations section of a Visual Basic for Windows form:

Declare Function GetProfileInt% Lib "Kernel"(ByVal lpAppName$,
 ByVal lpKeyName$, ByVal nDefault%)

Declare Function GetProfileString% Lib "Kernel" (ByVal lpAppName$,
 ByVal lpKeyName$, ByVal lpDefault$, ByVal lpReturnedString$,
 ByVal nSize%)

Declare Function WriteProfileString% Lib "Kernel"(ByVal lpAppName$,
 ByVal lpKeyName$, ByVal lpString$)

Declare Function GetPrivateProfileInt% Lib "Kernel"
 (ByVal lpAppName$, ByVal lpKeyName$, ByVal nDefault%,
 ByVal lpFileName$)

Declare Function GetPrivateProfileString% Lib "Kernel"
 (ByVal lpAppName$, ByVal lpKeyName$, ByVal lpDefault$,
 ByVal lpReturnedString$, ByVal nSize%, ByVal lpFileName$)

Declare Function WritePrivateProfileString% Lib "Kernel"
 (ByVal lpAppName$, ByVal lpKeyName$, ByVal lpString$,
 ByVal lpFileName$)

Note: Each Declare statement must be on a single line.

The formal arguments to these functions are described as follows:

Argument Description
-------- -----------
lpAppName$ Name of a Windows application that appears in the
 initialization file.

lpKeyName$ Key name that appears in the initialization file.

nDefault$ Specifies the default value for the given key if the
 key cannot be found in the initialization file.

lpFileName$ Points to a string that names the initialization
 file. If lpFileName does not contain a path to the
 file, Windows searches for the file in the Windows
 directory.

lpDefault$ Specifies the default value for the given key if the
 key cannot be found in the initialization file.

lpReturnedString$ Specifies the buffer that receives the character
 string.

nSize% Specifies the maximum number of characters (including
 the last null character) to be copied to the buffer.

lpString$ Specifies the string that contains the new key value.

Below are the steps necessary to create a Visual Basic for Windows
sample program that uses GetPrivateProfileString to read from an
initialization file that you create. The program, based on information
in the initialization file you created, shells out to the Calculator
program (CALC.EXE) that comes with Windows. The sample program
demonstrates how to use GetPrivateProfileString to get information
from any initialization file.

1. Create an initialization file from a text editor (for example,
 you can use the Notepad program supplied with Windows) and save the
 file under the name of "NET.INI". Type in the following as the
 contents of the initialization file (NET.INI):

 [NetPaths]
 WordProcessor=C:\WINWORD\WINWORD.EXE
 Calculator=C:\WINDOWS\CALC.EXE

 Note: If CALC.EXE is not in the C:\WINDOWS subdirectory (as
 indicated after "Calculator=" above), replace C:\WINDOWS\CALC.EXE
 with the correct path.

2. Save the initialization file (NET.INI) to the root directory of
 your hard drive (such as C:\) and exit the text editor.

3. Start Visual Basic for Windows.

4. Create a form called Form1.

5. Create a push button called Command1.

6. Within the Global Declaration section of Form1, add the following
 Windows API function declarations. Note that the Declare statement
 below must appear on a single line.

 Declare Function GetPrivateProfileString% Lib "kernel"
 (ByVal lpAppName$, ByVal lpKeyName$,ByVal lpDefault$,
 ByVal lpReturnString$,ByVal nSize%, ByVal lpFileName$)

7. Within the (Command1) push button's click event add the following
 code:

Sub Command1_Click ()
 '* If an error occurs during SHELL statement then handle the error.
 On Error GoTo FileError

 '* Compare these to the NET.INI file that you created in step 1
 '* above.
 lpAppName$ = "NetPaths"

 lpKeyName$ = "Calculator"
 lpDefault$ = ""
 lpReturnString$ = Space$(128)
 Size% = Len(lpReturnString$)

 '* This is the path and name the NET.INI file.
 lpFileName$ = "c:\net.ini"

 '* This call will cause the path to CALC.EXE (that is,
 '* C:\WINDOWS\CALC.EXE) to be placed into lpReturnString$. The
 '* return value (assigned to Valid%) represents the number of
 '* characters read into lpReturnString$. Note that the
 '* following assignment must be placed on one line.
 Valid% = GetPrivateProfileString(lpAppName$, lpKeyName$,
 lpDefault$, lpReturnString$,
 Size%, lpFileName$)

 '* Discard the trailing spaces and null character.
 Path$ = Left$(lpReturnString$, Valid%)

 '* Try to run CALC.EXE. If unable to run, FileError is called.
 Succ% = Shell(Path$, 1)
 Exit Sub

FileError:
 MsgBox "Can't find file", 16, "Error lpReturnString"
 Resume Next

End Sub

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgINI

How to Print the ASCII Character Set in Visual Basic
Article ID: Q75857

The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
 - Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

The default font used by Visual Basic is the standard ANSI character set.
To display the ASCII character set, which is more commonly used in
MS-DOS-based applications, you must call the two Windows API functions
GetStockObject and SelectObject. In addition, to display the unprintable
characters such as TAB, linefeed, and carriage return characters, you
need to use the TextOut Windows API function because the standard Visual
Basic printer object does not display the unprintable characters. By
using the Windows API TextOut function, you circumvent the Visual Basic
printer object and therefore allow all the characters to be displayed.

MORE INFORMATION
================

Windows supports a second character set, referred to as the OEM character
set. This is generally the character set used internally by MS-DOS for
screen display at the MS-DOS prompt. The character codes 32 to 127 are
usually identical for the OEM, ASCII, and ANSI character sets. The ANSI
characters represented by the remaining character codes (codes 0 to 31
and 128 to 255) are generally different from characters represented by
the OEM and ASCII character sets. However, the OEM and ASCII character
sets are identical for these ranges. Under the ASCII and OEM character
sets, the character codes 128 to 255 correspond to the extended ASCII
character set, which includes line drawing characters, graphics characters,
and special symbols. The characters represented by this range of character
codes generally differ between the ASCII (or OEM) and ANSI character sets.

To change the selected font from ANSI to the OEM ASCII font, you must get
a handle to the OEM character set by calling GetStockObject. When this
handle is passed as an argument to SelectObject, the ANSI font will be
replaced by the OEM ASCII font. This API function also returns the handle
to the font object previously used. Once you finish displaying the desired
characters, you should call SelectObject again to reselect the original
font object.

Note that there is also an API function called DeleteObject. This function
need not be called to delete a stock object. The purpose of this API
function is to delete objects loaded with the API function GetObject.

Here is the syntax for the functions:

GetStockObject% (nIndex%)

nIndex%

 Specifies the type of stock object desired. Use the constant
 OEM_FIXED_FONT to retrieve the handle to the OEM character set.
 The value of this constant is 10.

Return Value

 The return value identifies the desired logical object if the
 function is successful. Otherwise, it is NULL.

SelectObject% (hDC%, hObject%)

hDC%

 Identifies the device context.

hObject%

 Identifies the object to be selected. Use the return value from
 GetStockObject% (above) to select the OEM character set.

Return Value

 The return value identifies the handle to the object previously
 used. This value should be saved in a variable such that
 SelectObject can be called again to restore the original object
 used. It is NULL if there is an error.

Step-by-Step Example

The following example steps demonstrate how to create a program that prints
ASCII characters.

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

3. Add a command button (Command1) to Form1.

4. Add the following code to the General Declarations section of Form1:

 ' Enter each Declare statement on one, single line.
 Declare Function GetStockObject% Lib "GDI" (ByVal nIndex%)
 Declare Function SelectObject% Lib "GDI" (ByVal hDC%, ByVal hObject%)
 Declare Function TextOut Lib "GDI" (ByVal hDC As Integer,
 ByVal X As Integer, ByVal Y As Integer, ByVal lpString As String,
 ByVal nCount As Integer) As Integer

5. Place the following code in the Command1 click event procedure:

 Sub Command1_Click ()

 Const OEM_FIXED_FONT = 10
 Const PIXEL = 3

 Dim hOEM As Integer '*handle the OEM Font Object
 Dim Y, H As Single

 '*save the scale mode so that you can reset later
 Saved% = Form1.ScaleMode

 '*alter the current scale mode
 Form1.ScaleMode = PIXEL

 '* get the character height and subtract the external leading
 H = Form1.TextHeight(Chr$(200)) - 1

 '* get the handle to the desired font
 hOEM = GetStockObject(OEM_FIXED_FONT)

 '* select the object relating to the font handle
 PreviousObject% = SelectObject%(Form1.hDC, hOEM)

 '* if successful then print the desired characters.
 If PreviousObject% Then

 '* establish border
 Edge$ = "0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 "

 '* initialize output location
 xMark = 10
 yMark = 10

 '* position cursor & print top border
 Form1.CurrentX = xMark
 Form1.CurrentY = yMark
 '* print top ruler edge
 T$ = " " + Edge$ + " "
 ret% = TextOut(Form1.hDC, yMark, xMark, T$, Len(T$))

 '* Cycle through 256 characters beginning at character 0
 For Row% = 0 To 15

 '* prep left border
 T$ = Mid$(Edge$, (Row% * 2) + 1, 2)

 '* assemble string of characters
 For Col% = 0 To 15
 Ch = (Row% * 16) + Col%
 T$ = T$ + Chr$(Ch) + " "
 Next

 '* prep right border
 T$ = T$ + Mid$(Edge$, (Row% * 2) + 1, 2)

 '* prepare for display at next row
 xMark = xMark + H

 '* print the assembled string of characters
 ret% = TextOut(Form1.hDC, yMark, xMark, T$, Len(T$))

 Next

 '* prepare for display at next row

 xMark = xMark + H

 '* print bottom border
 T$ = " " + Edge$ + " "
 ret% = TextOut(Form1.hDC, yMark, xMark, T$, Len(T$))

 '* reinstate the previous font
 hOEM = SelectObject(Form1.hDC, PreviousObject%)

 Else

 '* SelectObject was unsuccessful
 MsgBox "Couldn't Find OEM Fonts", 48

 End If

 '* reset the scale mode
 Form1.ScaleMode = Saved%

 End Sub

6. From the Run menu, choose Start.

7. Click the Command1 button.

When the Command1 button is clicked or selected, a small box with a
double border will be drawn in the upper-left corner of the screen.
The box is drawn using characters associated with the extended ASCII
character set.

ASCII and ANSI Character Sets

For a listing of the ASCII and ANSI character sets, see the Visual Basic
Help menu.

American Standard Code for Information Interchange (ASCII) is the 7-bit
character set widely used to represent letters and symbols found on a
standard United States keyboard. The ASCII character set is the same as the
first 128 characters (0 to 127) in the American National Standards
Institute (ANSI) character set. The ANSI character set uses all 8 bits in a
byte, and includes 256 characters (0 to 255). Characters 128 to 255 are
sometimes called the extended-ASCII characters.

REFERENCES
==========

1. "Programming Windows: the Microsoft Guide to Writing Applications
 for Windows 3," by Charles Petzold (published by Microsoft Press,
 1990)

2. "Peter Norton's Windows 3.0 Power Programming Techniques," by
 Peter Norton & Paul Yao (published by Bantam Computer Books, 1990)

3. "Microsoft Windows 3.0 Software Development Kit: Reference Volume 1"

4. The WINSDK.HLP file shipped with Microsoft Windows 3.0 Software

 Development Kit.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgPrint

How to Clear a VB Combo Box with a Windows API Function
Article ID: Q76513

The information in this article applies to:

 - Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

This article explains how to instantly clear the contents of a Visual
Basic combo box by sending the combo box a CB_RESETCONTENT message.

MORE INFORMATION
================

No single command within Visual Basic will clear out the entries of a
combo box. However, you can clear all entries at once with a simple
While loop, as follows:

 Do While Combo1.ListCount > 0
 Combo1.RemoveItem 0
 Loop

If you want a single command to clear all combo box entries at once,
you can use the SendMessage Windows API function. The arguments to
SendMessage with the CB_RESETCONTENT parameter are

 SendMessage(hWnd%, wMsg%, wParam%, lParam&)

where

 hWnd% Identifies the window that is to receive the message
 wMsg% The message to be sent (CB_RESETCONTENT = &H411)
 wParam% Is not used (NULL)
 lParam& Is not used (NULL)

Specifying wMsg% equal to &H411 sends a CB_RESETCONTENT message to
the combo box. This removes all strings from the combo box and frees
any memory allocated for those strings.

To get hWnd%, the handle to the target window, you must call the
Windows API function GetFocus. This method will return the handle to
the control that currently has focus. For a combo box with a Style
property of 2 (Dropdown List), this will return the handle to the
combo box that you want to send the message to. For other styles of
combo boxes, the focus is set to a child edit control that is part of
the combo box, and you must use the GetParent() Windows API function
to get the handle to the combo box itself.

The following steps demonstrate how to delete entries from a combo
box:

1. Create a combo box called Combo1 on Form1.

2. Declare the following Windows API functions at the module level or
 in the Global section of your project:

 Declare Function SendMessage% Lib "user" (ByVal hWnd%,_
 ByVal wMsg%,_
 ByVal wParam%,_
 ByVal lParam&)
 Declare Function GetFocus% Lib "user" ()
 Declare Function PutFocus% Lib "user" Alias "SetFocus" (ByVal hWnd%)
 Declare Function GetParent% Lib "user" (ByVal hWnd%)

 (Note: Each Declare statement must be written on one line, leaving
 out the underscore (_) line-continuation symbol shown above.)

3. Declare the following constants in the same section:

 Global Const WM_USER = &H400
 Global Const CB_RESETCONTENT = WM_USER + 11
 Global Const DROP_DOWN_LIST = 2

4. Place some entries into the combo box in the Form_Load procedure:

 Sub Form_Load ()
 For i = 1 To 10
 Combo1.AddItem Format$(i) 'Put something into combo box.
 Next
 End Sub

5. Create a Sub within the (Declarations) section of the Form1 Code
 window with the following code:

 Sub ClearComboBox (Combo As Control)
 hWndOld% = GetFocus()
 Combo.SetFocus
 If Combo.Style = DROP_DOWN_LIST then
 x = SendMessage(GetFocus(), CB_RESETCONTENT, 0, 0)
 Else
 x = SendMessage(GetParent(GetFocus()), CB_RESETCONTENT, 0, 0)
 End If
 Suc% = PutFocus(hWndOld%)
 End Sub

6. Within an event procedure, call ClearComboBox with the name of the
 Combo box as a parameter:

 Sub Form_Click ()
 ClearComboBox Combo1
 End Sub

7. Run the program and click anywhere on Form1. This will clear the
 combo box.

Reference(s):

"Programming Windows: the Microsoft Guide to Writing Applications for
Windows 3," Charles Petzold. Microsoft Press, 1990

"Microsoft Windows Software Development Kit Reference Volume 1,"
version 3.0

WINSDK.HLP file shipped with Microsoft Windows 3.0 Software
Development Kit

Additional reference words: 1.00 3.00
KBCategory:
KBSubcategory: APrgOther

BUG: Bad Text in Long Right-Aligned Labels in Windows ver 3.0
Article ID: Q76515

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
- Microsoft Windows versions 3.0 and 3.1

SYMPTOMS
========

When you use Visual Basic with Windows version 3.0, the caption of a
right-aligned label that is set to a length exceeding 255 characters
displays unusual (incorrect) characters. A left-aligned or centered
caption displays correctly, and all captions display correctly when
using Visual Basic with Windows version 3.1.

STATUS
======

Microsoft has confirmed this to be a problem in Windows version 3.0.
This problem was corrected in Windows version 3.1.

MORE INFORMATION
================

Steps to Reproduce Problem

1. In the Visual Basic environment (VB.EXE), place a label on a blank form.

2. Add the following code to the form's Form_click event procedure:

 Label1.alignment = 1 'right justified
 Label1.caption = string$ (277, "k")
 Label1.refresh

3. From the Run menu, choose Start or press the F5 key.

4. Click anywhere inside the form except on the label to see unexpected
 characters appear in the rightmost portion of the caption.

Additional reference words: 1.00 2.00 3.00 garbage corrupted
KBCategory:
KBSubcategory: APrgOther

Using Windows API Functions to Better Manipulate Text Boxes
Article ID: Q76518

The information in this article applies to:

- Microsoft Visual Basic for Windows, versions 1.0, 2.0, and 3.0

SUMMARY
=======

By calling Windows API functions from Microsoft Visual Basic for
Windows, you can retrieve text box (or edit control) information that
you cannot obtain using only Visual Basic for Windows' built-in features.
Note that in Visual Basic versions 2.0 and 3.0 for Windows, you can use the
new HWND property of a text box instead of calling the GetFocus() function.

This article supplies a sample program that performs the following
useful features (making use of the Windows message constants shown in
parentheses, obtained by calling Windows API routines):

 - Copy a specific line of text from the text box (EM_GETLINE).
 - Retrieve the number of lines within the text box (EM_GETLINECOUNT).
 - Position the cursor at a specific character location (EM_GETSEL) in the
 text box.
 - Retrieve the line number of a specific character location in the text
 box (EM_LINEFROMCHAR).
 - Retrieve the amount of lines before a specified character position in
 the text box (EM_LINEINDEX).
 - Retrieve the amount of characters in a specified line in the text box
 (EM_LINELENGTH).
 - Replace specified text with another text string (EM_REPLACESEL).

For a separate article that explains how to specify the amount of text
allowable within a text control, query on the following word in the
Microsoft Knowledge Base:

 EM_LIMITTEXT

MORE INFORMATION
================

Note that as of 3/25/92, the code below corrects the VBKNOWLG.HLP
file Knowledge Base shipped with the Microsoft Professional Toolkit for
Visual Basic version 1.0 for Windows.

Note also that using the SelStart, SelLength, and SelText properties may
be easier than using EM_GETSEL and EM_REPLACESEL below.

The Windows API file USER.EXE defines the SendMessage function that
will return or perform a specific event on your edit control. To
create an example that will display specific information about your
edit control, do the following:

1. Create a form (Form1), and add the following controls and properties:

 Control Control Name Height Left Top Width
 --
 Label aGetLine 360 120
 Label aGetLineCount 360 480
 Label aGetSel 360 840
 Label aLineFromChar 360 1200
 Label aLineIndex 360 1560
 Label aLineLength 360 1920
 Label aReplaceSel 360 2280
 Command Command1 375 360 2640 1815
 Text Text1 1815 2640 480 3495
 Text Text2 375 2520 2640 3615

2. Set each label's AutoSize property to True.

3. Set the Text1.MultiLine property to True.

4. Change the Command1.Caption to "Insert this text --->".

5. Add the following code to the global Declarations section:

 Declare Function GetFocus% Lib "user" ()
 ' Enter the following Declare as one, single line:
 Declare Function SendMessage& Lib "user"(ByVal hWnd%, ByVal wMsg%,
 ByVal wParam%, ByVal lParam As Any)
 ' lParam is actually a double word, or long, but declaring
 ' lParam "As Any" allows flexibility for certain cases of
 ' using SendMessage.

6. After adding the code listed below to your form, run the program.
 Whenever a key is released, the labels will be updated with the new
 information about your text box.

 Sub Form_Load ()
 Show
 X% = fReplaceSel("") '* Used to display the correct text.
 End Sub

 Sub Text1_KeyUp (KeyCode As Integer, Shift As Integer)
 '* Update the text control information whenever the key
 '* is pressed and released.
 CharPos& = fGetSel()
 LineNumber& = fLineFromChar(CharPos&)
 X% = fGetLine(LineNumber&)
 X% = fGetLineCount()
 X% = fLineIndex(LineNumber&)
 X% = fLineLength(CharPos&)
 End Sub

 Sub Command1_Click ()
 '* This routine will insert a line of text at the current location
 '* of the caret.

 D$ = Text2.text
 CharPos& = fGetSel()
 X% = fReplaceSel(D$)

 X% = fSetSel(CharPos&)

 '* Text has been inserted at the caret location. No update the
 '* text controls information.
 Call Text1_KeyUp(0, 0)
 Text1.SetFocus
 End Sub

 Function fGetLineCount& ()
 '* This function will return the number of lines in the edit control.
 Const EM_GETLINECOUNT = &H400 + 10

 Text1.SetFocus
 ' In versions 2.00 and 3.00, you need to use a long integer to avoid
 ' a bad DLL calling convention error message. As an alternative,
 ' you can use the new HWND property instead of GetFocus():
 Pos& = SendMessage(GetFocus(), EM_GETLINECOUNT, 0&, 0&)
 ' Use the following Pos& if you have Visual Basic version 1.0:
 ' Pos& = SendMessage(GetFocus(), EM_GETLINECOUNT, 0%, 0%)
 aGetLineCount.Caption = "GetLineCount = " + Str$(Pos&)
 fGetLineCount = Pos&
 End Function

 Function fGetLine (LineNumber As Long)
 '* This function copies a line of text specified by LineNumber
 '* from the edit control. The first line starts at zero.

 Const MAX_CHAR_PER_LINE = 80
 Const EM_GETLINE = &H400 + 20

 byteLo% = MAX_CHAR_PER_LINE And (255) '[changed 3/25/92]
 byteHi% = Int(MAX_CHAR_PER_LINE / 256) '[changed 3/25/92, two lines:]
 Buffer$ = chr$(byteLo%) + chr$(byteHi%) + Space$(MAX_CHAR_PER_LINE-2)

 Text1.SetFocus
 Pos& = SendMessage(GetFocus(), EM_GETLINE, CINT(LineNumber), Buffer$)
 aGetLine.Caption = "GetLine = " + Buffer$
 fGetLine = Pos&

 End Function

 Function fGetSel& ()
 '* This function returns the starting/ending position of the
 '* current selected text. This is the current location of the
 '* cursor if start is equal to ending.
 '* LOWORD-start position of selected text
 '* HIWORD-first no selected text

 Const EM_GETSEL = &H400 + 0

 Text1.SetFocus
 location& = SendMessage(GetFocus(), EM_GETSEL, 0, 0&)
 ending% = location& \ &H10000
 starting% = location& And &H7FFF
 aGetSel.Caption = "Caret Location = " + Str$(starting%)
 fGetSel = location& mod 65536
 End Function

 Function fLineFromChar& (CharPos&)
 '* This function will return the line number of the line that
 '* contains the character whose location(index) specified in the
 '* third argument of SendMessage. If the third argument is -1,
 '* then the number of the line that contains the first character
 '* of the selected text is returned. If start = end from GetSel,
 '* then the current caret location is used. Line numbers start
 '* at zero.

 Const EM_LINEFROMCHAR = &H400 + 25

 Text1.SetFocus
 Pos& = SendMessage(GetFocus(), EM_LINEFROMCHAR, CINT(CharPos&), 0&)
 aLineFromChar.Caption = "Current Line = " + Str$(Pos&)
 fLineFromChar = Pos&
 End Function

 Function fLineIndex (LineNumber As Long)
 '* This function will return the number of bytes that
 '* precede the given line. The returned number reflects the CR/LF
 '* after each line. The third argument to SendMessage specifies
 '* the line number, where the first line number is zero. If the
 '* third argument to SendMessage is -1, then the current line
 '* number is used.

 Const EM_LINEINDEX = &H400 + 11

 Text1.SetFocus
 Pos& = SendMessage(GetFocus(), EM_LINEINDEX, CINT(LineNumber), 0&)
 aLineIndex.Caption = "#Char's before line = " + Str$(Pos&)
 fLineIndex = Pos&
 End Function

 Function fLineLength& (CharPos As Long)
 '* This function will return the length of a line in the edit
 '* control. CharPos specifies the index of the character that
 '* is part of the line that you would like to find the length. If
 '* this argument is -1, the current selected character is used as
 '* the index.

 Const EM_LINELENGTH = &H400 + 17
 Text1.SetFocus
 Pos& = SendMessage(GetFocus(), EM_LINELENGTH, CINT(CharPos), 0&)
 aLineLength.Caption = "LineLength = " + Str$(Pos&)
 fLineLength = Pos&
 End Function

 Function fSetSel& (Pos&)
 '* This function selects all characters in the current text that
 '* are within the starting and ending positions given by
 '* Location. The low word is the starting position and the high
 '* word is the ending position. If you set start to end, this
 '* can be used to position the cursor within the edit control.

 Const EM_SETSEL = &H400 + 1
 location& = Pos& * 2 ^ 16 + Pos&

 Text1.SetFocus
 X% = SendMessage(GetFocus(), EM_SETSEL, 0%, location&)
 fSetSel = Pos&
 End Function

 Function fReplaceSel (Buffer$)
 '* This function will replace the current selected text with the
 '* new text specified in Buffer$. You must call SendMessage with
 '* the EM_GETSEL constant to select text.

 Const EM_REPLACESEL = &H400 + 18
 Text1.SetFocus
 Pos& = SendMessage(GetFocus(), EM_REPLACESEL, 0%, Buffer$)
 aReplaceSel.Caption = "String inserted = " + Buffer$
 fReplaceSel = Pos&
 End Function

Reference(s):

"Programming Windows: The Microsoft Guide to Writing Applications for
Windows 3," Charles Petzold, Microsoft Press, 1990

"Microsoft Windows Software Development Kit: Reference Volume 1,"
version 3.0

WINSDK.HLP file shipped with Microsoft Windows 3.0 Software Development Kit

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgOther

PRB: No Events Generated When Msgbox Active
Article ID: Q76557

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0

SYMPTOMS
========

Visual Basic does not invoke the Paint event or any other event for
controls or forms while a MsgBox or InputBox is active.

CAUSE
=====

This behavior is by design. All events (including the timer control event)
are disabled while a MsgBox is showing. The purpose is to block operations
that could cause problems.

WORKAROUND
==========

To compensate for Paint events not firing, you can set the form AutoRedraw
property to True and paint the form from the Form_Load event.

To display a MsgBox-like dialog and allow all events to occur, you can:

 - Call the Windows API function MessageBox.

 - Display a modal form (formN.Show 1), which looks like the MsgBox dialog.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

Steps to Demonstrate Behavior

1. Start Visual Basic or from the File menu, choose New Project if
 Visual Basic is already running.

2. Add the following code to the general declarations section:

 ' Enter the following Declare statement on one, single line:
 Declare Function MessageBox Lib "User" (ByVal hWnd As Integer, ByVal
lpText
 As String, ByVal lpCaption As String, ByVal wType As Integer) As
Integer

2. Add the following code to the Form_Click event:

 Sub Form_Click ()
 MsgBox "move me", 0, "MsgBox"
 unused = MessageBox(hWnd, "move me", "MessageBox", 0)
 End Sub

3. Add the following code to the Form_Paint event:

 Sub Form_Paint ()
 Line (0, 0)-(ScaleWidth - 1, ScaleHeight - 1), &HFF, BF
 End Sub

4. Run the application. Click the form to display the MsgBox dialog. When
 you drag this dialog box around on the form, the Paint event is not
fired
 and the area previously occupied by the MsgBox is not updated.

5. Click OK to display the MessageBox API dialog. When you drag this dialog
 box around, the form is repainted.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: APrgOther

How to Create and Use a Custom Cursor in Visual Basic; Win SDK
Article ID: Q76666
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
--

SUMMARY
=======

Using a graphics editor, the Microsoft Windows Software Development
Kit (SDK), and the Microsoft C compiler, you can create a dynamic-link
library (DLL) containing mouse cursors that can be used in a Microsoft
Visual Basic for Windows application. By making calls to the Windows API
functions LoadLibrary, LoadCursor, SetClassWord, and GetFocus, you can
display a custom cursor from within a Visual Basic for Windows
application. Below are the steps necessary to a create a custom cursor
and a Visual Basic for Windows application to use this custom cursor.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

Setting a custom cursor in a Visual Basic for Windows application
requires a call to the Windows API function LoadLibrary to load the
custom DLL containing the cursor resource(s). A call to LoadCursor is
then required to load a single cursor contained in the DLL. The return
value of the LoadCursor function is a handle to the custom cursor.
This handle can be passed as an argument to the API function
SetClassWord with the constant GCW_HCURSOR. SetClassWord also requires
a window handle (hWnd) to the object (form or control) for which the
cursor is to be set. The hWnd of a form is available via the hWnd run-
time method. For example, the statement FWnd = Form1.hWnd will return
the hWnd of Form1 to the variable FWnd. The hWnd of a control can be
obtained by first using the SetFocus method on the control to give it
the input focus and then calling the API function GetFocus. GetFocus
returns the hWnd of the object with the current input focus.

A custom cursor always takes the place of the system cursor. The
MousePointer property of a form or control to receive the custom
cursor must be set to zero (system). Any other value for this property
will result in the selected cursor being displayed, not the custom
cursor.

Because the cursor is defined as part of a window class, any change to
the window class will be reflected across any control or form that
uses that class. For example, if the MousePointer property for two
command buttons is zero (system) and a custom cursor is set for one of
the command buttons, both of the command buttons will receive the
custom cursor. To guarantee a custom cursor for each control requires

that the cursor be set by calling SetClassWord in the MouseMove event
procedure of the control.

Some controls, such as command buttons, do not contain a MouseMove
event procedure. A custom mouse pointer for these types of controls
can be set by initiating a timer event. Within the timer event, calls
to the API functions GetCursorPos and WindowFromPoint can be made to
determine if the mouse is over the control or not. If the
WindowFromPoint API call returns the hWnd of the control, then the
mouse is over the control. A call to SetClassWord can then be made to
set the custom cursor for the control.

Below is an example of using the Windows SDK and C Compiler to create
a DLL containing cursor resources. Further below are the steps
necessary to create a Visual Basic for Windows program to use the cursor
resources.

If you do not have the Windows SDK but have a pre-compiled DLL
containing cursor resources, skip to the steps below outlining how to
create a Visual Basic application to use the custom cursor resources.

 1. Using a graphics editor such as Microsoft Windows SDK Paint program,
 create two cursor images. Save the images separately as CURS1.CUR
 and CURS2.CUR, respectively.

 2. Using any text editor, create a C source file containing the
 minimum amount of code for a Windows DLL. The source code must
 contain the functions LibEntry and WEP (Windows exit procedure).
 Below is an example of the C source file:

 #include <windows.h>
 int _far _pascal LibMain (HANDLE hInstance,
 WORD wDataSeg,
 WORD cbHeapSize,
 LPSTR lpszCmdLine)
 {
 return(1);
 }

 int _far _pascal WEP (int nParameter)
 {
 return(1);
 }

 3. Save the file created in step 2 above as CURSORS.C.

 4. Using any text editor, create a definition file (.DEF) for the
 DLL. Enter the following as the body of the .DEF file:

 LIBRARY CURSORS

 DESCRIPTION 'DLL containing cursor resources'

 EXETYPE WINDOWS

 STUB 'WINSTUB.EXE'

 CODE MOVEABLE DISCARDABLE

 DATA MOVEABLE SINGLE

 HEAPSIZE 0

 EXPORTS
 WEP @1 RESIDENTNAME

 5. Save the file created in step 4 above as CURSORS.DEF.

 6. Using a text editor, create a resource file for the cursors created
 in step 1 above. Enter the following as the body of the .RC file:

 Cursor1 CURSOR CURS1.CUR
 Cursor2 CURSOR CURS2.CUR

 7. Save the file created in step 6 above as CURSORS.RC.

 8. Compile CURSORS.C from the MS-DOS command line as follows:

 CL /AMw /c /Gsw /Os /W2 CURSORS.C

 9. Link the program from the MS-DOS command line as follows (enter the
 following two lines on a single line):

 LINK /NOE /NOD cursors.obj +
 LIBENTRY.OBJ,,,MDLLCEW.LIB+LIBW.LIB,CURSORS.DEF;

 This will create the file CURSORS.EXE.

10. Add the cursor resources created in step 1 above to the .EXE file
 created in step 9 above by invoking the Microsoft Resource
 Compiler (RC.EXE) from the MS-DOS command line as follows:

 RC CURSORS.RC

11. Rename CURSORS.EXE to CURSORS.DLL from the MS-DOS command line as
 follows:

 REN CURSORS.EXE CURSORS.DLL

Below are the steps necessary to create a Visual Basic for Windows
application that uses the cursor resources created in the steps above.

Important

When running the Visual Basic for Windows program created by following
the steps below, it is important to terminate the application from the
system menu, NOT the Run End option from the file menu. When Run End is
chosen from the file menu, the unload event procedure is not executed.
Therefore, the system cursor is not restored and the custom cursor
will remain present at design time. Using Visual Basic version 1.0 for
Windows, avoid terminating the program from the Program Manager
(PROGMAN.EXE) task list. The unload event procedure is also not called
when a program is terminated from the task list in Visual Basic
version 1.0 for Windows.

1. Start Visual Basic for Windows, or from the File menu, choose New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 will be created by default.

2. Put a picture control (Picture1) on Form1.

3. Put a command button (Command1) on Form1.

4. Put a timer control (Timer1) on Form1.

5. Enter the following code in the Global Module:

 Type PointType
 x As Integer
 y As Integer
 End Type

6. Enter the following code in the General Declaration section of
 Form1:

 DefInt A-Z
 ' Each of the following Declare statements must appear on one line.
 Declare Function LoadLibrary Lib "kernel" (ByVal LibName$)
 Declare Function LoadCursor Lib "user" (ByVal hInstance, ByVal
 CursorName$)
 Declare Function SetClassWord Lib "user" (ByVal hWnd, ByVal
 nIndex, ByVal NewVal)
 Declare Function DestroyCursor Lib "user" (ByVal Handle)
 Declare Function GetFocus Lib "user" ()
 Declare Function PutFocus Lib "user" Alias "SetFocus" (ByVal hWnd)
 Declare Sub GetCursorPos Lib "user" (p As PointType)
 Declare Function WindowFromPoint Lib "user" (ByVal y, ByVal x)
 Const GCW_HCURSOR = (-12)
 Dim SysCursHandle
 Dim Curs1Handle
 Dim Curs2Handle
 Dim Pic1hWnd
 Dim Command1hWnd
 Dim p As PointType

7. Enter the following code in the Form_Load event procedure of
 Form1:

 Sub Form_Load ()
 Form1.Show
 DLLInstance = LoadLibrary("CURSORS.DLL")
 Curs1Handle = LoadCursor(DLLInstance, "Cursor1")
 Curs2Handle = LoadCursor(DLLInstance, "Cursor2")
 SysCursHandle=SetClassWord(Form1.hWnd,GCW_HCURSOR,Curs2Handle)

 ' Get the current control with the input focus.
 CurrHwnd = GetFocus()

 ' Get the Window handle of Picture1.
 Picture1.SetFocus
 Pic1hWnd = Picuture1.GetFocus()

 ' Get the Window handle of Command1.
 Command1.SetFocus
 Command1hWnd = GetFocus()

 ' Restore the focus to the control with the input focus.
 r = PutFocus(CurrHwnd)
 timer1.interval = 1 ' One millisecond.
 timer1.enabled = -1
 End Sub

8. Enter the following code in the Form_Unload event procedure of
 Form1:

 Sub Form_Unload (Cancel As Integer)
 ' Restore the custom cursors to the system cursor:
 LastCursor =SetClassWord(Form1.hWnd, GCW_HCURSOR, SysCursHandle)
 LastCursor = SetClassWord(Pic1hWnd, GCW_HCURSOR, SysCursHandle)
 LastCursor=SetClassWord(Command1hWnd, GCW_HCURSOR,SysCursHandle)
 ' Delete the cursor resources from memory:
 Success = DestroyCursor(Curs1Handle)
 Success = DestroyCursor(Curs2Handle)
 End Sub

9. Enter the following code in the Timer1_Timer event procedure of
 Timer1:

 Sub Timer1_Timer ()

 ' Get the current (absolute) cursor position.
 Call GetCursorPos(p)

 ' Find out which control the midpoint of the cursor is over.
 ' The cursor is 32 x 32 pixels square. Change the class word
 ' of the control to the appropriate cursor.
 Select Case WindowFromPoint(p.y + 16, p.x + 16)

 Case Form1.hWnd
 ' Each of the following statements must appear on one line.
 LastCursor = SetClassWord(Form1.hWnd, GCW_HCURSOR,
 Curs2Handle)
 LastCursor = SetClassWord(Command1hWnd, GCW_HCURSOR,
 Curs2Handle)
 LastCursor = SetClassWord(Pic1hWnd, GCW_HCURSOR,
 Curs2Handle)

 Case Command1hWnd

 LastCursor = SetClassWord(Form1.hWnd, GCW_HCURSOR,
 Curs1Handle)
 LastCursor = SetClassWord(Command1hWnd, GCW_HCURSOR,
 Curs1Handle)

 Case Pic1hWnd

 LastCursor = SetClassWord(Form1.hWnd, GCW_HCURSOR,
 Curs1Handle)

 LastCursor = SetClassWord(Pic1hWnd%, GCW_HCURSOR,
 Curs1Handle)
 End Select
 End Sub

Run the program. The form should receive the "Cursor2" cursor and the
controls Command1 and Picture1 should receive the "Cursor1" cursor as
the mouse cursor is moved about the form.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgGrap APrgOther

Terminating Windows from a Visual Basic Application
Article ID: Q76981

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

The Visual Basic SendKeys function cannot be used to close Program
Manager in order to terminate Windows. To correctly close Program
Manager, you must invoke the ExitWindows API function, as shown below.

Many software setup or installation programs are designed to exit Windows,
and then restart Windows when the setup or installation is complete. You
can make a Visual Basic program automatically exit Windows and then restart
Windows by passing the EW_RESTARTWINDOWS value to the ExitWindows API
function.

MORE INFORMATION
================

You may want to terminate the current Windows session by closing the
Program Manager from within a Visual Basic application. You may think
that you can activate the Program Manager control menu and send the
appropriate key sequences using the Visual Basic SendKeys function.
However, this method will not work because after the Close menu item
is chosen, a system modal dialog box is opened that prompts you to
save changes to Program Manager. A system modal dialog box locks out
ALL other programs until it is satisfied. Therefore, the keystroke you
send by using the SendKeys function will never arrive in the dialog box.

To correctly close Program Manager, you must use the ExitWindows API
function. You can declare this API function in the GLOBAL.BAS module.
For example:

1. Start a new project in Visual Basic.

2. Draw a command button on the form.

3. Add the following as a single line to GLOBAL.BAS:

 Declare Function ExitWindows Lib "user" (ByVal dwReserved&,
 ByVal wReturnCode%) as integer

4. Add the following line of code to the command button's Click procedure:

 RetVal% = ExitWindows(0,0)

5. Run the program.

6. Click the command button.

The ExitWindows API call initiates the standard Windows shutdown
procedure. If all applications agree to terminate, the windows session
is terminated and control returns to MS-DOS. If the ExitWindows API
call fails due to an open MS-DOS session or for some other reason, FALSE
is returned. You should check for this and handle it appropriately.

Steps to Reproduce Incident

1. Start a New Project in Visual Basic.

2. Draw a command button on the form.

3. In the command button Click event procedure, add this code:

 AppActivate("Program Manager")
 SendKeys "%{ }{DOWN 5}{ENTER 2}", 0 'ALT, SPACE, DOWN 5, ENTER 2

4. Run the program.

Note that the Program Manager does not close. If you choose the OK button
with the mouse, you'll see a message stating, "Can't quit at this time."
If you choose the Cancel button, you'll see a message stating, "Cannot
start more than one copy of the specified program." These messages are
misleading, but are the result of attempting an unsupported action.

Additional reference words: 1.00 2.00 3.00 restart start exit windows
KBCategory:
KBSubcategory: APrgOther APrgWindow

How to Print a VB Picture Control Using Windows API Functions
Article ID: Q77060

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

This article explains how to print a Visual Basic picture control to a
printer using several Windows API function calls.

NOTE: this example will not work correctly on PostScript printers. Instead
of the picture control printing, two blank sheets are ejected from the
printer when using a printer configured to use the PostScript printer
driver. For the example to work correctly, the printer must use a standard
non-PostScript laser printer configuration (such as PCL/HP.)

MORE INFORMATION
================

To print a picture control from Visual Basic, you must use the
PrintForm method. Although this can very useful, there is no
straightforward method of printing just a picture control without the
use of API function calls. Printing a picture control to the printer
is useful when you want to control the location or size of the printed
image. Calling API functions to print a picture control is also useful
if you want to include other images or text along with the picture
image on a single sheet of paper.

To print a bitmap, you need to do the following:

1. Create a memory device context that is compatible with the
 bitmap (CreateCompatibleDC). A memory device context is a block of
 memory that represents a display surface. It is used to prepare
 images before copying them to the actual device surface of the
 compatible device.

2. Save the present object (SelectObject) and select the picture
 control using the handle from the memory device context.

3. Use the BitBlt or StretchBlt function to copy the bitmap from the
 memory device context to the printer.

4. Remove the bitmap from the memory device context (SelectObject) and
 delete the device context (DeleteDC).

Step-by-Step Example

The following steps demonstrate this process:

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Add a picture control (Picture1) to Form1 and set the AutoRedraw
 property to True.

3. Add a command button (Command1).

4. Display some graphics in Picture1 by loading from a picture file or
 pasting from the Clipboard at design time. You can load a picture
 from a file as follows:

 a. Select the Picture property from the Properties bar.

 b. Click the arrow at the right of the Settings box, then select the
 desired picture file (such as a .BMP or .ICO file supplied with
 Microsoft Windows) from the dialog box.

5. Add the following declarations to the global Declarations section of
 the Code window. Enter each Declare statement as one, single line.

 Declare Function CreateCompatibleDC% Lib "GDI" (ByVal hDC%)

 Declare Function SelectObject% Lib "GDI" (ByVal hDC%, ByVal hObject%)

 Declare Function StretchBlt% Lib "GDI" (ByVal hDC%, ByVal X%,
 ByVal Y%, ByVal nWidth%, ByVal nHght%, ByVal hSrcDC%, ByVal XSrc%,
 ByVal YSrc%, ByVal nSrcWidth%, ByVal nSrcHeight%, ByVal dwRop&)

 Declare Function DeleteDC% Lib "GDI" (ByVal hDC%)

 Declare Function Escape% Lib "GDI" (ByVal hDC As Integer,
 ByVal nEscape As Integer, ByVal nCount As Integer,
 LpInData As Any, LpOutData As Any)

6. Add the following code to the Command_Click event:

 Sub Command1_Click ()
 Const SRCCOPY = &HCC0020
 Const NEWFRAME = 1
 Const PIXEL = 3

 '* Display hour glass.
 MousePointer = 11
 Picture1.Picture = Picture1.Image

 '* StretchBlt requires pixel coordinates.
 Picture1.ScaleMode = PIXEL
 Printer.ScaleMode = PIXEL

 Printer.Print " "

 hMemoryDC% = CreateCompatibleDC(Picture1.hDC)
 hOldBitMap% = SelectObject(hMemoryDC%, Picture1.Picture)

 'Enter the following three lines as one, single line:

 ApiError% = StretchBlt(Printer.hDC, 0, 0, Printer.ScaleWidth,
 Printer.ScaleHeight, hMemoryDC%, 0, 0, Picture1.ScaleWidth,
 Picture1.ScaleHeight, SRCCOPY)

 hOldBitMap% = SelectObject(hMemoryDC%, hOldBitMap%)
 ApiError% = DeleteDC(hMemoryDC%)

 Result% = Escape(Printer.hDC, NEWFRAME, 0, 0&, 0&)

 Printer.EndDoc

 MousePointer = 1
 End Sub

7. Run the program to copy the bitmap to the printer. If you have
 selected a low resolution from the Print Manager, printing the
 bitmap will proceed quickly (the lower the resolution, the faster
 the print time). While designing your software, you may want
 to keep this at the lowest possible resolution. The print
 resolution can be changed from the Windows Control Manager.

REFERENCES
==========

"Programming Windows: The Microsoft Guide to Writing Applications
for Windows 3," Charles Petzold, Microsoft Press, 1990

"Microsoft Windows Software Development Kit: Reference Volume 1,"
version 3.0

"Microsoft Windows Software Development Kit: Guide to Programming,"
version 3.0.

WINSDK.HLP file shipped with Microsoft Windows 3.0 Software
Development Kit

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgPrint

How to Invoke GetSystemMetrics Windows API Function from VB
Article ID: Q77061

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
--

SUMMARY
=======

The Windows API GetSystemMetrics function can return useful information
about the Windows system. GetSystemMetrics can be called directly from
Visual Basic for Windows or from the Control Development Kit (CDK) to get
system metrics for a particular display adapter, retrieve information about
the Windows debug mode, or retrieve information about a mouse
configuration.

The Visual Basic for Windows CDK is shipped as part of the Professional
Edition of Microsoft Visual Basic versions 2.0 and 3.0 for Windows.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

The Windows GetSystemMetrics function call retrieves information about the
system metrics. The system metrics are the widths and heights of various
display elements of the particular window display. The GetSystemMetrics
function can also return flags that indicate whether the current Windows
version is a debugging version, whether a mouse is present, or whether the
meaning of the left and right mouse button has been changed. System metrics
depend on the system display, and may vary from display to display.

The Visual Basic for Windows declaration for GetSystemMetrics is:

 Declare Function GetSystemMetrics% Lib "user" (ByVal nIndex%)

The value nIndex% specifies the system measurement to be retrieved.
All measurements are in pixels.

The value returned from the GetSystemMetrics% function specifies the
system metrics.

Below is a sample call to determine if the present version of Windows
is a debugging version:

 ScaleMode = 3 ' Select pixel.
 Print "Debugging version : "; GetSystemMetrics(SM_DEBUG)

The constants and meaning for nIndex% are as follows:

 Constant Name(Value) Description
 -------------------- -----------
 SM_CXSCREEN(0)........Width of screen
 SM_CYSCREEN(1)........Height of screen
 SM_CXFRAME(32)........Width of window frame that can be sized
 SM_CYFRAME(33)........Height of window frame that can be sized
 SM_CXVSCROLL(2).......Width of arrow bitmap on vertical scroll bar
 SM_CYVSCROL(20).......Height of arrow bitmap on vertical scroll bar
 SM_CXHSCROLL(21)......Width of arrow bitmap on horizontal scroll bar
 SM_CYHSCROLL(3).......Height of arrow bitmap on horizontal scroll bar
 SM_CYCAPTION(4).......Height of caption
 SM_CXBORDER(5)........Width of window frame that cannot be sized
 SM_CYBORDER(6)........Height of window frame that cannot be sized
 SM_CXDLGFRAME(7)......Width of frame when window has WS_DLGFRAME style
 SM_CYDLGFRAME(8)......Height of frame when window has WS_DLGFRAME style
 SM_CXHTHUMB(10).......Width of thumb on horizontal scroll bar
 SM_CYHTHUMB(9)........Height of thumb on horizontal scroll bar
 SM_CXICON(11).........Width of icon
 SM_CYICON(12).........Height of icon
 SM_CXCURSOR(13).......Width of cursor
 SM_CYCURSOR(14).......Height of cursor
 SM_CYMENU(15).........Height of single-line menu
 SM_CXFULLSCREEN(16)...Width of window client area for full-screen window
 SM_CYFULLSCREEN(17)...Height of window client area for full-screen
 window (height - caption)
 SM_CYKANJIWINDOW(18)..Height of Kanji window
 SM_CXMINTRACK(34).....Minimum tracking width of window
 SM_CYMINTRACK(35).....Minimum tracking height of window
 SM_CXMIN(28)..........Minimum width of window
 SM_CYMIN(29)..........Minimum width of window
 SM_CXSIZE(30).........Width of bitmaps contained in the title bar
 SM_CYSIZE(31).........Height of bitmaps contained in the title bar
 SM_MOUSEPRESENT(19)...Mouse present
 SM_DEBUG(22)..........Nonzero if Windows debug version

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgOther APrgINI

Examples of Copying a Disk File in Visual Basic for Windows
Article ID: Q77315
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
--

SUMMARY
=======

Visual Basic for Windows does not have a command to copy a disk file
such as the MS-DOS COPY command. However, you can write the necessary
code to copy a file. Two examples of copying a file are provided in
this article. Note that in Visual Basic versions 2.0 and 3.0, you can
use the FileCopy statement instead of the code shown in this article.

MORE INFORMATION
================

The following Visual Basic for Windows sample subprograms, CopyFile1 and
CopyFile2, provide two different ways to copy a disk file in a way
similar to the MS-DOS COPY command. The first example uses only Visual
Basic for Windows code, while the second example includes Window API
functions. CopyFile2 runs faster than CopyFile1, especially for large
files (up to twice as fast).

Subprogram: CopyFile1

Sub CopyFile1 (ByVal Source As String, ByVal Destination As String)
 Dim Index As Integer, NumBlocks As Integer
 Dim FileLength As Long, LeftOver As Long
 Dim FileData As String

 Const BlockSize = 32768

 ' Source and Destination are strings containing filenames:
 Open Source For Binary Access Read As #1
 ' Opening then immediately closing the destination file with
 ' "For Output" access erases the file if it exists (which is
 ' necessary in case the copied Source file is shorter than the
 ' existing Destination file, which would leave some of the old
 ' file's characters at the end of the new Destination file).
 ' You can use this technique to erase the Destination file in place
 ' of the Kill statement to avoid a Kill statement error if the
 ' Destination file doesn't exist:
 Open Destination For Output As #2
 Close #2
 Open Destination For Binary As #2

 FileLength = LOF(1)

 NumBlocks = FileLength \ BlockSize
 LeftOver = FileLength Mod BlockSize

 FileData = String$(LeftOver, 32)

 Get #1, , FileData
 Put #2, , FileData

 FileData = String$(BlockSize, 32)

 For Index = 1 To NumBlocks
 Get #1, , FileData
 Put #2, , FileData
 Next Index

 Close #1, #2
End Sub

Subprogram: CopyFile2

Note that CopyFile2 (below) copies files faster than CopyFile1
(above). Because CopyFile2 uses several API functions, you must
include the Visual Basic Declare statements shown below. Place these
declarations in the global file or in the (general) (declarations)
section of a form or module file that contains the CopyFile2
subprogram:

DefInt A-Z
' All Declare statements must be on one line when added to a program:
Declare Function fWrite Lib "kernel" Alias "_lwrite" (ByVal hFile,
 ByVal lpBuff As Long, ByVal nBuff)
Declare Function fRead Lib "kernel" Alias "_lread" (ByVal hFile,
 ByVal lpBuff As Long, ByVal nBuff)
Declare Function GLobalAlloc Lib "kernel" (ByVal wFlags, ByVal nBuff
 As Long)
Declare Function GLobalFree Lib "kernel" (ByVal hMem)
Declare Function GLobalLock Lib "kernel" (ByVal hMem) As Long
Declare Function GLobalUnlock Lib "kernel" (ByVal hMem)

Sub CopyFile2 (ByVal Source As String, ByVal Destination As String)
 Dim lpBuff As Long
 Dim DestFile As Integer, SourceFile As Integer
 Dim DestDOS As Integer, SourceDOS As Integer
 Dim ApiErr As Integer, AmtRead As Integer
 Dim hMem As Integer
 Const nBuff = 32767
 Const wFlags = &H20

 hMem = GLobalAlloc(wFlags, nBuff)
 lpBuff = GLobalLock(hMem)

 DestFile = FreeFile
 Open Destination For Output As #DestFile Len = 1

 SourceFile = FreeFile
 Open Source For Input As #SourceFile Len = 1

 DestDOS = FileAttr(DestFile, 2)
 SourceDOS = FileAttr(SourceFile, 2)

 Do
 AmtRead = fRead(SourceDOS, ByVal lpBuff, nBuff)
 ApiErr = fWrite(DestDOS, ByVal lpBuff, AmtRead)
 Loop Until AmtRead = 0

 Close #SourceFile, #DestFile

 lpBuff = GLobalUnlock(hMem)
 hMem = GLobalFree(hMem)
End Sub

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgOther

How to Determine Display State of a VB Form, Modal or Modeless
Article ID: Q77316

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
--

SUMMARY
=======

The Show method in the Visual Basic for Windows language can display a
form either as modal or modeless. No direct support exists in the
language to determine the display state of the form without maintaining
global variables that contain the display state of the form. However,
the Windows API function GetWindowLong can be used to check the display
state of the form.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

When Visual Basic for Windows displays a modal form (.Show 1), all other
forms will be modified to contain the Window Style WS_DISABLED. The
Windows API function GetWindowLong can be used to return the Window
Style of another form to check for the WS_DISABLED style.

The following code demonstrates this process:

Add the following to the General Declarations section of Form1 and
Form2:

DefInt A-Z
Global Const GWL_STYLE = (-16)
Global Const WS_DISABLED = &H8000000
Declare Function GetWindowLong& Lib "user" (ByVal hWnd, ByVal nIndex)

Form1.Frm

Sub Form_Click ()
 ' Flip between "Modeless" and "Modal" display states.
 Static ShowStyle
 Unload form2
 form2.Show ShowStyle
 ShowStyle = (ShowStyle + 1) Mod 2
End Sub

Form2.Frm

Sub Form_Paint ()
 ' Get the Window Style for Form1.

 WinStyle& = GetWindowLong(Form1.hWnd, GWL_STYLE)
 If WinStyle& And WS_DISABLED Then
 ' The WS_DISABLED style is set on "FORM1" when "FORM2"
 ' is displayed with the Modal flag (Show 1).
 Print "Modal - Show 1"
 Else
 ' The WS_DISABLED style is not set on "FORM1" when "FORM2"
 ' is displayed with the Modeless flag (Show or Show 0).
 Print "Modeless - Show"
 End If
End Sub

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgWindow PrgOptTips

Example of How to Read and Write Visual Basic Arrays to Disk
Article ID: Q77317
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
--

SUMMARY
=======

Microsoft Visual Basic for Windows does not provide a command to
read or write an entire array all at once to a disk file. Using Visual
Basic for Windows alone, you must transfer each element of the array
to the disk. However, using two Windows API functions, _lread and
_lwrite, you can save an entire array to disk in one statement when
the array is less then 64K.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

The ReadArray and WriteArray functions provided below allow you to
read and write a Visual Basic for Windows array to or from a disk file.
These functions will work with arrays of Integers, Longs, Singles,
Doubles, Currency, and user-defined types, but not with
variable-length strings (as an array or as a member of a user-defined
type) or variants. These functions can work with fixed length strings
when the strings are a member of a user-defined type. Arrays greater
than 64K are supported in Visual Basic versions 2.0 and later for
Windows, however the _lread and _lwrite functions can only handle
arrays up to 64K. Arrays greater than 64K can be written to disk using
the standard I/O statements built into Visual Basic for Windows.

The two functions, ReadArray and WriteArray, require two parameters:
the array to be transferred, and the Visual Basic for Windows file
number to be written to or read from. The functions also return the
number of bytes transferred, or -1 when an error occurs with the API
function. The file number is the Visual Basic for Windows file number
of a file that has already been opened with the Open statement, and
will be used in the Visual Basic for Windows Close statement.

The following function examples use a user-defined type named "Mytype".
An example of this type is as follows:

 Type MyType
 Field1 As String * 10
 Field2 As Integer
 Field3 As Long
 Field4 As Single
 Field5 As Double

 Field6 As Currency
 End Type

Declarations of API Functions

DefInt A-Z
' Each Declare statement must appear on one line:
Declare Function fWrite Lib "kernel" Alias "_lwrite" (ByVal hFile,
 lpBuff As Any, ByVal wBytes)
Declare Function fRead Lib "kernel" Alias "_lread" (ByVal hFile,
 lpBuff As Any, ByVal wBytes)

Function: ReadArray

Function ReadArray (An_Array() As MyType, VBFileNumber As Integer) As Long

 Dim ApiErr As Integer
 Dim ArraySize As Long
 Dim DOSFileHandle As Integer
 Dim ReadFromDisk As Integer

 ArraySize = Abs(UBound(An_Array) - LBound(An_Array)) + 1
 ArraySize = ArraySize * Len(An_Array(LBound(An_Array)))

 If ArraySize > 32767 Then
 ReadFromDisk = ArraySize - 2 ^ 15
 ReadFromDisk = ReadFromDisk * -1
 Else
 ReadFromDisk = ArraySize
 End If

 DOSFileHandle = FileAttr(VBFileNumber, 2)
 ApiErr=fRead(DOSFileHandle,An_Array(LBound(An_Array)),ReadFromDisk)

 ReadArray = ApiErr
End Function

Function: WriteArray

Function WriteArray (An_Array() As MyType, VBFileNumber As Integer) As Long

 Dim ApiErr As Integer
 Dim ArraySize As Long
 Dim DOSFileHandle As Integer
 Dim WriteToDisk As Integer

 ArraySize = UBound(An_Array) - LBound(An_Array) + 1
 ArraySize = ArraySize * Len(An_Array(LBound(An_Array)))

 If ArraySize > 32767 Then
 WriteToDisk = ArraySize - 2 ^ 15
 WriteToDisk = WriteToDisk * -1
 Else
 WriteToDisk = ArraySize
 End If

 DOSFileHandle = FileAttr(VBFileNumber, 2)

 ApiErr=fWrite(DOSFileHandle,An_Array(LBound(An_Array)),WriteToDisk)

 WriteArray = ApiErr
End Function

The following are the function header changes to allow the ReadArray
and WriteArray functions to work with different data types (Integer,
Long, Single, Double, Currency, and user-defined type). Each Function
statement must be on a single line:

Function ReadArray (An_Array() As Integer, VBFileNumber As Integer)
 As Long
Function WriteArray (An_Array() As Integer, VBFileNumber As Integer)
 As Long

Function ReadArray (An_Array() As Long, VBFileNumber As Integer) As
 Long
Function WriteArray (An_Array() As Long, VBFileNumber As Integer) As
 Long

Function ReadArray (An_Array() As Single, VBFileNumber As Integer) As
 Long
Function WriteArray (An_Array() As Single, VBFileNumber As Integer) As
 Long

Function ReadArray (An_Array() As Double, VBFileNumber As Integer) As
 Long
Function WriteArray (An_Array() As Double, VBFileNumber As Integer) As
 Long

Function ReadArray (An_Array() As Currency, VBFileNumber As Integer)
 As Long
Function WriteArray (An_Array() As Currency, VBFileNumber As Integer)
 As Long

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgOther

How to Get Windows Master List (Task List) Using Visual Basic
Article ID: Q78001

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

By calling the Windows API functions GetWindow, GetWindowText, and
GetWindowTextLength, you can get the window titles of all windows
(visible and invisible) currently loaded.

The list of all of the window titles is known as the master list. The
Windows Task Manager contains a list of the window titles for each of the
top-level windows (normally one per application). This list is known
as the task list.

The sample program listed below demonstrates how to activate an application
by using a list of the top-level windows (a task list).

MORE INFORMATION
================

This information is included with the Help file provided with Microsoft
Professional Toolkit for Visual Basic version 1.0, Microsoft Visual Basic
version 2.0, and Microsoft Visual Basic version 3.0.

The task list is generally a subset of the master list. The Windows
API functions only support methods of getting the master list, not the
task list. However, from the master list you can get a list of all
top-level windows closely resembling the task list. The only difference
is that the list containing the top-level windows may have more entries
than the task list because it is possible for an application to remove
itself from the task list even though it is part of the master list.

The example below demonstrates how to get the names of all top-level
windows. The names of child windows can also be obtained by calling
the GetWindow API function using the GW_CHILD constant. Although the
code example only provides an example of using the constants
GW_HWNDFIRST and GW_HWNDNEXT as arguments to GetWindow, the value of
the other constants such as GW_CHILD are provided in the code.

Here are the steps necessary to construct a sample program that
demonstrates how to load the task list into a Visual Basic combo box:

1. Start Visual Basic or choose New Project from the File menu (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Change the caption property of Form1 to AppActivate.

3. Add the following controls to Form1, and change the Name property as
 indicated:

 Control Default Name Name

 Label Control Label1 Label1
 Combo Box Combo1 Combo_ListItem
 Command Button Command1 Command_Ok

4. Change the Caption properties of the controls as follows:

 Control Name Caption

 Label Control Label1 Application to AppActivate:
 Command Button Command_OK OK

5. Add the following code to the general declarations section of Form1:

 DefInt A-Z

 'Windows API function declarations
 'Enter each entire Declare statement on one, single line:
 Declare Function GetWindow Lib "user" (ByVal hWnd, ByVal wCmd)
 As Integer
 Declare Function GetWindowText Lib "user" (ByVal hWnd, ByVal lpSting$,
 ByVal nMaxCount) As Integer
 Declare Function GetWindowTextLength Lib "user" (ByVal hWnd) As Integer

 'Declare constants used by GetWindow
 Const GW_CHILD = 5
 Const GW_HWNDFIRST = 0
 Const GW_HWNDLAST = 1
 Const GW_HWNDNEXT = 2
 Const GW_HWNDPREV = 3
 Const GW_OWNER = 4

6. Add the following code to the Form_Load event procedure of Form1:

 Sub Form_Load ()
 Call LoadTaskList

 'If no items are in the task list, end the program.
 If Combo_ListItem.ListCount > 0 Then
 Combo_ListItem.Text = Combo_ListItem.List(0)
 Else
 MsgBox "Nothing found in task list", 16, "AppActivate"
 Unload Form1
 End If
 End Sub

7. Add the following code to the Click event procedure of the Command_Ok
 button:

 Sub Command_Ok_Click ()
 'Get the item selected from the text portion of the combo box.
 f$ = Combo_ListItem.Text

 'Resume if "Illegal function call" occurs on AppActivate statement.
 On Local Error Resume Next

 AppActivate f$
 End Sub

8. Add the following code to the general declarations section of Form1:

 Sub LoadTaskList ()
 'Get the hWnd of the first item in the master list
 'so we can process the task list entries (top-level only).
 CurrWnd = GetWindow(Form1.hWnd, GW_HWNDFIRST)

 'Loop while the hWnd returned by GetWindow is valid.
 While CurrWnd <> 0
 'Get the length of task name identified by CurrWnd in the list.
 Length = GetWindowTextLength(CurrWnd)

 'Get task name of the task in the master list.
 ListItem$ = Space$(Length + 1)
 Length = GetWindowText(CurrWnd, ListItem$, Length + 1)

 'If there is a task name in the list, add the item to the list.
 If Length > 0 Then
 Combo_ListItem.AddItem ListItem$
 End If

 'Get the next task list item in the master list.
 CurrWnd = GetWindow(CurrWnd, GW_HWNDNEXT)

 'Process Windows events.
 x = DoEvents()
 Wend
 End Sub

9. From the Run menu, choose Start (ALT, R, S) to run the program.

From the combo box, select the window title of an application currently
running in Windows. Choose the OK button to activate the application.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgOther

Use Common Dialog or Escape() API to Specify Number of Copies
Article ID: Q78165

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

You can use the Common Dialog in the Professional Edition of Visual Basic
version 2.0 or 3.0, or you can call the Windows API Escape() function in
other versions to tell the Windows Print Manager how many copies of a
document you want to print.

MORE INFORMATION
================

The Windows API constant SETCOPYCOUNT (value 17) can be used as an
argument to the Escape() function to specify the number of uncollated
copies of each page for the printer to print.

The arguments for Escape() are as follows:

r% = Escape(hDC, SETCOPYCOUNT, Len(Integer), lpNumCopies, lpActualCopies)

Parameter Type/Description

hDC hDC. Identifies the device context. Usually
 referenced by Printer.hDC.

lpNumCopies Long pointer to integer (not ByVal). Point to a
 short-integer value that contains the number of
 uncollated copies to print.

lpActualCopies Long pointer to integer (not ByVal). Points to a
 short integer value that will receive the number of
 copies that where printed. This may be less than
 the number requested if the requested number is
 greater than the device's maximum copy count.

The return value specifies the outcome of the escape -- 1 if the escape is
successful, a negative number if the escape is not successful, or zero if
the escape is not supported.

The following example code demonstrates how to print three copies of a
line of text on the printer. To recreate this example, choose New Project
from the Visual Basic File menu. Then add a command button to the form and
paste the following code into the appropriate event procedures:

REM Below is GLOBAL.BAS:

' The following Declare statement must be typed on one, single line:
Declare Function Escape% Lib "GDI" (ByVal hDc%, ByVal nEsc%, ByVal nLen%,
 lpData%, lpOut%)

REM Below is the click procedure for a command button on Form1:

Sub Command1_Click ()
 Const SETCOPYCOUNT = 17
 Printer.Print ""
 x% = Escape(Printer.hDC, SETCOPYCOUNT, Len(I%), 3, actual%)
 Printer.Print " Printing three copies of this"
 Printer.EndDoc
End Sub

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgPrint

Lstrcpy API Call to Receive LPSTR Returned from Other APIs
Article ID: Q78304

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

Because Microsoft Visual Basic does not support a pointer data type,
you cannot directly receive a pointer (such as a LPSTR) as the return
value from a Windows API or DLL function.

You can work around this by receiving the return value as a long integer
data type. Then use the lstrcpy Windows API function to copy the returned
string into a Visual Basic string.

MORE INFORMATION
================

This information is included with the Help file provided with Microsoft
Professional Toolkit for Visual Basic version 1.0, Microsoft Visual Basic
version 2.0, and Microsoft Visual Basic version 3.0.

An LPSTR Windows API data type is actually a far pointer to a
null-terminated string of characters. Because LPSTR is a far pointer, it
can be received as a four byte data type, such as a Visual Basic long
integer. Using the Visual Basic ByVal keyword, you can pass the address
stored in a Visual Basic long integer back to the Windows API lstrcpy
routine to copy the characters at that address into a Visual Basic string
variable.

Because lstrcpy expects the target string to be long enough to hold the
source string, you should pad any Visual Basic string passed to lstrcpy to
have a size large enough to hold the source string before passing it to
lstrcpy. Failure to allocate enough space in the Visual Basic string may
result in an Unrecoverable Application Error (UAE) or general protection
(GP) fault when you call lstrcpy.

The following is an example program that demonstrates how to use lstrcpy
to retrieve an LPSTR pointer returned from the Windows API
GetDOSEnvironment routine.

Note that the capability of the Windows API GetDOSEnvironment routine is
already available through the Environ function built into Visual Basic.
Therefore, so the program is useful only to demonstrate how to use lstrcpy.

'*** General declarations ***
Declare Function GetDosEnvironment Lib "Kernel" () As Long

' Enter the following Declare statement as one, single line:

Declare Function lstrcpy Lib "Kernel" (ByVal lpString1 As Any,
 ByVal lpString2 As Any) As Long

'*** Form Click event code ***
Sub Form_Click()
 Dim lpStrAddress As Long, DOSEnv$

 ' Allocate space to copy LPSTR into
 DOSEnv$ = Space$(4096)

 ' Get address of returned LPSTR into a long integer
 lpStrAddress = GetDOSEnvironment()

 ' Copy LPSTR into a Visual Basic string
 lpStrAddress = lstrcpy(DOSEnv$, lpStrAddress)

 ' Parse first entry in environment string and print
 DOSEnv$ = Trim$(DOSEnv$)
 DOSEnv$ = Left$(DOSEnv$, Len(DOSEnv$) - 1)
 Form1.Print DOSEnv$
End Sub

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgOther

PRB: Format$ Using # for Digit Affects Right Alignment
Article ID: Q79094

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

The pound (#) sign does not serve as a place holder for blank spaces when
used with the Format$ function to reformat numbers as strings. If a pound
sign place holder is not filled by a digit, Format$ truncates that digit
position and will not replace that position with a space. This may be
undesirable behavior if you are attempting to right justify the numeric
digits within the string.

CAUSE
=====

Visual Basic Format$ function handles the pound sign (#) place holder
differently from the way the it's handled in the Print Using statement
found in other Basic products. In the Print Using statement, a pound sign
place holder is replaced by a space when no numeric digit occupies that
position. By using the Print Using statement, you can right justify a
formatted numeric string by using the pound sign as place holders for the
number. Visual Basic does not support the Print Using statement, so you
need to use additional code to right justify a string using the Visual
Basic Format$ function. An example is given below.

WORKAROUND
==========

To work around the problem, use a monospaced font, such as Courier, and
use the Len function to determine how many spaces need to be added to
the left of the string representation of the number to right justify the
result. Here is the example code:

Sub Form_Click ()
 desired = 5 'longest number expected
 a = 1.23
 b = 44.56
 FontName = "Courier" 'Select a fixed-spaced font
 num1$ = Format$(a, "#0.00") 'This converts number to a string
 num2$ = Format$(b, "#0.00") '2 decimal places and a leading 0
 If (desired - Len(num1$)) > 0 Then
 num1$ = Space$(desired - Len(num1$)) + num1$
 End If
 If (desired - Len(num2$)) > 0 Then
 num2$ = Space$(desired - Len(num2$)) + num1$
 End If
 Print num1$

 Print num2$
End Sub

STATUS
======

This behavior is by design.

MORE INFORMATION
================

Page 121 of the "Microsoft Visual Basic: Language Reference" for version
1.0 regarding the Format$ function doesn't specify how the pound sign is
handled. When there is no numeric digit to fill the pound sign place
holder, the manual does not specify whether the pound sign is replaced by
a space or truncated. The documentation should reflect how the pound sign
is handled by the Format$ function.

The Print Using statement supported in other Basic products allows the
use of the pound sign as a place holder for leading or trailing
spaces, as follows:

 Print Using "##0.00"; myvar

The above example causes two leading spaces to be added to the resulting
string representation of the variable myvar when the value of myvar is
printed to the screen.

However, when used with the Visual Basic Format$ function, the same pound
sign format switch (#) does not work as a placeholder for spaces:

 mystring$ = Format$(myvar , " ##.## ")

The Visual Basic Format$ function yields a formatted string representation
of myvar with no leading spaces. This may not be the result you expected
(for example, when myvar = 1.23). You may have expected the formatted
result to have one leading space allowing you to right justify the number,
but no leading space is added.

The following code sample produces an output of right justified numbers in
Microsoft QuickBasic version 4.5:

 a = 1.23
 b = 44.56
 Print Using "##.##"; a
 Print Using "##.##"; b

The following code sample produce an output of left justified numbers in
Visual Basic:

 Sub Form_Click ()
 a = 1.23
 b = 44.56
 num1$ = Format$(a, "##.##")
 num2$ = Format$(b, "##.##")
 Print num1$
 Print num2$

 End Sub

Click the form to print the numbers. These numbers will be left justified,
instead of right justified as may be desired.

Additional reference words: 1.00 2.00 3.00 4.50 alignment aligned align
right-justify
KBCategory:
KBSubcategory: APrgOther

Use SetHandleCount to Open More than 15 Files at Once in VB
Article ID: Q79764

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

Microsoft Visual Basic for Windows programs normally may not have more
than 15 files open at once. Visual Basic for Windows displays the error
message "Too many files" (error code 67) when you attempt to open more
than the maximum number of files at once. You can increase the maximum
number of open files by calling the Windows API function SetHandleCount.

MORE INFORMATION
================

The Windows API function SetHandleCount requests Windows to change the
maximum number of files a program can open. SetHandleCount returns the
actual number of handles that the program can use, which may be less
than the number requested.

The FILES= statement in the CONFIG.SYS file does not limit the number
of files available to a Microsoft Windows program.

Do not attempt to increase the number of files with MS-DOS interrupt
21 hex with function 67 hex. This interrupt does not record
information needed by Windows.

Example

The following code example demonstrates how to use SetHandleCount:

'*** In the global module: ***
Declare Function SetHandleCount% Lib "kernel" (ByVal n%)

'*** In the form: ***
Sub Form_Load ()
 n% = SetHandleCount(60) ' Request 60 file handles.
 MsgBox "Maximum number of open files: " + Format$(n%)
End Sub

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgOther

How to Set Landscape or Portrait for Printer from VB App
Article ID: Q80185

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

Some printers support changing the orientation of the paper output to
landscape. With the Windows API Escape() function, you can change
the settings of the printer to either landscape or portrait. In addition,
if you have one of the following products, you can use the Common Dialog
box to allow users to set the mode inside a Visual Basic Application:

 - Visual Basic version 1.0 Professional Toolkit
 - Professional Edition of Visual Basic version 2.0
 - Standard or Professional Edition of Visual Basic version 3.0

Below is an example showing how to invoke the Windows API Escape()
function from Microsoft Visual Basic.

Note that the Windows API Escape() function is provided in Windows versions
3.0 and 3.1 for backward compatibility with earlier versions of Microsoft
Windows. Applications are supposed to use the GDI DeviceCapabilities() and
ExtDeviceMode() functions instead of the Escape() function, but neither
DeviceCapabilities() nor ExtDeviceMode() can be called directly from Visual
Basic. This is because they are exported by the printer driver, not by the
Windows GDI. The only way to use ExtDeviceMode() or DeviceCapabilities()
in Visual Basic is to create a DLL and call them from there.

MORE INFORMATION
================

Normally, output for the printer is in portrait mode, where output is
printed horizontally across the narrower dimension of a paper. In
landscape mode, the output is printed horizontally across the longer
dimension of the paper.

You can use the Escape() function to change the orientation of the
printer by passing GETSETPAPERORIENT as an argument. When you
initially print text to the printer, Visual Basic will use the
currently selected orientation. Sending the Escape() function will not
take effect until you perform a Printer.EndDoc. After you perform a
Printer.EndDoc, output will print in the orientation that you have
selected.

To determine if your printer supports landscape mode, do the
following:

1. From the Windows Program Manager, run Control Panel.

2. From the Control Panel, select the Printers icon.

3. From the Printers dialog box, choose the Configure button.

4. The Configure dialog box will contain an option for landscape
 orientation if landscape is supported on your printer.

The example below demonstrates how to change the printer orientation
to landscape. Please note that your printer must support landscape mode
for these commands to have any effect.

Example

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Add a command button (Command1) to Form1.

3. Add the following code to the global module:

 Type OrientStructure
 Orientation As Long
 Pad As String * 16
 End Type
 ' Enter the following Declare statement on one, single line:
 Declare Function Escape% Lib "GDI" (ByVal hDc%, ByVal nEsc%,
 ByVal nLen%, lpData As OrientStructure, lpOut As Any)

4. Add the following code to the Command1_Click event procedure of the
 Command1 button:

 Sub Command1_Click ()
 Const PORTRAIT = 1
 Const LANDSCAPE = 2
 Const GETSETPAPERORIENT = 30

 Dim Orient As OrientStructure

 '* Start the printer
 Printer.Print ""

 '* Specify the orientation
 Orient.Orientation = LANDSCAPE

 '* Send escape sequence to change orientation
 x% = Escape(Printer.hDC, GETSETPAPERORIENT,
 Len(Orient), Orient, NULL)
 '* The EndDoc will now re-initialize the printer
 Printer.EndDoc

 Printer.Print "Should print in landscape mode"
 Printer.EndDoc
 End Sub

Additional reference words: 1.00 2.00 3.00

KBCategory:
KBSubcategory: APrgPrint

How to Kill an Application with System Menu Using Visual Basic
Article ID: Q80186

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
--

SUMMARY
=======

Visual Basic for Windows can use the Windows API SendMessage
function to close any active window that has a system menu (referred to
as control box within Visual Basic for Windows) with the Close option.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

You can use the Windows API SendMessage function to post a
message to any window in the environment as long as the handle to the
window is known. You can use the API FindWindow function to determine
the handle associated with the window the user wants to close.

Query on the following words in the Microsoft Knowledge Base for more
information on the FindWindow function:

 FindWindow and Visual Basic

To create a program to close an occurrence of the Windows version 3.0
Calculator program, do the following:

1. Create a form called Form1.

2. Create two command buttons called Command1 and Command2.

3. Within the Command1 Click event, add the following code:

 Sub Command1_Click()
 X% = Shell("Calc.exe")
 End Sub

4. Within the Command2 Click event, add the following code:

 Sub Command2_Click()
 Const NILL = 0&
 Const WM_SYSCOMMAND = &H112
 Const SC_CLOSE = &HF060

 lpClassName$ = "SciCalc"
 lpCaption$ = "Calculator"

 '* Determine the handle to the Calculator window.
 Handle = FindWindow(lpClassName$, lpCaption$)

 '* Post a message to Calc to end it's existence.
 X& = SendMessage(Handle, WM_SYSCOMMAND, SC_CLOSE, NILL)

 End Sub

5. In the Declarations section, declare the following two API functions:

 ' Enter each of the following Declare statements on one, single line:
 Declare Function FindWindow% Lib "user" (ByVal lpClassName As Any,
 ByVal lpCaption As Any)
 Declare Function SendMessage& Lib "user" (ByVal hwnd%, ByVal wMsg%,
 ByVal wParam%, ByVal lParam As Long)

6. Run the program. Click the Command1 button to bring up an instance of
 the Calculator program. Click the Command2 button to close the window.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgOther

How to Reset the Parent of a Visual Basic Control
Article ID: Q80189

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

Visual Basic version 1.0 does not support overlapping controls. This can
be a problem if you want to drag and drop a control from one parent control
to another parent control. Using the Windows API SetParent() function call,
you can change a control's parent within Visual Basic.

Visual Basic versions 2.0 and 3.0 support overlapping controls with the
z-order method. For more information on the z-order method, search for
the z-order topic in the Visual Basic Help menu.

MORE INFORMATION
================

A frame, picture box, and form can act as parent controls. Creating a
control on top of any of these parent controls creates that control as
a child of the parent. When you use the Drag operations, there may be
times when you want to move a child control from one parent control to
another parent. If you allow the movement and don't change the child's
parent, you are creating overlapping controls, which are not supported
in Visual basic.

The SetParent function changes the parent of a child control.
SetParent has the following description:

SetParent%(ByVal hWndChild, ByVal hWndParen%)

Parameter Type/Description
---------- ----------------
hWndChild HWnd/Identifies the child window
hWndParent HWnd/Identifies the parent window

The returned value identifies the previous parent window.

Step-by-Step Example

The example below demonstrates how to drag and drop a text box between
the form and a picture box on the form. The parent controls are the
picture box and the form. The child control is the text box.

1. Start Visual Basic or from the File menu, choose New Project if Visual
 Basic is already running. Form1 is created by default.

2. Add a Text box (Text1) to Form1.

3. Add a Picture box (Picture1) to Form1.

4. Add a Command button (Command1) to Form1.

5. Add the following code to the Global module:

 '============= GLOBAL.BAS ==================
 Declare Function SetParent% Lib "user" (ByVal h%, ByVal h%)
 Declare Function GetFocus% Lib "user" ()
 ' GetFocus will be used to obtain the handles to the
 ' controls. This is not build into every control of Visual Basic

6. Add the following code to the general declarations section of Form1:

 '============= FORM1 =======================
 Dim hWndText As Integer
 Dim hWndPicture As Integer

7. Add the following code to the Form_Load event procedure of Form1:

 Sub Form_Load ()
 'form has to be shown to access any of the controls
 Show

 'get the handle to the text box
 Text1.SetFocus
 hWndText = GetFocus()

 'get the handle to the picture box
 Picture1.SetFocus
 hWndPicture = GetFocus()
 End Sub

8. Add the following code to the appropriate event procures:

 Sub Picture1_DragDrop (Source As Control, X As Single, Y As Single)
 G% = SetParent(hWndText, hWndPicture)
 Source.Move X - Source.Width / 2, Y - Source.Height / 2
 Source.DragMode = 0
 End Sub

 Sub Form_DragDrop (Source As Control, X As Single, Y As Single)
 G% = SetParent(hWndText, Form1.hwnd)
 Source.Move X - Source.Width / 2, Y - Source.Height / 2
 Source.DragMode = 0
 End Sub

 Sub Command1_Click ()
 'start the dragging process
 Text1.DragMode = 1
 End Sub

9. Run the program. The Command1 button is used to start the dragging
 operation.

Demonstration Steps

Try the following steps when running the application:

1. Press the command button.

2. Place the cursor over the text box.

3. Press the left mouse button and drag the text box either over the
 picture control or over the form.

4. Once the text box is over the control, release the mouse button.

For better control of where the text box is placed, turn off Grid
Setting from the Edit menu of Visual Basic.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgOther

How to Add a Horizontal Scroll Bar to Visual Basic List Box
Article ID: Q80190
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
--

SUMMARY
=======

The normal list box that comes with Visual Basic for Windows does not
have a horizontal scroll bar. This can be a problem when the item in a
list box extends past the boundaries of the list box. To add a horizontal
scroll bar to the control, you can call the Windows API SendMessage
function with the LB_SETHORIZONTALEXTENT (WM_USER + 21) constant.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

To add a horizontal scroll bar to a list box, perform a SendMessage
function call with the LB_SETHORIZONTALEXTENT constant.

This message sets the width in pixels by which a list box can scroll
horizontally. If the size of the list box is smaller than this value,
the horizontal scroll bar will horizontally scroll items in the list
box. If the list box is large as or larger than this value, the
horizontal scroll bar is disabled.

The parameters for the SendMessage function are as follows:

SendMessage(hWnd%, LB_SETHORIZONTALEXTENT, wParam%, lParam&)
--
 hWnd% - Handle to the list box
 wParam% - Specifies the number of pixels by which the list
 box can be scrolled
 lParam% - Is not used

To make a program example that will only allow the user to scroll a
specified distance, create a form with the following controls:

 Control Name (CtlName in Visual Basic 1.0 for Windows)
 --
 Command button Command1
 List box List1

Add the following code in the described locations in your code:

'======== General Declarations for Form1 ==================
' Enter the following Declare as one, single line:

Declare Function SendMessage& Lib "user" (ByVal hWnd%, ByVal wMsg%,
 ByVal wParam%, ByVal lParam&)
Declare Function GetFocus Lib "User" () as Integer

'======== Form1 =======================
'Note: each command must appear on one, single line.

Sub Command1_Click ()
 Const LB_SETHORIZONTALEXTENT = &H400 + 21
 Const NUL = 0&
 ' wParam is in PIXEL(3).
 ScaleMode = 3

 ' Get the handle.
 List1.SetFocus
 ListHwnd% = GetFocus()

 ' This string will show up initially.
 ListString1$ = "Derek is a great "

 ' You can scroll to see this portion.
 ListString2$ = "little boy "

 ' You cannot scroll to see this string.
 ListString3$ = "but can be a problem sometimes"

 ExtraPixels% = TextWidth(ListString2$)
 BoxWidth% = TextWidth(ListString1$)

 ' Resize the text box.
 List1.Move List1.Left, List1.Top, BoxWidth%

 ' Add the scroll bar.
 X& = SendMessage(ListHwnd%, LB_SETHORIZONTALEXTENT,
 BoxWidth% + ExtraPixels%, NUL)

 ' Add the example string to the list box.
 List1.AddItem ListString1$ + ListString2$ + ListString3$
End Sub

Additional reference words: 1.00 2.00 3.00 scrollbar
KBCategory:
KBSubcategory: APrgOther

How to Print VB Form Borders and Menus
Article ID: Q80409

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

The methods to print a form provided by Visual Basic print only the
client area, not the non-client area of a form. This is a design
feature of Visual Basic. The client area of a form includes the form's
controls and picture. The non-client area includes the form's borders
and menus, which cannot be printed directly from Visual Basic.

To print both the client and non-client areas of a form, copy an image
of the form into the Clipboard, paste it into a graphics editor such
as Paintbrush, and print. Two methods for this procedure are provided
below.

MORE INFORMATION
================

The Print option from the File menu, and the Visual Basic statement
[form.]PrintForm only print the client area of a form. The client area
includes the form's picture and controls. Both methods of printing do
not print the non-client area, which includes the form's title bar,
Minimize and Maximize buttons, borders and menus. To print both the
client and non-client areas, you must print the form from an
application outside of Visual Basic. If you want to print a form that
either

 - Has submenu items, but you do not wish to print the submenus

 -or-

 - Has menus without submenus

 -or-

 - Does not have menus

then use Method 1 below to print the form.

If you want to print a form that contains submenus in their
pulled-down state, use Method 2 below.

Method 1

To print a form without pulled-down submenus, do the following:

1. From the Visual Basic editing environment, create the form you want
 to print. Include all controls, titles, menus, pictures, borders,
 and so on that you want to print, and size them appropriately.

2. Set focus to the form you want to print.

3. Press ALT+PRINT SCREEN. This key combination is an operation in
 Windows that copies the active window (your form in this case) to
 the Windows Clipboard.

4. From the Windows Program Manager, launch Paintbrush (or the
 graphics editor of your choice) and maximize it.

5. From the Paintbrush Edit menu, choose Paste. The image of your form
 should appear in Paintbrush. If the form is too large for
 Paintbrush, try either a larger screen resolution (such as
 800-by-600 or 1024-by-768), another editor with a larger work
 screen, or slightly decrease the size of your form for the printing
 process.

6. Once the form is correctly pasted into Paintbrush, from the File
 menu, choose Print to print it.

Method 2

To print a form with pulled-down submenus, do the following:

 1. In the Visual Basic editing environment, create the form you want
 to print. Include all controls, titles, menus, pictures, borders,
 and so on that you want to print and size them appropriately.

 2. Set focus to the form to be printed.

 3. Move the form to the upper left corner of the screen. When the
 Clipboard pastes its image into Paintbrush, it starts at the upper
 left corner. If the image is too large for the Paintbrush edit
 screen, the image is truncated on the right and bottom edges.
 Placing the form in the upper left corner helps to ensure that the
 full form fits into Paintbrush.

 4. Choose the menu option you want to be pulled down when the form is
 printed. The menu option should appear pulled down on the screen.
 Only one menu option can be pulled down at a time, but submenu
 options can be selected.

 5. Press SHIFT+PRINT SCREEN. This keystroke is an option in Windows
 that copies an image of the entire screen into the Windows
 Clipboard. When the pull-down menus are open, Visual Basic traps
 the ALT key and closes the menus, thus making the ALT+PRINT SCREEN
 keystroke in Method 1 ineffective when printing pull-down menus on
 a form.

 6. From Program Manager, launch Paintbrush (or the graphics editor of
 your choice) and maximize it.

 7. From the Paintbrush Edit menu, choose Paste. Your form should
 appear in Paintbrush. If the form is too large for Paintbrush, try
 either a larger screen resolution (for example, 800-by-600 or
 1024-by-768), another editor with a larger work screen, or
 slightly decrease the size of your form for the printing process.

 8. Using one of the cutting tools at the top of the Paintbrush
 toolbox, outline your form.

 9. From the Edit menu, choose Copy. This places the graphics area
 contained in the cutting region into the Clipboard.

10. From the File menu, choose New to bring up a new editor screen. A
 dialog box will appear to ask if you want to save the current
 image. You will need to select Yes or No before a new editor
 screen will appear.

11. Once the editor screen is empty, from the Edit menu, choose Paste
 to paste your form into the editor.

12. From the File menu, choose Print to print the image.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgPrint

How to Clear VB Picture Property at Run Time Using LoadPicture
Article ID: Q80488

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

During execution of a Visual Basic program, you can clear the Picture
property of a form or picture control by using the LoadPicture function.
Calling LoadPicture with no parameters and assigning the result to the
Picture property of a form or control will clear the Picture property.

MORE INFORMATION
================

This information is documented in the Visual Basic Help menu under the
LoadPicture function.

Code Example

To clear the picture property at run time, do the following:

1. Start Visual Basic.

2. Make a picture box called Picture1.

3. Assign a bitmap or icon the picture1.picture property.

4. Add the following code to the form1.click event by double-clicking
 the form:

 Sub Form_Click ()
 picture1.picture = LoadPicture()
 End Sub

5. Run the program.

6. Click the form.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd APrgGrap

How to Get Windows Version Number in VB with GetVersion API
Article ID: Q80642

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

From a Microsoft Visual Basic for Windows program, you can find out which
version of Windows is running by calling the Windows API GetVersion()
function from the Windows Kernel module. The GetVersion() function can help
your application accommodate any known differences, if any, in the way
API calls operate between different versions of Windows (such as
differences
between API parameters or return values).

MORE INFORMATION
================

The step-by-step example given below demonstrates how to make the
GetVersion() function call. GetVersion() takes no parameters, and the
return value is a WORD value -- which translates to an integer in Visual
Basic for Windows.

The return value specifies the major and minor version numbers of Windows.
The high order byte specifies the minor version and the low order byte
specifies the major version number.

Step-by-Step Example

1. Create a form with a text box and a command button.

2. Add the following declaration to the General Declarations section:

 Declare Function GetVersion Lib "kernel" () As Integer

3. Add following code to the command button Click event:

 Sub Command1_Click ()
 i% = GetVersion()
 ' Lowbyte is derived by masking off high byte.
 lowbyte$ = Str$(i% And &HFF)
 ' Highbyte is derived by masking off low byte and shifting.
 highbyte$ = LTrim$(Str$((i% And &HFF00) / 256))
 ' Assign Windows version to text property.
 text1.text = lowbyte$ + "." + highbyte$
 End Sub

Additional reference words: 1.00 2.00 3.00
KBCategory:

KBSubcategory: APrgWindow EnvtRun

How to Copy Entire Screen into a Picture Box in Visual Basic
Article ID: Q80670
--
The information in this article applies to:

- Microsoft Visual Basic programming system for Windows,
 versions 1.0, 2.0, and 3.0
--

SUMMARY
=======

Using the Windows API call BitBlt, you can capture the entire
Microsoft Windows screen and place the image into a Microsoft Visual
Basic for Windows picture box.

First, get the handle to the desktop. Then use the desktop window handle
to get the handle to the desktop's device context (hDC). Finally, use
the Windows API call BitBlt to copy the screen into the Picture property
of a Visual Basic for Windows picture box control.

MORE INFORMATION
================

Step-by-Step Example

1. Start Visual Basic for Windows (VB.EXE). Form1 is created by default.

2. Add a picture box (Picture1) to Form1.

3. Set the following properties:

 Control Property Value

 Picture1 AutoRedraw True
 Picture1 Visible False

4. Add the following code to the GLOBAL.BAS file in version 1.0 or to
 the general declarations section of Form1 in versions 2.0 and 3.0:

 Type lrect
 left As Integer
 top As Integer
 right As Integer
 bottom As Integer
 End Type
 Declare Function GetDesktopWindow Lib "user" () As Integer
 Declare Function GetDC Lib "user" (ByVal hWnd%) As Integer
 ' Enter the following Declare on one, single line:
 Declare Function BitBlt Lib "GDI" (ByVal hDestDC%, ByVal X%, ByVal Y%,
 ByVal nWidth%, ByVal nHeight%, ByVal hSrcDC%, ByVal XSrc%,
 ByVal YSrc%, ByVal dwRop&) As Integer
 ' Enter the following Declare on one, single line:
 Declare Function ReleaseDC Lib "User"(ByVal hWnd As Integer, ByVal hDC
 As Integer) As Integer

 Declare Sub GetWindowRect Lib "User" (ByVal hWnd%, lpRect As lrect)
 Global Const True = -1
 Global Const False = 0
 Global TwipsPerPixel As Single

5. Add the following code to the Form1 Click event procedure:

 Sub Form_Click ()
 Call GrabScreen
 End Sub

 Sub GrabScreen ()

 Dim winSize As lrect

 ' Assign information of the source bitmap.
 ' Note that BitBlt requires coordinates in pixels.
 hwndSrc% = GetDesktopWindow()
 hSrcDC% = GetDC(hwndSrc%)
 XSrc% = 0: YSrc% = 0
 Call GetWindowRect(hwndSrc%, winSize)
 nWidth% = winSize.right ' Units in pixels.
 nHeight% = winSize.bottom ' Units in pixels.

 ' Assign informate of the destination bitmap.
 hDestDC% = Form1.Picture1.hDC
 x% = 0: Y% = 0

 ' Set global variable TwipsPerPixel and use to set
 ' picture box to same size as screen being grabbed.
 ' If picture box not the same size as picture being
 ' BitBlt'ed to it, it will chop off all that does not
 ' fit in the picture box.
 GetTwipsPerPixel
 Form1.Picture1.Top = 0
 Form1.Picture1.Left = 0
 Form1.Picture1.Width = (nWidth% + 1) * TwipsPerPixel
 Form1.Picture1.Height = (nHeight% + 1) * TwipsPerPixel

 ' Assign the value of the constant SRCOPYY to the Raster operation.
 dwRop& = &HCC0020

 ' Note function call must be on one line:
 Suc% = BitBlt(hDestDC%, x%, Y%, nWidth%, nHeight%,
 hSrcDC%, XSrc%, YSrc%, dwRop&)

 ' Release the DeskTopWindow's hDC to Windows.
 ' Windows may hang if this is not done.
 Dmy% = ReleaseDC(hwndSrc%, hSrcDC%)

 'Make the picture box visible.
 Form1.Picture1.Visible = True
 End Sub

 Sub GetTwipsPerPixel ()
 ' Set a global variable with the Twips to Pixel ratio.
 Form1.ScaleMode = 3

 NumPix = Form1.ScaleHeight
 Form1.ScaleMode = 1
 TwipsPerPixel = Form1.ScaleHeight / NumPix
 End Sub

5. Run the program. Click Form1.

6. Using the mouse, change the size of the form to see more of the picture
 box. With a little work, you can use this as a screen saver program.

Additional reference words: 1.00 print printer
KBCategory:
KBSubcategory: APrgWindow APrgGrap

VB Custom Controls Support only Certain Picture Formats
Article ID: Q80779

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 versions 2.0 and 3.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SUMMARY
=======

The Load Picture dialog box for the 3-D Command Button, 3-D Group Push
Button, Gauge, and Picture Clip custom controls include the extensions
for picture formats that are invalid formats for these controls.

MORE INFORMATION
================

The 3-D Command Button, 3-D Group Push Button, Gauge, and Picture Clip
custom controls use the same dialog box that Visual Basic uses to assign
pictures to certain properties. However, not all .BMP, .ICO, and .WMF files
are valid picture formats for the properties of these controls.

The following table lists the valid formats for the picture properties
of custom controls and the error messages displayed if an invalid
picture format is used:

 Valid Error Message if
Control Property Formats Invalid Format
--

3-D Command Button Picture .BMP, "Only Picture
 .ICO Formats '.BMP' and
 '.ICO' supported."

3-D Group Push Button PictureUp, .BMP "Only Picture Format
 PictureDn, '.BMP' supported."
 PictureDisabled

Gauge Picture .BMP, "Invalid Picture."
 .ICO

Picture Clip Picture .BMP "Only Picture Format
 '.BMP' supported."

For additional information on Visual Basic version 2.0 custom controls,
review the Professional Features manual.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus APrgGrap

How to Print Multiline Text Box Using Windows API Functions
Article ID: Q80867

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

Printing the Text property of a multiline text box while maintaining
the line structure requires attention to word wrapping and carriage
return/line feeds. The programmer can either track the number of
characters and lines in code or use Windows API functions to
manipulate the Text property. This article demonstrates these
techniques in a Visual Basic example.

MORE INFORMATION
================

The example below demonstrates how to use the API function SendMessage()
to track the number of lines in a multiline text box and to select and
print the lines the way they appear -- with line breaks or word wrapping
intact. This code will work without modification even if the form and
controls are resized at run time. The actual position of word wrapping
will change.

For more information about API functions relating to text boxes, query
on the following words in the Microsoft Knowledge Base:

 API and text and box and manipulate

Step-by-Step Example

1. Create a form and place a label, text box, and command button on it.

2. Set the following properties at design time:

 Control Property Setting

 Text box TabIndex 0 (zero, or first in tab order)
 Text box MultiLine True
 Label AutoSize True
 Label Name aGetLineCount

3. Add the following code to the Global module:

 Declare Function GetFocus% Lib "user" ()
 ' Enter the following Declare statement on one, single line:
 Declare Function SendMessage% Lib "user" (ByVal hWnd%, ByVal wMsg%,
 ByVal wParam%, ByVal lParam As Any)
 Global Buffer As String

 Global resizing As Integer
 Global Const EM_GETLINE = &H400 + 20
 Global Const EM_GETLINECOUNT = &H400 + 10
 Global Const MAX_CHAR_PER_LINE = 80 ' Scale this to size of text box

4. Add the following code to the Form_Load procedure:

 Sub Form_Load ()
 ' Size form relative to screen dimensions.
 ' Could define all in move command but recursive definition causes
 ' extra paints.
 form1.width = screen.width * .8
 form1.height = screen.height * .6
 ' Enter the following form1.Move method on one, single line:
 form1.Move screen.width\2-form1.width\2,
 screen.height\2-form1.height\2
 End Sub

5. Add the following code to the Form_Resize procedure:

 Sub Form_Resize ()
 resizing = -1 ' Global flag for fGetLineCount function call
 ' Dynamically scale and position the controls in the form.
 ' This code also is executed on first show of form.
 Text1.Move 0, 0, form1.width, form1.height \ 2
 Text1.SelStart = Text1.SelStart ' To avoid UAE -see Q80669
 ' Enter the following two lines as one, single line:
 command1.Move form1.width\2-command1.width\2,
 form1.height-form1.height\4
 ' Enter the following two lines as one, single line:
 aGetLineCount.Move form1.width \ 2 - command1.width \ 2,
 Text1.height
 X% = fGetLineCount() ' Update to reflect change in text box size
 resizing = 0
 End Sub

5. Add the following code to the Command1_Click event:

 Sub Command1_Click ()
 '* Pop up an inputbox$ to allow user to specify which line
 '* in the text box to print or print all lines.
 '* Also check bounds so that a valid line number is printed
 OK = 0 ' Zero the Do Loop flag
 NL$ = Chr$(13) + Chr$(10)
 prompt$ = "Which line would you like to print?"
 prompt1$ = prompt$ + NL$ + "Enter -1 for all"
 prompt2$ = "Too many lines" + NL$ + "Try again!" + NL$ + prompt1$
 prompt$ = prompt1$
 Do
 response$ = InputBox$(prompt$, "Printing", "-1")
 If response$ = "" Then Exit Sub ' if user hits cancel then exit
 If Val(response$) > fGetLineCount&() Then
 prompt$ = prompt2$
 Else
 OK = -1 ' Line chosen is in valid range so exit DO
 End If
 Loop Until OK

 If Val(response$) = -1 Then ' Print all lines
 ndx& = fGetLineCount&()
 For N& = 1 To ndx&
 Buffer = fGetLine(N& - 1)
 printer.Print Buffer ' or print to the screen
 Next N&
 Else ' Print a line
 Buffer = fGetLine(Val(response$) - 1)
 printer.Print Buffer ' or print to the screen
 End If
 End Sub

6. Add the following code to the general Declarations section of the
 form's code:

 Function fGetLine$ (LineNumber As Long)
 ' This function fills the buffer with a line of text
 ' specified by LineNumber from the text box control.
 ' The first line starts at zero.
 byteLo% = MAX_CHAR_PER_LINE And (255) '[changed 5/15/92]
 byteHi% = Int(MAX_CHAR_PER_LINE / 256) '[changed 5/15/92]
 Buffer$ = chr$(byteLo%) + chr$(byteHi%)+Space$(MAX_CHAR_PER_LINE-2)
 ' [Above line changed 5/15/92 to correct problem.]
 text1.SetFocus 'Set focus for API function GetFocus to return handle
 x% = SendMessage(GetFocus(), EM_GETLINE, LineNumber, Buffer$)
 fGetLine$ = Left$(Buffer$,X%)
 End Function

 Function fGetLineCount& ()
 ' This function will return the number of lines
 ' currently in the text box control.
 ' Setfocus method illegal while in resize event
 ' so use global flag to see if called from there
 ' (or use setfocus prior to this function call in general case).
 If Not resizing Then
 Text1.SetFocus ' Set focus for following function GetFocus
 resizing = 0
 End If
 lcount% = SendMessage(GetFocus(), EM_GETLINECOUNT, 0&, 0&)
 aGetLineCount.caption = "GetLineCount = " + Str$(lcount%)
 fGetLineCount& = lcount%
 End Function

7. Add the following code to the Text1_Change event:

 Sub Text1_Change ()
 X% = fGetLineCount() '* Update label to reflect current line
 End Sub

8. Save the project. Then run the application.

9. Enter text into the text box and either let it wrap or use the
 ENTER key to arrange lines.

10. Choose the button or TAB and press ENTER.

11. Choose the default (which prints all lines) or enter the line

 desired. If you choose Cancel, nothing will print.

12. Resize the form and repeat steps 9 to 11 above. The text will
 appear on the printed page as you saw it in the text box. Modify
 the example to print to the screen, write to a file, and so forth.

Reference(s):

"Microsoft Windows Programmer's Reference Book and Online Resource"
(Visual Basic Add-on kit number 1-55615-413-5)

Additional reference words: 1.00 2.00 3.00 textbox
KBCategory:
KBSubcategory: PrgCtrlsStd APrgWindow

How to Use FillPolygonRgn API to Fill Shape in Visual Basic
Article ID: Q81470
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
--

SUMMARY
=======

Microsoft Visual Basic versions 2.0 and later for Windows include the
Shape control which can be used for creating and filling six different
geometric shapes. Alternatively, you can create a polygon region on a
form or picture and fill it with a color, using the CreatePolygonRgn
and FillRgn Windows API calls to draw and fill areas of the screen
with color. Geometric shapes not provided with the Shape control,
such as a triangle, can be created using this method.

More Information:

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

To draw a polygon on a form or picture control, you can use the
Polygon API call; this will draw the edge of the polygon. You can then
use CreatePolygonRgn to create an area that you can paint and use
FillRgn to fill it with a color. Using these Windows API calls allows
you to pick the points, the number of points, and to choose the color
or brush to fill with.

The API calls used in the following example should be declared in the
general Declarations section of your form. They are as follows:

API Call Description

CreatePolygonRgn Creates a polygonal region

GetStockObject Retrieves a handle to one of the predefined stock
 pens, brushes, or fonts

FillRgn Fills the region specified by the hRgn parameter
 with the brush specified by the hBrush parameter

Polygon Draws a polygon consisting of two or more points
 connected by lines

Code Example

The following code example shows how to create a black triangle on a
form. To change the program to create other shapes, add points to the
array.

1. Run Visual Basic for Windows, or from the File menu, choose New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 is created by default.

2. From the File menu, choose New Module (press ALT, F, M). Module1 is
 created by default.

3. Add the following code to the general declarations section of
 Module1 (in Visual Basic version 1.0 for Windows, add it to GLOBAL.BAS):

 Type Coord ' This is the type structure for the x and y
 x As Integer ' coordinates for the polygonal region.
 y As Integer
 End Type

 ' Enter each Declare statement as one, single line:
 Declare Function CreatePolygonRgn Lib "gdi" (lpPoints As Any,
 ByVal nCount As Integer, ByVal nPolyFillMode As Integer) As Integer
 Declare Function Polygon Lib "gdi" ByVal hDC As Integer,
 lpPoints As Any, ByVal nCount As Integer) As Integer
 Declare Function FillRgn Lib "gdi" (ByVal hDC As Integer,
 ByVal hRgn As Integer, ByVal hBrush As Integer) As Integer
 Declare Function GetStockObject Lib "gdi" (ByVal nIndex As Integer)
 As Integer
 Declare Function DeleteObject Lib "gdi" (ByVal hndobj As Integer)
 As Integer

 Global Const ALTERNATE = 1 ' ALTERNATE and WINDING are
 Global Const WINDING = 2 ' constants for FillMode.
 Global Const BLACKBRUSH = 4' Constant for brush type.

2. Add the following code to the Form_Click event for Form1:

 Sub Form_Click ()
 ' Dimension coordinate array.
 ReDim poly(1 To 3) As Coord
 ' Number of vertices in polygon.
 NumCoords% = 3
 ' Set scalemode to pixels to set up points of triangle.
 form1.scalemode = 3
 ' Assign values to points.
 poly(1).x = form1.scalewidth / 2
 poly(1).y = form1.scaleheight / 2
 poly(2).x = form1.scalewidth / 4
 poly(2).y = 3 * form1.scaleheight / 4
 poly(3).x = 3 * form1.scalewidth / 4
 poly(3).y = 3 * form1.scaleheight / 4
 ' Sets background color to red for contrast.
 form1.backcolor = &HFF
 ' Polygon function creates unfilled polygon on screen.
 ' Remark FillRgn statement to see results.
 bool% = Polygon(form1.hdc, poly(1), NumCoords%)
 ' Gets stock black brush.
 hbrush% = GetStockObject(BLACKBRUSH)
 ' Creates region to fill with color.
 hrgn% = CreatePolygonRgn(poly(1), NumCoords%, ALTERNATE)
 ' If the creation of the region was successful then color.

 If hrgn% Then bool% = FillRgn(form1.hdc, hrgn%, hbrush%)
 ' Print out some information.
 Print "FillRgn Return : ";bool%
 Print "HRgn : "; hrgn%
 Print "Hbrush : "; hbrush%
 Trash% = DeleteObject(hrgn%)
 End Sub

3. Run the program.

You should initially see a blank form. Click the form; a red
background with a black triangle on it should be displayed. You can
try different numbers of vertices by adding elements to the poly array
and updating NumCoords. Different colors and brushes can be
substituted as desired.

Note: If you try to fill a region with coordinates beyond the visible
form, the CreatePolygonRgn function call will return a zero, meaning it
was unsuccessful. The FillRgn will not work if the CreatePolygonRgn
function was unsuccessful. All you will see is the outline created by
the Polygon function. You should make certain that the vertices are
all within the viewable form.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgGrap

How to Set Windows System Colors Using API and Visual Basic
Article ID: Q82158
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
--

SUMMARY
=======

This article describes how to use the GetSysColor and SetSysColors API
functions to set the system colors for various parts of the display in
Microsoft Windows. This allows you to change the Windows display
programmatically, instead of using the Windows Control Panel.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

Windows maintains an internal array of 19 color values that it uses to
paint the different parts of the Windows display. Changing any of
these values will affect all windows for all applications running
under Windows. Note that the SetSysColors routine only changes the
internal system list. This means that any changes made using
SetSysColors will only be valid for the current Windows session. To
make these changes permanent, you need to change the [COLORS] section
of the Windows initialization file, WIN.INI.

For more information on modifying the Windows initialization file
programmatically, query on the following words in the Microsoft
Knowledge Base:

 GetProfileString and WriteProfileString

To use the GetSysColor and SetSysColors functions within a Visual
Basic for Window application, you must first declare them in the
Declarations section of your Code window.

Declare the Function statement as follows:

Declare Function GetSysColor Lib "User" (ByVal nIndex%) As Long

Declare Sub SetSysColors Lib "User" (ByVal nChanges%,
 lpSysColor%,
 lpColorValues&)

Note: Each Declare statement above must be written on one line.

The parameters are defined as follows:

Parameter Definition
--------- ----------
nIndex% Specifies the display element whose color
 is to be retrieved. See the list below to
 find the index value for the corresponding
 display element.

nChanges% Specifies the number of system colors to
 be changed.

lpSysColor% Identifies the array of integer indexes
 that specify the elements to be changed.

lpColorValues& Identifies the array of long integers that
 contain the new RGB color values for each
 element to be changed.

The following system color indexes are defined using the predefined
constants found in the WINDOWS.H file supplied with the Microsoft
Windows Software Development Kit (SDK). The corresponding value is
the value placed in the lpSysColor% array.

List of System Color Indexes

Windows.H Definition Value Description
-------------------- ----- -----------
COLOR_SCROLLBAR 0 Scroll-bar gray area
COLOR_BACKGROUND 1 Desktop
COLOR_ACTIVECAPTION 2 Active window caption
COLOR_INACTIVECAPTION 3 Inactive window caption
COLOR_MENU 4 Menu background
COLOR_WINDOW 5 Window background
COLOR_WINDOWFRAME 6 Window frame
COLOR_MENUTEXT 7 Text in menus
COLOR_WINDOWTEXT 8 Text in windows
COLOR_CAPTIONTEXT 9 Text in caption, size box,
 scroll bar arrow box
COLOR_ACTIVEBORDER 10 Active window border
COLOR_INACTIVEBORDER 11 Inactive window border
COLOR_APPWORKSPACE 12 Background color of multiple
 document interface (MDI)
 applications
COLOR_HIGHLIGHT 13 Items selected item in a
 control
COLOR_HIGHLIGHTTEXT 14 Text of item selected in a
 control
COLOR_BTNFACE 15 Face shading on push button
COLOR_BTNSHADOW 16 Edge shading on push button
COLOR_GRAYTEXT 17 Grayed (disabled) text. This
 color is set to 0 if the
 current display driver does not
 support a solid gray color.
COLOR_BTNTEXT 18 Text on push buttons

The following is an example of how to set the system colors for
different parts of the Windows display:

1. Start Visual Basic for Windows, or from the File menu, choose New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 is created by default.

2. Create the following controls for Form1:

 Control Name Property Setting
 ------- ------- ----------------
 Command button Command1 Caption = "Change all Colors"
 Command button Command2 Caption = "Change selected Colors"

 (In Visual Basic version 1.0 for Windows, set the CtlName
 Property for the above objects instead of the Name property.)

3. Add the following code to the general Declarations section of
 Form1:

 Declare Function GetSysColor Lib "User" (ByVal nIndex%) As Long

 Declare Sub SetSysColors Lib "User" (ByVal nChanges%,
 lpSysColor%,
 lpColorValues&)
 ' Note: The above declaration must be on one line.

 Const COLOR_BACKGROUND = 1
 Const COLOR_ACTIVECAPTION = 2
 Const COLOR_WINDOWFRAME = 6

 Dim SavedColors(18) As Long

4. Add the following code to the Form_Load event procedure of Form1:

 Sub Form_Load ()

 ' ** Save current system colors.
 For i% = 0 To 18
 SavedColors(i%) = GetSysColor(i%)
 Next i%

 End Sub

5. Add the following code to the Form_Unload event procedure of Form1:

 Sub Form1_Unload ()

 ' ** Restore system colors.
 ReDim IndexArray(18) As Integer
 For i% = 0 To 18
 IndexArray(i%) = i%
 Next i%
 SetSysColors 19, IndexArray(0), SavedColors(0)

 End Sub

6. Add the following code to the Command1_Click event procedure of
 Form1:

 Sub Command1_Click ()

 ' ** Change all display elements.
 ReDim NewColors(18) As Long
 ReDim IndexArray(18) As Integer
 For i% = 0 to 18
 NewColors(i%) = QBColor(Int(16 * Rnd))
 IndexArray(i%) = i%
 Next i%
 SetSysColors 19, IndexArray(0), NewColors(0)

 End Sub

7. Add the following code to the Command2_Click event procedure of
 Form1:

 Sub Command2_Click ()

 ' ** Change desktop, window frames, and active caption.
 ReDim NewColors(18) As Long
 ReDim IndexArray(18) As Integer
 For i% = 0 to 18
 NewColors(i%) = QBColor(Int(16 * Rnd))
 IndexArray(i%) = i%
 Next i%
 SetSysColors 19, IndexArray(0), NewColors(0)

 End Sub

8. From the Run menu, choose Start, or press the F5 key, to run the
 program.

Choosing the Change All Colors button will cause all the different
parts of the Windows display to be assigned a randomly generated
color. Choosing the Change Selected Elements button will cause only
the desktop, active window caption, and window frames to be assigned a
random color. To restore the original system colors, double-click the
Control-menu box to end the application.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgGrap APrgOther

VB AniButton Control: Cannot Resize if PictDrawMode=Autosize
Article ID: Q82159
--
The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 versions 2.0 and 3.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SUMMARY
=======

Resizing an Animated Button custom control by setting the Width or
Height property at run time will not work if the PictDrawMode property
is set to Autosize (1). This is by design. When the PictDrawMode
property is in autosize mode, the size is determined by the size of
the images loaded, not by the design time setting of Width or Height
nor the run time setting of those values.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

Steps to Reproduce Behavior

1. Run Visual Basic for Windows, or from the File menu, choose New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 is created by default.

2. From the Files menu, choose Add File. In the Files box, select the
 ANIBUTON.VBX custom control file. The Animated Button tool appears
 in the toolbox.

3. Add the following code to the Form_Load procedure:

Sub Form_Load ()
 Form1.BackColor = &HFFFF00 ' To make the size of the control more
 ' visible.
 AniButton1.Move Form1.Width \ 4, 0, 1600, 1600
 AniButton1.TextPosition = 3 ' Put caption at top for clarity.
End Sub

4. Add the following code to the Form_Click procedure:

 Sub Form_Click ()
 AniButton1.Caption = "This is a very very long caption"
 AniButton1.PictDrawMode = 1 ' Autosize control.
 'AniButton1.PictDrawMode = 0 ' As Defined.
 'AniButton1.PictDrawMode = 2 ' Stretches image to fit.
 End Sub

4. Add the following code to the Form_DoubleClick event:

 Sub Form_DblClick ()
 Print AniButton1.Width
 AniButton1.Width = 400
 Print AniButton1.Width
 Print AniButton1.PictDrawMode
 End Sub

5. Run the project with the PictDrawMode setting of 0 uncommented and
 the other two commented out.

6. Click once to see the effect of changing the mode. Then double-
 click the form to see the changes due to changing the Width
 property. Because the caption is the largest object in an unloaded
 Animated Button, the autosize adjusts to it.

7. Access the Frame property and load a bitmap into the first frame
 and an icon in the second, or vice versa.

8. Repeat steps 5 and 6. Notice that the larger object (the bitmap)
 causes the control to resize to it.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus APrgGrap

How to Disable Close Command in VB Control Menu (System Menu)
Article ID: Q82876

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

To modify an item in the Visual Basic Control menu (also known as the
System menu), you need to call the API functions GetSystemMenu and
ModifyMenu. This article describes how to disable the Close command in the
Control menu.

MORE INFORMATION
================

If you do not want the user to be able to choose the Close command from
the Control menu or to be able to double-click the Control-menu box to end
the application, you can disable the Close command. GetSystemMenu returns
the handle to the Control menu. That handle can be used by ModifyMenu to
change the control menu.

The following code example disables (grays out) the Close command in
the Visual Basic Control menu.

1. Start Visual Basic or from the File menu, choose New Project (ALT,
 F, N) if Visual Basic is already running. Form1 is created by default.

2. Place a command button (Command1) on Form1. Change its Caption property
 to Disable Close.

3. Place another command button (Command2) on Form1. Change its caption
 to Exit.

4. Add the following declarations and constants to the general
 Declarations section of Form1:

 ' Enter each Declare statement as one, single line:
 Declare Function GetSystemMenu Lib "User" (ByVal hWnd%,
 ByVal bRevert%) as Integer
 Declare Function ModifyMenu Lib "User" (ByVal hMenu%, ByVal nPosition%,
 ByVal wFlags%, ByVal wIDNewItem%, ByVal lpNewItem as Any) as Integer

 Const MF_BYCOMMAND = &H0
 Const MF_GRAYED = &H1
 Const SC_CLOSE = &HF060

 Note that other constants to disable other menu items in the Control
 menu are described in the CONSTANT.TXT file.

5. Add the following code to the Command1 Click event:

 Sub Command1_Click ()
 ' See the notes at the end of this article for important additional
 ' information about this code.
 nPosition% = SC_CLOSE
 idNewItem%=-10
 s$ = "Close"
 hMenu% = GetSystemMenu(hWnd, 0)
 wFlags% = MF_BYCOMMAND Or MF_GRAYED
 success% = ModifyMenu(hMenu%, nPosition%, wFlags%, idNewItem%, s$)
 End Sub

6. Add the following code to the Command2 Click event:

 Sub Command2_Click ()
 End
 End Sub

7. Press the F5 key to run the program.

8. Click the Control-menu box to see that all the menu items are available.

9. Click the Disable Close command button. Then click the Control-menu box.
 Notice that the Close menu command is unavailable.

The user cannot end the application by either choosing Close from the
Control menu or by double-clicking the Control-menu box. The only way to
end this program is to choose the Exit command button.

Notes on the Use of ModifyMenu() in the Code
--

The code listed above uses the ModifyMenu() function, but the
EnableMenuItem() may be more appropriate in your particular situation.

Here's the syntax for ModifyMenu():

 ModifyMenu(hMenu, SC_CLOSE, MF_BYCOMMAND|MF_GRAYED, SC_CLOSE, "Close")

Here's the syntax for EnableMenuItem():

 EnableMenuItem(hMenu, SC_CLOSE, MF_BYCOMMAND|MF_GRAYED)

Both functions work. However it appears that Visual Basic re-enables the
menu item whose ID is SC_CLOSE. This is why it may appear as if the
ModifyMenu() or EnableMenuItem() function failed.

To work around this problem in the code listed above, the second to last
argument (idNewItem%) is set to -10 (0 would also work):

 ModifyMenu(hMenu, SC_CLOSE, MF_BYCOMMAND|MF_GRAYED, -10, "Close")

This works because Visual Basic looks for a menu item with ID SC_CLOSE to
re-enable and cannot find one because it has been changed to 0 or -10. So
Visual Basic can't re-enable the Close menu item.

However, because of this workaround, another limitation is introduced. The
problem is that the ID of the Close menu item is changed to -10. If you
want the program to be able to re-enable the Close item, you'll need to use
this alternative version:

 ModifyMenu(hMenu, -10, MF_BYCOMMAND|MF_GRAYED, SC_CLOSE, "Close")

This is a good workaround to Visual Basic's re-enabling of Close. Don't use
0 because menu separators also have the ID 0 and you will run into problems
when you try to re-enable Close. 0xFFFF is a good ID to use.

Another alternative solution is to use DeleteMenu to remove Close and the
separator above it, and use InsertMenu to add the Close and the separator.

REFERENCES
==========

"Microsoft Windows Programmer's Reference Book and Online Resource"
(Visual Basic Add-on kit number 1-55615-413-5)

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgOther

PRB: Can't Change Minimized/Maximized MDIChild's Position/Size
Article ID: Q82878

The information in this article applies to:

- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SUMMARY
=======

SYMPTOMS
 When a MDI Child custom control is minimized (reduced to an icon),
 attempting to change its position or size at run time by setting the
 Top, Left, Height, or Width property will generate the following
 Visual Basic error message:

 Cannot Change MDIChild Position Or Size While Minimized Or Maximized.

 This valid error message will also be generated if the MDI child
 window is maximized and you attempt to change the size of position of
 the MDI child.

RESOLUTION
 This article does not apply to later versions of Visual Basic. The MDI
 Child custom control shipped only with version 1.0. Multiple-document
 interface (MDI) forms are built into Visual Basic version 2.0 and later,
 making the MDI custom control obsolete.

 You cannot change the position or size of a Visual Basic version 1.0
 MDI child window when it is minimized or maximized. These properties
 can be set at run time in code or at design time for any MDI child
 window that is not maximized or minimized to an icon.

 However, you can set the properties in Visual Basic version 2.0 for
 Windows. You do not get an error. Note though that MDI is different in
 Visual Basic version 2.0 because it is built in to both the Standard and
 Professional Editions rather than being a separate custom control, as it
 is in Visual Basic version 1.0.

MORE INFORMATION
================

The following steps demonstrate that an error message is generated in
Visual Basic version 1.0 when you attempt to change (at run time in code)
the Left property of an MDI child window that has been either reduced to
an icon or maximized (to the full size of the parent form).

Steps to Reproduce Problem

1. Start Visual Basic or from the File menu, choose New Project (ALT,
 F, N) if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose Add File. In the Files box, select the
 MDICHILD.VBX custom control file. The MDI Child tool appears in the
 toolbox.

3. Place an MDI Child window control on Form1.

4. Double-click the form outside the MDI child window to open the
 Code window.

5. Add the following code to the Form1 Click event:

 Sub Form_Click ()
 MDIchild1.Left = 0
 End Sub

6. Press F5 to run the application.

7. Click the Control-menu box (in the upper left corner) of the MDI child
 window, and choose Minimize.

8. Click directly on the form.

The following error message dialog box is generated:

 Cannot Change MDIChild Position Or Size While Minimized Or Maximized

Additional reference words: 1.00 2.00
KBCategory:
KBSubcategory: PrgCtrlsCus APrgGrap

How to Create a Form with no Title Bar in VB for Windows
Article ID: Q83349

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

To create a Microsoft Visual Basic for Windows form with a border but
with no title bar, the Caption property of a form must be set to a
zero-length string; the BorderStyle property must be set to Fixed
Single (1), Sizable (2) or Fixed Double; and the ControlBox, MaxButton
and MinButton properties must be set to False (0). If any text (including
spaces) exists for the Caption property or if the ControlBox, MaxButton,
or MinButton property is set to True, a title bar will appear on the form.
Note that setting the BorderStyle property to None (0) will always
result in a form with no title bar.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

Even with the ControlBox, MaxButton, and MinButton properties of a
form set to False (0) and the BorderStyle set to Fixed Single (1),
Sizable (2) or Fixed Double (3), the form will still have a title bar
unless the Caption property is set to null. Setting the Caption to
blanks will leave a title bar with no title.

Steps to Reproduce Behavior

1. Run Visual Basic for Windows, or from the File menu, choose New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 is created by default.

2. From the Properties bar, set the ControlBox, MaxButton, and
 MinButton properties to False.

3. Set the Caption property to at least one space.

4. Press the F5 key to run the program. The form will have a title bar
 without a title.

5. Press CTRL+BREAK to return to design mode.

6. Set the Caption property to a zero-length string (that is, delete
 all characters including spaces).

7. Press the F5 key to run the program. There should be no title bar on

 the form.

You can also have a form with no title bar by setting the BorderStyle
property to None (0).

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgGrap

How to Call LoadModule() API Function from Visual Basic
Article ID: Q83350

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

This article shows how to call the Windows LoadModule() API function
from a Visual Basic program. The LoadModule() API function loads and
executes a Windows program or creates a new instance of an existing
Windows program. The code example below shows an example of calling
WINVER.EXE with the LoadModule() function call, but you can change
it to any executable file.

Note that the Shell function provided in Visual Basic provides
a functionality similar to and simpler than the technique explained in
this article.

MORE INFORMATION
================

The LoadModule() API function call has only two parameters, but the
second parameter is a pointer to a structure with an embedded
structure in it.

The two parameters are as follows:

lpModuleName Points to a null terminated string that contains
 the filename of the application to be run.

lpParameterBlock Points to a data structure consisting of four fields
 that define a parameter block. The data structure
 consists of the following fields:

 wEnvSeg: Specifies the segment address of the environment
 under which the module is to run; 0 indicates that
 the Windows environment is to be copied.

 lpCmdLine: Points to a NULL terminated character string that
 contains a correctly formed command line. This
 string must not exceed 120 bytes in length.

 lpCmdShow: Points to a data structure containing two WORD
 length values. The first value must be set to 2, and
 the second value in this example will be set to 5.

 dwReserved: Reserved and must be NULL.

Steps to Reproduce Behavior

1. Start Visual Basic or from the File menu, choose New Project (ALT,
 F, N) if Visual Basic is already running. Form1 is created by default.

2. Add the following code to the GLOBAL.BAS file (or any module in Visual
 basic version 2.0):

 Type CmdShow
 fp As Integer ' first parameter
 sp As Integer ' second parameter
 End Type

 Type lpParameterBlock
 wEnvSeg As Integer
 lpCmdLine As Long ' This line modified 6/25/93
 lpCmdShow As Long ' This line modified 5/27/92
 dwReserved As Long
 End Type

 Declare Function lstrcpy Lib "Kernel" (lp1 As Any, lp2 As Any) As Long
 ' Enter the following Declare statement on one, single line
 Declare Function LoadModule% Lib "kernel" (ByVal lpModuleName As String,
 lpParameterBlock As Any)

3. Add a command button to Form1, and add the following code to the
 Command1_Click procedure:

 Sub Command1_Click ()

 Dim cs As CmdShow
 Dim pb As lpParameterBlock
 ' assign values to the CmdShow structure
 pb.lpCmdShow = lstrcpy(cs, cs) ' Line added 5/27/92
 cs.fp = 2
 cs.sp = 5
 ' assign values to the lpParameterBlock structure
 pb.wEnvSeg = 0
 ' append null to end of path
 ' Following two lines added 6/25/93 replacing previous line:
 lpCmdLine$ = "c:\windows\winver.exe" + Chr$(0)
 pb.lpCmdLine = lstrcpy(ByVal lpCmdLine$, ByVal lpCmdLine$)
 pb.dwReserved = 0&
 ' make sure to append null to end of .EXE name
 m% = LoadModule%("winver.exe" + Chr$(0), pb)

 End Sub

4. Save the program and run it.

When you run the program and press the command button, the WinVer
program will run as it would with the Run command on the Windows
Program Manager File menu.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgOther

How to Draw an Ellipse with Circle Statement in VB
Article ID: Q83906

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

This article describes how to use the Circle statement to draw an ellipse
of a specified width and height by calculating the radius and aspect
ratio appropriate for the dimensions of the ellipse and the units of
measurement, determined by the ScaleMode property.

MORE INFORMATION
================

The Circle statement takes two arguments that determine the shape of
the ellipse drawn: the radius and the aspect ratio. For example:

 Circle (x, y), radius,,,, aspect

The aspect ratio is the y-radius divided by the x-radius of the
ellipse drawn. An aspect ratio of 1.0 (the default) yields a perfect
(non-elliptical) circle. If the aspect ratio is less than one, the
radius argument specifies the x-radius. If the aspect ratio is greater
than one, the radius argument specifies the y-radius. Both the
x-radius and the y-radius are measured in units of the x-axis.

Steps to Create Example Program

1. Run Visual Basic, or from the File menu, choose New Project (ALT,
 F, N) if Visual Basic is already running. Form1 is created by
 default.

2. Enter the following code in the Form1_Click event procedure:

Sub Form_Click ()
 Cls

 ' Set x-axis units different from y-axis to demonstrate
 ' that the ellipse still comes out right.
 Form1.ScaleWidth = Rnd * 100
 Form1.ScaleHeight = Rnd * 100
 Print "ScaleWidth = "; Format$(Form1.ScaleWidth, "#")
 Print "ScaleHeight = "; Format$(Form1.ScaleHeight, "#")

 ' Print the dimensions of the ellipse.
 ' Draw an ellipse centered on the form and touching the
 ' borders.
 w = Form1.ScaleWidth / 2

 h = Form1.ScaleHeight / 2
 Call ellipse(Form1, w, h, w, h)
End Sub

3. Enter the following code in the general Declarations section:

' ellipse(frm, x, y, w, h)
' Purpose
' Draws an ellipse on a form.
' Parameters
' frm -- the form to draw on
' x, y -- specify the center of the ellipse.
' w, h -- specify the width and height.
'
Sub ellipse (frm As Form, ByVal x!, ByVal y!, ByVal w!, ByVal h!)
 Dim swt As Long ' ScaleWidth in twips
 Dim sht As Long ' ScaleHeight in twips
 Dim k As Double ' conversion factor for x-units to y-units
 Dim ar As Double ' aspect ratio
 Dim r As Single ' radius
 Dim save_mode As Integer ' for saving and restoring ScaleMode
 Dim save_width As Single ' for saving and restoring ScaleWidth
 Dim save_height As Single ' for saving and restoring ScaleHeight

 ' Check arguments.
 If w <= 0 Or h <= 0 Then Stop

 ' Determine form dimensions in twips.
 save_mode = frm.ScaleMode ' save Scale... properties
 save_width = frm.ScaleWidth
 save_height = frm.ScaleHeight
 frm.ScaleMode = 1 ' set units to twips
 swt = frm.ScaleWidth
 sht = frm.ScaleHeight
 frm.ScaleMode = save_mode ' restore Scale... properties
 If frm.ScaleMode = 0 Then
 frm.ScaleWidth = save_width
 frm.ScaleHeight = save_height
 End If

' Compute conversion factor of x-axis units to y-axis units.
 k = frm.ScaleWidth / frm.ScaleHeight * sht / swt

' Compute aspect ratio and radius.
 ar = k * h / w
 If ar <= 1 Then
 r = w
 Else
 r = k * h
 End If

 ' Draw the ellipse.
 frm.Circle (x, y), r, , , , ar
End Sub

4. Press F5 to run the program. Then click the form.

The program draws an ellipse centered in the form, and touching the
sides of the form. Resize the form and/or click the form again to
repeat the demonstration.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgGrap

UCase$/LCase$ in Text Box Change Event Inverts Text Property
Article ID: Q84059
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
--

SUMMARY
=======

When using the UCase$ or LCase$ functions in Microsoft Visual Basic
for Windows to capitalize text or make text lower case from within the
change procedure of a text box, you may encounter unexpected results if
the following conditions are true:

 - The text property of the text box is being updated by the UCase$ or
 LCase$ statement.

 - The resulting string created by UCase$ or LCase$ is assigned to the
 text property of the text box.

 - The above statements appear in the Change event procedure of the
 text box.

Every time a key is pressed, the text contents are changed, and the
cursor is placed at the beginning of the line. This causes the
character for your next key press to be inserted at the beginning of
the line rather than the end.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

When allowing users to enter text into text boxes, it is often
desirable to control whether the user enters all uppercase or all
lowercase letters. To do this, it would seem that putting a UCase$ or
LCase$ statement in a text box Change event would allow you to enter
only uppercase or lowercase letters into the text box. However, each
time you press a key, the Change event fires and the cursor is brought
back to the beginning of the text box as a result of assigning the
Text property a new string.

Steps to Reproduce Behavior

1. Start Visual Basic for Windows or from the File menu, select New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 is created by default.

2. Put a text box (Text1) on Form1 by either double-clicking the text
 box control or single clicking the text box control and drawing

 it on Form1.

3. Add the following code to the Text1_Change event procedure:

 Sub Text1_Change ()
 text1.text = UCase$(text1.text)
 End Sub

4. Press the F5 key to run the program.

Notice that when you try to type information into the text box that it
is entered in reverse order of what you would expect.

An alternative method of changing all contents of the text box to
capital letters is to change the KeyAscii code of the typed
information in the text box KeyPress event as follows:

Sub Text1_KeyPress (KeyAscii As Integer)

' Check to see if key pressed is a lower case letter.
 If KeyAscii >= 97 And KeyAscii <= 122 Then

 'If it is lowercase, change it to uppercase.
 KeyAscii = KeyAscii - 32

 End If

End Sub

When you run the above code, the letters typed into the text box are
immediately changed to capital letters and are entered correctly as
you type them in.

Another alternative method of changing the contents of the text box to
uppercase letters is to add the following code to the Change event
for the text box:

Sub Text1_Change ()

' Get the current position of the cursor.
 CurrStart = Text1.SelStart

' Change the text to capitals.
 Text1.Text = UCase$(Text1.Text)

' Reset the cursor position.
 Text1.SelStart = CurrStart

End Sub

SelStart sets or returns the starting point of text selected, and
indicates the position of the insertion point if no text is selected.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgOther

How to Print Entire VB Form and Control the Printed Size
Article ID: Q84066
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
--

SUMMARY
=======

The Visual Basic for Windows PrintForm method provides a way to print
the client area of a form. However, PrintForm does not allow you to
control the size or proportion of the printed output, or to print the
non-client area (the caption and border) of the form.

The following code example uses Windows API functions to print the
entire form, and provides a method to control the size of the output.
This method can also be used to print only the client area to a
specific size and to control the position of the printed form to allow
text or other graphics to be printed on the same page as the image of
the form. The method is also applicable to printing all the forms in a
project.

Note that this example will not work correctly on PostScript printers.
For the example to work correctly, the printer must use a standard
non-PostScript laser printer configuration (such as PCL/HP).

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

Combining the Windows API functions BitBlt, StretchBlt,
CreateCompatibleDC, DeleteDC, SelectObject, and Escape allows greater
control over the placement and size of the printed form than the
PrintForm method. In a two-part process, the image of the entire form
is captured by using BitBlt to make an invisible picture, and is
turned into a persistent bitmap using the AutoRedraw property. Then
the picture is printed using the method of printing a picture control
(outlined in a separate article, found by querying for the following
word in the Microsoft Knowledge Base):

 CreateCompatibleDC

This method works on maximized forms as well as any smaller forms.
The use of GetSystemMetrics allows a general procedure to handle
different window border styles passed to it by querying the video
driver for the size of windows standard borders in pixels.

The example below requires a single form with an invisible picture
control.

Example

1. Add the following code to the general Declarations level of the
 form in a new project:

 Note: All Declare statements below must be on one line each.

DefInt A-Z
Declare Function BitBlt Lib "gdi" (ByVal hDestDC, ByVal X, ByVal Y,
 ByVal nWidth, ByVal nHeight, ByVal hSrcDC, ByVal XSrc,
 ByVal YSrc, ByVal dwRop&)
Declare Function CreateCompatibleDC Lib "GDI" (ByVal hDC)
Declare Function SelectObject Lib "GDI" (ByVal hDC, ByVal hObject)
Declare Function StretchBlt Lib "GDI" (ByVal hDC, ByVal X, ByVal Y,
 ByVal nWidth, ByVal nHght, ByVal hSrcDC, ByVal XSrc,
 ByVal YSrc, ByVal nSrcWidth, ByVal nSrcHeight, ByVal dwRop&)
Declare Function DeleteDC Lib "GDI" (ByVal hDC)
Declare Function Escape Lib "GDI" (ByVal hDC, ByVal nEscape,
 ByVal nCount, lplnData As Any, lpOutData As Any)
Declare Function GetSystemMetrics Lib "User" (ByVal nIndex)

Const SM_CYCAPTION = 4
Const SM_CXBORDER = 5
Const SM_CYBORDER = 6
Const SM_CXDLGFRAME = 7
Const SM_CYDLGFRAME = 8
Const SM_CXFRAME = 32
Const SM_CYFRAME = 33

Const TWIPS = 1
Const PIXEL = 3
Const NILL = 0&
Const SRCCOPY = &HCC0020
Const NEWFRAME = 1

Dim ModeRatio, XOffset, YOffset As Integer

2. Set the following properties at design time:

 Control Property Setting
 ------- -------- -------
 Form1 Name Form1 (default)
 Form1.Picture1 Name Picture1 (default)
 Form1.Picture2 Name Picture2 (default)
 Form1.File1 Name File1 (default)

 (In Visual Basic version 1.0 for Windows, set the CtlName/FormName
 Property for the above objects instead of the Name property.)

You can add any other control(s) to the form to print. If a picture
control is drawn at run time, be sure to set its AutoRedraw property
to True so that the graphics will be transferred by the Windows API
call BitBlt and eventually printed by StretchBlt.

3. Add the following code to the Form_Load procedure of Form1:

Sub Form_Load ()
' Size the form explicitly to match parameters of StretchBlt.
' Or use design time size to set coordinates.
 Form1.Move 1095, 1200, 8070, 5280

' Size two example controls.
 File1.Move 4080, 120, 2775, 2535
 Picture1.Move 240, 120, 2775, 2535

' Put up a caption to indicate how to print the form.
 Form1.Caption = "Double Click to Print Form And Text"

' The following *optional* code illustrates creating a persistent
' bitmap that will successfully StretchBlt to the printer.
 Picture1.AutoRedraw = -1 ' Create persistent bitmap of picture
 ' contents.
 Picture1.Line (0, 0)-(Picture1.ScaleWidth / 2,
 Picture1.ScaleHeight / 2), , BF
 Picture1.AutoRedraw = 0 ' Toggle off.

' Make sure the temporary workspace picture is invisible.
 Picture2.visible = 0
End Sub

4. Add the following code to the general procedure level of the form:

Sub FormPrint (localname As Form)
' Display cross.
 screen.MousePointer = 2
' Calculate ratio between ScaleMode twips and ScaleMode pixel.
 localname.ScaleMode = PIXEL
 ModeRatio = localname.height \ localname.ScaleHeight
 localname.ScaleMode = TWIPS

XOffset = (localname.width - localname.ScaleWidth) \ ModeRatio
YOffset = (localname.height - localname.ScaleHeight) \ ModeRatio
CapSize% = GetSystemMetrics(SM_CYCAPTION) ' The height of the caption.

 ' The size of the fixed single border:
FudgeFactor% = GetSystemMetrics(SM_CYBORDER)
' The fudgefactor is due to inevitable mapping errors when converting
' logical pixels to screen pixels. This example is coded for 640X480
' screen resolution. For 800X600, remove the fudgefactor.
' For other resolutions, tweak for perfection!

Select Case localname.BorderStyle
Case 0 ' None.
 XOffset = 0
 YOffset = 0
Case 1 ' Fixed Single.
 XOffset = GetSystemMetrics(SM_CXBORDER)
 YOffset = GetSystemMetrics(SM_CYBORDER) + CapSize% - FudgeFactor%
Case 2 ' Sizeable.
 XOffset = GetSystemMetrics(SM_CXFRAME)
 YOffset = GetSystemMetrics(SM_CYFRAME) + CapSize% - FudgeFactor%
Case 3 ' Fixed Double.
 XOffset = GetSystemMetrics(SM_CXDLGFRAME) + FudgeFactor%

 YOffset = GetSystemMetrics(SM_CYDLGFRAME) + CapSize%
End Select

' Size the picture to the size of the form's non-client (complete)
' area.
 Picture2.Move 0, 0, localname.Width, localname.Height

' Note that Bitblt requires coordinates in pixels.
 Picture2.ScaleMode = PIXEL
' Clear Picture property of any previous BitBlt image.
 Picture2.Picture = LoadPicture("")
' -1 equals true: Must Have This!!!
 Picture2.AutoRedraw = -1
' Assign information of the destination bitmap.
 hDestDC% = Picture2.hDC
 X% = 0: Y% = 0
 nWidth% = Picture2.ScaleWidth
 nHeight% = Picture2.ScaleHeight

' Assign information of the source bitmap.
' Source is entire client area of form (plus non-client area)
' XOffset and YOffset settings depend on the BorderStyle chosen for
' the form.
 hSrcDC% = localname.hDC
 XSrc% = -XOffset: YSrc% = -YOffset
' Show transition to BitBlt by changing MousePointer.
 Screen.MousePointer = 4
' Assign the SRCCOPY constant to the Raster operation.
 dwRop& = SRCCOPY
 ' The following statement must appear on one line.
 Suc% = BitBlt(hDestDC%, X%, Y%, nWidth%, nHeight%, hSrcDC%, XSrc%,
 YSrc%, dwRop&)

' Start the StretchBlt process now.
' Assign persistent bitmap to Picture property:
 Picture2.Picture = Picture2.Image
' StretchBlt requires pixel coordinates.
 Picture2.ScaleMode = PIXEL
 Printer.ScaleMode = PIXEL
' * The following is an example of mixing text with StretchBlt.
 Printer.Print "This is a test of adding text and bitmaps "
 Printer.Print "This is a test of adding text and bitmaps "
 Printer.Print "This is a test of adding text and bitmaps "
' * If no text is printed in this procedure,
' * then you must add minimum: Printer.Print " "
' * to initialize Printer.hDC.

' Now display hour glass for the StretchBlt to printer.
 screen.MousePointer = 11

 hMemoryDC% = CreateCompatibleDC(Picture2.hDC)
 hOldBitMap% = SelectObject(hMemoryDC%, Picture2.Picture)
' You adjust the vertical stretch factor of the form in the
' argument "Printer.ScaleHeight - 1000":
 ApiError% = StretchBlt(Printer.hDC, 0, 192,
 Printer.ScaleWidth - 300, Printer.ScaleHeight - 1000,
 hMemoryDC%, 0, 0, Picture2.ScaleWidth,

 Picture2.ScaleHeight, SRCCOPY) ' concatenate above
' The second parameter above allows for text already printed: modify
' accordingly.
 hOldBitMap% = SelectObject(hMemoryDC%, hOldBitMap%)
 ApiError% = DeleteDC(hMemoryDC%)
' * The following is an example of mixing text with StretchBlt.
' Set the printer currentY to allow for the size of the StretchBlt
' image. (This is relative to size of form and stretch factors chosen)
 Printer.currentY = 2392 ' In Twips.
 Printer.Print "This is for text after the StretchBlt"
 Printer.Print "This is for text after the StretchBlt"
 Printer.Print "This is for text after the StretchBlt"
 Printer.EndDoc
 ApiError% = Escape(Printer.hDC, NEWFRAME, 0, NILL, NILL)

' Reset MousePointer to default.
 Screen.MousePointer = 1
End Sub

5. Add the following code to the Double_Click event:

Sub Form_DblClick ()
 FormPrint Form1
End Sub

6. After saving the project, run the example.

Double-click the form to invoke the FormPrint procedure. Any form
passed as a parameter to FormPrint will be printed. BitBlt will
transfer the image to the Picture control, then StretchBlt transfers
it to the printer DC, which will print the image that was transferred
by BitBlt.

Optionally, you could place text or graphics in the picture
(Form1.Picture2) before printing with StretchBlt or print directly
to the page using Printer.Print or Printer.Line. If you choose the
latter method, by adjusting the second and third parameters of
StretchBlt, you can make the already printed content be followed by
the image of the form on the same page.

Reference(s):

"Microsoft Windows Programmer's Reference Book and Online Resource"
(Add-on kit number 1-55615-413-5)

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgPrint

Creating TOPMOST or "Floating" Window in Visual Basic
Article ID: Q84251
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
--

SUMMARY
=======

You can create a "floating" window such as that used for the Microsoft
Windows version 3.1 Clock by using the SetWindowPos Windows API call.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

A floating (or TOPMOST) window is a window that remains constantly
above all other windows, even when it is not active. Examples of
floating windows are the Find dialog box in WRITE.EXE, and CLOCK.EXE
(when Always on Top is selected from the Control menu).

There are two methods to produce windows that "hover" or "float," one
of which is possible in Visual Basic for Windows. This method is
described below:

Call SetWindowPos, specifying an existing non-topmost window and
HWND_TOPMOST as the value for the second parameter (hwndInsertAfter):

Use the following declarations:

Declare Function SetWindowPos Lib "user" (ByVal h%, ByVal hb%,
 ByVal x%, ByVal y%, ByVal cx%, ByVal cy%, ByVal f%) As Integer
' The above Declare statement must appear on one line.

Global Const SWP_NOMOVE = 2
Global Const SWP_NOSIZE = 1
Global Const FLAGS = SWP_NOMOVE Or SWP_NOSIZE
Global Const HWND_TOPMOST = -1
Global Const HWND_NOTOPMOST = -2

To set the form XXXX to TOPMOST, use the following code:

success% = SetWindowPos (XXXX.hWnd, HWND_TOPMOST, 0, 0, 0, 0, FLAGS)
REM success% <> 0 When Successful

To reset the form XXXX to NON-TOPMOST, use the following code:

success% = SetWindowPos (XXXX.hWnd, HWND_NOTOPMOST, 0, 0, 0, 0, FLAGS)
REM success% <> 0 When Successful

Note: This attribute was introduced in Windows, version 3.1, so
remember to make a GetVersion() API call to determine whether the
application is running under Windows, version 3.1.

Reference(s):

"Page 892 of Microsoft Windows 3.1 Programmer's Reference, Volume 2,
 Functions,"

Additional reference words: Win31 Float Topmost Notopmost Setwindowpos
 top most
KBCategory:
KBSubcategory: APrgWindow

Property or Control Not Found When Use Form/Control Data Type
Article ID: Q84383
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
--

SUMMARY
=======

You do not need to prefix a control name with the parent form name
when you are accessing the property of a control from a Sub or
Function to which the control is passed as a parameter. If you use the
syntax

 form.control.property

to access the property of the control, you will get a "Property or
Control not found" error.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

The full syntax to access a property of a control on a form is as
follows:

 form.control.property

If the control whose property you are accessing is on the form where
the code resides, you do not need to prefix the control name with the
form name. For example, if command button Command1 is on Form1 and you
want to set its Enabled property to False (0) in the event procedure
Command1_Click, you can use the following:

 Command1.Enabled = 0

You can use the same syntax if the statement is in the general
Declarations section of Form1. However, if you want to access the
Enabled property of Command1 on a form other than its parent form, or
from a Sub or Function in a module, you need to use the full syntax
(with the form name).

The property of the control can also be accessed in a module by using
the full syntax. For example, to disable Command1 (which is on Form1)
in MODULE1.BAS, add the following:

 Sub AccessProperty
 Form1.Command1.Enabled = 0
 End Sub

However, if you are passing the control as an argument to a Sub or
Function procedure in a general module, you do not need to use the
full syntax. For example

 Sub AccessProperty (ThisForm as Form, ThisControl as Control)
 ThisForm.ThisControl.Enabled = 0
 End Sub

will give you a "Property or Control 'ThisControl' not found" error.
You only need to pass the control name as an argument to the
procedure. For example:

 Sub AccessProperty (ThisControl as Control)
 ThisControl.Enabled = 0
 End Sub

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgOther

PRB: DateValue Argument Gives "Illegal Function Call" Error
Article ID: Q84547

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

You will correctly get an "Illegal function call" error for the
DateValue argument if the short date (the three numbers representing
the month, day, and year such as 4/24/92) does not follow the order of
the date format selected under International settings in the Windows
Control Panel.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

The DateValue function returns a serial number that represents the
date of the string argument. The string argument can be a date in
abbreviated form (three numbers that represent the month, day, and
year). However, this has to conform to the Short Date Format selected
in the International settings of the Control Panel.

By default, the order is MDY or the month followed by the day and then
the year separated by a slash (/) or a hyphen (-). An example of a
valid argument is 4/24/92 for the date April 24, 1992. Using 24/4/92
would produce an "Illegal function call" error.

Note that for the long form of the date, DateValue recognizes
April 24, 1992, Apr 24, 1992, 24-Apr-1992, and 24 April 92".

Remember that you will have to restart Windows for any changes made in
the International settings to take effect.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgOther

How VB Can Get Windows Status Information via API Calls
Article ID: Q84556
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
--

SUMMARY
=======

The Visual Basic for Windows program example below demonstrates how
you can obtain system status information similar to the information
displayed in the Windows Program Manager About box. The example
program displays the following information using the Windows API
function(s) indicated:

 - The Windows version number with GetVersion

 - The kind of CPU (80286, 80386, or 80486) and whether a math
 coprocessor is present with GetWinFlags

 - Whether Windows is running in enhanced mode or standard mode with
 GetWinFlags

 - The amount of free memory with GetFreeSpace and GlobalCompact

 - The percentage of free system resources with SystemHeapInfo

Note: The API function SystemHeapInfo is new to Windows version 3.1
and is not available in Windows, version 3.0. All other API functions
listed above are available in both Windows versions 3.0 or 3.1.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

Steps to Create Example Program

1. Run Visual Basic for Windows, or if Visual Basic for Windows is
 already running, choose New Project from the File menu (press ALT,
 F, N). Form1 will be created by default.

2. From the File menu, choose Add Module (press ALT, F, M). Module 1
 is created by default (In Visual Basic version 1.0 for Windows,
 this step is unnecessary).

3. Enter the following code into the general declarations section of a
 code module (In Visual Basic version 1.0 for Windows, place the
 following in the Global module):

 ' Constants for GetWinFlags.
 Global Const WF_CPU286 = &H2
 Global Const WF_CPU386 = &H4
 Global Const WF_CPU486 = &H8
 Global Const WF_80x87 = &H400
 Global Const WF_STANDARD = &H10
 Global Const WF_ENHANCED = &H20
 Global Const WF_WINNT = &H4000

 ' Type for SystemHeapInfo.
 Type SYSHEAPINFO
 dwSize As Long
 wUserFreePercent As Integer
 wGDIFreePercent As Integer
 hUserSegment As Integer
 hGDISegment As Integer
 End Type

 Declare Function GetVersion Lib "Kernel" () As Integer
 Declare Function GetWinFlags Lib "Kernel" () As Long
 'Enter each of the following Declare statements as one, single line:
 Declare Function GetFreeSpace Lib "Kernel" (ByVal wFlags As Integer)
 As Long
 Declare Function GlobalCompact Lib "Kernel" (ByVal dwMinFree As Long)
 As Long
 Declare Function SystemHeapInfo Lib "toolhelp.dll" (shi As
 SYSHEAPINFO) As Integer

4. Enter the following code into the Form_Load procedure of Form1:

 Sub Form_Load ()
 Dim msg As String ' Status information.
 Dim nl As String ' New-line.
 nl = Chr$(13) + Chr$(10) ' New-line.

 Show
 MousePointer = 11 ' Hourglass.
 ver% = GetVersion()
 status& = GetWinFlags()

 ' Get operating system and version.
 If status& And WF_WINNT Then
 msg = msg + "Microsoft Windows NT "
 Else
 msg = msg + "Microsoft Windows "
 End If
 ver_major$ = Format$(ver% And &HFF)
 ver_minor$ = Format$(ver% \ &H100, "00")
 msg = msg + ver_major$ + "." + ver_minor$ + nl

 ' Get CPU kind and operating mode.
 msg = msg + "CPU: "
 If status& And WF_CPU286 Then msg = msg + "80286"
 If status& And WF_CPU386 Then msg = msg + "80386"
 If status& And WF_CPU486 Then msg = msg + "80486"
 If status& And WF_80x87 Then msg = msg + " with 80x87"
 msg = msg + nl

 msg = msg + "Mode: "
 If status& And WF_STANDARD Then msg = msg + "Standard" + nl
 If status& And WF_ENHANCED Then msg = msg + "Enhanced" + nl

 ' Get free memory.
 memory& = GetFreeSpace(0)
 msg = msg + "Memory free: "
 msg = msg + Format$(memory& \ 1024, "###,###,###") + "K" + nl
 memory& = GlobalCompact(&HFFFFFFFF)
 msg = msg + "Largest free block: "
 msg = msg + Format$(memory& \ 1024, "###,###,###") + "K" + nl

 ' Get free system resources.
 ' The API SystemHeapInfo became available in Windows version 3.1.
 msg = msg + "System resources: "
 If ver% >= &H310 Then
 Dim shi As SYSHEAPINFO
 shi.dwSize = Len(shi)
 If SystemHeapInfo(shi) Then
 If shi.wUserFreePercent < shi.wGDIFreePercent Then
 msg = msg + Format$(shi.wUserFreePercent) + "%"
 Else
 msg = msg + Format$(shi.wGDIFreePercent) + "%"
 End If
 End If
 Else
 msg = msg + "n/a"
 End If

 MsgBox msg, 0, "About " + Caption
 MousePointer = 0
 End Sub

5. Press the F5 key to run the program.

Additional reference words: 1.00 2.00 3.00 3.10 286 386 486
KBCategory:
KBSubcategory: APrgWindow

How to Determine the Number of VB Applications Running at Once
Article ID: Q84836
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
--

SUMMARY
=======

To determine the total number of Microsoft Visual Basic for Windows
applications running at any given time, you can use the Microsoft
Windows API functions GetModuleHandle and GetModuleUsage.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

The following code fragment demonstrates a technique to find the total
number of Visual Basic for Windows applications currently executing by
determining the number of instances of the Visual Basic run-time module
(VBRUN100.DLL) with the Windows API functions GetModuleHandle and
GetModuleUsage. Remember that Visual Basic for Windows itself is not
counted; only applications created with Visual Basic for Windows are
included.

Steps to Create Example Program

1. Start several Visual Basic for Windows applications and leave them
 running.

2. Run Visual Basic for Windows, or from the File menu, choose New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 is created by default.

3. Enter the following Windows API function declarations into the
 General Declarations section of Form1:

 Declare Function GetModuleUsage% Lib "kernel" (ByVal hModule%)
 Declare Function GetModuleHandle% Lib "kernel" (ByVal FileName$)

4. Place a command button (Command1) on Form1. Double-click that
 button to open the Code window. In the Command1_Click procedure,
 add the following code:

 Sub Command1_Click ()
 msg$ = "Number of executing VB Apps: "

 hModule% = GetModuleHandle("VBRUN300.DLL")
 ' For Visual Basic versions 1.0 and 2.0 for Windows, use

 ' VBRun100.DLL and VBRun2.00.DLL respectively.
 nInstances% = GetModuleUsage(hModule%)

 msg$ = msg$ + Str$(nInstances%)
 MsgBox msg$
 End Sub

5. From the File menu, choose Make EXE File.

6. Press the F5 key to run the file.

7. Click the command button.

A message box displays the total number of executing Visual Basic
for Windows applications.

Note: This program itself will count as one application.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgWindow

VB "Bad DLL Calling Convention" Means Stack Frame Mismatch
Article ID: Q85108
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
--

SUMMARY
=======

When you call a dynamic link library (DLL) function from Visual Basic
for Windows, the "Bad DLL Calling Convention" error is often caused by
incorrectly omitting or including the ByVal keyword from the Declare
statement or the Call statement. The ByVal keyword affects the size of
data placed on the stack. Visual Basic for Windows checks the change
in the position of the stack pointer to detect this error.

When Visual Basic for Windows generates the run time error "Bad DLL
Calling Convention," the most common cause when calling API functions
is omitting the ByVal keyword from the Declaration of the external
function or from the call itself. It can also occur due to including
the ByVal keyword when the function is expecting a 4 byte pointer to
the parameter instead of the value itself. This changes the size
(number of bytes) of the values placed on the stack, and upon return
from the DLL, Visual Basic for Windows detects the change in the
position of the stack frame and generates the error.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

There are two calling conventions, or inter-language protocols: the
Pascal/Basic/FORTRAN calling convention, and the C calling convention.
Visual Basic for Windows uses the Pascal calling convention, as do the
Microsoft Window API functions and other Microsoft Basic language
products. Under the Pascal convention, it is the responsibility of the
called procedure to adjust or clean the stack. (In addition, parameters
are pushed onto the stack in order from the leftmost parameter to the
rightmost.) Because the DLL function is responsible for adjusting the
stack based on the type and number of parameters it expects, Visual
Basic for Windows checks the position of the stack pointer upon return
from the function. If the called routine has adjusted the stack to an
unexpected position, then Visual Basic for Windows generates a "Bad
DLL Calling Convention" error. Visual Basic for Windows assumes a
stack position discrepancy because the DLL function uses the C calling
convention. With the C calling convention, the calling program is
responsible for adjusting the stack immediately after the called
routine returns control.

Steps to Reproduce Behavior

Create a simple DLL using Microsoft Quick C for Windows or any
compiler capable of creating Windows DLLs. The following example is in
C and written for Quick C for Windows:

Stacking.C

#include <windows.h>
long far pascal typecheck (long a, float b, short far *c, char far *buff)
{
short retcode;
a = a * 3;
retcode = MessageBox(NULL, "I am in the DLL", "BOX", MB_OK);
return (a);
}

Stacking.DEF

LIBRARY STACKING
EXETYPE WINDOWS
STUB 'winstub.exe'
STACKSIZE 5120
HEAPSIZE 1024
DATA PRELOAD MOVEABLE SINGLE ; ADD THESE TWO LINES
CODE PRELOAD MOVEABLE DISCARDABLE ; TO AVOID WARNINGS.
EXPORTS
 typecheck @1
 WEP @2

Add the following code to the general Declarations module in a Visual
Basic for Windows form:

Declare Function typecheck Lib "d\stacking.dll" (ByVal a As Long,
 ByVal b As Single, c As Integer, ByVal s As String) As Long

Note: The above declaration must be placed on one line.

In the Form_Click event:
Sub Form_Click ()
Dim a As Long ' Explicitly type the variables.
Dim b As Single
Dim c As Integer
Dim s As String
a = 3 ' Initialize the variables.
b = 4.5
c = 6
s = "Hello there! We've been waiting for you!"
Print typecheck(a, b, c, s)
End Sub

Running the program as written above will not generate the error. Now
add the ByVal keyword before the variable named c in the Visual Basic
for Windows Declaration. Run the program. Note that the MessageBox
function pops a box first, and then the error box pops up indicating
that Visual Basic for Windows checks the stack upon return to see if
it has been correctly adjusted. Because the DLL expected a 4-byte
pointer and received a 2-byte value, the stack has not adjusted back

to the initial frame.

As another test, first remove the ByVal keyword before the variable
'c' that you added in the previous test. Declare the parameter 'a As
Any' instead of As Long. Change the type of the variable 'a' in the
Form_Click to Integer. Run the program again. Using As Any turns off
type checking by Visual Basic for Windows. Because the program passed
an integer ByVal instead of the long that the DLL expected, the stack
frame is off and the error is generated.

Reference(s):

"Microsoft BASIC 7.0: Programmer's Guide" for versions 7.0 and 7.1,
pages 423-426

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgOther

Print Form or Client Area to Size on PostScript or PCL Printer
Article ID: Q85978

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

This article demonstrates two Visual Basic procedures: PrintWindow and
PrintClient. Both procedures allow you to print a control or form at a
specified size and location (a printed page, another form, or a picture
control).

The PrintWindow procedure allows you to print the entire control including
the border, caption, and menus.

The PrintClient procedure prints everything contained in the form or
control excluding the border, caption, and menus. When passed a form, the
PrintClient procedure works just like Visual Basic's PrintForm method.

Both procedures (PrintWindow and PrintClient) print all child controls
contained in the form or control. And both use the StretchDIBits Window API
function as well as other Windows API functions to print a form or control.
These functions will print to both Postscript and PCL (printer control
language) or HP-type LaserJet printers.

MORE INFORMATION
================

This information is included with the Help file provided with Microsoft
Visual Basic version 3.0.

Step-by-Step Example

The following steps show you how to create a program that prints a form
on the printer.

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Add two command buttons (Command1 and Command2) to Form1.

3. Load the WINLOGO.BMP file (or some other large bitmap) into the Picture
 property of Form1. WINLOGO.BMP should be in the \WINDOWS directory.

4. From the File menu, choose New Module (ALT, F, M). Module1 is created by
 default.

5. Add the following code to Module1:

'***
'* Project
'* PrintAll.MAK
'*
'* Contents
'* PrintALL.FRM (Form1)
'* PrintALL.BAS
'* Structure
'* Form1 can contain any number of controls.
'* The minimum number to demonstrate both client area
'* printing and entire form printing is two command buttons.
'* For illustration, assign a large bitmap to the picture
'* property of Form1.
'*
'* Description:
'* This example successfully prints on both PostScript and
'* PCL (Printer Control Language: the non-PostScript type)
'* printers. The printer output is of the same resolution as
'* you would expect from the PrintForm method or from
'* printing the form from the VB environment. Both the
'* PrintClient and PrintWindow procedures are generic in
'* that they can be used to print any visible window. To
'* incorporate the code into your project, add PrintAll.BAS
'* in the project and paste the code in the PrintAll.GLB
'* program into a code module. The code in the
'* Command1_Click and Command2_Click events demonstrates how
'* to call the two procedures PrintWindow and PrintClient. To
'* print any active window, use the Appactivate and the
'* GetFocus functions to get the handle to the window to pass
'* to the procedures.
'*
'***
'***
'* Module
'* PrintAll.BAS
'*
'* Description:
'* Contains all the necessary Windows API function and Type
'* structure declarations
'***
DefInt A-Z

Type BITMAPINFOHEADER_Type
 biSize As Long
 biWidth As Long
 biHeight As Long
 biPlanes As Integer
 biBitCount As Integer
 biCompression As Long
 biSizeImage As Long
 biXPelsPerMeter As Long
 biYPelsPerMeter As Long
 biClrUsed As Long
 biClrImportant As Long
End Type

Type BITMAPINFO_Type

 BitmapInfoHeader As BITMAPINFOHEADER_Type
 bmiColors As String * 1024
End Type

Type RectType
 Left As Integer
 Top As Integer
 Right As Integer
 Bottom As Integer
End Type

Type PointType
 x As Integer
 y As Integer
End Type

' DC related API
Declare Function CreateCompatibleDC Lib "gdi" (ByVal hDC)
Declare Function GetWindowDC Lib "user" (ByVal hWnd)
Declare Function GetDC Lib "user" (ByVal hWnd)
Declare Function ReleaseDC Lib "user" (ByVal hWnd, ByVal hDC)
Declare Function DeleteDC Lib "gdi" (ByVal hDC)

' Graphics related API
' Enter the following Declare statement as one, single line:
Declare Function BitBlt Lib "gdi" (ByVal hDC, ByVal x, ByVal y,
 ByVal w, ByVal h, ByVal hDC, ByVal x, ByVal y, ByVal o As Long)
' Enter the following Declare statement as one, single line:
Declare Function GetDIBits Lib "gdi" (ByVal hDC, ByVal hBitmap,
 ByVal nStartScan, ByVal nNumScans, ByVal lpBits As Long,
 BitmapInfo As BITMAPINFO_Type, ByVal wUsage)
' Enter the following Declare statement as one, single line:
Declare Function StretchDIBits Lib "gdi" (ByVal hDC, ByVal DestX,
 ByVal DestY, ByVal wDestWidth, ByVal wDestHeight, ByVal SrcX,
 ByVal SrcY, ByVal wSrcWidth, ByVal wSrcHeight, ByVal lpBits&,
 BitsInfo As BITMAPINFO_Type, ByVal wUsage, ByVal dwRop&)

' General attribute related API
Declare Function GetDeviceCaps Lib "gdi" (ByVal hDC, ByVal nIndex)
Declare Function GetWindowRect Lib "user" (ByVal hWnd, lpRect As RectType)
Declare Function GetClientRect Lib "user" (ByVal hWnd, lpRect As RectType)

' Memory allocation related API
Declare Function GlobalAlloc Lib "kernel" (ByVal wFlags, ByVal lMem&)
Declare Function GlobalLock Lib "kernel" (ByVal hMem) As Long
Declare Function GlobalUnlock Lib "kernel" (ByVal hMem)
Declare Function GlobalFree Lib "kernel" (ByVal hMem)

' Graphics object related API
' Enter the following Declare statement as one, single line:
Declare Function CreateCompatibleBitmap Lib "gdi" (ByVal hDC, ByVal nWidth,
 ByVal nHeight)
Declare Function DeleteObject Lib "gdi" (ByVal hObject)
Declare Function SelectObject Lib "gdi" (ByVal hDC, ByVal hObject)
Declare Function ClientToScreen Lib "user" (ByVal hWnd%, p As PointType)
Declare Function LPToDP Lib "gdi" (ByVal hDC, p As PointType, ByVal nCount)

' Include the following constant declarations if using Visual Basic
' version 1.0
' Const False = 0
' Const True = Not False

Const HORZRES = 8
Const VERTRES = 10

Const SRCCOPY = &HCC0020
Const NEWFRAME = 1
Const BITSPIXEL = 12
Const PLANES = 14

Const BI_RGB = 0
Const BI_RLE8 = 1
Const BI_RLE4 = 2

Const DIB_PAL_COLORS = 1
Const DIB_RGB_COLORS = 0

Const GMEM_MOVEABLE = 2

4. Add the following function (PrintWindow) to Module1:

'***
'* Title
'* PrintWindow()
'*
'* Description
'*
'* Copies the entire window (form or control) to another
'* window (form or control) or device such as a printer. This
'* routine is capable of printing complete form images on any
'* printer that has Windows drivers loaded including Postscript.
'*
'* The API functions GetDIBits and StretchDIBits are used to copy
'* the client area image to the destination window or device.
'*
'* Parameters:
'* hDC_Dest Handle to the DC of the destination device or
'* window.
'* DestX X position of where the image will be
'* displayed on the destination device.
'* DestY Y position of where the image will be
'* displayed on the destination device.
'* DestDevWidth Pixel width of the destination device.
'* DestDevHeight Pixel height of the destination device.
'* hWnd_SrcWindow Window handle of the source window to be
'* displayed on the destination device.
'***
' Enter the following statement as one, single line:
Function PrintWindow (ByVal hDC_Dest, ByVal DestX, ByVal DestY,
 ByVal DestDevWidth, ByVal DestDevHeight, ByVal hWnd_SrcWindow)

 Dim Rect As RectType
 Dim BitmapInfo As BITMAPINFO_Type

 cr$ = Chr$(13)

 ' Get the DC for the entire window including the non-client area.
 hDC_Window = GetWindowDC(hWnd_SrcWindow)
 hDC_Mem = CreateCompatibleDC(hDC_Window)

 ' Get the pixel dimensions of the screen. This is necessary so
 ' that we can determine the relative size of the window compared to
 ' the screen
 ScreenWidth = GetDeviceCaps(hDC_Window, HORZRES)
 ScreenHeight = GetDeviceCaps(hDC_Window, VERTRES)

 ' Get the pixel dimensions of the window to be printed.
 r = GetWindowRect(hWnd_SrcWindow, Rect)
 Window_Width = Abs(Rect.Right - Rect.Left)
 Window_Height = Abs(Rect.Bottom - Rect.Top)

 ' Create a bitmap compatible with the window DC. Enter the following
 ' statement as one, single line:

 hBmp_Window = CreateCompatibleBitmap(hDC_Window, Window_Width,
 Window_Height)

 ' Select the bitmap to hold the window image into the memory DC.
 hPrevBmp = SelectObject(hDC_Mem, hBmp_Window)

 ' Copy the image of the window to the memory DC. Enter the following
 ' statement as one, single line:
 r1 = BitBlt(hDC_Mem, 0, 0, Window_Width, Window_Height, hDC_Window,
 0, 0, SRCCOPY)

 BitsPerPixel = GetDeviceCaps(hDC_Mem, BITSPIXEL)
 ColorPlanes = GetDeviceCaps(hDC_Mem, PLANES)

 BitmapInfo.BitmapInfoHeader.biSize = 40
 BitmapInfo.BitmapInfoHeader.biWidth = Window_Width
 BitmapInfo.BitmapInfoHeader.biHeight = Window_Height
 BitmapInfo.BitmapInfoHeader.biPlanes = 1
 BitmapInfo.BitmapInfoHeader.biBitCount = BitsPerPixel * ColorPlanes
 BitmapInfo.BitmapInfoHeader.biCompression = BI_RGB
 BitmapInfo.BitmapInfoHeader.biSizeImage = 0
 BitmapInfo.BitmapInfoHeader.biXPelsPerMeter = 0
 BitmapInfo.BitmapInfoHeader.biYPelsPerMeter = 0
 BitmapInfo.BitmapInfoHeader.biClrUsed = 0
 BitmapInfo.BitmapInfoHeader.biClrImportant = 0

 ' Calculate the ratios based on the source and destination
 ' devices. This will help to cause the size of the window image
 ' to be approximately the same proportion on another device
 ' such as a printer.
 WidthRatio! = Window_Width / ScreenWidth
 HeightAspectRatio! = Window_Height / Window_Width

 PrintWidth = WidthRatio! * DestDevWidth
 PrintHeight = HeightAspectRatio! * PrintWidth

 ' Calculate the number of bytes needed to store the image assuming

 ' 8 bits/pixel.
 BytesNeeded& = CLng(Window_Width + 1) * (Window_Height + 1)

 ' Allocate a buffer to hold the bitmap bits.
 hMem = GlobalAlloc(GMEM_MOVEABLE, BytesNeeded&)

 ' Enter the following If statement as one, single line:
 If hDC_Window <> 0 And hBmp_Window <> 0 And hDC_Dest <> 0 And
 hMem <> 0 Then

 lpBits& = GlobalLock(hMem)

 ' Get the bits that make up the image and copy them to the
 ' destination device.
 ' Enter the following r2 statement as one, single line:
 r2 = GetDIBits(hDC_Mem, hBmp_Window, 0, Window_Height, lpBits&,
 BitmapInfo, DIB_RGB_COLORS)
 ' Enter the following r3 statement as one, single line:
 r3 = StretchDIBits(hDC_Dest, DestX, DestY, PrintWidth, PrintHeight,
 0, 0, Window_Width, Window_Height, lpBits&, BitmapInfo,
 DIB_RGB_COLORS, SRCCOPY)
 End If

 ' Reselect in the previous bitmap and select the source image bitmap.
 r = SelectObject(hDC_Mem, hPrevBmp)
 r = DeleteDC(hDC_Mem)

 ' Release or delete DC's, memory and objects.
 r = GlobalUnlock(hMem)
 r = GlobalFree(hMem)
 r = DeleteDC(hDC_Window)
 r = DeleteObject(hBmp_Window)

 ' Return true if the window was successfully printed.
 If r2 <> 0 And r3 <> 0 Then
 PrintWindow = True
 Else
 PrintWindow = False
 End If

End Function

6. Add the following function, PrintClient to Module1:

'***
'* Title
'* PrintClient()
'*
'* Description
'*
'* Copies the client area of a window visible on the desktop to
'* another window or device such as a printer. This routine is
'* capable of printing client area images on any printer that has
'* Windows drivers loaded including PostScript.
'*
'* The API functions GetDiBits and StretchBits are used to copy
'* the client area image to the destination device.

'*
'* Parameters:
'* hDC_Dest Handle to the DC of the destination device or
'* window.
'* DestX X position of where the image will be
'* displayed on the destination device.
'* DestY Y position of where the image will be
'* displayed on the destination device.
'* DestDevWidth Pixel width of the destination device.
'* DestDevHeight Pixel height of the destination device.
'* hWnd_SrcWindow Window handle of the source window to be
'* displayed on the destination device.
'***

' Enter the following Function statement as one, single line:
Function PrintClient (ByVal hDC_Dest, ByVal DestX, ByVal DestY,
 ByVal DestDevWidth, ByVal DestDevHeight, ByVal hWnd_SrcWindow)

 Dim Rect As RectType, RectClient As RectType
 Dim BitmapInfo As BITMAPINFO_Type
 '*
 Dim pWindow As PointType, pClient As PointType, pDiff As PointType
 '*

 cr$ = Chr$(13)

 ' Get the DC for the entire window including the non-client area.
 hDC_Window = GetWindowDC(hWnd_SrcWindow)
 hDC_Mem = CreateCompatibleDC(hDC_Window)

 ' Get the pixel dimensions of the screen.
 ScreenWidth = GetDeviceCaps(hDC_Window, HORZRES)
 ScreenHeight = GetDeviceCaps(hDC_Window, VERTRES)

 ' Get the pixel dimensions of the window to be printed.
 r = GetWindowRect(hWnd_SrcWindow, Rect)
 Window_Width = Abs(Rect.Right - Rect.Left)
 Window_Height = Abs(Rect.Bottom - Rect.Top)

 ' Create a bitmap compatible with the window DC.
 ' Enter the following statement as one, single line:
 hBmp_Window = CreateCompatibleBitmap(hDC_Window, Window_Width,
 Window_Height)

 ' Select the bitmap to hold the window image into the memory DC.
 hPrevBmp = SelectObject(hDC_Mem, hBmp_Window)

 ' Copy the image of the window to the memory DC.
 ' Enter the following statement as one, single line:
 r1 = BitBlt(hDC_Mem, 0, 0, Window_Width, Window_Height,
 hDC_Window, 0, 0, SRCCOPY)

 ' Get the dimensions of the client area.
 r = GetClientRect(hWnd_SrcWindow, RectClient)
 Client_Width = Abs(RectClient.Right - RectClient.Left)
 Client_Height = Abs(RectClient.Bottom - RectClient.Top)

 ' Calculate the pixel difference (x and y) between the upper-left
 ' corner of the non-client area and the upper-left corner of the
 ' client area.
 pClient.x = RectClient.Left
 pClient.y = RectClient.Top
 r = ClientToScreen(hWnd_SrcWindow, pClient)

 xDiff = Abs(pClient.x - Rect.Left)
 yDiff = Abs(pClient.y - Rect.Top)

 ' Create a DC and bitmap to represent the client area of the window.
 hDC_MemClient = CreateCompatibleDC(hDC_Window)

 ' Enter the following statement as one, single line:
 hBmp_Client = CreateCompatibleBitmap(hDC_Window, Client_Width,
 Client_Height)

 hBmpClientPrev = SelectObject(hDC_MemClient, hBmp_Client)

 ' Bitblt client area of window to memory bitmap representing the client
 ' area.
 ' Enter the following statement as one, single line:
 r = BitBlt(hDC_MemClient, 0, 0, Client_Width, Client_Height,
 hDC_Mem, xDiff, yDiff, SRCCOPY)

 ' Reselect in the previous bitmap and select the source image bitmap.
 r = SelectObject(hDC_Mem, hPrevBmp)

 ' Delete the DC a and bitmap associated with the window.
 r = DeleteDC(hDC_Window)
 r = DeleteObject(hBmp_Window)

 BitsPerPixel = GetDeviceCaps(hDC_MemClient, BITSPIXEL)
 ColorPlanes = GetDeviceCaps(hDC_MemClient, PLANES)

 BitmapInfo.BitmapInfoHeader.biSize = 40
 BitmapInfo.BitmapInfoHeader.biWidth = Client_Width
 BitmapInfo.BitmapInfoHeader.biHeight = Client_Height
 BitmapInfo.BitmapInfoHeader.biPlanes = 1
 BitmapInfo.BitmapInfoHeader.biBitCount = BitsPerPixel * ColorPlanes
 BitmapInfo.BitmapInfoHeader.biCompression = BI_RGB
 BitmapInfo.BitmapInfoHeader.biSizeImage = 0
 BitmapInfo.BitmapInfoHeader.biXPelsPerMeter = 0
 BitmapInfo.BitmapInfoHeader.biYPelsPerMeter = 0
 BitmapInfo.BitmapInfoHeader.biClrUsed = 0
 BitmapInfo.BitmapInfoHeader.biClrImportant = 0

 ' Calculate the ratios based on the source and destination
 ' devices. This will help to cause the size of the window image to
 ' be approximately the same proportion on another device such as
 ' a printer.
 WidthRatio! = Client_Width / ScreenWidth
 HeightAspectRatio! = Client_Height / Client_Width

 PrintWidth = WidthRatio! * DestDevWidth
 PrintHeight = HeightAspectRatio! * PrintWidth

 ' Calculate the number of bytes needed to store the image assuming
 ' 8 bits/pixel.
 BytesNeeded& = CLng(Window_Width + 1) * (Window_Height + 1)

 ' Allocate a buffer to hold the bitmap bits.
 hMem = GlobalAlloc(GMEM_MOVEABLE, BytesNeeded&)

 If hDC_Window <> 0 And hBmp_Window <> 0 And hDC_Dest <> 0 And
 hMem <> 0 Then

 lpBits& = GlobalLock(hMem)

 ' Get the bits that make up the image and copy them to the
 ' destination device.

 ' Enter the following r2 statement as one, single line:
 r2 = GetDIBits(hDC_MemClient, hBmp_Client, 0, Client_Height,
 lpBits&, BitmapInfo, DIB_RGB_COLORS)

 ' Enter the following r3 statement as one, single line:
 r3 = StretchDIBits(hDC_Dest, DestX, DestY, PrintWidth, PrintHeight,
 0, 0, Client_Width, Client_Height, lpBits&, BitmapInfo,
 DIB_RGB_COLORS, SRCCOPY)
 End If

 ' Select in the previous bitmap.
 r = SelectObject(hDC_MemClient, hBmpClientPrev)

 ' Release or delete DC's, memory and objects.
 r = GlobalUnlock(hMem)
 r = GlobalFree(hMem)
 r = DeleteDC(hDC_MemClient)
 r = DeleteObject(hBmp_Client)
 r = ReleaseDC(hWnd_SrcWindow, hDC_Form)

 ' Return true if the window was successfully printed.
 If r2 <> 0 And r3 <> 0 Then
 PrintClient = True
 Else
 PrintClient = False
 End If

End Function

7. Add DefInt A-Z to the general declarations level of Form1.

8. Add the following code to the Command1_Click event:

 Sub Command1_Click ()
 ' The ScaleMode must be set to pixels for the PrintWindow
 ' routine to print correctly.
 Printer.ScaleMode = 3

 ' Change MousePointer to an hourglass.
 Screen.MousePointer = 11

 ' Initialize the printer.

 Printer.Print ""

 ' Copy the image of the form to the printer.
 ' To print Command1 instead, you can substitute Command1.hWnd for
 ' Form1.hWnd as the last argument.
 ' Enter the following statement as one, single line:
 r = PrintClient(Printer.hDC, 100, 100, Printer.ScaleWidth,
 Printer.ScaleHeight, Form1.hWnd)

 ' Display an error if the return value from PrintWindow is zero.
 If Not r Then
 MsgBox "Unable to print the form"
 Else
 Printer.EndDoc
 End If

 Screen.MousePointer = 0
 End Sub

9. Add the following code to the Command2_Click event:

 Sub Command2_Click ()
 ' The ScaleMode must be set to pixels for the PrintWindow
 ' routine to print correctly.
 Printer.ScaleMode = 3

 ' Change MousePointer to an hourglass.
 Screen.MousePointer = 11

 ' Initialize the printer.
 Printer.Print ""

 ' Copy the image of the form to the printer.
 ' To print Command1 instead, you can substitute Command1.hWnd for
 ' Form1.hWnd as the last argument.
 ' Enter the following statement as one, single line:
 r = PrintWindow(Printer.hDC, 100, 100, Printer.ScaleWidth,
 Printer.ScaleHeight, Form1.hWnd)

 ' Display an error if the return value from PrintWindow is zero.
 If Not r Then
 MsgBox "Unable to print the form"
 Else
 Printer.EndDoc
 End If

 Screen.MousePointer = 0
 End Sub

10. Run the program.

Choose the Command1 button to print only the client area of Form1. Choose
the Command2 button to print the entire area of the form.

Note that you can print any of the forms or controls in a project by using
this method. Control the size and placement of the forms by changing the
second, third, fourth, and fifth parameters of the call to StretchDIBits.

In the example shown above, the form or control is sized in proportion to
the size of the screen.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgPrint

How to Play a Waveform (.WAV) Sound File in Visual Basic
Article ID: Q86281
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
--

SUMMARY
=======

You can play a waveform (.WAV) sound file from Microsoft Visual Basic for
Windows by calling the sndPlaySound API function from the MMSYSTEM.DLL
file. In order to be able to call the sndPlaySound API function, you
must be using either Microsoft Windows, version 3.1 or the Microsoft
Multimedia Extensions for Windows, version 3.0. The following information
discusses the sndPlaySound parameters, and includes an example of how to
use this function from Visual Basic for Windows.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

To use the sndPlaySound API from within a Visual Basic for Windows
application, you must Declare the sndPlaySound function in either the
global module or from within the Declarations section of your Code
window. To declare the function, enter the following Declare statement
as one, single line:

 Declare Function sndPlaySound Lib "MMSYSTEM.DLL"
 (ByVal lpszSoundName$, ByVal wFlags%) As Integer

The parameters listed above are explained as follows:

 Parameters

 lpszSoundName$

 Specifies the name of the sound to play. The function first
 searches the [sounds] section of the WIN.INI file for an
 entry with the specified name, and plays the associated
 waveform sound file. If no entry by this name exists, then it
 assumes the specified name is the name of a waveform sound
 file. If this parameter is NULL, any currently playing sound
 is stopped.

 wFlags%

 Specifies options for playing the sound using one or more of
 the following flags:

 SND_SYNC
 The sound is played synchronously and the function does
 not return until the sound ends.

 SND_ASYNC
 The sound is played asynchronously and the function
 returns immediately after beginning the sound.

 SND_NODEFAULT
 If the sound cannot be found, the function returns
 silently without playing the default sound.

 SND_LOOP
 The sound will continue to play repeatedly until
 sndPlaySound is called again with the lpszSoundName$
 parameter set to null. You must also specify the
 SND_ASYNC flag to loop sounds.

 SND_NOSTOP
 If a sound is currently playing, the function will
 immediately return False without playing the requested
 sound.

The sndPlaySound function returns True (-1) if the sound is played,
otherwise it returns False (0).

The following code example illustrates how to use the sndPlaySound
API function to play a waveform (.WAV) sound file.

Add the following code to the global module or general Declarations
section of your form:

 ' The following Declare statement must appear on one line.
 Declare Function sndPlaySound Lib "MMSYSTEM.DLL" (ByVal
 lpszSoundName$, ByVal wFlags%) As Integer

 Global Const SND_SYNC = &H0000
 Global Const SND_ASYNC = &H0001
 Global Const SND_NODEFAULT = &H0002
 Global Const SND_LOOP = &H0008
 Global Const SND_NOSTOP = &H0010

Add the following line of code to the appropriate function or subroutine
in your application:

 SoundName$ = "c:\windows\tada.wav"
 wFlags% = SND_ASYNC Or SND_NODEFAULT
 x% = sndPlaySound(SoundName$,wFlags%)

Note that if a large waveform (.WAV) sound file is specified and the
above call fails to play the file in its entirety, you will need to
adjust the settings on the appropriate sound driver.

For more information on adjusting the sound driver settings, query
on the following words in the Microsoft Knowledge Base:

 Speaker and Sound and Driver and Settings and .Wav and File

Reference(s):

"Microsoft Multimedia Development Kit: Programmer's Reference"
version 1.0

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgOther

VB for Windows Line Method Does Not Paint Last Pixel
Article ID: Q86770

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 2.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

The Line method does not paint the last pixel specified in the
coordinates passed to it. Therefore, when trying to draw one line that
ends on top of another, you must add to the coordinates.

STATUS
======

This behavior is by design and is the same as the LineTo statement in
the Windows API; however, this information is not included in the
Visual Basic documentation or Help menu.

MORE INFORMATION
================

Steps to Reproduce Behavior

1. Start Visual Basic, or from the File menu, choose New Project (ALT,
 F, N) if Visual Basic is already running. Form1 is created by default.

2. Put a picture box (Picture1) on Form1.

3. Set the BackColor property of the picture to blue (&H00C00000&) to
 view the picture box more clearly.

4. Add the following code to the Picture1.Click event:

 Sub Picture1_Click ()
 Picture1.Line (100, 100)-(500, 100)
 Picture1.Line (500, 10)-(500, 200), QBColor(15)
 Picture1.Line (100, 100)-(500, 100)
 End Sub

5. Press F5 to start the program. Click the picture box.

You may expect that the third line statement should overwrite the second
line and the point of intersection should be black. However, no
intersection occurs because the last pixel of the third line is not drawn,
so the third line statement does not overwrite the second line at all.

Additional reference words: 1.00 2.00
KBCategory:

KBSubcategory: APrgGrap

How to Invoke Search in Windows Help from Visual Basic Program
Article ID: Q86771

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 2.0
- Microsoft Visual Basic programming system for Windows, version 1.0
- Microsoft Windows versions 3.0 and 3.1

SUMMARY
=======

You can invoke the Search feature of the Windows version 3.0 and 3.1 Help
engine from a Visual Basic program. To do this, call the Windows API
function WinHelp and pass the constant HELP_PARTIALKEY (&H105) as the
wCommand parameter and any string that is a NON-valid topic as the
dwData parameter.

MORE INFORMATION
================

Step-by-Step Example

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. In GLOBAL.BAS (or the .BAS file of your choice in Visual Basic version
 2.0), add this code:

 Global Const HELP_PARTIALKEY = &H105
 ' Enter the following Declare statement entirely on one, single line.
 Declare Function WinHelp Lib "User"(ByVal hWnd As Integer,
 ByVal lpHelpFile As String, ByVal wCommand As Integer,
 ByVal dwData As Any) As Integer

3. In the Form1 Click event procedure, add this code:

 Sub Form_Click ()
 DummyVal$ = ""
 ' Enter the following function call entirely on one, single line:
 Temp% = WinHelp(Form1.hWnd, "c:\Windows\winhelp.hlp",
 HELP_PARTIALKEY, DummyVal$)
 End Sub

4. Press F5 to run this example. Click the form.

Additional reference words: 1.00 2.00
KBCategory:
KBSubcategory: APrgOther

How to Use LZCOPYFILE Function to Decompress or Copy Files
Article ID: Q88257

The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
 - Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

Included with Windows versions 3.0 and 3.1 is a dynamic link library
(DLL) named LZEXPAND.DLL that contains routines to manipulate compressed
files. The functions in LZEXPAND.DLL manipulate files that compressed by
the COMPRESS.EXE utility supplied with the Windows Software Development
Kit (SDK) versions 3.0 and 3.1. These functions allow you to expand
(decompress) a compressed file.

The following example demonstrates how to use the LZCOPYFILE function
included in LZEXPAND.DLL. This function is used to expand a compressed
file or to copy a file.

MORE INFORMATION
================

The following is a small program that will copy or decompress a file
in Visual Basic for Windows:

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. In the general Declarations section of Form1, add the following
 declaration entirely on one, single line:

 Declare Function LZCOPY Lib "LZEXPAND.DLL" (ByVal SOURCEHANDLE As
 Integer, ByVal DESTHANDLE As Integer) As Long

3. In the Form1 Click event procedure, add the following code:

 Open "Source" For Input As #1 ' Insert the name and path of the
 ' file to be decompressed, or copied.

 Open "Dest" For Output As #2 ' Insert the name and path of the
 ' destination file here.
 SOURCEHANDLE% = Fileattr(1,2)
 DESTHANDLE% = Fileattr(2,2)
 RETURNCODE& = Lzcopy(Sourcehandle%, Desthandle%)
 Close

4. From the Run menu, choose Start (ALT, R, S) to run the program.

The return code will be set to the number of bytes copied or set to the
following value if an error occurs:

 -1 invalid input handle
 -2 invalid output handle
 -3 corrupt compressed file format
 -4 out of space for output file
 -5 insufficient memory for LZFile struct
 -6 bad global handle
 -7 input parameter out of range
 -8 compression algorithm not recognized

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgOther

How to Hide a Non-Visual Basic Window or Icon
Article ID: Q88476
--
The following information applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
 - Microsoft Professional Toolkit for Visual Basic 1.0 for Windows
--

SUMMARY
=======

Occasionally, it is desirable to hide a window from a Visual Basic for
Windows application that is not owned by the Visual Basic for Windows
application. For example, when using the GRAPH.VBX custom control provided
with the Microsoft Professional Toolkit for Visual Basic version 1.0 for
Windows and with the Professional Edition of Visual Basic version 2.0 for
Windows, an icon appears at the bottom of the screen for the graphics
server. This icon represents a program that is a support module for the
graph control and so serves no direct purpose for the user. You can hide
the icon by issuing two Windows API calls.

MORE INFORMATION
================

The FindWindow and ShowWindow Windows APIs can be used to hide a
window. FindWindow uses the title on the top of the window to get a
handle that can then be used by ShowWindow. ShowWindow can perform
several different operations. In this case it makes a window invisible.

The following example hides the Graphics Server icon started by the Graph
control. You can use this same technique to hide any window currently
active in Windows.

Step-by-Step Example

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose Add File. In the Files box, select the
 GRAPH.VBX custom control file. The GRAPH tool appears in the Toolbox.
 This starts the Graphics Server at the bottom of your screen.

3. Add a command button (Command1) to Form1.

4. Enter the following code into the global module taking care to enter
 each Declare statement entirely on one, single line:

 Declare Function FindWindow Lib "User" (ByVal lpClassName As Any,
 ByVal lpWindowName As Any) As Integer
 Declare Function ShowWindow Lib "User" (ByVal hWnd As Integer,
 ByVal nCmdShow As Integer) As Integer

5. Enter the following code into the Command1 click event procedure:

 Sub Command1_Click()
 Dim Handle As Integer
 Dim WindowName As String

 WindowName = "Graphics Server"
 Const SW_Hide = 0

 Handle = FindWindow(0&, WindowName)
 X% = ShowWindow(Handle, SW_Hide)
 End Sub

6. Press F5 to run the application.

When you choose the Command1 button, the Graphics Server icon becomes
invisible.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgOther

How to Compare User-Defined Type Variables in Visual Basic
Article ID: Q88551

The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
 - Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

The relational operators (=, <>, and so on) do not support the comparison
of user-defined type variables. However, you can compare user-defined type
variables by converting the variables to strings, and then comparing the
strings. The Windows version 3.1 API hmemcpy can be used to convert a
user-defined type variable to a string.

The hmemcpy API was introduced in Microsoft Windows version 3.1, so this
technique requires Windows version 3.1 or later.

MORE INFORMATION
================

If you attempt to compare user-defined type variables using the relational
operators, the error "Type mismatch" is displayed.

The following steps demonstrate how to compare user-defined type variables
by first converting the variables to strings and then comparing the strings
by using the relational operators.

Step-by-Step Example

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Enter the following code into the global module:

 Type myType
 f1 As String * 2
 f2 As Single
 End Type

 ' Enter the following Declare statement entirely as one, single line:
 Declare Sub hmemcpy Lib "kernel" (hpvDest As Any, hpvSource As Any,
 ByVal cbCopy As Long)

3. Enter the following code into the general Declarations section of
 Form1:

 ' type2str converts a user-defined type variable to a string.
 Function type2str (t As myType) As String
 Dim s As String
 s = Space$(Len(t))

 Call hmemcpy(ByVal s, t, Len(t))
 type2str = s
 End Function

4. Enter the following code into the Form1 Click event procedure:

 Sub Form_Click ()
 Dim x As myType
 Dim y As myType

 x.f1 = "ab"
 x.f2 = 2
 y = x

 If type2str(x) = type2str(y) Then
 Print "x = y"
 Else
 Print "x <> y"
 End If

 y.f1 = "ba"
 If type2str(x) > type2str(y) Then
 Print "x > y"
 Else
 Print "x <= y"
 End If
 End Sub

5. Press the F5 key to run the program.

The program prints "x = y" and "x <= y" on Form1.

Additional reference words: 1.00 2.00 3.00 3.10
KBCategory:
KBSubcategory: APrgOther

How to Extract a Windows Program Icon -- Running or Not
Article ID: Q88944

The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
 - Microsoft Visual Basic programming system for Windows, version 1.0
 - Microsoft Windows versions 3.0 and 3.1

SUMMARY
=======

The example program included below demonstrates how to extract an
icon from a Windows program, whether it is currently running or not.
There are two different techniques depending on whether the program is
run in Windows version 3.0 or 3.1. The API function ExtractIcon,
introduced in Windows version 3.1, simplifies the process of extracting
the icon. In Windows version 3.0, a different approach is required.
Both methods are illustrated below.

MORE INFORMATION
================

The example program shown below displays the icon of an application in a
picture box. The example demonstrates the handling of the hDC property of
the picture box control, specifically the relationship between the Refresh
method, the Image property, and the AutoRedraw property. The code in the
Command3_Click event demonstrates how to transfer the captured icon image
to the Picture property of a picture box (Picture2).

Step-by-Step Example

1. Start Visual Basic, or from the File menu, choose New Project (ALT,
 F, N) if Visual Basic is already running. Form1 is created by default.

2. Create the following controls with the default property settings:

 - Picture1
 - Picture2
 - Command1
 - Command2
 - Command3

3. Place the code below into the general Declarations section of Form1
 taking care to enter each Declare statement on one, single line:

 ' API declarations used in Windows version 3.0 method.
 Declare Function GetActiveWindow Lib "User" () As Integer
 Declare Function PostMessage Lib "User" (ByVal hWnd As Integer,
 ByVal wMsg As Integer, ByVal wParam As Integer, ByVal lParam As Any)
 As Integer
 Declare Function FindWindow Lib "User" (ByVal lpClassName As Any,

 ByVal lpWindowName As Any) As Integer
 Declare Function LoadLibrary Lib "Kernel" (ByVal lpLibFileName
 As String) As Integer
 Declare Function GetWindowWord Lib "User" (ByVal hWnd As Integer,
 ByVal nIndex As Integer) As Integer
 Declare Function LoadIcon Lib "User" (ByVal hInstance As Integer,
 ByVal lpIconName As Any) As Integer

 ' API declarations used in Windows version 3.1 method.
 Declare Function GetModuleHandle Lib "Kernel" (ByVal lpModuleName
 As String) As Integer
 Declare Function GetClassWord Lib "User" (ByVal hWnd As Integer,
 ByVal nIndex As Integer) As Integer
 Declare Function ExtractIcon Lib "SHELL" (ByVal hInst As Integer,
 ByVal lpszexename As String, ByVal hIcon As Integer) As Integer

 ' API declaration used by both Windows version 3.0 and 3.1 methods.
 Declare Function DrawIcon Lib "User" (ByVal hDC As Integer, ByVal x
 As Integer, ByVal Y As Integer, ByVal hIcon As Integer) As Integer

 ' Window field offsets for GetClassWord() and GetWindowWord().
 Const GWW_HINSTANCE = (-6)
 Const GCW_HMODULE = (-16)
 ' Constants for SendMessage and PostMessage.
 Const WM_CLOSE = &H10
 ' If using Visual Basic version 1.0, remove the single quotation mark
 ' from the following line of code:
 ' Const NULL = 0&

4. Place the following code in the Form_Load event of Form1:

 Sub Form_Load ()
 Command1.Caption = " 3.0 method "
 Command2.Caption = " 3.1 method "
 Command3.Caption = " Transfer "
 Form1.Caption = " Example of Extracting an Icon"
 Form1.Width = Screen.Width * 2 / 3
 Form1.Height = Screen.Height / 2

 ' Center the form on the screen.
 ' Enter the following two lines as one, single line:
 Form1.Move (Screen.Width - Form1.Width) / 2,
 (Screen.Height - Form1.Height) / 2
 ' Size and position the controls dynamically at run time.
 ' Enter the following two lines as one, single line:
 Picture1.Move 0, 0, Form1.Width / 2,
 Form1.Height - Command1.Height * 4
 ' Enter the following two lines as one, single line:
 Picture2.Move Form1.Width / 2, 0, Form1.Width,
 Form1.Height - Command2.Height * 4
 ' Enter the following two lines as one, single line:
 Command1.Move (Form1.Width / 2 - Command1.Width) / 2,
 Form1.Height - Command1.Height * 4
 ' Enter the following two lines as one, single line:
 Command2.Move (Form1.Width / 2 - Command1.Width) / 2,
 Form1.Height - Command1.Height * 3
 ' Enter the following two lines as one, single line:

 Command3.Move (Form1.Width * 3 / 2 - Command2.Width) / 2,
 Form1.Height - Command2.Height * 4
 End Sub

5. Place the following code in the Command1_Click event. Configure the code
 to match your situation by removing the comment apostrophe from one of
 the three methods and adding comment apostrophes to the other two -- to
 effectively enable one of the methods and disable the other two.

 Sub Command1_Click ()
 Dim hInstance As Integer, handle As Integer, hIcon As Integer
 Picture1.Picture = LoadPicture("") ' clear any previous image

 ' Three alternative ways to obtain the handle of the top-level window
 ' of the program whose icon you want to extract:

 ' Method 1: If the program is currently running and you don't know
 ' the class name.
 ' AppActivate ("Program Manager") ' Set focus to application.
 ' handle = GetActiveWindow() ' Get handle to window.
 ' Command1.SetFocus ' Return focus to button.

 ' Method 2: If program is running and you know the class name.
 ' Handle = FindWindow("Progman", "Program Manager")

 ' Method 3: If program is not running, use path and filename.
 ' Not_Running_Way "sysedit.exe" ' Call sub at general level.
 ' Exit Sub ' Bypass remaining code in this Sub.

 ' Now you have the handle -- use it to obtain the instance handle.
 hInstance = GetWindowWord(handle, GWW_HINSTANCE)
 Picture2.Print "3.O method "
 Picture2.Print "handle="; Hex$(handle)
 Picture2.Print "hInstance= "; Hex$(hInstance) ' Sanity check.

 ' Iterate through icon resource identifier values
 ' until you obtain a valid handle to an icon.
 Do
 hIcon = LoadIcon(hInstance, n&)
 n& = n& + 1
 Loop Until hIcon <> 0
 Picture2.Print "hIcon= "; Hex$(hIcon)
 Picture1.AutoRedraw = -1 ' Make hDC point to persistent bitmap.
 r = DrawIcon(Picture1.hDC, 19, 19, hIcon) 'Draw the icon.
 Picture1.Refresh ' Refresh from persistent bitmap to Picture.
 End Sub

6. Place the following code in the Command2_Click event. Note that the
 first two methods commented out are provided for information and
 contrast to the preferred method, method 3.

 Sub Command2_Click ()
 Dim myhInst As Integer, hIcon As Integer
 Picture1.Picture = LoadPicture("") ' Clear the previous image.

 ' Listed below are three alternative methods that can be used to
 ' obtain the hInst of your program's module handle.

 ' Method 1: Use only with .EXE version of your program.
 ' myhInst = GetModuleHandle("Project1.exe")

 ' Method 2: Use only with your program running in the environment.
 ' myhInst = GetModuleHandle("VB.EXE")

 ' Method 3: The slick way that works in either case.
 myhInst = GetClassWord(hWnd, GCW_HMODULE)

 ' The path and filename of program to extract icon from.
 lpzxExeName$ = "moricons.dll" ' Can also use an .EXE file here.

 ' Get handle to icon.
 hIcon = ExtractIcon(myhInst, lpzxExeName$, 0)
 Picture2.Print "3.1 method "
 Picture2.Print "myhInst= "; Hex$(myhInst) ' Sanity check.
 Picture2.Print "hIcon= "; Hex$(hIcon) ' Sanity check.

 Picture1.AutoRedraw = -1 ' Make the picture's hDC point to the
 ' persistent bitmap.
 r% = DrawIcon(Picture1.hDC, 19, 19, hIcon)
 Picture1.Refresh ' Cause Windows to paint from the persistent bitmap
 ' to show the icon.
 End Sub

7. Place the following code in the form's general Declarations section:

 Sub Not_Running_Way (appname As String)
 Dim hInstance As Integer, handle As Integer, hIcon As Integer
 Dim hWndShelledWindow As Integer
 Picture1.Picture = LoadPicture("") ' Clear any previous image.
 hInstance = Shell(appname, 2)
 Picture2.Print "3.0 method-application not running"
 Picture2.Print "hInstance= "; Hex$(hInstance) ' Check return.
 r = DoEvents() ' Allow time for shell to complete.

 ' The following technique is from another article that explains
 ' how to determine when a shelled process has terminated. It is
 ' used here to obtain the correct handle to the window of the
 ' application whose icon is being extracted. The handle is needed
 ' to close the application after the extraction is complete.
 TimeOutPeriod = 5
 fTimeOut = 0 ' Set to false.
 s! = Timer
 Do
 r = DoEvents()
 hWndShelledWindow = GetActiveWindow()
 ' Set timeout flag if time has expired.
 If Timer - s! > TimeOutPeriod Then fTimeOut = True
 Loop While hWndShelledWindow = Form1.hWnd And Not fTimeOut
 ' If a timeout occurred, display a timeout message and terminate.
 If fTimeOut Then
 MsgBox "Timeout waiting for shelled application", 16
 Exit Sub
 End If

 ' Iterate through icon resource identifier values
 ' until you obtain a valid handle to an icon.
 Do
 hIcon = LoadIcon(hInstance, n&)
 n& = n& + 1
 Loop Until hIcon <> 0

 Picture2.Print "HICON= "; Hex$(hIcon)
 Picture1.AutoRedraw = -1 ' Make hDC point to persistent bitmap.
 r = DrawIcon(Picture1.hDC, 19, 19, hIcon)
 Picture2.Print "return from DrawIcon="; r
 Picture1.Refresh ' Refresh from persistent bitmap to picture.

 ' Now post a message to the window to close the application.
 r = PostMessage(hWndShelledWindow, WM_CLOSE, NULL, NULL)
 Picture2.Print "return from PostMessage="; r
 End Sub

8. Place the following code in the Command3_Click event:

 Sub Command3_Click ()
 ' This code transfers the extracted icon's image to Picture2's
 ' Picture property and demonstrates that DrawIcon assigns the image
 ' to the hDC of Picture1, which points to the persistent bitmap
 ' (Image property), not to the Picture property.
 Picture2.Picture = LoadPicture("") ' Clear old icon.
 Picture2.currenty = 0 ' Reset coordinates for printing
 ' return values.
 Picture2.currentx = 0
 Picture2.Picture = Picture1.image ' Transfer persistent bitmap
image
 ' to the Picture property.
 End Sub

9. Press ALT F, V to save the project. Then press F5 to run the program.
 Click "3.0 method" to run the code that works in Windows version 3.0.
 Click "3.1 method" to run the code that works in Windows version 3.1.
 Click Command3 to copy the icon in Picture1 to Picture2 so that the
 icon can be accessed as Picture2.Picture.

 Both methods extract the first icon in the file. This can be
 modified to find the second or succeeding icons by:

 - Storing the value of n& in the Do Loop from the first extraction
 and plugging that in as the starting point of the next search
 in Windows version 3.0.

 - Or -

 - Setting the third parameter of the ExtractIcon function to a
 specific index number in Windows version 3.1.

 You could do this in a loop to find and examine each icon in the file.

 The Windows version 3.0 method may take slightly longer to iterate and
 find the icon resource ID number.

Reference(s):

"Microsoft Windows Software Development Kit Volume 2"
"Microsoft Press Programmer's Reference Library Volume 2"

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgOther

Diagnosing "Error in loading DLL" with LoadLibrary
Article ID: Q90753
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
--

SUMMARY
=======

The error "Error in loading DLL" (code 48) occurs when you call a
dynamic-link library (DLL) procedure and the file specified in the
procedure's Declare statement cannot be loaded. You can use the Microsoft
Windows API function LoadLibrary to find out more specific information
about why a DLL fails to load.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

The API function LoadLibrary loads a DLL and returns either a handle or
an error code. If the return value is less than 32, it indicates one of
the errors listed below. A return value greater than or equal to 32
indicates success and you should call the FreeLibrary function to unload
the library.

LoadLibrary Error Codes

 0 System was out of memory, executable file was corrupt, or
 relocations were invalid.

 2 File was not found.

 3 Path was not found.

 5 Attempt was made to dynamically link to a task, or there was a
 sharing or network-protection error.

 6 Library required separate data segments for each task.

 8 There was insufficient memory to start the application.

10 Windows version was incorrect.

11 Executable file was invalid. Either it was not a Windows
 application or there was an error in the .EXE image.

12 Application was designed for a different operating system.

13 Application was designed for MS-DOS 4.0.

14 Type of executable file was unknown.

15 Attempt was made to load a real-mode application (developed for
 an earlier version of Windows).

16 Attempt was made to load a second instance of an executable file
 containing multiple data segments that were not marked read-only.

19 Attempt was made to load a compressed executable file. The file
 must be decompressed before it can be loaded.

20 Dynamic-link library (DLL) file was invalid. One of the DLLs
 required to run this application was corrupt.

21 Application requires Microsoft Windows 32-bit extensions.

Steps to Create Example Program

The following program demonstrates how to call LoadLibrary to load a
library and display a resulting error code.

1. Run Visual Basic for Windows, or from the File menu, choose New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 is created by default.

2. Enter the following code into the general declarations section:

 Declare Function LoadLibrary Lib "kernel" (ByVal f$) As Integer
 Declare Sub FreeLibrary Lib "Kernel" (ByVal h As Integer)

3. Enter the following code into the Form Click event handler:

 Sub Form_Click ()
 Dim hInst As Integer
 ' Enter the name of your DLL file inside the quotes below.
 ' The file WIN.COM is not a valid DLL and demonstrates an error.
 hInst = LoadLibrary("win.com")
 If hInst > 32 Then
 MsgBox "LoadLibrary success"
 FreeLibrary (hInst)
 Else
 MsgBox "LoadLibrary error " + Format$(hInst)
 End If
 End Sub

4. Press the F5 key to run the program. Then click Form1. The program
 displays the error code returned from LoadLibrary. Look up this
 error code in the list of errors above to find an explanation.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgOther

Converting an Icon (.ICO) to Bitmap (.BMP) Format
Article ID: Q90872

The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
 - Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

You can convert a Windows icon file (.ICO) to a Windows bitmap (.BMP)
file by storing the icon in a picture box, and then using the SavePicture
statement with the Image property of the picture control.

MORE INFORMATION
================

You may wish to convert an icon format file to the bitmap format
to perform operations that cannot be performed on icon format files, such
as loading the image into Microsoft Windows Paintbrush.

To convert an icon format file to a bitmap format file, assign the
icon to the Picture property of a picture box property (at design-time
or run-time). At run-time, use the following statement:

 SavePicture Picture1.Image, "filename.bmp"

When you convert an icon to a bitmap, you lose device independence for
resolution characteristics. Windows bitmap format files, which usually
have a .BMP extension, represent an image with device independent color
information. Windows icon files, which usually have an .ICO extension,
can contain information for both color and resolution device independence.

The steps listed below demonstrate how to convent an icon format file to a
bitmap format file:

1. Run Visual Basic for Windows, or from the File menu, choose New Project
 (press ALT, F, N) if Visual Basic for Windows is already running.
 Form1 will be created by default.

2. Place a picture box named Picture1 on Form1.

3. Enter the following code into the form's Click event:

 Sub Form_Click ()
 Picture1.AutoSize = -1
 Picture1.Picture = LoadPicture("icons\arrows\arw01dn.ico")
 SavePicture Picture1.Image, "arw01dn.bmp"
 End Sub

4. Press the F5 key to run the program. Click Form1 to convert the file.

Additional Reference(s):

Chapter 19 File Formats of "Microsoft Windows Programmer's Reference"

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgGrap

Visual Basic 3.0 Programming Questions & Answers
Article ID: Q92550

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic
 programming system for Windows, version 3.0

1. Q. I use the picture control to group other controls. However when
 I select the picture control, the other controls do not remain on
 top of the picture control. How can I correct this problem?

 A. This problem occurs if you place the controls on the form in the
 same place as the picture control but not in the picture control.
 itself. To group the controls in a picture control, you must first
 select the Picture control and then draw the desired control within
 the Picture control. For more information, please see Chapter 3 of
 the "Microsoft Visual Basic version 3.0 Programmer's Guide."

2. Q. How can I make calls from Visual Basic to the functions in the
 Windows Application Programming Interface (API) or other dynamic
 link libraries (DLLs)?

 A. To call a subroutine or function from one of the Windows APIs
 or any other DLL, you need to first provide a Declare statement for
 that subroutine or function in your Visual Basic application. The
 exact syntax for the declaration for each Windows API function
 can be found in the WIN31API.HLP help file included with the
 Professional Edition of Visual Basic. For more information, please
 see Chapter 24 of the "Microsoft Visual Basic version 3.0
 Programmer's Guide."

3. Q. Is there a reference available that lists the correct Visual Basic
 declarations for the Multimedia API functions?

 A. Yes, the file is called WINMMSYS.TXT. It comes with the Professional
 edition of Visual Basic. You can find it in the \VB\WINAPI directory.

4. Q. Is there a reference available that lists the correct Visual Basic
 declarations for the Windows for Workgroups API functions?

 A. No, at this time such a file is not available from Microsoft.
 However, you can obtain a copy of the Windows for Workgroups SDK from
 the WINEXT forum on CompuServe.

5. Q. I followed the examples in the manuals and in the help file on how to
 use Domain functions such as DSum and DCount, but I keep receiving
 this error:

 Reference to undefined function or array.

 Why?

 A. The examples provided for the Domain Aggregate functions are

 incorrect. These functions must be used within an SQL Statement
 just as SQL Aggregate functions such as Sum and Count are used.
 Please look at the SQL Aggregate examples to see how to use these
 functions within an SQL Statement. For more information, query
 on the following words in the Microsoft Knowledge Base:

 DOMAIN and FUNCTION and SQL

6. Q. I want to sort the records referenced by the Data Control in my
 application. I tried to use the Index Property as described in
 the example in the manual and in the help file, but I receive the
 following error message:

 Property 'Index' not found

 Why?

 A. The examples provided in the Index Property are incorrect. The Index
 property does not apply to the Data Control. To sort the records
 referenced by the Data Control, use the ORDER BY Clause within an
 SQL Statement in the RecordSource property of the Data Control.

7. Q. Is there a better way than the Print Form method to print Forms
 and Controls in a program?

 A. Yes, it is possible to print forms and/or controls and specify
 the printed size by using various Windows API function calls.
 This process is documented in Microsoft Knowledge Base article
 Q85978. You can also find this article in the top 10 Microsoft
 Knowledge Base articles that are in the Visual Basic help file.
 To view these articles, select "Technical Support" from the
 Contents screen in the Visual Basic help file. Then select
 "Knowledge Base Articles on Visual Basic."

Additional reference words: 3.00 ivrfax fasttips
KBCategory:
KBSubcategory: PrgCtrlsStd APrgOther TlsCDK

How to Get Windows 3.1 Version Number in VB with GetVersion
Article ID: Q92936

This information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 1.0, 2.0, and 3.0

SUMMARY
=======

From a Visual Basic program, you can determine the Windows version by
calling the Windows 3.1 API function GetVersion from the Windows kernel
module. The GetVersion function can help your program accommodate
differences in the way API calls operate between different versions of
Windows (such as differences between API parameters or return values).

MORE INFORMATION
================

The code example below shows how to make the GetVersion function call,
which takes no parameters. The return value is a DWORD (double-word) value,
which translates into a long integer (32-bit value) in Visual Basic.

The GetVersion function changed in Windows 3.1 from a WORD value to
a DWORD (double-word) value. The low-order word returns the major (low
byte) and minor (high byte) version numbers of Windows, and the high-
order word returns the major (high byte) and minor (low byte) versions
of MS-DOS, if the function is successful.

For details on the GetVersion function, see pp. 469-470 in the "Microsoft
Windows Software Development Kit Programmer's Reference Vol. 2: Functions."

Step-by-Step Example

1. Create a new form and add two text boxes (Text1 and Text2) and a command
 button (Command1).

2. Add the following declaration to the General Declarations section:

 Declare Function GetVersion Lib "kernel" () As Long

3. Add following code to the command button's Click event:

 Sub Command1_Click ()
 I& = GetVersion()

 Windows& = I& And &HFFFF&
 Dos& = (I& And &HFFFF0000) / 65536

 ' The low byte is derived by masking off high byte.
 Lowbyte$ = Str$(Dos& And &HFF)
 ' The high byte is derived by masking off low byte and shifting.

 Highbyte$ = LTrim$(Str$((Dos& And &HFF00) / 256))
 ' Assign MS-DOS version to Text property.
 Text1.Text = Highbyte$ + "." + Lowbyte$

 Lowbyte$ = Str$(Windows& And &HFF)
 ' The high byte is derived by masking off low byte and shifting.
 Highbyte$ = LTrim$(Str$((Windows& And &HFF00) / 256))
 ' Assign Windows version to Text property.
 Text2.Text = Lowbyte$ + "." + Highbyte$
 End Sub

REFERENCES
==========

"Microsoft Windows Software Development Kit Programmer's Reference Vol. 2:
Functions", pp. 469-470.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgOther

How to Establish a Network DDE Link Using Visual Basic
Article ID: Q93160
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
--

SUMMARY
=======

This article demonstrates how to establish a network Dynamic Data Exchange
(DDE) link between two computers running Microsoft Windows for Workgroups.

MORE INFORMATION
================

Under DDE, a destination (or client) application sends commands through DDE
to the source (or server) application to establish a link. Through DDE, the
source provides data to the destination at the request of the destination
or accepts information at the request of the destination. When you use DDE
with Windows version 3.0 or 3.1 based applications, the source and
destination applications are both located on the same computer.

When you use Network DDE with Windows for Workgroups based applications,
DDE functions exactly the same way as standard DDE except that the source
and destination applications are located on different computers.

Before establishing a network DDE link, you must first establish a network
DDE share for the conversation by calling the API NDdeShareAdd() function
located in the NDDEAPI.DLL file. Here is the Visual Basic declaration:

' Enter the following as one, single line:
Declare Function NDdeShareAdd Lib "NDDEAPI.DLL" (Server As Any, ByVal Level
 As Integer, ShareInfo As NDDESHAREINFO, ByVal nSize As Long) As Integer

Enter the entire statement as a single line. The first parameter is always
a 0 and is passed with ByVal 0& from Visual Basic. The second parameter is
always 2. The next parameter is a filled ShareInfo structure (given below).
The last parameter is the size of the ShareInfo structure.

Here is The structure of the NDDESHAREINFO structure:

 Type NDDESHAREINFO
 szShareName As String * MAX_NDDESHARENAME_PLUSONE
 lpszTargetApp As Long 'LPSTR lpszTargetApp
 lpszTargetTopic As Long 'LPSTR lpszTargetTopic
 lpbPassword1 As Long 'LPBYTE lpbPassword1
 cbPassword1 As Long 'DWORD cbPassword1;

 dwPermissions1 As Long 'DWORD dwPermissions1;
 lpbPassword2 As Long 'LPBYTE lpbPassword2;
 cbPassword2 As Long 'DWORD cbPassword2;

 dwPermissions2 As Long 'DWORD dwPermissions2;
 lpszItem As Long 'LPSTR lpszItem;
 cAddItems As Long 'LONG cAddItems;
 lpNDdeShareItemInfo As Long
 End Type

The following table describes each field of the NDDESHAREINFO type:

Field Name Purpose

szShareName Name of the share to add.
lpszTargetApp Pointer to null-terminated string containing the
 service or application name.
lpszTargetTopic Pointer to null-terminated string holding the topic name
lpbPassword1 Pointer to the read-only password -- uppercase, null-
 terminated string. If null, pass null string, not zero.
cbPassword1 Length of read-only password
dwPermissions1 Full access password
cbPassword2 Length of the full access password
dwPermissions2 Permissions allowed by the full access password

Here are the permissions allowed for dwPermissions:

Name Value Function

NDDEACCESS_REQUEST &H1 Allows LinkRequest
NDDEACCESS_ADVISE &H2 Allows LinkAdvise
NDDEACCESS_POKE &H4 Allows LinkPoke
NDDEACCESS_EXECUTE &H8 Allows LinkExecute
NDDEACCESS_START_APP &H10 Starts source application on connect

Here are the possible return values from NDdeShareAdd():

Name Value Meaning

NDDE_NO_ERROR 0 No error.
NDDE_BUF_TOO_SMALL 2 Buffer is too small to hold information.
NDDE_INVALID_APPNAME 13 Application name is not valid.

NDDE_INVALID_ITEMNAME 9 Item name is not valid.
NDDE_INVALID_LEVEL 7 Invalid level; nLevel parameter must be 2.
NDDE_INVALID_PASSWORD 8 Password is not valid.
NDDE_INVALID_SERVER 4 Computer name is not valid; lpszServer
 parameter must be NULL.
NDDE_INVALID_SHARE 5 Share name is not valid.
NDDE_INVALID_TOPIC 10 Topic name is not valid.
NDDE_OUT_OF_MEMORY 12 Not enough memory to complete request.
NDDE_SHARE_ALREADY_EXISTS 15 Existing shares cannot be replaced.

There are two steps to establish a network Dynamic Data Exchange (DDE) link
between two computers running Microsoft Windows for Workgroups. First,
create the DDE source application. Second, create the DDE destination
application.

Step One -- Create DDE source application

The following steps show you how to create a Visual Basic DDE source
and destination application that communicates through a network DDE link.

1. From the DDE source computer, start Visual Basic or if Visual Basic is
 already running, from the File menu, choose New Project (ALT, F, N).
 Form1 is created by default.

2. Change the LinkTopic property of Form1 to VBTopic.

3. If you are running Visual Basic version 2.0 or 3.0 for Windows, change
 the LinkMode property of Form1 to 1 - Source. In Visual Basic version
 1.0, this property is already set to 1 - Server; don't change it.

4. Add a text box (Text1) to Form1.

5. Change the Name property (CTlName in version 1.0) of Text1 to VBItem.

6. Add a timer (Timer1) to Form1.

7. From the File menu, choose New Module (ALT, F, M). Module1 is created.

8. Add the following code to the general declarations section of Module1,
 and enter all lines as a single line even though they may be shown on
 multiple lines for readability:

 ' DDE access options
 Global Const NDDEACCESS_REQUEST = &H1
 Global Const NDDEACCESS_ADVISE = &H2
 Global Const NDDEACCESS_POKE = &H4
 Global Const NDDEACCESS_EXECUTE = &H8
 Global Const NDDEACCESS_START_APP = &H10
 Global Const MAX_NDDESHARENAME_PLUSONE = 65
 Type NDDESHAREINFO
 szShareName As String * MAX_NDDESHARENAME_PLUSONE
 lpszTargetApp As Long 'LPSTR lpszTargetApp
 lpszTargetTopic As Long 'LPSTR lpszTargetTopic
 lpbPassword1 As Long 'LPBYTE lpbPassword1
 cbPassword1 As Long 'DWORD cbPassword1;
 dwPermissions1 As Long 'DWORD dwPermissions1;
 lpbPassword2 As Long 'LPBYTE lpbPassword2;
 cbPassword2 As Long 'DWORD cbPassword2;
 dwPermissions2 As Long 'DWORD dwPermissions2;
 lpszItem As Long 'LPSTR lpszItem;
 cAddItems As Long 'LONG cAddItems;
 lpNDdeShareItemInfo As Long
 End Type
 Declare Function NDdeShareAdd Lib "NDDEAPI.DLL" (Server As Any, ByVal
 Level As Integer, ShareInfo As NDDESHAREINFO,
 ByVal Size As Long) As Integer
 Declare Function lstrcpy Lib "KERNEL" (szDest As Any, szSource As Any)
 As Long
 'If using Visual Basic version 1.0, add the following declarations
 'Global Const False = 0
 'Global Const True = Not False

9. Add the following code to the Form_Load event of Form1:

 Sub Form_Load ()
 Dim r As Integer
 Dim szShareName As String ' Net DDE share name
 Dim szTargetName As String ' Net DDE target name
 Dim szTopicName As String ' Net DDE source topic name
 Dim szItemName As String
 Dim szReadOnlyPassword As String ' Read-only pw Net DDE share
 Dim szFullAccessPassword As String ' Full access password
 Dim ShareInfo As NDDESHAREINFO

 Dim ShareInfoSize As Long
 Dim Result As Integer
 szShareName = "VBDDESource$" + Chr$(0)
 szTargetName = "VBTARGET" + Chr$(0)
 szTopicName = "VBTopic" + Chr$(0)
 szItemName = Chr$(0) 'All items are allowed
 szReadOnlyPassword = Chr$(0) 'No password
 szFullAccessPassword = Chr$(0)
 'Provide the share, target, topic, and item names along with
 'passwords that identify the network DDE share
 ShareInfo.szShareName = szShareName
 ShareInfo.lpszTargetApp = lstrcpy(ByVal szTargetName,
 ByVal szTargetName)
 ShareInfo.lpszTargetTopic = lstrcpy(ByVal szTopicName,
 ByVal szTopicName)
 ShareInfo.lpszItem = lstrcpy(ByVal szItemName, ByVal szItemName)

 ShareInfo.cbPassword1 = 0
 ShareInfo.lpbPassword1 = lstrcpy(ByVal szReadOnlyPassword,
 ByVal szReadOnlyPassword)
 ShareInfo.dwPermissions1 = NDDEACCESS_REQUEST Or NDDEACCESS_ADVISE Or
 NDDEACCESS_POKE Or NDDEACCESS_EXECUTE Or NDDEACCESS_START_APP
 ShareInfo.cbPassword2 = 0
 ShareInfo.lpbPassword2 = lstrcpy(ByVal szFullAccessPassword,
 ByVal szFullAccessPassword)
 ShareInfo.dwPermissions2 = NDDEACCESS_REQUEST Or NDDEACCESS_ADVISE Or
 NDDEACCESS_POKE Or NDDEACCESS_EXECUTE Or NDDEACCESS_START_APP
 ShareInfo.lpNDdeShareItemInfo = 15
 Result = NDdeShareAdd(ByVal 0&, 2, ShareInfo, Len(ShareInfo))
 ' Start the timer that will continually update the text box and
 ' the DDE link item with random data.
 timer1.Interval = 1000
 timer1.Enabled = True

 End Sub

10. Add the following code to the Timer1_Timer event procedure:

 Sub Timer1_Timer ()
 ' Display random value 0 - 99 in the text box (DDE source data).
 Randomize Timer
 VBItem.Text = Format$(Rnd * 100, "0")
 End Sub

11. From the File menu, choose Make EXE File...

12. Name the file VBTARGET.EXE and choose OK to create the .EXE file.

13. From the File Manager or Program Manager, run VBTARGET.EXE to display
 a random value in the text box every second.

Step Two -- Create the DDE destination application
--

14. From the DDE destination computer, start Visual Basic or if Visual
 Basic is already running, from the File menu, choose New Project (ALT,
 F, N). Form1 is created by default.

15. Add a text box (Text1) to Form1.

16. Add the following code to the Form_Load event of Form1:

 Sub Form_Load ()
 Dim r As Long
 Dim szComputer As String ' Network server name.
 Dim szTopic As String
 ' Identify the network server where the DDE source application
 ' is running. The following statement assumes the source computer
 ' name is COMPUTER1. Change it to your source computer name.
 szComputer = "\\COMPUTER1"
 ' Identify the DDE share established by the source application
 szTopic = "VBDDESource$"
 Text1.LinkMode = 0
 ' The link topic identifies the computer name and link topic
 ' as established by the DDE source application
 Text1.LinkTopic = szComputer + "\" + "NDDE$" + "|" + szTopic
 Text1.LinkItem = "VBItem" ' Name of text box in DDE source app

 Text1.LinkMode = 1 ' Automatic link.
 End Sub

 'For this program to work, set the szComputer variable (above) to the
 'computer name that holds the DDE source application. Find the name
 'in the Network section of Windows for Workgroups Control Panel.

17. From the Run menu, choose Start to run the program.

You should see the same random values generated on the source computer
displayed in the text box of the destination computer. If you receive
the error message "DDE method invoked with no channel open" on the
Text1.LinkMode = 1 statement in Step 16, make sure the szComputer
variable is set correctly.

Additional reference words: 1.00 2.00 3.00 NETDDE
KBCategory:
KBSubcategory: APrgNet IAPDDE

Form Cannot Be Larger Than the Screen
Article ID: Q94665

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, versions 2.0
 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
- The Standard and Professional Editions of Microsoft Visual Basic
 for MS-DOS, version 1.0

SUMMARY
=======

The maximum size of a form in Microsoft Visual Basic for Windows and
Microsoft Visual Basic for MS-DOS is limited to the size of the screen
you are using.

In both Microsoft Visual Basic for MS-DOS and for Windows, the following
code sizes a form to maximum size:

 TOP = 0
 LEFT = 0
 WIDTH = SCREEN.WIDTH
 HEIGHT = SCREEN.HEIGHT

Additional reference words: 1.00 2.00 3.00 3.10
KBCategory:
KBSubcategory: APrgWindow

How to Connect to a Network Drive by Using WNetAddConnection
Article ID: Q94679

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows,
 versions 1.0, 2.0, and 3.0

SUMMARY
=======

Windows version 3.1 provides a new API Call, WNetAddConnection, which will
redirect a local device to a shared resource or network server.

WNetAddConnection requires the name of the local device, the name of the
network resource, and the password necessary to use that resource.

This article explains in detail the arguments and potential error messages
for the Windows version 3.1 WNetAddConnection function call.

MORE INFORMATION
================

To use WNetAddConnection within a Visual Basic application, declare the
WNetAddConnection function in the General Declarations Section of your code
window. (In Visual Basic version 1.0 you can also put the declaration in
the Global Module.) Declare the function as follows entering the entire
Declare statement on one, single line:

 Declare Function WnetAddConnection% Lib "user" (ByVal lpszNetPath As
Any,
 ByVal lpszPassword As Any,
 ByVal lpszLocalName As Any)

Here are definitions for the formal parameters:

 Formal Parameter Definition

 lpszNetPath Points to a null-terminated string specifying the
 shared device or remote server.

 lpszPassword Points to a null-terminated string specifying the
 network password for the given device or server.

 lpszLocalName Points to a null-terminated string specifying the
 local drive or device to be redirected. All
 lpszLocalName strings (such as LPT1) are case
 independent. Only the drive names A through Z
 and device names LPT1 through LPT3 are used.

Below are the possible return values as defined on page 990 of the
Microsoft Windows version 3.1 Programmer's Reference:

 Value (Hex Value) Meaning

 WN_SUCCESS (&H0) Function was successful.
 WN_NOT_SUPPORTED (&H1) Function was not supported.
 WN_OUT_OF_MEMORY (&HB) System was out of memory.
 WN_NET_ERROR (&H2) An error occurred on the network.
 WN_BAD_POINTER (&H4) Pointer was invalid.
 WN_BAD_NETNAME (&H32) Network resource name was invalid.
 WN_BAD_LOCALNAME (&H33) Local device name was invalid.
 WN_BAD_PASSWORD (&H6) Password was invalid.
 WN_ACCESS_DENIED (&H7) A security violation occurred.
 WN_ALREADY_CONNECTED (&H34) Local device was already connected
 to a remote resource.

Below is an example of how to redirect a local device to a network
resource:

1. Start Visual Basic (VB.EXE). Form1 is created by default.

2. Create the following controls with the indicated properties on
 Form1:

 Default Name Caption CtlName

 Text1 (Not applicable) NetPath
 Text2 (Not applicable) Password
 Command1 &Connect Connect
 Drive1 (Not applicable) Drive1

3. Add the following code to the general declaration section of Form1.
 Enter the Declare statement as one, single line:

 Declare Function WnetAddConnection% Lib "user"
 (ByVal lpszNetPath as Any, ByVal lpszPassword as Any,
 ByVal lpszLocalName as Any)
 Const WN_Success = &H0
 Const WN_Not_Supported = &H1
 Const WN_Net_Error = &H2
 Const WN_Bad_Pointer = &H4
 Const WN_Bad_NetName = &H32
 Const WN_Bad_Password = &H6
 Const WN_Bad_Localname = &H33
 Const WN_Access_Denied = &H7
 Const WN_Out_Of_Memory = &HB
 Const WN_Already_Connected = &H34

 If you're using Visual Basic version 1.0, add the following to the
general
 declarations also:

 Const True = -1
 Const False = 0

4. Add the following code to the procedure Connect_Click:

 Sub Connect_Click ()

 ServerText$ = UCase$(NetPath.Text) + Chr$(0) ' Network resource name

 PasswordText$ = Password.Text + Chr$(0) ' Password for the resource
 driveletter$ = "N:" + Chr$(0) ' Substitute your own drive letter

 Succeed% = WnetAddConnection(ServerText$, PasswordText$,
driveletter$)

 If IsSuccess(Succeed%, msg$) = True Then ' Call Function to parse
 ' potential error messages.
 Drive1.Refresh
 NetPath.Text = "" ' Reset the contents following connection
 Else
 MsgBox msg$
 End If

 End Sub

5. Create a Sub within the (Declarations) section of the Code window and
 add the following code:

 Function IsSuccess% (ReturnCode%, Msg$)

 If ReturnCode% = WN_Success Then
 IsSuccess% = True
 Else
 IsSuccess% = False
 Select Case ReturnCode%

 Case WN_Success:
 Drive1.Refresh
 Case WN_Not_Supported:
 msg$ = "Function is not supported."
 Case Wn_Out_Of_Memory:
 msg$ = "Out of Memory."
 Case WN_Net_Error:
 msg$ = "An error occurred on the network."
 Case WN_Bad_Pointer:
 msg$ = "The Pointer was Invalid."
 Case WN_Bad_NetName:
 msg$ = "Invalid Network Resource Name."
 Case WN_Bad_Password:
 msg$ = "The Password was Invalid."
 Case WN_Bad_Localname:
 msg$ = "The local device name was invalid."
 Case WN_Access_Denied:
 msg$ = "A security violation occurred."
 Case WN_Already_Connected:
 msg$ = "The local device was connected to a remote resource."
 Case Else:
 msg$ = "Unrecognized Error " + Str$(ReturnCode%) + "."

 End Select
 End If

 End Function

6. Run the program. Type in the name of a network resource in the edit box
 and press the Connect button. The drive box will be updated with the

 new resource if the call was successful.

Reference(s):

"Microsoft Windows Software Development Kit: Reference Volume 2," version
3.1 and the WIN31WH.HLP file that shipped with the Microsoft Visual Basic
version 2.0 Professional Version for Windows.

Additional reference words: 1.00 2.00
KBCategory:
KBSubcategory: APrgNet

Using Lstrcpy() API Function to Get Far Address of a Variable
Article ID: Q94700

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0

SUMMARY
=======

You can use the Windows API function Lstrcpy() to get the far address of
a variable as a Long integer.

The Lstrcpy() function returns the same value as its first argument, which
is the address of a variable. Usually you would use the Lstrcpy() function
to copy strings that are terminated by a zero byte. However, if you pass
the same variable as both the source and the destination, Lstrcpy() copies
the variable to itself, which has no effect.

MORE INFORMATION
================

Basic cannot deal with pointers directly. All Basic can do with a pointer
is pass it as a parameter to a DLL function.

Basic variables may move in memory. You should take the address of a
variable immediately before you use it.

The following steps demonstrate how to get the address of an integer and a
variable-length string.

1. Run Visual Basic, or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Enter the following code into the general declarations section:

 Declare Function Lstrcpy Lib "kernel" (p1 As Any, p2 As Any) As Long

3. Enter the following code into the Click event handler:

 Sub Form_Click ()
 Dim ptr As Long ' pointer value
 Dim x1 As Integer ' variable to take address of
 Dim x2 As String ' variable to take address of
 x1 = 123
 ptr = Lstrcpy(x1, x1)
 MsgBox "The address of x1 is: " + Hex$(ptr)
 x2 = "x2"
 ' must use ByVal on variable length strings
 ptr = Lstrcpy(ByVal x2, ByVal x2)
 MsgBox "The address of x2 is: " + Hex$(ptr)
 End Sub

4. Press the F5 key to run the program. It displays the address of the
 variable in hexadecimal.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgOther

How to Pass Numeric Variables to a C DLL
Article ID: Q94960

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft QuickC for Windows, version 1.0

SUMMARY
=======

This article shows by example how to pass numeric variables from Visual
Basic for Windows to a C DLL. The first example shows how to call C
functions with single parameters of all numeric types. The second example
shows how to pass multiple parameters and how to pass variables by
reference so they can be manipulated on the C side.

MORE INFORMATION
================

Example One

1. Start Visual Basic or if you are in Visual Basic, choose New Project
 from the File menu (ALT, F, N). Form1 is created by default.

2. Place five command buttons (Command1, Command2, Command3, Command4, and
 Command5) on Form1.

3. Add two Text boxes (Text1 and Text2) to Form1.

4. Add the following code to the General Declarations section of Form1:

 Declare Function noparams Lib "passnums.dll" () As Integer
 Declare Function passint Lib "passnums.dll" (ByVal x%) As Integer
 Declare Function passlong Lib "passnums.dll" (ByVal x&) As Long
 Declare Function passfloat Lib "passnums.dll" (ByVal x!) As Single
 Declare Function passdouble Lib "passnums.dll" (ByVal x#) As Double

5. Add the following code to the click event of each command buttons:

 Sub Command1_Click ()
 text1.Text = Str$(noparams())
 text2.Text = "Noparams"
 End Sub

 Sub Command2_Click ()
 i% = 21
 text1.Text = Str$(passint(55))
 text2.Text = Str$(passint(i%))
 End Sub

 Sub Command3_Click ()

 i& = 45000
 text1.Text = Str$(passlong(40000))
 text2.Text = Str$(passlong(i&))
 End Sub

 Sub Command4_Click ()
 i! = 1.35
 text1.Text = Str$(passfloat(1.23))
 text2.Text = Str$(passfloat(i!))
 End Sub

 Sub Command5_Click ()
 i# = 1234.5678
 text1.Text = Str$(passdouble(1.23456))
 text2.Text = Str$(passdouble(i#))
 End Sub

6. Start Microsoft QuickC for Windows, or if it's already running, choose
 New from the File menu.

7. Add the following code to the new file:

 #include <windows.h>
 #include <stdio.h>
 /* Noparams takes no parameters and returns a 2 */
 extern int far pascal noparams()
 {
 return(2);
 }
 /* add 32 to the integer passed in */
 extern int far pascal passint(int a)
 {
 a += 32;
 return(a);
 }
 /* passlong() takes a long integer and adds 7 to it */
 extern long far pascal passlong(long x)
 {
 x += 7;
 return(x+7);
 }
 // passfloat passes a floating point number
 extern float far pascal passfloat(float x)
 {
 return (x += (float) 1.45927);
 }
 // passdouble passes a floating point number
 extern double far pascal passdouble(double x)
 {
 return (x+=(double) 1.45927);
 }

 NOTE: Microsoft C and Borland C return values of type Double
 differently. Therefore the passdouble example above won't work
 in Borland C. Use the following code in Borland C:

 // return a value through y

 void FAR PASCAL _export passdouble(double x, double *y)
 {
 // do processing here
 // use '*y =' instead of a return statement
 *y = x;
 }

 Borland C is manufactured by a vendor independent of Microsoft;
 Microsoft makes no warranty, implied or otherwise, regarding Borland
 C's performance or reliability.

8. From the File menu, choose Save As, and save the file as PASSNUMS.C.

9. From the File menu, choose New, and Type these .DEF file lines:

 LIBRARY PASSNUMS
 EXETYPE WINDOWS 3.1
 DATA PRELOAD MOVABLE SINGLE
 CODE PRELOAD MOVABLE DISCARDABLE
 EXPORTS
 noparams @1
 passint @2
 passlong @3
 passfloat @4
 passdouble @5
10. From the File menu, choose Save As, and save the file as PASSNUMS.DEF.

11. From the Project Menu, choose Open and enter PASSNUMS.

12. Choose the OK button. Add PASSNUMS.C and PASSNUMS.DEF to the project.

13. From the Options menu, choose Project. Set the program type to Windows
 DLL and set the compiler memory model to Large.

14. From the Project menu, choose Rebuild All. This creates PASSNUMS.DLL.

15. Return to Visual Basic and run the program. Pressing any of the command
 buttons will change the contents of the two text boxes.

Example Two

1. Start Visual Basic, or if Visual Basic is already running, from the File
 menu, choose New Project (ALT, F, N). Form1 is created by default.

2. Place two command buttons (Command1, Command2) on Form1.

3. Add 2 Text boxes (Text1, Text2) to Form1.

4. Add the following code to the General Declarations section of Form1:

 ' Enter each of the following Declare statements on one, single line:
 Declare Function bunchparam Lib "multvars.dll" (ByVal w%,
 ByVal x&, ByVal y!, ByVal z#) As Double
 Declare Function bunchbyref Lib "multvars.dll"
 (x%, y&, z!, a#) As Double

5. Add the following code to the click events of the Command buttons:

 Sub Command1_Click ()
 i% = 123
 j& = 40000
 k! = 1.234
 l# = 1234.567
 text1.Text = Str$(bunchparam(123, 40000, 1.2345, 1.2345))
 text2.Text = Str$(bunchparam(i%, j&, k!, l#))
 End Sub

 Sub Command2_Click ()
 i% = 12
 j& = 40000
 k! = 123.455
 l# = 123455.678
 x# = bunchbyref(i%, j&, k!, l#)
 text1.Text = Str$(i%) + Str$(j&) + Str$(k!) + Str$(l#)
 text2.Text = Str$(x#)
 End Sub

6. Start Microsoft QuickC for Windows or choose New from the File menu.

7. Add the following code to the new file:

 #include <windows.h>
 #include <stdio.h>
 /* bunchparam() adds double-precision values and an integer. */
 extern double far pascal bunchparam(int a, long b, float c, double d)
 {
 return(a+b+c+d);
 }
 extern double far pascal bunchbyref(int *a, long *b, float *c, double *d
)
 {
 *a += 55;
 *b += 77;
 *c += (float) 123.456;
 *d += 12345.678;
 return(*a+*b);
 }

8. From the File menu, choose Save As, and save the file as MULTVARS.C.

9. From the File menu, choose New, and type these .DEF file lines:

 LIBRARY MULTVARS
 EXETYPE WINDOWS 3.1
 DATA PRELOAD MOVABLE SINGLE
 CODE PRELOAD MOVABLE DISCARDABLE
 EXPORTS
 bunchparam @1
 bunchbyref @2

10. From the File menu, choose Save As, and save the file as MULTVARS.DEF.

11. From the Project Menu, choose Open and enter MULTVARS.

12. Choose the OK button. Add MULTVARS.C and MULTVARS.DEF to the project.

13. From the Options menu, choose Project. Set the program type to
 Windows DLL and set the compiler memory model to Large.

14. From the Project menu, choose Rebuild All. This creates MULTVARS.DLL.

15. Return to Visual Basic and run the program. Pressing either Command
 button will change the contents of the text boxes.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: APrgOther

How to Create a Transparent Bitmap Using Visual Basic
Article ID: Q94961

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows,
 versions 2.0 and 3.0

SUMMARY
=======

A transparent image shows the background behind it instead of the image
itself. You can use an icon editor such as the IconWorks sample program
provided with Visual Basic to create icons that contain transparent parts.
This article shows you how to make certain parts of a bitmap transparent.

MORE INFORMATION
================

Here are the six general steps required to create a transparent bitmap:

1. Store the area, or background, where the bitmap is going to be drawn.

2. Create a monochrome mask of the bitmap that identifies the transparent
 areas of the bitmap by using a white pixel to indicate transparent areas
 and a black pixel to indicate non-transparent areas of the bitmap.

3. Combine the pixels of the monochrome mask with the background bitmap
 using the And binary operator. The area of the background where the
 non-transparent portion of the bitmap will appear is made black.

4. Combine an inverted copy of the monochrome mask (step 2) with the source
 bitmap using the And binary operator. The transparent areas of the
 source bitmap will be made black.

5. Combine the modified background (step 3) with the modified source bitmap
 (step 4) using the Xor binary operator. The background will show through
 the transparent portions of the bitmap.

6. Copy the resulting bitmap to the background

Example Code

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Add the following controls to Form1 with the associated property values:

 Control Name (or CtlName) Property Settings

 Picture pictSource Picture ="WINDOWS\THATCH.BMP"
 Picture pictDest Picture ="WINDOWS\ARCHES.BMP"
 Command button cmdCopy Caption ="Copy"

3. From the File menu, choose New Module (ALT, F, M). Module1 is created.

4. Add the following code to the cmdCopy_Click event procedure of Form1.
 This code calls the TransparentBlt() function to copy a source bitmap
 to a destination (background) picture control. White (QBColor(15)) areas
 of the bitmap are made transparent against the background bitmap.

 Sub cmdCopy_Click ()
 Call TransparentBlt(pictDest, pictSource.Picture, 10, 10, QBColor(15))
 End Sub

5. Add the following code the general declarations section of Module1.
 Enter each Declare statement as one, single line:

 Type bitmap
 bmType As Integer
 bmWidth As Integer
 bmHeight As Integer
 bmWidthBytes As Integer
 bmPlanes As String * 1
 bmBitsPixel As String * 1
 bmBits As Long
 End Type
 Declare Function BitBlt Lib "GDI" (ByVal srchDC As Integer, ByVal srcX
 As Integer, ByVal srcY As Integer, ByVal srcW As Integer, ByVal srcH
 As Integer, ByVal desthDC As Integer, ByVal destX As Integer, ByVal
 destY As Integer, ByVal op As Long) As Integer
 Declare Function SetBkColor Lib "GDI" (ByVal hDC As Integer, ByVal
 cColor As Long) As Long
 Declare Function CreateCompatibleDC Lib "GDI" (ByVal hDC As Integer)
 As Integer
 Declare Function DeleteDC Lib "GDI" (ByVal hDC As Integer) As Integer
 Declare Function CreateBitmap Lib "GDI" (ByVal nWidth As Integer, ByVal
 nHeight As Integer, ByVal cbPlanes As Integer, ByVal cbBits As
 Integer, lpvBits As Any) As Integer
 Declare Function CreateCompatibleBitmap Lib "GDI" (ByVal hDC As Integer,
 ByVal nWidth As Integer, ByVal nHeight As Integer) As Integer
 Declare Function SelectObject Lib "GDI" (ByVal hDC As Integer, ByVal
 hObject As Integer) As Integer
 Declare Function DeleteObject Lib "GDI" (ByVal hObject As Integer) As
 Integer
 Declare Function GetObj Lib "GDI" Alias "GetObject" (ByVal hObject As
 Integer, ByVal nCount As Integer, bmp As Any) As Integer
 Const SRCCOPY = &HCC0020
 Const SRCAND = &H8800C6
 Const SRCPAINT = &HEE0086
 Const NOTSRCCOPY = &H330008

6. Add the following Sub procedure to the general declarations section of
 Module1. TransparentBlt() accepts six parameters: a destination picture
 control (dest), a source bitmap to become transparent (srcBmp), the X,Y
 coordinates in pixels where you want to place the source bitmap on the
 destination (destX and destY), and the RGB value for the color you want
 to be transparent. TransparentBlt() copies the source bitmap to any X,Y
 location on the background making areas transparent.

 Sub TransparentBlt (dest As Control, ByVal srcBmp As Integer, ByVal

 destX As Integer, ByVal destY As Integer, ByVal TransColor As Long)
 Const PIXEL = 3
 Dim destScale As Integer
 Dim srcDC As Integer 'source bitmap (color)
 Dim saveDC As Integer 'backup copy of source bitmap
 Dim maskDC As Integer 'mask bitmap (monochrome)
 Dim invDC As Integer 'inverse of mask bitmap (monochrome)
 Dim resultDC As Integer 'combination of source bitmap & background
 Dim bmp As bitmap 'description of the source bitmap
 Dim hResultBmp As Integer 'Bitmap combination of source & background
 Dim hSaveBmp As Integer 'Bitmap stores backup copy of source bitmap
 Dim hMaskBmp As Integer 'Bitmap stores mask (monochrome)
 Dim hInvBmp As Integer 'Bitmap holds inverse of mask (monochrome)
 Dim hPrevBmp As Integer 'Bitmap holds previous bitmap selected in DC
 Dim hSrcPrevBmp As Integer 'Holds previous bitmap in source DC
 Dim hSavePrevBmp As Integer 'Holds previous bitmap in saved DC
 Dim hDestPrevBmp As Integer 'Holds previous bitmap in destination DC
 Dim hMaskPrevBmp As Integer 'Holds previous bitmap in the mask DC
 Dim hInvPrevBmp As Integer 'Holds previous bitmap in inverted mask DC
 Dim OrigColor As Long 'Holds original background color from source DC
 Dim Success As Integer 'Stores result of call to Windows API
 If TypeOf dest Is PictureBox Then 'Ensure objects are picture boxes
 destScale = dest.ScaleMode 'Store ScaleMode to restore later
 dest.ScaleMode = PIXEL 'Set ScaleMode to pixels for Windows GDI
 'Retrieve bitmap to get width (bmp.bmWidth) & height (bmp.bmHeight)
 Success = GetObj(srcBmp, Len(bmp), bmp)
 srcDC = CreateCompatibleDC(dest.hDC) 'Create DC to hold stage
 saveDC = CreateCompatibleDC(dest.hDC) 'Create DC to hold stage
 maskDC = CreateCompatibleDC(dest.hDC) 'Create DC to hold stage
 invDC = CreateCompatibleDC(dest.hDC) 'Create DC to hold stage
 resultDC = CreateCompatibleDC(dest.hDC) 'Create DC to hold stage
 'Create monochrome bitmaps for the mask-related bitmaps:
 hMaskBmp = CreateBitmap(bmp.bmWidth, bmp.bmHeight, 1, 1, ByVal 0&)
 hInvBmp = CreateBitmap(bmp.bmWidth, bmp.bmHeight, 1, 1, ByVal 0&)
 'Create color bitmaps for final result & stored copy of source
 hResultBmp = CreateCompatibleBitmap(dest.hDC, bmp.bmWidth,
 bmp.bmHeight)
 hSaveBmp = CreateCompatibleBitmap(dest.hDC, bmp.bmWidth,
 bmp.bmHeight)
 hSrcPrevBmp = SelectObject(srcDC, srcBmp) 'Select bitmap in DC
 hSavePrevBmp = SelectObject(saveDC, hSaveBmp) 'Select bitmap in DC
 hMaskPrevBmp = SelectObject(maskDC, hMaskBmp) 'Select bitmap in DC
 hInvPrevBmp = SelectObject(invDC, hInvBmp) 'Select bitmap in DC
 hDestPrevBmp = SelectObject(resultDC, hResultBmp) 'Select bitmap
 Success = BitBlt(saveDC, 0, 0, bmp.bmWidth, bmp.bmHeight, srcDC,
 0, 0, SRCCOPY) 'Make backup of source bitmap to restore later
 'Create mask: set background color of source to transparent color.
 OrigColor = SetBkColor(srcDC, TransColor)
 Success = BitBlt(maskDC, 0, 0, bmp.bmWidth, bmp.bmHeight, srcDC,
 0, 0, SRCCOPY)
 TransColor = SetBkColor(srcDC, OrigColor)
 'Create inverse of mask to AND w/ source & combine w/ background.
 Success = BitBlt(invDC, 0, 0, bmp.bmWidth, bmp.bmHeight, maskDC,
 0, 0, NOTSRCCOPY)
 'Copy background bitmap to result & create final transparent bitmap
 Success = BitBlt(resultDC, 0, 0, bmp.bmWidth, bmp.bmHeight,
 dest.hDC, destX, destY, SRCCOPY)

 'AND mask bitmap w/ result DC to punch hole in the background by
 'painting black area for non-transparent portion of source bitmap.
 Success = BitBlt(resultDC, 0, 0, bmp.bmWidth, bmp.bmHeight,
 maskDC, 0, 0, SRCAND)
 'AND inverse mask w/ source bitmap to turn off bits associated
 'with transparent area of source bitmap by making it black.
 Success = BitBlt(srcDC, 0, 0, bmp.bmWidth, bmp.bmHeight, invDC,
 0, 0, SRCAND)
 'XOR result w/ source bitmap to make background show through.
 Success = BitBlt(resultDC, 0, 0, bmp.bmWidth, bmp.bmHeight,
 srcDC, 0, 0, SRCPAINT)
 Success = BitBlt(dest.hDC, destX, destY, bmp.bmWidth, bmp.bmHeight,
 resultDC, 0, 0, SRCCOPY) 'Display transparent bitmap on backgrnd
 Success = BitBlt(srcDC, 0, 0, bmp.bmWidth, bmp.bmHeight, saveDC,
 0, 0, SRCCOPY) 'Restore backup of bitmap.
 hPrevBmp = SelectObject(srcDC, hSrcPrevBmp) 'Select orig object
 hPrevBmp = SelectObject(saveDC, hSavePrevBmp) 'Select orig object
 hPrevBmp = SelectObject(resultDC, hDestPrevBmp) 'Select orig object
 hPrevBmp = SelectObject(maskDC, hMaskPrevBmp) 'Select orig object
 hPrevBmp = SelectObject(invDC, hInvPrevBmp) 'Select orig object
 Success = DeleteObject(hSaveBmp) 'Deallocate system resources.
 Success = DeleteObject(hMaskBmp) 'Deallocate system resources.
 Success = DeleteObject(hInvBmp) 'Deallocate system resources.
 Success = DeleteObject(hResultBmp) 'Deallocate system resources.
 Success = DeleteDC(srcDC) 'Deallocate system resources.
 Success = DeleteDC(saveDC) 'Deallocate system resources.
 Success = DeleteDC(invDC) 'Deallocate system resources.
 Success = DeleteDC(maskDC) 'Deallocate system resources.
 Success = DeleteDC(resultDC) 'Deallocate system resources.
 dest.ScaleMode = destScale 'Restore ScaleMode of destination.
 End If
 End Sub

7. From the Run menu, choose Start (ALT, R, S) to run the program.

8. Click the Copy button. The thatched pattern in the first picture is
 copied onto the second picture (an image of arches) making the arches
 show through areas of the previously white thatched pattern.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: APrgGrap

How Windows Versions 3.0 and 3.1 Activate Apps Differently
Article ID: Q95463

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.00

SUMMARY
=======

When activating a multiple-window application in Windows version 3.0, only
the window that was activated comes to the top. In Windows version 3.1,
all the windows relating to the application come to the top.

Microsoft has confirmed this to be a problem in Microsoft Windows version
3.0. This problem was corrected in Microsoft Windows version 3.1.

Because many Visual Basic applications are written as multiple-window
applications, this problem is apparent when these applications are run
with both Windows versions.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Windows version 3.1.

2. Run Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

3. From the File menu, choose New Form (ALT, F, F) twice to create two
forms,
 Form2 and Form3.

4. Add the following code to Form_Load of Form1:

 Sub Form_Load
 Form1.Show
 Form2.Show
 Form3.Show
 End Sub

5. From the File menu, chose Make EXE File (ALT, F, K) and choose the OK
 button to create an executable using the default name (PROJECT1.EXE).

6. From outside the Visual Basic environment, Run PROJECT1.EXE.

7. Run NOTEPAD.EXE.

8. Click Form1 in PROJECT1.EXE. All three forms for PROJECT1.EXE, which
 are currently being clipped by NOTEPAD.EXE, come to the top.

9. Close Windows version 3.1, saving all necessary data in open
 applications.

10. Start Windows version 3.0.

11. Repeat steps 6 through 8 to see that only Form1 comes to the top.

Additional reference words: 2.00 3.10 3.00
KBCategory:
KBSubcategory: APrgWindow

How to Use Windows 3.1 APIs to Play Videos in Visual Basic
Article ID: Q96090

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0

SUMMARY
=======

You can play video .AVI files in Visual Basic by using Windows version
3.1 APIs.

MORE INFORMATION
================

Use the following procedure to position and size the window where you
want to play the .AVI file and to play the .AVI file:

1. Run Visual Basic, or if Visual Basic is already running, choose New
 Project from the File menu (ALT, F, N). Form1 is created by default.

2. Add a command button control (Command1) to Form1.

3. Add the following code to the Command1_Click event of Form1:

 DIM CmdStr as String
 DIM ret as Integer

 '*** This will open the AVIVideo and create a child window on the
 '*** form where the video will display. Animation is the device_id.
 CmdStr = ("open c:\rbtndog.avi type AVIVideo alias Animation parent "
 + LTrim$(Str$(form1.hWnd)) + " style " + LTrim$(Str$(WS_CHILD)))
 Ret = mciSendString(CmdStr, 0&, 0, 0)

 '*** Put the window at location 10 10 relative to the parent window
 '*** with a size of 200 200
 Ret = mciSendString("put Animation window at 10 10 200 200", 0&, 0, 0)

 '*** The wait tells the MCI command to complete before returning
 '*** control to the application.
 Ret = mciSendString("play Animation wait", 0&, 0, 0)

 '*** Close windows so they don't crash when you exit the application.
 Ret = mciSendString("close Animation", 0&, 0, 0)

4. Choose New Module from the File menu (ALT, F, M). MODULE1.BAS is created
 by default. Add the following code to Module1. Enter the entire Declare
 on a single line:

 Global Const WS_CHILD = &H40000000
 Declare Function mciSendString Lib "mmsystem" (ByVal lpstrCommand$,
 ByVal lpstrReturnStr As Any, ByVal wReturnLen%, ByVal hCallBack%)

 As Long

5. From the Run menu, choose Start (ALT, R, S) or press the F5 key to run
 the program.

For more information on the sndSendString() function and command strings,
see pages 3-26 and 7-23 to 7-93 in the "MultiMedia Programmer's Reference."

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: APrgOther

Using PASSTHROUGH Escape to Send Data Directly to Printer
Article ID: Q96795

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

By using the Windows API Escape() function, your application can pass data
directly to the printer. If the printer driver supports the PASSTHROUGH
printer escape, you can use the Escape() function and the PASSTHROUGH
printer escape to send native printer language codes to the printer driver.

Printer escapes such as PASSTHROUGH allow applications to access certain
facilities of output devices that are not directly available through the
graphics device interface (GDI). The PASSTHROUGH printer escape allows
the application to send data directly to the printer, bypassing the
standard print-driver code.

MORE INFORMATION
================

A printer driver that supports the PASSTHROUGH printer escape does not add
native printer language codes to the data stream sent to the printer, so
you can send data directly to the printer. However, Microsoft recommends
that applications not perform functions that consume printer memory, such
as downloading a font or a macro.

The sample program listed below sends native PCL codes to the printer to
change the page orientation and the paper bin. A Hewlett-Packard LaserJet
is the assumed default printer.

An Important Note

Note that the Windows API Escape() function is provided in Windows versions
3.0 and 3.1 for backward compatibility with earlier versions of Microsoft
Windows. Applications are supposed to use the GDI DeviceCapabilities() and
ExtDeviceMode() functions instead of the Escape() function, but neither
DeviceCapabilities() nor ExtDeviceMode() can be called directly from Visual
Basic. This is because they are exported by the printer driver, not by the
Windows GDI. The only way to use ExtDeviceMode() or DeviceCapabilities()
in Visual Basic is to create a DLL and call them from there.

Steps to Create Example

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Add the following code to the general declarations section of Form1:

 ' Enter the entire Declare statement on one, single line.
 Declare Function Escape Lib "Gdi" (ByVal Hdc%, ByVal nEscape%,
 ByVal ncount%, ByVal indata$, ByVal oudata as Any) As Integer

 Const PASSTHROUGH = 19

 Const RevLandScape = "&l3O" ' PCL command to change Paper
 ' orientation to Reverse Landscape.
 Const Portrait = "&l0O" ' PCL command to change paper
 ' orientation to Portrait.
 Const ManualFeed = "&l3H" ' PCL command to change Paper Bin
 ' to Manual Feed Envelope.
 Const AutoFeed = "&l1H" ' PCL command to change Paper Bin
 ' to Paper Tray AutoFeed

3. Add a list box (List1) to Form1.

4. Add the following code to Form1's Form_Load event procedure:

 Sub Form_Load ()
 List1.AddItem "HP/PCL Reverse Landscape"
 List1.AddItem "HP/PCL Portrait"
 List1.AddItem "HP/PCL Manual Feed Envelope"
 List1.AddItem "HP/PCL Paper Tray Auto Feed"
 End Sub

5. Add the following code to the List1_Click event procedure:

 Sub List1_Click
 Select Case List1.ListIndex
 Case 0:
 PCL_Escape$ = Chr$(27) + RevLandScape
 Case 1:
 PCL_Escape$ = Chr$(27) + Portrait
 Case 2:
 PCL_Escape$ = Chr$(27) + ManualFeed
 Case 3:
 PCL_Escape$ = Chr$(27) + AutoFeed
 End Select

 ' Enter the following two lines as one, single line:
 PCL_Escape$ = Chr$(Len(PCL_Escape$) MOD 256)
 + Chr$(Len(PCL_Escape$) \ 256) + PCL_Escape$

 Printer.Print ""
 Result% = Escape%(Printer.hDC, PASSTHROUGH, 0, PCL_Escape$, 0&)

 Select Case Result%
 ' Enter each Case statement on one, single line.
 Case Is < 0: MsgBox "The PASSTHROUGH Escape is not
 supported by this printer driver.", 48
 Case 0: MsgBox "An error occurred sending the escape
 sequence.", 48
 Case Is > 0: MsgBox "Escape Successfully sent.
 Sending test printout to printer."

 Printer.Print "Test case of "; List1.Text
 End Select
 End Sub

6. From the Run menu, choose Start (ALT, R, S) to run the program. List1 is
 filled with four escape sequences to send to the printer.

7. Select any of the options in the list box. A message box appears to
 indicate the success of the operation.

If the printer driver does not support the PASSTHROUGH printer escape, you
must use the DeviceCapabilities() and ExtDevMode() functions instead.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgPrint

Using an Escape to Obtain and Change Paper Size for Printer
Article ID: Q96796

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 2.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

By using the Windows API Escape() function, an application can change the
paper size on the printer and obtain a list of available paper metrics for
the default printer.

To get the list of available paper metrics, pass the ENUMPAPERMETRICS
printer escape constant to the Escape() function. The function will return
either an array containing the paper metrics or the number of paper metrics
available. Note that paper metrics differ from the physical paper sizes in
that paper metrics delineate the actual region that can be printed to,
whereas paper size is the physical size of the paper including the
non-printable regions.

To change the paper size, pass the GETSETPAPERMETRICS printer escape
constant along with the paper metrics to the Escape() function.

MORE INFORMATION
================

The example program listed below demonstrates how to use both printer
escape constants (ENUMPAPERMETRICS and GETSETPAPERMETRICS) with the
Windows API Escape() function.

An Important Note

Note that the Windows API Escape() function is provided in Windows versions
3.0 and 3.1 for backward compatibility with earlier versions of Microsoft
Windows. Applications are supposed to use the GDI DeviceCapabilities() and
ExtDeviceMode() functions instead of the Escape() function, but neither
DeviceCapabilities() nor ExtDeviceMode() can be called directly from Visual
Basic. This is because they are exported by the printer driver, not by the
Windows GDI. The only way to use ExtDeviceMode() or DeviceCapabilities()
in Visual Basic is to create a DLL and call them from there. To execute the
ExtDeviceMode() function, you need to obtain a function pointer to it from
the current printer driver. Visual Basic does not support pointers.

Steps to Create Example

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose New Module (ALT, F, M). Module1 is created
 by default.

3. Add the following code to the general declarations section of Module1:

 Type Rect
 Left As Integer
 Top As Integer
 Right As Integer
 Bottom As Integer
 End Type

 ' Enter each Declare as one, single line.
 Declare Function EnumPaperMetricsEscape% Lib "GDI" Alias "Escape"
 (ByVal hDC%, ByVal nEscape%, ByVal IntegerSize%, lpMode%,
 lpOutData As Rect)
 Declare Function SetPaperMetricsEscape% Lib "GDI" Alias "Escape"
 (ByVal hDC%, ByVal nEscape%, ByVal RectSize%, NewPaper As Rect,
 PrevPaper As Rect)
 Declare Function GetDeviceCaps% Lib "gdi" (ByVal hDC%, ByVal nIndex%)

 Global Const ENUMPAPERMETRICS = 34
 Global Const GETSETPAPERMETRICS = 35
 Global Const LOGPIXELSX = 88 ' Logical pixels/inch in X
 Global Const LOGPIXELSY = 90 ' Logical pixels/inch in Y

4. Add the following code to the General Declarations section of Form1:

 Dim RectArray() As Rect

5. Add a command button (Command1) to Form1.

6. Add a list box (List1) to Form1.

7. Add the following code to the Command1_Click event procedure. For
 readability some lines of code are shown as two lines but must be
 entered as a single line of code.

 Sub Command1_Click ()
 ReDim RectArray(1)
 mode% = 0
 ' Enter the entire Result% statement as one, single line.
 Result% = EnumPaperMetricsEscape(Printer.hDC, ENUMPAPERMETRICS,
 2, mode%, RectArray(0))
 If Result% = 0 Then ' If Result = 0, the call failed
 MsgBox "Printer Driver does not Support EnumPaperMetrics", 48
 Command1.Enabled = False
 Exit Sub
 End If

 ReDim RectArray(Result% - 1) ' Result% contains num paper sizes
 mode% = 1
 ' Enter the entire Result2% statement as one, single line.
 Result2% = EnumPaperMetricsEscape(Printer.hDC, ENUMPAPERMETRICS,
 2, mode%, RectArray(0))
 HorzRatio% = GetDeviceCaps(Printer.hDC, LOGPIXELSX)
 VertRatio% = GetDeviceCaps(Printer.hDC, LOGPIXELSY)

 ' Add Paper Sizes (Listed by actual printing region) in inches
 ' to the list box. Enter each of the PWidth$ and PHeight$ statements
 ' as one, single line.
 For i% = 0 To Result% - 1
 PWidth$ = Format$((RectArray(i%).Right - RectArray(i%).Left)
 / HorzRatio%) + Chr$(34) ' Enter as a single line
 PHeight$ = Format$((RectArray(i%).Bottom - RectArray(i%).Top)
 / VertRatio%) + Chr$(34) ' Enter as a single line
 List1.AddItem PWidth$ + " X " + PHeight$
 Next i%
 End Sub

8. Add the following code to the List1_Click event procedure:

 Sub List1_Click ()
 Dim PrevPaperSize As Rect
 ' Enter the entire Result% statement as one, single line.
 Result% = SetPaperMetricsEscape(Printer.hDC, GETSETPAPERMETRICS,
 Len(PrevPaperSize), RectArray(List1.ListIndex), PrevPaperSize)

 If Result% = 0 Then
 MsgBox "Printer Driver does not support this Escape.", 48
 ElseIf Result% < 0 Then
 MsgBox "Error in calling Escape with GETSETPAPERMETRICS."
 Else
 MsgBox "Paper size successfully changed!"
 End If
 End Sub

9. From the Run menu, choose Start (ALT, R, S) to run the program.

10. Choose the Command1 button to display a list of available paper metrics
 in the List1 box. The paper metrics represent the size of the printable
 regions supported by the printer, not the physical paper sizes.

11. Select one of the paper metrics shown in the List1 box. A message box
 appears indicating whether or not the paper size was successfully
 changed using the paper metrics you selected.

Additional reference words: 1.00 2.00
KBCategory:
KBSubcategory: APrgPrint

How to Obtain & Change the Paper Bins for the Default Printer
Article ID: Q96797

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0

SUMMARY
=======

By using the Windows API Escape() function, an application can change the
paper bin on the printer and obtain a list of available paper bins for the
default printer.

To return a list of paper bin names and a list of corresponding of bin
numbers, pass the ENUMPAPERBINS printer escape constant to the Escape()
function. You can use the first list to display the available paper bins
for the user, and use the second list to change the paper bin.

To change the paper bin, pass the GETSETPAPERBINS printer escape constant
along with the bin number to the Escape() function. GETSETPAPERBINS returns
the current bin and the number of bins supported by the default printer.

MORE INFORMATION
================

The example code listed below demonstrates how to use both ENUMPAPERBINS
and GETSETPAPERBINS with the Windows API Escape() function.

An Important Note

Note that the Windows API Escape() function is provided in Windows versions
3.0 and 3.1 for backward compatibility with earlier versions of Microsoft
Windows. Applications are supposed to use the GDI DeviceCapabilities() and
ExtDeviceMode() functions instead of the Escape() function, but neither
DeviceCapabilities() nor ExtDeviceMode() can be called directly from Visual
Basic. This is because they are exported by the printer driver, not by the
Windows GDI. The only way to use ExtDeviceMode() or DeviceCapabilities()
in Visual Basic is to create a DLL and call them from there.

Step-by-Step Example

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose New Module (ALT, F, M). Module1 is created
 by default.

3. Add the following code to the general declarations section of Module1:

 Global Const MaxBins = 6

 Type PaperBin ' Used for EnumPaperBins
 BinList(1 To MaxBins) As Integer
 PaperNames(1 To MaxBins) As String * 24
 End Type

 Type BinInfo ' Used for GetSetPaperBins
 CurBinNumber As Integer ' Current Bin
 NumBins As Integer ' Number of bins supported by printer
 Reserved1 As Integer ' Reserved
 Reserved2 As Integer ' Reserved
 Reserved3 As Integer ' Reserved
 Reserved4 As Integer ' Reserved
 End Type
 ' Enter each of the following Declare statements on one, single line.
 Declare Function EnumPaperBinEscape% Lib "GDI" Alias "Escape"
 (ByVal hDC%, ByVal nEscape%, ByVal nCount%, NumBins%,
 lpOutData As Any)
 Declare Function GetPaperBinEscape% Lib "GDI" Alias "Escape"
 (ByVal hDC%, ByVal nEscape%, ByVal nCount%, InBinInfo As Any,
 OutBinInfo As Any)

 Global Const ENUMPAPERBINS = 31
 Global Const GETSETPAPERBINS = 29

4. Add a command button (Command1) to Form1.

5. Add a list box (List1) to Form1.

6. Add the following code to the Command1_Click event procedure:

 Sub Command1_Click ()
 Dim InPaperBin As PaperBin
 Dim InBinInfo As BinInfo
 ' Enter each of the following result% statements on one, single line:
 result% = GetPaperBinEscape(Printer.hDC, GETSETPAPERBINS, 0,
 ByVal 0&, InBinInfo)
 result% = EnumPaperBinEscape(Printer.hDC, ENUMPAPERBINS, 2,
 MaxBins, InPaperBin)

 List1.Clear
 For I% = 1 To InBinInfo.NumBins ' Fill list1 with available bins
 List1.AddItem InPaperBin.PaperNames(I%)
 List1.ItemData(List1.NewIndex) = InPaperBin.BinList(I%)
 Next I%

 End Sub

7. Add the following code to the List1_Click event procedure:

 Sub List1_Click ()
 Dim InBinInfo As BinInfo
 Dim NewBinInfo As BinInfo

 NewBinInfo.CurBinNumber = List1.ItemData(List1.ListIndex)
 ' Enter the following result% statement on one, single line.
 result% = GetPaperBinEscape(Printer.hDC, GETSETPAPERBINS,
 Len(NewBinInfo), NewBinInfo, NewBinInfo)

 MsgBox "Sending Sample Output to printer using Bin: " + List1.Text
 Printer.Print "This should of have come from Bin: "; List1.Text
 Printer.EndDoc
 End Sub

8. From the Run menu, choose Start (ALT, R, S) to run the program.

9. Choose the Command1 button to see a list of available paper bins for the
 default printer listed in the List1 box.

10. Select one of the paper bins listed in the List1 box. A message box
 appears to tell you that a sample printout is being sent to the printer
 using the paper bin you selected.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: APrgPrint

How to Determine When a Shelled Process Has Terminated
Article ID: Q96844

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

Executing the Shell() function in a Visual Basic for Windows program
starts another executable program asynchronously and returns control
to the Visual Basic application. The shelled program continues to run
indefinitely until the user closes it -- not until your Visual Basic
program terminates. However, your program can wait until the shelled
program has finished by polling the return value of the Windows API
GetModuleUsage() function. This article describes the method and
provides a code example.

MORE INFORMATION
================

This information is included with the Help file provided with Microsoft
Visual Basic version 3.0 for Windows.

Technique Also Works with MS-DOS Programs

The technique described in this article also works for MS-DOS programs. The
return value from the Visual Basic Shell() function is a unique instance
handle to the MS-DOS session that was started in the Shell(). If you call
GetModuleUsage() with that handle after the MS-DOS session in question has
ended, GetModuleUsage() will return 0 because the handle is no longer
valid. This can be verified with the following code:

 Debug.Print Shell("EDIT.COM")
 Debug.Print Shell("EDIT.COM")
 Debug.Print Shell("EDIT.COM")

Executing this code will show that the Shell() return value is unique
for each of the shelled MS-DOS programs. Using GetModuleUsage() on one of
these handles after the associated EDIT.COM program has been terminated
will return zero (because the handle isn't valid anymore) and take you out
of the wait loop.

Monitoring the Status of a Shelled Process
--

By using the Windows API GetModuleUsage() function, your Visual Basic
program can monitor the status of a shelled process. The return value from
the Shell() function can be used to call the GetModuleUsage() function
continuously within a loop to find out if the shelled program has finished.

If the Shell() function is successful, the return value is the instance
handle for the shelled program. This instance handle can be passed to the
GetModuleUsage() function to determine the reference count for the module.
When the GetModuleUsage() function returns a value of 0 or less, the
shelled program has finished.

This algorithm works correctly regardless of the WindowStyle used to shell
the program. In addition, this method works correctly when:

 - Shelling to Windows programs.
 - Shelling to MS-DOS programs.
 - Shelling to applications that do not display a window.

Below are the steps necessary to build a Visual Basic for Windows
program that uses the Shell() function to execute the Windows Notepad
accessory (NOTEPAD.EXE). The code shows by example how to use the Windows
API GetModuleUsage() function to wait until a shelled process terminates
before resuming execution.

Step-by-Step Example

1. Start Visual Basic for Windows or from the File menu, choose New Project
 (ALT, F, N) if Visual Basic for Windows is already running. Form1 is
 created by default.

2. Add the following code to the general declarations section of Form1:

 Declare Function GetModuleUsage% Lib "Kernel" (ByVal hModule%)

3. Add the following code to the Form_Click event procedure of Form1:

 Sub Form_Click ()
 x% = Shell("NOTEPAD.EXE") ' Modify the path as necessary.

 While GetModuleUsage(x%) > 0 ' Has Shelled program finished?
 z% = DoEvents() ' If not, yield to Windows.
 Wend
 MsgBox "Shelled application just terminated", 64
 End Sub

4. From the Run menu, choose Start (ALT, R, S) to run the program.

5. Using the mouse, click in the Form1 window. At this point, the Notepad
 application is shelled.

The MsgBox statement following the Shell() Function is not executed because
the While loop prevents it. The message box does not appear until Notepad
is closed when the user chooses Exit from Notepad's File menu (ALT, F, X).

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgOther

Using the Printer Object to Print a Grid Control's Contents
Article ID: Q96941

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 1.0, 2.0, and 3.0

SUMMARY
=======

The example program in this article shows you how to print the contents of
a grid control using the Printer object.

MORE INFORMATION
================

The example code prints a line border around the grid if the grid control
BorderStyle is set to 1 and prints grid lines between the cells if
GridLines is set to True.

Steps to Create Example Program

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running.

2. From the File menu, choose Add File. Select GRID.VBX. The Grid tool
 appears in the Toolbox.

3. Place a grid (Grid1) on Form1. Set the Cols and Rows properties to 6.

4. Add the following code to the Form1 Click event:

 Sub Form_Click ()
 ' Add sample data to the grid
 Dim i, j
 For i = 0 To Grid1.Cols - 1
 For j = 0 To Grid1.Rows - 1
 Grid1.Col = i
 Grid1.Row = j
 Grid1.Text = Format$(i + j + i ^ j)
 Next
 Next
 ' Print the data
 Call Grid_Print(Grid1)
 Printer.EndDoc
 End Sub

5. Add the following code to the general declarations section:

 Sub Grid_Print (grid As Control)
 Dim tppx As Integer ' alias TwipsPerPixelX
 Dim tppy As Integer ' alias TwipsPerPixelY
 tppx = Printer.TwipsPerPixelX

 tppy = Printer.TwipsPerPixelY
 Dim Col As Integer ' index to grid columns
 Dim Row As Integer ' index to grid rows
 Dim x0 As Single ' upper left corner
 Dim y0 As Single ' "
 Dim x1 As Single ' position of text
 Dim y1 As Single ' "
 Dim x2 As Single ' position of grid lines
 Dim y2 As Single ' "

 ' set upper left corner
 x0 = Printer.CurrentX
 y0 = Printer.CurrentY

 ' draw the border around the grid
 If grid.BorderStyle <> 0 Then
 Printer.Line -Step(grid.Width - tppx, grid.Height - tppy), , B
 x0 = x0 + tppx
 y0 = y0 + tppy
 End If

 ' draw the text in the grid
 x1 = x0
 For Col = 0 To grid.Cols - 1
 ' skip non-visible columns
 If Col >= grid.FixedCols And Col < grid.LeftCol Then
 Col = grid.LeftCol
 End If
 ' stop if outside grid
 If x1 + grid.ColWidth(Col) >= grid.Width Then Exit For
 y1 = y0
 For Row = 0 To grid.Rows - 1
 ' skip non-visible columns
 If Row >= grid.FixedRows And Row < grid.TopRow Then
 Row = grid.TopRow
 End If
 ' stop if outside grid
 If y1 + grid.RowHeight(Row) >= grid.Height Then Exit For
 ' set position to print the cell
 Printer.CurrentX = x1 + tppx * 2
 Printer.CurrentY = y1 + tppy
 ' print cell text
 grid.Col = Col
 grid.Row = Row
 Printer.Print grid.Text
 ' advance to next row
 y1 = y1 + grid.RowHeight(Row)
 If grid.GridLines Then
 y1 = y1 + tppy
 End If
 Next
 ' advance to next column
 x1 = x1 + grid.ColWidth(Col)
 If grid.GridLines Then
 x1 = x1 + tppx
 End If
 Next

 ' draw grid lines
 If grid.GridLines Then
 x2 = x0
 y2 = y0
 For Col = 0 To grid.Cols - 1
 ' skip non-visible columns
 If Col >= grid.FixedCols And Col < grid.LeftCol Then
 Col = grid.LeftCol
 End If
 x2 = x2 + grid.ColWidth(Col)
 ' stop if outside grid
 If x2 >= grid.Width Then Exit For
 Printer.Line (x2, y0)-Step(0, y1 - tppy)
 x2 = x2 + tppx
 Next
 For Row = 0 To grid.Rows - 1
 ' skip non-visible rows
 If Row >= grid.FixedRows And Row < grid.TopRow Then
 Row = grid.TopRow
 End If
 y2 = y2 + grid.RowHeight(Row)
 ' stop if outside grid
 If y2 >= grid.Height Then Exit For
 Printer.Line (x0, y2)-Step(x1 - tppx, 0)
 y2 = y2 + tppy
 Next
 End If
 End Sub

6. Press the F5 key to run the program. Click Form1 to fill the grid with
 sample data and print the grid.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgPrint

How to Use SystemParametersInfo API for Control Panel Settings
Article ID: Q97142

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0

SUMMARY
=======

The SystemParametersInfo API call can be used to get and set Windows
settings that are normally set from the Desktop by using the Control
Panel.

MORE INFORMATION
================

You can call the SystemParametersInfo API to set and get all the settings
controlled by the Windows Control Panel. Normally a user would have to
choose the Windows Control Panel to view or change system settings such as
granularity, wallpaper, or icon title wrap. Instead of forcing the user to
set things manually using the Control Panel you can have your program call
the SystemParametersInfo API to set them automatically.

Use the following Visual Basic for Windows Declare for the API. Enter it
all as one, single line:

 Declare Function SystemParametersInfo Lib "User" (ByVal uAction
 As Integer, ByVal uparam As Integer, lpvParam As Any, ByVal fuWinIni
 As Integer) As Integer

Here are the formal arguments to the function:

 uAction system parameter to query or set
 uParam depends on system parameter
 lpvParam depends on system parameter
 fuWinIni WIN.INI update flag

The uAction argument can be one of the following constants:

 CONST SPI_GETBEEP=1
 CONST SPI_SETBEEP=2
 CONST SPI_GETMOUSE=3
 CONST SPI_SETMOUSE=4
 CONST SPI_GETBORDER=5
 CONST SPI_SETBORDER=6
 CONST SPI_GETKEYBOARDSPEED=10
 CONST SPI_SETKEYBOARDSPEED=11
 CONST SPI_LANGDRIVER=12
 CONST SPI_ICONHORIZONTALSPACING=13
 CONST SPI_GETSCREENSAVETIMEOUT=14
 CONST SPI_SETSCREENSAVETIMEOUT=15
 CONST SPI_GETSCREENSAVEACTIVE=16

 CONST SPI_SETSCREENSAVEACTIVE=17
 CONST SPI_GETGRIDGRANULARITY=18
 CONST SPI_SETGRIDGRANULARITY=19
 CONST SPI_SETDESKWALLPAPER=20
 CONST SPI_SETDESKPATTERN=21
 CONST SPI_GETKEYBOARDDELAY=22
 CONST SPI_SETKEYBOARDDELAY=23
 CONST SPI_ICONVERTICALSPACING=24
 CONST SPI_GETICONTITLEWRAP=25
 CONST SPI_SETICONTITLEWRAP=26
 CONST SPI_GETMENUDROPALIGNMENT=27
 CONST SPI_SETMENUDROPALIGNMENT=28
 CONST SPI_SETDOUBLECLKWIDTH=29
 CONST SPI_SETDOUBLECLKHEIGHT=30
 CONST SPI_GETICONTITLELOGFONT=31
 CONST SPI_SETDOUBLECLICKTIME=32
 CONST SPI_SETMOUSEBUTTONSWAP=33
 CONST SPI_SETICONTITLELOGFONT=34
 CONST SPI_GETFASTTASKSWITCH=35
 CONST SPI_SETFASTTASKSWITCH=36

The UParam argument should be 0 when used with a GET constant, and it
should contain the new value of the setting when used with a SET constant.
The exceptions to these rules are documented in the Windows version 3.1
Software Development Kit (SDK) help file.

When used with a GET constant, the lpvParam argument returns the current
value of the setting. When used with a SET constant, it is a NULL. The
exceptions to these rules are documented in the Windows version 3.1 SDK
help file.

The fuWinIni argument updates the WIN.INI file:

 Const SPIF_SENDWININICHANGE = &H2
 Const SPIF_UPDATEINIFILE = &H1

Example One

One exception to the rules given above occurs with a call to set or get the
 icon spacing setting. The following example gives the correct arguments
to use to set and get the horizontal spacing:

1. Create a Visual Basic project, and add the following controls to a form:

 Control Name Caption

 Command1 Read
 Command2 Set
 Text1
 Label1 Icon Horizontal Spacing

2. Add the following code to the general declarations section of the form:

 Const SPIF_SENDWININICHANGE = &H2
 Const SPIF_UPDATEINIFILE = &H1
 Const SPI_ICONHORIZONTALSPACING = 13
 Dim uAction As Integer

 Dim uparam As Integer
 ' Enter the following Declare as one, single line:
 Declare Function SystemParametersInfo Lib "User" (ByVal uAction As
 Integer, ByVal uparam As Integer, lpvParam As Any, ByVal fuWinIni As
 Integer) As Integer

3. Add the following code to the Command1_Click event:

 uAction = 0
 uparam = 0
 ret% = SystemParametersInfo(SPI_ICONHORIZONTALSPACING, uAction,
 uparam, SPIF_UPDATEINIFILE Or SPIF_SENDWININICHANGE)
 text1.Text = uparam

4. Add the following code to the Command2_Click event:

 uAction = Val(text1.Text)
 uparam = 0
 ' Enter the following as one, single line:
 x% = SystemParametersInfo(SPI_ICONHORIZONTALSPACING, uAction,
 ByVal 0&, SPIF_UPDATEINIFILE Or SPIF_SENDWININICHANGE)

5. Run the program, and click the Read button. The current setting of the
 icon horizontal spacing will be displayed in the Text1 box. Enter a new
 number(32 is the lowest setting accepted) in the Text1 box, and click
 the Read button. The spacing will be reset. To see the new setting,
 bring up the Windows Task list, and choose Arrange Icons.

Example Two

The example follows the general parameter rules. It demonstrates how to
turn icon title wrapping on and off by using SETICONTITLEWRAP.

1. Create a Visual Basic project and add the following controls to a form:

 Control Name Caption

 Command1 Wrapping True
 Command2 Wrapping False

2. Add the following code to the general declarations section of the form:

 ' Enter the following Declare as one, single line:
 Declare Function SystemParametersInfo Lib "User" (ByVal uAction As
 Integer, ByVal uparam As Integer, lpvParam As Any, ByVal fuWinIni As
 Integer) As Integer
 Const SPI_SETICONTITLEWRAP = 26
 Const SPIF_SENDWININICHANGE = &H2
 Const SPIF_UPDATEINIFILE = &H1

3. Add the following code to the Command1 Click event:

 ' Enter the following as one, single line:
 x% = SystemParametersInfo(SPI_SETICONTITLEWRAP, True, 0&,
 SPIF_UPDATEINIFILE Or SPIF_SENDWININICHANGE)

4. Add the following code to the Command2 Click event:

 ' Enter the following as one, single line:
 x% = SystemParametersInfo(SPI_SETICONTITLEWRAP, False, 0&,
 SPIF_UPDATEINIFILE Or SPIF_SENDWININICHANGE)

5. Run the program and watch the icon titles as you click the two buttons.

Example Three

This example follows the general parameter rules. It demonstrates how to
change your desktop's wallpaper with the SPI_SETDESKWALLPAPER.

1. Create a Visual Basic project and add the following controls to a form:

 Control Name Caption

 Command1 Change Wallpaper to Rivets

2. Add the following code to the general declarations section of the form:

 Const SPIF_UPDATEINIFILE = &H1
 Const SPI_SETDESKWALLPAPER = 20
 Const SPIF_SENDWININICHANGE = &H2

 ' Enter the following Declare as one, single line:
 Declare Function SystemParametersInfo Lib "User" (ByVal uAction As
 Integer, ByVal uparam As Integer, ByVal lpvParam As String, ByVal
 fuWinIni As Integer) As Integer

3. Add the following code to the Command1 Click event:

 Sub Command1_Click ()
 filenm$ = "C:\Windows\rivets.bmp"

 ' Enter the following two lines as one, single line:
 x% = SystemParametersInfo(SPI_SETDESKWALLPAPER, 0&,
 filenm$, SPIF_UPDATEINIFILE Or SPIF_SENDWININICHANGE)
 End Sub

4. Run the program and watch the wallpaper change to RIVETS.BMP.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: APrgOther

Example of calling EnumFontFamilies from a DLL
Article ID: Q98577

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic programming
 system for Windows, versions 2.0 and 3.0

SUMMARY
=======

This article demonstrates how to obtain a list of available fonts for a
device by calling EnumFontFamilies or EnumFonts from a DLL.

Visual Basic already provides a Fonts property for obtaining a list of
available font names for a device. Microsoft recommends that you use the
Fonts property instead of the function provided in this article to obtain
a list of available fonts. Use the technique shown in this article only if
you have encountered a bug or limitation when using the Fonts property.

To create the example shown below, you need a C compiler capable of
creating Windows dynamic link libraries (DLLs), and you need to have the
Visual Basic Control Development Kit (CDK) version 2.0 or 3.0. The CDK
is provided with the Professional Edition of Visual Basic version 2.0
and 3.0 for Windows.

MORE INFORMATION
================

Below are the steps necessary to create a sample DLL that demonstrates
using EnumFontFamilies:

STEP ONE: Create Example .DLL File

1. Create a source file called FONTNAME.C and add the following code:

 #include <windows.h>
 #include <vbapi.h>
 #include <string.h>

 int FAR PASCAL _export EnumFontNames (HDC, HAD);
 int FAR PASCAL _export GetNextFont (LPLOGFONT, LPNEWTEXTMETRIC,
 int, LPARAM);
 BOOL Win31OrGreater (VOID);

 int giFontCount;
 float gfVersion;

 //==
 // Title
 // EnumFontNames()
 //
 // Parameters
 // hdc Device context for which fonts will be enumerated

 // had Handle to Visual Basic string array where the
 // font names will be placed.
 //
 // Returns
 // The number of fonts enumerated.
 //==
 int FAR PASCAL EnumFontNames (HDC hdc, HAD had)
 {
 giFontCount = 0;

 if (Win31OrGreater())
 //Use EnumFontFamilies under Win 3.1 and later
 while (EnumFontFamilies(hdc, NULL, GetNextFont, had));
 else
 //Need to use EnumFonts under Win 3.0
 while (EnumFonts(hdc, NULL, GetNextFont, had));

 return giFontCount;
 }

 //==
 // Title
 // GetNextFont()
 //
 // Parameters
 // lplf Far pointer to LOGFONT structure
 // lpntm Far pointer to NEWTEXTMETRIC structure
 // FontType Type of font
 // lp User-defined. In this case it holds the handle
 // to a Visual Basic string array.
 //
 // Returns
 // TRUE as a signal to enumerate the next font
 // FALSE as a signal to stop enumeration
 //==
 int FAR PASCAL GetNextFont
 (
 LPLOGFONT lplf,
 LPNEWTEXTMETRIC lpntm,
 int FontType,
 LPARAM lp
)
 {
 static char szFirstFont[LF_FACESIZE + 1];
 char szFaceName[LF_FACESIZE + 1];
 int iElements, lbound;

 HAD had = (HAD) lp;
 LONG lBounds = VBArrayBounds(had, 1);

 //Get out if there are no elements in the array
 if (lBounds == AB_INVALIDINDEX)
 return FALSE;

 // Store the lower bound of the array for index 1
 lbound = LOBOUND(lBounds);

 //Get number of elements in the array
 iElements = HIBOUND(lBounds) - lbound + 1;

 //Initialize the vars holding the font face names
 if (giFontCount == 0)
 szFirstFont[0] = '\0';

 szFaceName[0] = '\0';

 if (giFontCount <= iElements)
 {
 HLSTR hlstr;
 SHORT indexes[1];

 //Copy the face size into a buffer so that we can insure its
 //null terminated
 if (Win31OrGreater())
 lstrcpyn((LPSTR) szFaceName, lplf->lfFaceName,
 LF_FACESIZE - 1);
 else
 //Need to use C runtime routine fmemcpy instead of
 //lstrcpyn under Win 3.0
 _fmemcpy((LPVOID) szFaceName, lplf->lfFaceName,
 LF_FACESIZE - 1);

 szFaceName[LF_FACESIZE] = '\0';

 if (giFontCount == 0)

 //Store the first font retrieved. If we see this font
 //again, we know we've enumerated all the fonts
 lstrcpy((LPSTR) szFirstFont, szFaceName);

 else if (!lstrcmp(szFirstFont, szFaceName))
 //If we see the same face name again, get out and stop
 //enumerating
 return FALSE;

 //Assume a single index array
 indexes[0] = lbound + giFontCount;

 //Get the VB string handle from the VB array
 hlstr = VBArrayElement(had, VBArrayIndexCount(had),
 indexes);

 //Make sure the string handle is valid
 if (HIWORD(hlstr))
 {
 //Add the fontname to the array
 VBSetHlstr(&hlstr, (LPSTR) szFaceName, lstrlen((LPSTR)
 szFaceName));

 //Return and get the next font
 giFontCount++;
 }

 return TRUE;

 }

 else
 //Can't fit all font names into the array provided, so get
 //out.
 return FALSE;
 }

 //==
 // Title
 // Win31OrGreater ()
 //
 // Returns
 // TRUE if we're running under Windows 3.1 or better
 // FALSE if we're running under Windows 3.0
 //==
 BOOL Win31OrGreater (VOID)
 {
 DWORD dVersion;

 //Check which version of Windows we're running under
 dVersion = GetVersion();
 if (LOBYTE(LOWORD(dVersion)) > 3 || (LOBYTE(LOWORD(dVersion))
 == 3 && HIBYTE(LOWORD(dVersion)) > 0))
 return TRUE;
 else
 return FALSE;
 }

 //--
 // Initialize library. This routine is called when the first
 // client loads
 // the DLL.
 //--
 int FAR PASCAL LibMain
 (
 HANDLE hModule,
 WORD wDataSeg,
 WORD cbHeapSize,
 LPSTR lpszCmdLine
)
 {
 // Avoid warnings on unused (but required) formal parameters
 wDataSeg = wDataSeg;
 cbHeapSize = cbHeapSize;
 lpszCmdLine = lpszCmdLine;

 return 1;
 }

 //--
 // WEP
 //--
 int FAR PASCAL WEP(int fSystemExit);

 //--
 // Performs cleanup tasks when the DLL is unloaded. WEP() is

 // called automatically by Windows when the DLL is unloaded (no
 // remaining tasks still have the DLL loaded). It is strongly
 // recommended that a DLL have a WEP() function, even if it does
 // nothing but returns success (1), as in this example.
 //--
 int FAR PASCAL WEP
 (
 int fSystemExit
)
 {
 // Avoid warnings on unused (but required) formal parameters
 fSystemExit = fSystemExit;

 return 1;
 }

2. Create a module-definition file (DEF) called FONTNAME.DEF and add the
 following:

 LIBRARY FONTNAME

 DESCRIPTION 'Example of how to enumerate all font names for
 specific device'

 EXETYPE WINDOWS

 CODE PRELOAD MOVEABLE DISCARDABLE
 DATA PRELOAD MOVEABLE SINGLE

 EXPORTS
 WEP @1 RESIDENTNAME
 ENUMFONTNAMES @2
 GETNEXTFONT @3

3. Compile FONTNAME.C from the MS-DOS command line as follows:

 CL /c /ASw /W3 FONTNAME.C

4. Link the resulting FONTNAME.OBJ file as follows:

 LINK /NOE /NOD
 FONTNAME.OBJ+LIBENTRY.OBJ,FONTNAME.DLL,,
 LIBW+SDLLCEW+VBAPI.LIB,FONTNAME.DEF;

5. Resource compile FONTNAME.DLL to make it Windows 3.0 compatible as
 follows:

 RC /30 FONTNAME.DLL

6. Copy FONTNAME.DLL to the \WINDOWS\SYSTEM directory.

STEP TWO: Create Visual Basic Sample Program
--
1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Add a list box (List1) to Form1.

3. Add the following Declare statement as one, single line to the
 general-declarations section of Form1:

 Declare Function EnumFontNames Lib "FONTNAME.DLL" (ByVal hDC As
 Integer, FontNames() As String) As Integer

4. Add the following code to the Form_Click event of Form1:

 Sub Form_Click ()

 Dim i As Integer
 Dim FontCount As Integer
 ReDim FontNames(255) As String 'Make the array intentionally
 'large to hold any number of
 'font names

 'For Screen fonts, pass Form1.hDC instead. If using the
 'Common Dialog control, you can also pass the hDC property
 'of the Common Dialog control.
 FontCount = EnumFontNames(Printer.hDC, FontNames())

 List1.Clear
 For i = 0 To FontCount - 1
 List1.AddItem FontNames(i)
 Next

 End Sub

5. From the Run menu, choose Start (ALT, R, S) or press F5 to run the
 program.

6. Click Form1.

The available font names for the selected printer will be displayed in
the list box.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: APrgOther

How to Print Text Sideways in Picture Control with Windows API
Article ID: Q99874

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic for Windows, version 1.0

SUMMARY
=======

The example below shows how to print text sideways in a picture control
using Windows API function calls. The text prints vertically in the
picture control, rotated by 90 degrees.

MORE INFORMATION
================

Step-by-Step Example

1. Start Visual Basic. Form1 is created by default.

2. Draw a large picture box (Picture1) on the form.

3. From the File menu, choose New Module to create a new module. Put the
 following code in the module:

 DefInt A-Z
 global Const LF_FACESIZE = 32
 Type LOGFONT
 lfheight As Integer
 lfwidth As Integer
 lfescapement As Integer
 lforientation As Integer
 lfweight As Integer
 lfitalic As String * 1
 lfunderline As String * 1
 lfstrikeout As String * 1
 lfcharset As String * 1
 lfoutprecision As String * 1
 lfclipprecision As String * 1
 lfquality As String * 1
 lfpitchandfamily As String * 1
 lffacename As String * LF_FACESIZE
 End Type

 ' Enter each of the following 7 Declare statement on one, single line:
 Declare Function CreateFont% Lib "GDI" (ByVal h%, ByVal w%, ByVal e%,
 ByVal o%, ByVal n%, ByVal i%, ByVal u%, ByVal s%, ByVal c%,
 ByVal op%, ByVal cp%, ByVal q%, ByVal j%, ByVal f$)
 Declare Function createfontindirect Lib "GDI" (lplogfont As LOGFONT)
 As Integer
 Declare Function selectobject Lib "GDI" (ByVal hdc%, ByVal object%)

 As Integer
 Declare Function textout Lib "GDI" (ByVal hdc%, ByVal x%, ByVal y%,
 ByVal text$, ByVal ncount%) As Integer
 Declare Sub deleteobject Lib "GDI" (ByVal object%)
 Declare Function getdevicecaps Lib "GDI" (ByVal hdc%, ByVal nindex%)
 As Integer
 Declare Function gettextface Lib "GDI" (ByVal hdc As Integer,
 ByVal ncount As Integer, ByVal lpname As String) As Integer

 Global Const PROOF_QUALITY = 2
 Global Const FW_NORMAL = 400

4. Add the following code to the Form_Click event:

 picture1.Cls
 Dim hfont As Integer, holdfont As Integer
 Dim font As LOGFONT
 nvalue = getdevicecaps(picture1.hDC, 34)
 font.lfheight = 12
 font.lfwidth = 0
 font.lfescapement = 900
 font.lforientation = 900
 font.lfweight = 400 'This is normal
 font.lfitalic = Chr$(0)
 font.lfunderline = Chr$(0)
 font.lfstrikeout = Chr$(0)
 font.lfcharset = Chr$(0)
 font.lfoutprecision = Chr$(0)
 font.lfclipprecision = Chr$(0)
 font.lfquality = Chr$(2)
 font.lfpitchandfamily = Chr$(33)
 font.lffacename = "Courier New" + Chr$(0)

 hfont = createfontindirect(font)
 holdfont = selectobject(picture1.hDC, hfont)
 szfacename$ = Space$(80)
 retval% = gettextface(picture1.hDC, 79, szfacename$)

 nchars = Len(sometext$)
 picture1.CurrentX = 200
 picture1.CurrentY = 2000
 picture1.Print Left$(RTrim$(szfacename$), Len(RTrim$(szfacename$)) - 1)
 deleteobject hfont

5. Run the program. Click the form, not the picture. You'll see the phrase
 "Courier New" print sideways in the picture control, from the lower left
 to the upper left.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgPrint APrgWindow

How to Play MIDI Files Using API Calls from Visual Basic
Article ID: Q99898

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows,
 versions 1.0, 2.0, and 3.0

SUMMARY
=======

This article demonstrates how to play a MIDI (.MID) file from Visual Basic
using Windows version 3.1 APIs.

If you have the Professional Edition of Visual Basic version 2.0 or 3.0, or
if you have the Professional Toolkit for Visual Basic version 1.0, you can
use the MCI control to play a MIDI file. You don't need to use the APIs

MORE INFORMATION
================

Step by Step to an Application that Plays an .MID file
--
1. Start Visual Basic, or if Visual Basic is already running, choose New
 Project from the File menu (ALT, F, N). Form1 is created by default.

2. Add a Command Button (Command1) to Form1.

3. Add the following code to the Command1_Click event of Form1:

 DIM ret as Integer

 '*** The following will open the sequencer with the C:\WIN31\CANYON.MID
 '*** file. Canyon is the device_id. Enter the entire statement on one,
 '*** single line.
 ret = mciSendString("open CANYON.MID type sequencer alias canyon",
 0&, 0, 0)

 '*** The wait tells the MCI command to complete before returning control
 '*** to the application.
 Ret = mciSendString("play canyon wait", 0&, 0, 0)

 '*** Close CANYON.MID file and sequencer device
 Ret = mciSendString("close Animation", 0&, 0, 0)

4. Add the following code to the general declarations section of Form1:

 ' Enter the following Declare statement on one, single line:
 Declare Function mciSendString Lib "mmsystem" (ByVal lpstrCommand$,
 ByVal lpstrReturnStr As Any, ByVal wReturnLen%, ByVal hCallBack%)
 As Long

5. From the Run menu, choose Start (ALT, R, S) or press F5 to run the
 program.

More information about sndSendString() can be found in:

 - the MultiMedia Programmer's Reference on page 3-26.
 - Command strings described on pages 7-23 to 7-93 and in the WIN31MWH.HLP
 file shipped with the Windows 3.1 Software Development Kit (SDK).

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgWindow

How to Read a Large File into Memory by Calling API Functions
Article ID: Q100513

The information in this article applies to:

- The Visual Basic programming system for Windows, versions 2.0 and 3.0
- Microsoft Windows, version 3.1 or higher

SUMMARY
=======

This article demonstrates how to call Windows API functions to read a file
of any size (including a huge file such as a bitmap) into memory and how
to write a block of memory (including a huge memory block) out to a file.

The information in this article applies only to Windows version 3.1 or
higher because it uses Windows API functions introduced in Windows
version 3.1.

MORE INFORMATION
================

Perform the following steps to create a sample program that demonstrates
how to read a large file into memory and write that memory back out to
a file:

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose New Module (ALT, F, M). Module1 is created.

3. Add the following code to the general-declarations section of Module1:

 ' OpenFile() Structure
 Type OFSTRUCT
 cBytes As String * 1
 fFixedDisk As String * 1
 nErrCode As Integer
 reserved As String * 4
 szPathName As String * 128
 End Type

 ' OpenFile() Flags
 Global Const OF_READ = &H0
 Global Const OF_WRITE = &H1
 Global Const OF_READWRITE = &H2
 Global Const OF_SHARE_COMPAT = &H0
 Global Const OF_SHARE_EXCLUSIVE = &H10
 Global Const OF_SHARE_DENY_WRITE = &H20
 Global Const OF_SHARE_DENY_READ = &H30
 Global Const OF_SHARE_DENY_NONE = &H40
 Global Const OF_PARSE = &H100
 Global Const OF_DELETE = &H200
 Global Const OF_VERIFY = &H400

 Global Const OF_CANCEL = &H800
 Global Const OF_CREATE = &H1000
 Global Const OF_PROMPT = &H2000
 Global Const OF_EXIST = &H4000
 Global Const OF_REOPEN = &H8000

 ' Enter each of the following Declare statements on one, single line:
 Declare Function OpenFile Lib "Kernel" (ByVal lpFilename As
 String, lpReOpenBuff As OFSTRUCT, ByVal wStyle As Integer) As Integer
 Declare Function hRead Lib "kernel" Alias "_hread" (ByVal hFile As
 Integer, lpMem As Any, ByVal lSize As Long) As Long
 Declare Function hWrite Lib "Kernel" Alias "_hwrite" (ByVal hFile
 As Integer, lpMem As Any, ByVal lSize As Long) As Long
 Declare Function lClose Lib "kernel" Alias "_lclose" (ByVal hFile
 As Integer) As Integer

 ' Global Memory Flags
 Global Const GMEM_FIXED = &H0
 Global Const GMEM_MOVEABLE = &H2
 Global Const GMEM_NOCOMPACT = &H10
 Global Const GMEM_NODISCARD = &H20
 Global Const GMEM_ZEROINIT = &H40
 Global Const GMEM_MODIFY = &H80
 Global Const GMEM_DISCARDABLE = &H100
 Global Const GMEM_NOT_BANKED = &H1000
 Global Const GMEM_SHARE = &H2000
 Global Const GMEM_DDESHARE = &H2000
 Global Const GMEM_NOTIFY = &H4000
 Global Const GMEM_LOWER = GMEM_NOT_BANKED

 Global Const GHND = (GMEM_MOVEABLE Or GMEM_ZEROINIT)
 Global Const GPTR = (GMEM_FIXED Or GMEM_ZEROINIT)

 ' Enter each of the following Declare statements on one, single line:
 Declare Function GlobalAlloc Lib "Kernel" (ByVal wFlags As
 Integer, ByVal dwBytes As Long) As Integer
 Declare Function GlobalLock Lib "Kernel" (ByVal hMem As Integer)
 As Long
 Declare Function GlobalUnlock Lib "Kernel" (ByVal hMem As Integer)
 As Integer
 Declare Function GlobalFree Lib "Kernel" (ByVal hMem As Integer)
 As Integer

4. Add the following code to the Form_Load event procedure of Form1:

 Sub Form_Load ()

 Dim InpFile As String
 Dim OutFile As String
 Dim hFile As Integer
 Dim fileStruct As OFSTRUCT
 Dim FSize As Long
 Dim BytesRead As Long
 Dim BytesWritten As Long
 Dim hMem As Integer
 Dim lpMem As Long
 Dim r As Integer

 Me.Show

 'Insert the name of a bitmap or file that is greater than 64K.
 '256COLOR.BMP is less than 5K in size, however, the routine
 'below still demonstrates how to read and write a file of any
 'size
 InpFile = "C:\WINDOWS\256COLOR.BMP"
 OutFile = "C:\WINDOWS\TEST.BMP"

 'Get the size of the file to be read
 FSize = FileLen(InpFile)

 If FSize > 0 Then

 'Allocate a block of memory equal to the size of the input file.
 hMem = GlobalAlloc(GPTR, FSize)

 If hMem <> 0 Then
 lpMem = GlobalLock(hMem)

 'Read the file into memory
 hFile = OpenFile(InpFile, fileStruct, OF_READ Or
 OF_SHARE_DENY_NONE)
 BytesRead = hRead(hFile, ByVal lpMem, FSize)

 MsgBox Format(BytesRead) & " bytes read into memory"

 r = lClose(hFile)

 'Write the file back to disk to verify the file was
 'read correctly
 hFile = OpenFile(OutFile, fileStruct, OF_CREATE Or
 OF_WRITE Or OF_SHARE_DENY_NONE)
 BytesWritten = hWrite(hFile, ByVal lpMem, FSize)

 MsgBox Format(BytesWritten) & " bytes written to output file"

 r = lClose(hFile)

 'Free resources
 r = GlobalUnlock(hMem)
 r = GlobalFree(hMem)
 Else
 MsgBox "Not enough memory to store file"
 End If
 Else
 MsgBox "Input file is zero bytes in length"
 End If
 End
 End Sub

5. From the Run menu, choose Start (ALT, R, S) or press F5 to run the
 program. Form1 will be displayed and the program will end.

6. Use PaintBrush or some other bitmap editor to open C:\WINDOWS\TEST.BMP
 to verify that it is the same bitmap as C:\WINDOWS\256COLOR.BMP.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: APrgWindow

How to Find Next Available Drive Letter (for Network Connect)
Article ID: Q100834

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0

SUMMARY
=======

The Visual Basic program in this article shows by example how to find the
next available (unused) drive letter in Windows. This is useful when making
network connections to a new drive letter.

MORE INFORMATION
================

Step-by-Step Example

The Freedrive function defined below returns the next drive letter
available in Windows, followed by a colon (:).

1. Start Visual Basic. Form1 is created by default.

2. Add the following code to the General Declarations section of Form1:

 ' Enter the following Declare statement as one, single line:
 Declare Function GetDriveType Lib "kernel"
 (ByVal nDrive As Integer) As Integer

 Function Freedrive ()
 Dim DriveNum As Integer, FirstFreeDrive As String
 Dim FirstDrive As Integer
 DriveNum = -1
 Do
 DriveNum = DriveNum + 1 ' start at drive zero.
 FirstDrive% = GetDriveType(DriveNum)
 ' GetDriveType returns zero if it cannot determine drive
 ' type or returns 1 if the specified drive does not exist.
 Loop Until FirstDrive% = 0
 ' DriveNum of 0 means Drive A, 1=B, 2=C, 3=D, 4=E, 5=F, and so on:
 FirstFreeDrive = Chr$(DriveNum + 65) + ":"
 Freedrive = FirstFreeDrive
 End Function

3. In the Form_click event, add the following statements:

 Sub Form_Click ()

 Cls
 Print "The next available (unused) drive letter is: "; Freedrive()

 ' More handy tips: The "App" object below is found in VB 2.0
 ' and 3.0 (but not 1.0).
 Print "The title for the EXE in Windows Task Manager: "; app.Title
 Print "The name of this EXE, or project in VB, is: "; app.EXEName
 Print "The path to this application is: "; app.Path

 End Sub

4. Run the program, and click the form.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: APrgNet

How to Set the Formatting Rectangle of a TextBox
Article ID: Q101162

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0

SUMMARY
=======

You can change the formatting rectangle of a text box to control when
scrolling occurs.

The formatting rectangle determines the range of positions allowed for
the caret (text cursor). The limiting rectangle is independent of the
size of the edit-control window. By default, the formatting rectangle is
the same as the client area of the edit-control window.

MORE INFORMATION
================

Using the SendMessage API call and the EM_SETRECT message, you can
set the formatting rectangle of a text box. If you do not send the
EM_SETRECT message, the formatting rectangle defaults to the size of the
client area of the text box.

You can use this API call to control where the scrolling starts in a
text box. The default scrolling starts when the cursor reaches the left
side of the text box. This API can make that rectangle smaller than the
actual text box forcing the scrolling to start before the cursor reaches
the left side of the text box.

Note the following if you do not use the message until after text has
been entered into the text box:

If the text box does not have a horizontal scroll bar, and the
formatting rectangle is set to be larger than the text box window,
lines of text exceeding the width of the text box (but smaller than the
width of the formatting rectangle) are clipped instead of wrapped.

Step-by-Step Demonstration

1. Start Visual Basic, or if you are in Visual Basic, start a new
 project.

2. Add a text box (Text1) to your form.

3. Set the Text1 MultiLine Property to True and the ScrollBars
 Property to 3 (Both).

4. From the File menu, choose New Module (Module1.bas).

5. Add the following code to Module1.bas:

 Type recttype
 l As Integer ' left of rectangular region
 t As Integer ' top of region
 r As Integer ' right of region
 b As Integer ' bottom of region
 End Type
 ' Note the following Declare must be on one, single line:
 Declare Function SendMessage Lib "user" (ByVal hwnd%, ByVal wMsg%,
 ByVal wp%, lp As Any) As Long

6. Add the following code to the Form_Load event for Form1:

 Sub Form_Load ()
 EM_SETRECT = &H403 ' Set EM_SETRECT variable
 Dim rect As recttype ' dim variable as rectype
 rect.l = 0 ' Set left to upper left corner
 rect.t = 0 ' Set top to upper left corner
 rect.r = 200 ' Set right of region
 rect.b = 200 ' Set bottom of region
 x% = SendMessage(text1.hwnd, EM_SETRECT, 0, rect)
 End Sub

7. Run the program.

Start typing in the text box. Scrolling will begin when you reach
the edge of your region. You can change the size of your region
by changing the values of the rect type.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: APrgWindow

Adjusting Form Size for Different Video Screen Resolutions
Article ID: Q103646

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows,
 versions 2.0 and 3.0

SUMMARY
=======

Different display devices can have different resolutions (twips per pixel
ratios). These differences can cause form and control sizes and locations
to appear differently than when they were created. Two solutions to this
problem are:

 - Set the ScaleMode on all forms and picture boxes to Pixels (3). This
 unit of measurement does not depend on screen resolution, so forms and
 controls will always appear the same size and location relative to each
 other.

 - Adjust your form and control sizes and locations at run time to match
 visual elements which are not affected by the screen resolution. For
 example, the sample program given below adjusts the width of the client
 area of a form to match a bitmap which is a fixed number of pixels wide
 and is therefore not affected by screen resolution.

MORE INFORMATION
================

Step-by-Step Example

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Add two labels, one command button, and one picture control to Form1.

3. Set Picture1's picture property to C:\WINDOWS\WINLOGO.BMP.

4. Add the following code in the Form Load event procedure of Form1:

 Sub Form_Load ()

 ' Set up a picture box:
 Picture1.AutoSize = True
 Picture1.Move 0, 0

 ' Set up the labels and command button:
 Xtwips& = Screen.TwipsPerPixelX
 Ytwips& = Screen.TwipsPerPixelY
 Ypixels& = Screen.Height / Ytwips&
 Xpixels& = Screen.Width / Xtwips&
 label1.Caption = "Below is resolution that you are running in"

 label2.Caption = Str$(Xpixels&) + " by " + Str$(Ypixels&)
 label1.Width = Picture1.Width
 label2.Width = Picture1.Width
 label1.Left = 0
 label2.Left = 0
 label1.Top = Picture1.Height + 10
 label2.Top = label1.Top + label1.Height + 10
 command1.Top = label2.Top + label2.Height + 10
 command1.Left = (Picture1.Width - command1.Width) / 2

 ' Size the form to fit the picture box, labels, and command button
 ScaleMode = 1 ' twips
 Width = Width - ScaleWidth + Picture1.Width

 ' Enter the Height statement as one, single line:
 Height = Height - ScaleHeight + Picture1.Height + label1.Height
 + label2.Height + command1.Height
 End Sub

5. Add the following code in the Command1 Click event procedure:

 Sub Command1_Click ()
 End
 End Sub

6. Press the F5 key to run the program. Click the Command1 button to exit
 from the example.

Additional reference words: 3.00
KBCategory:
KBSubcategory: APrgWindow

How to Play an .AVI Video File in Full Screen in Visual Basic
Article ID: Q104123

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows,
 versions 1.0, 2.0, and 3.0

SUMMARY
=======

This article shows by example how to play an .AVI (video) file in full
screen from Visual Basic for Windows. When you play an .AVI file using
the full screen, the color palette focus is set to the .AVI file only.
No dithering of colors occurs because there are no other windows in the
background to capture the color palette.

MORE INFORMATION
================

The example uses the mciSendString application programming interface (API)
from Microsoft Windows version 3.1 or Microsoft Windows version 3.0 with
Multimedia Extensions.

For the example to work, your computer must be able to play .AVI files and
you need either Microsoft Windows version 3.1 or Microsoft Windows version
3.0 with Multimedia Extensions.

The .AVI file included in the example (WNDSURF1.AVI) is the one from
Microsoft Video for Windows.

Step-by-Step Example

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Add a command button (Command1) to Form1, and set its caption property
 to: Play Video.

3. Add the following line of code to the (general) (declarations) section
 of Form1:

 ' Enter the following Declare statement on one, single line:
 Declare Function mciSendString Lib "mmsystem"
 (ByVal lpstrCommand$, ByVal lpstrReturnStr As Any,
 ByVal wReturnLen%, ByVal hCallBack%) As Long

4. Add the following lines of code to the Command1 Click event procedure:

 Sub Command1_Click ()
 CmdStr$ = "play c:\winvideo\wndsurf1.avi fullscreen "
 ReturnVal& = mciSendString(CmdStr$, 0&, 0, 0&)
 End Sub

5. From the Run menu, choose Start (ALT, R, S) to run the program.
 Click the Play Video button to watch the video full screen. The video
 will last for a few seconds and return back to the Visual Basic
 environment.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgOther

Windows Debugging Tools for Use with Visual Basic
Article ID: Q104156

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows,
 versions 1.0, 2.0, and 3.0

SUMMARY
=======

The Microsoft Windows debugging tools listed in this article may help you
debug and troubleshoot problems such as general protection (GP) faults
that you encounter while in Visual Basic or while executing a compiled
Visual Basic program.

None of these tools are included as part of the Microsoft Visual Basic
programming system for Windows, but they are readily available from other
sources as listed in each tool's description. You can use these tools to
debug many different problems, including but not limited to GP faults.

MORE INFORMATION
================

The following tools may help you debug your Visual Basic programs. A brief
description of each tool is given below. For more information, review the
Microsoft Windows Software Development Kit (SDK) documentation.

Dr. Watson for Windows (DRWATSON.EXE)

This tool comes with Microsoft Windows version 3.1. It is located in the
\WINDOWS directory. This is a diagnostic tool for the Microsoft Windows
operating system. It detects system and application failures caused by
Windows applications and can store information in a disk file called a log
file. There is more information in the Programming Tools Manual in Chapter
6 of the Microsoft Windows Software Development Kit for Windows 3.1.

CodeView for Windows (CVW.EXE)

This tool comes with the Microsoft Windows Software Development Kit for
Windows version 3.1. You cannot use this tool to debug Visual Basic
programs, but you can use it to debug dynamic link libraries (DLLs) used
by Visual Basic. For example, you can use this tool to test the execution
of your application and examine your data simultaneously.

You can isolate problems quickly because you can display any combination
of variables, global or local, while you interrupt or trace an
application's execution. For information on how to use CodeView for
Windows, query on the following words in the Microsoft Knowledge Base:

 codeview and visual and basic

Also, there is more information in the Programming Tools Manual in Chapter
4 of the Microsoft Windows Software Development Kit for Windows 3.1.

Heap Walker (HEAPWALK.EXE)

This tool comes with the Microsoft Windows Software Development Kit for
Windows 3.1. Use it to test how memory is being allocated. It checks
memory by examining the global heap (the system memory that the Windows
operating system uses), local heaps used by active applications, and
DLLs in your Windows system.

Heap Walker is useful for analyzing the effects your application has when
it allocates memory from the global heap or when it creates user interface
objects or graphics objects. There is more information in the Programming
Tools Manual in Chapter 9 of the Microsoft Windows Software Development Kit
for Windows 3.1.

Microsoft Windows SPY (SPY.EXE)

This tool comes with the Microsoft Windows Software Development Kit for
Windows 3.1. Use it to test or monitor messages sent to one or more windows
in Microsoft Windows and to examine the values of message parameters. For
more information, see the Programming Tools Manual in Chapter 7 of the
Microsoft Windows Software Development Kit for Windows 3.1.

Dynamic Data Exchange Spy (DDESPY.EXE)

This tool comes with the Microsoft Windows Software Development Kit for
Windows 3.1. Use it to test or monitor dynamic data exchange messages and
activity between two windows applications in the Microsoft Windows
operating system. You can use DDESPY.EXE to trace DDE messages in Microsoft
Windows. For more information, see the Programming Tools Manual in Chapter
8 of the Microsoft Windows Software Development Kit for Windows 3.1.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgOther

How to Get Control Dimensions from VBGetControlProperty
Article ID: Q104393

The information in this article applies to:

- Microsoft Visual Basic for Windows, versions 2.0 and 3.0

SUMMARY
=======

This article shows by example how to get the IPROP_STD_LEFT, IPROP_STD_TOP,
IPROP_STD_WIDTH, and IPROP_STD_HEIGHT values using the VBGetControlProperty
function.

MORE INFORMATION
================

The IPROP_STD_LEFT, IPROP_STD_TOP, IPROP_STD_WIDTH, and IPROP_STD_HEIGHT
properties are stored as floats. The following code shows how to call
VBGetControlProperty to get these properties from a VBX and DLL. It is
assumed that the standard property indexes found in VBAPI.H were used
to build the control.

/* VBGetControlProperty is prototyped in vbapi.h */
#include <vbapi.h>

*** You also need to add "vbapi.lib" to the libraries in the makefile. ***

 float fValue ;
 int nRet ;

 /* hctl would normally be passed in as a HCTL to the function using
 VBGetControlProperty */
 /* The third parameter must be the address of a float */
 nRet = VBGetControlProperty(hctl, IPROP_STD_TOP, &fValue) ;

Now fValue has the value of Top property for the hctl control.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: APrgOther

PRB: GP Fault if Uninitialized String Passed to API Function
Article ID: Q105807
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
--

SYMPTOMS
========

When you incorrectly call a Windows API function as described in the CAUSE
section further below, you can receive a general protection (GP) fault

 Application error: VB caused a General Protection Fault in VB.EXE
 at nnnn:nnnn

or one of the following error messages:

 - Assertion failed
 - Bad handle
 - Bad heap block

CAUSE
=====

Invoking a Windows API function in any of the following incorrect ways can
give you a GP fault or another memory violation error:

 - a passed string initialized to a value that is too short to receive the
 return value (See example below.)
 - incorrect placement of ByVal in the Declare statement
 - undefined parameters in the function declaration or invocation
 - incorrect type or length of parameters in the function declaration or
 invocation

Windows requires you to ensure memory integrity when calling API functions.

WORKAROUND
==========

If you get a GP fault or another memory error when calling a Windows API
function, check that you have properly defined and passed all parameters.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

String parameters passed from Visual Basic to Windows API functions must be
initialized to at least the size of the data returned in them, or else you

may get a general protection fault.

The following example causes a GP fault by invoking the GetProfileString
API function with a string initialized with a too-small value.

Steps to Reproduce Behavior

1. Start Visual Basic with a new, empty project.

2. Place the following correct Declare statement for GetProfileString
 in the General Declarations section:

 'Enter the following Declare statement as one, single line:
 Declare Function GetProfileString Lib "Kernel"
 (ByVal lpAppName As String, ByVal lpKeyName As String,
 ByVal lpDefault As String, ByVal lpReturnedString As String,
 ByVal nsize As Integer) As Integer

 'NOTE: The GetProfileString function is located in the KERNAL.DLL file,
 'which is usually located in the \WINDOWS\SYSTEM directory

3. Add a Command button to Form1, and add the following code to the
 Command1_Click event procedure:

 dim size, str1 as string
 str1 = "" ' To avoid GP fault, initialize with a longer string:
 ' str1="abcdefghijklmnopqrstuvwxyz"
 size = GetProfileString("intl", "sLongDate", "-1", str1, 1024)

 The above API function looks in the WIN.INI file under the [intl]
section
 and retrieves the string after sLongDate=. The function returns a string
 in the address of its fourth argument. If you fail to define the fourth
 argument or you initialize it to a string that is smaller than the
 retrieved string, an assertion error occurs. If you define the fourth
 argument with a string that is larger than the retrieved string, the
call
 will succeed. For example, change the line str1="" to
 str1="abcdefghijklmnopqrstuvwxyz" and the code will work.

4. Execute the code. VB.EXE will give the following error messages:

 An error has occurred in your application. If you choose Ignore, you
 should save your work in a new file. If you choose Close your
 application will terminate. <Close> <Ignore>

 followed by:

 Application error: VB caused a General Protection Fault in VB.EXE
 at 004A:0122

Windows API functions must be called with valid parameters. If you in
effect tell Windows to overwrite some part of Visual Basic internal memory,
this usually causes a GP fault or other memory problem. This usually ends
the Visual Basic session. In Windows version 3.1, memory of other Windows
applications should not be affected. But in Windows version 3.0, a GP fault

means you must restart Windows itself, thus ending all current applications
in memory.

REFERENCES
==========

 - "Visual Basic: Programmers Guide" for version 3.0, Chapter 24,
 "Calling Procedures in DLLs."

 - The correct Declare statements for API functions are in the Visual Basic
 Professional Edition help file WIN31API.HLP, which is located in the
 WINAPI subdirectory of your Visual Basic directory. The WIN31API.HLP
file
 contains function declarations, Type declarations, and the values for
 global constants used in the API functions.

Additional reference words: 2.00 3.00 GPF
KBCategory: APrg
KBSubcategory: APrgINI
.END:

Changing WIN.INI Printer Settings from VB using Windows API
Article ID: Q105839

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0

SUMMARY
=======

From Visual Basic, you can call Windows API routines to change the
default printer settings stored in the Windows WIN.INI file. You can
also broadcast a message to all applications currently loaded in
Windows to try to force them to use this WIN.INI change. However, most
Windows version 3.0 and 3.1 applications are not designed to act on this
broadcast message.

Applications that are started after you change WIN.INI will reflect
your WIN.INI changes, as will applications that are currently loaded, if
the user did not change Printer Setup in the application. But if
the user changed Printer Setup in a currently loaded application, the
application will ignore any changes to WIN.INI during that application's
session.

There are only two ways to ensure that an application will take the changes
made to the printer settings stored in WIN.INI. Either method will work:

 - Exit and restart the application, or restart Windows.
 - Choose options in the application Printer-Setup dialog box.

This article also describes how to add a Printer Setup dialog to a Visual
Basic application that optionally changes WIN.INI, and it gives example
code showing how to change the default printer in Windows.

MORE INFORMATION
================

The following steps change the printer settings in the WIN.INI file, and
then broadcast a message to all programs currently loaded in Windows to
make the change take effect:

1. Call the Windows API functions GetProfileString and WriteProfileString
 to change the printer setting device= in the [windows] section of the
 WIN.INI file to one of the printers listed in the [devices] section.

 For example, a WIN.INI file would contain the following settings to make
 an HP LaserJet the default printer:

 [windows]
 device=HP LaserJet IIISi PostScript,pscript,LPT1:

 [devices]
 Generic / Text Only=TTY,FILE:

 HP LaserJet IIISi PostScript=pscript,LPT1:

 For a detailed article that discusses how to change WIN.INI, search
 for the following words in the Microsoft Knowledge Base:

 How to Access Windows Initialization Files Within Visual Basic

2. Call the Windows API WriteProfileString function using all NULL
 pointer parameters to force Windows to reload the WIN.INI file into
 memory. (WIN.INI is normally cached in memory and not reloaded until
 you restart Windows.) Pass all parameters By Value as type Long with
 value 0.

3. Call the SendMessage API function with hWnd% parameter set to
 HWND_BROADCAST (&hffff) to broadcast a message to all pop-up windows
 currently loaded in the system. Setting the wMsg% parameter to
 WM_WININICHANGE notifies all top-level windows of a WIN.INI change,
 and WM_DEVMODECHANGE notifies them of a device-mode change.

However, if you changed settings in the Printer-Setup dialog box of a
loaded application earlier in this session of Windows, most applications
ignore the SendMessage broadcast. By design, most Windows-based
applications ignore this message, as explained in the Notepad example
given below.

Example of How Notepad Uses WIN.INI Printer Settings
--

Under Windows, you can change default printer settings in the Printers
section of the Control Panel program. This writes changes to the WIN.INI
file on disk and in memory. Many other applications, such as Microsoft
Word, also write changes to the WIN.INI file.

When Notepad starts, a global variable of type PRINTDLG provides the
structure to initialize the Print dialog box. One of the members of that
structure is hDevNames. It contains three strings that specify the driver
name, printer name, and output port name. When Notepad starts, these three
strings start with a NULL value. This tells Notepad to get its printer
device context (DC) from the WIN.INI file.

If you choose Print Setup from within NotePad and make changes, NotePad
will continue using those changes for the remaining NotePad session, and
the three strings in hDevNames will no longer all be NULL. That session of
NotePad will no longer look in the WIN.INI file, so it will ignore any
WM_WININICHANGE and WM_DEVMODECHANGE messages. Many Windows-based
applications work in this manner. Internally, they process only certain
messages, and they pass all unrecognized messages to the default API
DefWindowProc function, which does nothing.

Because you cannot rely on an application processing WM_WININICHANGE and
WM_DEVMODECHANGE messages, an application such as Visual Basic cannot
force the updated WIN.INI modifications onto another loaded application
by sending Windows messages. To change printer parameters to those changed
in the WIN.INI file, you must use one of these two techniques:

 - Exit and restart the application, or restart Windows.
 - Use the application's Printer-Setup dialog box to set the parameters.

Adding Printer Setup to a Visual Basic Application
--

To add a Printer-Setup dialog to a Visual Basic application, use the Common
Dialog printer control provided with the following products:

 - Visual Basic version 1.0 Professional Toolkit for Windows
 - Professional Edition of Visual Basic version 2.0 for Windows
 - Standard or Professional Edition of Visual Basic version 3.0 for Windows

Setting the PrinterDefault property to True writes any Printer Setup
changes
to the WIN.INI file:

 CMDialog1.PrinterDefault = True

You can use the Flags property of the Common Dialog printer control to
specify various options, as described on page 208 of "Visual Basic 3.0:
Language Reference." For example, you can have a print dialog with a button
for Printer Setup. Or, you can give the Printer Setup its own dialog box by
setting the Flags property to PD_PRINTSETUP as follows:

 CMDialog1.Flags = PD_PRINTSETUP ' PD_PRINTSETUP = &H40&
 CMDialog1.Action = 5 ' Displays Printer Dialog for Printer Setup

To change printer settings from a Visual Basic application without user
interaction, call a DLL written in C that calls the Windows API
ExtDeviceMode function. Because Visual Basic does not support function
pointers, you cannot call the ExtDeviceMode function directly from Visual
Basic. A Windows-compatible C compiler is required to create a Windows DLL.

Code Example to Change Windows Default Printer in WIN.INI

The following program demonstrates how to change the default printer in the
WIN.INI file by using Visual Basic code:

1. In Visual Basic, place a list box (List1) and a command button
 (Command1) on Form1.

2. Set the Caption property of Command1 to Set Default Printer.

3. Add the following code and three subprograms to the General
 Declarations section of Form1:

 Option Explicit
 ' Enter each Declare statement on one, single line:
 Declare Function GetProfileString Lib "Kernel"
 (ByVal lpAppName As String, ByVal lpKeyName As Any,
 ByVal lpDefault As String, ByVal lpReturnedString As String,
 ByVal nSize As Integer) As Integer
 Declare Function WriteProfileString Lib "Kernel"
 (ByVal lpApplicationName As String, ByVal lpKeyName As Any,
 ByVal lpString As Any) As Integer
 Declare Function SendMessage Lib "User" (ByVal hWnd As Integer,
 ByVal wMsg As Integer, ByVal wParam As Integer,

 lParam As Any) As Long
 Const WM_WININICHANGE = &H1A
 Const HWND_BROADCAST = &HFFFF

 ' Enter the following two lines as one, single line:
 Sub GetDriverAndPort (ByVal Buffer As String, DriverName As String,
 PrinterPort As String)
 Dim r As Integer
 Dim iDriver As Integer
 Dim iPort As Integer
 DriverName = ""
 PrinterPort = ""

 'The driver name is first in the string terminated by a comma
 iDriver = InStr(Buffer, ",")
 If iDriver > 0 Then

 'Strip out the driver name
 DriverName = Left(Buffer, iDriver - 1)

 'The port name is the second entry after the driver name
 'separated by commas.
 iPort = InStr(iDriver + 1, Buffer, ",")

 If iPort > 0 Then
 'Strip out the port name
 PrinterPort = Mid(Buffer, iDriver + 1, iPort - iDriver - 1)
 End If
 End If
 End Sub

 Sub ParseList (lstCtl As Control, ByVal Buffer As String)
 Dim i As Integer
 Do
 i = InStr(Buffer, Chr(0))
 If i > 0 Then
 lstCtl.AddItem Left(Buffer, i - 1)
 Buffer = Mid(Buffer, i + 1)
 Else
 lstCtl.AddItem Buffer
 Buffer = ""
 End If
 Loop While i > 0
 End Sub

 ' Enter the following two lines as one, single line:
 Sub SetDefaultPrinter (ByVal PrinterName As String,
 ByVal DriverName As String, ByVal PrinterPort As String)
 Dim DeviceLine As String
 Dim r As Integer
 Dim l As Long
 DeviceLine = PrinterName & "," & DriverName & "," & PrinterPort
 ' Store the new printer information in the [WINDOWS] section of
 ' the WIN.INI file for the DEVICE= item
 r = WriteProfileString("windows", "Device", DeviceLine)
 ' Cause all applications to reload the INI file:
 l = SendMessage(HWND_BROADCAST, WM_WININICHANGE, 0, ByVal "windows")

 End Sub

4. Add the following code to the Command1_Click event procedure:

 Dim r As Integer
 Dim Buffer As String
 Dim DeviceName As String
 Dim DriverName As String
 Dim PrinterPort As String
 Dim PrinterName As String
 If List1.ListIndex > -1 Then
 'Get the printer information for the currently selected printer
 'in the list. The information is taken from the WIN.INI file.
 Buffer = Space(1024)
 PrinterName = List1.Text
 r=GetProfileString("PrinterPorts",PrinterName,"",Buffer,Len(Buffer))

 'Parse the driver name and port name out of the buffer
 GetDriverAndPort Buffer, DriverName, PrinterPort

 If DriverName <> "" And PrinterPort <> "" Then
 SetDefaultPrinter List1.Text, DriverName, PrinterPort
 End If
 End If

5. Add the following code to Form_Load event procedure:

 Dim r As Integer
 Dim Buffer As String

 'Get the list of available printers from WIN.INI
 Buffer = Space(8192)
 r = GetProfileString("PrinterPorts",ByVal 0&,"",Buffer,Len(Buffer))

 'Display the list of printer in the list box List1
 ParseList List1, Buffer

6. Run the program. The list box will display the printer choices from the
 WIN.INI file. By clicking the command button, you will set the default
 printer in the WIN.INI file.

REFERENCES
==========

"Microsoft Windows Programmer's Reference," Chapters 4 and 6, Microsoft
Press, 1990.

Additional reference words: 2.00 3.00
KBCategory: APrg
KBSubcategory: APrgPrint

How to Create a Screen Saver in Visual Basic
Article ID: Q106239

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 versions 2.0 and 3.0

SUMMARY
=======

You can create a Windows screen saver with Visual Basic by following the
guidelines listed below.

MORE INFORMATION
================

Follow these guidelines when creating a Windows screen saver with Visual
Basic:

 - In the File Make EXE File dialog, insert the string SCRNSAVE: (in
 upper case) at the beginning of the Application Title. For example:

 SCRNSAVE:Flying Fish.

 - In the File Make EXE File dialog, specify the program file name
 extension as .SCR instead of .EXE.

 - Locate the .SCR program file in the \WINDOWS directory.

 - Give your form the following property settings so that it
 occupies the entire screen and does not have a title bar:

 Caption = "" (no caption)
 ControlBox = False
 MaxButton = False
 MinButton = False
 WindowState = 2 (maximized)

 - Place code in all MouseMove, MouseDown, and KeyDown event handlers
 that exit the program. Because Visual Basic may invoke the MouseMove
 event when the form is first loaded, you must write code to ignore
 the first MouseMove event. For example:

 Sub Form_MouseMove (...)
 Static once As Integer
 If once Then
 End
 Else
 once = True
 End If
 End Sub

 Sub Form_MouseDown (...)

 End
 End Sub

 Sub Form_KeyDown (...)
 End
 End Sub

Windows usually launches the screen saver program multiple times. To
prevent more than one copy of your screen saver from running, add the
following statements to the Form_Load event handler (or Sub Main, if used):

 If App.PrevInstance Then
 SaveTitle$ = App.Title
 App.Title = "... duplicate instance."
 Form1.Caption = "... duplicate instance."
 AppActivate SaveTitle$
 SendKeys "% R", True
 End
 End If

Windows takes care of launching. It keeps track of system idle time and
launches the screen saver program.

You can use a timer control to periodically draw graphics on the form.

Screen savers are selected and configured from Windows Control Panel in
the Desktop dialog. The screen saver section of this dialog has a button
labeled Setup that invokes the screen saver program with the command
line option /c. When your program is invoked with this option, you can
display a configuration form to allow the user to select settings such
as speed, number of objects, colors, and so on. Detect the /c command line
parameter by checking the Command$ function. For example:

 Sub Form_Load ()
 If Command$ = "/c" Then
 frmConfig.Show ' display configuration form
 Unload Me ' bypass regular form
 End If
 End Sub

When Windows launches the screen saver, it usually specifies the command
line option /s.

You may also want your program to appear on top of all other windows by
making it a TOPMOST window.

For more information, use the following words to query in the Microsoft
Knowledge Base:

 TOPMOST and SETWINDOWPOS

Also, you can find two example programs and a complete explanation showing
how to write your own screen savers in Visual Basic in the following book:

 "Visual Basic Workshop 3.0" by John C. Craig, published by Microsoft
 Press.

Additional reference words: 3.00
KBCategory: APrg
KBSubcategory: APrgOther

How to Write C DLLs and Call Them from Visual Basic
Article ID: Q106553

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic
 for Windows, version 3.0

SUMMARY
=======

This article outlines how to use DLLs with Visual Basic. It covers the
following issues:

Section A

1.0 What Is a DLL
1.1 Why Use a DLL
1.2 Anatomy of a DLL
1.3 DLL Memory Management Issues
1.4 Building a DLL Using Visual C++
1.5 Example C DLL

Section B

2.0 Calling DLLs from Visual Basic
2.1 DLL Parameters
2.2 Trouble Shooting
2.3 Example Visual Basic Calling Program

MORE INFORMATION
==================

SECTION A

1.0 What Is a DLL

DLLs (Dynamic Link Libraries) are an important aspect of Windows. A DLL
contains functions that your executable program can call during execution.
In other words, a DLL is a library of functions that your program can link
with dynamically.

A link can be static or dynamic. Static links don't change. All the address
information needed by your program to access the library function is fixed
when the executable file is created and remains unchanged during execution.

Dynamic links are created as needed. When your program needs a function
that is not in the executable file, Windows loads the dynamic link library
(the DLL), making all of its functions available to your application. At
that time, Windows resolves the address of each function and dynamically

links it to your application.

All Custom controls used in Visual Basic are DLLs. The only difference is
that they require special handling in terms of messages received from
Visual Basic.

1.1 Why Use DLLs

Here are four reasons why you might want to use a DLL:

 - Access to C Run-Time Functions:

 The C run-time library has many useful functions that would not be
 available to Visual Basic programmers were it not for DLLs. For example,
 the _dos_getdiskfree function allows you to calculate the total amount
 of disk space and the free disk space available on a drive.

 - Access to Windows API (Application Programming Interface) Functions that
 Require Callback Routines:

 Some Windows API functions require a callback function. A callback
 function is a function that Windows will call while executing the API
 call. An example of this sort of function is EnumTaskWindows, which
 will give the handle of all windows that are owned by a particular task.

 - Speed:

 C is a fully compiled language that works at a level that is fairly
 close to native machine code. This means that the execution of programs
 that are well written in C will be fast.

 - Load on Use:

 Code and data from a DLL are loaded only when needed. A DLL can be
 organized such that only required parts are loaded as opposed to the
 entire DLL. This reduces the amount of memory required and the time
 taken to load.

1.2 Anatomy of a DLL

Every DLL must contain a LibMain function and should contain a Windows Exit
Procedure (WEP) in addition to the exported functions that can be called by
an executable program.

 - LibMain:

 A DLL must contain the LibMain function. The LibMain function is called
 by the system to initialize the DLL. LibMain is called only once -- when
 the first program that requires the DLL is loaded. The following are the
 parameters passed to LibMain:

 - HANDLE : Handle to the instance of the DLL.
 - WORD : Library's data segment.
 - WORD : Heap size.
 - LPSTR : Command line parameters.

 - WEP:

 The WEP (Windows Exit Procedure) performs cleanup for a DLL before the
 library is unloaded. Although a WEP function was required for every DLL
 in previous versions of the Windows operating system, for version 3.1 it
 is optional. A WEP should be included in the module definition file
 (.DEF) in Visual C, for example:

 EXPORTS
 WEP

 - Exported Functions:

 These are the functions you want to call from your DLL. They are denoted
 by _export. _export is used for backward compatibility. All the
 functions you want to call must also be listed in the (.DEF) file of
 your DLL.

1.3 DLL Memory management issues
--

Use the large memory model.

C stores all variables defined as static or global (defined outside of a
function) in the program's heap space, and C stores all other variables on
the stack.

In the small and medium model, all pointers are near by default. This means
that the data is accessed by 16-bit offsets to either the data segment (DS)
register, or the stack segment (SS) register. Unfortunately, the compiler
has no way of knowing whether the offset is from the DS or the SS. In most
programs this would not be a problem because the DS and SS point to the
same segment. A DLL, however, is a special case.

A DLL has its own data segment but shares its stack with the calling
program. This means that the DS and the SS do not point to the same
location. The easiest solution to this problem is to build the DLL in the
large memory model where all variables are referenced by a 32-bit value.

Why Allocate Memory Dynamically?

Allocating memory dynamically is a Windows-friendly technique. Declaring
large arrays of data takes up space in either your program's stack, which
is limited to 64K, or you program's Data Segment, which wastes disk space
and Windows memory. It is better to ask Windows for the memory when you
need it, and then free it when you have finished.

Allocating Memory

In Windows, you can dynamically allocate two types of memory, local and
global. Local memory is limited to 64K, and in the case of a DLL, local
memory is shared with the program that called the DLL. Global memory is
all of the memory available to Windows after it has loaded.

Local memory is allocated and managed using the LocalAlloc, LocalLock
LocalUnlock, and LocalFree functions -- as in this example:

 char* pszBuffer;

 pszBuffer = (char *) LocalAlloc (LPTR, 20);
 ...
 LocalFree (pszBuffer);

It is faster to allocate local memory than it is to allocate global memory.
But allocations from the local heap are limited to 64K, which must be
shared amongst all programs that are calling the DLL. It is best to use
local memory when small, short lived blocks of memory are required.

Global memory is allocated and managed using the GlobalAlloc, GlobalLock
GlobalUnlock, and GlobalFree functions -- as in this example:

 HGLOBAL hglb;
 char* pszBuffer;

 hglb = GlobalAlloc (GHND, 2048);
 // GHND allocates the memory as moveable and
 // initialized to 0
 // 2048 is the amount of memory to be allocated...
 pszBuffer = GlobalLock (hglb);
 ...
 GlobalUnlock (hglb);
 GlobalFree (hglb);

The GlobalAlloc function allocates memory in multiples of 4K.

If you want to share memory allocated in the DLL with other programs, you
should allocate it using the GMEM_SHARED flag. If you want to share the
memory through DDE, you must allocate it by using the GMEM_DDESHARE flag.

Be Careful When Storing Data in Static Variables
--

If you try to store data in a DLL using global or static variables, don't
be surprised if these values have changed when you next call your DLL. The
data stored in this way will be common to all applications that access this
DLL. No matter how many applications use a DLL, there is only one instance
of the DLL. The best way to get around this is to return structures from
the DLL and pass them in again when they are needed.

File Handles

It is not possible to share file handles between applications or DLLs. Each
application has its own file-handle table. For two applications to use the
same file using a DLL, they must both open the file individually.

1.4 Building a DLL Using Visual C++

Here are the steps necessary to build a DLL using Visual C++:

1. Start Visual C++.

2. Create a new project by choosing New from the Project menu. Select the
 following options:

 - Set the Project Type to "Windows dynamic-link library (.DLL)"
 - Clear the "Use Microsoft Foundation Classes" check box.

 You can also set or view these options later by choosing Project from
 the Options menu.

3. Add your existing .C and .DEF files to the project by using the dialog
 box that comes up when you choose Edit from the Project menu. Or enter
 your code directly in the Visual C++ editing window. (See the .C and
 .DEF example code listed below.)

4. From the Project menu, choose the Build <yourname>.DLL option.

1.5 Example C DLL

The following DLL contains the GetDiskInfo function, which can be called
from Visual Basic. It will return the disk space available, the current
drive name and the volume name.

C Code Example, DISKINFO.C:

#include <windows.h>
#include <dos.h>

int CALLBACK LibMain (HANDLE hInstance, WORD wDataSeg, WORD wHeapSize,
LPSTR lpszCmdLine)
{
 if (wHeapSize > 0)
 UnlockData (0); //Unlocks the data segment of the library.
 return 1;
}

void __export CALLBACK GetDiskInfo (char *cDrive, char *szVolumeName,
unsigned long *ulFreeSpace)
{
 unsigned drive;
 struct _diskfree_t driveinfo;
 struct _find_t c_file;

 _dos_getdrive (&drive);
 _dos_getdiskfree(drive, &driveinfo);

 if (!_dos_findfirst("*.*", _A_VOLID, &c_file))
 wsprintf(szVolumeName, "%s", c_file.name);
 else
 wsprintf (szVolumeName, "NO LABEL");

 *cDrive = drive + 'A' -1;

 *ulFreeSpace = (unsigned long) driveinfo.avail_clusters * (unsigned
 long) driveinfo.sectors_per_cluster * (unsigned long)

 driveinfo.bytes_per_sector;
}

Use the following DISKINFO.DEF file in Visual C++:

 LIBRARY diskinfo
 DESCRIPTION 'GetDiskInfo Can be called from Visual Basic'
 EXETYPE WINDOWS 3.1
 CODE PRELOAD MOVEABLE DISCARDABLE
 DATA PRELOAD MOVEABLE SINGLE
 HEAPSIZE 4096
 EXPORTS
 GetDiskInfo @1

NOTE: The LIBRARY name in the .DEF file must be the same as the DLL file
name, or else Visual Basic will give you "Error in loading DLL." For
example, create the file DISKINFO.DLL using the LIBRARY DISKINFO statement
in the .DEF file above.

SECTION B

2.0 Calling DLLs from Visual Basic

In Visual Basic, all functions, including DLL functions, that you want to
call must first be declared by using the Declare statement. You can declare
your functions in the declarations section of a Form or a Module. If you
declare a DLL procedure or function in a Form, it is private to that Form.
To make it public, you must declare it in a Module. The following is an
example Declare statement:

 Declare Sub getdiskinfo Lib "c:\somepath\diskinfo.dll"
 (ByVal mydrive As String, ByVal myvolume As String, free As Long)

You must enter the entire Declare statement as one, single line. This
particular Declare statement declares the user-defined procedure
GETDISKINFO located in user-created DISKINFO.DLL file.

Once you declare the function, you can call and use the function just as
you would call and use a Visual Basic function.

2.1 DLL Parameters

Because DLLs are typically written in C, DLLs can use a wide variety of
parameters not directly supported by Visual Basic. As a result, when
passing parameters, he programmer has to find the appropriate data type to
pass.

Passing Arguments by Value or by Reference
--

By default, Visual Basic passes all arguments by reference. (When passing
by reference, Visual Basic supplies a 32-bit far address.) However, many
DLL functions expect an argument to be passed by value. This can be
achieved by placing the ByVal keyword in front of the argument declaration.

The following sections show you how to convert parameters to Visual Basic.

8- to 16-Bit Numeric Parameters

Pass 8- to 16-bit numeric parameters (int, short, unsigned int, unsigned
short, BOOL, and WORD) as Integer.

32-bit Numeric Parameters

Pass 32-bit numeric parameters (long, unsigned long, and DWORD) as LONG.

32-Bit Signed Integer Parameters

Pass 32-bit signed integer parameters as Currency or Double.

Object Handles

All handles are unique 16-bit integer values associated with a Window and
are passed by value, so pass these parameters as Integer.

Strings

Strings include the LPSTR and LPBYTE data types (pointer to characters or
pointer to unsigned characters). Pass these parameters as (ByVal paramname
As String). DLL functions cannot return Visual Basic strings. They do
sometimes return LPSTRs, which can be copied into Visual Basic strings
by using API functions.

To pass Visual Basic strings directly, pass them as (param As String).

NOTE: Visual Basic strings require special handling, so don't pass strings
directly unless the DLL explicitly requires it.

Pointers to Numeric Values

Pass pointers to numeric values by simply not using the ByVal keyword.

Structures

If the Visual Basic user-defined type matches the structure expected by the
DLL, the structure can be passed by reference.

NOTE: Structures cannot be passed by value.

Pointers to Arrays

Pass the first element of the array by reference.

Pointers to functions

Visual Basic does not support callback functions, so DLL functions that
have pointers to functions cannot be used with Visual Basic.

Null Pointers

If a DLL expects a Null pointer, pass it as (ByVal paramname As Any). You
can use &0 or &0H as the value of paramname.

2.2 Trouble Shooting

Below are solutions to some problems you may encounter.

System Resources Keep Getting Lower After the DLL Is Called

If your DLL is using GDI objects, you must remember to free them after
using them. This may not be obvious in Visual Basic, but when using the
Windows SDK (software development kit) if you create a GDI object (for
example, CreateBrushIndirect), you must delete it by using DeleteObject
later on.

Bad DLL Calling Convention Error

This error is often caused by incorrectly omitting or including the ByVal
keyword from the Declare statement. This error can also be caused if the
wrong parameters are passed.

Error in loading DLL

This error occurs when you call a dynamic-link library procedure and the
file specified in the procedure's Declare statement cannot be loaded. You
can use the Microsoft Windows API function LoadLibrary to find out more
specific information about why a DLL fails to load.

General Protection (GP) Fault

GP faults occur when your program writes to a block of memory that doesn't
belong to it. The two most likely reasons for this are:

 - You overstepped an array boundary. C does not check that the array
 subscript you are writing to is valid. Therefore, you can easily write
 to memory you don't own.

 - You are using a pointer to a memory location that you have freed. The
 best option is to assign NULL to all pointers after you free their
 memory.

A GP fault can also occur when an incorrect variable type is passed to the
DLL function.

2.3 Example Visual Basic Calling Program
--
There are two parts to calling a DLL in a Visual Basic program. First you
declare the function, and then you use it in event code.

Here is an example of a Declare statement. The Declare statement should be
put in a module or in a form's General Declarations section.

 ' Enter the following Declare as one, single line:
 Declare Sub getdiskinfo Lib "c:\dllartic\diskinfo.dll"
 (ByVal mydrive As String, ByVal myvolume As String, free As Long)

Specify ByVal statements exactly as shown, or else a GP fault may occur.

Once the function is declared, you can use it in event code. The following
example uses a function from the DLL in the Command1 Click event code:

Sub Command1_Click ()
 Dim drive As String * 1
 Dim volume As String * 20
 Dim free As Long
 Call getdiskinfo(drive, volume, free)
 Text1.Text = drive
 Text2.Text = volume
 Text3.Text = Str$(free)
End Sub

Additional reference words: 3.00
KBCategory:
KBSubCategory: APrgOther RefsDoc

How to Pass User-Defined Structure Containing Strings to DLL
Article ID: Q107750

The information in this article applies to:

- Microsoft Visual Basic for Windows, version 3.0

SUMMARY
=======

This articles shows by example how to pass a user-defined structure that
contains strings to a DLL. The example enables a DLL to read and write the
strings in a user-defined structure.

MORE INFORMATION
================

The following step-by-step example passes a user-defined structure that
contains strings to a DLL to manipulate.

1. Start a new project in Visual Basic.

2. From the File menu, choose New Module (ALT F M). MODULE1.BAS will be
 created by default. Add the following code to the .BAS module:

 ' Fixed-length string elements of a structure are packed in memory
 ' as are other values in Visual Basic. The following structure takes up
 ' 16 bytes of memory:
 '
 Type MYSTRINGSTRUCT
 str1 As String * 8
 str2 As String * 8
 End Type
 ' Enter the following Declare statement as one, single line
 Declare Sub MyStructProc Lib "Name of DLL your create"
 (lpStringStruct As MYSTRINGSTRUCT)

3. Add a command button (Command1) to Form1.

4. Add the following code to the Command1_Click event of Form1:

 Sub Command1_Click ()
 Dim StringStruct As MYSTRINGSTRUCT
 StringStruct.str1 = "str1"
 StringStruct.str2 = "str2"
 MyStructProc StringStruct
 TEXT1.Text = StringStruct.str1
 TEXT2.Text = StringStruct.str2
 End Sub

5. Add two text controls (Text1 and Text2) to Form1.

6. Create the C code needed to make the DLL. In the .h file of the DLL a
 user-defined type will create a mirror image of the type you defined in

 the Visual Basic .BAS file. Char str[8] is equivalent to Visual Basic
 declaration of str1 as String * 8. This structure definition takes up 16
 bytes in memory as does the Visual Basic structure definition.

 typedef struct STRINGSTRUCT{
 char str1[8] ;
 char str2[8] ;
 } FAR * LPSTRINGSTRUCT ;

 /* Declaration of the function */
 void FAR PASCAL MyStructProc(LPSTRINGSTRUCT) ;

7. Add the following code to your .c file:

 #include "The .h file where you added the code above"

 void FAR PASCAL MyStructProc(LPSTRINGSTRUCT lpStringStruct)
 {
 /* You need to use lstrcpyn because the structure from Visual
 Basic is packed, and the strings are not Null terminated. The way
 structures are passed from Visual Basic to a DLL is fully described
 beginning on page 566 in the Visual Basic version 3.0 for Windows
 "Programmers Guide," Chapter 24, "Calling Procedures in DLLs," in
 "User-Defined Types" under "Calling DLL Procedures with Specific Data
 Types." */

 lstrcpyn(lpStringStruct->str1, "change11", 8) ;
 lstrcpyn(lpStringStruct->str2, "change22", 8) ;
 }

Additional reference words: 3.00
KBCategory: APrg
KBSubcategory: APrgOther

PRB: Printer.FontSize Return Value Is Not Requested Value
Article ID: Q108073

The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SYMPTOMS
========

When you set the FontSize property of the Printer object in Visual
Basic, the font size you get may differ from the size you requested.
This behavior occurs with both Postscript printer fonts and Truetype
fonts.

CAUSE
=====

This behavior occurs because Windows doesn't store the requested point
size. Instead, Windows stores the closest character cell height that is
supported on the current printer device. The character cell height is
rounded to an integer number of pixels (dots). Rounding is necessary
because Windows doesn't support a fractional device unit such as half
a dot (pixel).

STATUS
======

This behavior is by design.

MORE INFORMATION
================

As an example, if your printer prints at 96 dots per inch (DPI) and you
request a 10 point font, Windows creates a logical printer font that is
exactly 13 dots high:

 13 dots = CInt((10 points * 96 DPI) / (72 points per inch))

The above CInt function rounds to the nearest integer. The conversion
depends on the DPI resolution of your printer.

When you set the FontSize property to 10 points, the FontSize will
actually be set to 9.75 points, which is the nearest point size the
printer can support at 96 DPI:

 9.75 points = 13 dots * (72 points per inch) / (96 DPI)

On 300 DPI printers, the minimum interval between supported font sizes
is 0.24 points. You get 0.24 points per dot as a result of the following
formula:

 (72 points per inch) / (300 DPI)

On 600 DPI printers, such as with an HP LaserJet 4 driver, supported
font sizes are at intervals of 0.12 points.

In typesetting, a point is 1/72 of an inch. The height of fonts is
usually expressed in points.

Windows automatically maps the requested font or font size to the
nearest one supported by the screen or printer device if that font or
size does not exist on that device.

Steps to Reproduce Behavior

As an example, the Hewlett-Packard (HP) LaserJet with the HP PostScript
cartridge supports point sizes down to a resolution of 0.25 point. In
Visual Basic, you can set the Printer.FontSize property to a desired
point size. You can set the Printer.FontName property to the PostScript
font. However, the Printer.FontSize property displays font sizes at 0.24
point intervals instead of 0.25 points. You get font sizes such as 9.6,
9.84, 10.08, 10.32, 10.56, 10.8, 11.04, and so forth. Setting the font
size to 11.0 points actually gives you a font with 10.8 points.

The following steps reproduce this behavior:

1. In the Windows Control Panel, select a printer that uses a 300 DPI
 driver, such as on the HP LaserJet IIIsi. Printers with different DPI
 settings will return fonts in different increments.

2. Start a new project in Visual Basic. Form1 is created by default.

3. Add the following to the Form Load event procedure:

 Sub Form_Load ()
 For j = 9 To 12 Step .25
 Printer.FontSize = j 'Set printer font size in increments of .25
 Debug.Print Printer.FontSize
 Next
 End Sub

4. Start the program (or press F5). Choose Debug from the Window menu.
 Although you requested fonts in increments of 0.25 points, you
 instead get fonts in increments of 0.24 points:

 9.36, 9.6, 9.84, 10.08, 10.32, 10.56, 10.8, 11.04, 11.28, 11.52, 12

Additional reference words: 3.00 H-P laser jet HPLJ PS Apple LaserWriter
KBCategory: APrg
KBSubcategory: APrgPrint

Category Keywords for All Visual Basic KB Articles
Article ID: Q108753

The information in this article applies to:

- Microsoft Visual Basic for Windows, versions 2.0 and 3.0

SUMMARY
=======

Each article in the Visual Basic for Windows collection contains at least
one keyword (called a KBSubcategory keyword) that places the article in an
appropriate category. This article lists all the KBSubcategory keywords.

MORE INFORMATION
================

Category & Subcategory Description KBSubcategory Keyword
--
Setup / Installation (Setins) Setins

Environment-specific Issues (Envt)
 VB Design Environment EnvtDes
 Run-Time Environment EnvtRun

Programming (Prg)
 Visual Basic Forms and Controls
 Standard Controls / Forms PrgCtrlsStd
 Custom Controls PrgCtrlsCus
 Third-Party Controls PrgCtrlsThird

 Optimization
 Memory Management PrgOptMemMgt
 General Optimization Tips PrgOptTips

 General VB Programming PrgOther

Advanced programming (APrg)
 Network APrgNet

 Windows Programming (APIs / DLLs)
 Printing APrgPrint
 Graphics APrgGrap
 Windowing APrgWindow
 INI Files APrgINI
 Other API / DLL Programming APrgOther

 Data Access
 ODBC APrgDataODBC
 IISAM APrgDataIISAM
 Access APrgDataAcc
 General Database Programming APrgDataOther

 3rd Party DLL's APrgThirdDLL

Inter-Application Programmability (IAP)
 OLE IAPOLE
 DDE IAPDDE
 3rd Party Interoperability IAPThird

Tools (Tls)
 Setup Toolkit / Wizard TlsSetWiz
 Control Development Kit (CDK) TlsCDK
 Help Compiler (HC) TlsHC

References (Refs)
 Documentation / Help File Fixes RefsDoc
 Product Information RefsProd
 Third-Party Information RefsThird
 PSS-Only Information RefsPSS

Using Keywords to Query the KB

At Microsoft, we use the subcategory keywords to organize the articles for
Help files and for the FastTips Catalog. You can use them to query the
Microsoft Knowledge Base for Visual Basic articles that apply to that
category or subcategory. For example, you can find all the general database
programming articles by querying on the following words in the Microsoft
Knowledge Base:

 visual and basic and APrgDataOther

Use the asterisk (*) wildcard to find articles that fall into the general
categories or into an intermediate subcategory. The first element in each
keyword is the category. For example, to find all the articles that apply
to Visual Basic Forms and Controls regardless of whether they are standard,
custom, or third-party controls, use the following words to query the
Microsoft Knowledge Base:

 visual and basic and PrgCtrls*

To find all advanced programming articles, query on these words:

 visual and basic and APrg*

Add KBSubcategory Keyword to Each Article

When contributing an article to the Visual Basic Knowledge Base, add the
appropriate KBSubcategory keyword to the bottom of the article on the
KBSubcategory line. Each article in the Visual Basic for Windows
collection contains the following section at the bottom of the article:

Additional reference words:
KBCategory:
KBSubcategory: <keyword>

An article usually has only one subcategory keyword, but it may have more.

If you are interested in contributing, please obtain the guidelines by

querying on the following words in the Microsoft Knowledge Base:

 visual and basic and kbguide and kbartwrite

Additional reference words: 3.00 dskbguide subcatkey
KBCategory:
KBSubcategory: RefsPSS

Popular Windows API Functions Used from Visual Basic 3.0
Article ID: Q109290

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SUMMARY
=======

Below is a summary of Application Programmer's Interface (API) functions
for Microsoft Windows that programmers commonly use to extend the
abilities of Visual Basic.

MORE INFORMATION
================

Commonly-Used API Functions for Windows

The following Windows API functions are very useful for Visual Basic
programmers:

 - BitBlt: Move a bitmap from a source device context to a destination.

 - ExtractIcon, DrawIcon, and LoadIcon: Manipulate icons.

 - FindExecutable: Find and retrieve the executable filename that is
 associated with a specified filename.

 - GetWindowsDirectory: Get the pathname of the Windows directory.

 - GetSystemDirectory: Get the pathname of the Windows system subdirectory.

 - GetSystemMetrics: Get widths and heights of the display elements of
 Microsoft Windows.

 - GetTempFileName: Return a temporary filename and path using the TEMP
 environment variable.

 - GetWindowPlacement and SetWindowPlacement: Get or set the show state and
 the normal (restored), minimized, and maximized positions of a window.

 - GetProfileString, GetProfileInt, SetProfileString: Get or set the
 information stored in the initialization file for Windows (WIN.INI).

 - GetPrivateProfileString, GetPrivateProfileInt, SetPrivateProfileString:
 Get or set the information in a given initialization file (ininame.INI).

 - SendMessage: Send Windows messages to control applications. For example,
 the LB_SETTABSTOPS message sets tab stops in a list box. LB_FINDSTRING
 finds the first string in the list box which matches prefix text.
 Hundreds of other messages are available.

 - SetCapture: Send all mouse input to the specified window, regardless of
 the cursor position.

 - SetWindowPos: Changes the size, position, and ordering of child, pop-up,
 and top-level windows.

Additional Commonly-Used API Functions for Windows
--

The following API functions for Windows are also very useful for Visual
Basic programmers:

 - BringWindowToTop, SetActiveWindow: Activate a window.

 - CreateCompatibleDC: Prepare image in memory, such as before copying an
 image to the compatible device.

 - DeleteObject, ReleaseDC: Remove object or device context from memory.

 - DragAcceptFiles, DragFinish: Support File Manager drag/drop file
 ability.

 - FindWindow, ShowWindow: Check to see if given applications are currently
 running. This is useful before you perform Dynamic Data Exchange (DDE).

 - GetActiveWindow, IsWindow: Find out when a Shell function has finished
 loading a program.

 - GetDesktopWindow: Get a handle to the Windows desktop window, which
 covers the entire screen and is the area on top of which all icons and
 other windows are painted.

 - GetFreeSpace, GetVersion, GetWinFlags: Check system settings for
 Microsoft Windows, such as for reporting in an About box under a Help
 menu.

 - GetModuleFileName, GetModuleHandle, GetModuleUsage: Get full pathname of
 the executable file from which the specified module was loaded.

 - GetPaletteEntries, CreatePen, SelectObject: Manipulate color palettes.

 - GetParent: Get handle of specified window's parent.

 - EnumChildWindows: Get list of child windows that belong to specified
 parent window.

 - GetWindowLong, SetWindowLong: Get or set window style information.

 - GetWindowText: Get the caption title of a window or the text in a
 control.

 - IsAppLoaded, IsIconic, IsWindowVisible: Find the state of the windows of
 an application -- visible, loaded, or minimized to an icon.

 - LoadCursor, DestroyCursor, GetCursorPos: Handle different mouse cursors.

 - LZOpenFile, LZCopy, LZClose: Manipulate compressed files. See the
 LZEXPAND.DLL file that ships with Visual Basic version 3.0. The
 functions in LZEXPAND.DLL manipulate files that compressed by the
 COMPRESS.EXE utility supplied with the Windows Software Development Kit
 (SDK) versions 3.0 and 3.1.

 - OpenComm, WriteComm, GetCommEventMask, SetCommState: Use the COMn:
 serial communications port.

 - RoundRect, FillRect, ExtFloodFill, StretchBlt: Perform graphic
 operations beyond Visual Basic capabilities.

 - SetSysModalWindow: Set a window to be system-modal, such as for a
 screen saver's password dialog box.

 - SndPlaySound: Play waveform .WAV sound file sounds.

 - WinExec: Run a Windows-based or non-Windows application, as an
 alternative to Basic's Shell function.

 - WinHelp: Invoke WINHELP.EXE, the Windows Help application. Useful as
 an alternative to invoking WINHELP.EXE by setting the Common Dialog's
 Action property to a value of 6.

Visual Basic Setup Kit API Routines

 - DiskSpaceFree: Get free space on specified disk. The Declare statement
 is found in SETUP1.GLB in the SETUPKIT subdirectory for Visual Basic:

 Declare Function DiskSpaceFree Lib "SETUPKIT.DLL" () As Long

 - GetFileVersionInfoSize and GetFileVersionInfo in Windows API: Get file
 version information from the version-information resource that was
 added to an application using the VERSIONINFO statement.

 The VERSIONINFO statement is found in the file installation library
 found in Windows version 3.1. The resource contains such information
 about the file as its version number, its intended operating system,
 and its original filename. The resource is intended to be used with
 the Windows file installation library functions.

 The GetFileVersion function is defined in SETUP1.BAS in the SETUPKIT
 subdirectory for Visual Basic. The GetFileVersion function invokes the
 GetFileVersionInfo and GetFileVersionInfoSize Windows API functions.
 The following Declare statements are taken from SETUP1.GLB:

 Declare Function GetFileVersionInfoSize Lib "VER.DLL"
 (ByVal lpszFileName As String, lpdwHandle As Long) As Long

 Declare Function GetFileVersionInfo Lib "VER.DLL"
 (ByVal lpszFileName As String, ByVal lpdwHandle As Long,
 ByVal cbbuf As Long, ByVal lpvdata As String) As Integer

REFERENCES
==========

 - "Microsoft Windows Programmer's Reference," published by Microsoft
 Press.

 - "Visual Basic - Game Programming with Windows," by Craig, published by
 Microsoft Press.

 - "PC Magazine's Visual Basic Programmer's Guide to the Windows API" by
 Daniel Appleman (of Desaware), published by Ziff-Davis Press. This
 reference describes most Windows API functions that can be used from
 within Visual Basic.

Additional reference words: 3.00
KBCategory: APrg
KBSubcategory: APrgOther

How to Invoke MessageBeep API to Play System Alert .WAV Sounds
Article ID: Q110103
--
The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0
 - Microsoft Windows version 3.1
--

SUMMARY
=======

This article describes how to invoke the MessageBeep API function to play
the waveform sound associated with a given Windows system alert level.

This is useful for playing a sound such as when you display a message box
with the MsgBox statement.

MORE INFORMATION
================

The sound for each Windows alert level is identified by an entry in the
[sounds] section of the WIN.INI initialization file. You can use the
Windows Control Panel to change this [sounds] section.

The MessageBeep API function returns control to Visual Basic immediately
after queuing a sound. The Visual Basic program executes subsequent code
while the MessageBeep sound plays asynchronously.

The MessageBeep API function accepts one parameter, which can have one of
the following values:

Parameter Value Meaning

-1 Produces a standard beep sound by using the computer
 speaker.
MB_ICONASTERISK Plays the sound identified by the SystemAsterisk
 entry in the [sounds] section of WIN.INI.
MB_ICONEXCLAMATION Plays the sound identified by the SystemExclamation
 entry in the [sounds] section of WIN.INI.
MB_ICONHAND Plays the sound identified by the SystemHand
 entry in the [sounds] section of WIN.INI.
MB_ICONQUESTION Plays the sound identified by the SystemQuestion
 entry in the [sounds] section of WIN.INI.
MB_OK Plays the sound identified by the SystemDefault
 entry in the [sounds] section of WIN.INI.

Example: How to Invoke MessageBeep API Function

1. Start a new project in Visual Basic. Form1 is created by default.

2. Double click Form1. Add the following to the Form Load event code:

 Sub Form_Load ()
 Const MB_ICONQUESTION = 32 ' Warning query. See CONSTANTS.TXT.
 Const MB_ICONEXCLAMATION = 48 ' Warning message.
 Const MB_YESNO = 4 ' Yes and No buttons
 MessageBeep MB_ICONEXCLAMATION ' Plays waveform sound.
 MsgBox "Wow!", MB_ICONEXCLAMATION ' Displays message box.
 MessageBeep MB_ICONQUESTION
 MsgBox "Yes or No?", MB_ICONQUESTION + MB_YESNO
 End
 End Sub

 NOTE: The MB_ICONQUESTION and MB_ICONEXCLAMATION values are the same for
 both the MessageBeep API function and the MsgBox statement. See the
 "Parameters for MsgBox Statement" section below.

3. Choose (general) from the Object menu. Add the following Declare to the
 general declarations section:

 Declare Sub MessageBeep Lib "User" (ByVal wType As Integer)

4. Start the program or press the F5 key. MessageBeep plays the appropriate
 sound waveform file as each message box displays.

Windows Sound Events Are Not Standardized

Windows version 3.1 allows you to assign waveform audio sounds to certain
events through the Control Panel. These events are:

 Default Beep
 Exclamation
 Windows Start
 Windows Exit
 Critical Stop
 Question
 Asterisk

System sounds are dependent upon the application in which they occur. To
produce a sound, an application needs to notify Windows that a sound is to
occur, and then tell Windows which system sound to play. The application
will specify one of the seven default system sounds or any sound event
that it has added to this list.

This means that you cannot add sound events to the default list and have an
application play that sound, unless the application has been specifically
written to call that sound event.

Additionally, applications for Windows have not standardized on when these
sound events should occur. Therefore, one application may play the Default
Beep sound when an error occurs while another application might play the
Critical Stop sound.

Parameters for MsgBox Statement

Const MB_ICONSTOP = 16 ' Critical message; displays STOP icon.
Const MB_ICONQUESTION = 32 ' Warning query; displays ? icon.

Const MB_ICONEXCLAMATION = 48 ' Warning message; displays ! icon.
Const MB_ICONINFORMATION = 64 ' Information message; displays i icon.

Const MB_OK = 0 ' OK button only
Const MB_OKCANCEL = 1 ' OK and Cancel buttons
Const MB_ABORTRETRYIGNORE = 2 ' Abort, Retry, and Ignore buttons
Const MB_YESNOCANCEL = 3 ' Yes, No, and Cancel buttons
Const MB_YESNO = 4 ' Yes and No buttons
Const MB_RETRYCANCEL = 5 ' Retry and Cancel buttons

Const MB_APPLMODAL = 0 ' Application Modal Message Box
Const MB_DEFBUTTON1 = 0 ' First button is default
Const MB_DEFBUTTON2 = 256 ' Second button is default
Const MB_DEFBUTTON3 = 512 ' Third button is default
Const MB_SYSTEMMODAL = 4096 'System Modal

The above parameters for the MsgBox statement can also be found in any of
the following sources:

 - Visual Basic's Help menu; search for the MsgBox statement.
 - The CONSTANTS.TXT file.
 - Page 384-387 of the "Language Reference."

Additional reference words: 3.00
KBCategory: APrg
KBSubcategory: APrgOther

Using MSGBLAST.VBX Control to Process Windows Messages from VB
Article ID: Q110104
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
--

SUMMARY
=======

The Message Blaster (MSGBLAST.VBX) file is a Visual Basic custom control
that lets you catch and process Windows messages from Visual Basic. You can
obtain Message Blaster from the Microsoft Developer Network (MSDN) CD-ROM
disk number 5 or 6. On that MSDN CD-ROM disk, see the "Message Blaster:
Processing Messages in Visual Basic" technical article.

MORE INFORMATION
================

Message Blaster: Processing Messages in Visual Basic
--

The Microsoft Visual Basic development environment is not based on a
message-driven programming model, as is Microsoft Windows. In Microsoft
Windows, messages control most everything that happens. Visual Basic, on
the other hand, supports a predefined set of events for each object (form
or control) that you create. An application written in Visual Basic cannot
respond to messages from Microsoft Windows that are not handled directly by
a Visual Basic event.

The Message Blaster (MSGBLAST.VBX) is a Visual Basic custom control that
addresses this restriction by allowing you to catch and process Windows
messages (except WM_CREATE and WM_NCCREATE messages) from Visual Basic.

Message Blaster was created for Visual Basic version 2.0 on April 30, 1993,
by:

 - Ed Staffin, Microsoft Consulting Services
 - Kyle Marsh, Microsoft Developer Network Technology Group

You can obtain the Message Blaster from Microsoft Developer Network (MSDN)
compact disk (CD) number 5 or 6. Run the "MS Development Library CD 6" icon
that is installed in the "MS Development Library" folder in Program
Manager. Click the Contents button. Double-click "Technical Articles."
Double-click "Visual Basic Articles." Double-click the "Message Blaster:
Processing Messages in Visual Basic" article.

If you prefer, you can download Message Blaster (MSGBLAST.VBX) as a self-
extracting file from the Microsoft Software Library (MSL) on the following
services:

 - CompuServe
 GO MSL and download S14515.EXE

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download MSGBLAST.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \softlib\mslfiles directory
 Get MSGBLAST.EXE

After downloading the file, run it to obtain MSGBLAST.VBX along with a
number of example and source code files. For more information about
these other files, please see the following article in the Microsoft
Knowledge Base:

 ARTICLE-ID: Q103224
 TITLE : SAMPLE: MSGBLAST - Sample Application

The sample program EX1 uses the Message Blaster control to process
WM_MENUINIT and WM_MENUSELECT messages.

How to Join MSDN

The Microsoft Developer Network (MSDN) provides technical information and
development toolkits for all developers who write applications for
Microsoft operating systems. MSDN members receive a quarterly CD-ROM disk
and a monthly newsletter.

To join MSDN:

 - In the U.S. and Canada, call (800) 759-5474, 24 hours a day, 7 days a
 week.
 - In France, call 05 90 59 04 (toll-free).
 - In Germany, call 0130 81 02 1.
 - In the Netherlands, call 06 022 24 80 (toll-free).
 - In the United Kingdom, call 0800 96 02 79 (toll-free).
 - In Japan, call 03 5461-2617.
 - For any other country in Europe, call +31 10 258 88 64.
 - Outside of Europe, the U.S., Canada, or Japan, call (402) 691-0173.

This MSDN information is taken from the "Microsoft Developer Network News"
newsletter dated January 1994. This information is subject to change.

Additional reference words: 2.00 3.00
KBCategory: APrg
KBSubcategory: APrgOther

LONG: How to Call Windows API from VB - General Guidelines
Article ID: Q110219

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows,
 versions 2.0 and 3.0

SUMMARY
=======

This article gives general guidelines and examples to introduce you to the
process of calling Windows API functions from a Visual Basic application.
The examples used in this article are discussed individually in other
articles in the Microsoft Knowledge Base. They are repeated here as
examples for those new to the process of calling Windows API functions.

One of the most powerful features of Microsoft Visual Basic is the Declare
statement, which allows you, the Visual Basic programmer, to call the
routines in any Dynamic Link Library (DLL). Microsoft Windows is itself a
collection of DLLs, so Visual Basic can call almost any of the functions in
the Microsoft Windows Application Programming Interface (API). By calling
these routines you can perform tricks that are impossible in Visual Basic
alone.

MORE INFORMATION
================

The Windows API can appear daunting at first. You need to approach it with
a sense of adventure: for a Visual Basic programmer, the Windows API is a
huge unexplored jungle of over five hundred functions. Fortunately, Visual
Basic takes care of so many details for you that you will never have to
learn anything about most of these functions. But some of them do things
that are very hard to do in Visual Basic alone. And a few of them allow you
to do things in your Visual Basic application that you can't do any other
way. This article is your guide to the API jungle.

Backups Are Crucial

As with any good adventure, there are risks as well. When calling the
Windows API, you may declare a function incorrectly or pass it the wrong
values. As a result, you may get a general protection (GP) fault or an
Unexpected Application Error (UAE). Fortunately, insurance for this
adventure is cheap: always save your work before you run it. Keep backups
for every version.

Additional Resources You Might Want

While reading this article and trying out the examples, you may find it
helpful to keep the Visual Basic Programmer's Guide handy. Chapter 24,
"Calling Procedures in DLLs" explains details only touched on here.

To go beyond this article, you need to get documentation for the Windows
API. The Professional Edition of Visual Basic includes this information in
two Help files (WIN31WH.HLP and WIN31API.HLP) and a text file (WINAPI.TXT)
the complete list of Visual Basic DLL procedure, constant, and user-defined
type declarations for the Windows API. You can search for the declaration
you want in the WIN31API.HLP Help file; then copy and paste them into your
code. Alternatively, you can copy the declarations from the WINAPI.TXT
file. You'll find all three files in the \VB\WINAPI directory

Two-Step Process

There are two steps to using a DLL procedure in Visual Basic. First you
declare it once. Then you call it as many times as it is needed. The
remainder of this article provides a number of examples you can use to test
this two-step process.

Declaring DLL Routines

Most DLL routines, including those in the Windows API, are documented using
notation from the C programming language. This is only natural, as most
DLLs are written in C. However, this poses something of a challenge for the
intrepid Visual Basic programmer who wants to call these routines.

In order to translate the syntax of a typical API routine into a Visual
Basic Declare statement, you have to understand something about how both C
and Visual Basic pass their arguments. The usual way for C to pass numeric
arguments is "by value": a copy of the value of the argument is passed to
the routine.

Sometimes C arguments are pointers, and these arguments are said to be
passed "by reference." Passing an argument by reference allows the called
routine to modify the argument and return it. C strings and arrays are
always passed by reference.

Visual Basic, on the other hand, usually passes all of its arguments by
reference. In effect, when you pass arguments to a Visual Basic procedure
you are actually passing "far" (32 bit) pointers to those values. In order
to pass arguments to a C routine that expects its arguments to be passed by
value, you have to use the ByVal keyword with the argument in the
Declaration statement.

Obviously, if a DLL routine is expecting an argument to be passed by value
and you pass a pointer instead, it is not going to behave as you expect.
Likewise, if the routine is expecting a pointer to a value and you pass the
value itself, the routine is going to attempt to access the wrong memory
location and probably cause a GP fault or UAE. So be careful.

One added wrinkle to this is that Visual Basic strings do not use the same
format as C strings. Visual Basic has overloaded the ByVal keyword to mean
"pass a C string" when it is used with a string argument in a declare
statement.

C argument types and their equivalent declarations in Visual Basic:

If the argument is Declare it as

--
standard C string (LPSTR, char far *) ByVal S$
Visual Basic string (see note) S$
integer (WORD, HANDLE, int) ByVal I%
pointer to an integer (LPINT, int far *) I%
long (DWORD, unsigned long) ByVal L&
pointer to a long (LPDWORD, LPLONG, DWORD far *) L&
standard C array (A[]) base type array (no ByVal)
Visual Basic array (see note) A()
struct (typedef) S As Struct

NOTE: You will never pass a Visual Basic string or array to a DLL routine
unless the DLL was written specifically for use with Visual Basic. Visual
Basic strings and arrays are represented in memory by "descriptors" (not
pointers), which are useless to DLL routines that were not written with
Visual Basic in mind.

There is one more complication to this, however. Some Windows functions
take a 32 bit argument that sometimes is a "far" (32 bit) pointer to
something and sometimes is just a 32 bit value. The fourth argument in the
SendMessage function is like this. If you are going to call it with just a
pointer or with just a value, you can declare it appropriately. For
example, you could declare SendMessage to take a pointer to a string:

 ' Enter the following Declare statement as one, single line:
 Declare Function SendMessage Lib "user"
 (ByVal hWnd%, ByVal msg%, ByVal wp%, ByVal lp$) As Long

Or you could declare it to take a 32 bit value:

 ' Enter the following Declare statement as one, single line:
 Declare Function SendMessage Lib "user"
 (ByVal hWnd%, ByVal msg%, ByVal wp%, ByVal lp&) As Long

Notice the fourth argument is declared ByVal lp$ in the first example and
ByVal lp& in the second.

However, what if you want to call it with both kinds of arguments in the
same program? If you declare it one way and call it another, you will get
an error message from Visual Basic. The solution is to declare the argument
As Any:

 ' Enter the following Declare statement as one, single line:
 Declare Function SendMessage Lib "user"
 (ByVal hWnd%, ByVal msg%, ByVal wp%, lp As Any) As Long

The Any "data type" tells Visual Basic not to do any type checking for that
argument. So now you can pass it anything as long as it is what the
function is expecting. If an argument is declared As Any, you must specify
whether the argument is passed by value or not -- when you actually call
the function. You do this by using ByVal for strings and for arguments that
should be passed by value, and omitting ByVal for arguments that should be
passed by reference. Use the appropriate entry from the second column in
the table shown above as the argument when you call the function.

For example, if you have declared the fourth argument in SendMessage As
Any, you can pass a string in that argument:

 buflen& = SendMessage(txthWnd, EM_GETLINE, lineNum%, ByVal buf$)

Notice you use the ByVal keyword in the call. This tells Visual Basic that
you want to pass a standard C string. If you don't include the ByVal, you
will pass a Visual Basic string descriptor, which is not something
SendMessage knows how to handle.

You can also pass an array:

 dummy& = SendMessage(any_hWnd%, EM_SETTABSTOPS, NumCol%, ColSizes(1))

Notice you do not use ByVal in this case because you want to pass a pointer
(specifically a pointer to the indicated element in the array -- all
subsequent array elements are packed into memory after it).

You can pass a long integer value as the fourth argument:

 dummy& = SendMessage(txthWnd, EM_LINESCROLL, 0, ByVal ScrollAmount&)

Note the use of ByVal here. You want to pass the value itself, rather than
a pointer to the value. It's very important that you pass a Long integer
for this argument. If you pass a normal Integer Visual Basic will not
convert it into Long.

If you're careful to match up what you're passing with what the routine
expects, you should have no trouble calling the Windows API to get Visual
Basic to do what you want as demonstrated in the examples that comprise the
remainder of this article.

Scoping Out the System

One of the nice things about Windows is that it insulates you from a lot of
the details of the system. You can print to the printer without knowing
what kind it is; you can display things on the screen without knowing its
resolution. However, there may be times when your application needs to know
key information about the system. For example, you may want your
application to perform different calculations depending on whether the
system has a math coprocessor or not.

Fortunately, Windows provides several functions that you can use to obtain
this kind of information. For example the GetWinFlags API function can give
you a lot of information.

Place this declaration in the declarations section of a form or module, or
in the global module:

 Declare Function GetWinFlags Lib "kernel" () As Long

As functions in the Windows API go, this one is very simple. It is found in
the Windows "kernel" DLL. It takes no arguments (hence the empty
parentheses in the declaration) and returns a Long integer. This Long will
have bits, or flags, set to indicate certain facts about the system. Here
are some of the flags:

 Const WF_CPU286 = &H2&

 Const WF_CPU386 = &H4&
 Const WF_CPU486 = &H8&
 Const WF_STANDARD = &H10&
 Const WF_ENHANCED = &H20&
 Const WF_80x87 = &H400&

Place the constants in the Declarations section of the form or module where
you declare the GetWinFlags function.

Now you can call GetWinFlags and use the And operator with these constants
to test the value returned. For example:

 Dim WinFlags As Long
 WinFlags = GetWinFlags()
 If WinFlags And WF_ENHANCED Then
 Print "Windows Enhanced Mode ";
 Else
 Print "Windows Standard Mode ";
 End If
 If WinFlags And WF_CPU486 Then Print "on a 486"
 If WinFlags And WF_CPU386 Then Print "on a 386"
 If WinFlags And WF_CPU286 Then Print "on a 286"
 If WinFlags And WF_80x87 Then Print "Math coprocessor available"

There's one important fact about the system that this function does not
provide: the version of Windows. You can obtain that information with the
GetVersion function:

 Declare Function GetVersion Lib "Kernel" () as Long

This returns a Long integer containing the version numbers of MS-DOS and
Windows. Here's the code that extracts the version information:

 Dim Ver As Long, WinVer As Long, DosVer As Long
 Ver = GetVersion()
 WinVer = Ver And &HFFFF
 Print "Windows " + Format$(WinVer Mod 256) + "." + Format$(WinVer \ 256)
 DosVer = Ver \ &H10000
 Print "MS-DOS " + Format$(DosVer \ 256) + "." + Format$(DosVer Mod 256)

GetSystemMetrics is another Windows function that provides useful system
information. You declare it like this:

 Declare Function GetSystemMetrics Lib "User" (ByVal nIndex%) As Integer

This function is located in the "User" DLL. It takes one argument: an
integer indicating which item of system information you want it to return.
This argument, like most arguments to Windows API functions, is passed by
value. Because Visual Basic usually passes arguments by reference, you have
to include the ByVal keyword to specify the argument should be passed by
value. This is very important. Forgetting ByVal when it is needed or
including it when it isn't often leads to problems.

GetSystemMetrics provides a potpourri of information. For example, you can
use it to find out if a mouse is installed in the system with code like
this:

 Const SM_MOUSEPRESENT = 19
 If GetSystemMetrics(SM_MOUSEPRESENT) Then Print "Mouse installed"

Some other useful information provided by GetSystemMetrics is the size of
the arrow bitmaps used by standard horizontal and vertical scroll bars.
This is important because the size of these bitmaps varies with the
resolution of the display and the display driver installed. When you create
an application that uses a horizontal scroll bar control, you usually give
it a fixed height; likewise, when you create a form with a vertical scroll
bar control, you usually give it a fixed width. You fix these sizes based
on what looks good on your system. Unfortunately, what looks good on your
display can look strange on a display that has a different resolution. If
you are writing applications that need to look good on a variety of display
resolutions, you need to write code that can determine the standard size of
scroll bars on the current display and dynamically resize your scroll bar
controls to match. You need to write code like this:

 Const SM_CXVSCROLL = 2
 Const SM_CYHSCROLL = 3
 ScaleMode = 3 'Pixels
 VScroll1.Width = GetSystemMetrics(SM_CXVSCROLL)
 HScroll1.Height = GetSystemMetrics(SM_CYHSCROLL)

Notice that the values returned by the GetSystemMetrics function are always
in pixels, so you need to set the ScaleMode of the form to 3 (pixels)
before setting the sizes of the scroll bars.

There are a lot of other system values you can obtain using
GetSystemMetrics, but not all of them are useful to Visual Basic
programmers. Here are a few of the interesting ones:

 Const SM_CXSCREEN = 0 'Width of screen in pixels
 Const SM_CYSCREEN = 1 'Height of screen in pixels
 Const SM_CYCAPTION = 4 'Height of form titlebar in pixels
 Const SM_CXICON = 11 'Width of icon in pixels
 Const SM_CYICON = 12 'Height of icon in pixels
 Const SM_CXCURSOR = 13 'Width of mousepointer in pixels
 Const SM_CYCURSOR = 14 'Height of mousepointer in pixels
 Const SM_CYMENU = 15 'Height of top menu bar in pixels

Yet another function that provides system information is GetDeviceCaps.
This function returns information about a particular device in the system,
such as the printer or the display. Like many of the functions you will see
in this article, the declaration for GetDeviceCaps is too long to fit on
one line, but you must type it all on one, single line:

 ' Enter the following Declare statement as one, single line:
 Declare Function GetDeviceCaps Lib "GDI" (ByVal hDC%, ByVal nIndex%)
 As Integer

GetDeviceCaps is found in the "GDI" DLL and it takes two arguments. The
first allows you to specify the device for which you want information. When
calling the function from Visual Basic, supply either the hDC property of a
form or the hDC property of the Printer object. The second argument
specifies the device information you want to get. There are a lot of
possible values for this second argument, but only a couple of them are
very interesting to the Visual Basic programmer. For example, you can find

out how many colors the screen or printer supports:

 Const PLANES = 14
 Const BITSPIXEL = 12
 Dim Cols As Long
 Cols = GetDeviceCaps(hDC, PLANES) * 2 ^ GetDeviceCaps(hDC, BITSPIXEL)

The number of colors a device supports is the product of the number of
color planes it has and the number of bits per pixel in each plane. Because
each bit can represent two colors, you have to raise 2 to the power of the
number of bits per pixel, and then multiply that by the number of color
planes, to get the total number of colors that the device can display.

Some Useful Tricks

That's enough poking about in the system. Here are some useful tricks.
If you have used the Shell function in Visual Basic, you have probably
discovered that it will only run files that have the extension .EXE, .COM,
.PIF, or .BAT. But you can double-click almost any file in the File
Manager, and Windows does the right thing. For example, if it is a .TXT
file, Windows starts Notepad. How would you add this kind of functionality
to your own applications?

Windows stores the association between data files and their related
application (such as the association between a .TXT file and the NOTEPAD
application) in the WIN.INI file in the Extensions section. Windows also
provides a function called GetProfileString that reads the WIN.INI file for
you. Here is the Declare for GetProfileString:

 ' Enter the following Declare statement on one, single line:
 Declare Function GetProfileString Lib "Kernel"
 (ByVal Sname$, ByVal Kname$, ByVal Def$, ByVal Ret$, ByVal Size%)
 As Integer

GetProfileString searches the WIN.INI section specified in the first
argument for the key specified in the second argument and returns the value
for that key in the third argument. The fourth argument provides the length
of the string passed as the third argument.

Therefore, once you know the extension of a file, you can use
GetProfileString to find the parent application for files with that
extension. Here's a function that does that:

 Function FindApp (Ext As String) As String
 ' Find the parent app for a file with the given extension
 Dim Sname As String, Ret As String, Default As String
 Ret = String$(255, 0)
 Default = Ret
 Sname = "Extensions"
 nSize = GetProfileString(Sname, Ext, Default, Ret, Len(Ret))
 If Left$(Ret, 1) <> Chr$(0) Then
 FindApp = Mid$(Ret, 1, InStr(Ret, "^") - 1)
 End If
 End Function

GetProfileString is an example of a Windows function that returns a string

by modifying one of its arguments. To use these kinds of functions, you
must create a string and fill it with something (character code 0 in the
example above) before you call the function. This is because Windows cannot
enlarge strings the way Visual Basic can, so whenever you pass a string to
Windows you must ensure that it is long enough to hold the largest possible
string that Windows might return.

You can add new values to WIN.INI using the WriteProfileString function:

 ' Enter the following Declare statement on one, single line:
 Declare Function WriteProfileString Lib "Kernel"
 (ByVal Sname$, ByVal Kname$, ByVal Set$) As Integer

This function searches the WIN.INI file for the section specified in the
first argument and the key specified in the second argument. Then it
replaces the key value with the value specified in the third argument. If
the key is not found, it adds the key and its value to the specified
section. If it does not find the section, it adds that to WIN.INI as well.

Some applications use their own private .INI files rather than using
WIN.INI -- Visual Basic has its own VB.INI, for example. You can use the
functions GetPrivateProfileString and WritePrivateProfileString to
manipulate other .INI files:

 ' Enter each of the following Declare statements on one, single line:
 Declare Function GetPrivateProfileString Lib "Kernel"
 (ByVal Sname$, ByVal Kname$, ByVal Def$, ByVal Ret$, ByVal Size%,
 ByVal Fname$) As Integer
 Declare Function WritePrivateProfileString Lib "Kernel"
 (ByVal Sname$, ByVal Kname$, ByVal Set$, ByVal Fname$) As Integer

These work exactly like GetProfileString and WriteProfileString, except
they have one additional argument that specifies the path and filename of
the .INI file.

Now, where should you put that custom .INI file? One obvious place is the
Windows directory. But people name that directory all sorts of things:
\WINDOWS or \WIN3 or who knows what. It might not even be at the root
level. How can you find it? Well, Windows knows where this directory is,
and it provides a function to tell you:

 ' Enter the following Declare statement on one, single line:
 Declare Function GetWindowsDirectory Lib "User"
 (ByVal P$, ByVal S%) As Integer

The first argument is a string that the function will fill with the path to
the Windows directory; the second argument is the length of this string.
Again, because you are passing a string to be filled by Windows, you must
make sure it is large enough to accommodate whatever string Windows might
provide. In this case, the Windows Reference warns that it should be at
least 144 characters. On the other hand, 144 characters is the worst case
so in most cases there will be a lot of unused characters that you will
need to trim off. The GetWindowsDirectory function returns an integer value
that indicates the actual length of the returned string. So here's some
fancy code that calls the function and trims the returned string all in one
line:

 Dim WinPath As String
 WinPath = String$(145, Chr$(0))
 WinPath = Left$(WinPath, GetWindowsDirectory(WinPath, Len(WinPath)))

In addition, there is usually a \SYSTEM directory within the windows
directory. Once again, that could be called anything, and once again
Windows provides a function to find it: GetSystemDirectory.

This function is declared in exactly the same way as GetWindowsDirectory
and can be called in the same way, so substitute it in the declaration and
code above and try it out.

Another sensible place to put that .INI file is in the same directory as
the application. It should be trivial to figure out what directory a
running Visual Basic application is stored in, but it's not. This
information isn't provided through the Command$ system variable,
unfortunately. And even CurDir$ isn't reliable because the application
could have been run using a full path without changing the current
directory to the application's directory. Windows API calls to the
GetModuleHandle and GetModuleFileName functions give you what you need.
Here are the declarations:

 ' Enter each of the following Declare statement on one, single line:
 Declare Function GetModuleHandle Lib "Kernel"
 (ByVal FileName$) As Integer
 Declare Function GetModuleFileName Lib "Kernel"
 (ByVal hModule%, ByVal FileName$, ByVal nSize%) As Integer

GetModuleHandle takes the filename of a running program and returns a
"module handle." All you need to know about the module handle is that it is
an integer and you pass it to the GetModuleFileName function.

GetModuleFilename takes three arguments; the first is the module handle
returned by GetModuleHandle. The second is a string that the function fills
with the complete path and filename of the program specified by the module
handle. The third is the size of this string. The value returned by
GetModuleFilename is the length of the path that it placed in the string
you passed.

Using these two functions, obtaining the path to a running program is easy:

 Dim hMod As Integer, Path As String
 hMod = GetModuleHandle%("MyApp.EXE")
 Path = String$(145, Chr$(0))
 Path = Left$(Path, GetModuleFileName%(hMod, Path, Len(Path))

Notice that you are again passing a large string and using the value
returned by the function to trim the string down to size with Left$.

Another trick you can perform with GetModuleHandle is limiting your
application to a single instance. Normally, Windows allows you to run
multiple instances (copies) of the same program. Most of the time this is a
handy feature, but sometimes it can cause problems. If your program uses
data
files, having more than one instance of the program accessing those files
at the same time can leave the files in an inconsistent state. You could
write the program so that it works correctly even if there are multiple

copies running, but that's a lot of work and sometimes it's not even
possible. An easier method is to just ensure that only one copy of the
program can be run. Thanks to GetModuleHandle and another Windows function,
GetModuleUsage, this is easy:

 Declare Function GetModuleUsage Lib "Kernel" (ByVal hModule%) As Integer

GetModuleUsage returns how many instances of the specified program exist.
The program is specified by passing GetModuleUsage a module handle, which
is what GetModuleHandle returns. Putting code like this in the Form_Load
event for your startup form (or in your Sub Main if you don't have a
startup form) ensures that only a single instance of your application can
be run:

 If GetModuleUsage(GetModuleHandle("YOURAPP.EXE")) > 1 Then
 MsgBox "This program is already loaded!", 16
 End
 End If

GetModuleHandle and GetModuleUsage work for DLLs as well as ordinary
executable files, so you could use this technique to find out how many
Visual Basic executables are running by using GetModuleUsage with the
module handle for VBRUN100.DLL.

Sending Messages to Controls

Windows is built around messages. The Windows system sends messages to
applications. You see these messages in your Visual Basic program as
events. In addition, applications send messages to each other (this is the
basis for DDE), and applications even send messages to themselves.

You can get in on the action. By sending messages to controls, you can get
them to do things that would otherwise be impossible, such as setting
tab stops in list boxes and getting a single line of text from a multi-line
text box. You can also do things by sending a single message that would
take a lot more Basic code to accomplish, such as emptying a list box.
You send messages with SendMessage function:

 ' Enter the following Declare statement as one, single line:
 Declare Function SendMessage Lib "User"
 (ByVal hWnd%, ByVal msg%, ByVal wp%, lp As Any) As Long

The first argument identifies the recipient of the message. Windows uses
"handles" to keeps track of everything it uses. Handles are integer ID
numbers that Windows assigns to things -- like the module handles used
earlier to refer to programs.

Controls are just another kind of window as far as Windows is concerned.
Controls are identified by their window handle, or hWnd. To send a message
to a control you need its hWnd.

Visual Basic provides the hWnd for a form through the hWnd property.
Unfortunately, there is no such property for any of the controls. The
controls are windows and do have hWnds, but Visual Basic doesn't provide
them for you. So you have to resort to some subterfuge. Windows has a
function called GetFocus that will return the hWnd for the window that has

the focus:

 Declare Function GetFocus Lib "user" () As Integer

And we can give the focus to any control using the Visual Basic SetFocus
method. So to get the hWnd for a control, use code similar to this:

 AnyControl.SetFocus
 control_hWnd = GetFocus()

The second argument in the SendMessage function is the message number. All
of the message numbers are some offset from the WM_USER message, which has
the value 1024 (&H400 in hexadecimal notation). The complete list of
message numbers is included in the WINAPI.TXT file.

The last two arguments in SendMessage supply additional information for a
particular message. What they contain varies from message to message.
Notice that the last argument was declared As Any. This is different from
the way the SendMessage function is declared in the WINAPI.TXT file. It
allows you to pass any data type as the fourth argument.

The Long integer value that SendMessage returns depends on what message you
sent. Sometimes you send a message to tell a control to do something, and
the return value is zero if the control could perform the action and non-
zero if it could not. Sometimes you send a message to a control to find out
something about that control, and in those cases the return value is the
information you requested. And sometimes the return value means nothing at
all.

Try out SendMessage by starting with something simple: emptying list boxes.
If you've spent much time programming with list boxes, you are probably
annoyed that there is no simple way to empty a list. Instead of telling the
list box to simply empty itself, you have to loop through all the entries
and use the RemoveItem method on each one. But there's a better way.

Windows provides a message (LB_RESETCONTENT) that you can send to a list
box to make it empty itself in one step.

 Const WM_USER = &H400
 Const LB_RESETCONTENT = WM_USER + 5

Here is a procedure that uses this message to empty any list box:

 Sub ClearListBox(Ctrl As Control)
 Ctrl.SetFocus
 dummy& = SendMessage(GetFocus(), LB_RESETCONTENT, 0, ByVal 0&)
 End Sub

The RESETCONTENT message needs no additional information, so the last two
arguments to SendMessage are zero. Notice that the last argument is ByVal
0& (zero followed by an ampersand character). The ampersand is very
important; it ensures that a long (32 bit) zero is passed. There is no
useful information returned when this message is sent, so the SendMessage
function is assigned to a dummy variable.

You can also empty combo box lists in the same way; just use this constant
for the message:

 Const CB_RESETCONTENT = WM_USER+11

While on the topic of lists, there's an easy way to find strings in a list.
You can loop through all the items in the list, but why bother when the
LB_FINDSTRING message allows you to find a string in a list box with a
single function call? When you send the LB_FINDSTRING message, the
SendMessage function returns the index of the first item in the list that
matches the string you specified (so obviously you should only use this
message with sorted list boxes).

 Const LB_FINDSTRING = WM_USER + 16
 Dim itemNum As Long
 itemNum = SendMessage(GetFocus(), LB_FINDSTRING, -1, ByVal "Visual")
 Print "Windows is item: "; Format$(itemNum)

This finds the first list item that begins with "Visual" and returns its
index in the list. It will match even if there are additional characters
following the specified string, so the example above would match "Visual
Basic" if it was the first string in the list beginning with "Visual."
Again, this technique works as well with combo boxes as it works with list
boxes. Just use the message:

 Const CB_FINDSTRING = WM_USER + 12

And, speaking of combo boxes, here's a neat trick for a dropdown list combo
box (a combo box with the Style property set to 2). This code drops the
list automatically when the combo box gets the focus:

 Sub Combo1_GotFocus ()
 Const CB_SHOWDROPDOWN = WM_USER + 15
 Dummy& = SendMessage(GetFocus(), CB_SHOWDROPDOWN, 1, ByVal 0&)
 End Sub

Sending messages in the GotFocus event for a control is a good technique
because it allows you to avoid explicitly setting the focus to a control to
get its hWnd.

Another useful message is LB_GETTOPINDEX. When you send this message to a
list box, the SendMessage function returns the index of the first visible
item in the list. This is valuable if the list has been scrolled and you
want to determine which items are actually visible in the list (in a
DragDrop event, for example).

 Const LB_GETTOPINDEX = WM_USER+15
 FirstItem& = SendMessage(GetFocus(), LB_GETTOPINDEX, 0, ByVal 0&)

You can also send a message to scroll a list box to make any item the first
visible item in the list:

 Const LB_SETTOPINDEX = WM_USER+24
 Success& = SendMessage(GetFocus(), LB_SETTOPINDEX, item%, ByVal 0&)

You could combine this message with the LB_FINDSTRING message to scroll the
list box so that the list item found by LB_FINDSTRING is at the top of the
list.

One especially valuable use of SendMessage is to set the tabstops in a list
or
text box. You have probably discovered that list boxes and multi-line text
boxes handle tabs automatically, so if you assign text that contains tabs
(character code 9) the columns line up automatically. Unfortunately, Visual
Basic gives you no way to adjust where the columns fall -- except by
sending a message. For a list box, the message is:

 Const LB_SETTABSTOPS = WM_USER + 19

When you send this message, you must supply an array of integers that
specify the new tab positions. (These positions are specified in terms of
characters; when the list box or text box contains a proportional font,
these are "average" characters.) This array is the fourth argument to the
SendMessage function; the number of elements in the array is the third
argument. Notice that to pass an array to a Windows function, you actually
pass the first element of the array:

 ReDim tabs(3) As Integer
 tabs(1) = 10
 tabs(2) = 50
 tabs(3) = 90
 List.SetFocus
 dummy& = SendMessage(GetFocus(), LB_SETTABSTOPS, 0, ByVal 0&)
 dummy& = SendMessage(GetFocus(), LB_SETTABSTOPS, 3, tabs(1))

The first call to SendMessage clears any existing tabstops; the second sets
three tabstops as specified in the array.

You can set the tabstops in a multi-line text box as well; just send the
message EM_SETTABSTOPS:

 Const EM_SETTABSTOPS = WM_USER + 27

This won't work for a single-line text box. Speaking of multi-line text
boxes, there are several useful messages you can send to a multi-line text
box to get information that Visual Basic does not provide. For example, you
can send the EM_GETLINECOUNT message to get the number of lines text in a
multi-line text box:

 Const EM_GETLINECOUNT = WM_USER+10
 lineCount& = SendMessage(GetFocus(), EM_GETLINECOUNT, 0, ByVal 0&)

You can obtain the text contained in any line of a multi-line text box with
the message:

 Const EM_GETLINE = WM_USER + 20

When sending this message, you have to provide the number of the line you
want to retrieve in the third argument to SendMessage, and the string to be
filled with the contents of the line as the fourth argument. There's one
odd thing about this string. Normally, when you pass a string to a Windows
function you also supply the size of the string as an argument. However,
the usual place for that information is in the third argument, and that is
already being used to specify which line you want retrieved. So you have to
place the length of the string in the first two bytes of the string, using
code like this:

 Dim LineNum As Integer, linelength As Integer, buf As String
 'Set linelength to some reasonable value
 buf = String$(linelength, chr$(0))
 buf = Chr$(linelength Mod 256) + Chr$(linelength \ 256) + Buf
 ' Enter the following two lines as one, single line:
 buf = Left$(buf,
 SendMessage(GetFocus(), EM_GETLINE, lineNum, ByVal buf))

Another handy message for multi-line text boxes is EM_LINESCROLL, which
allows you to scroll them horizontally and vertically. You specify the
amount to scroll in the fourth argument of the SendMessage function: place
the number of characters to scroll horizontally in the high word (by
multiplying by 65536) and the number of lines to scroll vertically in the
low order word. For example:

 Sub ScrollIt (ctl As Control, chars As Integer, lines As Integer)
 Const EM_LINESCROLL = WM_USER + 6
 Dim scroll As Long
 scroll = chars * 65536 + lines
 ctl.SetFocus
 dummy& = SendMessage(GetFocus(), EM_LINESCROLL, 0, ByVal scroll)
 End Sub

This is a relative scroll: if you use the value 2 the text box will scroll
down by two lines; if you use the value -65536 the text box will scroll
left by one character.

Another feature that Visual Basic does not directly support is a way to
restrict the number of characters that can be entered in a text box. You
can do this by responding to the various Key events, but there is an easier
way: send the EM_LIMITTEXT message to the text box:

 Sub Text1_GotFocus()
 Const EM_LIMITTEXT = WM_USER+21
 dummy& = SendMessage(GetFocus(), EM_LIMITTEXT, numChars, ByVal 0&)
 End Sub

Here the third argument specifies the maximum number of characters the text
box will accept. If you want to set it back to normal, send EM_LIMITTEXT
with that argument set to zero. You can also restrict the number of
characters accepted by a combo box by sending the combo box the message
CB_LIMITTEXT:

 Const CB_LIMITTEXT = WM_USER+1

One last trick: turn a text box into a password control. Windows provides
automatic support for text boxes that display asterisks (or some other
character) instead of the actual characters the user types. To take
advantage of this support, set a style bit in the text box. Normally you
set style bits when you create a control, but you can't do that because
Visual Basic creates the control for you.

Fortunately, Windows allows you to set that bit after the control is
created (this is one of the few style bits that you can change after a
control is created). The functions that get and set the style information
for a window are as follows:

 ' Enter each of the following Declare statements as one, single line:
 Declare Function GetWindowLong Lib "User"
 (ByVal hWnd%, ByVal nIndex%) As Long
 Declare Function SetWindowLong Lib "User"
 (ByVal hWnd%, ByVal nIndex%, ByVal NewLong&) As Long

To set the password style bit, call GetWindowLong to get the style
information, use the Or operator to set the bit, and then call
SetWindowLong to store the new style. Once again, do this in the GotFocus
event so you don't have to worry about using SetFocus to get the hWnd:

 Sub Text1_GotFocus ()
 Const ES_PASSWORD = &H20
 Const EM_SETPASSWORD = 1052
 Const GWL_STYLE = -16
 Const Asterisk = 42
 Dim TxthWnd As Integer, WindowLong As Long
 TxthWnd = GetFocus()
 WindowLong = GetWindowLong(TxthWnd, GWL_STYLE)
 WindowLong = WindowLong Or ES_PASSWORD
 WindowLong = SetWindowLong(TxthWnd, GWL_STYLE, WindowLong)
 WindowLong = SendMessage(TxthWnd, EM_SETPASSWORD, Asterisk, ByVal 0&)
 End Sub

You can define the character you want displayed in place of the actual
characters the user types by sending the EM_SETPASSWORD message to the
control. This example sets the password character to asterisks. If you want
to use a different character, supply a different ANSI character code when
you send the EM_SETPASSWORD message.

There are some limitations to this password functionality. For one thing,
the characters in the text box are not stored as asterisks; they are just
displayed that way. This is good, because it allows your code to easily
check what the user typed. But it is also bad, because any user can select
the contents of the text box, copy it, and paste it somewhere else and see
the actual characters that were typed in the text box. Whether you consider
this a flaw depends on whether you expect the text box containing a
password to sit around on a screen where some malicious users can copy it.
Usually, this is not a problem. But it is something to keep in mind.

Exploring on Your Own

The Windows API is like an enormous hidden world that is just waiting to be
explored. The API documentation is the treasure map, and like the maps in
all good adventure stories, it requires some translation to be useful. And
you aren't limited to just the Windows API. Almost any DLL contains
functions that you might find useful. For example, many spell checkers are
implemented as DLLs; if you know how to declare and call the functions in
one of these DLLs, you can add spell-checking to your Visual Basic programs
(assuming that you obey the copyright restrictions for the DLL, of course).

Finding out how to declare and call the DLL functions can be tough
sometimes, however. You'll learn to keep your eyes open for anything that
looks like API documentation. Who knows what treasure you'll discover
inside some obscure DLL? And as new versions of Windows appear, the

treasure will only increase. The Multimedia Extensions for Microsoft
Windows are just a collection of DLLs, after all. With the right hardware,
think of how much fun you'll have calling those from your Visual Basic
programs.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: APrgOther RefsProd

How to Create a Read-Only Text Box Using SendMessage API
Article ID: Q110403

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0

SUMMARY
=======

Visual Basic does not have a Read-Only property for a text box. But you can
create a read-only text box by calling the Windows API SendMessage function
with the EM_SETREADONLY message.

MORE INFORMATION
================

Setting the text box state to read-only allows the user to scroll and
highlight the text in the text box, but does not allow them to edit it.
The program can still modify the text by changing the text property.

To create a read-only text box, call the Windows API SendMessage function,
using the EM_SETREADONLY message constant as the second parameter. The
SendMessage function requires the following parameters:

 ret& = SendMessage(hWnd%, uMsg%, wParam%, lParam&)

where:

 ret& holds the return value of the function call.
 hWnd% identifies the window handle that is to receive the message.
 uMsg% the message to be sent (EM_SETREADONLY).
 wParam% specifies whether to set or remove the read-only state of
 the edit control. A value of TRUE sets the state to
 read-only; a value of FALSE sets the state to read/write.
 lParam& not used for this message, set its value to 0&.

The return value of this function is nonzero if the function was
successful, and it is zero if an error occurred.

Step-by-Step Example

The following example loads a file into a text box, and then sets the
text box state to read-only:

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add a text box (Text1) to Form1. Select the text box and press the F4
 key to display the Properties window. Set the MultiLine property of
 Text1 to True and set the Scrollbars property to 3 - Both.

3. Add the following constants and declarations to the module level or to

 the global section of your code:

 Const WM_USER = &H400
 Const EM_SETREADONLY = (WM_USER + 31)

 ' Enter the following Declare statement as one, single line:
 Declare Function SendMessage Lib "User" (ByVal hWnd As Integer,
 ByVal wMsg As Integer, ByVal wParam As Integer,
 ByVal lParam As Any) As Long

4. Add the following code to the Form_Load Sub procedure:

 Sub Form_Load()
 Dim TmpStr As String
 Dim ret as Long

 Open "C:\AUTOEXEC.BAT" For Input As #1
 While Not Eof(1)
 ' Read a line of text in from the input file:
 Line Input #1, TmpStr
 ' Append it to the text box, adding carriage return and line feed:
 Text1.Text = Text1.Text & TmpStr & Chr$(13) & Chr$(10)
 Wend
 ' Set the text box to read-only mode:
 ret = SendMessage(Text1.hWnd, EM_SETREADONLY, True, 0&)

 If ret = 0 Then ' Check the return value for error
 MsgBox "Could Not Set Text Box to Read-Only."
 End If
 End Sub

5. Start the program, or press the F5 key. When the program loads, it will
 read the AUTOEXEC.BAT file into the text box, and then set the read-only
 state of the text box. Then the user can scroll and highlight the text
 in the text box but won't be able to edit it.

Additional reference words: 2.00 3.00
KBCategory: APrg
KBSubcategory: APrgOther

How to Add Items into Control Menu Box of Visual Basic Form
Article ID: Q110498
--
The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0
--

SUMMARY
=======

To add items into the Control-menu box of a Visual Basic Form, you can use
the AppendMenu API (application programming interface) function in Windows.
However, Visual Basic cannot directly detect any events for the added menu
item. To catch the message for the added menu item, you can use a subclass
control. You can write subclass controls using Microsoft C, but not using
Visual Basic. Alternatively, you can obtain subclass controls from third-
party programs such as SpyWorks from Desaware.

The Control-menu box, found in the upper-left corner of a Visual Basic
form, is also known as the System-menu box in other products for Windows.
The default Control-menu box contains the following nine entries including
separators:

 Restore
 Move
 Size
 Minimize
 Maximize

 Close Alt+F4

 Switch to... Ctrl+Esc

MORE INFORMATION
================

In Windows programming terms, subclassing is the process of creating a
message handling procedure and intercepting messages for a given window,
handling any messages you choose, and passing the rest to the window's
original message handler.

The subclass procedure is a message filter that performs nondefault
processing for a few key messages, and passes other messages to a default
window procedure using the CallWindowProc API function. The CallWindowProc
function passes a message to the Windows system, which in turns sends the
message to the target window procedure. The target window procedure cannot
be called directly by the subclass procedure because the target procedure
(in this case a window procedure) is exported.

How to Contact Desaware

NOTE: Desaware products are manufactured independent of Microsoft.

Microsoft makes no warranty, implied or otherwise, regarding these
products' performance or reliability.

 Desaware
 5 Town & Country Village #790
 San Jose, CA 95128
 Contact: Gabriel Appleman (213) 943-3305
 Dan Appleman (408) 377-4770
 Fax: (408) 371-3530

The Desaware company offers the following products:

 - Custom Control Factory -- An interactive development tool for creating
 custom controls including animated pushbuttons, multistate buttons,
 enhanced buttons, check boxes, and option button controls for Windows
 applications.

 - CCF-Cursors -- Provides you with complete control over cursors (mouse
 pointers) in Visual Basic applications. Create your own cursors or
 convert icons to cursors, and much more. Includes over 50 cursors.

 - SpyWorks-VB -- An advanced development tool for use with Visual Basic.
 SpyWorks contains subclass controls.

This information is subject to change.

Additional reference words: 3.00
KBCategory: APrg Refs
KBSubcategory: APrgOther RefsThird

How to Turn on Mouse Trails with Visual Basic
Article ID: Q110541

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic
 Programming System for Windows, versions 2.0 and 3.0

SUMMARY
=======

This article demonstrates how to turn on mouse trails by using the Escape()
Windows API function. This works on computers that have video drivers that
support mouse trails -- not all video drivers do. The Escape() function
returns a zero if the function is not supported by the video driver.

MORE INFORMATION
================

Step by Step to an Application That Turns on Mouse Trails
--

1. Start Visual Basic, or if Visual Basic is already running, choose New
 Project from the File menu (ALT, F, N). Form1 is created by default.

2. Add a Command Button (Command1) to Form1.

3. Add the following code to the General Declarations section of Form1:

 ' Enter the following Declare statement on one, single line:
 Declare Function Escape Lib "GDI" (ByVal hDC As Integer,
 ByVal nEscape As Integer, ByVal nCount As Integer, lpInData As Any,
 lpOutData As Any) As Integer

 Const MouseTrails = 39
 Const SizeOfWord = 2

4. Add the following code to the Command1_Click event of Form1:

 Dim x As Integer

 x = 7 ' Set x to one of the following values:
 ' 1 to 7 : turns mouse trails on and shows 1 to 7 trailers
 ' 0 : turns off mouse trails
 ' -1 : turns mouse trails on, reads info from WIN.INI
 ' -2 : disables mouse trails, doesnt update WIN.INI
 ' -3 : enables mouse trails, updates WIN.INI

 result% = Escape(form1.hDC, MouseTrails, SizeOfWord, x, 0&)

5. Run the program. Click the Command1 button to turn on mouse trails.

For more information about the Escape() Windows API function and mouse
trails, please see Windows version 3.1 SDK help file that ships with the

Professional Edition of Visual Basic.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: APrgOther

How to Make Mouse Pointer (Cursor) Maintain Hourglass Shape
Article ID: Q110542

The information in this article applies to:

- Professional and Standard Editions of Microsoft Visual Basic
 Programming System for Windows, versions 2.0 and 3.0

SUMMARY
=======

You can have a Visual Basic application program set the mouse pointer
(cursor) to an hour glass shape and wait. However, if the user moves the
mouse over another application's window, the cursor will return to a mouse
pointer. To force the cursor to maintain the hourglass shape even while
over other windows, make the window a system modal window by using the
SetSysModalWindow Windows API function.

MORE INFORMATION
================

Step-by-Step Instructions for Making a System Modal Window
--

1. Start Visual Basic, or if Visual Basic is already running, choose New
 Project from the File menu (ALT, F, N). Form1 is created by default.

2. Add the following code to the General Declarations section of Form1:

 ' Enter the following Declare statement as one, single line:
 Declare Function SetSysModalWindow% Lib "User" (ByVal hwnd%) As
 Const HourGlass = 11

3. Add the following code to the Form_Load event of Form1:

 Sub Form1_Load ()
 Me.Show
 Screen.MousePointer = HourGlass
 ' Remove the following line to see how the mouse behaves without it
 result% = SetSysModalWindow%(form1.hWnd)
 End Sub

4. Add the following code to the Form_Click event of Form1:

 Sub Form1_Click ()
 Unload Form1
 End Sub

5. Run the program. Click the form to end it. Notice that the cursor
 remains an hourglass even when you move the mouse pointer over other
 windows.

For more information about the SetSysModalWindow Windows API function, see
the Windows version 3.1 SDK help file that ships with the Professional

Edition of Visual Basic for Windows.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: APrgWindow

How to Right Justify Items in List Box w/ Tabs & SendMessage
Article ID: Q110958

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SUMMARY
=======

The sample program below shows how to right justify items in a list box.

MORE INFORMATION
================

This program calls the SendMessage Windows API function to set a tab stop
at every character position in the list box. The program prefixes
the appropriate number of tabs to right justify each string in the list
box. You need to set the maximum allowed string length in the program.

Step-by-Step Example

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add a large list box (List1) to Form1.

3. Add the following to the Form Load event code:

 Sub Form_Load ()

 Const WM_USER = &H400
 Const LB_SETTABSTOPS = WM_USER + 19
 Const maxlen = 10 ' Maximum expected string length in list box.
 tabchar = Chr$(9) ' ASCII code for a tab
 ReDim a$(maxlen) ' String array to right justify in list box.
 form1.Show ' Must Show form in Load event before Print
 ' will become visible.

 ' GetDialogBaseUnits() API function lets you calculate the average
 ' width of characters in the system font.
 bu& = GetDialogBaseUnits()
 hiword = bu& \ (2 ^ 16) ' 16 pixels high in default system font.
 loword = bu& And &HFFFF& ' 8 pixels wide in default system font.
 Print "System font width and height, in pixels: " & loword, hiword

 'Assign the array of defined tab stops.
 Static tabs(1 To maxlen) As Integer
 For j = 1 To maxlen ' Set tabs every 4 dialog units (one character):
 tabs(j) = (loword * j) / 2
 ' On most Windows systems, you need only this: tabs(j) = j * 4
 Next

 'Send message to the List1 control through the Windows message queue:
 retVal& = SendMessage(List1.hWnd, LB_SETTABSTOPS, maxlen, tabs(1))

 For j = 1 To maxlen
 a$(j) = String$(j, "a") ' Assign an arbitrary character string.
 ' Add the appropriate number of tabstops to right justify:
 tabstring = String$(maxlen + 1 - Len(a$(j)), Chr$(9))
 List1.AddItem tabstring & a$(j)
 Next

 End Sub

4. Add the following Windows API declarations to the General Declarations
 section:

 Declare Function GetDialogBaseUnits Lib "User" () As Long
 ' Enter the following Declare statement on one, single line:
 Declare Function SendMessage Lib "user" (ByVal hWnd As Integer,
 ByVal wMsg As Integer, ByVal wp As Integer, lp As Any) As Long

5. Start the program, or press the F5 key. All strings are right-justified
 in the list box. Close the form to end the program.

Additional reference words: 3.00 alignment right-align align
KBCategory:
KBSubcategory: APrgOther PrgCtrlsStd

How to Get a Window's Class Name and Other Window Attributes
Article ID: Q112649

The information in this article applies to:

- Standard and Professional Editions of Visual Basic for Windows,
 version 3.0

SUMMARY
=======

You could use SPY.EXE, which comes with Microsoft Visual C/C++, to get
information such as a window's class name. However, this article shows by
example how you, the Visual Basic programmer, can create your own Visual
Basic application that does the same thing -- displays a window's class
name along with several other attributes. You can use this Visual Basic
application to find a window's class name anytime you need it. For example,
you might need a window's class name for use in a function in the Microsoft
Windows Application Programming Interface (Windows API).

MORE INFORMATION
================

This example uses several functions from the Windows API to get
information about the window the cursor is currently over. First, the
routine calls GetCursorPos to get the current position of the cursor.
Then it calls WindowFromPoint to get the handle to the window the
cursor is currently over. Then it calls several other functions in
the Windows API to get specific information pertaining to the window.

The example finds the following information about the window:

 - Window Handle
 - Window Text
 - Window Class Name
 - Window Style
 - Window ID Number
 - Parent Window Handle (if applicable)
 - Parent Window Text (if applicable)
 - Parent Window Class Name (if applicable)
 - Module File Name

The example can be easily expanded to get other window attributes by
calling appropriate functions in the Windows API.

Step-by-Step Example

This example creates a Visual Basic program that produces results
similar to those produced by SPY.EXE.

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add the following declarations to the general declarations section of

 Form1:

 ' Enter each of the following Declare statements on one, single line:
 Declare Sub GetCursorPos Lib "User" (lpPoint As Long)
 Declare Function WindowFromPoint Lib "User" (ByVal ptScreen As Any)
 As Integer
 Declare Function GetModuleFileName Lib "Kernel"
 (ByVal hModule As Integer, ByVal lpFilename As String,
 ByVal nSize As Integer) As Integer
 Declare Function GetWindowWord Lib "User" (ByVal hWnd As Integer,
 ByVal nIndex As Integer) As Integer
 Declare Function GetWindowLong Lib "User" (ByVal hWnd As Integer,
 ByVal nIndex As Integer) As Long
 Declare Function GetParent Lib "User" (ByVal hWnd As Integer) As Integer
 Declare Function GetClassName Lib "User" (ByVal hWnd As Integer,
 ByVal lpClassName As String, ByVal nMaxCount As Integer) As Integer
 Declare Function GetWindowText Lib "User" (ByVal hWnd As Integer,
 ByVal lpString As String, ByVal aint As Integer) As Integer

 Const GWW_HINSTANCE = (-6)
 Const GWW_ID = (-12)
 Const GWL_STYLE = (-16)

3. Add a timer control (Timer1) to the form.

4. Set the interval property of the timer to 200.

5. Add the following code to timer's timer event:

 Sub Timer1_Timer()
 Dim ptCursor As Long
 Dim sWindowText As String * 100
 Dim sClassName As String * 100
 Dim hWndOver As Integer
 Dim hWndParent As Integer
 Dim sParentClassName As String * 100
 Dim wID As Integer
 Dim lWindowStyle As Long
 Dim hInstance As Integer
 Dim sParentWindowText As String * 100
 Dim sModuleFileName As String * 100
 Static hWndLast As Integer

 Call GetCursorPos(ptCursor) ' Get cursor position
 hWndOver = WindowFromPoint(ptCursor) ' Get window cursor is over

 If hWndOver <> hWndLast Then ' If changed update display
 hWndLast = hWndOver ' Save change
 Cls ' Clear the form
 Print "Window Handle: &H"; Hex(hWndOver) ' Display window handle

 r = GetWindowText(hWndOver, sWindowText, 100) ' Window text
 Print "Window Text: " & Left(sWindowText, r)

 r = GetClassName(hWndOver, sClassName, 100) ' Window Class
 Print "Window Class Name: "; Left(sClassName, r)

 lWindowStyle = GetWindowLong(hWndOver, GWL_STYLE) ' Window Style
 Print "Window Style: &H"; Hex(lWindowStyle)
 ' Get handle of parent window:
 hWndParent = GetParent(hWndOver)
 ' If there is a parent get more info:
 If hWndParent <> 0 Then
 ' Get ID of window:
 wID = GetWindowWord(hWndOver, GWW_ID)
 Print "Window ID Number: &H"; Hex(wID)
 Print "Parent Window Handle: &H"; Hex(hWndParent)
 ' Get the text of the Parent window:
 r = GetWindowText(hWndParent, sParentWindowText, 100)
 Print "Parent Window Text: " & Left(sParentWindowText, r)
 ' Get the class name of the parent window:
 r = GetClassName(hWndParent, sParentClassName, 100)
 Print "Parent Window Class Name: "; Left(sParentClassName, r)
 Else
 ' Update fields when no parent:
 Print "Window ID Number: N/A"
 Print "Parent Window Handle: N/A"
 Print "Parent Window Text : N/A"
 Print "Parent Window Class Name: N/A"
 End If
 ' Get window instance:
 hInstance = GetWindowWord(hWndOver, GWW_HINSTANCE)
 ' Get module file name:
 r = GetModuleFileName(hInstance, sModuleFileName, 100)
 Print "Module: "; Left(sModuleFileName, r)
 End If
 End Sub

6. Save the project files.

7. Run the program, and move the mouse over different windows. You will
 see the field values change as you move the mouse over different
 windows.

REFERENCES
==========

 - Microsoft Windows Software Development Kit (SDK)
 - Microsoft Visual Basic for Windows SDK Help file

Additional reference words: ClassName FindWindow 3.00
KBCategory:
KBSubcategory: APrgWindow

How To Add a Scalable Font to Windows From Visual Basic
Article ID: Q112672

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SUMMARY
=======

This article describes how to add a scalable font resource to Windows
from Visual Basic for Windows by calling four Windows Application
Programming Interface (Windows API) functions:

 - CreateScalableFontResource
 - AddFontResource
 - WriteProfileString
 - SendMessage

MORE INFORMATION
================

To make changes to the Windows font table, call CreateScalableFontResource
to create a font resource file. Then call AddFontResource to add the
resource you just created to the Windows font table. Next, make it
permanent by calling WriteProfileString to make a change to the WIN.INI
file. Finally, call SendMessage to tell all applications currently running
that a change has been made to the file.

Step-by-Step Example

This example shows how to add a scalable font resource to Windows from
Visual Basic.

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add the following to the general declarations section of Form1:

 ' Enter each of the following Declare statements on one, single line:
 Declare Function CreateScalableFontResource% Lib "GDI"
 (ByVal fHidden%, ByVal lpszResourceFile$,
 ByVal lpszFontFile$, ByVal lpszCurrentPath$)
 Declare Function AddFontResource Lib "GDI"
 (ByVal lpFilename As Any) As Integer
 Declare Function WriteProfileString Lib "Kernel"
 (ByVal lpApplicationName As String, ByVal lpKeyName As String,
 ByVal lpString As String) As Integer
 Declare Function SendMessage Lib "User" (ByVal hWnd As Integer,
 ByVal wMsg As Integer, ByVal wParam As Integer, lParam As Any)
 As Long

3. Add a command button (Command1) to Form1.

4. Add the following code to the Command1_Click event:

 Sub Command1_Click()
 ' Initialize variables for calls to APIs.
 ' Set name of font to show up in font list:
 keyname$ = "Bookman Old Style Bold (TrueType)"
 ' Set name of font resource file:
 font$ = "C:\WINDOWS\SYSTEM\BOOKOSB.FOT"
 TTF_Font$ = "bookosb.ttf"
 ResPath$ = "c:\WINDOWS\SYSTEM"
 ' Initialize variables for SendMessage call:
 HWND_BROADCAST = &HFFFF
 WM_FONTCHANGE = &H1D
 ' Create the font resource file:
 result& = CreateScalableFontResource%(0, font$, TTF_Font$, ResPath$)
 If result& Then
 ' Add resource to Windows font table:
 result& = AddFontResource(font$)
 If result& Then
 ' Make changes to WIN.INI to reflect new font:
 result& = WriteProfileString("Fonts", keyname$, font$)
 If result& Then
 ' Let other applications know of the change:
 result& = SendMessage(HWND_BROADCAST, WM_FONTCHANGE, 0, 0&)
 Else
 ' Report error:
 MsgBox "Error Adding Entry to Win.Ini: " + Format$(result&)
 End If
 Else
 ' Report error:
 MsgBox "Error Adding Font: " + Format$(result&)
 End If
 Else
 ' Report error:
 MsgBox "Error Creating Scalable font: " + Format$(result&)
 End If

 End Sub

5. Run the program. Click the Command1 button to end the program. If no
 errors occured, you should now be able to see the font "Bookman Old
 Style Bold (TrueType)" listed in the font list for Windows. To look
 at this list, choose the Fonts Panel in the Windows Control Panel. You
 should see the name listed in the list of installed fonts.

 If you receive this error:

 Error Creating Scalable font:0

 it's because the font is already loaded. Go into the Font List in the
 Control Panel and remove the font "Bookman Old Style Bold (TrueType)."
 Then run the program again.

Additional reference words: 3.00
KBCategory: APrg
KBSubcategory: APrgWindow

How to Pass & Return Unsigned Integers to DLLs from VB
Article ID: Q112673

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 1.0, 2.0, and 3.0

SUMMARY
=======

Visual Basic supports signed integers, not unsigned integers. Therefore,
the valid range of values, for an integer variable, is from -32767 to
+32767.

The C language supports unsigned integers, which have a range from 0 to
65536. To pass a value within the range 32767 to 65536, you need to do a
conversion in code to see the correct results. This article shows you how.

MORE INFORMATION
================

Visual Basic stores its integer variables in an 8-bit data field, as
does C. Visual Basic uses signed integers only, so it reserves one of the
bits as a sign bit. In C, you have the choice of an unsigned integer (the
variable ranges from 0 to 65536) or a signed integer (the variable ranges
from -32767 to +32767 as do Visual Basic integer variables).

Step-by-Step Example

Follow a process similar to the following to pass a value greater than
32767 as an integer from Visual Basic to a dynamic link library (DLL) that
is expecting an unsigned integer or to return an integer value that is
outside the range of valid Visual Basic integers:

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add the following code to the general declarations section of Form1.
 Note that you must actually have a DLL that takes an unsigned integer
 as a parameter.

 ' MyLong is a function in a DLL that takes an unsigned integer as a
 ' parameter and returns the same value passed in. To run this sample you
 ' will have to create the MYLONG function. Enter the following Declare
 ' statement as one, single line:
 Declare Function MyLong Lib "MyLong.DLL" (ByVal iInt AS Integer)
 As Integer

3. Add a command button (Comamnd1) to Form1.

4. Add the following code to the Command1_Click event:

 Sub Command1_Click()

 Dim lValue As Long
 Dim i As Integer, w As Integer
 ' Initialize lvalue:
 lValue = 40000
 If lValue > 32767 Then
 w = lValue - 65536
 Else
 w = lValue ' Just pass it on
 End If
 ' Call a DLL that is expecting an unsigned integer.
 ' For this example, the MyLong function will return
 ' the same value passed in.
 i = MyLong(w)

 ' Convert returned value:
 If i < 0 Then
 lValue = 65536 + i
 Else
 lValue = i
 End If
 ' Display the results:
 Print Str(lValue)
 End Sub

5. Run the program.

Additional reference words: 3.00
KBCategory:
KBSubcategory: APrgOther

How to use functions in VER.DLL -- a Sample Application
Article ID: Q112731
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic
 for Windows, versions 2.0 and 3.0
--

SUMMARY
=======

This article contains code and instructions that show you how to
create a sample application that uses some of the functions in VER.DLL
to retrieve file information embedded into a file with the resource
compiler (RC.EXE).

This Visual Basic application was modeled after the Verstamp sample
program included in the Microsoft Windows Software Development Kit (SDK).

Additional information can be found in the following documents:

 - Microsoft Windows 3.1 Programmer's Reference, Vols. 2 & 3
 - Microsoft SDK Reference Help File (WIN31WH.HLP) from Windows 3.1 SDK
 or the Professional Edition of Visual Basic version 2.0 or 3.0.

MORE INFORMATION
================

Instead of offering this article in a number of steps, we have modified
our usual format to make it easier for you to create and use this Visual
Basic application. Therefore, the three files you need (VERINFO.BAS,
VERINFO1.FRM, VERINFO2.FRM) are listed below so you can easily copy them
into a text editor and save them as separate files. Instructions for how
to use the files are embedded in the files as comments.

VERINFO.BAS

' Place the following code in a single text file called VERINFO.BAS
'
' The Global constants below are defined in the VER.H header file, also
' included in Microsoft C/C++ 7.0, and the Windows SDK.
'
' NOTE: After copying this into a file in a text editor, modify each
' Declare statements so that each one uses only one, single line.

Type VS_VERSION
 wLength As Integer
 wValueLength As Integer
 szKey As String * 16 ' "VS_VERSION_INFO"
 dwSignature As Long ' VS_FIXEDFILEINFO struct
 dwStrucVersion As Long
 dwFileVersionMS As Long
 dwFileVersionLS As Long

 dwProductVersionMS As Long
 dwProductVersionLS As Long
 dwFileFlagsMasks As Long
 dwFileFlags As Long
 dwFileOS As Long
 dwFileType As Long
 dwFileSubType As Long
 dwFileDateMS As Long
 dwFileDateLS As Long
End Type

Declare Function GetFileVersionInfo% Lib "Ver.dll" (ByVal Filename$,
 ByVal dwhandle&, ByVal cbBuff&, ByVal lpvData$)
Declare Function GetFileVersionInfoSize& Lib "Ver.dll"
 (ByVal Filename$, dwhandle&)
Declare Sub hmemcpy Lib "kernel" (hpvDest As Any, hpvSrc As Any,
 ByVal cbBytes&)
Declare Function GetSystemDirectory% Lib "kernel"
 (ByVal Path$, ByVal cbBytes%)

' **** VS_VERSION.dwFileFlags ****
Global Const VS_FF_DEBUG = &H1&
Global Const VS_FF_PRERELEASE = &H2&
Global Const VS_FF_PATCHED = &H4&
Global Const VS_FF_PRIVATEBUILD = &H8&
Global Const VS_FF_INFOINFERRED = &H10&
Global Const VS_FF_SPECIALBUILD = &H20&

' **** VS_VERSION.dwFileOS ****
Global Const VOS_UNKNOWN = &H0&
Global Const VOS_DOS = &H10000
Global Const VOS_OS216 = &H20000
Global Const VOS_OS232 = &H30000
Global Const VOS_NT = &H40000

Global Const VOS__BASE = &H0&
Global Const VOS__WINDOWS16 = &H1&
Global Const VOS__PM16 = &H2&
Global Const VOS__PM32 = &H3&
Global Const VOS__WINDOWS32 = &H4&

Global Const VOS_DOS_WINDOWS16 = &H10001
Global Const VOS_DOS_WINDOWS32 = &H10004
Global Const VOS_OS216_PM16 = &H20002
Global Const VOS_OS232_PM32 = &H30003
Global Const VOS_NT_WINDOWS32 = &H40004

' **** VS_VERSION.dwFileType ****
Global Const VFT_UNKNOWN = &H0&
Global Const VFT_APP = &H1&
Global Const VFT_DLL = &H2&
Global Const VFT_DRV = &H3&
Global Const VFT_FONT = &H4&
Global Const VFT_VXD = &H5&
Global Const VFT_STATIC_LIB = &H7&

' **** VS_VERSION.dwFileSubtype for VFT_WINDOWS_DRV ****

Global Const VFT2_UNKNOWN = &H0&
Global Const VFT2_DRV_PRINTER = &H1&
Global Const VFT2_DRV_KEYBOARD = &H2&
Global Const VFT2_DRV_LANGUAGE = &H3&
Global Const VFT2_DRV_DISPLAY = &H4&
Global Const VFT2_DRV_MOUSE = &H5&
Global Const VFT2_DRV_NETWORK = &H6&
Global Const VFT2_DRV_SYSTEM = &H7&
Global Const VFT2_DRV_INSTALLABLE = &H8&
Global Const VFT2_DRV_SOUND = &H9&
Global Const VFT2_DRV_COMM = &HA&

' **** VS_VERSION.dwFileSubtype for VFT_WINDOWS_FONT ****
Global Const VFT2_FONT_RASTER = &H1&
Global Const VFT2_FONT_VECTOR = &H2&
Global Const VFT2_FONT_TRUETYPE = &H3&

' **** Global variables used in both forms ****
Global Filename$
Global Directory$
Global FileVer$
Global ProdVer$
Global FileFlags$
Global FileOS$
Global FileType$
Global FileSubType$

VERINFO1.FRM

' The following is a text dump of the form VERINFO1. It includes the form
' and control description as well as necessary Function and Sub procedures.
' Save the code in a single TEXT file called VERINFO1.FRM and you will
' be able to load it as a form in Visual Basic.
'
' NOTE: To make the code fit in this article, some of the lines are listed
' using multiple lines. After copying the code into a file in a text editor
' modify it to ensure that all lines of code exist as one, single line
' in the file. Otherwise, you will receive errors when loading the form in
' Visual Basic.

Begin Form Form1
 BorderStyle = 1 'Fixed Single
 Caption = "VerInfo Demo"
 ClientHeight = 4290
 ClientLeft = 2340
 ClientTop = 2160
 ClientWidth = 3855
 Height = 4695
 Left = 2280
 LinkMode = 1 'Source
 LinkTopic = "Form1"
 ScaleHeight = 17.875
 ScaleMode = 4 'Character
 ScaleWidth = 32.125
 Top = 1815
 Width = 3975

 Begin DriveListBox Drive1
 Height = 288
 Left = 1836
 TabIndex = 7
 Top = 3792
 Width = 1908
 End
 Begin DirListBox Dir1
 Height = 1884
 Left = 1830
 TabIndex = 5
 Top = 1428
 Width = 1896
 End
 Begin FileListBox File1
 Height = 2955
 Left = 120
 TabIndex = 3
 Top = 984
 Width = 1575
 End
 Begin TextBox Text1
 Height = 288
 Left = 1092
 TabIndex = 1
 Text = "*.*"
 Top = 204
 Width = 2544
 End
 Begin Label Label1
 Caption = "Dri&ves:"
 Height = 216
 Index = 4
 Left = 1830
 TabIndex = 6
 Top = 3480
 Width = 660
 End
 Begin Label Label1
 Caption = "&Directories:"
 Height = 192
 Index = 3
 Left = 1830
 TabIndex = 4
 Top = 1104
 Width = 1236
 End
 Begin Label Label1
 Caption = "c:\"
 Height = 204
 Index = 2
 Left = 1830
 TabIndex = 8
 Top = 648
 Width = 1884
 End
 Begin Label Label1

 Caption = "&Files:"
 Height = 204
 Index = 0
 Left = 120
 TabIndex = 2
 Top = 648
 Width = 612
 End
 Begin Label Label1
 Caption = "File&Name:"
 Height = 204
 Index = 1
 Left = 120
 TabIndex = 0
 Top = 252
 Width = 936
 End
End

Sub Dir1_Change ()
 File1.Path = Dir1.Path
 Label1(2).Caption = File1.Path
End Sub

Sub DisplayVerInfo ()
 Dim X As VS_VERSION

 '*** Get Version Info ****
 FileVer$ = "": ProdVer$ = "": FileFlags$ = ""
 FileOS$ = "": FileType$ = "": FileSubType$ = ""
 FileName$ = File1.List(File1.ListIndex)
 Directory$ = Label1(2).Caption
 FullFileName$ = Label1(2).Caption + "\" + FileName$
 BufSize& = GetFileVersionInfoSize(FullFileName$, dwHandle&)
 If BufSize& = 0 Then
 MsgBox "No Version Info available!"
 Exit Sub
 End If
 lpvData$ = Space$(BufSize&)
 r% = GetFileVersionInfo(FullFileName$, dwHandle&, BufSize&, lpvData$)
 hmemcpy X, ByVal lpvData$, Len(X)

 '**** Determine File Version number ****
 FileVer$ = LTrim$(Str$(HIWORD(X.dwFileVersionMS))) + "."
 FileVer$ = FileVer$ + LTrim$(Str$(LOWORD(X.dwFileVersionMS))) + "."
 FileVer$ = FileVer$ + LTrim$(Str$(HIWORD(X.dwFileVersionLS))) + "."
 FileVer$ = FileVer$ + LTrim$(Str$(LOWORD(X.dwFileVersionLS)))

 '**** Determine Product Version number ****
 ProdVer$ = LTrim$(Str$(HIWORD(X.dwFileVersionMS))) + "."
 ProdVer$ = ProdVer$ + LTrim$(Str$(LOWORD(X.dwProductVersionMS))) + "."
 ProdVer$ = ProdVer$ + LTrim$(Str$(HIWORD(X.dwProductVersionLS))) + "."
 ProdVer$ = ProdVer$ + LTrim$(Str$(LOWORD(X.dwProductVersionLS)))

 '**** Determine Boolean attributes of File ****
 If X.dwFileFlags And VS_FF_DEBUG Then FileFlags$ = "DeBug"
 If X.dwFileFlags And VS_FF_PRERELEASE Then FileFlags$ =

 FileFlags$ + "PreRel"
 If X.dwFileFlags And VS_FF_PATCHED Then FileFlags$ =
 FileFlags$ + "Patched"
 If X.dwFileFlags And VS_FF_PRIVATEBUILD Then FileFlags$ =
 FileFlags$ + "Private"
 If X.dwFileFlags And VS_FF_INFOINFERRED Then FileFlags$ =
 FileFlags$ + "Info"
 If X.dwFileFlags And VS_FF_DEBUG Then FileFlags$ =
 FileFlags$ + "Special"

 If X.dwFileFlags And &HFFFFFF00 Then FileFlags$ = FileFlags$ + "Unknown"

 '**** Determine OS for which file was designed ****
 Select Case X.dwFileOS
 Case VOS_DOS_WINDOWS16
 FileOS$ = "DOS-Win16"
 Case VOS_DOS_WINDOWS32
 FileOS$ = "DOS=Win32"
 Case VOS_OS216_PM16
 FileOS$ = "OS/2-16 PM-16"
 Case VOS_OS232_PM32
 FileOS$ = "OS/2-32 PM-32"
 Case VOS_NT_WINDOWS32
 FileOS$ = "NT-Win32"
 Case Else
 FileOS$ = "Unknown"
 End Select

 '**** Determine Type and SubType of File ****
 Select Case X.dwFileType
 Case VFT_APP
 FileType$ = "App"
 Case VFT_DLL
 FileType$ = "DLL"
 Case VFT_DRV
 FileType$ = "Driver"
 Select Case X.dwFileSubType
 Case VFT2_DRV_PRINTER
 FileSubType$ = "Printer drv"
 Case VFT2_DRV_KEYBOARD
 FileSubType$ = "Keyboard drv"
 Case VFT2_DRV_LANGUAGE
 FileSubType$ = "Language drv"
 Case VFT2_DRV_DISPLAY
 FileSubType$ = "Display drv"
 Case VFT2_DRV_MOUSE
 FileSubType$ = "Mouse drv"
 Case VFT2_DRV_NETWORK
 FileSubType$ = "Network drv"
 Case VFT2_DRV_SYSTEM
 FileSubType$ = "System drv"
 Case VFT2_DRV_INSTALLABLE
 FileSubType$ = "Installable"
 Case VFT2_DRV_SOUND
 FileSubType$ = "Sound drv"
 Case VFT2_DRV_COMM

 FileSubType$ = "Comm drv"
 Case VFT2_UNKNOWN
 FileSubType$ = "Unknown"
 End Select
 Case VFT_FONT
 FileType$ = "Font"
 Select Case X.dwFileSubType
 Case VFT_FONT_RASTER
 FileSubType$ = "Raster Font"
 Case VFT_FONT_VECTOR
 FileSubType$ = "Vector Font"
 Case VFT_FONT_TRUETYPE
 FileSubType$ = "TrueType Font"
 End Select
 Case VFT_VXD
 FileType$ = "VxD"
 Case VFT_STATIC_LIB
 FileType$ = "Lib"
 Case Else
 FileType$ = "Unknown"
 End Select

 Form2.Show 1
End Sub

Sub Drive1_Change ()
 Dir1.Path = Drive1.Drive
 File1.Path = Dir1.Path
 Label1(2).Caption = File1.Path
End Sub

Sub File1_Click ()
 Text1.Text = File1.List(File1.ListIndex)
End Sub

Sub File1_DblClick ()
 DisplayVerInfo
End Sub

Sub File1_PathChange ()
 Text1.Text = "*.*"
 File1.Pattern = "*.*"
End Sub

Sub Form_Load ()
 Dim Buffer$

 ' **** Set Default Dir to Windows System Subdirectory ****
 Buffer$ = Space$(256)
 r% = GetSystemDirectory(Buffer$, Len(Buffer$))
 Dir1.Path = Buffer$
 File1.Path = Buffer$
 Drive1.Drive = Left$(Buffer$, 1)
End Sub

Function HIWORD (X As Long) As Integer
 HIWORD = X \ &HFFFF&

End Function

Function LOWORD (X As Long) As Integer
 LOWORD = X And &HFFFF&
End Function

Sub Text1_KeyPress (KeyAscii As Integer)
 If KeyAscii = 13 Then
 File1.Pattern = Text1.Text
 KeyAscii = 0
 If File1.ListCount = 1 Then DisplayVerInfo
 If File1.ListCount = 0 Then
 MsgBox "Invalid Filename"
 File1.Pattern = "*.*"
 Text1.Text = "*.*"
 End If
 File1.SetFocus
 End If
End Sub

VERINFO2.FRM

' The following is a text dump of the form VERINFO2. It includes the form
' and control description as well as necessary Function and Sub procedures.
' Save the code in a single text file called VERINFO2.FRM and you will
' be able to load it as a form in Visual Basic.
'
VERSION 2.00
Begin Form Form2
 BorderStyle = 1 'Fixed Single
 Caption = "File Version Info"
 ClientHeight = 3345
 ClientLeft = 6630
 ClientTop = 2175
 ClientWidth = 4500
 FontBold = 0 'False
 FontItalic = 0 'False
 FontName = "MS Sans Serif"
 FontSize = 8.25
 FontStrikethru = 0 'False
 FontUnderline = 0 'False
 Height = 3750
 Left = 6570
 LinkMode = 1 'Source
 LinkTopic = "Form3"
 MaxButton = 0 'False
 MinButton = 0 'False
 ScaleHeight = 13.938
 ScaleMode = 4 'Character
 ScaleWidth = 37.5
 Top = 1830
 Width = 4620
 Begin CommandButton Command1
 Caption = "OK"
 Height = 372

 Left = 1680
 TabIndex = 0
 Top = 2880
 Width = 1452
 End
End

Sub Command1_Click ()
 Form2.Hide
End Sub

Sub Command1_GotFocus ()
 Form_Paint
End Sub

Sub Form_Paint ()
 Form2.CurrentX = 2
 Form2.CurrentY = 1
 Form2.Print "FileName:"
 Form2.CurrentX = 2
 Form2.Print "Directory:"
 Form2.CurrentX = 2
 Form2.Print "File Version:"
 Form2.CurrentX = 2
 Form2.Print "Product Version:"
 Form2.CurrentX = 2
 Form2.Print "File Flags:"
 Form2.CurrentX = 2
 Form2.Print "File OS:"
 Form2.CurrentX = 2
 Form2.Print "File Type:"
 Form2.CurrentX = 2
 Form2.Print "File Sub-type:"

 Form2.CurrentX = 18
 Form2.CurrentY = 1
 Form2.Print FileName$
 Form2.CurrentX = 18
 Form2.Print Directory$
 Form2.CurrentX = 18
 Form2.Print FileVer$
 Form2.CurrentX = 18
 Form2.Print ProdVer$
 Form2.CurrentX = 18
 Form2.Print FileFlags$
 Form2.CurrentX = 18
 Form2.Print FileOS$
 Form2.CurrentX = 18
 Form2.Print FileType$
 Form2.CurrentX = 18
 Form2.Print FileSubType$
End Sub

How to Create and Run the Program

1. Start Visual Basic. Form1 is created by default.

2. From the File menu, choose Remove File to remove Form1.

3. From the File menu, choose Add File... to and add VERINFO.BAS

4. Repeat step 3 to add VERINFO1.FRM and VERINFO2.FRM to the project.

5. From the Options menu, choose Project... and set Start Up Form
 to Form1.

6. Run the application.

Additional reference words: 2.00 3.00 codesmpl
KBCategory: APrg
KBSubCategory: APrgWindow

ODBC Setup Program Gives Error: Could not open file...
Article ID: Q95736

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 2.0

SUMMARY
=======

Running the Data Access Setup program from Visual Basic version 2.0 for
Windows into the ODBC directory that Visual Basic Setup created results
in this error message:

 Could not open the file named: C:\VB\ODBCADM.HLP. It is in use by
 another application.

C:\VB is the path where Visual Basic exists. At this point you must quit
the Setup program.

The ODBC Setup program is trying to copy the ODBCADM.HLP file on top of
itself. The ODBC setup files already reside in the directory C:\VB\ODBC.

To work around the problem, choose the default directory (C:\ODBC) or
any other subdirectory. Then the Setup program works correctly. After
installing ODBC, you can move the contents of the directory to any other
directory.

This is not a problem with Visual Basic, but rather a limitation of the
ODBC Setup program.

More Information

The following steps reproduce the problem:

1. Set up Visual Basic version 2.0 for Windows in C:\VB.

2. Double-click the Data Access Setup icon to start the Setup program.

3. Choose continue.

4. Select Install ODBC Administration Utility.

5. On the choice entitled "The Microsoft ODBC administration utility will
 be copied into the following directory on your hard disk:" Change
 the default path from C:\ODBC to C:\VB\ODBC

You should receive the error message "Could not open the file named:
'C:\VB\ODBCADM.HLP' followed by a dialog asking if you want to quit setup.
You will need to select Yes to this dialog in order to terminate the ODBC
setup program.

Additional reference words: 2.00 setup ODBC
KBCategory:

KBSubcategory: APrgDataODBC

How to Keep the Current Record the Same After Using Refresh
Article ID: Q97181

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SUMMARY
=======

In Visual Basic version 3.0 for Windows, when the Refresh method
updates the recordset for a data control, it recreates the
recordset and resets the current record. This invalidates all
existing bookmarks for that recordset. This behavior is by
design. It is not a Visual Basic bug but rather a design feature
of the data control.

However, this behavior may be undesirable if you want to
refresh the recordset and maintain the current record. This
article explains how to restore the current record after
executing the Refresh method.

MORE INFORMATION
================

This information is included with the Help file provided with Microsoft
Visual Basic version 3.0 for Windows.

Although there is no simple way to retain the current record after
executing the Refresh method, you can restore the current record.
To do so, store unique field data for the current record. Then
use the stored field data to execute the Refresh method followed
by the FindFirst method. The FindFirst method uses the stored
field data to restore the current record.

The following steps demonstrate how to restore the current record
after executing the Refresh method:

1. Start Visual Basic, or from the File menu, choose New Project
 (ALT, F, N) if Visual Basic is already running. Form1 is
 created by default.

2. Put a data control (Data1) on Form1.

3. Set the DatabaseName property for Data1 to <path name>BIBLIO.MDB
 where <path name> represents the full path to the Visual Basic
 BIBLIO.MDB sample database.

4. Set the RecordSource property of Data1 to Authors, which is the
 name of the table in the BIBLIO.MDB database.

5. Put a Text box (Text1) on Form1

6. Set the DataSource property of Text1 to Data1

7. Set the DataField property of Text1 to Author, which is the name
 of the field (column) in the Authors table.

8. Put a command button (Command1) on Form1

9. Change the Caption property of Command1 to Refresh.

10. Add the following code to the Command1_Click event

 Sub Command1_Click ()

 Dim CurrRec As Variant

 'Hide the text box and emulate it by drawing a border
 text1.Visible = False
 Line (text1.Left, text1.Top)-(text1.Left + text1.Width,
 text1.Top + text1.Height), , B

 'Store the value of a unique field for the current record
 CurrRec = Data1.RecordSet!Au_ID

 'Update the RecordSet
 Data1.Refresh

 'Restore the current record by using the stored field value
 'to find
 Data1.RecordSet.FindFirst "Au_ID = " & CurrRec

 text1.Visible = True

 End Sub

11. From the Run menu, choose Start (ALT, R, S) or press the F5 key
 to run the program.

12. Using the data control, move to the next record. You should see
 "Atre, Shaku" displayed in the text box

13. Using the data control, move further into the file. To do this,
 click the right arrow or click the rightmost button -- the one
 with the arrow and bar -- to move to the end of the file.

14. Click the Refresh button. The name of the first author in the
 recordset is displayed in Text1 for an instant. Then the
 current author is redisplayed.

Additional reference words: 3.00
KBCategory:
KBSubcategory: APrgDataAcc

How to Copy Current Database Record into a Record Variable
Article ID: Q97413

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SUMMARY
=======

Although Visual Basic version 3.0 for Windows does not provide a
direct way to assign the current database record to a record variable,
this article gives you a generic routine. Using this generic routine,
you can assign the current record, containing any number of fields,
to a record variable that represents the structure of the current
database record.

This generic routine is useful if you have existing database code that
uses record variables to represent database records. For example, using
this routine, you can use the Visual Basic data access features without
making major changes to how you read and handle records. After you
assign the contents of the current record to a record variable of the
appropriate type, your code can manipulate the record as before,
independent of the underlying database.

The routine demonstrated below requires Windows version 3.1 or later
because it uses the Windows API function hmemcpy(), which was
introduced in Windows version 3.1. An error will result on the call to
hmemcpy() if you attempt to run the sample using Windows version 3.0.

MORE INFORMATION
================

This information is included with the Help file provided with Microsoft
Visual Basic version 3.0 for Windows.

Follow these general steps to assign the current database record to a
record variable:

1. Define a Type ... End Type structure that represents the record
 structure of the database table that you are going to use. This
 requires that the number and data types of the fields in the table
 be known in advance.

 To determine the structure of the table quickly, run the Data Manager
 tool provided with Visual Basic. From the Data Manager File menu,
 choose Open to open the database. Select a Table from the list
 displayed in the Database window, and choose the Design button to
 see the table's field names, data types, and field lengths.

2. Dimension a variable of the user-defined type structure created in
 step 1.

3. Create a generic routine using the Windows API hmemcpy() function to
 copy each field of the current database record into a string. To do
 this, step through all of the fields in the Fields collection and
 accumulate the fields together into a single string.

4. Use the hmemcpy() function to copy the contents of the string created
 in step 3 to the record variable created in step 2.

Perform the following steps to create an example application that
demonstrates how to copy the current database record into a user-defined
structure. This example shows you how to use the Data control to copy
a record from the BIBLIO.MDB sample database provided with Visual Basic.

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Add two text boxes (Text1 and Text2) to Form1

3. Add a data control (Data1) to Form1

4. Add a command button (Command1) to Form1.

5. Using the following table as a guide, set the properties of the controls
 you added in steps 2, 3 and 4.

 Control Name Property New Value Comment
 --
 Command1 Caption "Copy"
 Data1 DatabaseName BIBLIO.MDB You will also need to
 provide the full path to
 this file, which should
 be in your Visual Basic
 directory C:\VB
 Data1 RecordSource Authors
 Text1 DataSource Data1
 Text1 DataField AU_ID
 Text2 DataSource Data1
 Text2 DataField Author

6. From the File menu, choose New Module (ALT, F, M). Module1 is created.

7. Add the following code to the general declarations section of Module1:

 Type typeAuthor
 AU_ID As Long
 Author As String * 255
 End Type
 ' Enter the following Declare on a single line:
 Declare Sub hmemcpy Lib "KERNEL" (dest As Any, src As Any, ByVal
 Size As Long)

8. Add the following code to Module1:

 Function GetCurrRec (ds As Dynaset) As String

 Dim i As Integer
 Static FieldStr As String

 Static recStr As String

 recStr = ""

 'Step through each field in the current record and accumulate
 'the contents of each field into a string
 For i = 0 To ds.Fields.Count - 1

 'Pad out to the right size
 FieldStr = Space(ds.Fields(i).Size)

 Select Case ds.Fields(i).Type

 'Copy the binary representation of the field to a
 'string (FieldStr)

 Case 1, 2 'Bytes
 hmemcpy ByVal FieldStr, CInt(ds.Fields(i).Value),
 ds.Fields(i).Size

 Case 3 'Integers
 hmemcpy ByVal FieldStr, CInt(ds.Fields(i).Value),
 ds.Fields(i).Size

 Case 4 'Long integers
 hmemcpy ByVal FieldStr, CLng(ds.Fields(i).Value),
 ds.Fields(i).Size

 Case 5 'Currency
 hmemcpy ByVal FieldStr, CCur(ds.Fields(i).Value),
 ds.Fields(i).Size

 Case 6 'Singles
 hmemcpy ByVal FieldStr, CSng(ds.Fields(i).Value),
 ds.Fields(i).Size

 Case 7, 8 'Doubles
 hmemcpy ByVal FieldStr, CDbl(ds.Fields(i).Value),
 ds.Fields(i).Size

 Case 9, 10 'String types
 hmemcpy ByVal FieldStr, ByVal CStr(ds.Fields(i).Value),
 Len(ds.Fields(i).Value)

 Case 11, 12 'Memo and long binary
 FieldStr = ds.Fields(i).GetChunk(0, ds.Fields(i).FieldSize())

 End Select

 'Accumulate the field string into a record string
 recStr = recStr & FieldStr

 Next

 'Return the accumulated string containing the contents of all
 'fields in the current record
 GetCurrRec = recStr

 End Function

9. Add the following code to the Command1_Click event in Form1:

 Sub Command1_Click ()

 Dim recAuthor As typeAuthor
 Dim strCurrRec As String
 Dim strVerify As String

 'Copy the current record in the Authors table to a string
 strCurrRec = GetCurrRec(Data1.RecordSet)

 'Copy the string to the record variable that has a structure
 'matching the struture of the current record in the Authors table
 hmemcpy recAuthor, ByVal strCurrRec, Len(recAuthor)

 'Verify that the correct results were returned by displaying
 'the contents of the record variable
 strVerify = "AU_ID: " & Format$(recAuthor.AU_ID) & Chr$(13)
 strVerify = strVerify & "Author: " & Trim(recAuthor.Author)
 MsgBox strVerify

 End Sub

10. From the Run menu, choose Start (ALT, R, S), or press the F5 key
 to run the program.

Click the scroll bar of the Data control to select an author. The Text1 box
displays the author ID, and the Text2 box displays the author's name. Click
the "Copy" button to copy the current author's information to the record
variable and see contents of the record variable displayed in a MsgBox.

Additional reference words: 3.00
KBCategory:
KBSubcategory: APrgDataAcc

How to Use Data Control to Scroll Up and Down in a Recordset
Article ID: Q97414

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SUMMARY
=======

The data control provided with Visual Basic does not provide an
automatic way to scroll up or down in a recordset by groups (pages)
of records. This article shows you how to use the MoveNext and
MovePrevious methods to scroll up or down in a recordset by groups
(pages) of records without displaying all the records.

MORE INFORMATION
================

This information is included with the Help file provided with Microsoft
Visual Basic version 3.0 for Windows.

Usually, when you use the MoveNext and MovePrevious methods to scroll
up or down by a specified number of records, all the records are
displayed as you move through them. This is undesirable behavior if
you want a way to scroll through the recordset by pages.

In order to display only the record you have scrolled to, without
displaying all the records in between, you need to use the Clone
method to clone the data control's recordset.

Once you clone the recordset, you can use the MoveNext and MovePrevious
methods to move to the desired record within the cloned recordset. Then
set the Bookmark property of the original recordset to the Bookmark
property of the cloned recordset. This makes the desired record the
current record in the original recordset and causes the fields of this
record to be displayed in the bound data controls.

Perform the following steps to create an example program that
demonstrates how to scroll up and down by pages in a data control's
recordset:

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Add a data control (Data1) to Form1.

3. Add two text boxes (Text1 and Text2) to Form1.

4. Add two command buttons (Command1 and Command2) to Form1.

5. Using the following table as a guide, set the properties of the
 controls you added in steps 2, 3, and 4.

 Control Name Property New Value Comment
 --
 Command1 Caption "Page Up"
 Command2 Caption "Page Down"
 Data1 DatabaseName BIBLIO.MDB Provide the full path to
 to this file, which
 should be in the Visual
 Basic directory -- C:\VB
 Data1 RecordSource Authors
 Text1 DataSource Data1
 Text1 DataField AU_ID
 Text2 DataSource Data1
 Text2 DataField Author

6. Add the following code to the general declarations section of Form1:

 Const PAGEUP = 1
 Const PAGEDOWN = 2
 Const Records_per_Page = 10

7. Add the following procedure to Form1:

 Sub Page (RecSet As Dynaset, ByVal iDirection As Integer, ByVal
 Records As Integer)

 Dim dsClone As Dynaset
 Dim i As Integer

 'Copy the visible recordset. This is necessary so that you can
 'move through the clone recordset without displaying each record.
 Set dsClone = RecSet.Clone()

 'Set the current record of the cloned recordset to the current
 'record of the visible recordset.
 dsClone.Bookmark = RecSet.Bookmark

 'Scroll up or down N number of records in the cloned recordset.
 i = 1
 Do While i <= Records And Not dsClone.EOF And Not dsClone.BOF

 If iDirection = PAGEUP Then
 dsClone.MovePrevious
 Else
 dsClone.MoveNext
 End If

 i = i + 1
 Loop

 'If the above loop caused a BOF or EOF condition, move to the
 'beginning or end of the recordset as appropriate.
 If dsClone.BOF And iDirection = PAGEUP Then
 dsClone.MoveFirst
 ElseIf dsClone.EOF And iDirection = PAGEDOWN Then
 dsClone.MoveLast
 End If

 'Change the bookmark of the visible record set to the bookmark
 'of the desired record. This makes the current record of the
 'visible recordset match the record moved to in the cloned
 'dynaset. The fields of the record are displayed in the data
 'bound controls without displaying any intervening records.
 RecSet.Bookmark = dsClone.Bookmark

 End Sub

8. Add the following code to the Command1_Click event for Form1:

 Sub Command1_Click ()

 'Scroll up 10 records in the recordset associated with Data1
 Page Data1.RecordSet, PAGEUP, Records_per_Page

 End Sub

9. Add the following code to the Command2_Click event for Form1:

 Sub Command2_Click ()

 'Scroll down 10 records in the recordset associated with Data1
 Page Data1.RecordSet, PAGEDOWN, Records_per_Page

 End Sub

10. From the Run menu, choose Start (ALT, R, S), or press the F5 key
 to run the program.

Click the "Page Up" or "Page Down" button to scroll up or down in
10-record increments. Change the value of Records_per_Page to modify
the pagesize.

Additional reference words: 3.00
KBCategory:
KBSubcategory: APrgDataAcc

ODBC Setup & Connection Issues for Visual Basic Version 3.0
Article ID: Q97415

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, version 3.0

SUMMARY
=======

There are four possible problem areas that can contribute to a failure to
connect to a database server when using ODBC and Visual Basic:

 - Having correct .INI file settings.
 - Having the correct DLLs in the right place.
 - Having the server information needed to connect to a server correctly.
 - Meeting the needs of Microsoft and Sybase SQL Servers.

MORE INFORMATION
================

The following describes each of the four areas, giving possible errors and
problems that can arise if things are not set up correctly.

INI file settings

There are two .INI files (ODBCINST.INI and ODBC.INI) that must reside in
the Windows directory and must contain correct information about the
installed ODBC drivers and servers.

ODBCINST.INI contains the ODBC driver information needed to register new
servers using the RegisterDataBase() statement in Visual Basic. Here is an
example .INI file for the SQL Server driver that ships with Visual Basic:

 [ODBC Drivers]
 SQL Server=Installed

 [SQL Server]
 Driver=C:\WINDOWS\SYSTEM\sqlsrvr.dll
 Setup=C:\WINDOWS\SYSTEM\sqlsrvr.dll

The [ODBC Drivers] section tells the driver manager the names of the
installed drivers. The [SQL Server] section tells the ODBC driver manager
the names of the dynamic link libraries (DLLs) to use to access data from
a server set up as a SQL Server. The order of the two sections and their
entries is arbitrary.

ODBC.INI contains the data for each installed driver. The driver manager
uses this information to determine which DLL to use to access data from a
particular database backend. Here is an example of a file containing three
data sources all using the SQL Server driver:

 [ODBC Data Sources]
 MySQL=SQL Server

 CorpSQL=SQL Server

 [MySQL]
 Driver=C:\WINDOWS\SYSTEM\sqlsrvr.dll
 Description=SQL Server on server MySQL
 OemToAnsi=No
 Network=dbnmp3
 Address=\\mysql\pipe\sql\query

 [CorpSQL]
 Driver=C:\WINDOWS\SYSTEM\sqlsrvr.dll
 Description=SQL Server on server CorpSQL
 OemToAnsi=No
 Network=dbnmp3
 Address=\\corpsql\pipe\sql\query

The first section tells the driver manager which sections appearing below
it define the data source. As you can see, each entry has a value (in this
case, SQL Server) that matches a value from the ODBCINST.INI file.

If the information on a data source is incorrect or missing, you may
get the following error:

 ODBC - SQLConnect failure 'IM002[Microsoft][ODBC DLL] Data source
 not found and no default driver specified'

If the DLL listed on the Driver=... line cannot be found or is corrupt, the
following error may occur:

 ODBC - SQLConnect failure 'IM003[Microsoft][ODBC DLL] Driver
 specified by data source could not be loaded'

ODBC and Driver DLLs

The following DLLs must be on the path or in the Windows system directory
in order for ODBC to be accessible from Visual Basic:

 ODBC.DLL - driver manager
 ODBCINST.DLL - driver setup manager
 VBDB300.DLL - Visual Basic programming layer

If VBDB300.DLL is missing or corrupt, you see the following error in Visual
Basic when you try to run the application:

 ODBC Objects require VBDB300.DLL

If either the ODBC.DLL or ODBCINST.DLL file is missing or corrupt, you see
the following error in Visual Basic when you try to run the application:

 Cannot Find ODBC.DLL, File not Found

The SQL Server driver requires the following files:

 SQLSRVR.DLL - actual driver
 SQLSETUP.DLL - driver setup routines
 DBNMP3.DLL - named pipe routines needed by SQL server

If the SQLSRVR.DLL is missing or corrupt, you see the following error when
calling the OpenDataBase() function with a SQL Server data source:

 ODBC - SQLConnect failure 'IM003[Microsoft][ODBC DLL] Driver
 specified by data source could not be loaded'

If the SQLSETUP.DLL is missing or corrupt, you see the following error when
calling the RegisterDataBase statement with SQL Server as the driver name:

 The configuration DLL (C:\WINDOWS\SYSTEM\SQLSETUP.DLL) for the ODBC
 SQL server driver could not be loaded.

Server Information Needed to Connect to a Data Source

Certain information is needed to connect to a data source using the
OpenDataBase() function. This information is obtainable from the server
administrator in the case of SQL Server. The following is an example of a
call to the OpenDataBase() function to connect to a SQL Server called
CorpSQL as a user named Guest with password set to taco:

 Dim db As DataBase
 Set db = OpenDataBase("corpsql", False, False, "UID=guest;PWD=taco")

If any of this information is missing, an ODBC dialog box appears to give a
user a chance to supply the needed data. If the information is incorrect,
the following error occurs:

 ODBC - SQLConnect failure '28000[Microsoft][ODBC SQL Server Driver]
 [SQL Server] Login failed'

Information Specific to Microsoft and Sybase SQL Servers
--
For Microsoft and Sybase SQL Servers, you need to add stored procedures
to the server itself by running a batch file of SQL statements to make a
Microsoft or Sybase SQL Server ODBC-aware. In other words, before you can
run a Visual Basic ODBC application using the SQL Server driver, you must
first update the ODBC catalog of stored procedures. These procedures are
provided in the INSTCAT.SQL file. The system administrator for the SQL
Server should install the procedures by using the SQL Server Interactive
SQL (ISQL) utility.

If the INSTCAT.SQL file is not processed on the server, the following error
occurs:

 ODBC - SQL Connect Failure
 "08001" [Microsoft ODBC SQL Server Driver]
 'unable to connect to data source'number: 606'

To install the catalog stored procedures by using the INSTCAT.SQL file, run
INSTCAT.SQL from the command line using ISQL. Do not use the SAF utility
provided with SQL Server. Microsoft SAF for MS-DOS and OS/2 is limited to
511 lines of code in a SQL script, and INSTCAT.SQL contains more than 511
lines of code.

Run ISQL from the OS/2 command line using the following syntax. Enter the
two lines as one, single line, and do not include the angle braces <>.

 ISQL /U <sa login name > /n /P <password> /S <SQL server name> /i
 <drive: \path\INSTCAT.SQL > /o <drive:\path\output file name>

 /U The login name for the system administrator.
 /n Eliminates line numbering and prompting for user input.
 /P Password used for the system administrator. This switch is case
 sensitive.
 /S The name of the server to set up.
 /i Provides the drive and fully qualified path for the location of
 INSTCAT.SQL
 /o Provides ISQL with an output file destination for results including
 error listings.

Here's an example. Enter the following as one, single line:

 ISQL /U sa /n /P squeeze /S BLUEDWARF /i C: \SQL\INSTCAT.SQL /o
 C: \SQL OUTPUT.TXT

Additional reference words: 3.00
KBCategory:
KBSubcategory: APrgDataODBC

How to Implement the DLookup Function in Visual Basic
Article ID: Q99704

The information in this article applies to:

- Microsoft Visual Basic Programming System for Windows, version 3.0

SUMMARY
=======

Microsoft Access provides a set of domain, or record set, functions that
are useful in getting the value of one field based on criteria involving
another field. The DLookup domain function is particularly useful.

Although Visual Basic does not contain the DLookup function, you can write
the equivalent using Visual Basic code. This article describes how to
implement the DLookup domain function in Visual Basic.

MORE INFORMATION
================

In Microsoft Access, the DLookup domain function returns the value of a
field for a given set of criteria. The syntax for the DLookup function is
as follows:

 DLookup(expr, domain , criteria)

 Argument Description
 --
 expr String expression identifying the field that contains
 the data you want to return. Operands in expr can
 include the name of a table field.

 domain String expression identifying the records that
 constitute the record set. It can be a table name,
 query name, or SQL expression that returns data.

 criteria Optional string expression used to restrict the range
 of data on which DLookup is performed. For example,
 criteria could be the SQL expression's WHERE clause
 without the word WHERE. If criteria is omitted, DLookup
 evaluates expr against the entire record set.

Step-by-Step to a Custom Visual Basic DLookup Function
--
The following steps show by example how to create a Visual Basic custom
DLookup function.

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Add the following controls with the associated properties to Form1:

 Control Name Property Settings

 Command Button Command1 Caption = "Lookup"
 Label Label2
 Data Data1 Databasename = "BIBLIO.MDB"
 RecordSource = "Authors"
 Label Label1 DataSource = Data1
 DataField = Author

3. Add the following code to the general declarations section of Form1:

 Dim gDefaultDatabase As Database

4. Add the following code to the general section of Form1:

 'Enter the following two lines as one, single line:
 Function DLookup (ByVal FieldName As String, ByVal RecSource
 As String, ByVal Criteria As String) As Variant

 Dim dsResult As Dynaset
 Dim ReturnValue As Variant

 On Local Error GoTo Error_DLookup:

 'Create a dynaset based on the record source or SQL string provided
 Set dsResult = gDefaultDatabase.CreateDynaset(RecSource)

 'Find the first record that meets the criteria provided
 dsResult.FindFirst Criteria

 'See if we found any records
 If Not dsResult.NoMatch Then

 'Return the value of the field
 DLookup = dsResult(FieldName).Value

 Else

 DLookup = Null

 End If

 DLookup_Exit:
 Exit Function

 Error_DLookup:
 'Display the error and get out
 MsgBox "Error (" & Err & "): " & Error(Err) & " in DLookup", 64
 Resume DLookup_Exit:

 End Function

5. Add the following code to the Command1_Click event procedure:

 Sub Command1_Click ()

 'Get the first book title for the current author.
 'Enter the following two lines as one, single line:

 Label2.Caption = DLookup("Title", "Titles", "Au_ID = " &
 Format(data1.Recordset("Au_ID")))
 End Sub

6. Add the following code to the Form_Load event procedure of Form1:

 'Cause the records to be read from the database. This is
 'needed to initialize the Database property.
 data1.Refresh

 'Keep the default database in a global variable to be used
 'by the DLookup function
 Set gDefaultDatabase = data1.Database

7. From the Run menu, choose Start (ALT, R, S) or press F5 to run the
 program.

8. Click the directional arrows on the Data control to display different
 author names in Label1.

9. Click the Lookup button and title to display one of the author's books
 in Label2.

As demonstrated in this example program, you can use DLookup to return a
field value such as book title based on the value of another field such as
author ID.

Examples Showing How to Use DLookup

Below are some more examples showing how you can use the DLookup function.

In the following example, from the Authors table in the Visual Basic
BIBLIO.MDB sample database, DLookup uses the Au_ID field to return the
corresponding author name for the author whose ID is 17. Assume that
the variable AuthorName is a string.

 AuthorName = DLookup("Author", "Authors", "Au_ID = 17")

If the criteria argument contains non-numeric text other than field
names, you must enclose the text in single quotation marks. In the
following example from the Titles table of the BIBLIO.MDB database,
ISBN is the name of a field, and 0895886448 is a string literal.

 BookTitle1 = DLookup("Title", "Titles", "ISBN = '0895886448'")
 BookTitle2 = DLookup("Title", "Titles", "Au_Id = 17")

Even if more than one record satisfies criteria, DLookup returns only
one field. If no record satisfies criteria, or if the domain contains no
records, DLookup returns a Null.

Additional reference words: 3.00
KBCategory:
KBSubcategory: APrgDataAcc

PRB: Can't Use ActiveForm to Reference Data Control in VB 3.0
Article ID: Q101252

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 3.0

SYMPTOMS
========

Using the ActiveForm Property of the Screen control or an MDI Parent
form to reference a Data control causes a "Type Mismatch" error in
Visual Basic.

CAUSE
=====

This behavior is by design. This is not a bug in Visual Basic. The
Visual Basic environment does not know in advance that the Active form
will actually contain a Data control, so it generates a "Type mismatch"
error.

WORKAROUND
==========

To avoid the error message, use global objects to reference the local
controls. The "More Information" section below demonstrates one method
for doing this.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

Steps to Correct Problem

This example shows how to correct the problem. First, create the
problem by following the steps listed in "Steps to Reproduce Problem."
Then correct the problem with these steps:

1. Add the following code to the Form_Activate Event:

 Sub Form_Activate ()
 Set CurrentDS = Data1.Recordset
 End Sub

2. Change two lines of code into comments by adding a single quotation
 mark to the beginning of the line. Change the Set CurrentDS statement
 in the Set_CurrentDS Sub in Module1 to a comment, and do the same to
 the Call Set_CurrentDS statement in the Form_Click event of Form1.

Steps to Reproduce Problem

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Add a data control (Data1) to Form1.

3. Set the DatabaseName Property of Data1 to BIBLIO.MDB.

4. From the File menu, choose New Module (ALT, F, M). Module1 is created.

5. Add the following code to the General section of Module1:

 Global CurrentDS As DynaSet

6. Add the following code to Module1:

 Sub Set_CurrentDS ()
 Set CurrentDS = Screen.ActiveForm.Data1.Recordset
 End Sub

7. Add the following code to the Form_Click event procedure of Form1:

 Sub Form_Click ()
 Call Set_CurrentDS
 End Sub

8. From the Run menu, choose start (ALT, R, S) or press the F5 key.

A "Type mismatch" error will occur on the Set statement.

Additional reference words: 3.00 errmsg
KBCategory:
KBSubcategory: APrgDataIISAM PrgCtrlsStd

PRB: Visual Basic 3.0 ODBC Does Not Support OpenTable Method
Article ID: Q101254

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, version 3.0

SYMPTOMS
========

The OpenTable method is not supported in Visual Basic version 3.0 for
ODBC data sources.

CAUSE
=====

Visual Basic version 3.0 introduced a new layer of database management,
the Microsoft Access engine, that lies between Visual Basic itself and
the ODBC drivers. This new layer allows version 3.0 to work with Microsoft
Access, FoxPro, Paradox, and dBASE databases. However, the Microsoft Access
engine does not support using OpenTable on ODBC data sources, or any table
that is not part of a Microsoft Access database (.MDB). Therefore, when you
attempt to use OpenTable on tables that are not Microsoft Access tables or
that come from on an ODBC data source, Visual Basic version 3.0 generates
the error.

WORKAROUND
==========

You can use CreateDynaset on any table that uses an ISAM or ODBC (attached
tables).

STATUS
======

This behavior is by design. It is documented on page 149 of the Visual
Basic version 3.0 "Professional Features Book 2" manual.

Additional reference words: 3.00
KBCategory:
KBSubcategory: APrgDataODBC

Transactions on ODBC Data Sources in Visual Basic Version 3.0
Article ID: Q101518

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SUMMARY
=======

Under the ExecuteSQL method, transactions are unsupported against ODBC
data sources. Even though a transaction may be started by a Visual
Basic application and this transaction space is global to all database
objects, the transaction space on database objects does not include
actions by the ExecuteSQL method against remote ODBC data sources such
as SQL Server or Oracle.

MORE INFORMATION
================

When you use the ExecuteSQL method or the passthrough property on dynasets,
Visual Basic version 3.0 dispatches the SQL code directly to the ODBC data
source through the ODBC driver. Therefore, it does not offer any
transaction support in terms of CommitTrans or Rollback even though the
ODBC driver for that data source might support transactions. This behavior
is by design.

The following example illustrates the behavior in Visual Basic version 3.0.
The code in the example uses the ExecuteSQL method to delete all rows from
the table even though a rollback is issued.

Dim D as Database
Set D = Opendatabase ' an ODBC data source such as Oracle
Begintrans
D.Executesql("delete from sometable")
Rollback

Additional reference words: 3.00
KBCategory:
KBSubcategory: APrgDataODBC

How to Open dBASE Table with Nonstandard File Extension
Article ID: Q101742

The information in this article applies to:

- Microsoft Visual Basic for Windows, version 3.0

SUMMARY
=======

To open a dBASE table file that has a non-standard file extension, specify
the table name as <filename>#<extension>.

MORE INFORMATION
================

The standard file extension used by dBASE for tables is .DBF. In Visual
Basic version 3.0 using the dBASE installable ISAMs, you can open a table
by specifying the file name without this extension because the dBASE
installable ISAM assumes the extension to be .DBF by default. If you
specify the extension <filename>.<extension>, the dBASE installable ISAM
will not recognize it and will give you the following error message:

 <filename>.<extension> isn't a valid name.

To open a dBASE table file that has a non-standard file extension, specify
the table name as <filename>#<extension>. The dBASE installable ISAM
interprets the pound sign (#) in the table name as a period and opens the
dBASE table.

Example

The following code example demonstrates how to open a dBASE table file that
has a non-standard file extension (AUTHORS.OLD) and print the first field
of
all records in the table to the form. The following example assumes that
you
have a dBASE III table with a file name of AUTHORS.OLD located in the
C:\DBASEIII\OLDBOOKS directory. You may need to modify the example and
create a dBASE III database with a table called AUTHORS.OLD in order for it
to work correctly.

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Add a Command Button (Command1) to Form1.

3. Add the following code to the Click event of Command1:

 Sub Command1_Click()
 Dim db As Database
 Dim OldAuthors As Table

 Connect$ = "dBASE III" ' Specify database type
 dbName$ = "C:\DBASEIII\OLDBOOKS" ' Specify database directory

 Set db = OpenDatabase(dbName$, False, False, Connect$)
 Set OldAuthors = db.OpenTable("Authors#Old") ' Open table
 While Not OldAuthors.EOF
 Print OldAuthors(0) ' Print field(0) to the form
 OldAuthors.MoveNext ' for all records.
 Wend

 OldAuthors.Close
 db.Close
 End Sub

4. Run the example.

5. Click the Command1 button.

Additional reference words: 3.00
KBCategory:
KBSubcategory: APrgDataIISAM

PRB: Error When Updating Fields in Dynaset That Has 2+ Tables
Article ID: Q102681

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, version 3.0

SYMPTOMS
========

When trying to edit or update fields in a dynaset that was created by a SQL
select statement that joined two or more tables, the following errors may
occur. In these messages 'item' is a field in a table to be changed.

 Can't perform operation; it is illegal. (3219)
 Can't update 'item'; field not updatable. (3113)

CAUSE
=====

These errors occur if the Microsoft Access engine cannot insure that
referential integrity of the table entries will be maintained as a result
of the operation.

MORE INFORMATION
================

For a multiple table dynaset to be updatable, the following must be true:

 - The dynaset needs to have been created with a SQL 'join' clause between
 tables that have a one-to-many relationship.

 - There must be a unique index (or primary key) on the one-side of the
 query.

Reproducing the Behavior

These examples use the BIBLIO.MDB database that shipped as a sample
database with Visual Basic version 3.0 for Windows. In BIBLIO.MDB, the
Authors table has a unique (primary) index set on AU_ID, and the Titles
table has an index set on AU_ID but it is not unique or primary. The
following code causes the errors:

 Dim db As database
 Dim ds As dynaset
 ' The following SQL$ code is correct. It will not generate an error.
 ' Enter it as one, single line:
 ' SQL$ = "Select * from AUTHORS,TITLES, Titles INNER JOIN
 ' authors on Titles.AU_ID = Authors.AU_ID"
 ' The following line will cause the error, but it won't be generated
 ' until the last line of the same code -- which is expected:
 SQL$ = "Select * from AUTHORS,TITLES where Titles.AU_ID = Authors.AU_ID"
 Set db = OpenDatabase("C:\vb3\biblio.mdb")

 Set ds = db.CreateDynaset(SQL$)
 ds.Edit

This is a classic example of a SQL inner join statement. It chooses all
fields from both tables where the book titles match up with the author who
wrote them. The unique index is the ID number of the author. This means one
author can have many titles but books by a single author will have only one
author in the Authors table.

If this query did not have a one-to-many relationship, the error, "Can't
perform operation; it is illegal"(3219) would occur on the line "ds.Edit."
The error is telling you that either there is not a unique index in the
multiple-table dynaset, or there is no unambiguous one-side to the query.
Checking the updatable property of the dynaset before invoking edit mode
avoids the error from attempting to edit a non-updatable dynaset.

After the query is successfully created and the copy buffer is opened by
issuing the Edit statement, you can proceed with updating records.

 ds.Fields("Title") = "Some new book title"
 ds.Update

This works because "Title" is on the non-unique or many-side of the initial
query. All the records in the Titles table are editable whereas none of the
records in Authors table are editable. The error "Can't update 'item';
field not updatable." (3113) occurs with an attempt to edit any item in the
Authors table.

Additional reference words: 3.00
KBCategory:
KBSubcategory: APrgDataAcc

How to Build Access DB & Load Data from Btrieve for Windows DB
Article ID: Q103440

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 3.0

SUMMARY
=======

The example in this article demonstrates how to build a Microsoft Access
database without having a database or database template already built. The
example uses a Btrieve for Windows database file to supply the data to be
placed into the newly created Microsoft Access database.

MORE INFORMATION
================

NOTE: You will need to have a Btrieve for Windows database file
 already built to test this example. The Btrieve for Windows
 database file tested with this example can be sent upon request.

Steps to demonstrate the example

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Add three command buttons and two grid controls using GRID.VBX to Form1.
 Using the following table as a guide, set the properties of the controls
 you added in step 2.

 Control Property New Value
 --
 Command1 Caption "Press to Load Btrieve File and Display in Grid"
 Command2 Caption "Press to Transfer Data and Build New DB"
 Command3 Caption "Press to Display Data from the New Database"
 Grid1 Cols 4
 Grid1 Rows 15
 Grid2 Cols 4
 Grid2 Rows 15

3. Review the following brief outline of the table from the Btrieve for
 Windows database:

 Table Name: Big_Tab

 Field Names Field Type Field Size

 PrimaryKey Long Integer
 MyMoney Currency
 MyString Text 154

 Index Names Index Fields Unique Primary

 tabindex +PrimaryKey Yes No

4. Add the following variables and constants to the (general) section of
 Form1:

 Dim PrimaryKeys(30) As Long
 Dim Money(30) As Currency
 Dim Strings(30) As String * 154
 Const DB_LONG = 4
 Const DB_TEXT = 10
 Const DB_CURRENCY = 5
 Const DB_LANG_GENERAL = ";LANGID=0x0809;CP=1252;COUNTRY=0"

5. Add the following code to the Form Load event procedure:

 Sub Form_Load ()
 Show
 grid1.ColWidth(1) = 1000 'For PK ID
 grid1.ColWidth(2) = 2000 'For Money
 grid1.ColWidth(3) = 5000 'For Story
 grid1.Col = 1
 grid1.Row = 0
 grid1.Text = "Primary Keys" 'Header for PK ID
 grid1.Col = 2
 grid1.Row = 0
 grid1.Text = "Money" 'Header for Money
 grid1.Col = 3
 grid1.Row = 0
 grid1.Text = "Big String" 'Header for Story
 grid2.ColWidth(1) = 1000 'For PK ID
 grid2.ColWidth(2) = 2000 'For Money
 grid2.ColWidth(3) = 5000 'For Story
 grid2.Col = 1
 grid2.Row = 0
 grid2.Text = "Prime's" 'Header for PK ID
 grid2.Col = 2
 grid2.Row = 0
 grid2.Text = "Your Money" 'Header for Money
 grid2.Col = 3
 grid2.Row = 0
 grid2.Text = "Your Story" 'Header for Story
 End Sub

6. Add the following code to the Command1 Click event procedure:

 Sub Command1_Click ()
 Dim db As Database
 Dim conn$
 Dim dt As Table
 conn$ = "Btrieve;"
 ' Enter the following Set as one, single line:
 Set db = OpenDatabase("C:\articles\btrvwin\file.ddf", False, False,
 conn$)
 Set dt = db.OpenTable("Big_Tab")
 ' Counter for loading the grid
 For i% = 1 To 10 'Grab the first ten for a test

 grid1.Col = 1
 grid1.Row = i%
 grid1.Text = dt(0) 'Load the grid
 PrimaryKeys(i%) = dt(0) 'Load the temporary array
 grid1.Col = 2
 grid1.Row = i%
 grid1.Text = dt(1) 'Load the grid
 Money(i%) = dt(1) 'Load the temporary array
 grid1.Col = 3
 grid1.Row = i%
 grid1.Text = dt(2) 'Load the grid
 Strings(i%) = dt(2) 'Load the temporary array
 dt.MoveNext
 Next i%
 End Sub

7. Add the following code to the Command2 Click event procedure:

 Sub Command2_Click ()
 Dim newdb As Database
 Dim newtb As Table
 Dim newtd As New tabledef
 Dim newidx As New Index
 Dim field1 As New field 'For PK IDs
 Dim field2 As New field 'For Money
 Dim field3 As New field 'For Story's
 screen.MousePointer = 11 'To display the time to build
 Set newdb = CreateDatabase("NEWBTWDB.MDB", DB_LANG_GENERAL)
 newtd.Name = "Money_Table" '* New table name
 field1.Name = "PK_ID" '* Holds PK ID
 field1.Type = DB_LONG
 newtd.Fields.Append field1
 field2.Name = "Money" '* Holds Money
 field2.Type = DB_CURRENCY
 newtd.Fields.Append field2
 field3.Name = "Story" '* Holds Story
 field3.Type = DB_TEXT
 field3.Size = 154
 newtd.Fields.Append field3
 newidx.Name = "PK_ID_IDX" '* You have to have an index
 newidx.Fields = "PK_ID"
 newidx.Primary = True
 newtd.Indexes.Append newidx
 newdb.TableDefs.Append newtd
 Set newtb = newdb.OpenTable("Money_Table")
 For i% = 1 To 10
 newtb.AddNew
 newtb("PK_ID") = PrimaryKeys(i%) 'place in field1
 newtb("Money") = Money(i%) 'place in field3
 newtb("Story") = Trim$(Strings(i%)) 'place in field4
 newtb.Update 'Saving to table
 Next i%
 newtb.Close '* Close DB's table
 newdb.Close '* Close DB
 screen.MousePointer = 0 'Set back to show done
 End Sub

8. Add the following code to the Command3 Click event procedure:

 Sub Command3_Click ()
 Dim db As Database
 Dim t As Table
 Dim counter%
 Set db = OpenDatabase("NEWBTWDB.MDB")
 Set t = db.OpenTable("Money_Table")
 counter% = 1 'Start counter at Row=1
 Do Until t.EOF
 grid2.Col = 1
 grid2.Row = counter%
 grid2.Text = t(0) 'Load the PK ID
 grid2.Col = 2
 grid2.Row = counter%
 grid2.Text = t(1) 'Load the Money
 grid2.Col = 3
 grid2.Row = counter%
 grid2.Text = t(2) 'Load the Story
 counter% = counter% + 1
 t.MoveNext
 Loop
 t.Close
 db.Close
 End Sub

9. From the Run menu, choose Start (ALT, R, S), or press the F5 key to run
 the program. First, click the Command1 button. Next, click the Command2
 button. Then click the Command3 button. Compare the results.

Additional reference words: 3.00
KBCategory:
KBSubcategory: APrgDataIISAM

How to Make Access DB & Transfer Data from Btrieve for MS-DOS
Article ID: Q103441

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 3.0

SUMMARY
=======

The example in this article demonstrates how to build a Microsoft Access
database without having a database or database template already built. The
example uses a Btrieve for MS-DOS database file to supply the data to be
placed into the newly created Microsoft Access database.

MORE INFORMATION
================
NOTE: You will need to have a Btrieve for MS-DOS database file
 already built to test this example. The Btrieve for MS-DOS
 database file tested with this example can be sent upon request.

Steps to Demonstrate Example

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Add three command buttons and two grid controls using GRID.VBX to Form1.
 Using the following table as a guide, set the properties of the controls
 you added in step 2.

 Control Property New Value Comment
 --
 Command1 Caption "Press to Load Btrieve File and Display in Grid"
 Command2 Caption "Press to Transfer Data and Build New DB"
 Command3 Caption "Press to Display the Data of the New Database"
 Grid1 Cols 6
 Grid1 Rows 35
 Grid2 Cols 6
 Grid2 Rows 35

3. The following is an brief outline of the table from the Btrieve for
 MS-DOS database:

 Table Name: Customers

 Field Names Field Type Field Size
 --
 Cust_ID Long
 First_Name Text 15
 Last_Name Text 15
 Cust_Addr Text 30
 Cust_Phone Text 20

 Index Names Index Fields Unique Primary
 --
 Cust_ID_IDX +Cust_ID Yes No

4. Add the following variables and constants to the (general) section
 of Form1:

 Dim cust_ids(30) As Integer
 Dim first_names(30) As String * 15
 Dim last_names(30) As String * 15
 Dim cust_addr(30) As String * 30
 Dim cust_phones(30) As String * 20
 Const DB_LONG = 4
 Const DB_TEXT = 10
 Const DB_LANG_GENERAL = ";LANGID=0x0809;CP=1252;COUNTRY=0"

5. Add the following code to the Form1 Load event procedure:

 Sub Form_Load ()
 Show
 grid1.ColWidth(1) = 1000 'For Cust ID
 grid1.ColWidth(2) = 2000 'For First Name
 grid1.ColWidth(3) = 2000 'For Last Name
 grid1.ColWidth(4) = 3000 'For Cust Addr
 grid1.ColWidth(5) = 2000 'For Cust Phone
 grid1.Col = 1
 grid1.Row = 0
 grid1.Text = "Cust ID" 'Header for Cust ID
 grid1.Col = 2
 grid1.Row = 0
 grid1.Text = "First Name" 'Header for First Name
 grid1.Col = 3
 grid1.Row = 0
 grid1.Text = "Last Name" 'Header for Last Name
 grid1.Col = 4
 grid1.Row = 0
 grid1.Text = "Cust Addr" 'Header for Cust Addr
 grid1.Col = 5
 grid1.Row = 0
 grid1.Text = "Cust Phone" 'Header for Cust Phone

 grid2.ColWidth(1) = 1000 'For Cust ID
 grid2.ColWidth(2) = 2000 'For First Name
 grid2.ColWidth(3) = 2000 'For Last Name
 grid2.ColWidth(4) = 3000 'For Cust Addr
 grid2.ColWidth(5) = 2000 'For Cust Phone
 grid2.Col = 1
 grid2.Row = 0
 grid2.Text = "Customer ID" 'Header for Cust ID
 grid2.Col = 2
 grid2.Row = 0
 grid2.Text = "Cust First Name" 'Header for First Name
 grid2.Col = 3
 grid2.Row = 0
 grid2.Text = "Cust Last Name" 'Header for Last Name
 grid2.Col = 4
 grid2.Row = 0

 grid2.Text = "Customer Addr" 'Header for Cust Addr
 grid2.Col = 5
 grid2.Row = 0
 grid2.Text = "Customer Phone" 'Header for Cust Phone
 End Sub

6. Add the following code to the Command1 Click event procedure:

 Sub Command1_Click ()
 Dim db As database
 Dim conn$
 Dim dt As table
 conn$ = "Btrieve;"
 ' Enter the following Set as one, single line:
 Set db = OpenDatabase("C:\articles\btrvdos\file.ddf", False,
 False, conn$)
 Set dt = db.OpenTable("Customers")
 i% = 1 '* counter for loading the grid
 Do Until (dt.EOF = True)
 grid1.Col = 1
 grid1.Row = i%
 grid1.Text = dt(0) 'Load the grid
 cust_ids(i%) = dt(0) 'Load the temporary array
 grid1.Col = 2
 grid1.Row = i%
 grid1.Text = dt(1) 'Load the grid
 first_names(i%) = dt(1) 'Load the temporary array
 grid1.Col = 3
 grid1.Row = i%
 grid1.Text = dt(2) 'Load the grid
 last_names(i%) = dt(2) 'Load the temporary array
 grid1.Col = 4
 grid1.Row = i%
 grid1.Text = dt(3) 'Load the grid
 cust_addr(i%) = dt(3) 'Load the temporary array
 grid1.Col = 5
 grid1.Row = i%
 grid1.Text = dt(4) 'Load the grid
 cust_phones(i%) = dt(1) 'Load the temporary array
 dt.MoveNext
 i% = i% + 1
 Loop
 End Sub

7. Add the following code to the Command2 Click event procedure:

 Sub Command2_Click ()
 Dim newdb As Database
 Dim newtb As Table
 Dim newtd As New tabledef
 Dim newidx As New Index
 Dim field1 As New field 'For Emp nums
 Dim field2 As New field 'For Emp names
 Dim field3 As New field 'For Emp addresses
 Dim field4 As New field 'For Emp ss_nums
 screen.MousePointer = 11 'To display the time to build
 Set newdb = CreateDatabase("NEWBTRDB.MDB", DB_LANG_GENERAL)

 newtd.Name = "Cust_Table" '* New table name
 field1.Name = "Cust_ID" '* Holds Cust ID nums()
 field1.Type = DB_LONG
 newtd.Fields.Append field1
 field2.Name = "First_Name" '* Holds First names()
 field2.Type = DB_TEXT
 field2.Size = 15
 newtd.Fields.Append field2
 field3.Name = "Last_Name" '* Holds Last names()
 field3.Type = DB_TEXT
 field3.Size = 15
 newtd.Fields.Append field3
 field4.Name = "Cust_Addr" '* Holds cust Addr()
 field4.Type = DB_TEXT
 field4.Size = 30
 newtd.Fields.Append field4
 field5.Name = "Cust_Phone" '* Holds cust phones()
 field5.Type = DB_TEXT
 field5.Size = 20
 newtd.Fields.Append field5
 newidx.Name = "Cust_ID_IDX" '* You must have to have an index
 newidx.Fields = "Cust_ID"
 newidx.Primary = True
 newtd.Indexes.Append newidx
 newdb.TableDefs.Append newtd
 Set newtb = newdb.OpenTable("Cust_Table")
 For i%=1 to 10 'There are only ten entries
 newtb.AddNew
 newtb("Cust_ID") = cust_ids(i%) 'place in field1
 newtb("First_Name") = Trim$(first)names(i%)) 'place in field2
 newtb("Last_Name") = Trim$(last_names(i%)) 'place in field3
 newtb("Cust_Addr") = Trim$(Cust_addr(i%)) 'place in field4
 newtb("Cust_Phone") = Trim$(Cust_phones(i%)) 'place in field5
 newtb.Update 'Saving to table
 Next i%
 newtb.Close 'Close DB's table
 newdb.Close 'Close DB
 screen.MousePointer = 0 'Set back to show finished
 End Sub

8. Add the following code to the Command3 Click event procedure:

 Sub Command3_Click ()
 Dim db As Database
 Dim t As Table
 Dim counter%
 Set db = OpenDatabase("NEWBTRDB.MDB")
 Set t = db.OpenTable("Cust_Table")
 counter% = 1 'Start counter at Row=1
 Do Until t.EOF
 grid2.Col = 1
 grid2.Row = counter%
 grid2.Text = t(0) 'Load the Cust ID
 grid2.Col = 2
 grid2.Row = counter%
 grid2.Text = t(1) 'Load the First Name
 grid2.Col = 3

 grid2.Row = counter%
 grid2.Text = t(2) 'Load the Last Name
 grid2.Col = 4
 grid2.Row = counter%
 grid2.Text = t(3) 'Load the Cust Addr
 grid2.Col = 5
 grid2.Row = counter%
 grid2.Text = t(4) 'Load the Cust Phone
 counter% = counter% + 1
 t.MoveNext
 Loop
 t.Close
 db.Close
 End Sub

9. From the Run menu, choose Start (ALT, R, S), or press the F5 key to run
 the program. First, click the Command1 button. Next, click the Command2
 button. Then click the Command3 button, and compare the results.

Additional reference words: 3.00
KBCategory:
KBSubcategory: APrgDataIISAM

Differences Between the Object Variables in VB Version 3.0
Article ID: Q103442

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 3.0

SUMMARY
=======

This article contains two references:

 - A revised version of the table outlined on the back of the "Professional
 Features Book 2" manual for Microsoft Visual Basic version 3.0
 Programming System for Windows. This table outlines the differences
 in the properties and methods of the three main data access objects
 (table, dynaset, and snapshot) in Visual Basic version 3.0.

 - A brief list of the differences between table, database, dynaset,
 querydef, and snapshot objects.

MORE INFORMATION
================

Revised Table for the Back of "Professional Features Book 2"
--

The following table lists most of the properties and methods that apply to
each of the database objects.

 - Yes means the object does contain the property or method in both the
 Standard and Professional Editions of Visual Basic version 3.0 for
 Windows.

 - No means the object does not contain the property or method in either
 the Standard or Professional Edition of Visual Basic version 3.0 for
 Windows.

 - Yes/PRO means the object contains the property or method only in the
 Professional Edition, not the Standard Edition, of Visual Basic version
 3.0 for Windows.

 - (docerr) highlights that information as a correction to the information
 given in the original table shown on the back of the "Professional
 Features Book 2."

Properties Table Dynaset Snapshot

BOF Yes/PRO Yes Yes/PRO
BookMark Yes/PRO Yes Yes/PRO
BookMarkable Yes/PRO Yes Yes/PRO
DateCreated Yes/PRO No No
EOF Yes/PRO Yes Yes/PRO

Filter No Yes/PRO Yes/PRO
Index Yes/PRO No No
LastModified Yes/PRO Yes No
LastUpdated Yes/PRO No No
LockEdits Yes/PRO Yes No
Name Yes/PRO Yes Yes/PRO
NoMatch Yes/PRO Yes Yes/PRO
RecordCount Yes/PRO Yes Yes/PRO
Sort No Yes/PRO Yes/PRO
Transactions Yes/PRO Yes No
Updatable Yes/PRO Yes No

Methods Table Dynaset Snapshot

AddNew Yes/PRO Yes No
Clone Yes/PRO Yes/PRO Yes/PRO
Close Yes/PRO Yes Yes/PRO
CreateDynaset Yes/PRO Yes/PRO(docerr) No
CreateSnapshot Yes/PRO No Yes/PRO(docerr)
Delete Yes/PRO Yes No
Edit Yes/PRO Yes No
FindFirst No(docerr) Yes Yes/PRO
FindLast No(docerr) Yes Yes/PRO
FindNext No(docerr) Yes Yes/PRO
FindPrevious No(docerr) Yes Yes/PRO
ListFields Yes/PRO Yes/PRO Yes/PRO
ListIndexes Yes/PRO Yes/PRO Yes/PRO
MoveFirst Yes/PRO Yes Yes/PRO
MoveLast Yes/PRO Yes Yes/PRO
MoveNext Yes/PRO Yes Yes/PRO
MovePrevious Yes/PRO Yes Yes/PRO
Seek Yes/PRO No No
Update Yes/PRO Yes No

List of Differences Between Data Access Objects

Below, object by object, is a list of differences, recommendations, and
suggestions for each of the various data access objects. The page numbers
refer to pages in the "Professional Features Book 2." Article Q numbers
refer to other Microsoft Knowledge Base articles which give provide
additional information.

Snapshot Objects

 - Snapshots return all of the selected data and Dynasets return only a
 set of keys that indirectly reference the database's records (page 57).
 Therefore when retrieving a small number of records in a recordset,
 you may want to use a dynaset instead of a snapshot unless this is the
 first time you are using a newly created snapshot or dynaset.

 - When either a snapshot or a dynaset is first created -- prior to any
 movelast operation -- both the snapshot and the dynaset return one page
 (2048 bytes) of data. The dynaset also fetches the keyset of the
 dynaset. This means that on first creation, snapshots, as the name
 implies, return faster. However, if you were to proceed record by record

 sequentially through the entire recordset, you'd find that the dynaset
 navigates faster -- approximately two times faster. This is because
 navigating by keyset instead of by local pointers is more efficient.

 - Snapshots return all the selected data when movelast is executed or when
 the entire recordset is completely navigated. Therefore, in these two
 cases, trying to retrieve a large amount of data (a large number of
 records) could take some time. It may take less time to use Dynasets
 instead of Snapshots in this scenario (page 57).

 - Snapshots can become outdated (the data is no longer current) quickly
 in a multiuser environment (page 57).

 - Snapshots cannot use the Transaction statements (BeginTrans,
 CommitTrans, and RollBack).

 - Snapshots or dynasets cannot use the Seek method because Seek applies
 only to table objects. However, snapshots or dynasets can use the Find
 method instead of the Seek method.

 - Snapshots cannot use Edit, AddNew, Delete, or Update properties that
 pertain to data changes made in records. Snapshot objects are a
 read-only type of dynaset.

 - Snapshot objects may be good for taking summary reports, since they
 contain a fixed copy of the data as it existed when the snapshot was
 created. If data is changed, a snapshot will not show the change until
 the snapshot is rebuilt (page 57).

 - Snapshots can be created from an existing dynaset or snapshot, but you
 cannot create a dynaset from an existing snapshot (page 56).

 - Snapshots can contain table name(s), attached tables, querydef objects
 or SQL statements(pg. 56).

 - Snapshot object membership is fixed (page 48).

Dynasets Objects

 - Dynaset and snapshot objects can use the Sort property, but the table
 object and the data control cannot use the Sort property. To sort data
 with a data control, use the ORDER BY clause of an SQL statement or
 query. To sort a table object, set an Index property on a field that
 already has a Index specified (example shown on pages 50 and 75).

 - Dynasets are the most flexible of the three objects listed in the table
 above (page 51).

 - Dynasets are a dynamic (not fixed) subset of records. Dynasets can
 contain attached tables, table name(s), querydef object name or SQL
 query (page 51).

 - Filters are used to screen records to be brought back in dynasets or
 snapshots (page 53). Table objects cannot use filters.

 - Dynasets can be locked with a page-locking scheme with a page containing
 a maximum of 2K of data (page 54). Page 54 also mentions pessimistic and

 optimistic locking methods.

 - Dynasets that are formed because of a query or SQL string are suspended
 until the query or SQL string returns the first record (page 51).

 - Dynaset or snapshot objects can be filtered using the Filter property or
 sorted using the Sort property even further by using a second dynaset or
 snapshot object(page 53).

 - Dynaset or snapshot objects are used with querydef objects. Also, the
 ListParameters method returns a snapshot with one record for each
 parameter used by the query (pages 93 and 97).

 - Dynaset objects do not reflect changes made by others until you recreate
 the Dynaset variable or execute the CreateDynaset method with no
 arguments (page 55).

 - Dynaset object membership is fixed, you can add, change, and delete
 records, and a result is returned by a query (page 48).

 - Dynaset objects can create an inconsistent dynaset with the
 DB_INCONSISTENT flag. But it may be harder to keep referential
 integrity when this flag is specified (pages 58, 59, and 85).

 - To improve performance, you may want to add the option DB_READONLY
 if you are not writing to or allowing the users to make changes to
 database records (pages 58 and 59).

Table objects

 - Table objects have direct access to the data records (page 49). The
 data in a table object variable always reflects all current changes,
 including the additions of new records and the deletions of existing
 records (page 50).

 - Table objects cannot be created from attached tables (page 50).

 - Table object membership can change. You can add, change, and delete
 records, but there is no result returned by a query (page 48).

 - Table objects cannot use the Find method (page 72).

 - Table, database and dynaset objects can be locked, but a snapshot
 object cannot be locked (pages 88 and 89).

 - Table objects provide the most up-to-date view of your data because the
 data in a table variable always reflects all current changes (page 50).

 - Table objects can be ordered on a Indexed field, the Index property does
 apply. But the Index does not apply to data controls, snapshots or
 dynasets (see example on page 75).

 - When looking for a single, specific record, you may want to use the Seek
 method with a table object because it is the fasted way to retrieve a
 single record (page 74).

QueryDef Objects

 - querydef objects may be more efficient. For example, use a stored query
 of an SQL string as an argument to the recordset of querydef to produce
 a filtered dynaset or snapshot instead of creating a dynaset or snapshot
 and then filtering it (page 67).

 - querydef objects do not store data. They store the definition of a
 query used to retrieve data (page 91).

 - querydefs can be created only on a Microsoft Access or Visual Basic
 database (page 92).

 - querydefs require a name. You must supply a name for the query when you
 create it (page 92).

Additional reference words: 3.00
KBCategory:
KBSubcategory: APrgDataAcc

How to Convert a Text File into a New Access Database
Article ID: Q103807

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 3.0

SUMMARY
=======

This article shows by example how to build a Microsoft Access database from
scratch without having a database or database template already built. Then
it shows how to load that database from data supplied by a standard ASCII
text file.

MORE INFORMATION
================

Step-by-Step Example

1. If you don't have one already, build an ASCII text file to use in this
 example. If you already have the text file built, you can ignore most of
 step 5 -- except for loading Grid1 with data from your text file.

2. Add three command buttons and two grid controls (GRID.VBX) to Form1.

3. Using the following table as a guide, set the properties of the controls
 you added in step 2.

 Control Property New Value
 --
 Command1 Caption "Press to Build Text File and Display in Grid"
 Command2 Caption "Press to Transfer Data and Build New DB"
 Command3 Caption "Press to Display the Data of the New Database"
 Grid1 Cols 5
 Grid1 Rows 35
 Grid2 Cols 5
 Grid2 Rows 35

4. Add the following code to the (general) section of Form1:

 Dim nums(30) As Long
 Dim names(30) As String * 20
 Dim addresses(30) As String * 25
 Dim ss_nums(30) As String * 12
 Const DB_LONG = 4
 Const DB_TEXT = 10
 Const DB_LANG_GENERAL = ";LANGID=0x0809;CP=1252;COUNTRY=0"

5. Add the following code to the Form load event procedure:

 Sub Form_Load ()
 Show

 grid1.ColWidth(1) = 1000 'For Emp ID
 grid1.ColWidth(2) = 2000 'For Emp Name
 grid1.ColWidth(3) = 3000 'For Emp Addr
 grid1.ColWidth(4) = 2000 'For Emp SSN
 grid1.Col = 1
 grid1.Row = 0
 grid1.Text = "Emp ID" 'Header for Emp ID from text file
 grid1.Col = 2
 grid1.Row = 0
 grid1.Text = "Emp Name" 'Header for Emp Name from text file
 grid1.Col = 3
 grid1.Row = 0
 grid1.Text = "Emp Addr" 'Header for Emp Addr from text file
 grid1.Col = 4
 grid1.Row = 0
 grid1.Text = "Emp SSN" 'Header for Emp SSN from text file

 grid2.ColWidth(1) = 1000 'For Emp ID
 grid2.ColWidth(2) = 2000 'For Emp Name
 grid2.ColWidth(3) = 3000 'For Emp Addr
 grid2.ColWidth(4) = 2000 'For Emp SSN
 grid2.Col = 1
 grid2.Row = 0
 grid2.Text = "Employee ID" 'Header for Emp ID from DB
 grid2.Col = 2
 grid2.Row = 0
 grid2.Text = "Employee Name" 'Header for Emp Name from DB
 grid2.Col = 3
 grid2.Row = 0
 grid2.Text = "Employee Addr" 'Header for Emp ID from DB
 grid2.Col = 4
 grid2.Row = 0
 grid2.Text = "Employee SSN" 'Header for Emp Name from DB
 End Sub

6. Add the following code to the Command1 click event procedure:

 Sub Command1_Click ()
 For i% = 1 To 30
 nums(i%) = i%
 names(i%) = "John Doe # " + Str$(i%)
 addresses(i%) = Str$(i%) + " Mocking Bird Lane"
 If i% < 9 Then
 '* Enter the following four lines as one, single line:
 ss_nums(i%) = Trim$(Str$(i%) + Trim$(Str$(i%))
 + Trim$(Str$(i%)) + "-" + Trim$(Str$(i% + 1))
 + Trim$(Str$(i% + 1)) + "-" + Trim$(Str$(i%))
 + Trim$(Str$(i%)) + Trim$(Str$(i%)) + Trim$(Str$(i%)))
 Else
 '* Enter the following two lines as one, single line:
 ss_nums(i%) = Trim$(Trim$(Str$(999)) + "-" + Trim$(Str$(88))
 + "-" + Trim$(Str$(7777)))
 End If
 Next i%
 Open "Testdata.DAT" For Output As #1
 For j% = 1 To 30
 Print #1, nums(j%)

 Print #1, names(j%)
 Print #1, addresses(j%)
 Print #1, ss_nums(j%)
 Next j%
 Close #1
 For i% = 1 To 30 'Display results from text file
 grid1.Col = 1
 grid1.Row = i%
 grid1.Text = nums(i%) 'Load Emp IDs
 grid1.Col = 2
 grid1.Row = i%
 grid1.Text = names(i%) 'Load Emp Names
 grid1.Col = 3
 grid1.Row = i%
 grid1.Text = addresses(i%) 'Load Emp Addrs
 grid1.Col = 4
 grid1.Row = i%
 grid1.Text = ss_nums(i%) 'Load Emp SSNs
 Next i%
 End Sub

7. Add the following code to the Command2 click event procedure:

 Sub Command2_Click ()
 Dim newdb As Database
 Dim newtb As Table
 Dim newtd As New tabledef
 Dim newidx As New Index
 Dim field1 As New field 'For Emp nums
 Dim field2 As New field 'For Emp names
 Dim field3 As New field 'For Emp addresses
 Dim field4 As New field 'For Emp ss_nums
 screen.MousePointer = 11 'Display the time to build
 Set newdb = CreateDatabase("NEWDB.MDB", DB_LANG_GENERAL)
 newtd.Name = "Emp_Table" '* New table name
 field1.Name = "Emp_ID" '* Holds Employee ID nums()
 field1.Type = DB_LONG
 newtd.Fields.Append field1
 field2.Name = "Emp_Name" '* Holds Emp names()
 field2.Type = DB_TEXT
 field2.Size = 20
 newtd.Fields.Append field2
 field3.Name = "Emp_Addr" '* Holds Employee addr()
 field3.Type = DB_TEXT
 field3.Size = 25
 newtd.Fields.Append field3
 field4.Name = "Emp_SSN" '* Holds emp ss_nums()
 field4.Type = DB_TEXT
 field4.Size = 12
 newtd.Fields.Append field4
 newidx.Name = "Emp_ID_IDX" '* You have to have an index
 newidx.Fields = "Emp_ID"
 newidx.Primary = True
 newtd.Indexes.Append newidx
 newdb.TableDefs.Append newtd
 Set newtb = newdb.OpenTable("Emp_Table")
 Open "Testdata.dat" For Input As #1

 BeginTrans
 Do While Not (EOF(1))
 newtb.AddNew
 Line Input #1, tmp1$ 'Retrieve empl_id
 Line Input #1, tmp2$ 'Retrieve empl_name
 Line Input #1, tmp3$ 'Retrieve empl_addr
 Line Input #1, tmp4$
 newtb("Emp_ID") = Trim$(tmp1$) 'Place in field1
 newtb("Emp_Name") = Trim$(tmp2$) 'Place in field2
 newtb("Emp_Addr") = Trim$(tmp3$) 'Place in field3
 newtb("Emp_SSN") = Trim$(tmp4$) 'Place in field4
 newtb.Update 'Save to table
 Loop
 CommitTrans
 Close #1 'Close text file
 newtb.Close 'Close DB's table
 newdb.Close 'Close DB
 screen.MousePointer = 0 'Set back to show done
 End Sub

8. Add the following code to the Command3 click event procedure:

 Sub Command3_Click ()
 Dim db As Database
 Dim t As Table
 Dim counter%
 Set db = OpenDatabase("NEWDB.MDB")
 Set t = db.OpenTable("Emp_Table")
 counter% = 1 'Start counter at Row=1
 Do Until t.EOF
 grid2.Col = 1
 grid2.Row = counter%
 grid2.Text = t(0) 'Load Emp ID
 grid2.Col = 2
 grid2.Row = counter%
 grid2.Text = t(1) 'Load Emp Name
 grid2.Col = 3
 grid2.Row = counter%
 grid2.Text = t(2) 'Load Emp Addr
 grid2.Col = 4
 grid2.Row = counter%
 grid2.Text = t(3) 'Load Emp SSN
 counter% = counter% + 1
 t.MoveNext
 Loop
 t.Close
 db.Close
 End Sub

9. From the Run menu, choose Start (ALT, R, S), or press the F5 key
 to run the program. First click the Command1 button first. Then click
 the Command2 button, and then click the Command3 button to compare the
 results.

Additional reference words: 3.00
KBCategory:
KBSubcategory: APrgDataAcc

Limitations of the Data Control in Visual Basic Version 3.0
Article ID: Q103808

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 3.0

SUMMARY
=======

Chapter 20 in the "Programmer's Guide" explains how to use a data control
in Microsoft Visual Basic version 3.0 for Windows. You may want to use an
object variable such as Snapshot instead of using the data control. Chapter
20 does not explain the limitations of using the data control, so this
article lists those limitations for you.

MORE INFORMATION
================

Because a data control is a special type of Dynaset, its limitations are
similar to those of Dynasets. Here are the limitations of data controls:

 - You cannot use a QueryDef requiring a Parameter in the RecordSource
 property of the data control.

 - Using a data control along with other bound controls uses System
 Resources (memory). When you build larger programs, you may want to
 look at other programming methods (Database objects don't require
 controls, therefore you don't use System Resources) to display your
 database data.

 - Not every method and property specific to the Table object can be
 performed by the data control. Here are two such cases:

 - You cannot take advantage of the Index property of the Table object
 to display your database data in a specific indexed order with the
 data control. This technique, described in the example shown in the
 Help file topic "Index Property (Data Access)," works only with the
 Table object, not the data control. As an alternative, you can use an
 ORDER BY clause in an SQL statement, as in this example:

 Data1.RecordSource = "Select * From Publishers Order By PubID"

 The ORDER BY clause technique is also more flexible than the Index
 property technique. Using the ORDER BY clause, you can sort on any
 field, and no specified index is required.

 - You cannot use a Seek method on your database data for a specific
 record with the data control. The Seek method can only be used by the
 Table object. You can, however, perform a FindFirst method with the
 data control.

 - You cannot use the Sort property on a specific database record with the
 data control. The Sort property technique is specific to a Dynaset or

 Snapshot object. The following example proves this limitation:

 Data1.Recordset.Sort = "City DESC" '** No error occurs
 Data1.Refresh '** No change in order occurs

 If you try to sort the Publishers table by City, nothing happens. But if
 you use an ORDER BY clause in an SQL statement, as in the following
 example, you will see the database data displayed in descending order
 by the City names:

 Data1.RecordSource = "Select * From Publishers Order By City DESC"
 Data1.Refresh

 - A data control is bound to one, single form -- the form on which it
 resides. Therefore, when the form that contains the data control is
 not loaded, you cannot refer to the data control from another form.

 - You cannot perform a FileCopy statement on a database while a form that
 contains a data control is loaded. A "Permission Denied" error occurs if
 you try to use the FileCopy statement to make a backup of your database
 while a form containing a data control is loaded in memory. To prevent
 this error, first close or unload the form that contains the data
 control. Then run the FileCopy statement to make a database backup.

Additional reference words: 3.00
KBCategory:
KBSubcategory: APrgDataAcc

How to Create an Access DB & Transfer Data from dBASE III DB
Article ID: Q104013

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 3.0

SUMMARY
=======

This example demonstrates how to build a new Microsoft Access database and
load it with data coming from a dBASE III database file.

MORE INFORMATION
================

To use this example, you will need a dBASE III database file. The dBASE III
database file that was tested with this example can be sent upon request.

Step-by-Step Example

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Add three command buttons and use GRID.VBX to add two grid controls to
 Form1. Then using following table as a guide, set the properties of the
 controls:

 Control Name Property New Value
 --
 Command1 Caption "Press to Load dBASE III DB File and
 Display in Grid"
 Command2 Caption "Press to Transfer Data and Build New DB"
 Command3 Caption "Press to Display the Data of the New
 Database"
 Grid1 Cols 7
 Grid1 Rows 15
 Grid2 Cols 7
 Grid2 Rows 15

3. The following is an brief outline of the table from the dBASE III
 database:

 Table Name: CHECKS

 Field Name Field Type Field Size

 CHKNO Double
 PAYTO Text 30
 AMT Double
 DATE Date/Time
 MEMO Text 25
 NAME5 Double

 Index Name Index Field Unique Primary

 nm5 +NAME5 Yes No

4. Add the following variables and constants to the (general) section
 of Form1:

 Dim CK_nums(20) As Double
 Dim paytos(20) As String * 30
 Dim amts(20) As Double
 Dim dates(20) As Variant
 Dim memos(20) As String * 25
 Dim indexs(20) As Double
 Dim counter%
 Const DB_DATE = 8
 Const DB_DOUBLE = 7
 Const DB_TEXT = 10
 Const DB_LANG_GENERAL = ";LANGID=0x0809;CP=1252;COUNTRY=0"

5. Add the following lines to the Form load event procedure:

 Sub Form_Load ()
 Show
 grid1.ColWidth(1) = 1000 'For Chk nums
 grid1.ColWidth(2) = 2000 'For Paid to
 grid1.ColWidth(3) = 1500 'For Amt for
 grid1.ColWidth(4) = 2000 'For Date written
 grid1.ColWidth(5) = 3000 'For Memo
 grid1.ColWidth(6) = 1000 'For index
 grid1.Col = 1
 grid1.Row = 0
 grid1.Text = "Check No."
 grid1.Col = 2
 grid1.Row = 0
 grid1.Text = "Party Paid"
 grid1.Col = 3
 grid1.Row = 0
 grid1.Text = "Amount"
 grid1.Col = 4
 grid1.Row = 0
 grid1.Text = "Date Written"
 grid1.Col = 5
 grid1.Row = 0
 grid1.Text = "Memo about"
 grid1.Col = 6
 grid1.Row = 0
 grid1.Text = "Index"
 grid2.ColWidth(1) = 1000 'For Chk nums
 grid2.ColWidth(2) = 2000 'For Paid to
 grid2.ColWidth(3) = 1500 'For Amt for
 grid2.ColWidth(4) = 2000 'For Date written
 grid2.ColWidth(5) = 3000 'For Memo
 grid2.ColWidth(6) = 1000 'For index
 grid2.Col = 1
 grid2.Row = 0
 grid2.Text = "Check No."

 grid2.Col = 2
 grid2.Row = 0
 grid2.Text = "Party Paid"
 grid2.Col = 3
 grid2.Row = 0
 grid2.Text = "Amount"
 grid2.Col = 4
 grid2.Row = 0
 grid2.Text = "Date Written"
 grid2.Col = 5
 grid2.Row = 0
 grid2.Text = "Memo about"
 grid2.Col = 6
 grid2.Row = 0
 grid2.Text = "Index"
 End Sub

6. Add the following code to the Command1 click event procedure:

 Sub Command1_Click ()
 Dim db As Database
 Dim conn$
 Dim dt As Table
 conn$ = "dBASE III;"

 ' Enter the following two lines as one, single line:
 Set db = OpenDatabase("c:\articles\db3\dbaseiii", False,
 False, conn$)

 Set dt = db.OpenTable("CHECKS")
 screen.MousePointer = 11
 counter% = 1
 Do Until (dt.EOF = True)
 grid1.Col = 1
 grid1.Row = counter%
 grid1.Text = dt(0)
 CK_nums(counter%) = Val(grid1.Text)
 grid1.Col = 2
 grid1.Row = counter%
 grid1.Text = dt(1)
 paytos(counter%) = grid1.Text
 grid1.Col = 3
 grid1.Row = counter%
 grid1.Text = dt(2)
 amts(counter%) = Val(grid1.Text)
 grid1.Col = 4
 grid1.Row = counter%
 If IsNull(dt(4)) Then 'In case there is no date entered
 grid1.Text = ""
 Else
 grid1.Text = dt(4)
 End If
 dates(counter%) = grid1.Text
 grid1.Col = 5
 grid1.Row = counter%
 grid1.Text = dt(5)
 memos(counter%) = grid1.Text

 grid1.Col = 6
 grid1.Row = counter%
 grid1.Text = dt(8)
 indexs(counter%) = Val(grid1.Text)
 counter% = counter% + 1
 dt.MoveNext
 Loop
 screen.MousePointer = 0
 End Sub

7. Add the following code to the Command2 click event procedure:

 Sub Command2_Click ()
 Dim newdb As Database
 Dim newtb As Table
 Dim newtd As New tabledef
 Dim newidx As New Index
 Dim field1 As New field 'For chknum
 Dim field2 As New field 'For party paid to
 Dim field3 As New field 'For amount
 Dim field4 As New field 'For date written
 Dim field5 As New field 'For memo field
 Dim field6 As New field 'For in index
 screen.MousePointer = 11
 Set newdb = CreateDatabase("DBASE3.MDB", DB_LANG_GENERAL)
 newtd.Name = "Checks_Table" 'New table name
 field1.Name = "Check_nums"
 field1.Type = DB_DOUBLE
 newtd.Fields.Append field1
 field2.Name = "Paid_to"
 field2.Type = DB_TEXT
 field2.Size = 30
 newtd.Fields.Append field2
 field3.Name = "Check_amt"
 field3.Type = DB_DOUBLE
 newtd.Fields.Append field3
 field4.Name = "Date_wrt"
 field4.Type = DB_DATE
 newtd.Fields.Append field4
 field5.Name = "Check_memo"
 field5.Type = DB_TEXT
 field5.Size = 25
 newtd.Fields.Append field5
 field6.Name = "Check_indx"
 field6.Type = DB_DOUBLE
 newtd.Fields.Append field6
 newidx.Name = "Check_nums_IDX"
 newidx.Fields = "Check_indx"
 newidx.Primary = True
 newtd.Indexes.Append newidx
 newdb.TableDefs.Append newtd
 Set newtb = newdb.OpenTable("Checks_Table")
 For j% = 1 To counter% - 1
 newtb.AddNew
 newtb("Check_nums") = CK_nums(j%) 'from dBASE III file
 newtb("Paid_to") = paytos(j%) 'from dBASE III file
 newtb("Check_amt") = amts(j%) 'from dBASE III file

 newtb("Date_wrt") = dates(j%) 'from dBASE III file
 newtb("Check_memo") = memos(j%) 'from dBASE III file
 newtb("Check_indx") = indexs(j%) 'from dBASE III file
 newtb.Update 'Saving to table
 Next j%
 newtb.Close
 newdb.Close
 screen.MousePointer = 0
 End Sub

8. Add the following code to the Command3 click event procedure:

 Sub Command3_Click ()
 Dim db As Database
 Dim t As Table
 Dim cntr%
 Set db = OpenDatabase("DBASE3.MDB")
 Set t = db.OpenTable("Checks_Table")
 cntr% = 1 'Start counter at Row=1
 Do Until t.EOF
 grid2.Col = 1
 grid2.Row = cntr%
 grid2.Text = t(0)
 grid2.Col = 2
 grid2.Row = cntr%
 grid2.Text = t(1)
 grid2.Col = 3
 grid2.Row = cntr%
 grid2.Text = t(2)
 grid2.Col = 4
 grid2.Row = cntr%
 If IsNull(t(3)) Then 'In case there is no date entered
 grid2.Text = ""
 Else
 grid2.Text = t(3)
 End If
 grid2.Col = 5
 grid2.Row = cntr%
 grid2.Text = t(4)
 grid2.Col = 6
 grid2.Row = cntr%
 grid2.Text = t(5)
 cntr% = cntr% + 1
 t.MoveNext
 Loop
 t.Close
 db.Close
 End Sub

9. From the Run menu, choose Start (ALT, R, S), or press the F5 key to run
 the program. Click the Command1 button first. Then click the Command2
 button. Then click the Command3 button, and compare the results.

Additional reference words: 3.00
KBCategory:
KBSubcategory: APrgDataIISAM

Examples Show How to Query BIBLIO.MDB Database
Article ID: Q104155

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 3.0

SUMMARY
=======

Most of the examples in the Visual Basic Help menu for SQL statements do
not show how to work with the BIBLIO.MDB Microsoft Access database that
comes with Microsoft Visual Basic version 3.0 for Windows. Therefore this
article shows by example how to use SQL statements with the BIBLIO.MDB
database.

MORE INFORMATION
================

The following example gives 16 different SQL statements to test on the
BIBLIO.MDB database. If you try one of the query statements on your own
database and the result set is not what you had expected, try the Query
By Example routine that comes with Microsoft Access to test your query.
Note that if you try these examples on a computer that does not have
SHARE.EXE loaded in memory, you will see this error:

 Object Variable not Set, number 91

SHARE.EXE must be loaded for the Microsoft Access database to work.

Step-by-Step Example

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Add one list box, two command buttons, and one text box to Form1.

3. Using the following table as a guide, set the properties of the
 controls you added in step 2:

 Control Name Property New Value
 --
 Command1 Caption "Select Query from List box"
 Command2 Caption "Press to Clear Text Box"
 Text1 Multiline True
 Text1 Scrollbars Vertical
 Text1 Text " "

4. Add the following code to the (general) (declarations) section of Form1:

 Dim query_array(0 To 15) As String

5. Add the following code to the form load event procedure:

 Sub Form_Load ()
 '*** Note that each statement, including those shown on more than one
 '*** line, must be entered as one, single line.

 'Load query array with some example queries:
 query_array(0) = "Select all * from publishers" 'Select All
 query_array(1) = "Select all * from publishers" 'From clause
 query_array(2) = "Select publishers.name from publishers
 where publisher s.name in ('ETN Corporation', 'ACM')" 'Where In
 query_array(3) = "Select publishers.name from publishers
 order by publishers.city" 'Order By
 query_array(4) = "Select publishers.name from publishers,
 [publisher comments] where [publisher comments].publisher =
 publishers.name group by publishers.name" 'Group By
 query_array(5) = "Select publishers.name from publishers
 where publisher s.name between 'ETN Corporation' and
 'ACM'" 'Where Between
 query_array(6) = "Select Distinct publishers.name from
 publishers, [publisher comments] where
 [publisher comments].publisher = publishers.name
 group by publishers.name" 'Distinct
 query_array(7) = "Select publishers.name from publishers
 In biblio.mdb" 'In clause
 query_array(8) = "Select Distinctrow publishers.name
 from publishers, [publisher comments] where
 [publisher comments].publisher = publishers.name
 group by publishers.name" 'Distinctrow
 query_array(9) = "Select all * from publishers order
 by Publishers.name WITH OWNERACCESS OPTION" 'Owneraccess Option
 query_array(10) = "Select publishers.name from
 publishers group by publishers.name having
 publishers.name like 'A*'" 'Having clause
 query_array(11) = "Select publishers.name from
 publishers, [publisher comments], [publisher comments]
 left join publishers on [publisher comments].pubid =
 publishers.pubid" 'Left Join
 query_array(12) = "Select publishers.name from
 publishers, [publisher comments], [publisher comments]
 right join publishers on [publisher comments].pubid =
 publishers.pubid" 'Right Join
 query_array(13) = "Select publishers.name from
 publishers, [publisher comments], [publisher comments]
 inner join publishers on [publisher comments].pubid =
 publishers.pubid" 'Inner Join
 query_array(14) = "Select publishers.name from
 publishers order by publishers.name ASC" 'ASC order
 query_array(15) = "Select publishers.name from
 publishers order by publishers.name DESC" 'DESC order
 list1.AddItem "Example of: 'Select All' Query"
 list1.AddItem "Example of: 'From clause' Query"
 list1.AddItem "Example of: 'Where In' Query"
 list1.AddItem "Example of: 'Order By' Query"
 list1.AddItem "Example of: 'Group By' Query"
 list1.AddItem "Example of: 'Where Between' Query"
 list1.AddItem "Example of: 'Distinct' Query"
 list1.AddItem "Example of: 'In clause' Query"

 list1.AddItem "Example of: 'Distinctrow' Query"
 list1.AddItem "Example of: 'Owneraccess Option' Query"
 list1.AddItem "Example of: 'Having clause' Query"
 list1.AddItem "Example of: 'Left Join' Query"
 list1.AddItem "Example of: 'Right Join' Query"
 list1.AddItem "Example of: 'Inner Join' Query"
 list1.AddItem "Example of: 'ASC order' Query"
 list1.AddItem "Example of: 'DESC order' Query"
 End Sub

6. Add the following code to the list1 click event procedure:

 Sub List1_Click ()
 idx% = list1.ListIndex
 Select Case idx%
 Case 0: command1.Caption = "Press for 'Select All'"
 Case 1: command1.Caption = "Press for 'From clause'"
 Case 2: command1.Caption = "Press for 'Where In'"
 Case 3: command1.Caption = "Press for 'Order By'"
 Case 4: command1.Caption = "Press for 'Group By'"
 Case 5: command1.Caption = "Press for 'Where Between'"
 Case 6: command1.Caption = "Press from 'Distinct'"
 Case 7: command1.Caption = "Press from 'In clause'"
 Case 8: command1.Caption = "Press from 'Distinctrow'"
 Case 9: command1.Caption = "Press from 'Owneraccess Option'"
 Case 10: command1.Caption = "Press from 'Having clause'"
 Case 11: command1.Caption = "Press from 'Left Join'"
 Case 12: command1.Caption = "Press from 'Right Join'"
 Case 13: command1.Caption = "Press from 'Inner Join'"
 Case 14: command1.Caption = "Press from 'ASC order'"
 Case 15: command1.Caption = "Press from 'DESC order'"
 Case Else: command1.Caption = "Select Query from List box"
 End Select
 End Sub

7. Add the following code to the text1 keypress event procedure:

 Sub Text1_KeyPress (keyascii As Integer)
 If keyascii > 0 Then '** this routine makes it a read-only text box
 keyascii = 0
 End If
 End Sub

8. Add the following code to the command1 click event procedure:

 Sub Command1_Click ()
 Dim db As database
 Dim ds As dynaset
 On Error GoTo type_error
 idx% = list1.ListIndex
 tmp$ = query_array(idx%)
 Set db = OpenDatabase("C:\vb3\biblio.mdb")
 Set ds = db.CreateDynaset(tmp$)
 Do Until ds.EOF = True
 If IsNull(ds(0)) Then
 text1.Text = text1.Text + " " + Chr$(13) + Chr$(10)
 Else

 text1.Text = text1.Text + ds(0) + Chr$(13) + Chr$(10)
 End If
 ds.MoveNext
 Loop
 ds.Close
 db.Close
 command2.SetFocus
 type_error:
 If Err = 13 Then '*** Type Mismatch error
 Do Until ds.EOF = True
 If IsNull((ds(1))) Then
 text1.Text = text1.Text + " " + Chr$(13) + Chr$(10)
 Else
 text1.Text = text1.Text + ds(1) + Chr$(13) + Chr$(10)
 End If
 ds.MoveNext
 Loop
 ds.Close
 db.Close
 command2.SetFocus
 Exit Sub
 Else
 command2.SetFocus
 Resume Next
 End If
 End Sub

9. Add the following code to the command2 click event procedure:

 Sub Command2_Click ()
 text1.Text = ""
 command1.Caption = "Select Query from List box"
 End Sub

10. From the Run menu, choose Start (ALT, R, S), or press the F5 key to run
 the program. Select a query from the list box. Press the command button
 to have the result set added to the text box.

 To clear the contents of the text box, press the second command button.

Additional reference words: 3.00
KBCategory:
KBSubcategory: APrgDataAcc

PRB: TableDefs Not Updated When SQL Statement Creates Table
Article ID: Q104339

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, version 3.0

SYMPTOMS
========

If you create a table with an SQL action statement such as SELECT INTO,
the new table is not immediately reflected in the TableDefs collection
of the database object or property. This may result in the error "Name
not found in this collection" (error 3265).

WORKAROUND
==========

 - Perform TableDefs.Refresh immediately after creating the new table.
 The Refresh method should be but is not documented for the TableDefs
 collection in the Visual Basic manuals or Help menu.

 - Create the table using database.Tabldefs.Append instead of using an
 SQL statement.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

A table created with an SQL statement is correctly reflected in the
Tabledefs
collection after the database is closed then reopened.

Steps to Reproduce Problem

The following program demonstrates this problem. It results in the error
"Name not found in this collection" on the Tabledefs.Delete statement.

 Dim db As Database
 Print "TableDefs.Count before:"; db.TableDefs.Count
 Set db = OpenDatabase("biblio.mdb")
 ' Create new table using SQL action statement:
 db.Execute "select distinctrow * into NewTable from Authors"
 ' Remove apostrophe from the following statement to work around problem:
 ' db.TableDefs.Refresh
 Print "TableDefs.Count after: "; db.TableDefs.Count
 ' Now attempt to delete the new table just created:
 db.TableDefs.Delete "NewTable"
 db.Close

Additional reference words: 3.00 docerr
KBCategory:
KBSubcategory: APrgDataOther

PRB: Error 3219 When Updating Record Set Created w/ Distinct
Article ID: Q104459

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 3.0

SYMPTOMS
========

Trying to perform an update on a result set created with the Distinct
predicate results in error 3219 "Can't perform operation, it is illegal."

CAUSE
=====

An object variable or a data control result set created with the Distinct
predicate is not updatable according to Help. The following statement is in
the Distinct keyword Help topic:

 The output of a query that uses Distinct is not updatable and doesn't
 reflect subsequent changes made by other users. Therefore, when you use
 the Distinct predicate in a query, you are prevented from trying to
 update your records.

WORKAROUND
==========

The only workaround at this time is to not use the DISTINCT predicate
to build the results set. Note that you may have to handle the
duplicates by some other coding means.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic or from the File menu, choose Open Project(ALT, F, O)
 if Visual Basic is already running. Form1 is created by default.

2. Add a data control, two command buttons, and one text box to Form1.

3. Using the following table as a guide, set the properties of the controls
 you added in step 2.

 Control Name Property New Value Comment
 --
 Command1 Caption "Set Up Distinct Predicate"

 Command2 Caption "Press for Update"
 Data1 DatabaseName BIBLIO.MDB Provide the
 full path to
 this file,
 which should
 be in C:\VB
 Data1 RecordSource Authors
 Text1 DataSource Data1
 Text1 DataField Author

4. Add the following code to Command1 click event procedure:

 Sub Command1_Click ()
 '* Enter the following two lines of code as one, single line:
 data1.RecordSource = "Select DISTINCT Author From authors
 where author > 'a'"
 data1.Refresh
 End Sub

5. Add the following code to Command2 click event procedure:

 Sub Command2_Click ()
 data1.Recordset.Update
 End Sub

6. From the Run menu, choose Start (ALT, R, S), or press the F5 key to run
 the program. Click the Command1 button to set up the Distinct predicate.
 Delete the zero in "Arnson, Robert, 1970." Then click the Command2
 button. This should result in the 3219 error "Can't perform operation,
 it is illegal."

Additional reference words: 3.00
KBCategory: IAP
KBSubcategory: APrgDataAcc

How to Encrypt a Microsoft Access Database in Visual Basic
Article ID: Q104875

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 3.0

SUMMARY
=======

Database encryption has nothing to do with security. However, you can use
database encryption to prevent someone from using a file or disk editor to
read and write data in a Microsoft Access .MDB file. This article shows by
example how to encrypt a Microsoft Access database file in Microsoft Visual
Basic version 3.0 for Windows.

MORE INFORMATION
================

Microsoft Access reads and writes all data a page at a time. Each page is
always 2K in size. Encryption is done at the page level, not at the data
level. This means the encryption process has no knowledge of what is on the
page, only that there is 2K of data that needs to be encrypted and written.
or read and decrypted.

Everything in a Microsoft Access .MDB database file is encrypted, including
tables, queries, forms, indexes, and so on. Microsoft Access uses the RSA
company algorithm for database encryption.

The overhead involved in encrypting and decrypting causes is a performance
degradation of approximately 10-15% in encrypted databases. Encrypted files
cannot be compressed using tools such as PKZip, Stacker, MS-DOS version 6
DoubleSpace, and so on.

Encryption in Visual Basic

Use the CompactDatabase statement in Microsoft Visual Basic version 3.0 for
Windows to encrypt a Microsoft Access database file. For more information
on the CompactDatabase statement, review pages 90-92 in the Visual Basic
version 3.0 "Language Reference" manual.

Step-by-Step Encryption Example

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. From the Windows menu, choose Data Manager.

3. In Data Manager, choose New Database from the File menu. Then select
 either Microsoft Access 1.0 or Microsoft Access 1.1.

4. Enter the name TESTING.MDB for the Microsoft Access file name that you

 are about to create.

5. Click the New button and enter Table1 for the table name.

6. Click the Add button and enter First Name as the Field Name. Then
 select Text for the Field Type and enter 15 as the Field Size.

7. Click the Add button for Indexes, and enter First Name Index as the
 Index Name. Then select Unique, Primary and click Done.

8. Click the Open button, then the Add button. Next enter a name (Bob, for
 example) into the First Name field. Then click the Add button.

9. Close the Data Manager and add a Command button to Form1.

10. Add the following code to the Command1 Click event procedure:

 Sub Command1_Click ()
 Const DB_ENCRYPT = 2
 Const DB_LANG_GENERAL = ";LANGID=0x0809;CP=1252;COUNTRY=0"

 '** Enter the following two lines as one, single line:
 CompactDatabase "C:\VB\TESTING.MDB", "C:\VB\NEWTEST.MDB",
 DB_LANG_GENERAL, DB_ENCRYPT
 End Sub

11. From the Run menu, choose Start (ALT, R, S) to run the program. Click
 the Command1 button to encrypt the TESTING.MDB database file. To check
 the new NEWTEST.MDB file, choose Data Manager from the Window menu in
 Visual Basic version 3.0 for Windows. In the Data Manager, choose Open
 Database from the File menu. Then select the NEWTEST.MDB file.

Additional reference words: 3.00
KBCategory:
KBSubcategory: APrgDataAcc

Differences Among the Installable ISAMs
Article ID: Q104918

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for Windows,
 version 3.0

SUMMARY
=======

This article describes the differences in the way the Installable ISAMs
(IISAMs) handle databases, tables, indexes, and data types compared to
the way Microsoft Access databases handle these structures.

The ISAMs discussed are:

 - Btrieve
 - dBASE III/IV
 - FoxPro version 2.0/2.5
 - Paradox version 3.x

This article does not include differences in ODBC data sources.

MORE INFORMATION
================

===================
General Differences
===================

Unsupported commands or functions

 - CreateDatabase, CompactDatabase, RepairDatabase, SetDefaultWorkspace,
 ListTables, CreateQueryDef, OpenQueryDef, DeleteQueryDef, and
 ListParameters are Microsoft Access-only functions or statements.
 CreateDatabase is not supported because the ISAMs are all single-table
 databases where the database can be thought of as the directory in which
 the tables reside. Functions similar to CompactDatabase and
 RepairDatabase on an ISAM database should be done by using the native
 database tools.

 - As a general rule, Microsoft Access database searches are not case
 sensitive but searches on the ISAM databases are case sensitive.
 The following are exceptions to this:

 - If a search is made across two different database types, that
 search is not case sensitive.

 - Some of the international settings cause a difference in case
 sensitivity. For example, searches are not case sensitive if in the
 [Paradox ISAM] section, CollatingSequence= is set to any of the

 following: International, Noregian-Danish, or Swedish-Finnish.

 For more information about case sensitivity of the ISAMs, please see
 the following article in the Microsoft Knowledge Base:

 ARTICLE_ID: Q100921
 TITLE : PRB: Case Sensitivity is Different with Attached Tables

 - New field columns cannot be added to the ISAM database tables once
 there are records present. This is not the case with Microsoft Access.

 - MS-DOS does not recognize the ANSI character set. This means extended
 ANSI characters will be converted by the OemToAnsi and AnsiToOem
 Windows API calls. This is not a one to one conversion, so some
 characters may be lost or changed in the process -- ANSI characters
 147-159 specifically. Examples:

 - Saving Chr$(148) to a dBASE database, returns Asc(34) from the
 database, but saving Chr$(148) to a native Microsoft Access database
 correctly returns Asc(148).

============
Btrieve ISAM
============

For more information, please read BTRIEVE.TXT located in the Visual
Basic directory.

Databases

 - The DatabaseName string property used on opening a Btrieve database
 needs to be:

 driveletter\directory\FILE.DDF

 If just the directory name is listed, an error will occur.

 Code Sample

 Dim db As Database
 Set db = OpenDatabase("c:\btrieve\FILE.DDF",0,0,"btrieve;")

 This code opens the database located in the c:\btrieve directory. If a
 FILE.DDF is not located in the specified subdirectory, Visual Basic
 will create one. Note that a filename is needed for Btrieve ISAM, but
 the filename is ignored. It will always look for, or create a FILE.DDF
 and other supporting files.

 - Databases are a set of *.DDF files. You can think of the directory where
 the files exist as the database. There can be only one FILE.DDF in a
 subdirectory.

Tables

 - Table data is stored in *.DAT files. FILE.DDF contains the table name

 and path to data files. FIELD.DDF contains the information about the
 columns. Visual Basic cannot change the directory where these data
 files are located. It stores them by default in the databasename
 subdirectory. Visual Basic can however read Btrieve databases that have
 data files in separate directories, as long as the same directory
 structure exists from where it was created.

 For more information about table data in Btrieve databases, please see
 the following articles in the Microsoft Knowledge Base:

 ARTICLE-ID: Q93685
 TITLE : PRB: 'Couldn't find object <tablename>' Error with Btrieve

 ARTICLE-ID: Q94828
 TITLE : PRB: Empty Table List When Attaching Btrieve Table

Indexes

 - Some compound indexes created by applications other than Visual
 Basic may not be viewable by Visual Basic. Btrieve permits index
 keys to be defined as specific byte ranges in a record, If a
 specified byte range is not aligned on the column boundaries of the
 fields in a table then Visual Basic will not be able to use that
 index.

Data Types

 - The following table shows how data types are converted to Microsoft
 Access when reading an existing table.

 Btrieve Microsoft Access

 String DB_TEXT
 Integer DB_INTEGER or DB_LONG
 Float DB_SINGLE or DB_DOUBLE
 Date DB_DATE
 Time DB_DATE
 Decimal DB_DOUBLE
 Money DB_CURRENCY
 Logical DB_BOOLEAN
 Numeric DB_DOUBLE
 Bfloat DB_SINGLE or DB_DOUBLE
 Lstring DB_TEXT
 Zstring DB_TEXT

 - The following table shows how data types are converted when creating
 a new table in Visual Basic.

 Data Field Result

 DB_BOOLEAN DB_BOOLEAN
 DB_BYTE DB_BYTE
 DB_INTEGER DB_INTEGER
 DB_LONG DB_LONG
 DB_CURRENCY DB_CURRENCY

 DB_SINGLE DB_SINGLE
 DB_DOUBLE DB_DOUBLE
 DB_DATE DB_DATE
 DB_TEXT DB_TEXT
 DB_LONGBINARY DB_MEMO
 DB_MEMO DB_MEMO

 - There can be only one memo field or one long binary field per Btrieve
 table. Having more generates Error 3054 "Too many memo or long binary
 fields." For more information about Btrieve memo fields, please see
 the following article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q103186
 TITLE : PRB: Error Message: Too Many Memo or OLE Fields

===================
dBASE III / IV ISAM
===================

Databases

 - Databases are directories. On a data control or OpenDatabase statement,
 the exclusive property is ignored. The database name is the path to a
 directory.

Tables

 - The following shows by example how to create a dBASE database and table.
 The code sample demonstrates the steps necessary to create a table for a
 dBASE database. Think of the database as the C:\DBASE directory. In
 Microsoft Access, databases are created using the CreateDatabase
 function.

 Sub Command1_Click ()
 Const DB_TEXT = 10
 Dim db As database
 Dim tb As New tabledef
 Dim fd As Field
 Set db = OpenDatabase("c:\dBASE", False, False, "dBASE iii;")
 tb.Name = "MyTable"
 Set fd = New Field
 fd.Name = "f1"
 fd.Type = DB_TEXT
 fd.Size = 15 'Creates a text field length 15 characters
 tb.Fields.Append fd
 db.TableDefs.Append tb
 End Sub

 The code sample creates a table that has one field and places it in the
 C:\DBASE subdirectory. If that subdirectory does not exist, the
 following error occurs:

 'MyTable' isn't a valid path

 Tables are *.DBF files in the database directory. If the code sample is

 successful, a file called MYTABLE.DBF is created.

Numeric Fields

 - When you use Visual Basic to create a numeric field in a DBASE III/IV
 Database, Visual Basic creates a numeric field with five decimal places.
 This is by design.

 - dBASE III/IV numeric fields can have up to 19 decimal places. If you
 want a dBASE III/IV numeric field with more than five decimal places,
 you have to use dBASE III/IV to modify the structure. Then Visual Basic
 will display and modify the value with all the decimal places and save
 it to the database correctly.

Indexes

 - Indexes are separate files. They are placed in the database subdirectory
 as they are created. *.INF files list the indexes on a table. dBASE III
 indexes are *.NDX files and dBASE IV indexes are *.MDX files.

 - A FoxPro or dBASE complex index can only be made from string type
 fields. Internally, both FoxPro and dBASE provide functions to convert
 and manipulate fields into strings so that they can be combined into
 a complex index across several fields of different types. Visual
 Basic does not have the ability to manipulate these functions so
 all complex indexes must be made up of DB_TEXT (string) types.

 - dBASE allows duplicates in the Primary Key field. This is by design of
 the dBASE structure, the concept of Primary Keys does not exist.

Data Types

 - The following table shows how data types are converted to Microsoft
 Access when reading an existing table.

 dBASE Microsoft Access

 Character DB_TEXT
 Numeric DB_DOUBLE
 Date DB_DATE
 Logical DB_BOOLEAN
 Memo DB_MEMO

 - The following table shows how data types are converted when creating
 a new table in Visual Basic.

 Data Field Result

 DB_BOOLEAN DB_BOOLEAN
 DB_BYTE DB_DOUBLE
 DB_INTEGER DB_DOUBLE
 DB_LONG DB_DOUBLE
 DB_CURRENCY DB_DOUBLE
 DB_SINGLE DB_DOUBLE

 DB_DOUBLE DB_DOUBLE
 DB_DATE DB_DATE
 DB_TEXT DB_TEXT
 DB_LONGBINARY DB_MEMO
 DB_MEMO DB_MEMO

 - Memo fields in dBASE and FoxPro are for text only. This is not the
 case for a Microsoft Access memo field, which can contain text or binary
 data.

 - Viewing dBASE Memo fields that were created in dBASE IV may result in
 strange vertical line characters every 65th characters. This is by
 design; that is, it is the way dBASE displays its memo fields. For more
 information about problems viewing dBASE Memo fields, please see the
 following article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q88647
 TITLE : PRB: Irregular Characters in Attached dBASE IV Memo Field

===================
FoxPro 2.0/2.5 ISAM
===================

Databases

 - Databases are directories. On a data control or OpenDatabase statement,
 the exclusive property is ignored. The database name is the path to a
 directory.

Tables

 - Tables are *.DBF files in the database directory.

Indexes

 - Index information is stored in a file (tablename.CDX). This file
 contains the information about all the indexes on a table. This
 file must exist in the database directory.

 - A FoxPro or dBASE complex index can only be made from string type
 fields. Internally FoxPro and dBASE provide functions to convert
 and manipulate fields into strings so that they can be combined into
 a complex index across several fields of different types. Visual
 Basic does not have the ability to manipulate these functions so
 all complex indexes must be made up of DB_TEXT (string) types.

Data Types

 - The following table shows how data types are converted to Microsoft
 Access when reading an existing table.

 FoxPro Microsoft Access

 Character DB_TEXT
 Numeric DB_DOUBLE
 Float DB_DOUBLE
 Date DB_DATE
 Logical DB_BOOLEAN
 Memo DB_MEMO
 General DB_MEMO

 - The following table shows how data types are converted when creating
 a new table in Visual Basic.

 Data Field Result

 DB_BOOLEAN DB_BOOLEAN
 DB_BYTE DB_DOUBLE
 DB_INTEGER DB_DOUBLE
 DB_LONG DB_DOUBLE
 DB_CURRENCY DB_DOUBLE
 DB_SINGLE DB_DOUBLE
 DB_DOUBLE DB_DOUBLE
 DB_DATE DB_DATE
 DB_TEXT DB_TEXT
 DB_LONGBINARY DB_LONGBINARY
 DB_MEMO DB_MEMO

 - There can be only one Memo or LongBinary field per FoxPro Table.
 It is stored in the database directory as a tablename.FPT file.

 - Memo fields in dBASE and FoxPro are for text only. This is not the
 case for a Microsoft Access memo field, which can contain text or binary
 data.

================
Paradox 3.X ISAM
================

Databases

 - Visual Basic version 3.0 is not compatible with Paradox 4.0 or Paradox
 for Windows. Paradox 4.0 and Paradox for Windows added some new data
 types that are not compatible with the Paradox ISAM driver in
 Visual Basic For Windows.

 For more information about compatibility of Paradox 4.0 or Paradox
 for Windows with Visual Basic, please see the following article in the
 Microsoft Knowledge Base:

 ARTICLE-ID: Q93699
 TITLE : INF: Access Cannot Attach or Import Paradox 4.0 Tables

 - Databases are directories. On a data control or OpenDatabase statement,
 the exclusive property is ignored. The database name is the path to a
 directory.

Tables

 - In Paradox, the data in a table is ordered physically according to
 the Primary Key. This is by design in the Paradox database.

Indexes

 - The first index created on a Paradox database must be a primary
 unique index. This is by design in the Paradox database.

 - Only the primary index can contain multiple fields, and they must
 be in the sequential order that they were created. For example, if
 a table was created with three fields in it, paradox keeps track of
 the order in which these fields were created. To create a complex
 index, you must set it on the first n fields of the table. This is
 by design in the Paradox Database.

 - Primary indexes will create a file in the database directory called
 tablename.PX. If you set the Name property upon creation of a primary
 index, it will be ignored. After it has been created, the Name
 property of a primary index will return tablename#px. This is by
 design in Paradox; it is the way it names the primary index.

 - Primary indexes on a Paradox table can not be deleted even if the
 table is empty.

 - Secondary indexes will be named after the field that they are an
 indexed on. Setting the Name property will be ignored. The Name
 property after the index has been created will return the name of
 the field.

 - Descending indexes are not supported.

 - Records cannot be added without a primary index.

 - A Paradox table without a primary key (no *.PX file) can only be
 opened once because it isn't possible for the Paradox ISAM to keep
 track of updates without a primary key.

Data Types

 - The following table shows how data types are converted to Microsoft
 Access when reading an existing table.

 Paradox Microsoft Access

 Alphanumeric DB_TEXT
 Currency DB_DOUBLE
 Date DB_DATE
 Number DB_DOUBLE
 Short number DB_INTEGER

 - The following table shows how data types are converted when creating
 a new table in Visual Basic.

 Data Field Result

 DB_BOOLEAN DB_INTEGER
 DB_BYTE DB_INTEGER
 DB_INTEGER DB_INTEGER
 DB_LONG DB_DOUBLE
 DB_CURRENCY DB_DOUBLE
 DB_SINGLE DB_DOUBLE
 DB_DOUBLE DB_DOUBLE
 DB_DATE DB_DATE
 DB_TEXT DB_TEXT
 DB_LONGBINARY error
 DB_MEMO error

 - You cannot create a field of Type LongBinary or Memo on a Paradox table.

REFERENCES
==========

BTRIEVE.TXT, EXTERNAL.TXT, and Appendix C of Visual Basic version 3.0
"Professional Features Book 2."

Btrieve is Manufactured by Novell, dBASE III, dBASE IV, and Paradox 3.X
are manufactured by Borland International Inc., both vendors are
independent of Microsoft. We make no warranty implied or otherwise,
regarding the performance or reliability of these products.

Additional reference words: 3.00
KBCategory: APrg
KBSubCategory: APrgDataIISAM

Referential Integrity Enforced for DBs Created in Access
Article ID: Q104983

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 3.0

SUMMARY
=======

Microsoft Visual Basic version 3.0 for Windows has no built-in features
or properties that provide Referential Integrity. To make Visual Basic
version 3.0 for Windows enforce referential integrity rules on a
Microsoft Access database, build the database in Microsoft Access. To
do this, open the Database window in Microsoft Access, and choose
Relationships... from the Edit menu. Then in the Relationships window,
select the Enforce Referential Integrity option.

MORE INFORMATION
================

For more information on the way Visual Basic version 3.0 handles and
enforces referential integrity, please refer to page 85 of "Professional
Features Book 2."

Visual Basic version 3.0 can enforce referential integrity between tables
as long as the Enforce Referential Integrity option was selected in
Microsoft Access. Visual Basic enforces these rules by providing certain
error codes when a database built in Microsoft Access has violated the
referential integrity rules in Visual Basic code. These are trappable
errors in Visual Basic, so you as the programmer have the option to
handle these violations as you wish.

Below are the possible errors you could get that refer to referential
integrity:

 - Couldn't initialize data access because file 'SYSTEM.MDA' couldn't be
 opened.

 Error 3028

 In order to ensure referential integrity in databases created by
 Microsoft Access, Visual Basic must read the Access SYSTEM.MDA file.
 Make sure the file is in the location specified in the SystemDB entry
 in the [Options] section in the .INI file.

 - Can't delete or change record. Because related records exist in
 table 'Item', referential integrity rules would be violated.

 Error 3200

 You tried to perform an operation that would have violated referential
 integrity rules for related tables. For example, this error occurs if
 you try to delete or change a record in the "one" table in a one-to-many

 relationship when there are related records in the "many" table. If you
 want to delete or change the record, first delete the related records
 from the "many" table.

 - Can't add or change record. Referential integrity rules require a
 related record in table 'Item'.

 Error 3201

 You tried to perform an operation that would have violated referential
 integrity rules for related tables. For example, this error occurs if
 you try to change or insert a record in the "many" table in a
 one-to-many relationship, and that record doesn't have a related record
 in the table on the "one" side. If you want to add or change the record,
 first add a record to the "one" table that contains the same value for
 the matching field.

There is more information in the Visual Basic version 3.0 "Professional
Features Book 2" manual. Referential integrity implementation differences
between Microsoft Access and Visual Basic are described on page 119.
System table differences are explained on page 21, and using multiple
tables is described on page 85.

Dynaset objects can create an inconsistent dynaset with the DB_INCONSISTENT
flag. But it may be harder to keep referential integrity when this flag is
specified. See pages 58, 59, and 85 of "Professional Features Book 2."

Additional reference words: 3.00
KBCategory:
KBSubcategory: APrgDataAcc

How to Query for Dates Using a SQL Statement in VB 3.0
Article ID: Q105173

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 3.0

SUMMARY
=======

When you query for Dates in a Microsoft Access database, you may receive
an incorrect result or a 'Type Mismatch' error message. To query for a
date in a SQL statement in Visual Basic version 3.0 for Windows, enclose
the date in pound signs (#).

NOTE: This article shows dates written in American format (MM/DD/YY). For
example, 12/31/60 means December 31, 1960.

MORE INFORMATION
================

The following example code selects every field from the Employees table in
the NWIND.MDB sample database where the field Birth Date is greater than
12/31/60. NWIND.MDB is the Microsoft Access sample database provided
with Microsoft Access versions 1.0 and 1.1.

 ' Data1 is a data control.
 Data1.DataBase = "C:\ACCESS\NWIND.MDB"
 ' Enter the following two lines as one, single line:
 Data1.RecordSource = "SELECT * FROM Employees
 WHERE [Birth Date] > #12/31/60#"

 ' The following example uses FindFirst with the same Data Control:
 Data1.RecordSet.FindFirst "[Hire Date] <= #9/21/92#"

Additional reference words: 3.00
KBCategory:
KBSubcategory: APrgDataAcc

How to Use VB Control Property or Variable in SQL Statement
Article ID: Q105539

The information in this article applies to:

 - Microsoft Visual Basic programming system for Windows, version 3.0

SUMMARY
=======

You can have a Visual Basic application build a SQL query based on
choices made by a person using the application. The application can
then use the SQL query when creating a view into a database.

This article describes methods developers can use to create SQL queries
that are based on control properties or names of variables. The
information in this article applies to the following methods: FindFirst,
FindLast, FindNext, FindPrevious, CreateDynaset, CreateSnapshot, Execute,
and ExecuteSQL.

MORE INFORMATION
================

When building a SQL query, do not include the variable or control name
inside the SQL string; instead, you should reference its value. Using
the variable or control name inside the SQL string is a mistake. For
example, the following code is incorrect:

 Dim ds As Dynaset
 ds.FindFirst "NameField = Text1.Text" 'this code is incorrect

This code is trying to create a dynaset that finds the first occurrence of
the contents of Text1 in a field called NameField. Although the code will
not produce an error, it will not find the desired value. It will search
for the first occurrence of the string "Text1.Text" not the value of the
Text1.Text control property.

The criteria being sought is a string, so the programmer must use string
concatenation rules to build the criteria string. The following gives
the correct version of the code example:

 Dim ds As Dynaset
 ds.FindFirst "NameField = '" & Text1.Text & "'"

The ampersand (&) operator concatenates the strings together correctly.
Also, in SQL syntax, you need to enclose string data in single quotation
marks to differentiate strings from variables.

If you think the corrected version looks confusing with all the single
and double quotation marks, you can assign the criteria to a string. Then
use Debug.Print to view the contents of the string. The following is the
same example enhanced to take advantage of the debug window:

 Dim ds As Dynaset
 Dim SQL$ as String
 SQL$ = "NameField = '" & Text1.Text & "'"
 Debug.Print SQL$
 ds.FindFirst SQL$

If Text1 contains the string "Wilson," the Debug windows displays:

 NameField = 'Wilson'

If the data type of a field is a number instead of a string, don't enclose
the value being sought in single quotation marks. For example, use the
following code to create a dynaset that finds the first occurrence
of a zip code in a field called ZipCodeField where the ZipCodeField data
type is not a string:

 Dim ds As Dynaset
 Dim ZipCodeVar as Double
 Dim SQL$ as String
 ZipCodeVar = 98052
 SQL$ = "ZipCodeField = " & ZipCodeVar 'This line builds the string
 Debug.Print SQL$
 ds.FindFirst SQL$

Additional reference words: 3.00 pitfall RecordSource
KBCategory: PRG
KBSubcategory: APrgDataOther

PRB: Error or GP Fault When Pass Data Control as Control
Article ID: Q105540

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic
 programming system for Windows, version 3.0

SYMPTOMS
========

Trying to reference the properties of a Recordset or Database using a data
control that was passed as Control to a Sub or Function results in this
error message:

 Invalid object reference

In addition, passing a data control into a Sub procedure as Control may
result in a general protection (GP) fault, as it does in this example:

 Sub subtest (crtname As Control)
 crtname.UpdateControls
 ' Simply having this line in the code causes the GP fault.
 ' If you turn the line into a comment, the GP fault does not occur.
 End Sub

CAUSE
=====

Recordset and Database specific properties are not available to
objects passed as Control. You should replace the "As Control" with "As
Data."

NOTE: the Data object type is not easy to find in the Visual Basic
documentation. It is, however, listed with the other possible object data
types in the "Object Variables" popup on the Help menu topic, "Database
Objects." Object types include CheckBox, ComboBox, CommandButton,
CommonDialog, Control, Data, DirListBox, DriveListBox, FileListBox, Form,
Frame, Grid, HScrollBar, Image, Label, ListBox, MDIForm, OptionButton,
PictureBox, TextBox, Timer, and VScrollBar. The Professional Edition adds
the following additional object types: Database, Dynaset, Field, Fields,
Index, Indexes, QueryDef, Snapshot, Table, TableDef, and TableDefs.

WORKAROUND
==========

Pass the data control as Data. For example, use the following code
instead of the code shown below in the MORE INFORMATION section:

 Sub MySub(d As Data)
 Debug.Print d.Recordset.EOF

MORE INFORMATION
================

The following code example gives the error message:

 Sub MySub(d As Control)
 Debug.Print d.Recordset.EOF ' an error appears on this line
 '^^^ with EOF highlighted

Additional reference words: 3.00 gpf
KBCategory: APrg
KBSubCategory: APrgDataOther

PRB: Invalid Property Value When Binding Masked Edit Control
Article ID: Q105766

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, version 3.0

SYMPTOMS
========

Binding a masked edit control (MSMASKED.VBX) to a data control can
result in the error "Invalid property value" when the form is loaded.
Also, the error "Type mismatch" can occur when you attempt to update a
record. For example, this problem can occur when a masked edit control
is bound to a date field and has the mask ##/##/##.

CAUSE
=====

Visual Basic uses the Text property of a bound masked edit control to
transfer data to and from the data control. This requires strict
compatibility, character for character, between the Mask property and
the format of the data in the database. For example, dates are stored in
a database as a numeric value, not as a string of the format dd/mm/yy.

WORKAROUND
==========

Bind an invisible text box to the data control instead of binding the
masked edit control. Then transfer data between the text box and the
masked edit control. This allows you precise control over the format of
the data for the masked edit control making it appear as if the masked
edit control is bound.

This alternative approach involves more lines of code and complexity,
but it should prove much more flexible and forgiving. Below is an example
showing how to use this technique with a date field.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

When a bound masked edit control tries to pull data in from a data
control, it behaves differently depending upon the PromptInclude property
of the masked edit control.

 - If PromptInclude is True (the default), the data coming from the data
 control must match the mask property exactly or an "Invalid property
 value" error occurs. If a user tries to change a valid value in a bound
 masked edit control and doesn't entirely fill up the masked edit

 control, the error "Type mismatch" occurs upon writing values into
 a numeric data type field of a database.

 - If PromptInclude is False, the masked edit control does not require or
 provide literal characters from the Mask property. In other words, the
 Text property operates like ClipText. For example, a Mask of ##/##/##
 receives the date 1/2/93 into the Text property as 12/93/__.

The only time it would be advisable to bind a masked edit control directly
to a data source would be when you are binding the masked edit control to
a fixed-length primary key field; that is, a field that holds a unique
value for each record in a table, and that value is always a fixed number
of characters in length -- for example, a serial number or product
identification code)

Step-by-Step Example for the Workaround

This example shows how to use the Masked edit control with an Access
database. This particular example demonstrates using the masked edit
control on a field of data type Date/Time.

Before testing the example, either load DATAMGR.EXE (located in the
\VB directory) or run VISDATA.MAK (located in the \VB\SAMPLES\VISDATA
directory.) Open the BIBLIO.MDB sample database by selecting it after
choosing Open Database from the File menu and selecting the Access
database option.

Next, select the Authors table, and click the Design button. Select the
Add button, enter 'Dates' for the field name, and select the Date/Time
for the field type. Then choose OK to close the Add Field window, and
then click the Open button. Add several dates to the 'Dates' field in
an 'mm/dd/yy' format. You may leave some of the 'Dates' fields blank,
but you should enter at least five different dates of five different
records in the Authors table to test the example.

Now, you are ready to complete the example:

1. Start Visual Basic for Windows, or from the File menu, choose New
 Project (ALT, F, N) if Visual Basic for Windows is already running.
 Form1 is created by default.

2. Add the following controls with the associated properties to Form1:

 Control Name Property Settings

 Data Data1 DatabaseName = "BIBLIO.MDB"
 RecordSource = "Authors"

 MaskedEdit MaskedEdit1 Mask = "##/##/##"
 PromptInclude = False

 TextBox Text1 Visible = False
 DataSource = Data1
 DataField = Dates '** this field was
 added to BIBLIO.MDB previously

3. Add the following lines of code to the (general)(declarations)
 section of Form1:

 Dim UpdFlag As Integer 'Flag to indicate updating the text box from
 ' the data control or from the masked edit
 ' control.

 Const MAXMASKLEN = 6 ' This constant is the maximum number of
 ' characters the user can enter in this
 ' particular MaskedEdit.

 Function IsValidDate% (MyMask As MaskEdBox, MaskFullLen As Integer)
 ' This function checks the validity of a date in a Masked edit control.
 ' It returns a zero if the FormattedText is not a valid date, a one
 ' if the field is empty, and a two if the FormattedText is valid.
 '
 ' Parameters:
 ' MyMask - the Masked edit control being checked
 ' MaskFullLen - max. number of chars the Masked edit control can
hold

 If MyMask.Text = "" Then
 IsValidDate% = 1
 ElseIf Len(MyMask.Text) = MaskFullLen Then
 If IsDate(MyMask.FormattedText) Then
 IsValidDate% = 2
 End If
 Else
 IsValidDate% = 0
 End If
 End Function

4. Add the following code to the Load event of Form1:

 Sub Form_Load ()

 UpdFlag = False

 End Sub

5. Add the following code to the Validate Event of the Data1 Control:

 Sub Data1_Validate (Action As Integer, Save As Integer)

 Const DATA_ACTIONCANCEL = 0

 If IsValidDate%(MaskedEdit1, MAXMASKLEN) = False Then
 MsgBox "Not a valid date!"
 Action = DATA_ACTIONCANCEL 'don't allow changes
 MaskedEdit1.SetFocus
 Exit Sub
 End If

 End Sub

6. Add the following code to the KeyPress event of MaskedEdit1:

 Sub MaskedEdit1_KeyPress (KeyAscii As Integer)

 UpdFlag = True

 End Sub

7. Add the following code to the Change event to MaskedEdit1:

 Sub MaskedEdit1_Change ()

 If UpdFlag = True Then
 Select Case IsValidDate%(MaskedEdit1, MAXMASKLEN)
 Case 1
 Text1.Text = ""
 Case 2
 Text1.Text = CVDate(MaskedEdit1.FormattedText)
 End Select
 End If

 End Sub

8. Add the following code to the Change event of Text1:

 Sub Text1_Change ()
 Const DATEFMT = "mmddyy"

 ' The invisible text box can get changed two ways: from the
 ' database because it is bound or from the MaskedEdit when pushing
 ' values back into the data control. This condition handles the
 ' situation when the data is coming from the database and the
 ' MaskedEdit needs to be updated.

 If Not UpdFlag Then
 If Text1.Text = "" Then ' If NULL condition then
 MaskedEdit1.Text = "" ' Set the MaskedEdit to ""
 Else
 MaskedEdit1.Text = Format$(Text1.Text, DATEFMT) 'Format output.
 End If
 End If
 UpdFlag = False

 End Sub

9. Press the F5 key to run the program. The masked edit control should
 behave as if it was bound to the data control.

 NOTE: This example verifies that the dates are valid in the Validate
 event before actually placing the dates in the database.

Additional reference words: 3.00
KBCategory: APrg
KBSubcategory: APrgDataOther

How Visual Basic Handles Security Set by Microsoft Access
Article ID: Q105990

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic
 programming system for Windows, version 3.0

SUMMARY
=======

Visual Basic version 3.0 includes the Microsoft Access database engine.
Visual Basic contains the syntax to manipulate a Microsoft Access database
in almost every way that Microsoft Access can. One major exception is in
the area of security. Only Microsoft Access can set or modify security
options (such as logon IDs and passwords for the system) and set or modify
permissions on specific objects in a particular database.

Visual Basic version 3.0 does contain two statements (SetDataAccessOption
and SetDefaultWorkspace) that allow a Visual Basic application to satisfy
the security mechanism that Microsoft Access implements, and log on using
Visual Basic code. By using these statements, you can gain the permissions
granted to a particular user.

This article explains those mechanisms of Microsoft Access security that
apply to Visual Basic version 3.0 and the Visual Basic programmer. The
entire security capabilities of Microsoft Access are beyond the scope of
this article.

MORE INFORMATION
================

Microsoft Access security is implemented in two parts:

 - Each user and group has a unique security ID (SID) code.
 - That SID code is stored in the database along with the associated
 permissions for that SID.

The next two sections give the details.

Each User and Group Has Unique Security ID (SID)
--

In Microsoft Access, each User and Group has a security ID (SID). The SID
is a binary string that uniquely identifies the User or Group. When a user
logs on, whether from the logon dialog in Microsoft Access or from code in
Visual Basic (illustrated later in the article), the Microsoft Access
engine reads from the MSysAccounts table of the SYSTEM.MDA database. This
database is created only by Microsoft Access and a new (empty) one will be
created if the original copy is deleted.

NOTE: If the original SYSTEM.MDA is accidentally deleted, all the unique
SIDs are lost. Therefore, all ability to gain access to protected databases
is also lost. Therefore, it is a good idea to back up both the database and

the SYSTEM.MDA file in place when the permissions were set on the database.

When logging on, the user supplies the user name (not case-sensitive) and
the password (case-sensitive). If the user name and password are correct,
the SID of the user is retrieved and saved in a structure internal to the
engine. The password is used only to validate the user. From this point on,
once the user becomes a validated user, the password has no effect on
security.

NOTE: Here is a key point that pertains to Visual Basic's behavior. By
default, the Microsoft Access engine attempts to validate the user and
password of Admin and "" respectively. Visual Basic version 3.0 will,
without any code, send this key combination to the Microsoft Access engine
by default. This means that, even without the use of the Visual Basic
security-related statements, the Visual Basic program will gain admission
to the database, if the user "Admin" of Group Admins has not had its
password changed from the default of none ("").

Once logged on, the user's SID is retrieved. This SID is used for all
subsequent operations within the Microsoft Access engine.

The SID Is Stored in the SYSTEM.MDA Database
--

The SID is stored in the database itself. Therefore, all permissions
granted to a particular User or Group are also stored in the database,
associated with the unique SID.

This brings up another key point pertaining to Visual Basic's behavior,
which is a possible source of confusion. The Visual Basic program will gain
entrance to the database and have full permissions, seeming to ignore the
Microsoft Access security mechanism if either of the following is true:

 - The Visual Basic programmer has not taken the location of the SYSTEM.MDA
 database into account in the program code.

 - The User "Admin" has not had its password altered from the default of
 none ("").

This occurs because of the default behavior of both the Microsoft Access
engine and Visual Basic. The combined effect is to allow entry to the
database and its objects by the Visual Basic code.

The list of the object types in Microsoft Access are: Table, Query, Form,
Report, Macro, and Module. Of these, only the first two are accessible from
Visual Basic code, so the others can be omitted from this explanation.

The following two sections explain each of the two Visual Basic security-
related statements (SetDataAccessOption and SetDefaultWorkspace). The two
statements are designed to provide a choice of SYSTEM.MDA files and logon
entries to an Microsoft Access database, with security set by Microsoft
Access. Following these two sections is a section that relates the two
statements to the behavior of the Microsoft Access engine with regard to
security.

SetDataAccessOption Statement -- Syntax and Behavior
--

SetDataAccessOption has the following parameters:

 SetDataAccessOption option, value

where option is a numeric value with at present only one legal value (1).
For example:

 SetDataAccessOption 1, "e:\vbproj\My.ini"

In the DATACONS.TXT file supplied at the root of the \VB directory, a
constant is defined for this value:

 Global Const DB_OPTIONINIPATH = 1

SetDataAccessOption sets the name and path of your application's
initialization (.INI) file. The application's .INI file takes effect only
when SetDataAccessOption is used before the data access functionality is
loaded and initialized. Once data access has been initialized, this setting
cannot be changed without first exiting the application. The value is a
string expression. For the DB_OPTIONINIPATH option, the value argument
contains a string expression providing the path and name of your
application's initialization (.INI) file. Initialization files are usually
stored in a user's \WINDOWS directory, and have the same name as the
executable file but with a .INI extension. Use this statement only if your
application's initialization file has a different name or is in a directory
other than the \WINDOWS directory.

The SetDataAccessOption statement is not needed when you run the Visual
Basic project in the VB.EXE environment if the VB.INI file (in the \WINDOWS
directory) contains the following lines:

[Options]
SystemDB=T:\ACCESS\SYSTEM.MDA
UtilityDB=T:\ACCESS\UTILITY.MDA

NOTE: the actual location of the SYSTEM.MDA is not significant provided
both Microsoft Access and Visual Basic have an entry pointing to the
SYSTEM.MDA they will share. The SetDataAccessOption statement is not
required if the application .EXE file has its own .INI file in the \WINDOWS
and the .EXE and .INI files share the same name.

SetDefaultWorkspace Statement -- Syntax and Behavior
--

SetDefaultWorkspace has the following parameters:

 SetDefaultWorkspace username, password

If this statement is left out, Visual Basic will send the equivalent of
the following line to the Microsoft Access engine included with Visual
Basic:

 SetDefaultWorkspace "Admin" , ""

This statement has the effect of obtaining a valid SID and gaining entry to
all the Table and Query objects in the database.

Relationship Between Visual Basic and Microsoft Access Security

First, here is a detailed explanation of the Microsoft Access security
mechanism for the benefit of the Visual Basic programmer who has not used
Microsoft Access extensively:

There is a hierarchy of permissions in Microsoft Access. At the top level,
there are Groups. Contained within a particular Group are Users. To
grant permissions selectively to particular Users, all permissions must
first be deselected or removed from the Users' Group. Then and only then,
can permissions be granted or revoked for individual Users.

Permissions listed for an individual User are called Explicit permissions.
Permissions set for the Group containing the User account are called
Implicit permissions. Implicit permissions take priority over Explicit
permissions.

You can use the Security menu to set permissions in Microsoft Access after
a database has been opened and the user has logged on. From the Security
menu, choose Permissions to assign permissions on each object in the
database, which in Visual Basic means Table and Query objects only.

For example, if there was a Group in the Microsoft Access database named
Analysts containing the Users Bob and Sue and you want to limit Bob to
Read Data only and grant Sue Full Permissions, follow these steps:

1. Log on as a User in the Admins Group. For example, enter Admin or Fred.

2. From the Security menu, choose Permissions (ALT S P).

3. Table objects are the type selected by default so select the name of the
 table you want to set permissions on. For example, select TestTbl.

4. Set the option in the User/Group frame to Groups. Then click the combo
 box list down and click Analysts to select that Group.

5. Clear all check boxes to revoke all permissions for the entire Group.

6. Change the List option button back to Users and select Bob. Clear the
 check boxes for all of Bob's permissions.

7. Select Sue from the list, and check the Full Permissions check box.

8. Click the Assign button to apply the changes to the table.

At this point, assume you have a Visual Basic program containing the
following code in the form load event:

Sub Form_Load ()
 Dim db As database
 Dim ds As dynaset

 ' Scenario one:
 ' SetDataAccessOption 1, "e:\vb.ini" ' not in \WINDOWS directory
 ' SetDefaultWorkspace "bob", "leftout"

 ' Scenario two:
 ' SetDataAccessOption 1, "e:\vb.ini" ' not in \WINDOWS directory
 ' SetDefaultWorkspace "bob", "leftout" ' point 0

 ' Scenario three:
 ' SetDataAccessOption 1, "e:\vb.ini" ' not in \WINDOWS directory
 ' SetDefaultWorkspace "bob", "leftout"

 ' Scenario four
 ' SetDataAccessOption 1, "e:\vb.ini" ' not in \WINDOWS directory
 ' SetDefaultWorkspace "bob", "leftout"

 Set db = OpenDatabase("e:\datacon\bases\access11\asample.mdb") ' point 1
 Set ds = db.CreateDynaset("TestTbl") ' point 2

 autoredraw = True ' to make Print statement persist on the form
 Print ds(0), ds(1)

End Sub

Assume that this code is run with the comment apostrophes removed from
only one of the four scenarios and that each scenario is run in order.

SCENARIO ONE: In this case, there is no reference to the location of the
SYSTEM.MDA file. Windows and the Microsoft Access engine are unable to find
the .INI file with the [Options] section listed previously in this article.
Therefore, the SYSTEM.MDA is ignored and Visual Basic defaults to its
default user and password combination ("Admin", ""). However, previously,
the default password for the User Admin was changed to something other than
"". In addition, all permissions were revoked for the Group Admins and the
User "Admin" in the Admins Group. Therefore, the following Visual Basic
error occurs at point 2:

 Couldn't read; no read permission for table or query 'f))'

We have closed the back door to Visual Basic and any Visual Basic
application attempting to bypass the logons in the SYSTEM.MDA file.

SCENARIO TWO: In this case, because we invoke the SetDefaultWorkspace
statement without having any pointer to the SYSTEM.MDA file, the Visual
Basic Microsoft Access engine hunts for the SYSTEM.MDA file and, not
finding it, gives the following error at point 0 in the code:

 Couldn't find file 'SYSTEM.MDA'

NOTE: The errors that occur in both Scenarios one and two are the same as
would occur if the SYSTEM.MDA file was moved, renamed, or deleted.

SCENARIO THREE: In this case, we tell the Visual Basic Microsoft Access
engine where the SYSTEM.MDA file resides, but we don't supply a user and
password combination, so again, Visual Basic supplies the only user and
password combination it knows ("Admin", ""), which is no longer a valid
combination because we added a password to the Admin User account. As a
result, Visual Basic gives the following error at point 1 in the code:

 Not a valid account or password.

SCENARIO FOUR: In this case, we supply both parameters correctly.
Therefore, because we gave Bob Read Data permission as well as Read
Definitions to allow the Visual Basic Microsoft Access engine to read,
the Visual Basic application prints the first two fields in the first
record of the table named TestTbl.

If we repeated the four scenarios with the User Sue, all would be the same.
However, Sue could go further and modify the table structure and the data
as well. Remember that we first selected the Group analysts and revoked all
permissions. Then we added back all permissions to Sue, but only Read Data
and Read Definitions were added back to Bob.

NOTE: The Admins Group has special significance with regard to security.
This applies to any User in that Group. The Admins group's SID is stored in
the SYSTEM.MDA when a database is created. As a result, the Admins group
will always have permission to change the permissions on all objects in
that database. This permission cannot be taken away by anyone. This
permission remains even when all permissions have been revoked from the
Admins Group, and it is not displayed in the Permissions dialog. This is
another reason to keep a backup and keep track of which SYSTEM.MDA was in
use when the database was created.

One last point of possible confusion revolves around the use of the
following phrase in a SQL query:

 ... With OwnerAccess Option

For example, look at this code:

 Sub Form_Load ()
 Dim db As Database
 Dim qd As querydef

 Set db = OpenDatabase("c:\access\db1.mdb")

 ' Enter the following two lines of code as one, single line:

 Set qd = db.CreateQueryDef("myQD", "select * from [TableDetails]
 with owneraccess option ;")
 db.Close
 End Sub

This code results in this error:

 Invalid Database ID.

This is because OwnerAccess refers to the owner of the database. The owner
is the creator of the database. In other words, OwnerAccess refers to
the owner's user and password combination (unique SID) that is stored in
the database (BD1.MDB in this case). However, the code does not contain the
two statements needed to point to the SYSTEM.MDA file of a secured
database. Actually, in this case, only the SetDefaultWorkspace statement is
essential if the compiled .EXE file's .INI file containing a valid
[Options] section, is in the \WINDOWS directory.

The code uses the backdoor. It has not supplied the unique SID of the

database owner to the engine, so the engine doesn't know the default name
and password combination (Admin, "") of the user is the database owner.
Even if it turns out that the User Admin is the database owner, without
having read the SYSTEM.MDA file, the engine cannot verify that fact, so
it gives the error.

Key Points to Remember

1. Only Microsoft Access can create and modify the SYSTEM.MDA file.

2. The SYSTEM.MDA file contains the unique SID used in a database with
 permissions to sort out who is who for the Microsoft Access engine to
 enforce those permissions. The SID is obtained by supplying the
 Microsoft Access engine with a valid user and password combination,
 from which it obtains the unique SID that the engine stores in memory
 to enforce security on an open database.

3. Both Microsoft Access and Visual Basic need to be pointed to the
 location off the SYSTEM.MDA file in order to gain entry to databases
 that have security and permissions implemented.

4. There is a back door available to the Visual Basic application program
 if the password for the default User in the Admins group (named Admin)
 is not changed from the default none ("").

5. If the phrase "With OwnerAccess Option" is used in the SQL query of a
 CreateQueryDef, CreateDynaset, or CreateSnapshot method, a pointer to
 the SYSTEM.MDA file must exist. Even if you are using the back door
 (the default user and password combination of Admin and "") and don't
 seem to need the SYSTEM.MDA, when you use "With OwnerAccess Option" in
 a SQL query, the engine must see the SYSTEM.MDA file to match the SID of
 the owner (creator) of the database to the user who logged on.

6. The valid logon user and password combinations are stored in the
 SYSTEM.MDA file but the permissions are stored in the database (.MDB
 file) itself. A unique key (the SID) is extracted from the SYSTEM.MDA
 by using a valid user and password combination, supplied to the
 Microsoft Access engine by the logon dialog in Microsoft Access or
 by the code in Visual Basic.

Additional reference words: 3.00
KBCategory:
KBSubcategory: APrgDataAcc

PRB: Illegal to Use Find Methods w/ SQL PASSTHROUGH & ODBC DB
Article ID: Q106111

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, version 3.0

SYMPTOMS
========

When you create a Dynaset or Snapshot using the SQL PASSTHROUGH option
with an ODBC database, the FindFirst, FindNext, FindLast, and FindPrevious
methods give the error "Can't perform operation; it is illegal."

CAUSE
=====

FindFirst, FindNext, FindLast, and FindPrevious work only on record
sets opened by a query. Visual Basic version 3.0 doesn't use a query to
open a record set when you use DB_SQLPASSTHROUGH, so these Find methods
are not allowed, by design.

RESOLUTION
==========

The SQL PASSTHROUGH option causes the query to be processed by an external
database server, instead of by Visual Basic. Avoid using the SQL
PASSTHROUGH option if you want to use the FindFirst, FindNext, FindLast,
or FindPrevious methods with an ODBC database.

Also, you can avoid the problem by creating a copy of the dynaset or
snapshot. This will allow the Microsoft Access Engine to perform the
FindFirst rather than allowing the ODBC server to do it. However, the
the dynaset copy must not use the SQL PASSTHROUGH option. Here is an
example:

 Dim db as database
 Dim ds as dynaset
 Dim newds as dynaset

 Set db = OpenDatabase("", 0, 0, "ODBC;DSN=texas")
 Set ds = db.createdynaset("Select * from Authors", 64) ' SQL PASSTHROUGH
 Set newds = ds.createdynaset() ' No SQL PASSTHROUGH
 newds.FindFirst "" ' Now FindFirst works on newds

STATUS
======

This behavior is by design.

REFERENCE
=========

Pages 58-60, Visual Basic Professional Edition, Version 3.0, "Professional

Features Book 2."

MORE INFORMATION
================

Steps to Reproduce Behavior

The following code results in the "Can't perform operation; it is illegal"
error:

 Dim db As database
 Set db = OpenDatabase("", 0, 0, "ODBC;DSN=texas")
 Dim ds As Dynaset ' Creates a dynaset.
 ' The DB_SQLPASSTHROUGH option is 64:
 Set ds = db.CreateDynaset("select * from authors", 64)
 ds.FindFirst "" ' FindFirst causes error message.

Additional reference words: 3.00
KBCategory: APrg
KBSubcategory: APrgDataODBC

PRB: Illegal to Use Find Method with Table Object Variable
Article ID: Q106270

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, version 3.0

SYMPTOMS
========

Using the FindFirst, FindNext, FindLast, or FindPrevious method on an
object variable of type Table results in this error:

 Can't perform operation; it is illegal.

Pressing the F1 key on this error dialog gives the following description
from the Visual Basic Help:

 Error 3219.
 You tried to use a method or property with or on a recordset,
 and it isn't valid for that object.

CAUSE
=====

The FindFirst, FindNext, FindLast, and FindPrevious methods can be used
only with a Dynaset or Snapshot. These Find methods cannot be used with a
Table object variable.

WORKAROUND
==========

To move between the records of a Table, use the Seek method or the Move
methods (MoveFirst, MoveLast, MoveNext, and MovePrevious).

Also, you can create a Dynaset or Snapshot variable on the whole Table
by using the CreateDynaset or CreateSnapshot method. Then you can use
the FindFirst, FindNext, FindLast, and FindPrevious methods on that Dynaset
or Snapshot. The Find methods move between records that meet specific
conditions.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

Steps to Reproduce Behavior

The following code demonstrates the error using the FindFirst method on a
Table object variable:

 Dim db As database
 Dim recordset As table ' Correction: Dim recordset As dynaset
 Set db = OpenDatabase("c:\vb3\biblio.mdb")
 Set recordset = db.OpenTable("authors") ' Instead: db.CreateDynaset
 ' The following line gives "can't perform operation; it is illegal":
 recordset.FindFirst "Author like 'a*'"
 Debug.Print recordset.Fields("Author")

The following code works around this behavior by first creating a Dynaset
from the Table, and then using FindFirst on the Dynaset:

 Dim db As database
 ' Dim recordset As table ' Gives problem.
 Dim recordset As dynaset ' Workaround.
 Set db = OpenDatabase("c:\vb3\biblio.mdb")
 ' Set recordset = db.OpenTable("authors") ' Gives problem.
 Set recordset = db.CreateDynaset("Authors") ' Workaround.
 recordset.FindFirst "Author like 'a*'"
 Debug.Print recordset.Fields("Author")

REFERENCES
==========

See "Positioning the Current Record in a Recordset" on Pages 68-77 of
the Visual Basic Professional Edition, version 3.0, "Professional Features
Book 2" manual. Page 72 states, "The Find methods cannot be used on Table
objects."

Additional reference words: 3.00
KBCategory: APrg
KBSubcategory: APrgDataOther

How to Call SQL Stored Procedures from Visual Basic
Article ID: Q106492

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, version 3.0

SUMMARY
=======

This article describes how to call Microsoft SQL stored procedures from
Visual Basic. A stored procedure is a precompiled collection of SQL
statements, often including control-of-flow language.

MORE INFORMATION
================

The method of calling depends on whether the SQL stored procedure returns
records or not:

1. Stored procedures that don't return records (or rows) can be executed
 from Visual Basic with the ExecuteSQL method as follows:

 i% = MyDb.ExecuteSQL("sp_name")

 This executes the stored procedure sp_name and returns the affected
 number of rows in i%. The ExecuteSQL method is strictly for action
 queries such as:

 Delete Authors where name like "fred%"

 The ExecuteSQL method is valid only for SQL statements that do not
 return records (or rows). An SQL statement that uses "SELECT..." returns
 records, while an SQL statement that uses "DELETE..." does not. Neither
 Execute nor ExecuteSQL return a recordset, so using ExecuteSQL on a
 query that selects records produces an error.

2. Stored procedures that return records (or rows) require a Dynaset or
 Snapshot to capture the values. Here are two examples:

 Example Using a Data Control on a Visual Basic Form:

 DB_SQLPassThrough = 64
 Data1.Options = DB_SQLPassThrough
 Data1.Recordsource = "sp_name" ' name of the stored procedure
 Data1.Refresh ' Refresh the data control

 When you use the SqlPassThrough bit, Visual Basic's Microsoft Access
 database engine will ignore the syntax used and will pass the command
 through to the SQL server.

 Alternative Example Using Object Variables:

 Dim Ds as Dynaset

 Set MyDB = OpenDatabase(... ' Open your desired database here.
 Set Ds = MyDB.CreateDynaset("sp_name",Db_SQLPassThrough)
 ' You can also Dim as Snapshot and use MyDb.CreateSnapshot above.

How to Pass Parameters to a Stored Procedure
--

To pass parameters, include them after the name of the stored procedure in
a string, for example:

 SQLx = "My_StorProc parm1, parm2, parm3" ' String specifying SQL
 ' command.
 ...
 i = MyDB.ExecuteSQL(SQLx) ' For stored procedure that
 ' doesn't return records.
 ...
 set Ds = MyDB.CreateDynaset(SQLx,64) ' For stored procedure that
 ' returns records.

The object variable (Ds) will contain the first set of results from the
stored procedure (My_StorProc).

Another Example

Here's more example code showing both methods:

 Dim db as Database; l as long; Ss as Snapshot

 ' Enter the following two lines as one, single line:
 Set Db = OpenDatabase
 ("",false,false, "ODBC;dsn=yourdsn;uid=youruid;pwd=yourpwd:")

 l=ExecuteSQL("YourSP_Name") ' for SPs that don't return rows
 Set Ss = Db.CreateSnapshot("YourSP_Name", 64) ' for SPs that return rows
 Col1.text = Ss(0) ' Column one
 Col2.text = Ss!ColumnName
 Col3.Text=Ss("ColumnName")

REFERENCES
==========

More information about calling stored procedures is documented in the
following Microsoft SQL manual which covers the Visual Basic Library
for SQL Server:

 - Microsoft SQL Server Programmer's Reference for Visual Basic

See the functions SqlRpcInit% (pages 200-201), SqlRpcParam%, and
SqlRpcSend%. These functions call stored procedures more quickly than do
the methods described above.

Additional reference words: 3.00
KBCategory: APrg
KBSubcategory: APrgDataOther

PRB: Invalid Database Object after Rollback without BeginTrans
Article ID: Q106493

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 version 3.0

SYMPTOMS
========

After your program gets this error:

 Commit or Rollback without BeginTrans (Err = 3034)

clicking a data control or executing a database method may result in this
error:

 Invalid Database Object

CAUSE
=====

You tried to commit or roll back a transaction that you didn't start
with a BeginTrans statement.

WORKAROUND
==========

To avoid the problem entirely, always do a BeginTrans before attempting a
Rollback.

You can work around the "Invalid Database Object" error by using the
Refresh method on the data control. For example, add the statement
Data1.Refresh after the Rollback, at the bottom of the Command1_Click
procedure shown in the Steps to Reproduce Behavior section below.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

Steps to Reproduce Behavior Using Database Object Variables

1. Start Visual Basic or begin a New Project. Form1 is created by default.

2. Add a command button (Command1) to Form1. Enter the following code:

 Sub Command1_Click ()
 Dim db As database

 Dim ds As dynaset
 Set db = OpenDatabase("c:\vb3\biblio.mdb")
 Set ds = db.CreateDynaset("authors")
 On Error Resume Next
 ' WORKAROUND: Add the following statement here: BeginTrans
 Rollback
 Print Error$
 On Error GoTo 0
 End Sub

Steps to Reproduce Behavior using Text Control Bound to Data Control
--

1. Start Visual Basic or begin a New Project. Form1 is created by default.

2. Add a data control (Data1) to Form1, and give Data1 these properties:

 DatabaseName = C:\VB\BIBLIO.MDB ' This database shipped with VB
 RecordSource = Authors ' Use the Authors Table.

3. Add a text box (Text1) to Form1, and give Text1 these properties:

 DataSource = Data1
 DataField = Au_ID

4. Add a command button (Command1) to Form1. Enter the following code:

 Sub Command1_Click ()
 On Error Resume Next
 Rollback
 Print Error$
 ' WORKAROUND is to add the following statement here: Data1.Refresh
 End Sub

5. Start the program by pressing the F5 key. Click the Command1 button. The
 following correct error is trapped by the error handler:

 Commit or Rollback without BeginTrans

6. Now click the data control arrow to move to the next record. This causes
 the following error:

 Invalid Database Object

Additional reference words: 3.00
KBCategory: APrg
KBSubcategory: APrgDataOther

PRB: No Current Record Error In VB When Database is Empty
Article ID: Q106494

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SYMPTOMS
========

If a data control and text box are both bound to an empty table in a
database, clicking the data control arrows gives this error:

 No Current Record

This error also occurs if you enter text into the text box, and execute
the AddNew method or the Edit method while the database table is empty.

The program has difficulty recovering because of the recurring "No Current
Record" errors. The On Error statement fails to trap this error.

CAUSE
=====

The program does not know the table is empty until the automatic record
update occurs. That automatic record update occurs when you click the data
control arrow or you enter text in the text box and then execute an AddNew
or Edit method.

When the table is not empty the automatic update is a nice feature, but
when the table is empty the automatic update causes the no current record
error. The error message occurs because the underlying recordset contains
no records.

You must execute AddNew to create a current record before doing anything
that causes an automatic record update.

WORKAROUND
==========

To work around this behavior, execute the AddNew method on an empty
database table before allowing the user to click the data control or enter
text into the bound text box control. For example, set the Enabled property
for the text control and data control to False at the beginning of the
program. Then you can force the user to click a command button that
executes the AddNew method before enabling the text and data controls.

STATUS
======

This behavior is by design. This design is under review and will be
considered for enhancement in a future release.

More Information
================

How to Create an Empty Microsoft Access Database
--

Before using Example 1 or 2 shown below, create an empty database by
following these steps in Visual Basic:

1. Open the Data Manager program by choosing it from the Window menu in
 Visual Basic or by running DATAMGR.EXE from the Windows File Manager.

2. In the Data Manager, choose New Database from the File menu and
 select Access 1.1.

3. Click the New button and enter tbl1 for the table name.

4. Click the Design button. Then click the Add button. Enter fld1 for the
 Field Name and select Integer for the Field Type.

5. Save this Microsoft Access database with the name TEST1.MDB. Close the
 Data Manager.

Example One: Steps to Reproduce Behavior using a Data Control

1. Start a new project in Visual Basic. Form1 is created by default.

2. Create the empty Microsoft Access database (TEST1.MDB) as described
 above.

3. Add the following controls and set the following properties:

 Control Name Property New Value NOTE
 --
 Data1 DatabaseName C:\VB\TEST1.MDB Empty MDB created above.
 Data1 RecordSource tbl1 Table name.
 Text1 DataSource Data1 Name of data control.
 Text1 DataField Fld1 Field name.
 Command1 Caption "Press for AddNew"

4. Add the following code in the Command1 Click event procedure:

 Sub Command1_Click ()
 data1.Recordset.AddNew
 text1.SetFocus
 End Sub

5. From the Run menu, choose Start (ALT, R, S), or press the F5 key to run
 the program.

6. Either of the following will give the no current record error:

 - Click any of the arrow buttons on the data control.

 - Enter text into the text box, and then click the command button.

 Notice that if you rerun the program, press the Command1 button first,
 and then enter some text into the Text1 text box, you can then click any
 of the arrow buttons on the data control without getting the error.

Example One Workaround

To work around this behavior, set the Enabled property for the text and
data controls to False at design time or in the Load procedure for the
form. Then add the following to the top of the Command1_Click procedure
before the AddNew:

 Data1.enabled = True
 Text1.enabled = True

This prevents the user from automatically updating an empty database, thus
avoiding the no current record error.

Example Two: Steps to Reproduce Behavior Using Object Variables

1. Start a new project in Visual Basic. Form1 is created by default.

2. Create the empty Microsoft Access database (TEST1.MDB) as described
 above.

3. Add a command button. Enter "Press to Test" as its Caption property.

4. Add the following code in the general Declarations section of Form1:

 Dim db As database
 Dim ds As dynaset

5. Add the following code in the Command1 Click event procedure:

 Sub Command1_Click ()
 Set db = OpenDatabase("TEST1.MDB")
 Set ds = db.CreateDynaset("tbl1")
 ' Execute the following line to work around problem:
 ' ds.AddNew
 If IsNull(ds(0)) Then 'The No Current Record error occurs here
 Print "No entry"
 Else
 Print ds(0)
 End If
 End Sub

6. From the Run menu, choose Start (ALT, R, S), or press the F5 key
 to run the program.

To correct the error, add the line ds.AddNew shown in a comment above.

REFERENCES
==========

Additional information can be found in the Visual Basic Help menu. The no
current record error is described in the Visual Basic Help topic "Data

Access error messages." Here is that description:

 No current record. Error 3021.

 This error occurs following the unsuccessful application of one of the
 FindFirst, FindLast, FindNext, FindPrevious Methods or the Seek Method,
 or when the underlying recordset contains no records. Move to or select
 a record, and then try the operation again.

The following is paraphrased from the Help topic for AddNew in Visual
Basic:

 The AddNew method clears the copy buffer in preparation for creating a
 new record in a Table or Dynaset. AddNew sets all fields in the copy
 buffer to Null and makes it the current record. After putting data in
 the record, you can use the Update method to add the record to the
 recordset. Update is automatically invoked with a data control if an
 Edit or AddNew operation is pending when you use one of the Find or
 Move methods.

Additional reference words: 3.00
KBCategory: APrg
KBSubcategory: APrgDataOther

How VB Can Determine If Table Is Locked By Other Processes
Article ID: Q106535

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 version 3.0

SUMMARY
=======

This article describes how to detect if a database table has any records
locked by other users or processes. If you open the table with the options
to deny read and write access, a trappable error will indicate that other
users or processes are using the table. This information is useful for
managing tables in a multiuser or network system.

MORE INFORMATION
================

Step-by-Step Example

The following example uses one program (PROGLOC1.EXE) to optionally lock a
record in a table. A separate, concurrent program (PROGLOC2) checks to see
if any records in the table are currently locked.

1. Make PROGLOC1.EXE by following these steps in Visual Basic:

 a. Start a new project in Visual Basic. Form1 is created by default.

 b. Add a large command button to Form1.

 c. Enter the following code for the Command1_Click event procedure:

 Sub Command1_Click ()
 Dim db As database
 Set db = OpenDatabase("biblio.mdb")
 Dim ds As dynaset
 Set ds = db.CreateDynaset("authors")
 ds.Edit ' Locks the first record in the dynaset.
 MsgBox "First record in dynaset is locked. Press OK to unlock."
 command1.Caption = "record now unlocked"
 End Sub

 d. Choose Save File As from the File menu, and save as PROGLOC1.FRM.
 Choose Save Project As from the File menu, and save as PROGLOC1.MAK.

 e. Choose Make EXE File from the File menu to create PROGLOC1.EXE.

2. Make PROGLOC2 by following these steps in Visual Basic:

 a. Start a new project in Visual Basic. Form1 is created by default.

 b. Add a large command button to Form1.

 c. Enter the following code for the Command1_Click event procedure:

 Sub Command1_Click ()

 Dim db As database
 Set db = OpenDatabase("biblio.mdb")
 Dim tb As table
 ' See if table has locks by opening and denying others Read/Write:
 On Error Resume Next
 Set tb = db.OpenTable("authors", 3) ' 3 = Deny Read & Write (2+1)
 If Err = 0 Then
 command1.Caption = "not locked"
 Else
 command1.Caption = "locked due to err=" & err
 End If
 tb.Close
 ' If no error here you could reopen table without denying access.

 End Sub

 d. Optional steps to save this sample program:
 Choose Save File As from the File menu, and save as PROGLOC2.FRM.
 Choose Save Project As from the File menu, and save as PROGLOC2.MAK.

 e. Run PROGLOC1.EXE from Windows File Manager and click the command
 button to lock a record. Leave the following message box up without
 pressing OK:

 First record in dynaset is now locked. Press OK to unlock.

 f. Start PROGLOC2 from Visual Basic by pressing the F5 key. Click the
 command button to report whether or not a record is locked.

Additional reference words: 3.00 row locking
KBCategory: APrg
KBSubcategory: APrgDataOther

How to Change Read-Only Access of a Data Control at Run Time
Article ID: Q107074

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 version 3.0

SUMMARY
=======

This article describes and demonstrates techniques you can use to change
(toggle on or off) read-only access of a data control or database at run
time. All behavior discussed in this article is by design.

MORE INFORMATION
================

Notes to Remember When Changing Read-Only Access
--

For database object variables, you must close all database variables opened
for a given database before you can change its read-only access. Use the
Close method to close a database object stored in a variable. Use the
OpenDatabase function with a parameter to specify the read-only access for
the opened database.

For a data control, you must use the Refresh method to reset the data
control after you change its read-only access by changing the ReadOnly
property. Another more complicated way to reset the data control is to
unload the form, which closes the data control. Then use Load and Show to
reload the display form. You must set the data control's new ReadOnly
property value in the Form Load event procedure, or else ReadOnly will
use its design-time setting.

The read-only parameter of the OpenDatabase function will be ignored
at run time when you open a database that is currently bound to a data
control. To change the read-only access of a bound database at run time,
you must set the ReadOnly property for the data control and use the
Refresh method.

The ReadOnly property of a data control will retain the value that you set,
but the new ReadOnly property won't take effect until you use the Refresh
method. For example, if you change the ReadOnly property from True to False
and fail to use the Refresh method, the database bound to the data control
will remain read-only even though the ReadOnly property does contain the
new value of False. You must execute the Refresh method on the data control
to tell the bound database that you changed the ReadOnly property.

The following examples demonstrate how to change the read-only access of a
database at run time.

Close Database Before Changing Read-Only Access

The following two examples demonstrate that you must close a database
before changing the read-only access (False = 0, True = -1).

Example One -- Using Database Object Variables:

Open database A and set the read-only parameter to True. Without closing
database A, open database A a second time and set read-only access to
False. The second open uses read-only access, ignoring your request for
read-only to be False. This behavior is by design. The following code
example demonstrates this behavior:

 Dim d1 As database, d2 As database
 Set d1 = OpenDatabase("biblio.mdb", 0, -1) 'set read-only option True
 debug.print d1.Updatable ' Updatable prints False, 0, as expected.
 Set d2 = OpenDatabase("biblio.mdb", 0, 0) 'set read-only option False
 debug.print d2.Updatable ' Updatable still prints False, 0

By definition, the Updatable property returns False when the read-only
access is True, and vice versa. In the above example, the Updatable
property of database variable d2 remains False from the first open,
despite your request to turn off read-only access.

To reset the read-only access, close the database first. Then change the
read-only access. For example:

 Dim d1 As database, d2 As database
 Set d1 = OpenDatabase("biblio.mdb", 0, -1) ' set read-only option True
 debug.print d1.Updatable ' Updatable prints False, 0, as desired.
 d1.Close
 Set d2 = OpenDatabase("biblio.mdb", 0, 0) ' set read-only option False
 debug.print d2.Updatable ' Updatable prints True, -1, as desired.

Database variable d1 is erased by the Close. The Updatable property of the
second database variable (d2) will be False, as desired. Updatable returns
False when the database was opened with read-only access.

Example Two -- Using a Text Control Bound to a Data Control:

A data control does implicit OpenDatabase and CreateDynaset function calls
at load time using design-time properties such as DatabaseName,
RecordSource, and ReadOnly.

If you change the ReadOnly property of a data control at run time, you
must use the Refresh method to reset the database. The following steps show
how to do it:

1. Start Visual Basic or begin a New Project. This creates Form1 by
 default.

2. Add a data control (Data1) to Form1, and give Data1 these properties:

 DatabaseName: C:\VB\BIBLIO.MDB [This database ships with VB.]
 RecordSource: Authors [Uses Authors Table in BIBLIO.MDB.]
 ReadOnly: True [Makes ReadOnly=True at start.]

3. Add a text box (Text1) to Form1. Give Text1 the following properties:

 DataSource: Data1
 DataField: Authors

4. Add two command buttons (Command1 and Command2) to Form1. Change the
 Caption of Command1 to say "Enable Database Writing." Change the Caption
 of Command2 to say "Make Database Read-only." Enter the following code:

 Sub Command1_Click ()
 debug.Print Data1.ReadOnly ' DATA1.ReadOnly starts True, -1
 Data1.ReadOnly = False ' Change to False
 Data1.Refresh ' Refresh required to change ReadOnly access.
 debug.Print Data1.ReadOnly ' Prints False, 0
 End Sub

 Sub Command2_Click ()
 debug.Print Data1.ReadOnly ' Prints False, 0
 Data1.ReadOnly = True ' Change to True
 Data1.Refresh ' Refresh required to change ReadOnly access.
 debug.Print DATA1.ReadOnly ' Prints True, -1
 End Sub

5. Start the program by pressing the F5 key or choosing Start from the
 run menu.

6. Add some characters to the record in the text box. This record is the
 Authors field of the C:\VB\BIBLIO.MDB database. Click the right arrow
 on the data control to move to the next record. This automatically
 updates the first record if you have write access. Then click the left
 arrow on the data control to view your change to the first record.
 When ReadOnly is True, such as at the beginning of the program, no
 change will occur in the record shown in Text1.

7. Now click the Command1 button, "Enable Database Writing." Then repeat
 step 6 to update a record. Because ReadOnly is False now, the Text1 box
 will now reflect your change in the record.

8. Now click the Command2 button, "Make Database Read-only." Then repeat
 step 6 to update a record. Because ReadOnly is True now, no change will
 occur in Text1.

9. Close the form to end the program.

You Can Open Different Databases with Different Read-only Access
--

Each different database you open can have a different read-only setting. In
the following example, d1.Updatable will be True and d2.Updatable will be
False, because they refer to different databases:

 Dim d1 As database, d2 As database
 Set d1 = OpenDatabase("biblio.mdb", 0, -1) ' Set read-only option True
 Set d2 = OpenDatabase("mydb.mdb", 0, 0) ' Set read-only option False
 debug.print d1.Updatable, d2.Updatable ' Prints -1 and 0

Additional reference words: 3.00 R/W status lock locking how-to
KBCategory: APrg

KBSubcategory: APrgDataOther

Possible Reasons for Couldn't Find Installable ISAM Error
Article ID: Q107672
--
The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 3.0
--

SUMMARY
=======

There are a number of reasons that can cause the 'Couldn't Find
Installable ISAM' error message. Below is a list of the possible
reasons for the error.

MORE INFORMATION
================

The Data Access Guide in "Professional Features Book 2" has information
in the sections: 'General Tips for Using External Tables' and
'Initialization File Details' that can be used as an additional reference.
These sections begin on pages 134 and 148.

The path for the installable ISAM driver should be listed in the
file VB.INI in the \WINDOWS directory. Here is an example showing
what the Installable ISAM section in VB.INI should look like:

[Installable ISAMs]
Btrieve=C:\WINDOWS\SYSTEM\btrv110.dll
FoxPro 2.0=C:\WINDOWS\SYSTEM\xbs110.dll
FoxPro 2.5=C:\WINDOWS\SYSTEM\xbs110.dll
dBASE III=C:\WINDOWS\SYSTEM\xbs110.dll
dBASE IV=C:\WINDOWS\SYSTEM\xbs110.dll
Paradox 3.X=C:\WINDOWS\SYSTEM\pdx110.dll

List of Possible Reasons for Error (Couldn't find Installable ISAM)

1. An entry in the [Installable ISAM] section in VB.INI or
 <APPNAME>.INI is incorrect. For example, this error occurs if
 you're accessing a Paradox external table, and the Paradox entry
 of the APP.INI file points to a nonexistent directory.

 To correct this problem, exit Visual Basic. Then make necessary
 corrections in VB.INI or <APPNAME>.INI by using Microsoft Windows
 Notepad or another text editor. Then restart Visual Basic, and
 try the operation again.

2. One of the entries in the [Installable ISAM] section in VB.INI
 points to a network drive, and that drive isn't connected. Check
 to make sure the network is available and the correct drive letter
 is established. Then try the operation again.

3. The APP.INI file isn't in the Windows directory.

4. The APP.INI file doesn't have the same name as the .EXE file.

5. The path to the IISAM specified in the .INI file is incorrect.

6. There are extraneous spaces in the APP.INI file.

7. The APP.INI file doesn't contain the same IISAM syntax as in the
 VB.INI for each database that uses the drivers.

8. The connect string should be 'Paradox 3.X;' NOT 'Paradox;' this is
 a documentation error in the manual.

9. Another possibility is that if you installed Microsoft Access after
 installing Visual Basic, an older driver may have replaced a newer
 Visual Basic driver. Check to ensure that the following files are
 all dated 4-28-93 (the Visual Basic version 3.0 file date stamp):

 MSAES110.DLL
 MSAJT110.DLL
 VBDB300.DLL

10. The error can also occur when the Connect property of Tabledef
 is not filled with the exact characters needed.

 The Connect property is analogous to the connect portion of
 the OpenDatabase method, so the parser looks for semicolons after
 every entry -- other than the null entry in the case of a native
 Microsoft Access database. In the case of an attached table,
 Visual Basic syntax requires an entry in the Connect property.
 There needs to be a leading semicolon before any optional
 parameters in the Connect property, if the source database of the
 attached table is Microsoft Access. If it is omitted, the error
 occurs.

 In other words, the leading semicolon is needed when attaching
 a native Microsoft Access table. If it is omitted, the first
 parameter placed in the Connect property is seen as the database
 type. The error occurs because the parser tries to find an entry
 in the .INI file that corresponds to the first entry in the
 Connect property, but it doesn't exist. In the first example,
 the parser looks for a match for "database=" and fails to find it.

11. Providing an extra space between dBASE and IV, as in dBASE IV,
 prevents the Microsoft Access engine from finding the entry
 in the .INI file, so the error occurs.

12. Another possible reason for this error message is that the ISAM driver
 can't be loaded because the file is corrupt or not decompressed. You
 can verify this by attempting to force the DLL to load using the
 WPS.EXE program (available in the Professional Edition only), which you
 will find in the CDK subdirectory. If WPS can't load the DLL, you
 should reinstall and expand the DLL by using Setup /Z.

13. If you create a program that uses the ISAM drivers, your APPNAME.INI
 file should contain the entire [Installable ISAMs] section. If you
 don't do this the follow scenario could occur: A customer may have a
 program that uses the paradox driver and it works fine with the

 following APPNAME.INI:

 [Installable ISAMs]
 Paradox 3.X=C:\WINDOWS\SYSTEM\pdx110.dll

 Then a second program that uses a Btrieve driver works fine with the
 following APPNAME.INI:

 [Installable ISAMs]
 Btrieve=C:\WINDOWS\SYSTEM\btrv110.dll

 But if you run the two programs together, the second will have the
 error "Can't Find Installable ISAM."

 NOTE: the order of execution doesn't play a factor.

 To prevent this problem, include the entire [Installable ISAMs] section
 in your APPNAME.INI files. For example, it might be similar to this:

 [Installable ISAMs]
 Btrieve=C:\WINDOWS\SYSTEM\btrv110.dll
 FoxPro 2.0=C:\WINDOWS\SYSTEM\xbs110.dll
 FoxPro 2.5=C:\WINDOWS\SYSTEM\xbs110.dll
 dBASE III=C:\WINDOWS\SYSTEM\xbs110.dll
 dBASE IV=C:\WINDOWS\SYSTEM\xbs110.dll
 Paradox 3.X=C:\WINDOWS\SYSTEM\pdx110.dll

Additional reference words: 3.00
KBCategory:
KBSubcategory: APrgDataIISAM

How to Create a Parameter Query in Visual Basic for Windows
Article ID: Q107748

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 version 3.0

SUMMARY
=======

This article explains how to create and use a parameter query. A parameter
query is a type of QueryDef specific to Visual Basic and Microsoft Access.
Parameter queries enable you to automate the process of changing query
criteria. With a parameter query, you can set new values for the parameters
each time you run the query.

MORE INFORMATION
================

A parameter query is created in a program by using the CreateQueryDef()
function. Here is the syntax for the CreateQueryDef() function:

 Set querydef = database.CreateQueryDef(name, sqltext)

 querydef - a QueryDef object
 database - a Database object
 name - string containing query name
 sqltext - string containing the SQL query text

The sqltext string is optional or it can be defined by using the .SQL
property of the QueryDef. To create a parameter query, place the
PARAMETERS statement in the sqltext string. Here is the syntax for
the PARAMETERS statement:

 PARAMETERS parametertext datatype

 parametertext - name of the parameter
 datatype - type of the parameter

The following table lists the appropriate Microsoft Access SQL datatype
that should be used with the PARAMETERS statement as well as the
corresponding Microsoft Access field type, Visual Basic variable type,
and constant value from the DATACONS.TXT file.

 Microsoft Microsoft Visual
 Access SQL Access Field Basic Type DATACONS.TXT Constant

 Bit Yes/No Integer DB_BOOLEAN = 1
 Byte Byte Integer DB_BYTE = 2
 Short Integer Integer DB_INTEGER = 3
 Long Long Integer Long DB_LONG = 4
 Currency Currency Double DB_CURRENCY = 5
 IEEESingle Single Single DB_SINGLE = 6

 IEEEDouble Double Double DB_DOUBLE = 7
 DateTime Date/Time Variant DB_DATE = 8
 Binary Binary String
 Text Text String DB_TEXT = 10
 LongBinary OLE Object String DB_LONGBINARY = 11
 LongText Memo String DB_MEMO = 12

Following the PARAMETERS statement in the sqltext string, place the query.
The query can refer to the parameter (parametertext) named in the
PARAMETERS statement. Wherever the query refers to a parameter the current
value will be substituted when the query is executed.

For example, if the query text is:

 PARAMETERS i SHORT; SELECT fld FROM tbl WHERE fld=i

and the parameter i was set to 42 in the program. The parameter i would be
substituted and the resulting query would be equivalent to:

 SELECT fld FROM tbl WHERE fld=42

Multiple Parameters in a PARAMETERS statement

It is also possible to have multiple parameters in a PARAMETERS statement.
To do this, use commas to separate the parameters as follows:

 PARAMETERS parametertext datatype, parametertext datatype, ...

Prior to executing the query, set the parameters using this syntax:

 querydef!parametertext = value

 querydef - a QueryDef object
 parametertext - the name of the parameter in the PARAMETERS statement
 value - the value the parameter will have

In the previous example, you would use QD!i=42 before executing the query.

Once the parameters are set, you are ready to execute the query. There are
three methods (Execute, CreateDynaset, and CreateSnapshot) supported by a
QueryDef that will cause the query to be executed.

More information on parameter queries is available in the Visual Basic,
version 3.0, "Professional Features Book 2."

Example Parameter Query

The following example illustrates the use of a short parameter in a query.
The example has two parts. The first part creates a new QueryDef for
BIBLIO.MDB (the sample Microsoft Access database that ships with Visual
Basic) and should be executed only once. The second part uses the QueryDef
to create a snapshot, which is then displayed. To test the example, place
each of the following code segments in a command button Click event
procedure:

 'Create QueryDef "by date"
 Dim Db As Database
 Dim Qd As QueryDef
 Set Db = OpenDatabase("C:\VB\BIBLIO.MDB")
 Set Qd = Db.CreateQueryDef("By date") 'Create the query "By date"
 QdText = "PARAMETERS dp Short; "
 QdText = QdText & "SELECT * from Titles WHERE [Year Published] = dp"
 Qd.SQL = QdText
 Print Qd.SQL
 Qd.Close
 Db.Close

 ' Create Snapshot from QueryDef
 Dim Db As Database
 Dim Qd As QueryDef
 Dim Sn As Snapshot
 Set Db = OpenDatabase("C:\VB\BIBLIO.MDB")
 Set Qd = Db.OpenQueryDef("By Date") 'Open the "By date" query
 Qd!dp = 1991 'Set the value of the dp parameter
 Set Sn = Qd.CreateSnapshot() 'Create a snapshot from the query
 Sn.MoveFirst
 Do Until Sn.EOF
 For i = 1 To Sn.Fields.Count - 1
 Print Sn(i); 'Display results of query
 Next
 Print
 Sn.MoveNext
 Loop
 Sn.Close
 Qd.Close
 Db.Close

Additional reference words: 3.00 parameterized querydefs
KBCategory: APrg
KBSubcategory: APrgDataOther

LONG: PERFORM.TXT - Performance Tuning Tips for VB and Access
Article ID: Q107751
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0
--

SUMMARY
=======

This article contains the complete text of the PERFORM.TXT file distributed
with the Standard and Professional Editions of Visual Basic version 3.0
for Windows.

MORE INFORMATION
================

 PERFORM.TXT

 Release Notes for Microsoft (R) Visual Basic (R) Professional Edition

 Version 3.00

 (C) Copyright Microsoft Corporation, 1993

This document contains performance tuning tips for Microsoft Visual Basic
for Windows version 3.0 and Microsoft Access (TM) Relational Database
Systems for Windows version 1.1.

How to Use This Document

To view PERFORM.TXT on screen in Windows Notepad, maximize the Notepad
window.

To print PERFORM.TXT, open it in Windows Write, Microsoft Word, or
another word processor. Then select the entire document and format the
text in 10-point Courier before printing.

========
Contents
========

Part Description
---- -----------
 1 Running Multiple Data Access Applications
 2 Manipulating Secured Microsoft Access Databases
 3 Tuning [ISAM] Entries in VB.INI or <APPNAME>.INI
 4 Using Transactions to Maximize Data Throughput
 5 Minimizing Keyset Overhead When Working with Large Recordsets
 6 Performance Tips for Visual Basic Data Access

===
Part 1: Running Multiple Data Access Applications
===

Visual Basic and Microsoft Access both use the same database engine to
perform their database-related operations. When these applications are run
at the same time on the same machine, it is important to coordinate use of
the database engine, since it is only initialized by the first program
accessing a data access operation. Re-initialization does not take place
until all programs using the database engine are ended and another started.

Proper database initialization is especially important when accessing
external databases like dBASE, FoxPro, Paradox, or Btrieve. All of these
require special notations in the initialization file.

Note that data access applications can take the form of one or more
instances of:

- Microsoft Access
- A Microsoft Access application
- Visual Basic at design time
- Visual Basic at run time
- A Visual Basic application

For example, you might have a copy of Microsoft Access running with an
.EXE file created with Visual Basic. On the other hand, you might have
two or more dissimilar applications running -- both of which need to
access the database engine. You will need to make sure that the
initialization files are set up to deal with each of these situations.

To ensure that all applications using the database engine function
as intended, you must ensure that all initialization parameters pertaining
to external databases are identified in various .INI files under
section headings (such as [Installable ISAM], [Paradox Isam], [Btrieve
ISAM]) and are copied into each of the .INI files pertaining to each
data access application that can potentially be running at the same time.
The list below shows where each program looks for its initialization
information:

Program .INI file
--
Microsoft Access MSACCESS.INI
Microsoft Access application MSACCESS.INI
Visual Basic at design time VB.INI
Visual Basic at run time VB.INI
Visual Basic .EXE application <APPNAME>.INI

All of these .INI files are located in your Windows directory. During
development, your Visual Basic application defaults to VB.INI unless
your application uses the SetDataAccessOption statement to indicate
a specific .INI file location. Once you create an executable program
with Visual Basic, the initialization file will default to
<APPNAME>.INI unless you use SetDataAccessOption.

If you want to coordinate operations between an instance of a Visual
Basic application (or .EXE), you will want to force Visual Basic to
indicate the same initialization file that a second instance of your

program or an instance of Microsoft Access will use. This way,
regardless of which application starts (and initializes) the database
engine, both applications will be using the same initialization parameters.

===
Part 2: Manipulating Secured Microsoft Access Databases
===

For Visual Basic to manipulate secured Microsoft Access databases,
you must provide Visual Basic with the location of the SYSTEM.MDA file
associated with that Microsoft Access database, a valid user name, and
password. This can be accomplished in three steps:

1) Use the SetDataAccessOptions statement to point to a valid .INI file.
2) Include a path to the SystemDB with a valid VB.INI or <appname>.INI
 entry to locate the file. For example:

 [Options]
 SystemDB=C:\ACCESS\SYSTEM.MDA

3) Set the user name and password (if other than "admin" with no password)
 with the SetDefaultWorkspace statement.

==
Part 3: Tuning [ISAM] Entries in VB.INI or <APPNAME>.INI
==

You can enhance the database access performance of Visual Basic by:

- Adding or changing entries in the VB.INI or <APPNAME>.INI
 initialization file
- Using transactions

Visual Basic automatically provides default internal settings for most
common database operations. However, advanced users may want to tune these
settings to provide maximum performance for a particular system
configuration or application.

Setup automatically installs <APPNAME>.INI in your Windows directory. These
[ISAM] entries determine the sizes of data page and read-ahead caches in
memory, the amount of time data is held in a page cache, and the number of
times Visual Basic will retry a lock operation.

WARNING

Determining the best settings for your system configuration or application
can be time-consuming and difficult, usually involving much trial and
error. In addition, settings that seem optimal for one situation may not be
optimal for others. Casual users should not try to edit these entries.

Visual Basic automatically includes a PageTimeout entry in the [ISAM]
section of the VB.INI or <APPNAME>.INI file. This entry sets the amount of
time Visual Basic holds a data page in memory. For additional performance
tuning, you can add MaxBufferSize, ReadAheadPages, LockRetry, and
CommitLockRetry entries to this section.

Visual Basic reads these initialization settings at startup time. They can

be changed while Visual Basic is running, but the changes won't take effect
until you restart Visual Basic or your application. As with all .INI
settings that affect the database engine, these settings are fixed once the
engine is initialized just before the first data access operation.

PageTimeout Entry (Shared Data Only)

The PageTimeout entry sets the amount of time, in tenths of a second, that
Visual Basic holds a data page in a memory "page cache" if the database has
been opened for shared access. Visual Basic reads data in 2K blocks of
records, or "pages."

For example, when Visual Basic reads a data page, it places the data in the
page cache. If Visual Basic receives another read request for the same data
page during the timeout period, it reads the data directly from the page
cache rather than from disk.

Note

Access Basic ignores the PageTimeout setting unless your code allows
background processing by periodically calling the DoEvents statement or
function.

PageTimeOut Settings

Maximum: 2147483647 (max Long integer)
Minimum: 0
Default: 300

If you remove the PageTimeout entry, Visual Basic uses a default
PageTimeout setting of 5. For example:

 PageTimeout=20 ; This example sets PageTimeout to 2 seconds.

MaxBufferSize Entry

The MaxBufferSize entry sets the amount of memory, in kilobytes, reserved
for use as a page cache. Visual Basic reads data in 2K pages, placing the
data in the page cache. Once the data is placed in the cache, Visual Basic
can use it wherever it is needed -- in tables, queries, forms, or reports.

When Visual Basic receives a read request, it first checks the data pages
in the page cache. If the page isn't in the cache, Visual Basic reads the
data page from disk and then places it in the page cache. Visual Basic uses
physical memory and if necessary virtual memory to create the cache. All
pages stay in the cache until it is full and pages need to be flushed to
make room for new reads.

MaxBufferSize Settings

Maximum: 4096
Minimum: 18
Default: If there is no MaxBufferSize entry in your VB.INI or <APPNAME>.INI
 file, Visual Basic uses a default setting of 512.

Note

Because Visual Basic reads data in 2-kilobyte pages, it always uses an even
MaxBufferSize setting. If you type an odd number, Visual Basic uses a
MaxBufferSize setting of one less than the number. For example:

 MaxBufferSize=4096 ; This example sets MaxBufferSize to 4 MB.

ReadAheadPages Entry

The ReadAheadPages entry sets the size, in data pages, of a "read-ahead"
cache used by Visual Basic for sequential page reads. A sequential page
read occurs when Visual Basic detects that data in a current read request
is on a data page adjacent on physical disk to the data page of the
previous request. Visual Basic uses the "read-ahead" cache only when it
detects that a sequential read is taking place.

- If Visual Basic detects a sequential page read, it reads the requested
 page plus the next (N-1) pages in that direction, where N is the
 ReadAheadPages setting, placing the data pages in the read-ahead cache.
- If Visual Basic then detects a sequential read, it can make the next N
 reads directly from the read-ahead cache.

The read-ahead cache increases the speed of sequential reads, especially
for reading data stored on a network. It increases record updates per
second (throughput) on a network by sending a few large packets rather than
many small packets over the network. If possible, Visual Basic places the
read-ahead cache in the first 640K of memory in order to benefit from the
ability of Windows to read from and write to conventional memory. If the
read-ahead cache can't be placed in conventional memory, Visual Basic
places it in high memory. Placing the cache in high memory is less
efficient than placing it in conventional memory because Windows must copy
all reads and writes to its own buffer before completing the memory
operation.

ReadAheadPages Settings

Maximum: 31
Minimum: 0
Default: If there is no ReadAheadPages entry in your VB.INI or
<APPNAME>.INI
 file, Visual Basic uses a default setting of 8. For example:

 ReadAheadPages = 16

Note

Visual Basic creates a separate read-ahead cache for each database open on
your computer. Each library database has its own read-ahead cache.

LockRetry Entry

The LockRetry entry sets the number of times Visual Basic retries a page-
locking operation before it reports an error. For example, if a user tries
to lock a data page that is already locked by another user, the attempt
will fail. Visual Basic will try to lock the page N more times, where N is
the LockRetry setting. If the attempt to lock the page still fails on the
Nth retry, Visual Basic reports an error.

LockRetry Settings

Maximum: 2147483647 (max Long integer)
Minimum: 0
Default: If there is no LockRetry entry in your VB.INI or <APPNAME>.INI
 file, Visual Basic uses a default setting of 20. For example:

 LockRetry = 6

CommitLockRetry Entry

The CommitLockRetry entry is used with the LockRetry entry to set the
number of retries that Visual Basic attempts when a user tries to lock a
record on a data page already locked by a transaction. If a user tries to
lock a data page that is already locked by a transaction, Visual Basic will
try to lock the page N more times, where N is the product of the LockRetry
setting and the CommitLockRetry setting. For example, if the LockRetry
setting is 5 and the CommitLockRetry is 6, Visual Basic will try to lock
the page 30 more times.

CommitLockRetry Settings

Maximum: 2147483647 (max Long integer)
Minimum: 0
Default: If there is no CommitLockRetry entry in your VB.INI or
 <APPNAME>.INI file, Visual Basic uses a default setting of 20.
 For example:

 CommitLockRetry = 6 ; Assuming a LockRetry setting of 6,
 ; this example causes Visual Basic to
 ; retry a page locked by a transaction 36
 ; times.

==
Part 4: Using Transactions to Maximize Data Throughput
==

In a multiuser environment, you can further tune the performance of Visual
Basic by using transactions for operations that update data. A transaction
is a series of operations that must execute as a whole or not at all. You
mark the beginning of a transaction with the BeginTrans statement. You use
the Rollback or CommitTrans statement to end a transaction.

You can usually increase the record updates per second (throughput) of an
application by placing operations that update data within an Access Basic
transaction.

Tip

Because Visual Basic locks data pages used in a transaction until the
transaction ends, using transactions will prevent access to those data
pages while the transaction is pending. If you use transactions, try to
find a balance between data throughput and data access.

===
Part 5: Minimizing Keyset Overhead When Working with Large Recordsets
===

When a query selects a large number of records from the database, Visual
Basic only fetches the first row of that Dynaset or Snapshot and places the
key to refetch that row in memory. Once a record is fetched or visited, it
becomes a member of the recordset. As you "visit" additional rows of the
recordset, the keys are stored in workstation memory (in a temporary
table), and in the case of Snapshots, so is the data. If you move back to
previously fetched rows, Visual Basic refetches the rows using the old key
fetched from the temporary key table.

- If the database record is no longer there, you get a trappable error.
- If the record has changed, the new information is fetched from the
 database.

As you move further and further into the recordset, more and more memory is
taken up storing the keys. Eventually, Visual Basic will begin saving the
keyset on disk. If this happens, space is used on disk in the directory
specified by your \TEMP environment variable. Generally, you won't see a
performance degradation until Visual Basic has to swap the keyset temporary
table to disk. If you run out of disk space because Visual Basic has
exhausted the space in your \TEMP directory, you will get a trappable
error.

Moving to the end of the Dynaset or Snapshot does at least two things:
First, it forces Visual Basic to visit all of the records in your
recordset. Hence, all keys will be saved on the workstation. If this is a
few hundred rows, this may not take long or take up more space than the
workstation can handle.

However, for larger recordsets, a MoveLast operation may be far more than
the workstation can save. When working with Snapshots, not only are the
keys fetched, but the data for all records is also brought into local
memory. Generally, you should avoid operations that fetch more rows than
your user or workstation can deal with. Operations that must touch each
record in a recordset may best be performed with an action query that
consumes less system resources. In any case, your performance will not be
severely degraded, either as you move forward until you have to swap, or
hardly at all if you move backwards in the recordset -- even to the first
record.

Note

The Dynaset or Snapshot membership is not set until the record is actually
fetched for the first time. Since this can take from seconds to days
depending on how fast you fetch the records (moving down through the
recordset with MoveNext or with MoveLast), no Dynaset or Snapshot is really
a frozen subset of the data at a point in time. The only way to ensure that
no changes are made while the recordset is built is to get exclusive access
to the table or database before fetching -- which essentially locks out all
other users until the recordset (or database) is closed.

===
Part 6: Performance tips for Visual Basic Data Access
===

The following tips are suggested for operations involving more than just a
few records to increase the overall performance of your system.

1) When working with large recordsets (Dynasets or Snapshots), do not use
 the MoveLast method unless absolutely necessary.

 Moving to the end of a recordset requires Visual Basic to load all keys
 for the recordset into memory. In the case of Snapshots, not only are
 keys loaded into memory, but the data is also brought into workstation
 memory. If temporary memory space is exhausted, Visual Basic may be
 forced to swap this temporary cache to disk. In this case, Visual Basic
 will use space as addressed by the \TEMP environment variable. Once this
 space is exhausted, your application will trigger a trappable error.

2) When you want to access external tables fast, attach the table to your
 database instead of using the IN clause in a SQL statement or addressing
 the table directly.

 When Visual Basic needs to access your external table, all linkage
 information is resolved when the database is opened and does not have to
 be re-established and initialized each time the data is accessed (for
 example, with non-attached tables.

3) For reasonably small recordsets, especially where you do not intend
 to write to the recordset, use Snapshots instead of Dynasets.

 If possible, set the READONLY flag on the data control or DB_READONLY
 option when opening databases. This will permit Visual Basic to bypass
 significant logic to handle multi-user read-write access to your tables.

4) In cases where you are working with external ODBC databases, you will
 achieve maximum possible speed if you use SQL Passthrough instead of
 attaching or direct access that involves the Visual Basic database
 engine.

Additional reference words: 3.00
KBCategory: APrg
KBSubcategory: APrgDataAcc

Microsoft Access Database RAM Cache Is Faster Data File Method
Article ID: Q107871

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SUMMARY
=======

Before Microsoft Access was available, many Basic programs read disk files
into string arrays. Then wrote them back to disk. You may be able to
improve the speed and flexibility of file operations by instead using
a Microsoft Access database with a RAM cache.

MORE INFORMATION
================

Visual Basic limits variable-length string arrays to 64K bytes. However,
fixed-length string arrays are limited only by memory, and a Microsoft
Access database can contain many megabytes of data.

The Microsoft Access database engine used by Visual Basic uses a robust,
RAM-based caching scheme for speedy data access.

You can open a Microsoft Access database using a dynaset, which is a set of
pointers to the original data. When you update the dynaset, you actually
update the underlying physical table on disk. Dynasets are live; they
are not just copies of the data. You can specify a large Microsoft Access
data buffer, or cache, in RAM to obtain speeds faster than older Basic file
input/output methods.

Please read the PERFORM.TXT file for performance tuning tips for data
access in Visual Basic version 3.0 and Microsoft Access version 1.1 for
Windows. The PERFORM.TXT file is in your Visual Basic directory. A
related PERFORM.TXT file is installed with Microsoft Access.

A copy of the PERFORM.TXT file can also be found by searching for the
following words in this knowledge base:

 PERFORM.TXT and Visual and Basic

Using a table object variable usually gives faster access to a database
than using a data control bound to a database.

Using a Microsoft Access Data Buffer in RAM
--

You can specify the size of the Microsoft Access buffer, or cache, in RAM
by adding an [ISAM] section to your initialization file. Specify the [ISAM]
section in the VB.INI file for Visual Basic, or in the <appname>.INI file
for your Visual Basic application. For example, use the following cache if
your computer has at least eight megabytes of RAM installed:

 MAXBUFFERSIZE = 4096

This gives the Microsoft Access engine a four-megabyte dedicated cache.

You can also specify ReadAheadPages and other parameters. Please read
the PERFORM.TXT file for more information.

Using the above Microsoft Access caching scheme can be faster than using
Basic file input/output statements with a disk-caching product such as the
SMARTDRV.SYS driver that ships with most MS-DOS versions 4.x and later.

In one test on a PC with a 486 chip and 50-megahertz clock speed, a Seek
method used on a cached table took less than .6 milliseconds. FindFirst
methods with simple criteria took only .7 to .9 milliseconds. Performance
is about the same whether you use the primary key or any other index that
is either defined as unique or resolves to a single record pointer.

For sample data manager source code, search for a separate article in
this knowledge base using the following words:

 Data and Manager and Source and Code and CompuServe

Additional reference words: 3.00
KBCategory: APrg
KBSubcategory: APrgDataOther

VISDATA Example of Every Data Access Function in VB Prof 3.0
Article ID: Q108145

The information in this article applies to:

 - Professional Edition of Microsoft Visual Basic for Windows,
 version 3.0

SUMMARY
=======

The VISDATA.MAK file installed in the VB3\SAMPLES\VISDATA directory
loads extensive examples of data access. The VISDATA sample program uses
every data access function in Visual Basic. You can refer to the VISDATA
source code for examples of how to use each data access function.

MORE INFORMATION
================

The following description of the VISDATA sample program is taken from
the VB3\SAMPLES\SAMPLES.TXT file:

 VISDATA EXCERPT FROM SAMPLES.TXT
 ================================
...
========
6: ODBC
========

Program example using ODBC and the VT (Virtual Table) object layer.

NOTE: To access ODBC data sources with this sample you must
 first install ODBC using the ODBC setup program provided
 with Visual Basic Professional Edition.

BRIEF DESCRIPTION:

This sample program illustrates various programming techniques
used to access data through the VT layer built into Visual Basic
Professional. It behaves like a general purpose database utility
capable of the following functions:

 1. Table Creation
 2. Table Modification (adding and deleting fields and indexes)
 3. Data Browsing/Modifying one record at a time using a
 dynaset or a table
 4. Data Browsing via the Grid control (non-updatable)
 5. Data Browsing/Modifying via the new Data Control
 6. Data Export to Tab Delimited text file
 7. Direct SQL statement execution for any SQL supported
 functions such as Insert, Update, Delete, Drop, Create,
 and Dump
 8. AdHoc Query tool that helps users unfamiliar with SQL
 create complex queries with where clauses, joins, order

 by and group by expressions while limiting output to
 selected columns
 9. Transaction Processing
 10. Copying table structures and data to same or different
 server
 11. Support of Microsoft Access, dBASE 3, dBASE 4, FoxPro 2.0,
 Paradox 3.x, Btrieve, SQL and Oracle data, both DDL and DML

The code contains comments to help explain the use of the various
methods in the data access layer. Code and forms may be copied from
this application to other applications with minimal modification.

ODBC BACKGROUND:

ODBC (Open DataBase Connectivity) is a standard adopted by
multiple vendors designed to enable users to connect to any data
source with a single application. This is achieved through a
layered approach including:

 1. Programming Layer -- embedded functions in the development
 tool, which in this case is Visual Basic Professional Edition.
 2. Driver Manager -- the basic ODBC library that routes calls
 to the appropriate driver.
 3. Data Driver -- the library of functions that acts upon a
 specific database backend such as SQL Server, Xbase,
 Excel, etc. (note that SQL Server is the first of many
 drivers to become available for ODBC)

These layers work together to enable data access from any source
for which an ODBC driver exists. The sample application will work,
without modification, on any new, level-one ODBC driver that becomes
available. With multiple drivers, connections may be made to
different data sources from the same application at the same time
enabling seamless data access from disparate data sources.

FILES:

 ABOUTBOX.FRM......Standard "About box" for the application.
 ABOUTBOX.FRX......Icon for the "About Box".
 ADDFIELD.FRM......Form to add fields to Tables.
 CPYSTRU.FRM.......Form to copy Table structures.
 DATABOX.FRM.......General purpose list form.
 DYNAGRID.FRM......Form used to display data in a Grid control.
 DYNAGRID.FRX......Icon for DYNAGRID.FRM.
 DYNASET.FRM.......Form to display data in single record mode.
 DYNASET.FRX.......Icon for DYNASET.FRM
 FIND.FRM..........Form used to find records in a Dynaset.
 INDEXADD.FRM......Form used to add indexes to Tables.
 JOIN.FRM..........Form used to add Joins to the Query Builder.
 OPENDB.FRM........Form used to open a database.
 QUERY.FRM.........Form used to build Queries.
 QUERY.FRX.........Icon for QUERY.FRM.
 REPLACE.FRM.......Form to perform global replaces on a Table.
 REPLACE.FRX.......Icon for REPLACE.FRM.
 SEEK.FRM..........Form used to get input for Seek function on
 Table form.
 SQL.FRM...........Form to enter and execute SQL statements.

 SQL.FRX...........Icon for SQL.FRM.
 TABLES.FRM........Form used to display table lists.
 TABLES.FRX........Icon for TABLES.FRM.
 TABLEOBJ.FRM......Form used to display data in Table object
 TABLEOBJ.FRX......Icon for TABLEOBJ.FRM
 TBLSTRU.FRM.......Form to display and modify table structures.
 VDMDI.FRM.........Main MDI form for the application.
 VDMDI.FRX.........Icon for VDMDI.FRM.
 VISDATA.BAS.......Support functions for the application.
 VISDATA.ICO.......Icon for the applicaiton.
 VISDATA.MAK.......Make file for applicaiton.
 ZOOM.FRM..........Form to zoom in on character data in the
 dynaset forms.

TO RUN:

After starting the Visual Basic environment (VB.EXE), you can
load files in this sample program by choosing Open Project from
the File menu and selecting the VISDATA.MAK file in the
SAMPLES\VISDATA directory.

If you want to open a local database, you need to choose
the type of database and a file open common dialog will be
provided with the file type set to the requested data file type.

If you choose ODBC from the File/Open menu, the next dialog you
will see is the Open DataBase form. Because you probably have no
servers entered, you will need to enter a name for an existing
SQL server on your network. If you already know the user ID and
password, you can add them as well. The Database name is optional.
Once you have entered this data, choose Okay. Now, you should be
able to log on to the server. You may get some more dialogs in
the process. Answer any questions you can and ask the SQL
administrator for help if you run into problems or don't know some
of the parameters.

Once a database is open, double-click a table name to open the table
in the selected mode (Single Record or Table View). Use the Query
Builder to create dynasets with selected data from one or more tables
at a time. If you choose Use Data Control or Use Grid, a dynaset
will be created. However, the following objects will be created under
the following circumstances when you choose No Data Control:

Data Type Feature Chosen Object Type Created

MS Access Table Open Table
MS Access Query Open Dynaset
MS Access Execute SQL Dynaset
ISAM Table Open Table
ISAM Execute SQL Dynaset
ODBC Any Dynaset

The table is always updatable and the dynaset will be updatable in
most cases except on ODBC with no unique index, certain multiple
table joins, and other SQL select statements such as count(*) or
max().

Additional reference words: 3.00
KBCategory: APrg
KBSubcategory: APrgDataOther

How to Create a Microsoft Access Database using VB Prof 3.0
Article ID: Q108146

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 version 3.0

SUMMARY
=======

Below is an example showing how to use the CreateDatabase function and data
definition language (DDL) statements to create an empty Microsoft Access
database. This example defines the structure of the Microsoft Access
database, and doesn't add any data.

MORE INFORMATION
================

Step-by-Step Example

1. Start a new project in Visual Basic. Form1 is created by default.

2. Double-click the form to open its code window. Add the following code
 to the Form Load event:

 Sub Form_Load ()

 Const DB_LANG_GENERAL = ";LANGID=0x0809;CP=1252;COUNTRY=0"
 Dim db As Database
 Dim tdEmployee As New TableDef
 Dim tdStore As New TableDef

 Dim fEmp_ID As New Field
 Dim fEmp_FirstName As New Field
 Dim fEmp_LastName As New Field
 Dim fEmp_Address As New Field

 Dim fStore_ID As New Field
 Dim fStore_Location As New Field

 Dim indxEmployee As New Index
 Dim indxStore As New Index

 Set db = CreateDatabase("COMPANY.MDB", DB_LANG_GENERAL)

 tdEmployee.Name = "Employee"
 tdStore.Name = "Store"

 'Define all Employee fields
 fEmp_ID.Name = "Emp_ID"
 fEmp_ID.Type = 4 'Long integer

 fEmp_FirstName.Name = "Emp_FirstName"
 fEmp_FirstName.Type = 10 'Text (32)
 fEmp_FirstName.Size = 32

 fEmp_LastName.Name = "Emp_LastName"
 fEmp_LastName.Type = 10 'Text (32)
 fEmp_LastName.Size = 32

 fEmp_Address.Name = "Address"
 fEmp_Address.Type = 10 'Text (256)
 fEmp_Address.Size = 255

 'Define all Store fields
 fStore_ID.Name = "Store_ID"
 fStore_ID.Type = 4 'Long integer

 fStore_Location.Name = "Store_Location"
 fStore_Location.Type = 10 'Text (256)
 fStore_Location.Size = 255

 'Add employee fields to Fields collection
 tdEmployee.Fields.Append fEmp_ID
 tdEmployee.Fields.Append fEmp_FirstName
 tdEmployee.Fields.Append fEmp_LastName
 tdEmployee.Fields.Append fEmp_Address

 'Add store fields to Fields collection
 tdStore.Fields.Append fStore_ID
 tdStore.Fields.Append fStore_Location

 'Define employee table index
 indxEmployee.Name = "INDEX_EMPLOYEE"
 indxEmployee.Fields = "Emp_ID"
 indxEmployee.Unique = True
 indxEmployee.Primary = True

 'Define store table index
 indxStore.Name = "INDEX_STORE"
 indxStore.Fields = "Store_ID"
 indxStore.Unique = True
 indxStore.Primary = True

 'Append the employee and store indexes
 'to the respective Indexes collection
 tdEmployee.Indexes.Append indxEmployee
 tdStore.Indexes.Append indxStore

 'Append employee and store TableDefs
 'to TableDefs collection
 db.TableDefs.Append tdEmployee
 db.TableDefs.Append tdStore

 End Sub

3. Start the program or press the F5 key. This creates a Microsoft Access
 database called COMPANY.MDB. End the program by closing the form.

4. You can check that COMPANY.MDB was created correctly by opening it with
 Microsoft Access or with the Data Manager provided with Visual Basic.
 You can run the Data Manager program from the Window menu in Visual
 Basic, or from the Windows File Manager run DATAMGR.EXE in the Visual
 Basic directory.

REFERENCES
==========

The VISDATA.MAK file installed in the VB3\SAMPLES\VISDATA directory
loads extensive examples of data access. The VISDATA sample program uses
every data access function in Visual Basic. You can refer to the VISDATA
source code for examples of how to use each data access function.

Additional reference words: 3.00
KBCategory: APrg
KBSubcategory: APrgDataOther

How to Copy Table from One Database to Another in VB Prof 3.0
Article ID: Q108147
--
The information in this article applies to:

 - Professional Edition of Microsoft Visual Basic for Windows,
 version 3.0
--

SUMMARY
=======

Below is an example of how to copy a table from one database to another
using the Professional Edition of Visual Basic version 3.0.

MORE INFORMATION
================

Sample Program

The following sample code contains two functions taken almost unchanged
from the VISDATA sample project, from the code module VISDATA.BAS. The
Command1_Click procedure shown below invokes these two functions,
CopyStruct and CopyData. NOTE: The VISDATA.MAK project file is installed
in the Visual Basic SAMPLES\VISDATA directory.

This example assumes that the databases have Microsoft Access format.
The same techniques apply to the other supported database types.

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add a command button to Form1. Add the following code to the Command1
 Click event:

 Sub Command1_Click ()
 Dim dbsource As database
 Dim dbdest As database
 ' The following hard-coded database names could be changed to
 ' selections from a text box, list box, or combo box to make the
 ' program more generic:
 Set dbsource = OpenDatabase("c:\vb3\biblio.mdb", True, True)
 Set dbdest = OpenDatabase("c:\vb3\test1.mdb", True, False)
 Print CopyStruct(dbsource, dbdest, "titles", "ctitles", True)
 Print CopyData(dbsource, dbdest, "titles", "ctitles")
 dbsource.Close
 dbdest.Close
 End Sub

3. Add the following code to the General Declarations section of Form1:

 'Place the following Function statement on one, single line:
 Function CopyStruct (from_db As Database, to_db As Database,
 from_nm As String, to_nm As String, create_ind As Integer) As Integer

 On Error GoTo CSErr

 Dim i As Integer
 Dim tbl As New Tabledef 'table object
 Dim fld As Field 'field object
 Dim ind As Index 'index object

 'Search to see if the table exists:
 namesearch:
 For i = 0 To to_db.TableDefs.Count - 1
 If UCase(to_db.TableDefs(i).Name) = UCase(to_nm) Then
 If MsgBox(to_nm + " already exists, delete it?", 4) = YES
 Then
 to_db.TableDefs.Delete to_db.TableDefs(to_nm)
 Else
 to_nm = InputBox("Enter New Table Name:")
 If to_nm = "" Then
 Exit Function
 Else
 GoTo namesearch
 End If
 End If
 Exit For
 End If
 Next

 'Strip off owner if necessary:
 If InStr(to_nm, ".") <> 0 Then
 to_nm = Mid(to_nm, InStr(to_nm, ".") + 1, Len(to_nm))
 End If
 tbl.Name = to_nm

 'Create the fields:
 For i = 0 To from_db.TableDefs(from_nm).Fields.Count - 1
 Set fld = New Field
 fld.Name = from_db.TableDefs(from_nm).Fields(i).Name
 fld.Type = from_db.TableDefs(from_nm).Fields(i).Type
 fld.Size = from_db.TableDefs(from_nm).Fields(i).Size
 fld.Attributes = from_db.TableDefs(from_nm).Fields(i).Attributes
 tbl.Fields.Append fld
 Next

 'Create the indexes:
 If create_ind <> False Then
 For i = 0 To from_db.TableDefs(from_nm).Indexes.Count - 1
 Set ind = New Index
 ind.Name = from_db.TableDefs(from_nm).Indexes(i).Name
 ind.Fields = from_db.TableDefs(from_nm).Indexes(i).Fields
 ind.Unique = from_db.TableDefs(from_nm).Indexes(i).Unique
 If gstDataType <> "ODBC" Then
 ind.Primary = from_db.TableDefs(from_nm).Indexes(i).Primary
 End If
 tbl.Indexes.Append ind
 Next
 End If

 'Append the new table:

 to_db.TableDefs.Append tbl

 CopyStruct = True
 GoTo CSEnd

 CSErr:
 CopyStruct = False
 Resume CSEnd

 CSEnd:
 End Function

 'Place the following Function statement on one, single line:
 Function CopyData (from_db As Database, to_db As Database,
 from_nm As String, to_nm As String) As Integer

 On Error GoTo CopyErr
 Dim ds1 As Dynaset, ds2 As Dynaset
 Dim i As Integer
 Set ds1 = from_db.CreateDynaset(from_nm)
 Set ds2 = to_db.CreateDynaset(to_nm)
 While ds1.EOF = False
 ds2.AddNew
 For i = 0 To ds1.Fields.Count - 1
 ds2(i) = ds1(i)
 Next
 ds2.Update
 ds1.MoveNext
 Wend
 CopyData = True
 GoTo CopyEnd
 CopyErr:
 CopyData = False
 Resume CopyEnd
 CopyEnd:
 End Function

4. Start the program or press the F5 key.

5. You can check to see if the table was copied correctly to the TEST1.MDB
 database by opening TEST1.MDB with Microsoft Access or with the Data
 Manager provided with Visual Basic. You can run the Data Manager program
 from the Window menu in Visual Basic or from the Windows File Manager
 run DATAMGR.EXE in the Visual Basic directory.

REFERENCE
=========

The VISDATA.MAK file installed in the VB3\SAMPLES\VISDATA directory
loads extensive examples of data access. The VISDATA sample program uses
every data access function in Visual Basic. Refer to the VISDATA source
code for examples that show how to use each data access function.

Additional reference words: 3.00
KBCategory: APrg
KBSubcategory: APrgDataOther

How to Delete a Field from a Populated Table
Article ID: Q108148

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 version 3.0

SUMMARY
=======

This article shows by code example how to delete one or more fields from
an existing table.

Field definitions cannot be removed from the TableDef of the table, but
once the Field has been appended to the Fields collection, you can create a
new TableDef, minus the unwanted fields, and then copy the data from the
old table into the new table. An intermediate step uses a Microsoft Access
database as a staging area. This will work for databases other than
Microsoft Access because the Microsoft Access database is used and deleted,
with the data never having been affected by the intermediate stage.

MORE INFORMATION
================

Step-by-Step Instructions for Creating the Program
--

To create a Visual Basic utility program that allows selective field
deletions, follow these steps:

1. Start a new project in Visual Basic. This creates Form1 by default.

2. From the File menu, choose New Module, or click on the Toolbar icon
 second from the left.

3. From the File menu, choose Add File, and add the CMDIALOG.VBX custom
 control to your project.

4. On the form, create the following controls, and set the design-time
 properties shown:

 Control Name Property
 --
 Common Dialog Cmdialog1 (defaults)
 Command Button Pickdb Caption="Which Database?"
 Command Button Command1 Caption="Copy table minus fields"
 Text Box Text1 (defaults)
 List Box List1 (defaults)
 List Box List2 (defaults)
 Label Label1 Caption="Tables in Database"
 Label Label2 Caption="Select Field(s) to Remove"
 Label Label3 Caption=""

5. Position the textbox in the vicinity of the Pickdb button, so it will
 display the path and filename of the database selected.

6. Position the Label1 label over the List1 list box, and position Label2
 under List2.

7. Position Label3 over List2.

8. Add the following code to the form load event:

 Sub Form_Load ()
 ' set gtempdir to an appropriate directory in the global .BAS module
 On Error Resume Next
 Kill gtempdir & "tempDB.mdb"
 Set gdb1 = CreateDatabase(gtempdir & "tempDB.mdb", DB_LANG_GENERAL)
 command1.Enabled = False
 End Sub

9. Add the following code to the Command1_Click event:

 Sub Command1_Click ()

 Dim dbsource As database
 Dim dbdest As database

 Set dbsource = gdb2 ' the database with table to be modified
 Set dbdest = gdb1 ' the temp base

 ' Indexes can be compound (defined to include several fields) and
 ' one or more of the fields int he compound index may be deleted.
 ' Therefore, to simplify the copy process, no indexes are copied
 ' to the new table. You must make note of the indexes on the old
 ' table and recreate them based on the new fields by using Data
 ' Manager, the VISDATA sample application, or code.

 Cls
 currentx = 0: currenty = 0
 ' Place the following Print statement on one, single line:
 Print DCopyStruct(dbsource, dbdest, (label3), "tempctable",
 gdelfield_arr(), gdelfields_count)
 Print DCopyData(dbsource, dbdest, (label3), "tempctable")

 ' Reset storage arrays and counters for next operation:
 ReDim gdelfield_arr(1 To 1)
 ReDim gfieldorder_arr(1 To 1)
 gdelfields_count = 0
 gfieldorder_count = 0

 ' Copy back from temp after deleting old table:
 Set dbsource = gdb1 ' the temp base
 Set dbdest = gdb2 ' the database with table to be modified

 ' NOTE: If the table was defined in Microsoft Access to be in a
 ' relationship (using primary/foreign keys) to other tables, you will
 ' not be able to Delete it without undoing those relationships first.
 ' In that case, use something like the following to create the new
 ' table, and place it all on one, single line:

 response = MsgBox("Delete old table from database?", 3,
 "Decision Time!")

 Select Case response
 Case 6
 ' If Okay, delete the old table:
 gdb2.TableDefs.Delete label3
 ' Place the following Print statement on one, single line:
 Print DCopyStruct(dbsource, dbdest, "tempctable", (label3),
 gdelfield_arr(), gdelfields_count)
 Print DCopyData(dbsource, dbdest, "tempctable", (label3))
 Case 7
 ' Copy the new table with "new" appended to its name:
 ' Place the following Print statement on one, single line:
 Print DCopyStruct(dbsource, dbdest, "tempctable",
 (label3) & "new", gdelfield_arr(), gdelfields_count)
 Print DCopyData(dbsource, dbdest, "tempctable", (label3) & "new")
 Case 2
 ' Place the following MsgBox statement on one, single line:
 MsgBox "Cancelling copy of the new table back to the database.",
 0, "Decision Made"
 End Select

 Set dbsource = Nothing
 Set dbdest = Nothing

 gdb2.Close

 command1.Enabled = False
 list1.Clear
 list2.Clear
 End Sub

10. Add the following code to the Pickdb_Click event:

 Sub Pickdb_Click ()
 ' Reset global storage arrays and counters for next operation:
 ReDim gdelfield_arr(1 To 1)
 ReDim gfieldorder_arr(1 To 1)
 gdelfields_count = 0
 gfieldorder_count = 0

 ' Enter the following two lines as one, single line:
 cmdialog1.Filter = "Access (*.MDB)|*.mdb|Btrieve (*.DDF)|*.ddf|dBase
 (*.DBF)|*.dbf|FoxPro (*.DBF)|*.dbf|Paradox (*.DB)|*.db"
 cmdialog1.Action = 1
 text1 = cmdialog1.Filename ' Display the choice
 prompt$ = "Type the database connect string. For Access, press ENTER"
 title$ = "Connect string for OpenDatabase"
 connect$ = InputBox$(prompt$, title$, "Access")

 Select Case connect$
 Case ""
 Exit Sub

 Case "Btrieve"
 dbname$ = text1

 Case "Access"
 dbname$ = text1
 connect$ = ""

 Case Else
 dbname$ = StripFileName((text1))
 Debug.Print "else!"
 End Select

 ' Open the database with Exclusive set to True:
 Set gdb2 = OpenDatabase(dbname$, True, False, connect$)
 Set gtabledefs = gdb2.TableDefs
 ' List the tables in list1
 For i = 0 To gdb2.TableDefs.Count - 1
 If (gdb2.TableDefs(i).Attributes And DB_SYSTEMOBJECT) = 0 Then
 list1.AddItem gdb2.TableDefs(i)
 End If
 Next i

 command1.Enabled = True

 End Sub

11. Add the following code to the Form_QueryUnload event:

 Sub Form_QueryUnload (Cancel As Integer, UnloadMode As Integer)
 Debug.Print "Query unload"
 gdb1.Close
 ' Make sure the original database is explicitly closed:
 On Error Resume Next
 gdb2.Close

 Kill gtempdir & "tempDB.mdb"

 End Sub

12. Add the following code to the List1_DblClick event:

 Sub List1_DblClick ()

 list2.Clear

 ' Place the following two lines on one, single line:
 For i = 0 To
 gdb2.TableDefs(list1.List(list1.ListIndex)).Fields.Count - 1

 ' Place the following two lines on one, single line:
 list2.AddItem
 gdb2.TableDefs(list1.List(list1.ListIndex)).Fields(i).Name

 ' Display the table name of the table that has its fields
 ' displayed in List2:
 label3 = gdb2.TableDefs(list1.List(list1.ListIndex))
 Next i

 End Sub

13. Add the following code to the List2_DblClick event:

 Sub list2_DblClick ()

 ' Increment the global counter of the fields to be deleted:
 gdelfields_count = gdelfields_count + 1

 ' Increase the size of the global array holding the name of the field
 ' to be deleted:
 ReDim Preserve gdelfield_arr(1 To gdelfields_count) As String

 ' Store the field name to be deleted:
 gdelfield_arr(gdelfields_count) = list2.List(list2.ListIndex)

 ' Remove it from the list:
 list2.RemoveItem list2.ListIndex

 End Sub

14. Add the following code to the code module's General Declarations and
 merge it with the DATACONS.TXT file. Give the code module's code window
 the focus, choose Load Text from the File menu. Then browse for
 DATACONS.TXT at the root of the Visual Basic directory, and
 choose Merge.

 Global gdb1 As Database
 Global gdb2 As Database
 Global gtable1 As table
 Global gtable2 As table
 Global gtabledefs As TableDefs
 Global gdelfield_arr() As String
 Global gdelfields_count As Integer

 Global gfieldorder_arr() As Integer
 Global gfieldorder_count As Integer

 ' Set the following to an appropriate directory:
 Global Const gtempdir = "C:\temp\"

 15. Add the following code to the code module:

 ' Place the following Function statement on one, single line:
 Function DCopyData (from_db As Database, to_db As Database, from_nm As
 String, to_nm As String) As Integer

 On Error GoTo CopyErr
 Dim ds1 As Dynaset, ds2 As Dynaset
 Dim i As Integer, skip As Integer
 Set ds1 = from_db.CreateDynaset(from_nm)
 Set ds2 = to_db.CreateDynaset(to_nm)
 While ds1.EOF = False
 skip = False
 ds2.AddNew
 For i = 0 To ds1.Fields.Count - 1

 For n = 1 To gfieldorder_count

 If gfieldorder_arr(n) = i Then
 skip = True
 Exit For
 End If
 Next n

 If Not skip Then ds2(i) = ds1(i)
 Next
 ds2.Update
 ds1.MoveNext
 Wend

 DCopyData = True
 GoTo CopyEnd

 CopyErr:
 ShowError
 CopyData = False
 Resume CopyEnd

 CopyEnd:

 End Function

 16. Add the following code to the code module:

 ' Place the following Function statement on one, single line:
 Function DCopyStruct (from_db As Database, to_db As Database,
 from_nm As String, to_nm As String, delarray() As String,
 delfields As Integer) As Integer

 On Error GoTo CSErr
 Dim i As Integer, skip As Integer
 Dim tbl As New Tabledef 'table object
 Dim fld As Field 'field object
 Dim ind As Index 'index object

 ' Search to see if the table exists:
 namesearch:
 For i = 0 To to_db.TableDefs.Count - 1
 If UCase(to_db.TableDefs(i).Name) = UCase(to_nm) Then
 ' Place the following two lines on one, single line:
 If MsgBox(to_nm+" already exists, delete it?",
 4," DCopyStruct ")=YES Then

 to_db.TableDefs.Delete to_db.TableDefs(to_nm)
 Else
 to_nm = InputBox("Enter New Table Name:")
 If to_nm = "" Then
 Exit Function
 Else
 GoTo namesearch
 End If
 End If
 Exit For
 End If
 Next

 ' Strip off owner if needed
 If InStr(to_nm, ".") <> 0 Then
 to_nm = Mid(to_nm, InStr(to_nm, ".") + 1, Len(to_nm))
 End If
 tbl.Name = to_nm

 'create the fields
 For i = 0 To from_db.TableDefs(from_nm).Fields.Count - 1
 Set fld = New Field
 skip = False

 For n = 1 To delfields

 If from_db.TableDefs(from_nm).Fields(i).Name = delarray(n) Then
 ' Track the field ordinal position for the DCopyData call:
 gfieldorder_count = gfieldorder_count + 1
 ReDim Preserve gfieldorder_arr(1 To gfieldorder_count)
 gfieldorder_arr(gfieldorder_count) = i - 1
 skip = True
 Exit For
 End If
 Next n
 If Not skip Then
 fld.Name = from_db.TableDefs(from_nm).Fields(i).Name
 fld.Type = from_db.TableDefs(from_nm).Fields(i).Type
 fld.Size = from_db.TableDefs(from_nm).Fields(i).Size
 fld.Attributes = from_db.TableDefs(from_nm).Fields(i).Attributes
 tbl.Fields.Append fld
 End If
 Next

 ' Append the new table:
 to_db.TableDefs.Append tbl

 DCopyStruct = True
 GoTo CSEnd

 CSErr:
 ShowError
 DCopyStruct = False
 Resume CSEnd

 CSEnd:

 End Function

 17. Add the following code to the code module:

 Sub ShowError ()
 Dim s As String
 Dim crlf As String
 crlf = Chr(13) + Chr(10)
 s = "The following Error occurred:" + crlf + crlf
 ' Add the error string:
 s = s + Error$ + crlf
 ' Add the error number:

 s = s + "Number: " + CStr(Err)
 ' Beep and show the error:
 Beep
 MsgBox (s)
 End Sub

18. Add the following code to the code module:

 Function StripFileName (fname As String) As String
 On Error Resume Next
 Dim i As Integer
 For i = Len(fname) To 1 Step -1
 If Mid(fname, i, 1) = "\" Then
 Exit For
 End If
 Next
 StripFileName = Mid(fname, 1, i - 1)
 End Function

19. Save the project.

Step-by-Step Instructions for Using the Program

1. Press the F5 key and click the Which Database? button. Then
 browse for the database to modify.

2. Click OK to the dialog. Then type in the correct connect string in the
 Input box that follows. Press Cancel on the Input box if you don't want
 to open the database.

3. Double-click the table names displayed in List1 to get the field names
 displayed in List2.

4. Double-clicking on the fields will remove them from the list and build a
 list of fields to be deleted. This will not actually affect the table's
 fields.

5. When you have selected all the fields to be deleted, Click the button
 labeled "Copy table minus fields." This will cause a new table to be
 created minus the fields in a temporary database.

6. When prompted to delete the old table, you can choose to delete,
 not delete, or cancel.

7. If you choose not to delete the old table, a new table will be created
 in the original database with "new" appended to the end.

Additional reference words: 3.00
KBCategory: APrg
KBSubcategory: APrgDataOther

Comparison of Seek Versus Find Methods, for VB Data Access
Article ID: Q108149

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 version 3.0

SUMMARY
=======

This article compares the Seek method to the find methods (FindFirst,
FindLast, FindNext, and FindPrevious) for data access in Visual Basic.

MORE INFORMATION
================

The Seek and find methods differ in performance and in the type of
recordsets to which they apply:

 - The find methods (FindFirst, FindLast, FindNext, and FindPrevious) apply
 to Dynasets and Snapshots but not to Table objects. Conversely, the Seek
 method is available only on the Table object.

 - The Seek method is significantly faster than the find methods. It is
 also more flexible because you can change the Index property of the
 Table object to change the order of the Seek. For intensive searches,
 you may want to create a Table object so that you can use the Seek
 method along with the find methods on the open Dynasets.

FindFirst, FindLast, FindNext, FindPrevious Methods

The FindFirst, FindLast, FindNext, and FindPrevious methods locate the
first, last, next, or previous record, respectively, that satisfies the
specified criteria and makes that record the current record. These methods
are referred to as the find methods and have the following syntax:

 <recordset>.FindFirst <criteria>

 where <recordset> and <criteria> are defined as follows:

 <recordset> is the Recordset property of a data control or an object
 variable identifying a Dynaset or Snapshot.

 <criteria> is a string expression specifying the records that you
 want. The string is the WHERE clause in an SQL string without the
 word WHERE.

If the recordset contains more than one record that matches the criteria,
FindFirst locates the first occurrence, FindNext locates the next
occurrence, and so on. You can follow a find method with a move method,
such as MoveNext, which moves to the next record regardless of whether it
matches any criteria. If no matching records are found, the NoMatch

property is True and the current record remains the same as it was before
the find method was used.

NOTE: With a data control, if an Edit or AddNew operation is pending when
you use one of the find or move methods, the Update method is automatically
invoked if not intercepted during the Validate event.

CAUTION: In the Professional Edition of Visual Basic, if you are not using
a data control and use one of the find or move methods while an Edit or
AddNew method is pending, any existing changes will be lost and no error
will occur. An Edit or AddNew will be pending until an Update occurs. For
more information, see the Update method in the Help menu.

Example Code for FindFirst Method

The following example creates a Dynaset, and then uses FindFirst to locate
the first record satisfying the title condition:

 Sub Form_Load ()
 Dim MyCriteria As String, MyDB As Database, MySet As Dynaset
 MyCriteria = "State = 'NY'" ' Define search criteria.
 Set MyDB = OpenDatabase("BIBLIO.MDB")
 ' Create a Dynaset based on the Publishers table:
 Set MySet = MyDB.CreateDynaset("Publishers")

 ' Find first matching record:
 MySet.FindFirst MyCriteria
 If Not MySet.NoMatch Then
 MsgBox "match was found"
 Else
 MsgBox "match was not found"
 End If ' For a data control, you can use Data1.Recordset.NoMatch

 ' Find next matching record:
 MySet.FindNext MyCriteria
 If Not MySet.NoMatch Then
 MsgBox "match was found"
 Else
 MsgBox "match was not found"
 End If

 End Sub

Seek Method

The Seek method locates a record that meets the specified criteria for the
current index in an indexed table and makes it the current record. The Seek
method has the following syntax:

 <table>.Seek <comparison>, <key1>, <key2>, ...

 where the arguments are defined as follows:

 <comparison> is one of the following string expressions:
 <, <=, =, >=, >, or <>

 <key1>, <key2>, ... one value for each field in the table's current
 index.

To use the Seek method, you must first use the OpenTable method to create
an object variable for the table.

Seek searches through the specified Table using the current index and
locates the first record satisfying the criteria specified by comparison
and the key values (key1, key2...) and makes it the current record.

You must set the current index with the Index property before you use Seek.
If the index identifies a non-unique-key field, Seek locates the first
record satisfying the criteria.

When the comparison is =, >=, >, or <>, Seek starts at the beginning of the
index and searches forward. When the comparison is <= or <, Seek starts at
the end of the index and searches backward.

If <table> doesn't refer to an open table, or if there is no current index,
an error occurs.

Always inspect the value of the NoMatch property of the recordset to
determine whether each Seek method has succeeded. If Seek fails, NoMatch is
True and the current record is unchanged.

Example Code for Seek Method

The following example uses Seek to locate the first record in the
Publishers table where the PubID field is 3, using the existing primary key
index:

 Sub Form_Load ()
 Dim MyDB As database, MyTable As table
 Set MyDB = OpenDatabase("BIBLIO.MDB") ' Open a database.
 Set MyTable = MyDB.OpenTable("Publishers") ' Open a table.
 MyTable.Index = "PrimaryKey" ' Define current index.
 MyTable.Seek "=", 3 ' Seek record.
 If MyTable.NoMatch Then
 MsgBox "match was not found"
 Else
 MsgBox "match was found"
 End If
 End Sub

REFERENCES
==========

For more information, please read the Visual Basic online Help for the
Seek, FindFirst, FindLast, FindNext, and FindPrevious Methods.

You can study the database design of a database file such as BIBLIO.MDB by
opening it with Microsoft Access, or with the Data Manager or VISDATA
provided with Visual Basic.

You can run the Data Manager program from the Window menu in Visual Basic,

or from the Windows File Manager run DATAMGR.EXE in the Visual Basic
directory.

The VISDATA.MAK file installed in the VB3\SAMPLES\VISDATA directory loads
extensive examples of data access. The VISDATA sample program uses every
data access function in Visual Basic. You can refer to the VISDATA source
code for examples of how to use each data access function.

Additional reference words: 3.00 MoveFirst MoveLast MoveNext MovePrevious
KBCategory: APrg
KBSubcategory: APrgDataOther

How to Count Rows Affected Before Query in VB Prof ver 3.0
Article ID: Q108150

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, version 3.0

SUMMARY
=======

This article shows by example how to count the number of rows affected by a
query before executing the query. You can execute a Select query using the
same Where clause that your action query will use. Then you can examine
the return value. This is an excellent practice before using the SQL
Delete or Update methods.

MORE INFORMATION
================

Step-by-Step Example

1. Start a new project in Visual Basic. Form1 is created by default.

2. Double-click the form to open its code window. Add the following code
 to the Form Load event:

 Sub Form_Load ()
 Dim db As database
 Dim ds As dynaset
 Set db = OpenDatabase("c:\vb3\biblio.mdb")
 ' Place the following Set statement on one, single line:
 Set ds = db.CreateDynaset("SELECT COUNT(*) as alias
 FROM Authors where AU_ID > 10")
 Debug.Print ds(0)
 End Sub

3. Start the program or press the F5 key. The Debug window will display a
 count of 36. To end the program, close the form.

You can check the contents of the BIBLIO.MDB file by opening it with
Microsoft Access or with the Data Manager provided with Visual Basic.
You can run the Data Manager program from the Window menu in Visual
Basic, or you can select DATAMGR.EXE in the Visual Basic directory and
run it from the Windows File Manager.

REFERENCES
==========

The VISDATA.MAK file installed in the VB3\SAMPLES\VISDATA directory
loads extensive examples of data access. The VISDATA sample program uses
every data access function in Visual Basic. You can refer to the VISDATA
source code for examples of how to use each data access function.

Additional reference words: 3.00
KBCategory: APrg
KBSubcategory: APrgDataOther

DOC: Revised Index Property (Data Access)
Article ID: Q108235

The information in this article applies to:

 - Microsoft Visual Basic programming system for Windows, version 3.0

SUMMARY
=======

Page 279 of the "Language Reference" discusses the Index Property (Data
Access). It has some incorrect and misleading information. This
article is a revised and corrected version of the entire Index Property
(Data Access) section. Please replace page 279 with this article.

MORE INFORMATION
================

Index Property (Data Access)

Applies To
 Table object

Description
 With data access, the Index property determines which existing index
 is the current index used to sort records in a Table and in recordsets
 created from that Table. The default is blank. The Index property is
 not available at design time and is available read/write at run time.

Syntax
 table.Index [= indexname]

Remarks
 The order of the data in a table is determined by the order in which
 the data is added to the table. To alter the order of records
 fetched from the table when using a Table object, set the Index
 property to the name of an index in the Indexes collection of the
 Table's TableDef object. For example, to set the index to be used on
 a Seek against the Titles table:

 Dim Tb as Table, Db as Database
 Set Db = OpenDatabase("Biblio.MDB")
 Set Tb = Db.OpenTable("Titles")
 Tb.Index = "PubID"
 Tb.Seek "=", 3

 The specified index must already be defined. If you set the Index
 property to an index that doesn't exist, or if the index isn't set
 when you use the Seek method, an error occurs.

 In the Professional Edition, you can create a new Index in a Table
 by creating a new Index object, setting its properties, and then
 appending it to the Indexes collection of the Table's TableDef.

 The records in a Table can be ordered only according to the indexes
 defined for it. To sort the Table records in some other order,
 create a new Index for the table and append it to the Table's Index
 Collection, or create a Dynaset or Snapshot that has a different sort
 order. To specify the sort order for Dynasets and Snapshots, use the
 Sort property after the Dynaset or Snapshot has been created. You can
 also set the order of a Dynaset or Snapshot by including an Order By
 clause in a SQL statement used to define the Dynaset or Snapshot.

 The Index property of a control array element is not the same as the
 Index property of a data access object.

Data Type
 String

Additional reference words: 3.00 docerr
KBCategory: APrg
KBSubCategory: APrgDataOther

LONG: Overview of Data Access in Visual Basic Version 3.0
Article ID: Q108379

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, version 3.0

SUMMARY
=======

This article provides an overview of data access in Visual Basic version
3.0. It contains following sections:

 - Data Access In Visual Basic Version 3.0 Versus 2.0
 - Relational Database Theory
 - Visual Basic Can Use SQL
 - Visual Basic Uses the Microsoft Access Database Engine
 - Data Access Object Hierarchy

MORE INFORMATION
================

DATA ACCESS IN VISUAL BASIC VERSION 3.0 VERSUS 2.0
==

Historically, database management systems (DBMS) represent some of the most
mission-critical and most complex programming challenges in the field of
computer science.

Visual Basic version 3.0 ships with full-featured, multi-faceted data
access capability. It has a full range of connectivity, flexibility, and
support for Open Database Connectivity (ODBC) on the Microsoft Windows
platform.

Database features were introduced to Visual Basic in version 2.0. The
upgrade to Visual Basic version 3.0 offers much easier and much more
powerful database management.

Microsoft added new data methods, objects, and properties in Visual Basic
version 3.0. Version 2.0 was not able to create an updatable Dynaset on an
entire table, and could not navigate the Dynaset with methods other than
MoveNext. Visual Basic version 3.0 can do both. In version 3.0, Dynasets
created using SQL statements are updatable, and there are three new move
methods (MovePrevious, MoveLast and MoveFirst).

Programmers are much more likely to face network architecture issues in
Visual Basic version 3.0 than with version 2.0. This is because of the
fuller implementation of ODBC and the inclusion of the Microsoft Access
engine and its ISAM database connectivity.

Some programmers use Visual Basic version 3.0 as the center of mission-
critical database management systems connected to proprietary databases.
For example, a Visual Basic version 3.0 application could be written as
a front end for an enterprise-wide information system containing data in

formats for SQL Server, Oracle, dBASE and FoxPro. The Visual Basic
application could integrate data from all these sources and from multiple
servers. The performance of a system such as this depends significantly
on the network behavior and back-end systems outside of Visual Basic.

RELATIONAL DATABASE THEORY
==========================

Database Models

The field of computer science has evolved four models for databases, in
the following order of progressing theory and technology:

1. Flat File Database
2. Hierarchical Database
3. Network Database
4. Relational Database

The relational model is a major step forward for database programmers. With
the relational model, none of the physical and logical pointers between
records are exposed to the programmer. The relational database handles all
low-level structure. A relational database management system (RDBMS) makes
database programming much easier and more flexible than earlier database
systems.

Relational Database Model

Visual Basic uses a relational database model. The relational database
model offers the following benefits:

 - Organizes data in a collection of tables making the design easy
 to understand.

 - Provides a relationally complete language for data definition,
 retrieval, and update. It is non-procedural and criteria-based.

 - Provides data integrity rules that define consistent states of the
 database to improve data reliability.

A relational database management system (RDBMS) is software that allows you
to represent your data according to the relational model. Both the
programmer and the user think in terms of groups of tables comprising the
database, with tables composed of rows and columns. The data in those rows
and columns relate to each other according to a consistent theory and
practice.

Relational databases support a standard language called Structured Query
Language (SQL). SQL has evolved into a comprehensive language for
controlling and interacting with a database management system (DBMS). SQL
is now a standard approved by the American National Standards Institute
(ANSI).

SQL provides three important functions:

1. Data Definition -- to define the tables that hold the data.

2. Data Manipulation -- to insert, update, or delete information stored in
 tables.

3. Data Control -- to prevent access to private data in the database.

Dr. Codd, considered the father of relational database theory, has defined
twelve conditions that a database must obey to be considered fully
relational, and he defined three criteria for a minimally relational DBMS:

1. Information is represented as values in tables.

2. Internal data structures and pointers are not visible to the user.

3. The DBMS language supports at least the following syntax:
 SELECTION, PROJECTION, and JOIN.

These three criteria are necessary and sufficient for a minimally
relational definition because of the following:

1. The relational operations only work on tables, therefore all the data
 must be in tables.

2. If internal data structures and pointers were visible to the user,
 the data would not appear to be in a table. It would appear to be in
 some DBMS dependent structure.

3. Without SELECTION, the DBMS could not perform operations on subsets of
 the table. It would be forced to operate on the entire table. In effect,
 it would be just a file handler.

 Without PROJECTION, the DBMS could only perform operations on an entire
 row. Therefore, it would be just a unit record handler.

 Without JOIN, data could not be correlated across tables. It would not
 be a related database, just a collection of unrelated tables.

The following additional terms are associated with relational database
theory:

 primary key
 foreign key
 null values
 duplicate values
 updatable values
 derivative data
 constraints
 referential integrity

For more information on relational database theory, refer to any of the
books listed in the BIBLIO.MDB database in Visual Basic version 3.0.

VISUAL BASIC CAN USE SQL
========================

The Microsoft Access engine included with Visual Basic version 3.0 uses a
dialect of Structured Query Language (SQL). This dialect is based on the

ANSI 1986 standard and differs from that of Microsoft's SQL Server in
certain syntax. For that syntactical reference, please refer to Appendix B
of "Microsoft Visual Basic 3.0: Professional Features Book 2: Data Access
Guide."

The SQL parsing capability of the Microsoft Access engine adds considerable
power and flexibility to Visual Basic. SQL gives database programmers and
users more leverage and a standardized approach to querying databases.

VISUAL BASIC USES THE MICROSOFT ACCESS DATABASE ENGINE
==

Visual Basic version 3.0 uses the database engine from Microsoft Access
version 1.1. This engine provides data access to many database formats,
including Microsoft Access, FoxPro, dBASE, Paradox, Btrieve, SQL Server,
Oracle, and other formats that support the ODBC specification.

The Microsoft Access database engine in Visual Basic version 3.0 provides
the following:

 - Provides a query engine
 - Supports multi-user applications
 - Allows for transaction processing
 - Offers choice of optimistic or pessimistic locking
 - Supports rich data types such as sound, video, OLE objects, and pictures
 - Parses SQL
 - Performs distributed joins, such as joining a FoxPro table with an
 Oracle table
 - Performs updatable queries and query optimization
 - Supports international collating orders.

In Visual Basic, you can harness the database engine in two different ways:

1. By writing code using the data definition language (DDL) and data
 manipulation language (DML). This involves dimensioning and using
 database object variables.

2. By using the data control and bound controls. Bound controls include the
 text box, label, check box, image control, and picture control in the
 Standard Edition of Visual Basic, plus the masked edit, 3DPanel, and
 3DCheckBox in the Professional Edition. You can enable data access
 without code by setting design-time properties or by setting properties
 in run-time code.

Programmers can handle database objects easily in Visual Basic code. The
object layer provides a uniform system catalog, independent of whether
the database is a Microsoft Access database or an external database such as
an ODBC or ISAM database. You can gain access to the hierarchical structure
of the system catalog by using the TableDef objects in the TableDefs
collection of each database.

Component Model of Data Access in Visual Basic
--

The architecture of the database components is the same for Microsoft
Access version 1.1 and Visual Basic version 3.0.

You can access three types of databases from Visual Basic:

1. Microsoft Access databases, which are native to Visual Basic's database
 engine. Visual Basic can use Microsoft Access databases directly.

2. Indexed sequential access method (ISAM) databases, such as dBASE,
 Paradox, and Btrieve databases. Visual Basic reaches these databases
 through user-installable drivers that link Visual Basic to the specific
 databases.

3. Open Database Connectivity (ODBC) accessible databases. These include
 client-server database management systems (DBMS), such as Microsoft SQL
 Server and ORACLE. Visual Basic reaches these databases through the
 appropriate ODBC drivers.

Various gateways are also available to connect to databases on mainframe
computers. This is usually implemented through an ODBC driver.

DATA ACCESS OBJECT HIERARCHY
============================

At the top of the database object hierarchy is the Database object, not to
be confused with the Database property of the data control. One of the
properties of the Database object is the TableDefs collection, which is
also an object. The TableDefs collection represents all the individual
TableDef objects associated with the Table objects. Please read further
about objects in the NOTE sections in the sample program below.

Step-by-Step Example Shows How to Use Database Objects
--

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add four list boxes to the form.

3. Add the following code to the Form Load event:

 Sub Form_Load ()
 form1.Show
 Dim MyDb As Database
 Dim MySingleTableDef As TableDef
 Dim AllTableDefs As TableDefs
 Set MyDb = OpenDatabase("BIBLIO.MDB", True, False)
 Set AllTableDefs = MyDb.TableDefs
 For i = 0 To AllTableDefs.Count - 1
 ' Only Count property is applicable to top-level Tabledefs object
 list1.AddItem AllTableDefs(i).Name ' Get each table name in MyDb
 list2.AddItem AllTableDefs(i).DateCreated
 list3.AddItem AllTableDefs(i).Updatable
 list4.AddItem AllTableDefs(i).Attributes
 ' Value property is only valid if part of a recordset:
 ' list5.AddItem AllTableDefs(i).Value
 Next i
 End Sub

4. Start the program or press the F5 key. Examine the contents of the list
 boxes. Close the form to end the program.

 NOTE: Using the values of the Name property of the TableDefs object (the
 top-level collection), you can examine the properties of the TableDef
 object of the individual tables as shown below. You can walk through
 the Fields collection of the TableDef object of the individual tables
 using the Count property. The Count property is the only property of
 the collection objects. The collection objects are Fields, TableDefs,
 and Indexes.

5. Add four more list boxes to the form, numbered 5 through 8.

6. Append the following code to the existing code in the form load
 procedure:

 ' Get information on the first table listed on list box 1:
 Set MySingleTableDef = MyDb(list1.List(0))
 For i = 0 To MySingleTableDef.Fields.Count - 1
 list5.AddItem MySingleTableDef.Fields(i).Name
 ' or you can use: list5.AddItem MySingleTableDef(i).Name
 ' because Fields are the default collection.
 list6.AddItem MySingleTableDef.Fields(i).Size
 list7.AddItem MySingleTableDef.Fields(i).Type
 If i <= MySingleTableDef.Indexes.Count - 1 Then
 list8.AddItem MySingleTableDef.Indexes(i).Name
 End If

 ' The Value property is only valid if part of a recordset:
 ' MySingleTableDef.Fields(i).Value
 ' The other 5 properties are valid for a field of a TableDef object:
 ' MySingleTableDef.Fields(i).OrdinalPosition
 ' MySingleTableDef.Fields(i).CollatingOrder
 ' MySingleTableDef.Fields(i).Attributes
 ' MySingleTableDef.Fields(i).SourceField
 ' MySingleTableDef.Fields(i).SourceTable
 Next i

7. Start the program or press the F5 key. Examine the contents of the list
 boxes. Close the form to end the program.

 NOTE: The Field and Index objects are contained in the Field and
 Index collections of the Table and TableDefs objects. The following
 code shows this.

8. Append the following code to the existing code in the form load
 procedure:

 msgbox "Next, show indexes for the " & MySingleTableDef.Name & " Table"
 list5.Clear
 list6.Clear
 list7.Clear
 list8.Clear
 For i = 0 To MySingleTableDef.Indexes.Count - 1
 list5.AddItem MySingleTableDef.Indexes(i).Name
 list6.AddItem MySingleTableDef.Indexes(i).Primary
 list7.AddItem MySingleTableDef.Indexes(i).Unique
 list8.AddItem MySingleTableDef.Indexes(i).Fields
 ' property of Index object: indicates simple/composite keys

 ' Determines which TableDef fields are key fields in an index.
 ' Read-only when the Index is a member of a collection.
 ' Read/write only in the Professional Edition
 ' with a new object not yet appended to an Indexes collection.
 ' An Index object has field(s) representing key values
 ' for each record. Field names are separated by semicolons.
 Next i

REFERENCES
==========

 - "Microsoft Visual Basic 3.0: Professional Features Book 2:
 Data Access Guide."

 - The VISDATA.MAK file installed in the VB3\SAMPLES\VISDATA directory
 loads extensive examples of data access. The VISDATA sample program
 uses every data access function in Visual Basic. You can refer to the
 VISDATA source code for examples of how to use each data access
 function.

Additional reference words: 3.00 1.10 2.00
KBCategory: APrg
KBSubcategory: APrgDataOther

PRB: Find Methods Don't Use Indexes to Speed Up VB Data Access
Article ID: Q108380

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, version 3.0

SYMPTOMS
========

The find methods take longer to find farther records than nearer records.
For example, the FindFirst method takes longer to find records that are
farther into the Dynaset or Snapshot. Using FindFirst, FindNext, or
FindLast on indexed fields isn't any faster than on non-indexed fields.

CAUSE
=====

Creating a Dynaset or Snapshot is relatively fast because of indexes.
Indexes are used when you create the Dynaset or Snapshot, such as when
you specify a selection criteria or an ORDER BY clause in the
CreateDynaset method. However, after the Dynaset or Snapshot is
created, it does not use the indexes for searches.

The find and move methods always search sequentially within the current
Dynaset or Snapshot. The find and move methods don't use indexes. For
example, the FindLast and MoveLast methods require reading the entire
recordset before processing continues.

The find methods are: FindFirst, FindLast, FindNext, and FindPrevious.
The move methods are: MoveFirst, MoveLast, MoveNext, and MovePrevious.

WORKAROUND
==========

Repositioning the record pointer to a location far into a large Dynaset
or Snapshot may be faster if you recreate the Dynaset or Snapshot
instead of searching the existing one.

For example, you could change the RecordSource property of a data
control at run time as follows:

 txtSearchString = "target string to find"
 ' Place the following two lines on one, single line:
 data1.Recordset = "select * from mytable where myfield = '" &
 txtSearchString & "' order by myotherfield"
 data1.Refresh ' Update the data control with the new Recordset

You can also open a Table object in addition to the Dynaset or Snapshot.
You can use the Seek method on the Table to find a specific record keyed
by an index.

STATUS
======

This behavior is by design.

REFERENCES
==========

 - "Microsoft Visual Basic 3.0: Professional Features Book 2:
 Data Access Guide," Chapter 3. See the section "Positioning the Current
 Record in a Recordset."

 - Help menu in Visual Basic.

Additional reference words: 3.00
KBCategory: APrg
KBSubcategory: APrgDataOther

How to Attach an External Database Table to a VB 3.0 Database
Article ID: Q108423

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, version 3.0

SUMMARY
=======

An attached table is a table from an external database linked at run
time to a Microsoft Access database. You can gain access to the data in
the attached table by using a data control, a Dynaset, or a Snapshot.
The database format native to Visual Basic is the Microsoft Access format.

Using the data control, you can open a Dynaset on an external table.
Specify the external database type in the Connect property. Specify an
appropriate directory or file name in the DatabaseName property of the
data control.

Using object variables, you can attach a table from any supported
external database to a Microsoft Access database as shown in the
examples below.

NOTE: You can use queries and the move and find methods on an attached
table. An attached table cannot be opened with the OpenTable method.
Therefore you cannot use the Seek method on an attached table.

MORE INFORMATION
================

The following steps describe how to attach a table to an existing Visual
Basic database or a Microsoft Access database:

1. Create a variable for the Database object you are going to modify:

 Dim Db As Database

2. Use the OpenDatabase function to open the existing Visual Basic or
 Microsoft Access database:

 Set Db = OpenDatabase("BIBLIO.MDB")

3. Dimension a new TableDef object for the table from the external
 database.

4. Set the following properties of the TableDef object to prepare for
 attaching the external table:

 a. Name property: A new name for the table to be used in Visual Basic.

 b. SourceTableName property: The original name of the external table or
 file name.

 c. Connect property: The database type and other parameters. If a
 password is required but not provided in the Connect property, a
 Login dialog box appears each time the table is accessed.

5. Repeat steps 3 and 4 for each external table.

6. Use the Append method to add the TableDef object(s) to the TableDefs
 collection of the Microsoft Access database. This step actually creates
 the object links in the Microsoft Access database file.

Example One

Both databases shown below are Microsoft Access databases. But the table to
be attached to the Microsoft Access database could be from any of the other
database formats that Visual Basic version 3.0 supports.

1. Start a new project in Visual Basic. Form1 is created by default.

2. Double-click the form to open its code window. Add the following code
 to the Form Load event:

 Sub Form_Load ()
 Dim db As database
 Dim td As New Tabledef
 Dim ds As dynaset
 Set db = OpenDatabase("BIBLIO.MDB")
 td.Name = "MyNewCustomersTable" ' New Table name for use in VB.
 td.SourceTableName = "Customers" ' Table name in source database.
 td.Connect = ";DATABASE=c:\access\nwind.mdb;" ' Source database.
 db.TableDefs.Append td ' Append Customers Table to BIBLIO.MDB.
 Set ds = db.CreateDynaset("MyNewCustomersTable") ' Create dynaset.
 Debug.Print ds.Fields(0) ' Proves the Table is attached.
 Debug.Print ds.Fields(1) ' Proves the Table is attached.
 Debug.Print ds.Fields(2) ' Proves the Table is attached.
 ' The following statement deletes the appended Table, if desired:
 db.TableDefs.Delete "MyNewCustomersTable"
 End Sub

3. Start the program or press the F5 key. To end program, close the form.

Example Two

1. Start a new project in Visual Basic. Form1 is created by default.

2. Double-click the form to open its code window. Add the following code
 to the Form Load event:

 Sub Form_Load ()

 Dim db1 As database, db2 As database
 Dim td As New Tabledef
 Dim tb As Table
 Dim ds As dynaset
 Dim f1 As New field, f2 As New field

 Const DB_LANG_GENERAL = ";LANGID=0x0809;CP=1252;COUNTRY=0"
 Const DB_VERSION10 = 1
 Const file1 = "test1.mdb" 'contains Table food1"
 Const file2 = "test2.mdb" 'contains Table food2

 Set db1 = OpenDatabase(file1)
 Set db2 = OpenDatabase(file2)
 ' db2.TableDefs.Delete "new_food1" ' Deletes Table if desired.

 td.Name = "new_food1"
 td.SourceTableName = "food1"
 td.Connect = ";database=" & file1 & ";"

 ' NOTE: For an ODBC database, the connect string would be similar to:
 ' td.Connect = "ODBC;UID=sa;PWD=;DSN=texas;DATABASE=pubs;"
 ' td.Attributes = DB_ATTACHEDTABLE
 ' or, if password protected: td.Attributes = &H20000
 ' or, if exclusive: td.Attributes = tbl.Attributes + &H10000

 db2.TableDefs.Append td ' Attaches the external Table.

 ' NOTE: The OpenTable method is illegal for attached Tables:
 ' Set tb = db2.OpenTable("new_food1") ' Gives an error.

 Set ds = db2.CreateDynaset("new_food1")
 Print ds.Fields(0) ' Proves the Table is attached.
 ds.Close
 db1.Close
 db2.Close
 End Sub

3. Modify the code to use your existing database and table names. Start the
 program or press the F5 key. To end the program, close the form.

REFERENCES
==========

 - See the "attached tables" topic in the Help menu.

 - See the EXTERNAL.TXT file provided with Visual Basic.

 - The VISDATA.MAK file installed in the VB3\SAMPLES\VISDATA directory
 loads extensive examples of data access. The VISDATA sample program uses
 every data access function in Visual Basic. You can refer to the VISDATA
 source code for examples of how to use each data access function.

Additional reference words: 3.00
KBCategory: APrg
KBSubcategory: APrgDataOther

How to Request Exclusive Use of a Table in VB Prof 3.0
Article ID: Q108467

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, version 3.0

SUMMARY
=======

Below is an example of how to request exclusive use of a table and deny
access to other users.

MORE INFORMATION
================

If you do not want any other users to access a table while you have it
open, open the table exclusively. Set the options argument of the OpenTable
method to a value equal to DB_DENYREAD plus DB_DENYWRITE to give your
program exclusive access.

The values of all constants for data access, such as DB_DENYREAD and
DB_DENYWRITE, are defined in the DATACONS.TXT text file installed in
your Visual Basic directory.

Step-by-Step Example

1. Start a new project in Visual Basic. Form1 is created by default.

2. Double-click the form to open its code window. Add the following code
 to the Form Load event:

 Sub Form_Load ()
 Dim i As Integer
 Dim db As Database
 Dim tb As table

 On Error GoTo ExclusiveErr
 Const DB_DENYWRITE = &H1 ' Constant defined in DATACONS.TXT file
 Const DB_DENYREAD = &H2 ' Constant defined in DATACONS.TXT file
 Set db = OpenDatabase("C:\VB3\BIBLIO.MDB")
 Set tb = db.OpenTable("authors", DB_DENYREAD + DB_DENYWRITE)
 ' To open shared access, use: Set tb = db.OpenTable("authors", 0)
 MsgBox "Database & table opened successfully, denying read & write."
 'PlaceDataInControls
 EndExclusiveOpen:
 Exit Sub

 ExclusiveErr:
 Select Case Err
 Case 3262
 MsgBox "Table is locked. You cannot open it exclusively. Try shared."
 'optExclusive.Value = False

 Resume EndExclusiveOpen
 Case 3261
 MsgBox "Table exclusively locked by another user -- cannot open."
 End
 Case Else
 MsgBox Err & " " & Error$
 End Select

 End Sub

3. From the File menu, choose Make EXE File. Name the executable file
 TEST.EXE.

4. Run one copy of TEST.EXE from the Windows File Manager or Program
 Manager. Leave the following message on the screen without choosing OK,
 in order to leave the database open:

 Database & table opened successfully, denying read & write.

5. Start the program in Visual Basic by pressing the F5 key. This second
 instance of the program displays the following message:

 Table is locked. You cannot open it exclusively. Try shared.

6. Close the form to end the program session in Visual Basic. Change
 DB_DENYREAD + DB_DENYWRITE to 0 in the OpenTable method as follows:

 Set tb = db.OpenTable("authors", 0)

 This opens the table with shared access, the default.

7. Start the program in Visual Basic by pressing the F5 key. This second
 instance of the program now displays the following message:

 Table exclusively locked by another user. You cannot open it.

8. You can end the first instance of the program, TEST.EXE, by clicking
 OK and closing the form.

REFERENCES
==========

 - Microsoft Visual Basic 3.0: Professional Features Book 2: Data Access
 Guide, page 58.

 - DATACONS.TXT text file installed in your Visual Basic directory.

 - The VISDATA.MAK file installed in the VB3\SAMPLES\VISDATA directory
 loads extensive examples of data access. The VISDATA sample program uses
 every data access function in Visual Basic. You can refer to the VISDATA
 source code for examples of how to use each data access function.

Additional reference words: 3.00
KBCategory: APrg
KBSubcategory: APrgDataOther

Category Keywords for All Visual Basic KB Articles
Article ID: Q108753

The information in this article applies to:

- Microsoft Visual Basic for Windows, versions 2.0 and 3.0

SUMMARY
=======

Each article in the Visual Basic for Windows collection contains at least
one keyword (called a KBSubcategory keyword) that places the article in an
appropriate category. This article lists all the KBSubcategory keywords.

MORE INFORMATION
================

Category & Subcategory Description KBSubcategory Keyword
--
Setup / Installation (Setins) Setins

Environment-specific Issues (Envt)
 VB Design Environment EnvtDes
 Run-Time Environment EnvtRun

Programming (Prg)
 Visual Basic Forms and Controls
 Standard Controls / Forms PrgCtrlsStd
 Custom Controls PrgCtrlsCus
 Third-Party Controls PrgCtrlsThird

 Optimization
 Memory Management PrgOptMemMgt
 General Optimization Tips PrgOptTips

 General VB Programming PrgOther

Advanced programming (APrg)
 Network APrgNet

 Windows Programming (APIs / DLLs)
 Printing APrgPrint
 Graphics APrgGrap
 Windowing APrgWindow
 INI Files APrgINI
 Other API / DLL Programming APrgOther

 Data Access
 ODBC APrgDataODBC
 IISAM APrgDataIISAM
 Access APrgDataAcc
 General Database Programming APrgDataOther

 3rd Party DLL's APrgThirdDLL

Inter-Application Programmability (IAP)
 OLE IAPOLE
 DDE IAPDDE
 3rd Party Interoperability IAPThird

Tools (Tls)
 Setup Toolkit / Wizard TlsSetWiz
 Control Development Kit (CDK) TlsCDK
 Help Compiler (HC) TlsHC

References (Refs)
 Documentation / Help File Fixes RefsDoc
 Product Information RefsProd
 Third-Party Information RefsThird
 PSS-Only Information RefsPSS

Using Keywords to Query the KB

At Microsoft, we use the subcategory keywords to organize the articles for
Help files and for the FastTips Catalog. You can use them to query the
Microsoft Knowledge Base for Visual Basic articles that apply to that
category or subcategory. For example, you can find all the general database
programming articles by querying on the following words in the Microsoft
Knowledge Base:

 visual and basic and APrgDataOther

Use the asterisk (*) wildcard to find articles that fall into the general
categories or into an intermediate subcategory. The first element in each
keyword is the category. For example, to find all the articles that apply
to Visual Basic Forms and Controls regardless of whether they are standard,
custom, or third-party controls, use the following words to query the
Microsoft Knowledge Base:

 visual and basic and PrgCtrls*

To find all advanced programming articles, query on these words:

 visual and basic and APrg*

Add KBSubcategory Keyword to Each Article

When contributing an article to the Visual Basic Knowledge Base, add the
appropriate KBSubcategory keyword to the bottom of the article on the
KBSubcategory line. Each article in the Visual Basic for Windows
collection contains the following section at the bottom of the article:

Additional reference words:
KBCategory:
KBSubcategory: <keyword>

An article usually has only one subcategory keyword, but it may have more.

If you are interested in contributing, please obtain the guidelines by

querying on the following words in the Microsoft Knowledge Base:

 visual and basic and kbguide and kbartwrite

Additional reference words: 3.00 dskbguide subcatkey
KBCategory:
KBSubcategory: RefsPSS

Basic Cannot Get Description Shown in Access Table Design View
Article ID: Q109136

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, version 3.0
- Microsoft Access versions 1.0 and 1.1

When you View a database in Table Design mode in Microsoft Access, a
Description property is shown. You can describe a table and each of its
fields in the Description property using up to 255 characters. That
Description property is not visible when you choose the Datasheet view.
The Description property is only visible in design mode in Microsoft
Access.

The Description property cannot be read by Access Basic or Visual Basic at
run time. The Description property is encrypted in one of the MSys* system
tables within each database. Visual Basic cannot access the Description
property, even if you use the ListFields or ListTables method. The
Description property is designed for use only at database design time.

Additional reference words: 3.00 1.00 1.10
KBCategory: APrg
KBSubcategory: APrgDataOther

How to List the Fields in a Table & the Tables in a Database
Article ID: Q109219

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, version 3.0

SUMMARY
=======

Below are two examples showing how to list all the fields in a table and
all the tables in a database.

 - Example One shows how to list all the fields in a database table by
 using the Fields collection of a table's TableDef object. It also shows
 how to list the names of all tables in a database.

 - Example Two shows how to list all the fields in a database table using
 the ListFields method. The ListFields method creates a Snapshot with one
 record for each field in a specified recordset.

The technique used in Example One is more efficient than Example Two.

MORE INFORMATION
================

Example One: How to List the Fields in a Table Using the Fields Collection
--

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add two list boxes to Form1.

3. Double-click the form to open the code window. Add the following code to
 the Form Load event:

 Sub Form_Load ()

 Set MyDb = OpenDatabase("BIBLIO.MDB")
 ' Set AllTableDefs to definitions of all tables in the database:
 Set AllTableDefs = MyDb.TableDefs
 ' Display names of all tables in database:
 For j = 0 To AllTableDefs.Count - 1
 List1.AddItem AllTableDefs(j).Name
 Next

 End Sub

4. Double-click the List1 list box and enter the following code in its
 Click event:

 Sub List1_Click ()

 ' Delete any existing entries in List2 box:

 Do While list2.ListCount > 0
 list2.RemoveItem 0
 Loop

 ' Get the definition of the single table currently selected in List1:
 Set SingleTableDef = MyDb(List1.List(List1.ListIndex))
 ' Display the properties of each field in the table:
 For j = 0 To SingleTableDef.Fields.Count - 1
 list2.AddItem "Field item number " & Val(j) & ":"

 ' Display the name of the field in the table selected in List1:
 list2.AddItem SingleTableDef.Fields(j).Name
 ' or use the following since Fields are the default collection:
 ' List2.AddItem SingleTableDef(j).Name

 list2.AddItem SingleTableDef.Fields(j).Size ' Size of field.
 list2.AddItem SingleTableDef.Fields(j).Type ' Type of field.
 ' If field is an index, list the name of the index:
 If j <= SingleTableDef.Indexes.Count - 1 Then
 list2.AddItem "Index name: " & SingleTableDef.Indexes(j).Name
 End If

 ' The Value property is only valid if part of a recordset:
 ' list2.AddItem SingleTableDef.Fields(i).Value

 ' The other 5 properties are valid for a field of TableDef object:
 list2.AddItem SingleTableDef.Fields(j).OrdinalPosition
 list2.AddItem SingleTableDef.Fields(j).CollatingOrder
 list2.AddItem SingleTableDef.Fields(j).Attributes
 list2.AddItem SingleTableDef.Fields(j).SourceField
 list2.AddItem SingleTableDef.Fields(j).SourceTable
 list2.AddItem " "
 Next

 End Sub

5. From the File menu, choose New Module. Then enter the following code in
 the General Declarations section:

 Global MyDb As Database
 Global SingleTableDef As TableDef
 Global AllTableDefs As TableDefs

6. Start the program. Click any table name in the first list box. In the
 second list box, the program displays all the fields and field
 properties for that table. Close the form to end the program.
 NOTE: Some MSys* tables (such as MSysACEs) have no fields.

Example Two: How to List the Fields in a Table Using the ListFields Method
--

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add a list box to Form1. Size the list box to fill all of Form1.

3. Double-click the form to open the code window. Add the following code to
 the Form Load event:

 Sub Form_Load ()
 Dim ListSet As Snapshot, MyDB As database, MyTable As table
 Set MyDB = OpenDatabase("BIBLIO.MDB")
 Set MyTable = MyDB.OpenTable("Publishers") ' Open Table.
 Set ListSet = MyTable.ListFields() ' Put field info in ListSet.
 MyTable.Close ' Close Table.
 Do While Not ListSet.EOF
 list1.AddItem "Name: " & ListSet("Name")
 list1.AddItem "type: " & ListSet("Type")
 list1.AddItem "size: " & ListSet("Size")
 list1.AddItem "Attributes: " & ListSet("Attributes")
 list1.AddItem "SourceTable: " & ListSet("SourceTable")
 list1.AddItem "SourceField: " & ListSet("SourceField")
 list1.AddItem " "
 ListSet.MoveNext
 Loop
 End Sub

 The above program uses the BIBLIO.MDB database that ships with Visual
 Basic version 3.0

4. Start the program (or press the F5 key). Close the form to end the
 program.

The above program lists the following field structure for the Publishers
table in the BIBLIO.MDB database:

Name: PubID
type: 4
size: 4
Attributes: 33
SourceTable: Publishers
SourceField: PubID

Name: Name
type: 10
size: 50
Attributes: 32
SourceTable: Publishers
SourceField: Name

Name: Company Name
type: 10
size: 255
Attributes: 32
SourceTable: Publishers
SourceField: Company Name

Name: Address
type: 10
size: 50
Attributes: 32
SourceTable: Publishers
SourceField: Address

Name: City

type: 10
size: 20
Attributes: 32
SourceTable: Publishers
SourceField: City

Name: State
type: 10
size: 10
Attributes: 32
SourceTable: Publishers
SourceField: State

Name: Zip
type: 10
size: 15
Attributes: 32
SourceTable: Publishers
SourceField: Zip

Name: Telephone
type: 10
size: 15
Attributes: 32
SourceTable: Publishers
SourceField: Telephone

Name: Fax
type: 10
size: 15
Attributes: 32
SourceTable: Publishers
SourceField: Fax

Additional reference words: 3.00
KBCategory: APrg
KBSubcategory: APrgDataOther

How to Use SQL Outer Join to Find All Table B Records Not in A
Article ID: Q109563
--
The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 version 3.0
--

The following SQL query retrieves all of the records from table B in which
there is no matching record in table A:

 Select B.* From A,B, B Left Join A On B.Key=A.Key Where A.Key Is Null;

This type of outer join query is the functional opposite of an inner join.

You can use this SQL query to create a Dynaset of records with the
CreateDynaset statement.

Additional reference words: 3.00
KBCategory: APrg
KBSubcategory: APrgDataOther

How to Set VB Data Control to External ODBC Database Dynaset
Article ID: Q109800
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0
--

SUMMARY
=======

The following sample code fragment sets a data control (Data1) to a
Dynaset based upon an external ODBC database:

 ' Set DatabaseName property to a valid Data Source Name (DSN) that is
 ' registered in the ODBC.INI file in your Windows directory:
 Data1.DatabaseName = "datasourcename"
 Data1.Connect = "odbc;uid=user;pwd=password;database=pubs"
 Data1.RecordSource = "tablename"
 ' Or you can set the Data1.RecordSource property to an SQL query:
 ' Data1.RecordSource = "select * from tablename where ..."
 Data1.Refresh ' Must update the data control with new Dynaset.

NOTE: You cannot set a data control directly to a Dynaset variable, but you
can set a Dynaset variable to the data control's recordset:

 Dim ds as Dynaset
 ...
 Set Data1.Recordset = ds 'This statement is not supported.
 Set ds = Data1.Recordset 'This statement is supported.

A data control requires additional information that is not available in a
Dynaset object.

MORE INFORMATION
================

Before you can edit an external ODBC table, the table must contain a unique
index. If you get the following error message, you might not have a unique
index on the table:

 Can't perform operation; it is illegal.

You could also receive this error if the Data1.Recordset.Updatable flag is
not set to True. Also, if you set the Data1.Options property to 64
(SQL_PASSTHROUGH), the data control will not be updatable.

REFERENCES
==========

 - "Microsoft Visual Basic for Windows Professional Features Book 2:
 Data Access Guide," pages 14-15 and Appendix C.

Additional reference words: 3.00

KBCategory: APrg
KBSubcategory: APrgDataODBC

How to Speed Up Data Access by Using BeginTrans & CommitTrans
Article ID: Q109830

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SUMMARY
=======

You can speed up database operations by many times in a Microsoft Access
database by using transactions. A transaction starts with a BeginTrans
statement and ends with a CommitTrans or Rollback statement.

The sample program below is more than 17 times faster when using
BeginTrans/CommitTrans. Performance may vary on different computers.

MORE INFORMATION
================

You can tune the performance of Visual Basic by using transactions for
operations that update data. A transaction is a series of operations that
must execute as a whole or not at all. You mark the beginning of a
transaction with the BeginTrans statement. You use the Rollback or
CommitTrans statement to end a transaction.

You can usually increase the record updates per second (throughput) of an
application by placing operations that update data within an Access Basic
transaction.

Because Visual Basic locks data pages used in a transaction until the
transaction ends, using transactions will prevent access to those data
pages by other users while the transaction is pending. If you use
transactions in a multi-user environment, try to find a balance between
data throughput and data access.

If database operations are not within a transaction, every Update method
causes a disk write.

Transactions are very fast because they are written to a buffer in memory
instead of to disk. CommitTrans writes the changes in the transaction
buffer to disk. The size of the transaction buffer can be set in your
MSACCESS.INI file, found in your Windows directory. See the PERFORM.TXT
file in your Visual Basic directory for more information. Robust error
trapping is important when using transactions to avoid losing writes if the
program gets an error in the middle of a transaction.

For more performance tuning tips for data access in Microsoft Visual Basic
version 3.0, see the PERFORM.TXT file.

Step-by-Step Example

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add the following to the Form Load event code:

 Sub Form_Load ()
 Dim Starttime, Endtime
 Dim db As Database
 Dim t As Table
 Dim i As Integer
 Dim tempName As String
 Dim temphone As String
 Set db = OpenDatabase("c:\BIBLIO.MDB") ' Uses a copy of BIBLIO.MDB
 Set t = db.OpenTable("Publishers")
 Starttime = Now
 'BeginTrans ' Add this and CommitTrans (below) for greater speed.
 For i = 1 To 100
 tempName = "testname" & Str$(i) 'Make an arbitrary unique string.
 tempPhone = Str$(i) 'Make arbitrary number.
 t.AddNew 'AddNew clears copy buffer to prepare for new record.
 t!PubID = 30 + i ' Set primary key to unique value.
 t!Name = tempName ' Set Name field to unique value.
 t!Telephone = tempPhone ' Set Telephone field to unique value.
 t.Update ' Write the record to disk or to transaction buffer.
 Next i
 'CommitTrans ' Add this and BeginTrans (above) for greater speed.
 Endtime = Now
 MsgBox "Time required= " & Format(Endtime - Starttime, "hh:mm:ss")
 t.Close
 db.Close
 End
 End Sub

 The above code adds 100 new records to the BIBLIO.MDB database file.
 Add the records to a copy of BIBLIO.MDB instead of to the original.

3. Start the program (or press the F5 key). A message box reports the time
 required to add 100 new records. Close the form to end the program.

If you don't use the BeginTrans and CommitTrans statements, this program
reports 17 seconds to add 100 records on a 486/66 PC. When you add
BeginTrans and CommitTrans as shown in the program comments above, the
program takes less than 1 second on that computer. Performance may vary on
different computers.

REFERENCES
==========

 - "Microsoft Developer Network News" newspaper, January 1994, Volume 3,
 Number 1, published by Microsoft Corporation.

Additional reference words: 3.00
KBCategory: APrg
KBSubcategory: APrgDataAcc PrgOptTips

PRB: Dynaset Loses Contents After Transaction Rollback
Article ID: Q109995

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 3.0

SYMPTOMS
========

If a Dynaset is used in a transaction, records in the Dynaset appear to
be lost when the transaction is rolled back.

CAUSE
=====

This is by design. A Dynaset is populated one record at a time, so the
RollBack operation removes all the records added during the transaction.
After the RollBack operation, the Dynaset contains the single record that
was there before BeginTrans began the transaction.

RESOLUTION
==========

Create the complete Dynaset before starting the transaction. For example,
replace the code shown in step 3 of the More Information section with this
code:

 Sub Command1_Click ()
 Dim db As database
 Dim ds As Dynaset
 Set db = OpenDatabase("Biblio.mdb")
 Set ds = db.CreateDynaset("authors")

 ' Create the complete Dynaset before starting the transaction.
 ds.MoveLast
 ds.MoveFirst

 ' Populate the listbox with the contents of the Dynaset.
 BeginTrans
 While Not ds.EOF
 list1.AddItem ds(0)
 ds.MoveNext
 Wend
 Rollback

 ds.MoveFirst
 While Not ds.EOF
 list2.AddItem ds(0)
 ds.MoveNext
 Wend
 End Sub

STATUS
======

This behaviour is by design.

MORE INFORMATION
==================

Steps to Reproduce Behavior

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add two list boxes (List1 and List2) and a command button (Command1)
 to Form1.

3. Add the following code to the Command1_Click event:

 Sub Command1_Click ()
 Dim db As database
 Dim ds As Dynaset
 Set db = OpenDatabase("Biblio.mdb")
 Set ds = db.CreateDynaset("authors")

 'This code populates the listbox with the contents of the Dynaset.
 BeginTrans
 While Not ds.EOF
 list1.AddItem ds(0)
 ds.MoveNext
 Wend
 Rollback

 'This code reports only one record in the dynaset.
 ds.MoveFirst
 While Not ds.EOF
 list2.AddItem ds(0)
 ds.MoveNext
 Wend
 End Sub

4. Run the application or press the F5 key. Click the Command1 button. The
 first list box is populated correctly but the second contains only a
 single record.

Additional reference words: 3.00
KBCategory:
KBSubCategory: APrgDataOther

How to Use Wildcards in SQL Query to Make Dynasets & Snapshots
Article ID: Q110069

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 version 3.0

SUMMARY
=======

You can build a Dynaset or Snapshot based upon wildcard field-search
characters in an SQL query. The find methods (FindFirst, FindLast,
FindNext, and FindPrevious) can also search a Dynaset or Snapshot using
wildcard search characters in an SQL query.

MORE INFORMATION
================

By using the Like statement in the SQL query language, you can search
for database field values using the asterisk (*) and question mark (?)
characters as wildcards. The * and ? wildcards let you find a wider set of
field values beginning or ending with any desired root. For example, the
following SQL syntax selects the records from a table where the
Authorfield field values begin with the letter b:

 Select * from XTable Where Authorfield Like 'b*'

NOTE: The Seek method, which only applies to Table object variables, cannot
use SQL queries or wildcard search characters. The Seek method is limited
to finding a single record using the comparison operators: >, >=, <=, <, =,
and <>.

Asterisk (*) Wildcard Usage

In the SQL syntax for the Like statement, the asterisk (*) acts as a
wildcard place holder for any number of characters, from zero up to the
field length. A search for b* finds any field value beginning with the
letter b. A search for *b finds any field value ending with b. A search for
xxxx finds any field value that contains the xxxx substring. A search for
* by itself matches all field values.

Question Mark (?) Wildcard Usage

In the SQL syntax for the Like statement, the question mark (?) acts as a
wildcard place holder for a single character. A search for ??b* finds any
field value that has b in the third character. A query for *b?? finds any
field value with b as the third from the last character.

Speed Considerations

Of the following two techniques, 1 is faster than 2:

1. For greater speed, invoke the SQL wildcard field search only once to
 build the Dynaset or Snapshot of records that match your search
 criteria. Then use the fast move methods (MoveFirst, MoveLast,
 MoveNext, and MovePrevious) or click the data control to quickly
 navigate between all the records that match the specified search
 criteria. For example:

 Dim MyDS As Dynaset, MyDB As database, SQLx As String
 SQLx = "Select * from Authors Where Author Like 'b*' "
 Set MyDB = OpenDatabase("BIBLIO.MDB") 'Open a database.
 Set MyDS = MyDB.CreateDynaset(SQLx) 'Create Dynaset using SQLx.
 While Not MyDS.Eof
 Print MyDS!author
 MyDS.MoveNext
 Wend

 The Eof property is True after MoveNext moves past the last record.

 Visual Basic creates a Dynaset or Snapshot very quickly when using
 indexes. Subsequent find methods are relatively slow and sequential, as
 shown in technique 2 below.

2. A slower technique is to create a Dynaset composed of the entire table
 and then to use multiple find methods. Each FindNext would re-invoke the
 SQL wildcard field search to find the next matching record. This adds
 query time overhead. After finding a certain number of records, the
 total time taken would be slower than with technique 1 described above.

 Dim MyDS As Dynaset, MyDB As Database, SQLx As String
 SQLx = "author Like 'b*'"
 Set MyDB = OpenDatabase("BIBLIO.MDB") 'Open a database.
 Set MyDS = MyDB.CreateDynaset("Authors") 'Create Dynaset with table.
 MyDS.FindFirst SQLx 'Find first record matching criteria.
 Do Until MyDS.NoMatch
 Print MyDS!author
 MyDS.FindNext SQLx 'Find next record matching criteria.
 Loop

 You can invoke the FindNext method until Nomatch = True, as shown.

Example Using SQL Wildcard Search with a Data Control

The Text1 box in the following program shows individual records of the
Author field of the BIBLIO.MDB database. When you click the Command1
button, the program automatically appends and prefixes the * wildcard
search character to any search string that you enter in the Text2 text box.
That widens the resulting recordset shown in Text1. You can browse the
recordset shown in Text1 by clicking the data control.

1. Start Visual Basic or begin a New Project. Form1 is created by default.

2. Double-click the form. Add the following to the Form Load event code:

 Sub Form_Load ()

 text1.Text = "Enter ar* in Text2 and click Command1. Also try *z* "
 text2.Text = "*" 'A lone asterisk finds all records.
 End Sub

3. Add a data control (Data1) to Form1.

4. Add a text box (Text1) to Form1. Give Text1 the following properties in
 order to bind it to the data control and to the Author field in the
 database table:

 DataSource = Data1
 DataField = Author

5. Add a second text box (Text2) without setting any properties. You can
 change the wildcard criteria for database queries in Text2 at run time.

6. Add a command button (Command1) to Form1. Add the following code to its
 Click event:

 Sub Command1_Click ()

 Dim db As database, ds As dynaset, MyTable As table
 Dim SQLX As String, SearchText As String
 Set db = OpenDatabase("biblio.mdb")

 'Optional: In Text2, append & prefix the * wildcard to widen search:
 If Right$(text2.Text, 1) <> "*" Then text2.Text = text2.Text & "*"
 If Left$(text2.Text, 1) <> "*" Then text2.Text = "*" + text2.Text
 'Remove the above 2 lines if you want the user to enter the asterisk
 SearchText = text2.Text

 ' The following SQL syntax selects all records from the Authors table
 ' where the Author field matches the SearchText string, using any *
 ' or ? wildcard characters. The result is ordered by the Au_id field:
 SQLx = "Select * From Authors Where Author Like '" & SearchText
 SQLx = SQLx & "' Order By Au_id"
 Data1.DatabaseName = "biblio.mdb" ' Tells Data1 the database name.
 Data1.RecordSource = SQLx ' Data1 control will use SQLx query string.
 Data1.Refresh ' Update the data control with results of SQL query.

 End Sub

7. Start the program by pressing the F5 key. When a lone asterisk (*) is in
 the Text2 box, clicking the Command1 button finds all the records.

 Enter ar in Text2 and click Command1. The program changes the query to
 ar. That finds all Author field values that contain the letters ar.

 Enter z or *z* and click Command1 to find all Author field values that
 contain the letter z anywhere in the field.

 Close the form to end the program.

To change the way the program automatically adds the * wildcard, you can
modify or remove the If Left$... and If Right$... statements.

The Seek Method Does Not Support Wildcard Searches

--

The Seek method, which works only with Table object variables, is very fast
but doesn't support wildcard searches. Seek is mainly useful for finding a
single record that matches a given criteria. The find and move methods are
more practical than the Seek method for finding a group of records.

The Seek method feature that is closest to a wildcard search is a
comparison operator: >, >=, <=, or <. For example, you could find the first
record that is greater than or equal to your search key value as follows:

 Dim MyDB As Database, MyTable As Table
 Set MyDB = OpenDatabase("BIBLIO.MDB") ' Open a database.
 Set MyTable = MyDB.OpenTable("Publishers") ' Open a table.
 MyTable.Index = "PrimaryKey" ' Define current index.
 MyTable.Seek ">=", 3 ' Seek a record with PrimaryKey >= 3.
 If MyTable.NoMatch Then
 MsgBox "match was not found"
 Else
 MsgBox "match was found"
 End If

Additional reference words: 3.00 faster slow speedy quick quicker
KBCategory: APrg
KBSubcategory: APrgDataAcc

PRB: Closed ODBC Database Stays Open Until Time-Out or VB Ends
Article ID: Q110227

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SYMPTOMS
========

Using a Close method on a database opened with Open Database Connectivity
(ODBC) drivers doesn't close the database. The ODBC database process keeps
running. To close the connection successfully, you must end the Visual
Basic application.

CAUSE
=====

After Visual Basic executes the Close method on an ODBC connection, the
Microsoft Access engine in Visual Basic maintains a persistent connection
in case the user reopens the database later in the program. This makes the
program more efficient.

RESOLUTION
==========

If a Visual Basic program does not reopen the ODBC connection after doing a
Close method, a time-out occurs and the connection closes automatically.

You can control the time-out period by placing the following line in your
VB.INI or <vb_exe_app_name>.INI file, where x is the number of seconds:

 [ODBC]
 ConnectionTimeout=x

The default ConnectionTimeout is usually 600 seconds (10 minutes). The
lowest supported ConnectionTimeout value is 1 second. A ConnectionTimeout
value of 0 says to never cause a time-out.

To enforce the fastest possible time-out, you can set ConnectionTimeout to
1. In addition, you can add the following code after you close the database
to make sure the connection is terminated:

 db.Close ' Close database, using database object variable (db).
 Start = Timer
 Do ' This loop pauses a second to allow a time-out
 FreeLocks ' Tell Microsoft Access engine that program is idle.
 DoEvents ' Tell Windows to do any pending events.
 While Timer <= Start + 1

This loop delays for a second after the db.Close. The FreeLocks statement
tells the database engine that the user is idle. If you run the Visual
Basic program with ConnectionTimeout set to 1 in your VB.INI or

<vb_exe_app_name>.INI file, the database engine will disconnect the
one-second-old connection to the server.

STATUS
======

This behavior is by design for all ODBC database connections.

MORE INFORMATION
================

Reproducing the Behavior

For example, using a Close method on a database opened via an ODBC
connection to a Sybase SQL server leaves the Sybase session open. You can
confirm this by executing sp_who on the Sybase server.

As another example, assume you have a Visual Basic application on a timer
that regularly checks SQL Server version 4.2a on OS/2. To avoid wasting
an SQL user connection between the timed checks, you might want the Close
method to release the user connection. However, the Close method doesn't
release the user connection.

NOTE: You can create Dynaset or Snapshot objects against ODBC databases,
but you cannot use the OpenTable method to directly open ODBC tables.

Additional VB.INI or <vb_exe_app_name>.INI Settings

The following additional settings for the VB.INI or <vb_exe_app_name>.INI
initialization file are useful for handling ODBC databases and time-outs:

Entry for [Debug]
Section Value Effect
--
RmtTrace 0 Use asynchronous query execution
 if possible; no ODBC API tracing
 (default).

 8 Trace ODBC API calls in ODBCAPI.TXT
 in the Microsoft Access directory.

 16 Force synchronous query execution.

 24 Trace ODBC API calls; force
 asynchronous query execution.

Entries for [ODBC]
Section Value Effect
--
TraceSQLMode 0 No tracing of SQL queries (default).

 1 Trace SQL queries sent to ODBC in
 SQLOUT.TXT in the Microsoft Access
 directory.

QueryTimeout S Wait S seconds for queries sent to
 ODBC, and then stop trying to process
 the query results (for asynchronous
 queries only). (Default: 60 seconds).

LoginTimeout S Wait S seconds for ODBC login response,
 and then stop trying to connect to a
 server. (Default: 20 seconds).

ConnectionTimeout S Wait S seconds, and then close idle
 ODBC connections. (Default: 600
 seconds).

AsyncRetryInterval M Retry asynchronous queries every M
 milliseconds. (Default: 500
 milliseconds).

AttachCaseSensitive 0 Attach the first table whose name
 matches the specified string,
 regardless of case.

 1 Attach a table only if its name
 exactly matches the specified string.

AttachableObjects string A list of object types you can attach.
 (Default: 'TABLE', 'VIEW', 'SYSTEM TABLE',
 'ALIAS', 'SYNONYM'.)

SnapshotOnly 0 Get index information when tables are
 attached so that dynasets are allowed
 (default).

 1 Ignore index information when tables
 are attached so that only snapshots
 are allowed.

REFERENCES
==========

 - "Microsoft Visual Basic for Windows Professional Features Book 2:
 Data Access Guide," pages 149-154 in Appendix C.

Additional reference words: 3.00
KBCategory: APrg
KBSubcategory: APrgDataODBC

How to Use Seek and MoveNext to Find a Group/Range of Records
Article ID: Q110497
--
The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 3.0
--

SUMMARY
=======

The Seek method can search for a value only in an indexed field. Seek can
find only one record at a time. The Seek method alone cannot find all
duplicate field values.

After doing a Seek, to find a group of records that have indexed field
values that are duplicates or within a given range, you must do a series of
move methods (MoveNext or MovePrevious). After each move method in a loop,
you must check the indexed field value until your criteria is exceeded. The
indexed field values are automatically in alphabetical or numerical order.

The sample program below uses a Seek method, then uses MoveNext in a loop
to roughly emulate the FindNext method.

NOTE: FindNext applies only to Dynasets or Snapshots. The Seek method
applies only to Table object variables.

MORE INFORMATION
================

The Seek method is very fast, but doesn't support SQL or wildcard searches
to find groups of articles. Seek is mainly useful for finding one, single
record that matches or exceeds a given value.

You can use one of the following methods instead of the Seek method to find
a group of records:

 - CreateDynaset method.
 - CreateSnapshot method.
 - Find methods (FindFirst, FindLast, FindNext, and FindPrevious), which
 work only on a Dynaset or Snapshot.
 - Move methods (MoveFirst, MoveLast, MoveNext, MovePrevious), which work
 on a Table object variable, Dynaset, or Snapshot.

The Seek method requires you to first set the current index with the Index
property. This orders the records alphabetically or numerically.

Seek can use only the following comparison operators: >, >=, <=, <, =, and
<>. When the comparison is =, >=, >, or <>, Seek starts at the beginning of
the index and searches forward. When the comparison is <= or <, Seek starts
at the end of the index and searches backward. Thus, if three or more
records have duplicate values in the current index, the Seek method cannot
locate the middle records. Seek can locate only the first or last of those
records, depending upon the comparison operator used. A move method is

required to locate those middle records. A MoveNext always moves forward
one record from the current record found by a Seek, independent of the
comparison operator that Seek used. MovePrevious moves one record previous.

Example: How to Use Seek and MoveNext to Find a Group of Records
--

The following sample program finds all records for which the PubID field is
2 in the BIBLIO.MDB database (9 records). The program uses one Seek to find
the first record for which PubID is 2. The NoMatch property is False if the
first match is found. From there onwards, the program uses MoveNext and
tests MyTable!PubID in a loop to find all remaining records where PubID is
2. You could also modify this program to find a range of PubID field
values.

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add the following to the Form Load event code:

 Sub Form_Load ()

 form1.Show ' In Load event, must Show form to make Print visible.
 Dim MyDB As Database, MyTable As Table, testval As Long
 ' Several duplicates exist in BIBLIO.MDB for PubID = 2 in Titles table.
 ' testval is the key value for which you want to Seek all duplicates:
 testval = 2
 Set MyDB = OpenDatabase("BIBLIO.MDB") ' Open a database.
 Set MyTable = MyDB.OpenTable("Titles") ' Open a table.
 ' Sort the Titles table by the PubID indexed field, which is designed
 ' with duplicates OK:

 MyTable.Index = "PubID"
 MyTable.Seek "=", testval ' Seek a record with PubID key = testval.
 If MyTable.NoMatch Then
 MsgBox "Match for " & testval & " was not found"
 Else
 Do
 Print MyTable!PubID & ": " & MyTable!Title
 x = MsgBox("Match was found. PubID = " & MyTable!PubID & ": ", 1)
 If x = 2 Then End ' End if user clicks Cancel on message box.
 MyTable.MoveNext ' Move to next record.
 If MyTable!PubID <> testval Then Exit Do 'Stop when past testval.
 Loop
 End If

 End Sub

3. Start the program (or press F5). Click OK multiple times to see all
 record titles where PubID is 2. Choose Cancel if you want to abort the
 MoveNext loop. Close the form to end the program.

Additional reference words: 3.00
KBCategory: APrg
KBSubcategory: APrgDataOther

How to Copy a Record from One Table to Another in VB
Article ID: Q110588
--
The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0
--

SUMMARY
=======

A physical table in a database has records (rows) and fields (columns). A
single record contains a single row of field values.

To copy a record in one table to another table, you need to copy all the
fields in the source record to the corresponding fields in the destination
record. You can do this by using the Value property of the Fields
collection, or by using an SQL statement.

MORE INFORMATION
================

How to Copy a Record Using SQL

You can use the SQL Insert Into statement to copy specified records from
one table into another:

 SELECT FromTableName.* INTO ToTableName FROM FromTableName

You can also add a WHERE clause at the end to add any selected records:

 SELECT FromTableName.* Into ToTableName.* Where Key = 'Key'

How to Copy a Record Using the Fields Collection and Value Property

The following loop copies all the fields in the current record in table 1
to the corresponding fields in the current record in table 2:

 Dim MyDB As Database, Tbl1 As Table, Tbl2 As Table
 Set MyDB = OpenDatabase("BIBLIO.MDB") ' Open Database.
 Set Tbl1 = MyDB.OpenTable("Publishers") ' Open Table.
 Set Tbl2 = ...

 For i = 0 to Tbl2.Fields.Count - 1
 Tbl1(Tbl2.Fields(i).Name).Value = Tbl2.Fields(i).Value
 Next

The above loop assumes that the fields in table 2 are identical to those
in table 1.

Additional reference words: 3.00
KBCategory: APrg

KBSubcategory: APrgDataOther

PRB: Couldn't Open PARADOX.NET When Opening Paradox 3.x Table
Article ID: Q110590
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0
--

SYMPTOMS
========

When you attempt to open a Paradox version 3.x table, the error message
"Couldn't open PARADOX.NET" (trappable error number 3172) can occur under
circumstances described below.

CAUSE
=====

Your Visual Basic <program>.INI file may have an incorrect or missing path
to the PARADOX.NET file. Paradox uses the PARADOX.NET network control file
to list the network rights, locks, users, and the type of network you are
using.

Paradox installs a PARADOX.NET file during normal installation. By default,
PARADOX.NET will be located in the Paradox program directory. During a
network installation, the location of PARADOX.NET is determined by the
network administrator.

RESOLUTION
==========

You usually only need the PARADOX.NET file if you are running Paradox on a
network or accessing Paradox files on a network.

You can create or change the PARADOX.NET configuration by running
NUPDATE.EXE, a utility that comes with Paradox. NUPDATE.EXE lets you
specify the directory in which to store your PARADOX.NET file. Refer to the
Paradox "Network Administrator's Guide" for more information on this topic.

Once you find or create the PARADOX.NET file, you need to update your
Visual Basic VB.INI or <program>.INI file with the correct path to find
PARADOX.NET. For example, if you store your PARADOX.NET path on Drive C in
the root directory, your VB.INI or <program>.INI file would look like the
following example:

[Installable ISAMs]
Paradox 3.x = c:\windows\system\pdx110.dll ;Path of Paradox driver

[Paradox ISAM]
PageTimeout=600 ; 60-second default Page Timeout
ParadoxUserName=Joe User ;Name displayed when lock conflicts occur
ParadoxNetPath=C: ;Path to the PARADOX.NET file
CollatingSequence=Ascii ;Collating sequence of your files
 ; (ASCII, International, Norwegian-Danish,

 ; or Swedish-Finnish)

If you are not opening the Paradox table on a network, you can correct
other possible PARADOX.NET error messages as follows:

1. If you or someone on your PC previously defined a Network by running
 NUPDATE.EXE, run NUPDATE.EXE again to remove the Network settings.

2. If you have the ParadoxNetPath statement in your Visual Basic VB.INI or
 <program>.INI file, and you don't have a PARADOX.NET file, remove the
 offending ParadoxNetPath statement in the VB.INI or <program>.INI file.

Paradox products are manufactured independent of Microsoft. Microsoft makes
no warranty, implied or otherwise, regarding Paradox product performance or
reliability.

Additional reference words: 3.00
KBCategory: APrg
KBSubcategory: APrgDataOther

PRB: Object Variable Not Set When Referencing Data Control
Article ID: Q110618

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 3.0

SYMPTOMS
========

If a Data control references a Data control in the Form_Load event or
anytime BEFORE the Form_Activate event, you will receive the following
error message (Error#91):

 Object Variable Not Set

CAUSE
=====

The RecordSet property of a Data Control is not resolved until after the
form has been loaded -- that is, after the Form_Load event. This means that
you cannot issue any method such as MoveNext or FindNext of the Data
Control that uses its record set (its internal Dynaset).

RESOLUTION
==========

To prevent the error, force the creation of the internal dynaset in the
data control by issuing the Refresh method:

 Data1.Refresh

This will validate the RecordSet property allowing you to use methods that
require this.

STATUS
======

This behaviour is by design.

MORE INFORMATION
================

Steps to Reproduce Behavior

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add a data control (Data1) to Form1.

3. In the Form_Load event of Form1, place the following code:

 ' Data1.Refresh

 Data1.MoveLast

4. Run the application. You should get Error 91 "Object Variable Not Set."

5. Remove the apostrophe from the Data1.Refresh line.

6. Run the application again (press the F5 key). Now, you won't get the
 error.

Additional reference words: 3.00
KBCategory:
KBSubCategory: APrgDataOther

How to Determine the Restored State of a Minimized Form
Article ID: Q110620

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SUMMARY
=======

It is not possible within Visual Basic to determine programatically whether
an iconized form will be restored to a maximized or normal state without
using the Windows API (application programming interface) function
GetWindowPlacement(). This article gives an example of how to call this
function from a Visual Basic application.

MORE INFORMATION
================

The following program demonstrates how to determine whether a minimized
form will be restored as maximized or normal. The program requires two
forms with a Label and a Command control on Form 1.

1. Start a new project in Visual Basic. Form1 is created by default.

2. From the File menu, choose New Form to create Form2.

3. From the File menu, choose New Module to create a .BAS file and enter
 the following code in the (General) (Declarations) section:

 Type RECT
 left As Integer
 top As Integer
 right As Integer
 bottom As Integer
 End Type

 Type POINTAPI
 x As Integer
 y As Integer
 End Type

 Type WINDOWPLACEMENT
 length As Integer
 flags As Integer
 showCmd As Integer
 ptMinPosition As POINTAPI
 ptMaxPosition As POINTAPI
 rcNormalPosition As RECT
 End Type

 Global Const WPF_RESTORETOMAXIMIZED = &H0002

 ' Enter the following Declare statement as one, single line:

 Declare Function GetWindowPlacement Lib "User"
 (ByVal hWnd As Integer, lpwndpl As WINDOWPLACEMENT) As Integer

 Function is_max (hWnd As Integer) As Integer
 Dim wp As WINDOWPLACEMENT
 Dim rtn As Integer
 wp.length = Len(wp) ' Initialize size
 rtn = GetWindowPlacement(hWnd, wp)
 If wp.flags = WPF_RESTORETOMAXIMIZED Then
 is_max = True
 Else
 is_max = False
 End If
 End Function

 NOTE: The value of wp.length must be initialized or the call to
 GetWindowPlacement will return an error. There is no mention of this in
 the Microsoft Windows "Programmers Reference," but it is described as
 a documentation error in the following article in the Microsoft
 Knowledge Base:

 ARTICLE-ID: Q89569.
 TITLE : DOCERR: GetWindowPlacement Function Always Returns an Error

4. Add a Label control and Command control to Form1.

5. Add the following code to the Command_Click procedure of Form1:

 Sub Command1_Click ()
 If is_max((Form2.hWnd)) Then
 Label1.Caption = "Form 2 will be Maximized"
 Else
 Label1.Caption = "Form 2 will be Normalized"
 End If
 End Sub

 NOTE: Form2.hWnd cannot be passed directly to a function as a parameter.
 It must be enclosed in an extra set of parentheses or stored in a
 temporary variable.

6. From the File menu, choose Save Project to save the forms and project.

7. Run your application by choosing Start from the Run menu or by pressing
 the F5 function key. Minimize Form2, click the Command button on Form1,
 and observe the message displayed in the Label control. Restore Form2,
 maximize it, and then minimize it again. Click the Command button on
 Form1, and again observe the message displayed in the Label control.

Additional reference words: 3.00
KBCategory: APrg
KBSubcategory: APrgDataODBC

PRB: Commit or Rollback without BeginTrans Error and VB Forms
Article ID: Q110722

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SYMPTOMS
========

Under the conditions outlined below, you may get this error:

 Commit or Rollback without BeginTrans
 (trappable error, Err = 3034)

This error occurs when a program has two or more forms, and two of the
forms each contain a data control that is connected to a different database
and table. The first form invokes a BeginTrans statement. The program
loads, then later unloads the second form, without explicitly invoking the
Database.Close method for the second data control. When the first form
invokes a CommitTrans or Rollback statement, you get the error message.

CAUSE
=====

Transactions are global and not limited to only one database or recordset.
If you include operations on more than one database or recordset within a
transaction, Rollback restores all operations on all databases.

If your code does not explicitly invoke a Database.Close method for a data
control on a form that is unloaded, Visual Basic automatically invokes a
Rollback statement and a Database.Close method. That automatic Rollback
cancels your previous BeginTrans statement. Then, invoking a CommitTrans or
Rollback statement correctly gives the "Commit or Rollback without
BeginTrans" error message.

WORKAROUND
==========

In the second form's Unload event, add a Data1.Database.Close method to
prevent the automatic Rollback.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

BeginTrans, CommitTrans, and Rollback Statements
--

To perform database transactions in Visual Basic, you can use the
BeginTrans, CommitTrans, Rollback statements. BeginTrans begins a new
transaction. CommitTrans ends the current transaction. Rollback ends the
current transaction and restores the database to the state it was in just
before the current transaction began.

A transaction is a series of changes you make to a database that you want
to treat as one complete unit. A transaction begins when you use the
BeginTrans statement. Use Rollback to undo changes made during the current
transaction, and CommitTrans to accept changes and end the current
transaction. Both Rollback and CommitTrans end a transaction. Once you use
CommitTrans, you can't undo changes made during that transaction.

You can have up to five levels of transactions open at once by using
multiple BeginTrans statements. Typically, you use transactions to maintain
the integrity of your data when records in two or more tables must be
updated. For example, if you transfer money from one account to another,
you might subtract a sum from one and add the sum to another. If either
update fails, the accounts no longer balance. Use BeginTrans before
updating the first record, and then if any subsequent update fails, you can
use Rollback to undo all of the updates. Use CommitTrans after the last
record has been successfully updated.

NOTE: Some databases, such as Paradox, may not support transactions, in
which case the Transactions property of the Database object is False. Test
the value of the Transactions property before using BeginTrans to make sure
the Database supports transactions. If transactions are not supported,
these statements are ignored and no error occurs.

If you use CommitTrans or Rollback statements without first using
BeginTrans, an error occurs. If you use Rollback, you should use Refresh on
any data control that refers to data that may have changed since the
transaction began.

Steps to Reproduce Behavior

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add a data control (Data1) to Form1.

3. Connect Data1 on Form1 to a table in a database as follows:

 Select the Data1 control and press the F4 key to display the Properties
 window. Set the DatabaseName property to C:\VB3\BIBLIO.MDB, and set the
 RecordSource property to the source table name Publishers.

4. From the File menu, choose New Form to create Form2.

5. Add a data control (Data1) to Form2.

6. Connect Data1 on Form2 to any table in any database (the same or
 different database than on Form1) as follows:

 Select the Data1 control and press the F4 key to display the Properties
 window. Set the DatabaseName property to C:\ACCESS\NWIND.MDB, and set
 the RecordSource property to the source table name Categories.

7. Add the following code to the Form1 Load event:

 Sub Form_Load ()
 BeginTrans ' Begin the transaction.
 Form1.Show
 Form2.Show ' Show Form2 on top of Form1.
 End Sub

 Sub Form_Unload (Cancel As Integer)
 CommitTrans ' This statement causes an error.
 End Sub

8. Start the program, or press the F5 key.

9. Close Form2.

10. Close Form1. This results in the following error message:

 Commit or Rollback without BeginTrans (Err = 3034)

In this example, the error you get when unloading Form1 is actually caused
by unloading Form2.

When Form1 loads, Visual Basic automatically invokes the Data1.Refresh
method for the attached data control. That automatically opens the
specified database and table. When Form2 loads, the same behavior occurs to
open the second database and table.

As Form2 unloads, Form2 checks to see if the data control's database is
still open. If the database is still open, Visual Basic automatically does
a Rollback and closes the database in order to cancel any unsaved changes
to the current record in the data control. This default behavior often
saves you from writing extra code. That automatic Rollback cancels the
BeginTrans that you invoked in the Form1 Load event. As Form1 unloads, the
CommitTrans in the form's unload event has no transaction to commit, so you
get the error message.

To work around this behavior, add a Data1.Database.Close method in the
Unload event for Form2 to prevent the automatic Rollback.

Additional reference words: 3.00
KBCategory: APrg
KBSubcategory: APrgDataOther

Documentation and Features for Visual Basic's Data Manager
Article ID: Q110723

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SUMMARY
=======

You can run the DATAMGR.EXE Data Manager program as follows:

 - Choose Data Manager from the Window menu in Visual Basic, or
 - Run the DATAMGR.EXE program from the File Manager in Windows.

The complete documentation for using Data Manager is found in Data
Manager's Help menu. You can also run the DATAMGR.HLP Help file from
File Manager in Windows. Visual Basic provides no printed documentation
for Data Manager. Instead, you can print the topics from the Help menu.

MORE INFORMATION
================

The DATAMGR.EXE Data Manager program provided with Visual Basic has the
following features:

 - Open an existing database that has one of the following formats:
 - Microsoft Access
 - FoxPro version 2.0 or 2.5
 - dBase III or dBase IV
 - Paradox version 3.x
 - BTRIEVE
 - Create a new database in Microsoft Access format (.MDB)
 - Create new tables in a database
 - Create an index in a table
 - Add fields to a table
 - Modify table data
 - Delete an existing table
 - Compact a database
 - Repair a database

The Data Manager gives you a subset of the features found in Microsoft
Access for Windows. Data Manager, Visual Basic, and Microsoft Access
all have the same native database format, an .MDB file. A single .MDB
file contains the database structure as well as the data itself.

Introduction from Data Manager's Help Menu Topic
--

The Visual Basic Data Manager allows Visual Basic users to create new
databases (.MDB format) and examine or map the structure of existing
external databases in a variety of formats. Formats that you can either
create or modify with the Data Manager are shown below:

 Database Format Create Modify

 Microsoft Access 1.0 Yes Yes
 Microsoft Access 1.1 Yes Yes
 Paradox 3.0 and 3.5 No Yes
 dBASE III and IV No Yes
 FoxPro 2.0 and 2.5 No Yes
 Btrieve No Yes

Visual Basic shares its database engine with Microsoft Access, so databases
created with Visual Basic or the Data Manager can be manipulated using
Microsoft Access. In addition, databases created with Microsoft Access can
be manipulated using Visual Basic and the Data Manager. Throughout the
Visual Basic documentation, databases created with that engine are referred
to as Visual Basic databases.

For additional information on using external databases, see the file
EXTERNAL.TXT or BTRIEVE.TXT supplied with Visual Basic.

Many external databases exist as directories on your disk. To create
databases in these formats, use the File Manager to create a directory
that will become the database. Once the database directory is created, use
the Data Manager to add tables and indexes, which become files in this
directory.

Additional reference words: 3.00
KBCategory: APrg
KBSubcategory: APrgDataOther

PRB: Error: Couldn't Lock File SHARE.EXE Hasn't Been Loaded
Article ID: Q110732

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 3.0
--

SYMPTOMS
========

Trying to use a Microsoft Access Database that is located on a Read-Only
Share or Network Drive might generate the following error:

 Couldn't lock file SHARE.EXE hasn't been loaded.

CAUSE
=====

When Visual Basic tries to connect to a Microsoft Access database, an .LDB
file is created or the existing .LDB is used in the Database directory.
The .LDB file is used to assist in the management of the file locking
mechnisim with multiple users. This file must be in the same directory as
the database and the file or directory must have Read/Write access or the
above error is generated.

This happens because the Microsoft Access engine in Visual Basic cannot
create or write to the necessary .LDB file.

RESOLUTION
==========

In order to prevent the use or creation of the .LDB file, open the database
Exclusive use and Readonly (because of the readonly of the server) access.
This tells the Microsoft Access Engine that the database will be opened for
single user only and that the .LDB file will not be necessary. If the
database is multiuser, users will have to have Read/Write access to the
.LDB file.

STATUS
======

This behaviour is by design.

MORE INFORMATION
==================

Steps to Reproduce Behavior

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add a Data Control to Form1, and set its Read-Only property to True.

3. In the DatabaseName property of the Data Control, enter the name of a
 Microsoft Access Database that is located on a Read-Only network share.

3. Run the application, and you will recieve Error 91:

 Couldn't lock file SHARE.EXE hasn't been loaded.

Additional reference words: 3.00
KBCategory:
KBSubCategory: APrgDataOther

How to Use SQL SELECT Statement Without Field Syntax Error
Article ID: Q110752

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SYMPTOMS
========

The SQL command "SELECT FROM AuthorsTable" gives the following error
message:

 Syntax error in Select statement

CAUSE
=====

The SELECT statement must be followed immediately by a valid field name, or
by an asterisk (*) to indicate all fields in the table. This requirement
applies to all forms of the SELECT statement, including the SELECT INTO,
SELECT ALL, SELECT DISTINCT, and SELECT DISTINCTROW statements.

RESOLUTION
==========

Indicate the fields you want immediately after the SELECT statement, for
example:

 SELECT * FROM AuthorsTable

STATUS
======

This behavior is by design.

MORE INFORMATION
================

SQL SELECT Statement Syntax

The SQL SELECT statement specifies which fields you want to retrieve. You
use the FROM clause to indicate which tables contain those fields. You use
the WHERE clause to indicate which records are to be retrieved.

SELECT is usually the first word in an SQL statement. If you include more
than one field, separate the field names with commas. List the fields in
the order you want them to be retrieved. If a field name appears in more
than one table listed in the FROM clause, precede the field name with the
table name and the . (dot) operator. In the following example, the AU_ID
field is in both the Authors table and the Titles table. The SQL statement
selects the Title field from the Titles table and the Author field from the

Authors table:

 SELECT Titles.Title.Dept, Author
 FROM Titles, Authors
 WHERE Titles.AU_ID = Authors.AU_ID

Visual Basic requires the SQL command string (such as the one above) to be
concatenated into one, single line in a string variable or quoted string.

You can use an asterisk (*) to select all fields in a table. The following
example selects all of the fields in the Publishers table:

 SELECT Publishers.* FROM Publishers

You can use the AS reserved word to create an alias for a field name. The
following example uses the Year for the field name:

 SELECT [Year Published] AS Year
 FROM Titles

When you use a field name that contains a space or punctuation, surround
the name with brackets:

 SELECT [Year Published], Title
 FROM Titles

For more information on SQL syntax, see the SQL topic in Visual Basic's
Help menu.

Steps to Reproduce Behavior

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add the following to the Form Load event code:

 Sub Form_Load ()
 Dim db As database
 Dim ds As dynaset
 Set db = OpenDatabase("C:\VB3\BIBLIO.MDB")
 ' The following line gives "Syntax error in SELECT statement":
 Set ds = db.CreateDynaset("SELECT FROM Publishers")

 ' Replace the above line as follows to correct the syntax error:
 ' Set ds = db.CreateDynaset("SELECT * FROM Publishers")

 form1.Show
 Print ds![Company Name] 'Prints Company Name field from record 1.

 End Sub

3. Start the program, or press the F5 key. The "Syntax error in SELECT
 statement" message displays. From Visual Basic's Run menu, choose End
 to clear that error and end Visual Basic's break mode.

To correct this syntax error, change the SELECT so that it is followed by a
valid field name, or by an asterisk (*) to select all fields. For example,

the SQL command "SELECT * FROM Publishers" correctly selects all fields in
the Publishers table.

Additional reference words: 3.00
KBCategory: APrg
KBSubcategory: APrgDataOther

Create Database with Data Manager & View w/ Text/Data Control
Article ID: Q110753

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SUMMARY
=======

This article gives step-by-step examples of the following:

 - How to create a database with Visual Basic's DATAMGR.EXE Data Manager.
 - How to view a database using a text box bound to a data control.

MORE INFORMATION
================

How to Create a Database Using Visual Basic's Data Manager
--

You can create a new database as follows:

1. Open the Data Manager program by choosing it from the Window menu in
 Visual Basic or by running DATAMGR.EXE from the Windows File Manager.

2. In the Data Manager, choose New Database from the File menu and
 select Access 1.1.

3. Click the New button and enter tbl1 for the table name.

4. Click the Design button. Then click the Add button. Enter fld1 for the
 Field Name and select Integer for the Field Type.

5. Save this Microsoft Access database with the name TEST1.MDB. Close the
 Data Manager when finished.

You can add data to a database with the Data Manager by selecting a table
and choosing the Open button. You can click Add; then enter data into the
field(s) of the new record. Click Update, or click Add again to enter the
next record. You can also scroll to any existing record, modify the data in
any field, and then click the Update button to write the record to the
table.

How to View a Database By Binding a Text Control to a Data Control
--

1. Start a new project in Visual Basic. Form1 is created by default.

2. Create a Visual Basic database (or Microsoft Access database) as
 described above. Name this database TEST1.MDB.

3. Add the following controls to Form1, and set the following properties:

 Control Name Property New Value NOTE
 --
 Data1 DatabaseName C:\VB\TEST1.MDB Database created above.
 Data1 RecordSource tbl1 Valid table name.
 Text1 DataSource Data1 Name of data control.
 Text1 DataField Fld1 Valid field name.

4. To run the program, choose Start from the Run menu, or press the F5 key.

5. Scroll through one record at a time in the database using the data
 control. View the contents of the Fld1 field in the text box. Close
 the form to end the program.

Data Manager

By using the DATAMGR.EXE Data Manager program provided with Visual Basic,
you can do all this:

 - Create a database
 - Create new tables
 - Create an index
 - Open an existing database
 - Add fields to a table
 - Modify table data
 - Delete an existing table
 - Compact a database
 - Repair a database

The Data Manager gives you a subset of the features found in Microsoft
Access for Windows. Data Manager, Visual Basic, and Microsoft Access all
create the same database format, an .MDB file. An .MDB file contains the
database structure as well as the data itself.

The documentation for Data Manager is found in Data Manager's Help menu.

Additional reference words: 3.00
KBCategory: APrg
KBSubcategory: APrgDataOther

How to Delete a Table from a Database Using Visual Basic
Article ID: Q110959

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 version 3.0

SUMMARY
=======

This article describes how to delete a table from a database using the
Professional Edition of Visual Basic version 3.0 for Windows.

This technique works for any database that is in the native Microsoft
Access database format. With slight modifications, it will also work with
non-Microsoft Access databases.

MORE INFORMATION
================

To delete a table from a Microsoft Access database in Visual Basic, use any
of the following methods:

 - Open the database in the Visual Basic Data Manager, select the table,
 and choose the Delete button. You can run the Data Manager program
 from the Window menu in Visual Basic, or from the Windows File Manager
 (run DATAMGR.EXE in the Visual Basic directory). You can delete a table
 from any database type supported by Visual Basic.

 - Use the sample Visual Basic program listed below to delete a table using
 database object variables.

 - Open the database in Microsoft Access, select the table, and choose
 Delete from the Edit menu.

CAUTION: When you delete a table, all the data stored in that table is also
deleted. If you want to preserve the data in the table you are going to
delete, write a Visual Basic application to copy the data to a new table
before deleting the existing table.

If you want to delete all the records in a table and still preserve the
TableDef table definition, you can use the Execute method to do an SQL
Delete command. For example:

 Dim db as database
 Set db=OpenDatabase("testing.mdb")
 db.Execute "Delete From BadTable"

Sample Program

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add a the following code to the Form Load event:

 Sub Form_Load ()

 Dim db As database
 Dim tds As TableDefs
 form1.Show ' Must Show form in Load event for Print to be visible.
 form1.WindowState = 2 ' Maximize Form1 to make room for table list.
 sourcedb = "c:\VB3\BIBLIO.MDB" ' Original master database.
 destdb = "C:\TEST.MDB" ' Path to database with table to delete.
 tabletodelete = "Authors"
 FileCopy sourcedb, destdb ' Use copy of database; preserve original.
 Set db = OpenDatabase(destdb)
 Set tds = db.TableDefs ' Open the TableDefs collection.

 ' Display names of all tables in database:
 For j = 0 To tds.Count - 1
 Print tds(j).Name
 Next
 Print

 ' Delete a table. (This deletes the TableDef and all records):
 tds.Delete tabletodelete
 ' or use: db.TableDefs.Delete tabletodelete

 ' If you want to delete all records and still preserve the TableDef
 ' table definition, use the following instead of the above Delete:
 ' db.Execute "Delete From " & tabletodelete

 ' Display names of all tables in database:
 Print "List of tables after deleting one table:": Print
 For j = 0 To tds.Count - 1
 Print tds(j).Name
 Next

 End Sub

3. Start the program or press the F5 key. The program lists all the tables
 in the database before and after deleting a table. Close the form to
 end the program.

You can also confirm that the table was deleted from the database by
opening the TEST.MDB database with the Data Manager provided with Visual
Basic or with Microsoft Access.

The Database Object Hierarchy

At the top of the database object hierarchy is the Database object, not to
be confused with the Database property of the data control. One of the
properties of the Database object is the TableDefs collection, which is
also an object. The TableDefs collection represents all the individual
TableDef objects associated with the Table objects, including any attached
external tables. The TableDef objects each represent the structure or
metadata of a table.

Each TableDef object consists of properties. For example, the Name property

gives you the name of the table. The Fields and Indexes properties of a
TableDef object are collections of two additional data access objects, the
Field object and the Index object. For more information, see the Visual
Basic Help menu.

More Examples of Data Access
============================

The VISDATA.MAK project, which is installed in the VB3\SAMPLES\VISDATA
directory, gives extensive examples of data access. The VISDATA sample
program uses every data access function in Visual Basic. Refer to the
VISDATA source code for examples that show how to use each data access
function.

Additional reference words: 3.00
KBCategory: APrg
KBSubcategory: APrgDataOther

PRB: Novell Btrieve Unexpected Error from External DB Driver
Article ID: Q111286

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SYMPTOMS
========

The following error message number 3275 can occur from a Visual Basic
program attempting to open a database on the Novell Netware network:

 Unexpected error from external database driver ().

CAUSE
=====

This error message can occur when Btrieve is not started on the server.

RESOLUTION
==========

Start Btrieve using the BStart command on the server.

NOTE: The products included here are manufactured by vendors
independent of Microsoft; we make no warranty, implied or otherwise,
regarding these products' performance or reliability.

STATUS
======

This behavior is by design.

Additional reference words: 3.00
KBCategory: APrg
KBSubcategory: APrgDataOther

PRB: VB Record Too Large When Add or Update Record > 2K
Article ID: Q111304

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, version 3.0

SYMPTOMS
========

The following error is the result when you Update or Add a Text field in a
table and the total record size exceeds about 2000 bytes for all fields
combined (not counting Memo fields):

 Record is too large.
 [Trappable Error number 3047.]

CAUSE
=====

Records in a table in a Visual Basic or in a Microsoft Access database are
limited to slightly under 2K, not counting Memo fields. The "Record is too
large" error occurs when you enter data into such a record, not when you
define the table structure.

RESOLUTION
==========

Redefine the table by making some fields shorter or by removing unneeded
fields.

You can also avoid this problem by using fields with the Memo type instead
of the Text type. You can set a field's Type property to 12 to get a Memo
type, instead of 10 to get a Text type. When a Memo field is greater than
250 bytes or whenever the 2K limit is reached on a record, Visual Basic
automatically puts the Memo field on a separate page in the database file.
If your Text fields contain related data, you could further improve space
usage by concatenating the fields into one large Memo field.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

Steps to Reproduce Behavior

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add the following to the Form Load event code:

 Sub Form_Load ()

 ' @@
 ' Create an empty database with the following design:

 Const DB_LANG_GENERAL = ";LANGID=0x0809;CP=1252;COUNTRY=0"
 Const numfields = 9 'Number of text fields to add to db, minus 1.
 Dim db As Database
 Dim MyDS As Dynaset
 Dim tdef As New TableDef
 Dim FieldInteger As New field
 Dim fieldname0 As New field
 Dim fieldname1 As New field
 Dim fieldname2 As New field
 Dim fieldname3 As New field
 Dim fieldname4 As New field
 Dim fieldname5 As New field
 Dim fieldname6 As New field
 Dim fieldname7 As New field
 Dim fieldname8 As New field
 Dim fieldname9 As New field
 Dim uniqindex As New Index

 form1.Show ' Must Show form in Load event for Print to work.
 Kill "c:\tempx.MDB"
 Set db = CreateDatabase("c:\tempx.MDB", DB_LANG_GENERAL)
 tdef.Name = "Testtable" ' Name of table to create.

 'Define the fields in the Testtable table:
 FieldInteger.Name = "fieldinteger"
 FieldInteger.Type = 4 'Long integer
 fieldname0.Name = "fieldname0"
 fieldname0.Type = 10 ' Type 10 = Text. Type 12 = Memo.
 fieldname0.Size = 255 ' Maximum size of field.
 fieldname1.Name = "fieldname1"
 fieldname1.Type = 10 ' Type 10 = Text. Type 12 = Memo.
 fieldname1.Size = 255 ' Maximum size of field.
 fieldname2.Name = "fieldname2"
 fieldname2.Type = 10 ' Type 10 = Text. Type 12 = Memo.
 fieldname2.Size = 255 ' Maximum size of field.
 fieldname3.Name = "fieldname3"
 fieldname3.Type = 10 ' Type 10 = Text. Type 12 = Memo.
 fieldname3.Size = 255 ' Maximum size of field.
 fieldname4.Name = "fieldname4"
 fieldname4.Type = 10 ' Type 10 = Text. Type 12 = Memo.
 fieldname4.Size = 255 ' Maximum size of field.
 fieldname5.Name = "fieldname5"
 fieldname5.Type = 10 ' Type 10 = Text. Type 12 = Memo.
 fieldname5.Size = 255 ' Maximum size of field.
 fieldname6.Name = "fieldname6"
 fieldname6.Type = 10 ' Type 10 = Text. Type 12 = Memo.
 fieldname6.Size = 255 ' Maximum size of field.
 fieldname7.Name = "fieldname7"
 fieldname7.Type = 10 ' Type 10 = Text. Type 12 = Memo.
 fieldname7.Size = 255 ' Maximum size of field.
 fieldname8.Name = "fieldname8"
 fieldname8.Type = 10 ' Type 10 = Text. Type 12 = Memo.

 fieldname8.Size = 255 ' Maximum size of field.
 fieldname9.Name = "fieldname9"
 fieldname9.Type = 10 ' Type 10 = Text. Type 12 = Memo.
 fieldname9.Size = 255 ' Maximum size of field.

 'Add the fieldinteger and fieldnameN fields to the Fields collection:
 tdef.Fields.Append FieldInteger
 tdef.Fields.Append fieldname0
 tdef.Fields.Append fieldname1
 tdef.Fields.Append fieldname2
 tdef.Fields.Append fieldname3
 tdef.Fields.Append fieldname4
 tdef.Fields.Append fieldname5
 tdef.Fields.Append fieldname6
 tdef.Fields.Append fieldname7
 tdef.Fields.Append fieldname8
 tdef.Fields.Append fieldname9

 'Define fieldinteger_index, the unique primary-key index:
 uniqindex.Name = "fieldinteger_index"
 uniqindex.Fields = "fieldinteger"
 uniqindex.Unique = True
 uniqindex.Primary = True

 'Append the fieldinteger_index index to the Indexes collection:
 tdef.Indexes.Append uniqindex

 'Append the tdef table definition (TableDef object) to the TableDefs
 'collection:
 db.TableDefs.Append tdef
 db.Close
 ' The above code creates the empty database.
 ' @@

 Set db = OpenDatabase("c:\tempx.MDB") ' Open the empty database.
 Set MyDS = db.CreateDynaset("Testtable") ' Make dynaset from table.

 For i = 0 To 5 ' Add index field values for 5 new records:
 MyDS.AddNew
 MyDS!FieldInteger = i
 MyDS.Update
 Next
 MyDS.MoveFirst ' Move to the first record.

 ' Add more than 2K of string data to the fields in the first record:
 For j = 0 To numfields
 MyDS.Edit ' Opens current record for editing, into copy buffer.
 f$ = "fieldname" & j
 Debug.Print f$
 ' The maximum allowed record size is a little less than 2K.
 ' Fields fieldname0 through fieldname6 are each assigned 255 bytes
 ' with no problem. However, when assigning fieldname7, following
 ' field assignment fails at run time with Error 3047:
 ' "Record is too large"
 MyDS(f$) = String$(255, "x") 'Assign 255 bytes to each text field.
 MyDS.Update ' Saves the copy buffer to the table.
 Next

 MyDS.Close
 db.Close

 End Sub

3. Start the program, or press the F5 key. After a few seconds, the program
 gives Error 3047, "Record is too large." Choose End from the Run menu to
 clear the error.

To correct this behavior, redefine the database using fields of type Memo
instead of type Text. In the program listed above, replace all the

 fieldnamex.Type = 10

statements with:

 fieldnamex.Type = 12

where x = 0 to 9.

Additional reference words: 3.00 limitation specification larger smaller
 bigger
KBCategory: APrg
KBSubcategory: APrgDataOther

How to Create Database with Memo Fields Up to 32000 Bytes
Article ID: Q111314

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, version 3.0

SUMMARY
=======

When you use a database Update or Add method at run time, the sum of all
Memo field sizes in a record cannot exceed about 32000 or 33000 characters.

In the example program listed in the More Information section below, 33000
total characters write successfully to ten Memo fields. But writing 34000
characters causes the write to fail on the last Memo field. No error
message is displayed.

For fields of type Text, the sum of the Text field sizes in a record cannot
exceed about 2000 characters. You can use Memo fields instead of Text
fields to get a capacity of up to about 32000 or 33000 characters in a
record.

MORE INFORMATION
================

CAUTION: Large record sizes quickly consume a large amount of disk space as
you write new records. If you have large records, consider redesigning the
database to make use of related tables containing small record sizes.

The sample program below creates a new database (C:\TEMPZ.MDB) with 10 Memo
fields and one long-integer field. This program demonstrates the 32000-byte
or 33000-byte maximum size for the sum of all Memo fields.

Step-by-Step Example

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add the following code to the Form Load event:

 Sub Form_Load ()

 Const DB_LANG_GENERAL = ";LANGID=0x0809;CP=1252;COUNTRY=0"
 Const numfields = 9 'Number of Memo fields to add to db, minus 1.
 Dim db As Database
 Dim MyDS As Dynaset
 Dim tdef As New TableDef
 Dim FieldInteger As New field
 Dim fieldname0 As New field
 Dim fieldname1 As New field
 Dim fieldname2 As New field
 Dim fieldname3 As New field
 Dim fieldname4 As New field

 Dim fieldname5 As New field
 Dim fieldname6 As New field
 Dim fieldname7 As New field
 Dim fieldname8 As New field
 Dim fieldname9 As New field
 Dim uniqindex As New Index

 form1.Show ' Must Show form in Load event for Print to work.
 On Error Resume Next ' Ignore the error if file doesn't exist yet:
 Kill "C:\TEMPZ.MDB" ' Delete db if it exists from previous run.
 On Error GoTo 0
 Set db = CreateDatabase("C:\TEMPZ.MDB", DB_LANG_GENERAL)
 tdef.Name = "Testtable" ' Name of table to create.

 'Define the fields in the Testtable table:
 FieldInteger.Name = "fieldinteger"
 FieldInteger.Type = 4 'Long integer
 fieldname0.Name = "fieldname0"
 fieldname0.Type = 12 ' Type 10 = Text, Type 12 = Memo
 fieldname1.Name = "fieldname1"
 fieldname1.Type = 12 ' Type 10 = Text, Type 12 = Memo
 fieldname2.Name = "fieldname2"
 fieldname2.Type = 12 ' Type 10 = Text, Type 12 = Memo
 fieldname3.Name = "fieldname3"
 fieldname3.Type = 12 ' Type 10 = Text, Type 12 = Memo
 fieldname4.Name = "fieldname4"
 fieldname4.Type = 12 ' Type 10 = Text, Type 12 = Memo
 fieldname5.Name = "fieldname5"
 fieldname5.Type = 12 ' Type 10 = Text, Type 12 = Memo
 fieldname6.Name = "fieldname6"
 fieldname6.Type = 12 ' Type 10 = Text, Type 12 = Memo
 fieldname7.Name = "fieldname7"
 fieldname7.Type = 12 ' Type 10 = Text, Type 12 = Memo
 fieldname8.Name = "fieldname8"
 fieldname8.Type = 12 ' Type 10 = Text, Type 12 = Memo
 fieldname9.Name = "fieldname9"
 fieldname9.Type = 12 ' Type 10 = Text, Type 12 = Memo

 'Add the fieldinteger and fieldnameN fields to the Fields collection:
 tdef.Fields.Append FieldInteger
 tdef.Fields.Append fieldname0
 tdef.Fields.Append fieldname1
 tdef.Fields.Append fieldname2
 tdef.Fields.Append fieldname3
 tdef.Fields.Append fieldname4
 tdef.Fields.Append fieldname5
 tdef.Fields.Append fieldname6
 tdef.Fields.Append fieldname7
 tdef.Fields.Append fieldname8
 tdef.Fields.Append fieldname9

 'Define fieldinteger_index, the unique primary-key index:
 uniqindex.Name = "fieldinteger_index"
 uniqindex.Fields = "fieldinteger"
 uniqindex.Unique = True
 uniqindex.Primary = True

 'Append the fieldinteger_index index to the Indexes collection:
 tdef.Indexes.Append uniqindex

 'Append the tdef table definition (TableDef object) to the TableDefs
 'collection:
 db.TableDefs.Append tdef
 db.Close ' Close and create the empty database.

 Set db = OpenDatabase("c:\TEMPZ.MDB") ' Open the empty database.
 Set MyDS = db.CreateDynaset("Testtable") ' Make dynaset from table.

 For i = 0 To 5 ' Add index field values for 5 new records:
 MyDS.AddNew
 MyDS!FieldInteger = i
 MyDS.Update
 Next
 MyDS.MoveFirst ' Move to the first record.

 ' Add 32000 total bytes of string data to the fields in first record:
 For j = 0 To numfields
 MyDS.Edit ' Opens current record for editing, into copy buffer.
 f$ = "fieldname" & j
 Debug.Print f$
 ' The total size of all Memo fields added together cannot exceed
 ' about 33000 bytes.
 ' Fields fieldname0 to fieldname9 are each assigned 3200 bytes:
 MyDS(f$) = String$(3200, "x")
 ' If you increase the string size to 3300, all fields write okay.
 ' But if you increase the string size to 3400, the program fails
 ' to write a string in the last field, the fieldname9 field. That
 ' demonstrates the maximum allowed size.
 MyDS.Update ' Saves the copy buffer to the table.
 Next

 MyDS.Close
 db.Close
 MsgBox "done"
 End

 End Sub

3. Start the program, or press the F5 key. After a few seconds, the program
 displays a message box saying "done."

4. Examine the new database C:\TEMPZ.MDB using Data Manager or Microsoft
 Access. You can run the Data Manager program from the Window menu in
 Visual Basic, or by using the Windows File Manager to run DATAMGR.EXE
 from the Visual Basic directory. To confirm that the number of
 characters in fieldname9 is 3200, copy it to the clipboard and paste
 it into a text editor. Close the database when finished; this will avoid
 a file-sharing conflict.

5. Change the String$(3200, "x") function in the above program so that it
 assigns 3400 characters to each of the ten Memo fields. Run the program
 again. Examine the new database using Data Manager or Microsoft Access.
 The last field, fieldname9, fails to receive any characters because the
 maximum record size was reached before 34000 characters.

Additional reference words: 3.00 limitation specification larger smaller
 bigger
KBCategory: APrg
KBSubcategory: APrgDataAcc

Hitchhiker's Guide to VBSQL -- VBSQL vs ODBC API Data Access
Article ID: Q111490
--
The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, version 3.0
--

SUMMARY
=======

If you want to use ODBC API functions instead of VBSQL data object
variables for data access in Visual Basic, consider the following issues:

 - On average, the data access speed of the VBSQL API functions versus ODBC
 API functions is about equal. ODBC does some calls slightly faster, and
 VBSQL (DBLIB) does some other calls faster.

 - The VBSQL API may be slightly easier to use than the ODBC API, but is
 not as generic as the ODBC API.

 - If portability to C is important to you, the API calls for VBSQL are
 identical to the C calls -- except with C you need to bind each variable
 with each column, which can be tedious. The error handlers with VBSQL
 resemble the C language in that VBSQL implements real call-back
 handlers, but this is not an option with the ODBC API.

MORE INFORMATION
================

The VBSQL.VBX custom control file comes from the Microsoft SQL Server
Programmer's Toolkit for Visual Basic.

The following guide offers further information on VBSQL:

 "Hitchhiker's Guide to VBSQL: The developer's roadmap to the Visual
 Basic Library for SQL Server," by Bill Vaughn.

 ISBN # 0-9640242-0-9
 Available in London, England, at "The PC Bookshop Ltd."

 In the rest of the world, purchase the book by sending $45 in U.S. funds
 (plus $3.84 tax if you live in Washington State) to:

 Beta V
 Book Order
 16212 NE 113th Ct,
 Redmond, WA 98052-2773
 (206) 556-9205

 C.O.D. orders to U.S. addresses are okay. Overnight C.O.D. orders are
 $63.50 in US funds. No credit card orders or purchase orders are
 accepted.

 The Third Edition covers accessing the SQL Server (Microsoft and Sybase)

 through VBSQL (DBLIB) and data access object variables in Visual Basic
 version 3.0. This is a definitive work on accessing the SQL Server from
 Visual Basic.

Open Database Connectivity (ODBC)

The greatest impact of Open Database Connectivity (ODBC) is on
organizations where information is stored on a variety of dissimilar
computers and databases. Under the ODBC scheme, a driver written for a
specific database program, such as ORACLE, Ingres, or IBMs DB2, acts as the
intermediary between the application and the database.

By using ODBC calls and the appropriate driver(s), the same application,
be it a spreadsheet or an accounting package, can easily extract and
manipulate information stored in a variety of databases.

ODBC-compliant applications include Microsoft Excel version 5.0 and Word
version 6.0.

Additional reference words: 3.00
KBCategory: APrg
KBSubcategory: APrgDataODBC

How to Implement ToolTips Help in Visual Basic Applications
Article ID: Q111495

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0

SUMMARY
=======

This article shows by example how to implement the toolbar "ToolTips" help
in a Visual Basic application in a manner similar to the way "ToolTips"
help system is implemented in Microsoft Word version 6.0 for Windows and
Microsoft Excel version 5.0.

MORE INFORMATION
================

The following example implements a "ToolTips" help system by taking
advantage of the GetCursorPos() and WindowFromPoint() Windows API
functions. The GetCursorPos() function returns the current location of the
mouse cursor and the WindowFromPoint() function returns the hWnd (window
handle) of the control or form at a particular location on the screen.

Important Note: Modifications Required If Using Image Controls
--

IMPORTANT NOTE: Most toolbars in Visual Basic are made by using a container
control (picture box) with individual image controls acting as buttons
placed inside the container. The Image control, however, is a "light"
control; it does not have an hWnd property. Because of this, the
WindowFromPoint() Windows API function will not be able to detect which
image control the cursor is over. It will give the hWnd of the image
control's parent, in this case the container.

Therefore, if you are using image controls as your toolbar buttons (or some
other control that doesn't have an hWnd property), you need to modify this
program. Have it detect when the mouse cursor is over the parent container.
Then calculate which image control the cursor is over by comparing the x
and y coordinate returned by GetCursorPos, which is relative to the screen,
to the coordinates of the image controls, which are relative to the parent
container.

How to Use the GetCursorPos() and WindowFromPoint() Windows API functions

By using a timer, you can call the GetCursorPos() and WindowFromPoint() API
functions to find out if the mouse cursor is located over a control for
which you want to display a help window.

The help window is displayed by using an auto sizing label control on a
separate form. By locating the form relative to the cursor, changing the
label's caption, and resizing the form, you can display the ToolTips help.

Then you can use the ShowWindow() Windows API function to display the help
form without giving it the focus. By using ShowWindow(), you can keep the
main forms title bar from flashing when focus changes. In contrast, the
Show method would cause the title bar to flash.

Step-by-Step Example

1. Start a new project in Visual Basic. Form1 is created by default.

2. Place the following controls on Form1:

 Timer (Timer1)
 Text Box (Text1)
 List Box (List1)
 Combo Box (Combo1) 'See NOTE below
 Check Box (Check1)
 Picture Box (Picture1)
 Option Button (Option1)
 Command Button (Command1)
 Vertical Scroll Bar (vScroll1)
 Horizontal Scroll Bar (hScroll1)

 NOTE: The combo box is a special case. The edit box portion of the combo
 box is a child window of the combo box, so it has a different window
 handle. Therefore, you must make call the GetWindow() Windows API
 function, with the GW_CHILD parameter, in order to get the hWnd of this
 edit box.

3. Add the following code to the Form_Load event of Form1:

 Sub Form_Load ()

 ' Set timer for 1 second, and enable it.
 Timer1.Interval = 1000
 Timer1.Enabled = True

 End Sub

4. Add the following code to the timer event of Timer1:

 Sub Timer1_Timer ()
 Dim curhWnd As Integer 'Current hWnd
 Dim p As POINTAPI
 Static LasthWnd As Integer 'Hold previous hWnd

 ' Make sure the program has the input focus:
 If GetActiveWindow() = Form1.hWnd Then
 ' Initialize point structure:
 Call GetCursorPos(p)
 ' Which window is the mouse cursor over?
 curhWnd = WindowFromPoint(p.y, p.x)

 ' Same as last window? If so, don't need to redraw:
 If curhWnd <> LasthWnd Then
 ' Store the current hWnd:
 LasthWnd = curhWnd

 ' Decrease timer interval to 5 ms (could choose 1 ms):
 Timer1.Interval = 5
 ' Which control is the cursor over?
 Select Case curhWnd
 Case Command1.hWnd
 DisplayHelp "Command Button"
 Case Text1.hWnd
 DisplayHelp "Text Box"
 Case List1.hWnd
 DisplayHelp "List Box"
 Case Picture1.hWnd
 DisplayHelp "Picture Box"
 Case Check1.hWnd
 DisplayHelp "Check Box"
 Case Option1.hWnd
 DisplayHelp "Option Box"
 Case Combo1.hWnd
 DisplayHelp "Drop Down Combo Box"
 Case GetWindow(Combo1.hWnd, GW_CHILD) 'Edit box of combo box
 DisplayHelp "Edit Box of Combo Box"
 Case hScroll1.hWnd
 DisplayHelp "hScroll Bar"
 Case vScroll1.hWnd
 DisplayHelp "vScroll Bar"
 Case frmHelp.hWnd
 ' If it moves onto the help window, hide it:
 frmHelp.Hide
 Case Else
 ' Cursor is over the form or something else, so
 ' change interval back to 1 sec delay:
 DisplayHelp ""
 Timer1.Interval = 1000
 End Select
 End If
 End If
 End Sub

5. Create a new module. From the File menu, choose New Module (ALT, F, M).
 Module1 is created by default.

6. Add the following declarations to the General Declarations section of
 Module1:

 Global Const SW_SHOWNOACTIVATE = 4
 Global Const GW_CHILD = 5 ' Needed for edit portion of combo box

 Type POINTAPI ' Stores location of cursor
 x As Integer
 y As Integer
 End Type

 Declare Sub GetCursorPos Lib "User" (lpPoint As POINTAPI)
 Declare Function GetActiveWindow Lib "User" () As Integer
 ' Entr each of the following Declare statements on one, single line:
 Declare Function WindowFromPoint Lib "user" (ByVal lpPointY As Integer,
 ByVal lpPointX As Integer) As Integer
 Declare Function GetWindow Lib "User" (ByVal hWnd As Integer,

 ByVal wCmd As Integer) As Integer
 Declare Function ShowWindow Lib "User" (ByVal hWnd As Integer,
 ByVal nCmdShow As Integer) As Integer

7. Add the following Sub procedure to Module1:

 Sub DisplayHelp (Help$)
 Dim lpPoint As POINTAPI ' Cursor Point variable
 Dim ret As Integer ' Return value of ShowWindow() API function

 Rem Display Help String
 Rem
 Rem This Function displays the Help$ if Help$ <> "".
 Rem if Help$ = "" then the Help String is removed.
 Rem
 Rem FUNCTION REQUIREMENTS:
 Rem GetCursorPos() Windows API function
 Rem frmHelp Name of the Help form
 Rem

 If Len(Help$) <> 0 Then ' Double check help$

 ' Make sure help form is invisible:
 frmHelp.Hide

 ' Change caption of label:
 frmHelp.Label1.Caption = Help$

 ' Get the cursor position so you can calculate where to place the
 ' help form:
 Call GetCursorPos(lpPoint)

 ' Offset the form from the cursor by 18 and 2 pixels (values
 ' chosen to simulate the look of Microsoft Word version 6.0)
 frmHelp.Top = (lpPoint.y + 18) * Screen.TwipsPerPixelY
 frmHelp.Left = (lpPoint.x - 2) * Screen.TwipsPerPixelY

 ' Adjust width of form to label + 4 because 2 are needed for each
 ' pixel of the border and 2 are needed to center the label (the
 ' label is inset by 1 pixel on the form). Also, adjust height of
 ' form to height of label + 2 because 2 ar needed for each pixel
 ' of the border:
 frmHelp.Width = frmHelp.Label1.Width + (4 * Screen.TwipsPerPixelX)
 frmHelp.Height = frmHelp.Label1.Height + 2 * Screen.TwipsPerPixelY

 ' Make sure form is on top:
 frmHelp.ZOrder

 ' Show form without the focus:
 ret = ShowWindow(frmHelp.hWnd, SW_SHOWNOACTIVATE)
 Else
 ' Hide the form:
 frmHelp.Hide
 End If
 End Sub

8. Create another form by choosing New Form from the File menu (ALT, F, F).

 Form2 is created by default. Change the following properties of Form2:

 Name = frmHelp
 BorderStyle = 1 - Fixed Single
 ControlBox = False
 MinButton = False
 MaxButton = False

9. Add a label control (Label1) to the frmHelp form and set AutoSize=True.

10. Add the following code the to Form_Load event of the frmHelp form:

 Sub Form_Load ()

 ' Get rid of the forms Caption so title bar does not display:
 Me.Caption = ""

 ' Give the form and label a light yellow background:
 Me.BackColor = &H80FFFF
 Label1.BackColor = &H80FFFF

 ' Inset label by 1 pixel:
 Label1.Left = 1 * Screen.TwipsPerPixelX
 Label1.Top = 0

 End Sub

11. Start the program by pressing the F5 key. Then place the cursor over
 one of the controls to display the help window.

Additional reference words: 3.00
KBCategory: APrg
KBSubcategory: APrgDataOther

How to Read Database Fields Into and Out of a List Box
Article ID: Q112195

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, version 3.0

SUMMARY
=======

The list box that comes with Visual Basic is not bound, but you can
simulate a bound list box in a Visual Basic program. Visual Basic can read
records from a database placing the values from each individual field
within the record into columns in a list box, which can then be extracted
by the Visual Basic program.

MORE INFORMATION
================

By reading each field into the list box and separating each field from the
next with a TAB character, you can create the illusion of columns.

NOTE: By using the SendMessage Windows API function and the LB_SETTABSTOPS
constant, you can set the size of your tab stops within your listbox to
create custom spacing between fields.

Here's an example:

 List1.AddItem Data1.Recordset(Field1) & Chr$(9) & Data1.Recordset(Field2)

This makes two columns in the list box. Field1 is separated from Field2 by
the TAB character. You can use the TAB character to parse the columns back
into separate fields. For example:

 Dim X As Integer
 X = InStr(List1.Text, Chr$(9))
 Text1 = Mid$(List1.Text, 1, X - 1) ' Will Contain Field1
 Text2 = Mid$(List1.Text, X + 1, (Len(List1.Text) - X)) ' Contains Field2

Step-by-Step Example

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Place two Text Boxes (Text1 and Text2), a List Box (List1), and a
 data control (Data1) on Form1.

3. Set the following properties of the Data Control:

 Property Setting Comment

 DatabaseName BIBLIO.MDB The sample db in the Visual Basic directory
 Recordsource Authors The Authors table is in BIBLIO.MDB

4. Add the following code to the Form_Load event:

 Sub Form_Load()
 Data1.Refresh
 ' Loop until you reach the last record:
 Do Until Data1.Recordset.EOF
 ' Load the list box with fields separated with a tab:
 ' Enter the following two lines as one, single line:
 List1.AddItem Data1.Recordset("Au_Id") & Chr$(9) &
 Data1.Recordset("Author")
 Data1.Recordset.MoveNext
 Loop
 ' Initialize list box and text boxes to first item:
 List1.ListIndex = 0
 End Sub

5. Add the following code to the Click event of List1:

 Sub List1_Click()
 Dim X As Integer
 ' Find first tab character:
 X = InStr(List1.Text, Chr$(9))
 ' Put all characters before tab into Text1:
 Text1 = Mid$(List1.Text, 1, X - 1)
 ' Put all characters after tab into Text2:
 Text2 = Mid$(List1.Text, X + 1, (Len(List1.Text) - X))
 End Sub

6. Press the F5 key to run the program. Select an item in the List Box.
 The Author ID should be in Text1 and Author name should be in Text2.

Additional reference words: 3.00
KBCategory:
KBSubcategory: APrgDataAcc

PRB: Can't find Installable ISAM When Run Two DB Apps in VB
Article ID: Q112652

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SYMPTOMS
========

The following error message occurs under the conditions listed below:

 Can't Find Installable ISAM

A combination of the following conditions result in the error:

 - A Visual Basic application (.EXE) is executed that uses an IISAM driver.
 - The <appname>.INI file associated with the Visual Basic application
 includes a reference to only that IISAM driver.
 - A second Visual Basic application (.EXE) is executed that requires a
 different IISAM driver.

No matter what entries are in the second application's <appname>.INI
file, the "Can't Find Installable ISAM" error occurs.

CAUSE
=====

This behavior is by design in the Microsoft Access engine included in
Visual Basic version 3.0 for Windows. The Microsoft Access engine is not
currently designed to look for the new .INI file required by the second
application. Instead, it is designed to use the established references that
the first .INI file provided when the first Visual Basic application was
executed. This design is under review for possible revision in future
product versions.

WORKAROUND
==========

To work around this limitation, place the entire Installable ISAMs section
of the VB.INI file into the <appname>.INI file of each Visual Basic
application that executes an IISAM driver.

The section in the <appname>.INI should look like this:

[Installable ISAMs]
Btrieve=C:\WINDOWS\SYSTEM\btrv110.dll
FoxPro 2.0=C:\WINDOWS\SYSTEM\xbs110.dll
FoxPro 2.5=C:\WINDOWS\SYSTEM\xbs110.dll
dBASE III=C:\WINDOWS\SYSTEM\xbs110.dll
dBASE IV=C:\WINDOWS\SYSTEM\xbs110.dll
Paradox 3.X=C:\WINDOWS\SYSTEM\pdx110.dll

MORE INFORMATION
================

Steps to Reproduce Behavior

TestApp1

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add a Text Box (Text1) and a Data control (Data1) to the form.

3. Set the Connect and DatabaseName properties of Data1 to connect to
 a Paradox 3.x database.

4. Make an .EXE file, and call it TESTAPP1.EXE

5. Using Notepad, create a text file called TESTAPP1.INI and in that
 file place the following:

 [Installable ISAMs]
 Paradox 3.X=C:\WINDOWS\SYSTEM\PDX110.DLL

6. Place the file TESTAPP1.INI in your \WINDOWS subdirectory.

TestApp2

7. Start a new project in Visual Basic. Form1 is created by default.

8. Add a Text Box (Text1) and a Data control (Data1) to the form.

9. Set the Connect and DatabaseName properties of Data1 to connect to
 a Btrieve database.

10. Make an .EXE file, and call it TESTAPP2.EXE

11. Using Notepad, create a text file called TESTAPP2.INI and in that
 file place the following:

 [Installable ISAMs]
 Btrieve=C:\WINDOWS\SYSTEM\BTRV110.DLL

12. Place the file TESTAPP2.INI in your \WINDOWS subdirectory

13. Run TESTAPP1. It should run with no problem.

14. Next Run TESTAPP2 while TESTAPP1 is still running. You will receive
 the following error:

 Can't Find Installable ISAM

Additional reference words: 3.00
KBCategory: APrg
KBSubCategory: APrgDataIISAM

How to Perform Microsoft Access Macro Action Via DDE from VB
Article ID: Q112767

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SUMMARY
=======

From Visual Basic, you cannot directly use a form or report that was
created by the Microsoft Access engine. This article shows by example
how to use DDE to do it indirectly. The example prints one of the
built-in reports from the NWIND.MDB sample database by using DDE and
the OpenReport macro action in Microsoft Access.

MORE INFORMATION
================

For more information about Microsoft Access macro actions, please see
the Microsoft Access documentation or Help menu. A Visual Basic
application can call most of these actions by using DDE.

Step-by-Step Example

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add a text box (Text1) and Command button (Command1) to Form1.

3. Place the following code in the Command1 button's click event:

 ' Note the time-out has to be long enough to allow for the print
 ' to complete or an error will occur.
 Sub Command1_Click ()
 Text1.LinkTimeout = 600 'Set DDE Time-out for 60 Seconds
 Text1.LinkTopic = "MSACCESS|SYSTEM"
 Text1.LinkMode = 2 ' Establish manual DDE link to Microsoft Access.
 Text1.LinkExecute "[OPENREPORT Catalog]" 'Open and Print Report
 Text1.LinkMode = 0 ' Terminate the DDE link to Microsoft Access
 End Sub

4. Start Microsoft Access and open the NWIND.MDB sample database.

5. Run the Visual Basic program, and click the Command1 button.

Additional reference words: 3.00
KBCategory:
KBSubcategory: IAPDDE APrgDataAcc

Clicking Toolbox/Color Palette Menu Doesn't Leave Menu Open
Article ID: Q73418

The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
 - Microsoft Visual Basic programming system for Windows, version 1.0
 - Microsoft Windows, versions 3.0 and 3.1

SUMMARY
=======

When you single click in the System menu (the Control menu in the
upper left corner) of the Toolbox or the Color Palette in the Visual
Basic environment, the menu flashes on the screen but does not stay
visible like normal Windows System menus.

This behavior only occurs when running under Microsoft Windows,
version 3.0. When running under Microsoft Windows, version 3.1, the
menus visible as you would expect.

To keep the Toolbox or Color Palette system menu pulled down, when
running under Microsoft Windows, version 3.0, you must hold down the
mouse button.

MORE INFORMATION
================

On a normal Windows System menu, a single mouse click pulls down the
menu and keeps the menu down without having to hold down the mouse
button. Even though the System menus of the Toolbox and Color Palette
may look like normal System menus, they do not act like them, and are
not "normal" Windows System menus. They were not designed to stay open
with a single mouse click; therefore, the menu will flash briefly on
the screen on a single mouse click and then disappear, unless you keep
the mouse button held down.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: EnvtDes

No Edit Menu Access for Property Entry; Use Edit Shortcut Keys
Article ID: Q73800

The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
 - Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

The Properties Bar entry window was not designed to handle the Edit
menu commands (such as Cut, Copy, Paste, and Undo) when chosen with
the mouse. The Edit menu commands affect the controls on the form,
not the Properties Bar entry window (even if you first select text in
the Properties Bar entry window before choosing the Edit menu with the
mouse).

Instead of choosing Edit commands with the mouse, you can select the
desired text in the Properties Bar entry window and use the Edit
shortcut keys, as follows:

Command Shortcut Keys
------- -------------

Cut SHIFT+DELETE
Copy CTRL+INSERT
Paste SHIFT+INSERT
Undo ALT+BACKSPACE

(NUM LOCK needs to be off if you select the DELETE or INSERT key
 from the numeric keypad.)

MORE INFORMATION
================

Example: Edit Menu Cannot Affect Properties Bar Entry Window
--

1. Start Visual Basic.

2. From the File menu, choose New Project.

3. Double-click a label box from the Toolbox (symbolized by a
 capital A in script). This should display a label box on the
 form.

4. With the mouse, select the text fragment "Lab" from the "Label1"
 Caption in the Properties Bar entry window, and choose Copy from
 the Edit menu.

 Note: While you may have thought you just copied "Lab" into the
 Clipboard, you actually copied the entire Label1 control (from

 the form) into the Clipboard. Clicking the Edit menu anywhere
 outside the Properties Bar entry window causes the focus to
 revert back to the Label1 control on the form.

5. Click the "Form1" text appearing in the Properties Bar entry
 window to set the focus there.

6. From the Edit menu, choose Paste (again, clicking the Edit menu or
 anywhere outside the Properties Bar entry window causes the focus to
 revert back to the Label1 control on the form.) This causes the
 following message box to appear:

 "You already have a control named 'Label1'. Do you want to
 create a control array?".

 Select either the Yes or No command button. Notice that
 another copy of the Label1 box will appear in the upper left
 corner of the form.

Instead of choosing Edit commands with the mouse, you can select the
desired text in the Properties Bar entry window and use the Edit
shortcut keys. For example, you can select text in the Properties Bar
entry window, then press CTRL+INSERT (while NUM LOCK is off) to copy
text to the Clipboard. You can press SHIFT+INSERT to paste Clipboard
text into the Properties Bar entry window. You can press ALT+BACKSPACE
to Undo a Cut, Copy, or Paste.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: EnvtDes

Deleting VB Control Moves Associated Code to Object: (General)
Article ID: Q73808
--
The information in this article applies to:

 - Microsoft Visual Basic programming system for Windows, versions
 1.0, 2.0, and 3.0
--

SUMMARY
=======

When you delete a control in the Visual Basic environment, the code
that you wrote for that control is not deleted, but is instead moved
to the Object: (General) area for code. Some programmers may not
realize that these detached (unused) procedures still exist and
consume memory. The detached code is available for calling, copying,
or reuse. For example, when you add a control that shares the same
name as a detached procedure, the detached event procedure
reassociates with that control.

If you want to delete both the control and its associated code, you
need to manually select and delete the code in each event procedure
for that control in addition to deleting the control itself.

This behavior is by design in Microsoft Visual Basic programming
system for Windows, versions 1.0 and 2.0.

MORE INFORMATION
================

The following example demonstrates that your code goes into the
Object: (General) area after you delete the associated control (or
object):

1. From the File menu, choose New Project.

2. Double-click a command button from the Toolbox. This puts a
 Command1 button on your form.

3. Double-click the Command1 button. This brings up the code window
 for the Command1_Click event procedure.

4. Enter the following code inside the Command1_Click procedure:

 Sub Command1_Click()
 Print "Hello" ' Enter this statement.
 End Sub

5. Press F5 to run your code. Click the Command1 button to see the
 text "Hello" display on Form1 in the upper left corner. From
 the Run menu, choose End to stop the program.

6. Click the Command1 button on Form1 to set the focus there and
 either press DELETE or choose the Delete command from the Edit menu.

 This deletes the Command1 button from the form.

 At this point, some programmers may incorrectly assume that the
 code associated with the Command1 button was also deleted.
 Actually, the code associated with any deleted object is
 automatically moved into the Object: (general) area of the Code
 window for that form. You can find the detached procedures in the
 Code window by choosing (general) from the Object: box, and
 choosing the procedures from the Proc: box. (Click the DOWN
 arrow symbol on the right of the Object: and Proc: boxes to see
 your choices.)

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: EnvtDes

PRB: VB Help Misleading Error: Unable to Find Windows Help.EXE
Article ID: Q76549

The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
 - Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

Starting Help when Windows has low system resources may result in a
misleading error such as:

 Unable to find Windows Help.EXE

CAUSE
=====

Windows displays this error if it has less than 5 percent of free system
resources.

RESOLUTION
==========

This problem is not destructive in any way. To regain access to the Visual
Basic Help system, you must first close Windows applications until you have
more than 5 percent of free system resources.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic.

2. Check Windows free resources (choose About from the Windows Help
 menu). If free resources are less than 5 percent, proceed to
 step 4.

3. Start another Windows application. Go to step 2.

4. From the Visual Basic online Help, choose the Index button.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: EnvtDes

Using PAGE DOWN and PAGE UP Keys Within VB.EXE Environment
Article ID: Q76559

The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
 - Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

At design time in the Code window of the Visual Basic programming
environment (VB.EXE), you can use the PAGE DOWN and PAGE UP keys as
shortcut keys to go from one event procedure to another. Other helpful
shortcut keys are listed below.

MORE INFORMATION
================

Below is an example that demonstrates certain conditions you need to
follow before you can use the PAGE DOWN and PAGE UP shortcut keys
to their fullest potential in the Code window:

1. Start Visual Basic with a New Project.

2. Place some command buttons or any other objects on the form.

3. Double-click the form to bring up the Code window.

4. Place code within the various event procedures. For example,
 place some various Print statements in the following event
 procedures:

 - Form_Click
 - Command1_Click
 - Label1_Click
 - Form_Load

 (Note that you will need to have a command button and a label
 placed on Form1 before adding Print statements in the event
 procedures mentioned above.)

5. Press the PAGE DOWN or PAGE UP key and notice how the VB.EXE
 environment moves from one event procedure to another. The PAGE
 DOWN and PAGE UP work in a such a way that you are looking at the
 event procedures in an alphabetic order, except that the
 "(general)" event procedure is always on the top of the list even
 if it contains no code.

6. Notice that only the event procedures that contain code are
 displayed. Also note that PAGE DOWN and PAGE UP wrap around
 continuously. To activate PAGE UP and PAGE DOWN, the focus (the
 I-beam mouse pointer) must be in the Code window. When you have pages

 of code within an event procedure, there are times when the PAGE DOWN
 and PAGE UP seem to perform differently, but you need to visualize
 paging up or down a listing of event procedures in a printout to see
 how these routines are designed to work.

Other Shortcut Keys in VB.EXE

The F1 function key invokes Visual Basic Help. When you receive an
error after pressing the F5 key to run your code, you can press the F1
key to get additional information on that error.

F5 is the shortcut key to run a program.

F7 activates the Code window.

ALT+PRINT SCREEN is a Windows feature to copy the active window into
the Clipboard. PRINT SCREEN copies the entire screen into the
Clipboard. CTRL+INSERT copies selected text into the Clipboard.

F8 single-steps through a program in the VB.EXE environment.

F9 toggles breakpoints on and off.

F12 chooses the Save Project As command from the File menu.

For additional shortcut keys, search for "shortcuts" under Help in
the VB.EXE environment, and search for "system keys" in the Windows
Help.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: EnvtDes

CTRL+HOME Commits Current Line to VB Syntax Checking/Parsing
Article ID: Q76561

The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
 - Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

In the Visual Basic for Windows Code window, edit keys that move the
cursor from a line will commit that line to syntax checking (and code
parsing) by the Visual Basic for Windows editor. This is not a problem
with Visual Basic for Windows, but is by design.

Note that you can turn off syntax checking by choosing the Syntax
Checking command from the Code menu.

MORE INFORMATION
================

Visual Basic for Windows checks each line of code as it is entered for
syntax and usage. This is a feature of the Visual Basic for Windows
editing environment that prevents entry errors. Syntax checking is
done before performing any edit function in which the cursor will
leave the current line. Thus, any edit key combination that moves the
cursor from that line will initiate the checking process.

Steps to Reproduce Problem

1. Start Visual Basic.

2. Open the Global module.

3. Type "This is a test" and press CTRL+HOME.

An error message of "Expected: Statement" will be displayed. You may
not expect the error to occur because the cursor has not yet left the
line of code with the error; however, CTRL+HOME normally moves the
cursor off of the line, and therefore the line is checked before
doing the edit operation, resulting in the error message.

Similar behavior results when using other edit keys that move the
cursor from the current line, such as ENTER, PAGE UP, PAGE DOWN,
CTRL+END, UP ARROW, DOWN ARROW, and so on.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: EnvtDes

VB Forms with Menus Cannot Have Fixed Double BorderStyle
Article ID: Q76630

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 1.0
- Microsoft Windows versions 3.0 and 3.1

SUMMARY
=======

Because of Windows version 3.0 and 3.1 limitations, forms with menus
cannot have the BorderStyle property set to Fixed Double. To have
menus, a form's BorderStyle property must be either None, Fixed
Single, or Sizable.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Run Visual Basic, or from the File menu, choose New Project (ALT,
 F, N) if Visual Basic is already running. Form1 is created by
 default.

2. In the Menu Design window, create a menu on Form1.

3. Set the BorderStyle of Form1 to Fixed Double.

4. Run the program.

Note that the border style is fixed single.

Because of a Windows problem with menus on forms with fixed double
borders, Visual Basic does not paint the menus correctly. For this
reason, Visual Basic does not allow this particular combination of a
menu on a form with a fixed double border.

For more information on this limitation, query on the following words
in the Microsoft Knowledge Base:

 visual basic and menu and caption and bar

Additional reference words: 1.00 3.00 3.10
KBCategory:
KBSubcategory: PrgCtrlsStd EnvtDes

PRB: Invalid in Immediate Window Error When Creating Variable
Article ID: Q76636

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

SYMPTOMS
 One of the following error messages may occur when you attempt to
 create a new variable in the VB.EXE Immediate window:

 Invalid in Immediate Window

 -or-

 Invalid in Debug Window

CAUSE
 This error message may occur if your program has encountered a serious
 error (for example, "Out of Stack Space") from which the program
 cannot recover to continue. The current program must be able to continue
 for variables to be created in the Immediate window.

RESOLUTION
 Exit Visual Basic.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic, or choose New Project from the File menu if Visual
 Basic is already running.

2. Double-click Form1 to open a code window. In the Form_Click
 event procedure, enter the following code:

 Call Form_Click

3. Execute the program and click Form1. An "Out of Stack Space"
 error will be displayed.

4. Close the error message window and enter the following code in the
 Immediate window:

 A$ = "123"

5. At this point, you will receive one of the error messages listed above.

 If not, repeat steps 3 and 4.

Additional reference words: 1.00 2.00 3.00 errmsg
KBCategory:
KBSubcategory: EnvtDes

PRB: ToolBox/Color Palette Menus Lose Focus After Single ESC
Article ID: Q76984

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

The ToolBox and Color Palette system menus lose their focus after only
one press of the ESC key rather than two. Other system menus lose
focus after two presses of ESC.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

Steps to Reproduce Behavior

1. Start Visual Basic.

2. Click the ToolBox or the Color Palette.

3. Press ALT+MINUS to open its system menu.

4. Press ESC to close its system menu.

5. Press SPACEBAR to drop the system menu again.

Pressing SPACEBAR does not drop the system menu as it would in other
Windows system menus. The focus on these two particular system menus is
lost with one press of ESC. This is not a problem, but a design feature
of the Visual Basic ToolBox and Color Palette windows.

This feature is unlike other Windows system menus in which two ESC key
presses are required to remove the focus. (The first ESC closes the
system menu, but the focus remains on it. The second ESC returns the
focus to the original window.) The ToolBox and Color Palette system
menus are not regular Windows system menus, and function differently.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: EnvtDes

PRB: Compatibility Problems with Adobe Type Manager
Article ID: Q77645

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 2.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

The following problems may arise when using the Adobe Type Manager
(ATM) with Visual Basic:

 - FontName list is incorrect and/or contains duplicate names
 - Unrecoverable Application Errors (UAEs) in Windows version 3.0 or
 General Protection (GP) faults in Windows version 3.1.
 - Incorrect screen font displayed when using ATM fonts

STATUS
======

Adobe Type Manager, is manufactured by vendors independent of
Microsoft; we make no warranty, implied or otherwise, regarding this
product's performance or reliability.

Additional reference words: 1.00 2.00
KBCategory:
KBSubcategory: EnvtDes

Restart in VB Break Mode if Delete Blank Line Above End Sub
Article ID: Q78074

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

Deleting a blank line above the End Sub/End Function or below the
Sub/Function statement will generate the message

 You will have to restart your program
 after this edit--proceed anyway?

while in break mode in the VB.EXE environment. This behavior is by
design.

This information applies to Microsoft Visual Basic programming system
1.0 for Windows.

MORE INFORMATION
================

Deleting the line following the Sub or Function statement requires you
to restart when in break mode. This also occurs when deleting the line
preceding the End Sub or End Function statement of any procedure. The
Visual Basic edit manager treats both of these deletions as
modifications to the first or last lines, both of which require a
restart when in break mode.

The following steps will force a restart in a program while in
break mode.

1. In a new project, choose Start from the Run Menu.

2. Press CTRL+BREAK to suspend execution of the application and enter
 break mode.

3. Press F7, or from the Code menu, choose View Code to bring up the
 code window.

4. The text cursor should be on the blank line between the following
 procedure statements:

 Sub Form_Click ()

 End Sub

5. Press DEL to delete the blank line between the Sub Form_Click() and
 End Sub lines.

 The following message will be displayed:

 You will have to restart your program
 after this edit--proceed anyway?

The above message is also displayed when the cursor is on the second
line and you press the BACKSPACE key once, or if the cursor is at the
beginning of the last line of a procedure (at the beginning of the End
Sub line) and you press the BACKSPACE key once.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: EnvtDes

PRB: Printer Error When Printing VB Form to Text-Only Printer
Article ID: Q78075

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

The message "Printer Error" displays when you print a form from Visual
Basic to a text-only printer. The text-only printer does not have the
graphics capability to print the Visual Basic form. Windows traps the
printer error and displays the "Printer Error" dialog box.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

Steps to Reproduce Problem

1. From the Windows Control Panel, choose the Printers icon, and
 select Generic Text / Text Only as the default printer. (You may
 need to install the Generic / Text Only printer from the Control
 Panel to make this option available.)

2. Start Visual Basic.

3. From the File menu, choose Print. The current form and code
 are selected by default in the print dialog box.

4. Choose the OK button to print. Windows displays the "Printer Error"
 dialog box.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: EnvtDes

PRB: Printing with HPPCL5A.DRV to HP LaserJet III Cuts Line
Article ID: Q78079

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 2.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

Choosing Print from the Visual Basic File menu to print source code
truncates one line of code per page of output when printing to a
Hewlett-Packard (HP) LaserJet series III printer using the HPPCL5A.DRV
printer driver.

CAUSE
=====

This is a problem with the Hewlett-Packard LaserJet series III printer
driver version 3.42 for Windows.

STATUS
======

Microsoft has confirmed this to be a problem with the HPPCL5A printer
driver version 3.42. This problem was corrected by the HP III driver
version 30.3.85 included with Microsoft Word for Windows version 2.0.

Additional reference words: 1.00 2.00 HP laser jet truncate lose
KBCategory:
KBSubcategory: EnvtDes

High Granularity Setting Affects Windows/VB Form Resizing
Article ID: Q79386

The information in this article applies to:

- All programs written for Microsoft Windows version 3.0 and
 version 3.0a, including programs written with Microsoft Visual Basic
 programming system for Windows, version 1.0

SUMMARY
=======

If you set the granularity of Windows' invisible sizing grid to a
value greater than zero, you may notice that form resizing is no
longer smooth. This behavior is correct and can be changed by setting
the granularity back to zero.

MORE INFORMATION
================

The Windows Control Panel program group contains several icons that
allow you to customize the Windows environment. The Desktop program
allows you to specify the Windows granularity setting. If you notice
that Visual Basic forms do not smoothly resize, but instead resize in
"chunks," the problem may be caused by a granularity setting that is
too high.

To change the Windows granularity setting, do the following:

1. Open the Windows Main program group.

2. Double-click the Control Panel icon.

3. Double-click the Desktop icon.

4. Move to the granularity text box in the lower right portion of the
 dialog box.

5. Click the up or down scroll arrow to the right of the text box to
 increase or decrease the size of the grid. Or, type the number you
 want in the text box.

 Note: The allowable range of values is 0-49 inclusive. Setting the
 granularity to zero will produce the smoothest form resizing.

6. Choose OK.

Reference(s):

"Microsoft Windows 3.0 Graphical Environment: Users Guide," version
3.0, page 157

Additional reference words: 1.00 3.00 3.00a W_Win3
KBCategory:

KBSubcategory: EnvtDes

Helv and Tms Rmn FontNames Not Available in Windows 3.1
Article ID: Q84470
--
The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
 - Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

Helv and Tms Rmn are no longer listed in the Settings box of the
Properties bar as selections for the FontName property in Visual Basic
under Windows 3.1. By default, Windows 3.1 maps the fonts Helv and Tms
Rmn to MS Sans Serif and MS Serif, respectively.

MORE INFORMATION
================

Visual Basic uses Helv as the default setting for the FontName
property of forms and controls. That font is still the default
setting for FontName in Visual Basic, even though it is no longer a
system font in Windows 3.1. Helv and Tms Rmn are no longer listed in
the drop-down list box in the Properties bar.

In Windows 3.1, Helv is mapped to MS Sans Serif and Tms Rmn is mapped
to MS Serif by default. This appears in the [FontSubstitutes] section
of the WIN.INI file. Therefore, FontName can still be set to Helv or
Tms Rmn at run-time without producing any errors, even though they are
no longer available. Windows will instead use the existing fonts to
which they are mapped.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: EnvtDes

VB Uses Bitmap Fonts when TrueType FontSize Less Than 7 Points
Article ID: Q84483
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
--

SYMPTOMS
========

The Microsoft Windows version 3.1 operating environment provides you
with TrueType scalable fonts that can be used in Microsoft Visual Basic
for Windows applications. Visual Basic for Windows supports TrueType
fonts for font sizes of 7 points or greater -- depending on the video
driver installed. Smaller fonts are mapped to available bitmap fonts, based
on the fonts available for the video driver installed.

CAUSE
=====

This is not a problem with Visual Basic for Windows. This is how Windows
manages fonts. This is expected behavior in Windows when using TrueType
fonts that are less than 7 points in size.

STATUS
======

There is no way to force Visual Basic for Windows to use TrueType fonts for
font sizes less than 7 points. This is by design.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

Microsoft Windows 3.1 utilizes automatic bitmap font substitution,
which is done to preserve readability at small sizes when they are
displayed. At very small point sizes (4 to 7 points on standard VGA
video resolutions), most Type 2 fonts are substituted with a hand-tuned
bitmap font to preserve readability. This can cause the style of the
font to change. For example, the Times New Roman font shipped with
Windows version 3.1 appears as the Small Fonts font for sizes 4 - 6
and MS Serif for sizes 6.25 - 8.25, rather than its native face it has
at larger sizes.

The program below demonstrates this scenario. The program attempts to
print a message using the Arial font in sizes from 1 to 9. Visual Basic
for Windows uses the font Small Fonts for font sizes less than 7 and
depending on the video driver installed may use Arial for sizes
between 7 and 8.25. Using the standard VGA driver, Arial is used for
fonts sizes greater then 8.25.

Steps to Demonstrate This Behavior

1. Start Visual Basic for Windows, or from the File menu, choose New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 is created by default.

2. Enter the following code into the Form_Click procedure:

 Sub Form_Click ()
 For i = 1 To 9 Step .25
 FontName = "Arial"
 FontSize = i
 Print Str$(i); Chr$(9); Str$(FontSize); Chr$(9); FontName
 Next i
 End Sub

3. Press the F5 key to run the program, and click the form. Notice that the
 Arial TrueType font is used only for font sizes of 8.25 or larger.

Additional reference words: 1.00 2.00 3.00 3.10
KBCategory:
KBSubcategory: EnvtDes

VB for Windows Trappable Errors List of Changes/Additions
Article ID: Q93711
--
The information in this article applies to:

- The Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 2.0
--

SUMMARY
=======

This article lists error codes, messages, and explanations of the errors
that you can trap at run time using the On Error statement and the Err
function in Visual Basic for Windows, version 2.0.

The first list below documents the trappable errors for Visual Basic for
Windows, version 1.0 that are no longer trappable errors in Visual Basic
for Windows, version 2.0.

The second list below documents the new trappable errors in Visual Basic
for Windows, version 2.0 that are not listed as trappable errors in Visual
Basic for Windows, version 1.0.

This article is based on the online help documentation of the trappable
error listing in Visual Basic for Windows, version 2.0. For more
information on these errors look in the online help "trappable error"
listing and select the error you would like more information on.

MORE INFORMATION
================

Listed below are trappable errors in Visual Basic for Windows, version 1.0
that are not trappable errors in Visual Basic for Windows, version 2.0:

260 No timer available
280 DDE channel not fully closed; awaiting response from foreign
 application
293 DDE method invoked with no channel open
296 PasteLink already performed on this control
297 Can't set LinkMode; invalid LinkTopic
340 Control array element 'item' does not exist
345 Reached limit: cannot create any more controls on this form
381 Invalid property array index
423 Property or control 'item' not found
430 No currently active control
431 No currently active form
520 Can't empty Clipboard
521 Can't open Clipboard

Listed below are the trappable errors in Visual Basic for Windows, version
2.0 that are not trappable errors in Visual Basic for Windows, version 1.0:

91 Object variable not set
92 For loop not initialized

93 Invalid pattern string
94 Invalid use of Null
95 Cannot destroy active form instance
298 DDE requires DDEML.DLL
387 'item' property can't be set on this control
391 Name not available
392 MDI Child forms cannot be hidden
393 'item' property cannot be read at run time
394 'item' property is write-only
403 MDI forms cannot be shown modally
404 MDI child forms cannot be shown modally
426 Only one MDI form allowed
600 Set value not allowed on collections
601 Get value not allowed on collections
602 General ODBC error: '<error>'
603 ODBC - SQLAllocEnv failure
604 ODBC - SQLAllocConnect failure
605 OpenDatabase - invalid connect string
606 ODBC - SQLConnect failure '<error>'
607 Visual Basic 2.0 attempted on unopened database
608 ODBC - SQLFreeConnect error
609 ODBC - GetDriverFunctions failure
610 ODBC - SQLAllocStmt failure
611 ODBC - SQLTables (TableDefs.Refresh) failure: '<error>'
612 ODBC - SQLBindCol failure
613 ODBC - SQLFetch failure: '<error>'
614 ODBC - SQLColumns (Fields.Refresh) failure: '<error>'
615 ODBC - SQLStatistics (Indexes.Refresh) failure: '<error>'
616 Table exists - append not allowed
617 No fields defined - cannot append table
618 ODBC - SQLNumResultCols (Create Dynaset) failure: '<error>'
619 ODBC - SQLDescribeCol (Create Dynaset) failure '<error>'
621 Row-returning SQL is illegal in ExecuteSQL method
622 CommitTrans/Rollback illegal - Transactions not supported
623 Name not found in this collection
624 Unable to build data type table
625 Data type of field '<field name>' not supported by target
 database
626 Attempt to Move past EOF
627 Dynaset is not updatable or Edit method has not been invoked
628 <method>: Dynaset method illegal - no scrollable cursor support
629 Warning: <operation> (ODBC - SQLSetConnectOption failure)
630 Property is read-only
631 Zero rows affected by Update method
632 Update illegal without previous Edit or AddNew method
633 Append illegal - field is part of a TableDefs collection
634 Property value only valid when Field is part of a Dynaset
635 Cannot set the property of an object which is part of a Database
 object
636 Set field value illegal without previous Edit or AddNew method
637 Append illegal - Index is part of a TableDefs collection
638 Visual Basic 2.0 attempted on unopened Dynaset
639 Field type is illegal
640 Field size illegal for specified field type
641 '<item>' illegal - no current record
642 Reserved parameter must be FALSE
643 Property not found

644 ODBC - SQLConfigDataSource error '<error>'
645 ODBC driver does not support exclusive access to Dynasets
646 GetChunk: Offset/Size argument combination illegal
647 Delete method requires a name argument
648 ODBC objects require VBODBCA.DLL
708 File not found: <file name>
710 File already open: <file name>
712 Device I/O error: <device>
713 File already exists: <file name>
716 Disk full: <drive>
719 Bad file name: <file name>
722 Too many files: <file name>
725 Permission denied: <file name>
730 Path access error: <path name>
731 Path not found: <path name>
732 Must have startup form or Sub Main ()
735 Can't save file to TEMP
740 Invalid procedure name
742 Not enough room to paste contents into current line
743 Can't set next statement
744 Search text not found
745 Text would be too long. Edit prevented
746 One or more replacements too long and not made
747 Syntax errors produced while replacing
748 An undo error has occurred. Further undo is unavailable
749 Watch expression too long, expression truncated
750 An expression must be selected
752 Error reading Tutorial file 'item'
753 Tutorial directory 'item' not found
754 Can't find file 'item'
755 Not enough memory to load help file.
756 Duplicate procedure name
757 Can't find Windows Help .EXE file
758 Control must be same type as rest of array
759 Array already has a control at index 'item'
760 Not a legal object name: 'item'
761 Must specify which item(s) to print
762 Can't clear Index property without changing name
764 <name> is a control name
765 Controls without the Align property cannot be placed directly on
 the MDI form
766 Event handler must be a Sub procedure
768 Event procedure argument has incorrect data type
769 Menu subitem skipped a level
770 Parent or top-level menu item may not be checked
771 Can't assign shortcut key to menu name
772 Can't use separator bar as menu name
773 Menu control must have a name
774 Menu control array element must have an index
775 Menu control array indices must be in ascending order
776 Menu control array elements must be contiguous and within the
 same submenu
777 Shortcut key already assigned
778 Separator bar may not be checked or disabled, or have an
 shortcut key
779 At least one submenu item must be visible
780 Valid range: [1...32]

781 Valid range: [24...1188]
783 Separator may not be the window List menu
784 Can't have more than one window List menu
785 New not allowed on this type
20000 Can't load Custom Control DLL: 'item'
20001 Can't unload Custom Control DLL; in use
20002 Can't quit at this time
20003 You'll have to restart your program after this edit--proceed
 anyway?
20004 'item' has been changed; must reset
20005 Reset halted programs so Code window can be closed?
20006 Not enough stack space to enter break mode--continue?
20007 Not enough stack space to enter break mode for error--must reset
20008 Line too long to edit--edit truncated line?
20009 Search complete
20011 Invalid command-line argument 'item'
20012 Save changes to 'item'?
20013 You already have a control named 'item'. Do you want to create
 a control array?
20014 Error loading 'item'. The code associated with this form could
 not be loaded. Continue loading form?
20015 Error loading 'item'. An error was encountered loading a
 property. Continue?
20016 Error loading 'item'. A control could not be loaded due to load
 error. Continue?
20017 Form had old file format
20018 Replace existing 'item'?
20019 'item' does not exist
20020 'item' already exists in project
20021 <Filename> is a Read-Only file
20022 Errors during load. Refer to <log file> for details
20023 '<item>' could not be loaded
20024 Version number missing or invalid; Visual Basic 2.0 assumed
20025 String value too long to process; form load aborted

Trappable Errors for Grid Control:

30000 Cannot use RemoveItem on a fixed row
30001 Cannot use AddItem on a fixed row
30002 Grid does not contain that row
30004 Invalid column number for alignment
30005 Invalid alignment value
30006 Unable to allocate memory for grid
30008 Not a valid picture type
30009 Invalid row value
30010 Invalid column value
30011 Unable to register the memory manager
30013 Invalid row height value
30014 Invalid column width value
30015 Cannot remove last non-fixed row
30016 FixedRows must be one less than Rows value
30017 FixedCols must be one less than Cols value
30018 Rows must be one more than FixedRows value
30019 Cols must be one more than FixedCols value

Trappable Errors for OLE Control:

30000 OLE_OK
30001 OLE_WAIT
30002 OLE_BUSY
30003 OLE_ERROR_PROTECT_ONLY
30004 OLE_ERROR_MEMORY
30005 OLE_ERROR_STREAM
30006 OLE_ERROR_STATIC
30007 OLE_ERROR_BLANK
30008 OLE_ERROR_DRAW
30009 OLE_ERROR_METAFILE
30010 OLE_ERROR_ABORT
30011 OLE_ERROR_CLIPBOARD
30012 OLE_ERROR_FORMAT
30013 OLE_ERROR_OBJECT
30014 OLE_ERROR_OPTION
30015 OLE_ERROR_PROTOCOL
30016 OLE_ERROR_ADDRESS
30017 OLE_ERROR_NOT_EQUAL
30018 OLE_ERROR_HANDLE
30019 OLE_ERROR_GENERIC
30020 OLE_ERROR_CLASS
30021 OLE_ERROR_SYNTAX
30022 OLE_ERROR_DATATYPE
30023 OLE_ERROR_PALETTE
30024 OLE_ERROR_NOT_LINK
30025 OLE_ERROR_NOT_EMPTY
30026 OLE_ERROR_SIZE
30027 OLE_ERROR_DRIVE
30028 OLE_ERROR_NETWORK
30029 OLE_ERROR_NAME
30030 OLE_ERROR_TEMPLATE
30031 OLE_ERROR_NEW
30033 OLE_ERROR_OPEN
30034 OLE_ERROR_NOT_OPEN
30035 OLE_ERROR_LAUNCH
30036 OLE_ERROR_COMM
30037 OLE_ERROR_TERMINATE
30038 OLE_ERROR_COMMAND
30039 OLE_ERROR_SHOW
30040 OLE_ERROR_DOVERB
30041 OLE_ERROR_ADVISE_NATIVE
30042 OLE_ERROR_ADVISE_PICT
30043 OLE_ERROR_ADVISE_RENAME
30044 OLE_ERROR_POKE_NATIVE
30045 OLE_ERROR_REQUEST_NATIVE
30046 OLE_ERROR_REQUEST_PICT
30047 OLE_ERROR_SERVER_BLOCKED
30048 OLE_ERROR_REGISTRATION
30050 OLE_ERROR_TASK
30051 OLE_ERROR_OUTOFDATE
30052 OLE_ERROR_CANT_UPDATE_CLIENT
30053 OLE_ERROR_UPDATE

31001 Out of memory
31002 Property is write-only
31003 Can't open Clipboard
31004 No object

31005 Object closed
31007 Can't paste
31008 Invalid property value
31009 Object not empty
31010 Property is read-only
31011 Type of object cannot be created
31014 This action is reserved for future use
31015 Cannot execute object
31016 Server class was not specified before the registration database was
 accessed
31017 Invalid format on set data or set data text
31018 Class is not set
31019 Source document is not set
31020 Source item is not set

Additional reference words: 2.00
KBCategory:
KBSubcategory: EnvtDes

How to Use Visual Basic Vers 1.0, 2.0, & 3.0 on Same Computer
Article ID: Q94697

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

This article describes how to set up Visual Basic version 2.0 or 3.0 and
keep Visual Basic version 1.0 on your computer. There are two issues
involved when attempting to maintain two versions of Visual Basic on the
same computer. First, you need to set up Visual Basic version 2.0 or 3.0
so that it does not overwrite the Visual Basic version 1.0 files. Second,
you must manage the compatibility between the two versions.

MORE INFORMATION
================

To keep Visual Basic version 1.0 on your computer, install Visual Basic
version 2.0 or 3.0 in a different directory. By default, the Visual Basic
version Setup program attempts to copy the files to the \VB directory,
but it will ask you if you want to put it in a different directory.

If you have the Professional Toolkit for Visual Basic version 1.0 and you
want to preserve the custom control (or .VBX) files, place them in a
directory other than \WINDOWS or \WINDOWS\SYSTEM. The Setup program for
the Professional Toolkit for Visual Basic 1.0 gives you the option to place
a copy of the custom control files in a separate directory. These files are
normally placed in a subdirectory called VBX in the Visual Basic directory.

If you requested an extra copy of the custom control files, they'll remain
separated from the Visual Basic version 2.0 custom control files, so you do
not need to do anything. However, if you didn't request a copy, copy the
Visual Basic version 1.0 .VBX files from the \WINDOWS\SYSTEM directory to
another directory before running the Visual Basic version 2.0 Setup
program. In addition to the VBX files, you also need to copy GSW.EXE,
GSWDLL.DLL, and COMMDLG.DLL from the \WINDOWS\SYSTEM directory to the
other directory.

The Setup program for the Visual Basic Standard and Professional editions
copies the .VBX, .EXE, and .DLL files to the \WINDOWS\SYSTEM directory.
If a .VBX, .EXE, or .DLL file already exists in the \WINDOWS\SYSTEM
directory with that name, the Setup program changes the file extension
from .VBX, .EXE, or .DLL to .OLD.

If you already ran the Visual Basic version 2.0 or 3.0 Setup program, you
can recover the version 1.0 custom control files by copying the .OLD files
from the \WINDOWS\SYSTEM directory to a different directory. Then rename
the .OLD files giving them the appropriate extension (.VBX, .EXE, or .DLL).
For example, rename GSW.OLD to GSW.EXE, GSWDLL.OLD to GSWDLL.DLL, and

COMMDLG.OLD to COMMDLG.DLL. Then rename all other .OLD files to .VBX files.

For the most part, the code for Visual Basic version 1.0 applications is
upwardly compatible. In other words, you should be able to run all version
1.0 applications in version 2.0 or 3.0 with few or no changes. When you
load a version 1.0 project into Visual Basic version 2.0 or 3.0, you will
be informed that your files are in the old format. When you save the
project, Visual Basic version 2.0 or 3.0 converts the files into the new
version 2.0 or 3.0 format. Once the version 1.0 project files are saved in
the new version's format, you cannot load the project files back into
Visual Basic version 1.0.

Once you install Visual Basic version 2.0 or 3.0, any version 1.0 .EXE
files that use custom controls will likely use the version 2.0 or 3.0
custom controls. This happens because when you installed the later version,
its controls replaced the earlier version's controls in the \WINDOWS\SYSTEM
directory. This should work well because the Visual Basic version 2.0
Professional Toolkit controls are upwardly compatible from the version 1.0
Professional Toolkit controls.

If you need to use Visual Basic version 1.0 custom controls, put them in
the same directory as the version 1.0 .EXE that uses them. Then the .EXE
will find the version 1.0 controls first. However, there is no guarantee
the version 1.0 custom controls will be used because another .EXE may have
already loaded the version 2.0 controls.

Additional reference words: 2.00 1.00 3.00
KBCategory:
KBSubcategory: EnvtDes

Add Graph Causes Err: GSW.EXE and GSWDLL.DLL Version Mismatch
Article ID: Q96007

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, version 2.0

SUMMARY
=======

Loading the graph control into a project when different versions of
GSW.EXE and GSWDLL.DLL exist on the same computer can cause one of the
following two error messages:

 GSW.EXE and GSWDLL.DLL Version Mismatch
 Need Graphics Server 2.00 or later

Because the graph control uses a graphing and charting library (GSWDLL.DLL)
along with a graphics server (GSW.EXE) to provide its graphing
capabilities, it must have the same versions of these two files.

To work around the problem, place the 2.0 version of all three files
(GRAPH.VBX, GSW.EXE, and GSWDLL.DLL) in the \WINDOWS\SYSTEM directory, and
delete or move the older versions out of the following directories:

 - The \WINDOWS directory
 - The \WINDOWS\SYSTEM directory
 - All directories located on the MS-DOS path

MORE INFORMATION
================

The setup program for the Professional Edition of Visual Basic version 2.0,
correctly updates the GRAPH.VBX and its two auxiliary files if previous
versions of the files exist in the \WINDOWS\SYSTEM directory. If prior
versions of the control reside in a different directory, such as the
\WINDOWS directory, the setup program for Visual Basic version 2.0 will
not rename or remove the older versions. However, it does place the version
2.0 versions of the controls in the \WINDOWS\SYSTEM directory.

When you load the graph control, either by choosing Add File from the File
menu or by adding GRAPH.VBX to the AUTOLOAD.MAK file, the graph control
searches the directories for its two auxiliary files in this order:

1. The directory where GRAPH.VBX resides, unless it's \WINDOWS\SYSTEM
2. The \WINDOWS directory
3. The \WINDOWS\SYSTEM directory
4. The directories on MS-DOS path

If GRAPH.VBX resides in the \WINDOWS\SYSTEM directory the search begins
with step 2. The error message, therefore, can occur when a copy of
GRAPH.VBX resides in the \WINDOWS\SYSTEM directory and an older version of
either GSW.EXE or GSWDLL.DLL resides in the \WINDOWS directory while 2.0
versions reside in the \WINDOWS\SYSTEM directory with GRAPH.VBX.

Steps to Reproduce Error Message

1. Run SETUP.EXE from the Professional Toolkit for Visual Basic
 version 1.0.

2. Install the Toolkit in the \VB1 directory using these two options:

 - Select the option to install Controls/Samples.
 - Select Yes, when asked if you want to install duplicate copies of the
 Toolkit controls in the \VB1\VBX directory.

 This will install copies of the custom controls in the \WINDOWS\SYSTEM
 and \VB1\VBX directories.

3. Run SETUP.EXE from the Visual Basic Professional Edition version 2.0 for
 Windows.

4. Install Visual Basic version 2.0 in the default directory (\VB) using
 the Complete Installation option.

At this point, the Visual Basic version 1.0 controls in the \WINDOWS\SYSTEM
directory are updated to their 2.0 versions, including GRAPH.VBX, GSW.EXE,
and GSWDLL.DLL.

5. Rename GSW.EXE in the \WINDOWS\SYSTEM directory to GSW.OLD. Using
 File Manager, navigate to the \WINDOWS\SYSTEM directory and select
 GSW.EXE from the list of files. From the File menu, choose Rename
 (ALT, F, N). In the To box, enter GSW.OLD.

 By doing this, you will retain a 2.0 version of the Graph control's
 server program.

6. Copy GSW.EXE from the \VB1\VBX directory into the \WINDOWS\SYSTEM
 directory. Using File Manager, navigate to the \VB1\VBX directory and
 select GSW.EXE from the list of files. From the File menu, choose
 Copy (ALT, F, C).

 Now you have conflicting versions of the GRAPH.VBX and GSW.EXE files
 in the same directory.

7. Run Visual Basic, or from the File menu, choose New Project (ALT,
 F, N) if Visual Basic is already running. Form1 is created by default.

 The AUTOLOAD.MAK file, installed with Visual Basic 2.0, will attempt to
 load all custom controls shipped with the Professional Edition. When
 the loading process reaches the graph control, the following error
 message occurs:

 GSW.EXE & GSWDLL.DLL version mismatch

 Upon closing the error message box, a second error message box appears:

 Can't load Custom Control DLL: C:\WINDOWS\SYSTEM\GRAPH.VBX

 The two error messages also occur when you choose Add File from the
 File menu

Even though this example incorrectly updates only the GSW.EXE file, the
same error messages occur when all three files related to the graph control
have different versions.

Additional reference words: 2.00
KBCategory:
KBSubcategory: EnvtDes

PRB: Placing Controls inside Container Controls
Article ID: Q104166

The information in this article applies to:

- Standard and Professional Edition of Microsoft Visual Basic for
 Windows, versions 1.0, 2.0, and 3.0
- Standard and Professional Edition of Microsoft Visual Basic for
 MS-DOS, version 1.0

SUMMARY
=======

To place a control correctly within a container control, use one of the
following methods.

 - Select an existing control, and from the Edit menu, choose either Cut
 or Copy. Then select the container control, and from the Edit menu,
 choose Paste.

 - Find the icon for the control in the Toolbox. Click it, and then drag a
 rectangle inside the border of the container. More specifically, click
 a Toolbox icon, and then release the mouse button. Move the mouse cursor
 inside the border of the container control. The mouse cursor changes to
 cross hairs. Now click the mouse button and hold it down. Move the mouse
 to the bottom right. Then release the mouse button.

You cannot place a control inside a container control by double-clicking
an icon in the Toolbox or by dragging a control onto a container control.
These actions place the control on the form in front of the container
rather than inside the container control.

MORE INFORMATION
================

Container controls supplied with the standard edition are the frame and
picture box. The container controls supplied with the professional
edition are the 3-D frame, 3-D panel, and the gauge. These controls can
also be placed inside container controls.

When you place a control inside a container control, such as a frame,
the containerized control:

 - appears completely within the border of the container control and in
 front of the background of the container control

 - maintains its position relative to the container control

Additional reference words: 1.00 2.00 3.00 B_VBmsdos
KBCategory: Envt
KBSubCategory: EnvtDes

Category Keywords for All Visual Basic KB Articles
Article ID: Q108753

The information in this article applies to:

- Microsoft Visual Basic for Windows, versions 2.0 and 3.0

SUMMARY
=======

Each article in the Visual Basic for Windows collection contains at least
one keyword (called a KBSubcategory keyword) that places the article in an
appropriate category. This article lists all the KBSubcategory keywords.

MORE INFORMATION
================

Category & Subcategory Description KBSubcategory Keyword
--
Setup / Installation (Setins) Setins

Environment-specific Issues (Envt)
 VB Design Environment EnvtDes
 Run-Time Environment EnvtRun

Programming (Prg)
 Visual Basic Forms and Controls
 Standard Controls / Forms PrgCtrlsStd
 Custom Controls PrgCtrlsCus
 Third-Party Controls PrgCtrlsThird

 Optimization
 Memory Management PrgOptMemMgt
 General Optimization Tips PrgOptTips

 General VB Programming PrgOther

Advanced programming (APrg)
 Network APrgNet

 Windows Programming (APIs / DLLs)
 Printing APrgPrint
 Graphics APrgGrap
 Windowing APrgWindow
 INI Files APrgINI
 Other API / DLL Programming APrgOther

 Data Access
 ODBC APrgDataODBC
 IISAM APrgDataIISAM
 Access APrgDataAcc
 General Database Programming APrgDataOther

 3rd Party DLL's APrgThirdDLL

Inter-Application Programmability (IAP)
 OLE IAPOLE
 DDE IAPDDE
 3rd Party Interoperability IAPThird

Tools (Tls)
 Setup Toolkit / Wizard TlsSetWiz
 Control Development Kit (CDK) TlsCDK
 Help Compiler (HC) TlsHC

References (Refs)
 Documentation / Help File Fixes RefsDoc
 Product Information RefsProd
 Third-Party Information RefsThird
 PSS-Only Information RefsPSS

Using Keywords to Query the KB

At Microsoft, we use the subcategory keywords to organize the articles for
Help files and for the FastTips Catalog. You can use them to query the
Microsoft Knowledge Base for Visual Basic articles that apply to that
category or subcategory. For example, you can find all the general database
programming articles by querying on the following words in the Microsoft
Knowledge Base:

 visual and basic and APrgDataOther

Use the asterisk (*) wildcard to find articles that fall into the general
categories or into an intermediate subcategory. The first element in each
keyword is the category. For example, to find all the articles that apply
to Visual Basic Forms and Controls regardless of whether they are standard,
custom, or third-party controls, use the following words to query the
Microsoft Knowledge Base:

 visual and basic and PrgCtrls*

To find all advanced programming articles, query on these words:

 visual and basic and APrg*

Add KBSubcategory Keyword to Each Article

When contributing an article to the Visual Basic Knowledge Base, add the
appropriate KBSubcategory keyword to the bottom of the article on the
KBSubcategory line. Each article in the Visual Basic for Windows
collection contains the following section at the bottom of the article:

Additional reference words:
KBCategory:
KBSubcategory: <keyword>

An article usually has only one subcategory keyword, but it may have more.

If you are interested in contributing, please obtain the guidelines by

querying on the following words in the Microsoft Knowledge Base:

 visual and basic and kbguide and kbartwrite

Additional reference words: 3.00 dskbguide subcatkey
KBCategory:
KBSubcategory: RefsPSS

Can't Use Multiple & (for Access Keys) in a VB Menu Control
Article ID: Q73372

The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
 - Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

When creating a menu control that has multiple & (ampersand)
characters to mark the access keys in the caption (for example,
&a&b&c&d), the menu will appear with an underline under the character
after the last &. However, the access key will respond to the
character following the first &. This is not a problem with Visual
Basic, but rather with the Windows operating environment.

To work around this problem, do not put multiple & characters in the
menu caption; just use one & character per caption.

MORE INFORMATION
================

Steps to Reproduce Problem

1. From the File menu, choose New Project (ALT+F+N).

2. From the Window menu, choose Menu Design Window (ALT+W+M).

3. Enter "&A&B&C&D" (without the quotation marks) for the Caption.

4. Enter "ABCD" (without the quotation marks) for the CtlName.

5. Choose the Done button.

6. Click the menu item ABCD on Form1.

7. Enter the statement Print "ABCD" in the click event for the menu
 item ABCD as follows:

 Sub ABCD_Click ()
 Print "ABCD"
 End Sub

8. Run the program.

When the program is run, the D in the menu caption will be underlined,
but the menu responds to ALT+A, not ALT+D.

Additional reference words: 1.00 2.00 3.00
KBCategory:

KBSubcategory: EnvtRun

Cannot Tile or Cascade Programs Created with Visual Basic
Article ID: Q73698

The information in this article applies to:

 - Microsoft Visual Basic programming system for Windows, versions
 1.0, 2.0, and 3.0
 - Microsoft Windows, version 3.0
--

SUMMARY
=======

Applications that have been created with Microsoft Visual Basic do not tile
or cascade as do other Windows applications.

MORE INFORMATION
================

Visual Basic creates applications that are pop-up windows. This window
style does not respond to the tile or cascade message sent from the
Windows version 3.0 Task List or other applications that support the
cascade and tile features.

You can verify this action by launching two applications created in
Visual Basic, then bringing up the Windows Task List by pressing
CTRL+ESC, and from the Task List choosing either the Cascade or Tile
button. Notice that nothing has changed in the arrangements of these
two Visual Basic application windows. You may have expected the Visual
Basic application windows to cascade or tile as other Windows
applications do, but they will not do so.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: EnvtRun

Some VB.EXE Main Menu Commands Can Be Invisible at Run Time
Article ID: Q73699

The information in this article applies to:

 - Microsoft Visual Basic programming system for Windows, versions
 1.0, 2.0, and 3.0
 - Microsoft Windows, version 3.0

SUMMARY
=======

If you shrink the width of VB.EXE's main menu (and Properties Bar) such
that menu commands automatically wrap to the next line, wrapped
menu commands may be invisible at run time in the VB.EXE environment.

You can work around this visibility problem by using the ALT key to
access the invisible menu commands on the shrunken menu, or by
avoiding shrinking the width beyond the point where the menus wrap.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic (VB.EXE).

2. Place the mouse pointer on the far right side of the Properties
 Bar such that the mouse changes to a double-headed pointer, ready
 for resizing the Properties Bar.

3. Press and hold down the left button of the mouse and drag the right
 edge of the Properties Bar toward the left side of the screen so that
 the Bar ends up being about 3 inches in width, then release the mouse
 button. This should cause the Window and Help menu commands to
 automatically wrap the next line.

4. From the Run menu, choose Start, or press F5. The Window and Help
 menus are now invisible because they are wrapped beyond the edge of
 their window.

5. Click the Immediate Window (in the lower right corner) and bring
 the Immediate Window in front of the Form1 window.

6. Try bringing up either the Window menu by pressing ALT+W or the Help
 menu by pressing ALT+H. You will see the appropriate menu on the
 screen, but it will appear disconnected below the Main Menu (or
 Properties Bar) even though the menu is still functional. If you don't
 perform step 5, you won't be able to select the invisible menus with
 the ALT key (or with the mouse).

This behavior is due to the way that Windows, version 3.0 manipulates menus
and the design of the Visual Basic for Windows, version 1.0 interface. To

avoid this behavior, Microsoft recommends keeping the main menu
sufficiently wide such that menus are not wrapped.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: EnvtRun

UAE or GP Fault with VB .EXE Acting as Windows 3.0 Shell
Article ID: Q73801

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, versions 1.0
 and 2.0

SUMMARY
=======

Compiled Visual Basic .EXE applications can be used as the Windows
shell in Windows version 3.1 on an 80386 computer or better.

However, an .EXE application created by Visual Basic cannot be used as
the Windows shell in Windows version 3.0. Attempting to run an
application as the Windows version 3.0 shell results in an Unrecoverable
Application Error (UAE).

This is a design limitation of Windows version 3.0. It is not a limitation
in Windows version 3.1, with one exception. When you run the .EXE program
in Windows version 3.1 standard mode on a 80286 computer, a General
Protection (GP) fault occurs at the same point where a UAE occurs in
Windows version 3.0.

Basically, you can use a Visual Basic .EXE program as a Windows shell only
on an 80386 computer or better. This information applies only to Visual
Basic .EXE programs.

MORE INFORMATION
================

A user-defined shell application can be specified in the Windows
system initialization (SYSTEM.INI) file. The default shell is
PROGMAN.EXE (the Program Manager). If a Visual Basic program is
specified as the customized Windows 3.0 shell, a Windows 3.0 UAE occurs
on any attempt to run Windows version 3.0 from the MS-DOS command line.
This problem does not occur with Windows version 3.1.

A Visual Basic application cannot be run as the Windows 3.0 shell
because it does not contain the special set of startup code required
by a Windows 3.0 shell application. The only way to create a Windows
3.0 shell application is to use the C Compiler and the Windows
Software Development Kit (SDK) to write a non-Visual Basic
application.

Steps to Reproduce Problem

Warning: The following steps require changing the Windows system
initialization file (SYSTEM.INI) in a manner such that Windows version 3.0
will not run successfully unless the file is restored from MS-DOS. The

file can be restored from MS-DOS by using a backup copy of the SYSTEM.INI
file or by restoring the SYSTEM.INI file with a text editor in MS-DOS.

 1. Start Visual Basic.

 2. From the File menu, choose New Project.

 3. From the File menu, choose Make .EXE program.

 4. Choose the OK button to select Project1.EXE as the .EXE filename.

 5. Exit Visual Basic.

 6. Start Windows Notepad.

 7. From the File menu, choose Open.

 8. In the Filename text box, type C:\WINDOWS\SYSTEM.INI including the
 correct path for the SYSTEM.INI file on your computer.

 9. Choose the OK button.

10. Change the line the reads:

 SHELL=PROGMAN.EXE

 to this line:

 SHELL=C:\VB\PROJECT1.EXE

 changing the path to the correct path to the file created in step 4.

11. From the File menu, choose Save.

12. Exit Notepad.

13. From the Windows Program Manager File menu, choose Exit. You should return
 to MS-DOS.

14. At the MS-DOS command prompt, start Windows.

When you attempt to start Windows version 3.0, a UAE occurs. You will
need to reboot (restart) your computer and modify the SYSTEM.INI file
using a text editor in MS-DOS to reverse the change made in step 10.

Additional reference words: 1.00 2.00 3.00 286 386
KBCategory:
KBSubcategory: EnvtRun

F5 in Run Mode with Focus on Main Menu Bar Acts as CTRL+BREAK
Article ID: Q74348
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
--

SUMMARY
=======

A Microsoft Visual Basic for Windows program will break at run time
under the following simultaneous conditions:

1. You run the program in the Visual Basic for Windows development
 environment.

2. The Visual Basic for Windows menu bar has the focus.

3. You press the F5 key.

The program will break when the F5 key is pressed and the Immediate
Window will get the focus. This is not a problem with Visual Basic for
Windows, but rather a design feature.

This information only applies to an application run in the Visual
Basic for Windows development environment, not as an .EXE program.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

The F5 key acts as the shortcut key for the Visual Basic for
Windows Run menu. Because Start, Continue, and Break all share the same
menu item under the Run menu, F5 acts differently depending upon the
state of execution of a program. It acts as the Run key in the Visual
Basic version 1.0 for Windows environment. It also serves as the Break
key once the application is running and the focus is on the Visual Basic
for Windows menu bar. After execution has been "broken" with the Break
key, the F5 key serves as the Continue key.

To demonstrate the different modes of the F5 key, do the following:

1. Run Visual Basic for Windows.

2. From the File menu, select New Project (press ALT, F, N).

3. Press the F5 key to run the program.

4. Using the mouse, click the Visual Basic for Windows menu bar.

5. Press the F5 key to break the program. The Immediate window will be
 given the focus after you press the F5 key.

6. Press the F5 key again to continue execution of the program.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: EnvtRun

PRB: Access Key Causes Different Event Order than Mouse Click
Article ID: Q74905

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
- Microsoft Visual Basic for MS-DOS, version 1.0

SYMPTOMS
========

In Visual Basic, events may be generated in a different order if you
choose a control (such as a button, a check box, or an option box)
using an access key rather than with the mouse. The events that occur
in a different order are Click, LostFocus, and GotFocus.

WORKAROUND
==========

By inserting the DoEvents statement as the very first statement in the
Click event handler, you can cause the LostFocus and GotFocus events to be
handled before the body of the Click event handler.

STATUS
======

This behavior is by design. It is not a bug in Visual Basic.

MORE INFORMATION
================

You can create an access key at design time by changing the
Caption property of a control to include an ampersand (&). The access
key is the character after the ampersand, and at run time you press
ALT+character to choose the control. (See page 120 of the "Microsoft
Visual Basic: Programmer's Guide" version 1.0. manual.)

When you press an access key (ALT+character) to choose a control, the
Click event is generated before the LostFocus and GotFocus event;
however, when you choose a control by clicking the mouse, the
LostFocus and GotFocus events are generated before the Click event.

The example below shows this different order of events. The example
uses command buttons, but also applies to Check and Option boxes:

1. Open a new form and create two command buttons.

2. Enter the code as shown further below.

3. Change the Caption property of Command2 to "Command&2"

4. Run the program.

5. a. When Command1 has the focus and you click Command2, the
 following events are generated in the following order:

 Command1_LostFocus
 Command2_GotFocus
 Command2_Click

 b. When Command1 has the focus and you press the access key, ALT+2,
 the following events are generated in the following order:

 Command2_Click
 Command1_LostFocus
 Command2_GotFocus

Sample Code:

Sub Command1_Click ()
 Print "Command1_click"
End Sub

Sub Command1_LostFocus ()
 Print "Command1_lostfocus"
End Sub

Sub Command1_GotFocus ()
 Print "Command1_gotfocus"
End Sub

Sub Command2_Click ()
 Print "Command2_click"
End Sub

Sub Command2_LostFocus ()
 Print "Command2_lostfocus"
End Sub

Sub Command2_GotFocus ()
 Print "Command2_gotfocus"
End Sub

Additional reference words: 1.00 2.00 3.00 vbmsdos
KBCategory:
KBSubcategory: PrgCtrlsStd EnvtRun

Determining Whether TAB or Mouse Gave a VB Control the Focus
Article ID: Q75411

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

You can determine whether a Microsoft Visual Basic for Windows control
received the focus from a mouse click or a TAB keystroke by calling
the Microsoft Windows API function GetKeyState in the control's
GotFocus event procedure. By using GetKeyState to check if the TAB key
is down, you can determine if the user pressed the TAB key to get to
the control. If the TAB key was not used and the control does not have an
access key, the user must have used the mouse to click the control to set
the focus.

MORE INFORMATION
================

The GetKeyState Windows API function takes an integer parameter
containing the virtual key code for the desired key states.
GetKeyState returns an integer. If the return value is negative, the
key has been pressed.

The following is a code example. To use this example, start with a new
project in Visual Basic for Windows. Add a text box and a command
button to Form1. Enter the following code in the project's GLOBAL.BAS
module:

 ' Global Module.
 Declare Function GetKeyState% Lib "User" (ByVal nVirtKey%)
 Global Const VK_TAB = 9

Add the following code to the GotFocus event procedure for the Text1
text box control:

 Sub Text1_GotFocus()
 If GetKeyState(VK_TAB) < 0 Then
 Text1.SelStart = 0
 Text1.SelLength = Len(Text1.Text)
 Else
 Text1.SelLength = 0
 End If
 End Sub

Run the program. If you use the TAB key to move the focus from the
command button to the text box, you should see the text in the text
box selected. If you change the focus to the text box by clicking it
with the mouse, the text will not be selected.

An access key is assigned by using an ampersand (&) in the control's
caption property. If the control has an access key, you may also want to
check the state of the virtual ALT key by using GetKeyState to see if the
user used the access key to change the focus. The virtual key code for ALT,
actually known as VK_MENU, is 12H (&H12).

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: EnvtRun APrgOther

How to Use CodeView for Windows (CVW.EXE) with Visual Basic
Article ID: Q75612

The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
 - Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

You can use CodeView for Windows (CVW) to debug a dynamic link
library (DLL) or custom control that is called from Visual Basic.

Note that you can build custom controls using the Control Development
Kit (CDK) for Visual Basic. The Visual Basic CDK, formerly shipped
separately as an add-on product from Microsoft, is now shipped as part
of Microsoft Professional Toolkit for Microsoft Visual Basic version
1.0 for Windows.

MORE INFORMATION
================

CVW.EXE, CodeView for Windows, is distributed with the Microsoft
Windows Software Development Kit (SDK).

CVW can be a useful tool for debugging DLLs and custom controls
written for a Visual Basic program.

CVW takes the following command line arguments:

 [path]CVW.EXE /L [dynamic link library] [executable program]

where:

 [dynamic library] is your DLL or custom control.

 [executable program] is the EXE that uses your DLL/custom
 control.

 The "/L" option tells CVW that this is a DLL or custom control.

You can invoke CVW from the Windows Program Manager in any of the
following ways:

 - From the Windows Program Manager File menu, choose New, and
 specify CVW.EXE as a Program Item with proper arguments. You can
 then double-click the CVW icon to run CVW.EXE.

 - From the Windows Program Manager File menu, choose Run, and enter
 CVW.EXE and its command line arguments.

 - Invoke CVW with no arguments, and at the prompts, enter the

 program name and DLL/VBX that you want to debug.

The example below demonstrates how to invoke CIRCLE3.VBX, which comes
with the Microsoft Visual Basic Control Development Kit (CDK):

 1. Run CVW.EXE from the Program Manager as specified below.

 [path]CVW.EXE /L [path]CIRCLE3.VBX [path]VB.EXE

 Note: You can just specify an .EXE program that was written in the
 Visual Basic environment instead of specifying the VB.EXE
 environment itself. If you do this, skip steps 7, 8, and 9 below.

 Note: If you invoke CVW.EXE with no command line arguments,
 CVW.EXE will prompt you for command line arguments. Specify the
 VB.EXE file that uses the *.VBX file. CVW.EXE will then prompt you
 for "Additional DLLs...". Specify the *.VBX file at this prompt.
 Skip to step 4.

 2. When CVW is loaded into the debug monitor, the following message
 will be displayed:

 No Symbolic information for VB.EXE

 3. Choose the OK button to load the Visual Basic program.

 4. From the File menu, choose Open Module to load the CIRCLE3.VBX
 source code. You should see a list of "c" source code in the list
 box. Select CIRCLE.C, which corresponds to the CIRCLE3.VBX source
 code.

 5. Locate the WM_LBUTTONDBLCLK message and set a breakpoint on the
 first "IF" statement.

 6. Press F5 to run your Visual Basic program.

 7. From the File menu, choose Add File. In the Files box, select the
 CIRCLE3.VBX file. The CIRCLE3 tool appears in the toolbox.

 8. Select the custom control from the toolbox and add it to your form.

 9. Press F5 to run your program.

10. Double-click the circle. When your breakpoint is encountered,
 focus will be set to CVW and execution will stop at your
 breakpoint. You can now step through your program.

11. Press F5 to return to the Visual Basic program.

Reference(s):

"Programming Windows: the Microsoft Guide to Writing Applications for
Windows 3," by Charles Petzold, Microsoft Press, 1990

"Peter Norton's Windows 3.0 Power Programming Techniques," by Peter
Norton and Paul Yao, Bantam Computer Books, 1990

"Microsoft Windows Software Development Kit: Programming Tools,"
version 3.0

WINSDK.HLP file shipped with Microsoft Windows 3.0 Software
Development Kit

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: EnvtRun

Simulating ON KEY and Key Trapping by Using the KeyDown Event
Article ID: Q75858

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

Although there is no ON KEY GOSUB statement in Visual Basic, you can
achieve an effect identical to ON KEY event handling. Visual Basic forms
and controls that are able to get focus have a KeyDown event procedure that
can simulate the effects of the ON KEY statements in Basic interpreters and
compilers for MS-DOS. In fact, the KeyDown event procedure is more powerful
and flexible than the ON KEY statement.

MORE INFORMATION
================

Pressing a key while a Visual Basic form or control has the focus executes
that form or control KeyDown event procedure. Within the KeyDown event
procedure, you can call a global procedure and pass the actual key states
to the global procedure. You can use this to create an effect in Visual
Basic for Windows that is identical to the effect caused by trapping ON KEY
events in Basic interpreters and compilers for MS-DOS. In Visual Basic, you
can also pass the name of the control or form where the KeyDown event
occurred, so the global procedure will know which control or form
called it.

Here's a small example:

1. In the Visual Basic Project window, double-click a form or module
 (GLOBAL.BAS in Visual Basic version 1.0) to bring up the code window.
 Move to the general-declaration section of the form or module. Then
 from the Visual Basic Code menu, choose Load text, and load the
 CONSTANTS.TXT file that came with Visual Basic.

 Note: in Visual Basic version 1.0, if you already have text in the
 GLOBAL.BAS file, create a new module, add the CONSTANTS.TXT file to the
 new module, and then cut and paste the text into the GLOBAL.BAS file.

2. Add two text boxes (Text1 and Text2) to a form.

3. In the Text1_KeyDown event procedure, add the following code:

 Call OnKeyGoSub(KeyCode, Shift, Text1)

4. In the Text2_KeyDown event procedure, add the following code:

 Call OnKeyGoSub(KeyCode, Shift, Text2)

5. Add a Label (Label1) to to the form.

6. In the general-declaration section for the form, add this procedure:

 Sub OnKeyGoSub (KeyCode%, Shift%, Ctrl As Control)
 Select Case KeyCode%
 Case KEY_MENU: Key$ = ""
 Case KEY_SHIFT: Key$ = ""
 Case KEY_CONTROL: Key$ = ""
 Case KEY_F1: Key$ = " F1 "
 Case KEY_UP: Key$ = " UP key"
 Case KEY_CAPITAL: Key$ = "CAP LOCKS"
 Case Else: Key$ = Chr$(KeyCode%)
 End Select
 Select Case Shift%
 Case SHIFT_MASK: Shft$ = "Shift"
 Case ALT_MASK: Shft$ = "Alt"
 Case CTRL_MASK: Shft$ = "Ctrl"
 Case Else: Shft$ = ""
 End Select
 Label1.Caption="Key:"+ Shft$+ " "+ Key$
 End Sub

7. Run the program. Move back and forth between the two text boxes
 using either the TAB key or the mouse. Experiment with any key in
 combination with the ALT, CTRL, and SHIFT keys. Also, try the F1
 and UP ARROW keys.

The above example is limited, but shows you how to simulate the ON KEY
statements or key trapping in Visual Basic by placing the call to the key
trap procedure in any KeyDown event procedure.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: EnvtRun

Sending Keystrokes from Visual Basic to an MS-DOS Application
Article ID: Q77394
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
--

SUMMARY
=======

The "Microsoft Visual Basic: Language Reference" version 1.0 manual
states that the SendKeys function cannot be used to send keystrokes to
a non-Windows application. Listed below is a method that can be used
to work around this limitation.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

The Microsoft Visual Basic for Windows SendKeys function can send
keystrokes to the currently active window (as if the keystrokes had
been typed at the keyboard). Although it is not possible to send
keystrokes to a non-Windows application with SendKeys directly, you
can place text on the Clipboard and use SendKeys to paste that text
into an MS-DOS application that is running in a window (or minimized
as an icon.)

To run an MS-DOS application in a window, you MUST be running in
Windows 386 enhanced mode. You must also make sure that the MS-DOS
application's PIF file has been set to display the application in a
window rather than full screen. Use the Windows PIF Editor to make
this modification, if necessary.

An example of sending keystrokes to an MS-DOS session running in a
window is given below:

 1. Start a MS-DOS session (running in a window).

 2. Start Visual Basic for Windows.

 3. Enter the following into the general declarations section of the
 form:

 Dim progname As String

 4. Draw two labels on the form. Change the first label's caption to
 "Dos App Title." Change the second label's caption to "Keys to
 send."

 5. Draw two text boxes on the form (next to each of the previously

 drawn labels). Delete the default contents of these text boxes.
 These controls will be used to allow the user to enter the MS-DOS
 application window title and the keystrokes to send to it. Change
 the Name property of these text boxes to "DosTitle" and
 "DosKeys," respectively.

 6. Draw a command button on the form and change its caption to "Send
 keys."

 7. Attach the following code to the command button click procedure:

 progname = "Microsoft Visual Basic"
 clipboard.Clear
 clipboard.SetText DosKeys.Text + Chr$(13) ' Append a <CR>.
 AppActivate DosTitle.Text
 SendKeys "% ep", 1
 AppActivate progname

 If the text that you send is the DIR command or another command that
 takes time, the AppActivate call immediately following the SendKeys
 call will interrupt the processing. The AppActivate call should be
 placed in a timer with the appropriate interval set and the timer
 enabled in the command_click procedure. The timer should be disabled
 before exiting the timer.

 8. Run the program.

 9. Enter the window title of the MS-DOS application into the DosTitle
 text box. The default window title for an MS-DOS session is "DOS."
 If you would like to change the window title of an MS-DOS
 application, you should use the PIF Editor.

10. Enter the keystrokes to send into the DosKeys text box (for
 example, "DIR").

11. Click the Send Keys command button. The keystrokes will be sent
 to the Clipboard and then pasted into the MS-DOS window.

If this technique is used in a compiled Visual Basic for Windows
program, you should change the progname assignment from "Microsoft
Visual Basic" to the executable file name. Also, if you would like to
see the text being placed onto the Clipboard, you can open the
Windows Clipboard viewer.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: EnvtRun

"Error Loading DLL" if VB Compiled .EXE Has Same Name as DLL
Article ID: Q79598

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

If you create a compiled executable program with the same base name as
a dynamic link library (DLL) that is called from the program, an "Error
Loading DLL" message will be displayed when the compiled program
attempts to call the DLL. If the DLL is loaded before the .EXE program
is run (for example, if the DLL is in use from another application)
then the executable program will not run at all.

Similarly, if an .EXE program has the same name as a loaded device
driver (.DRV) and the driver is loaded before you run the .EXE
program, then your executable program will not run. For example, if
you name your executable program TIMER.EXE, it will not run because
Windows has already loaded a device driver named TIMER.DRV.

This behavior is how Windows is designed to operate. It is not a
problem with Microsoft Visual Basic, because the behavior can occur
with any Windows application, and may occur between any two Windows
modules (either from executable programs or DLLs).

MORE INFORMATION
================

This behavior occurs because Windows checks, by module name, to see if
a program is already loaded before it tries to execute that program.
If the requested module is already loaded, Windows creates another
instance of that module. Thus, attempting to load a DLL with the same
module name as an already executing program will fail (usually with
the error "Error Loading DLL"), and attempting to start an executable
program with the same module name as an already loaded DLL will not
execute the program.

Because the module name for a DLL is often the same as the name of the
DLL itself (although this can be varied using the LIBRARY entry of the
module definition file used when creating the DLL), and the module name
for a compiled Visual Basic program is the same as the original base
.EXE file name, attempting to load a DLL and a Visual Basic .EXE program
that share the same name will often result in one of the above errors.
To avoid this problem, either recompile the Visual Basic program and
change the .EXE filename, or recreate the DLL, changing the LIBRARY
entry in the module definition file.

Additional reference words: 1.00 2.00 3.00
KBCategory:

KBSubcategory: EnvtRun

VB Error Using Shell: Cannot Find DLL, Insert in Drive A
Article ID: Q80404
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

When a Visual Basic for Windows application shells to a Microsoft
Windows application that expects to find a dynamic link library (DLL)
in its own directory, Visual Basic for Windows may generate the
following error message and fail to start the application:

 Cannot Find <DLL NAME>, Please Insert in Drive A

This error occurs because the application being shelled to expects to
find the DLL in the current directory, the MS-DOS path, or the Windows
directory. Shelling to an application in code does not change the
current directory, even if you specify the path to the application in
the Shell statement.

One solution is to use Visual Basic for Windows' ChDir statement to
change the current directory to the directory containing the DLL
before attempting to shell to the application. An alternative solution
is to copy the DLL to the Windows directory, or include the path where
the DLL is located in the MS-DOS path.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

The following is a pseudocode example that shows how to use the ChDir
statement to make the application's directory the current directory. The
C:\APPS directory and the .EXE name MYAPP.EXE are arbitrary names
selected to represent the location of the application being shelled to
and an .EXE name, respectively.

 Sub Form_Click ()
 ChDir "c:\Apps" ' The name of the directory containing
 ' the needed DLL.
 x% = Shell("c:\Apps\MyApp.EXE", 1)
 End Sub

Note: If the application is on a different drive, use the ChDrive
statement first to change drives before using the ChDir statement.

Additional reference words: 1.00 2.00 3.00
KBCategory:

KBSubcategory: EnvtRun

VB CURDIR$ Function Not Reliable to Determine Program Location
Article ID: Q80611

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

The CURDIR$ function returns the path to the current directory on the
currently selected drive. Because the current directory is not
necessarily the directory where the current Visual Basic program
resides, the CURDIR$ function is not a reliable means for determining
the location of the currently executing program. This information
applies to the CURDIR$ function, and to the drive list box, directory
list box, and file list box controls in Visual Basic.

MORE INFORMATION
================

You can use any of the following methods to start a program under
Windows:

 - From the MS-DOS prompt, type:

 WIN drive:\pathname\program name

 - From Windows Program Manager, choose Run from the File menu, and
 enter the full pathname of the executable program.

 - From Windows File Manager, choose Run from the File menu, and
 enter the full path of the executable program.

 - From Windows Program Manager, choose New from the File menu, and
 create a new program item for the executable program. Double-
 click the resulting icon.

 - From Windows File Manager, use the mouse to choose the appropriate
 drive and directory containing the executable file, and double-click
 the executable filename.

If the program is launched using the first, third, or fifth method
above, the CURDIR$ value will return the current directory at the time
Windows was launched or at the time the program was started from File
Manager. The current directory can be checked by opening File Manager
and reading the current directory from the bar below the drive
buttons; for the fifth method, the File Manager's current directory
will actually be the directory where the started program resides.

If the program is launched using the second method from the Windows
Program Manager, the CURDIR$ value will be the path to the location

of the program that was started.

If the program is launched using the fourth method, the CURDIR$ value
is the working directory you specified for the icon, or if you left the
working directory blank, CURDIR$ returns the Windows directory.

Note that the current directory of an MS-DOS session does not
necessarily indicate the current directory that will be returned by
CURDIR$.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: EnvtRun

How to Get Windows Version Number in VB with GetVersion API
Article ID: Q80642

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

From a Microsoft Visual Basic for Windows program, you can find out which
version of Windows is running by calling the Windows API GetVersion()
function from the Windows Kernel module. The GetVersion() function can help
your application accommodate any known differences, if any, in the way
API calls operate between different versions of Windows (such as
differences
between API parameters or return values).

MORE INFORMATION
================

The step-by-step example given below demonstrates how to make the
GetVersion() function call. GetVersion() takes no parameters, and the
return value is a WORD value -- which translates to an integer in Visual
Basic for Windows.

The return value specifies the major and minor version numbers of Windows.
The high order byte specifies the minor version and the low order byte
specifies the major version number.

Step-by-Step Example

1. Create a form with a text box and a command button.

2. Add the following declaration to the General Declarations section:

 Declare Function GetVersion Lib "kernel" () As Integer

3. Add following code to the command button Click event:

 Sub Command1_Click ()
 i% = GetVersion()
 ' Lowbyte is derived by masking off high byte.
 lowbyte$ = Str$(i% And &HFF)
 ' Highbyte is derived by masking off low byte and shifting.
 highbyte$ = LTrim$(Str$((i% And &HFF00) / 256))
 ' Assign Windows version to text property.
 text1.text = lowbyte$ + "." + highbyte$
 End Sub

Additional reference words: 1.00 2.00 3.00
KBCategory:

KBSubcategory: APrgWindow EnvtRun

PRB: Device Unavailable Msg When Change Path & Drive Door Open
Article ID: Q80645

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows,
 versions 1.0, 2.0, and 3.0

SYMPTOMS
========

Changing the Path property of a directory list box or a file list box
to a floppy drive that has an open drive door or no disk present results
in the following error:

 Error: 68 Device unavailable

Rather than giving this more expected error:

 Error: 71 Disk not ready

This occurs whether you run the program in the VB.EXE environment or as
an .EXE file.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

The following definitions for errors 68 and 71 can be found in the
Visual Basic online Help:

Error 68 Device Unavailable

The device you are trying to access is not online or does not exist.

Error 71 Disk Not Ready

There is no disk in the drive specified, or the drive door is open. Insert
a disk in the drive, close the door, and retry the operation.

Attempting to open a file on a drive that has an open door or missing disk
generates Error 71, "Disk Not Ready."

Steps to Reproduce Behavior

1. Start Visual basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Create the following controls on Form1:

 Control Control Name

 Drive list box Drive1
 File list box File1

3. Add the following code to the Drive1_Change event procedure:

 Sub Drive1_Change ()
 On Error GoTo Trap
 File1.path = drive1.drive
 Exit Sub
 Trap:
 MsgBox "Error:"+Str$(Err)+" "+Error$(Err)
 Resume Next
 End Sub

4. From the Run menu, choose Start (ALT, R, S) to run the program.

Changing the drive in the drive list box to a drive that is open or
that contains no disk causes a message box to display:

 Error: 68 Device unavailable

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: EnvtRun

How to Right Justify Numbers Using Format$
Article ID: Q95945

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0

SUMMARY
=======

Use the following two-step process to right justify numbers in a string by
using the format$ function:

1. Format the number into a string by using the usual numeric conversion
 characters (0 # . ,).

2. Format the resulting string by using a format string consisting of a
 number of @ characters equal to the length of the format string used
 in step 1.

The following example Sub procedure formats several numbers using the seven
character formats $##0.00 and @@@@@@@:

 Sub Form_Click ()
 Print "|" + Format$(Format$(1.5, "$##0.00"), "@@@@@@@") + "|"
 Print "|" + Format$(Format$(12.5, "$##0.00"), "@@@@@@@") + "|"
 Print "|" + Format$(Format$(123.5, "$##0.00"), "@@@@@@@") + "|"
 End Sub

Here is the output:

 | $1.50|
 | $12.50|
 |$123.50|

MORE INFORMATION
================

You can automatically generate the @ format string by using Len and String$
as in this example:

 Function rFormat (value As Variant, fmt As String) As Variant
 rFormat = Format(Format(value, fmt), String$(Len(fmt), "@"))
 End Function

Additional reference words: 2.00 3.00 align alignment right-justify
KBCategory:
KBSubcategory: EnvtRun

Programming a Delay Using the Timer Function
Article ID: Q96069

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic
 for Windows, versions 1.0, 2.0, and 3.0
- Standard and Professional Editions of Microsoft Visual Basic
 for MS-DOS, version 1.0

SUMMARY
=======

You can delay execution of your code for a specific time interval by using
the Timer function.

With Visual Basic for MS-DOS, you cannot use the SLEEP statement to do this
while forms are showing. An attempt to do so causes this error:

 Invalid when forms are showing.

To use the Timer function to pause for a number of seconds, store the value
of Timer in a variable. Then use a loop to wait until the Timer returns a
a specified number of seconds greater than the stored value. If the delay
loop will execute when midnight passes, compensate by reducing the starting
Timer value by the number of seconds in a day (24 hours * 60 minutes * 60
seconds). Calling DoEvents from within the loop allows events to be
processed during the delay.

MORE INFORMATION
================

Code Example

Sub Form_Click ()
 Print "hello ";
 Call Pause(2) ' delay for 2 seconds
 Print "world"
End Sub

Sub Pause (ByVal nSecond As Single)
 Dim t0 As Single
 t0 = Timer
 Do While Timer - t0 < nSecond
 Dim dummy As Integer
 dummy = DoEvents()
 ' if we cross midnight, back up one day
 If Timer < t0 Then
 t0 = t0 - 24 * 60 * 60
 End If
 Loop
End Sub

Additional reference words: B_VBasic B_VBMSDOS 1.00 2.00 3.00 wait

KBCategory:
KBSubcategory: EnvtRun

How to Emulate Overtype Mode in a Visual Basic Text Box
Article ID: Q96210

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0

SUMMARY
=======

Although Visual Basic text boxes do not support an Overtype (replace) mode
where the text you type replaces the text already there, you can write code
to support it. The example below demonstrates one method for implementing
an
overtype mode in a Visual Basic text box.

MORE INFORMATION
================

Microsoft Visual Basic for Windows text box controls default to Insert
mode,
inserting the text you type rather than replacing what is already there. To
emulate the Overtype mode, you need to add code to the KeyPress and KeyDown
events for a text box. The following is an example.

Steps to Create Example Program

1. Run Visual Basic, or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Add one text box to Form1 named Text1.

3. Add one label box to Form1 named Label1.

4. Enter the following code in the Form1 General section:

 Dim insert As Integer 'Insert flag

4. Enter the following code in the Form1 Load procedure:

 Sub Form_Load ()
 insert = False 'initialize insert flag
 label1.Caption = "Insert"
 End Sub

3. Enter the following code in the Text1 KeyPress procedure:

 Sub Text1_KeyPress (keyascii As Integer)
 If keyascii <> 8 Then 'if keyascii not Backspace
 If insert Then 'check insert flag
 string1$ = text1.Text
 pos& = text1.SelStart + 1 'get cursor position
 If (pos& > Len(string1$)) Then 'if cursor is at the end then

 'append keystroke to end
 string1$ = text1.Text + Chr$(keyascii)
 Else 'else place keystroke in
 'correct position in text
 Mid(string1$, pos&, 1) = Chr$(keyascii)
 End If
 text1.Text = string1$
 text1.SelStart = pos&
 keyascii = 0
 End If
 End If
 End Sub

4. Enter the following code in the Text1 KeyDown procedure:

 Sub Text1_KeyDown (keycode As Integer, Shift As Integer)
 If keycode = 45 Then 'If the insert key was pressed
 insert = Not insert 'toggle insert flag
 If insert Then
 label1.Caption = "Overwrite"
 Else
 label1.Caption = "Insert"
 End If
 End If
 End Sub

5. Press the F5 key to run the program. When you click Insert, the Label1
 label shows the current mode of the Text1 text box.

Additional reference words: 2.00 3.00 overtype typeover replace
KBCategory:
KBSubcategory: EnvtRun

'Error in loading DLL' When LIBRARY Name Not Same as Filename
Article ID: Q98309

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

The "Error in loading DLL" error message will occur if you call a DLL and
the LIBRARY name of the DLL is different from the filename. This is by
design. Visual Basic ensures that the LIBRARY name and filename of a DLL
match. If they don't match, Visual Basic generates the "Error in loading
DLL" error.

Visual Basic 3.0 does not require that the LIBRARY name and the
filename be the same for a DLL. However, unless you are designing a
DLL specifically to be called from Visual Basic 3.0 or some other
application not written using Visual Basic, we recommend that you use
the same name for both the LIBRARY name and filename of a DLL.

MORE INFORMATION
================

When creating a Windows DLL, you must specify the LIBRARY name of the
DLL in the module-definition (.DEF) file for the DLL. In order to call
any procedure contained within the DLL from Visual Basic, the LIBRARY
name given in the module-definition file must be the same as the
filename for the DLL.

Steps to Reproduce the Error Message

Perform the following steps to build a DLL that will lead to a "Error
in loading DLL" error when called from Visual Basic. To build the
following application, you will need to use a C compiler capable of
creating Windows Dynamic Link Libraries (DLLs).

1. Create a C source code file that contains the following code and
 save the file as TEST.C.

 #include <windows.h>

 VOID FAR PASCAL test (VOID);
 VOID FAR PASCAL test (VOID)
 {
 //The contents of any procedure in the DLL is not important
 //Define this procedure to be called from Visual Basic
 return;
 }

 //--
 // Initialize library. This routine is called when the first
 // client loads
 // the DLL.
 //--
 int FAR PASCAL LibMain
 (
 HANDLE hModule,
 WORD wDataSeg,
 WORD cbHeapSize,
 LPSTR lpszCmdLine
)
 {
 // Avoid warnings on unused (but required) formal parameters
 wDataSeg = wDataSeg;
 cbHeapSize = cbHeapSize;
 lpszCmdLine = lpszCmdLine;

 return 1;
 }

 //--
 // WEP
 //--
 int FAR PASCAL WEP(int fSystemExit);

 //--
 // Performs cleanup tasks when the DLL is unloaded. WEP() is
 // called automatically by Windows when the DLL is unloaded (no
 // remaining tasks still have the DLL loaded). It is strongly
 // recommended that a DLL have a WEP() function, even if it does
 // nothing but returns success (1), as in this example.
 //--
 int FAR PASCAL WEP
 (
 int fSystemExit
)
 {
 // Avoid warnings on unused (but required) formal parameters
 fSystemExit = fSystemExit;

 return 1;
 }

2. Create a module-definition file (DEF) file that contains the
 following code and save the file as TEST.DEF.

 LIBRARY DIFFNAME

 DESCRIPTION 'Sample DLL where LIBRARY name != filename'

 EXETYPE WINDOWS

 CODE PRELOAD MOVEABLE DISCARDABLE
 DATA PRELOAD SINGLE MOVEABLE

 EXPORTS

 WEP @1 RESIDENTNAME
 TEST @2

3. Compile TEST.C from the command line as follows:

 CL /c /ASw /W3 TEST.C

4. Link the resulting TEST.OBJ file as follows:

 LINK /NOE /NOD TEST.OBJ+LIBENTRY.OBJ,TEST.DLL,,LIBW+SDLLCEW,TEST.DEF;

5. Copy TEST.DLL to the Windows directory.

6. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

7. Add the following code to the general declarations section of Form1:

 Declare Sub Test Lib "TEST.DLL" ()

8. Add the following code to the Form_Load event of Form1:

 Sub Form_Load ()
 Call TEST
 End Sub

9. From the Run menu, choose Start (ALT, R, S) or press the F5 key to run
 the program.

Execution will break on the Call statement in the Form_Load event, and you
will receive the error "Error in loading DLL."

To avoid this error, change the LIBRARY name in TEST.DEF, under step 2,
from DIFFNAME to TEST. Then do step 4 to link in the new module-definition
file. Follow steps 5 through 8 again and you should no longer see the
"Error in loading DLL" error message.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: EnvtRun

PRB: Some ATI Video Drivers Hang When Using MSOUTLIN.VBX
Article ID: Q100194

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic programming system for
 Windows, version 3.0

SYMPTOMS
========

If you use an OutLine control in a Visual Basic project and you are
using an ATI Mach 32 video driver this could cause your computer to
hang (stop responding to input).

CAUSE
=====

This is a problem with the ATI video driver not a problem with Visual
Basic. The m32-86.drv and Mach32.drv drivers have been reported to
cause this problem.

RESOLUTION
==========

An updated driver may solve the problem. To contact ATI Technologies
concerning an updated driver call the following number.

 ATI Technologies Inc. (416) 756-0711 ATI technical support

Additional reference words: 3.00
KBCategory:
KBSubcategory: EnvtRun PrgCtrlsCus

Category Keywords for All Visual Basic KB Articles
Article ID: Q108753

The information in this article applies to:

- Microsoft Visual Basic for Windows, versions 2.0 and 3.0

SUMMARY
=======

Each article in the Visual Basic for Windows collection contains at least
one keyword (called a KBSubcategory keyword) that places the article in an
appropriate category. This article lists all the KBSubcategory keywords.

MORE INFORMATION
================

Category & Subcategory Description KBSubcategory Keyword
--
Setup / Installation (Setins) Setins

Environment-specific Issues (Envt)
 VB Design Environment EnvtDes
 Run-Time Environment EnvtRun

Programming (Prg)
 Visual Basic Forms and Controls
 Standard Controls / Forms PrgCtrlsStd
 Custom Controls PrgCtrlsCus
 Third-Party Controls PrgCtrlsThird

 Optimization
 Memory Management PrgOptMemMgt
 General Optimization Tips PrgOptTips

 General VB Programming PrgOther

Advanced programming (APrg)
 Network APrgNet

 Windows Programming (APIs / DLLs)
 Printing APrgPrint
 Graphics APrgGrap
 Windowing APrgWindow
 INI Files APrgINI
 Other API / DLL Programming APrgOther

 Data Access
 ODBC APrgDataODBC
 IISAM APrgDataIISAM
 Access APrgDataAcc
 General Database Programming APrgDataOther

 3rd Party DLL's APrgThirdDLL

Inter-Application Programmability (IAP)
 OLE IAPOLE
 DDE IAPDDE
 3rd Party Interoperability IAPThird

Tools (Tls)
 Setup Toolkit / Wizard TlsSetWiz
 Control Development Kit (CDK) TlsCDK
 Help Compiler (HC) TlsHC

References (Refs)
 Documentation / Help File Fixes RefsDoc
 Product Information RefsProd
 Third-Party Information RefsThird
 PSS-Only Information RefsPSS

Using Keywords to Query the KB

At Microsoft, we use the subcategory keywords to organize the articles for
Help files and for the FastTips Catalog. You can use them to query the
Microsoft Knowledge Base for Visual Basic articles that apply to that
category or subcategory. For example, you can find all the general database
programming articles by querying on the following words in the Microsoft
Knowledge Base:

 visual and basic and APrgDataOther

Use the asterisk (*) wildcard to find articles that fall into the general
categories or into an intermediate subcategory. The first element in each
keyword is the category. For example, to find all the articles that apply
to Visual Basic Forms and Controls regardless of whether they are standard,
custom, or third-party controls, use the following words to query the
Microsoft Knowledge Base:

 visual and basic and PrgCtrls*

To find all advanced programming articles, query on these words:

 visual and basic and APrg*

Add KBSubcategory Keyword to Each Article

When contributing an article to the Visual Basic Knowledge Base, add the
appropriate KBSubcategory keyword to the bottom of the article on the
KBSubcategory line. Each article in the Visual Basic for Windows
collection contains the following section at the bottom of the article:

Additional reference words:
KBCategory:
KBSubcategory: <keyword>

An article usually has only one subcategory keyword, but it may have more.

If you are interested in contributing, please obtain the guidelines by

querying on the following words in the Microsoft Knowledge Base:

 visual and basic and kbguide and kbartwrite

Additional reference words: 3.00 dskbguide subcatkey
KBCategory:
KBSubcategory: RefsPSS

PRB: Making .EXE Gives Error: Wrong Version of Runtime DLL
Article ID: Q112770

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SYMPTOMS
========

If a copy of an executable is running on your computer, and you try to
create a new executable with the same name, you'll receive this error:

 Wrong version of runtime DLL.

followed by another error:

 Unexpected error quitting.

CAUSE
=====

This error is caused by the fact that Windows doesn't load a new copy of a
module if it thinks the module is already in memory. Because one instance
of your .EXE file is running already, attempting to run the re-compiled
version really just increments the usage count of the .EXE that is already
running.

The Visual Basic error occurs because VBRUN300.DLL tries to open the .EXE
file and read resources out of it. But the .EXE file you're reading from is
different from the .EXE file that is actually running (because you did a
'Make EXE' over the old one), so VBRUN300 has problems. It signals with the
"Wrong version of run-time DLL" error. It reports this error because it is
under the assumption that because it could not read the .EXE file, it
doesn't have the correct version of VBRUN needed to execute that .EXE file.

RESOLUTION
==========

To work around the problem, either rename the .EXE when you create a new
executable, or exit from the executable that is currently running.

Additional reference words: 3.00
KBCategory: Envt
KBSubcategory: EnvtRun

(Complete) Tutorial to Understand IEEE Floating-Point Errors
Article ID: Q42980

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic
 Programming System for Windows, versions 1.0, 2.0, and 3.0
- The Standard and Professional Editions of Microsoft Visual Basic
 for MS-DOS, version 1.0
- Microsoft QuickBasic for MS-DOS, versions 3.0 (QB87.EXE
 coprocessor version only), 4.0, 4.0b, and 4.5
- Microsoft Basic Compiler for MS-DOS and MS OS/2, versions 6.0 and
 6.0b
- Microsoft Basic Professional Development System (PDS) for MS-DOS
 and MS OS/2, versions 7.0 and 7.1

SUMMARY
=======

Floating-point mathematics is a complex topic that confuses many
programmers. The tutorial below should help you recognize programming
situations where floating-point errors are likely to occur and how to
avoid them. It should also allow you to recognize cases that are
caused by inherent floating-point math limitations as opposed to
actual compiler bugs.

MORE INFORMATION
================

Decimal and Binary Number Systems

Normally, we count things in base 10. The base is completely
arbitrary. The only reason that people have traditionally used base
10 is that they have 10 fingers, which have made handy counting
tools.

The number 532.25 in decimal (base 10) means the following:

 (5 * 10^2) + (3 * 10^1) + (2 * 10^0) + (2 * 10^-1) + (5 * 10^-2)
 500 + 30 + 2 + 2/10 + 5/100

 = 532.25

In the binary number system (base 2), each column represents a power
of 2 instead of 10. For example, the number 101.01 means the
following:

 (1 * 2^2) + (0 * 2^1) + (1 * 2^0) + (0 * 2^-1) + (1 * 2^-2)
 4 + 0 + 1 + 0 + 1/4

 = 5.25 Decimal

How Integers Are Represented in PCs

Because there is no fractional part to an integer, its machine
representation is much simpler than it is for floating-point values. Normal
integers on personal computers (PCs) are 2 bytes (16 bits) long with the
most significant bit indicating the sign. Long integers are 4 bytes long.
Positive values are straightforward binary numbers. For example:

 1 Decimal = 1 Binary
 2 Decimal = 10 Binary
 22 Decimal = 10110 Binary, etc.

However, negative integers are represented using the two's complement
scheme. To get the two's complement representation for a negative
number, take the binary representation for the number's absolute value
and then flip all the bits and add 1. For example:

 4 Decimal = 0000 0000 0000 0100
 1111 1111 1111 1011 Flip the Bits
 -4 = 1111 1111 1111 1100 Add 1

Note that -1 Decimal = 1111 1111 1111 1111 in Binary, which explains
why Basic treats -1 as logical true (All bits = 1). This is a
consequence of not having separate operators for bitwise and logical
comparisons. Often in Basic, it is convenient to use the code fragment
below when your program will be making many logical comparisons. This
greatly aids readability.

 CONST TRUE = -1
 CONST FALSE = NOT TRUE

Note that adding any combination of two's complement numbers together
using ordinary binary arithmetic produces the correct result.

Floating-Point Complications

Every decimal integer can be exactly represented by a binary integer;
however, this is not true for fractional numbers. In fact, every
number that is irrational in base 10 will also be irrational in any
system with a base smaller than 10.

For binary, in particular, only fractional numbers that can be
represented in the form p/q, where q is an integer power of 2, can be
expressed exactly, with a finite number of bits.

Even common decimal fractions, such as decimal 0.0001, cannot be
represented exactly in binary. (0.0001 is a repeating binary fraction
with a period of 104 bits!)

This explains why a simple example, such as the following

 SUM = 0
 FOR I% = 1 TO 10000
 SUM = SUM + 0.0001
 NEXT I%
 PRINT SUM ' Theoretically = 1.0.

will PRINT 1.000054 as output. The small error in representing 0.0001
in binary propagates to the sum.

For the same reason, you should always be very cautious when making
comparisons on real numbers. The following example illustrates a
common programming error:

 item1# = 69.82#
 item2# = 69.20# + 0.62#
 IF item1# = item2# then print "Equality!"

This will NOT PRINT "Equality!" because 69.82 cannot be represented
exactly in binary, which causes the value that results from the
assignment to be SLIGHTLY different (in binary) than the value that is
generated from the expression. In practice, you should always code
such comparisons in such a way as to allow for some tolerance. For
example:

 IF (item1# < 69.83#) AND (item1# > 69.81#) then print "Equal"

This will PRINT "Equal".

IEEE Format Numbers

QuickBasic for MS-DOS, version 3.0 was shipped with an MBF
(Microsoft Binary Floating Point) version and an IEEE (Institute of
Electrical and Electronics Engineers) version for machines with a
math coprocessor. QuickBasic for MS-DOS, versions 4.0 and later
only use IEEE. Microsoft chose the IEEE standard to represent
floating-point values in current versions of Basic for the following
three primary reasons:

1. To allow Basic to use the Intel math coprocessors, which use IEEE
 format. The Intel 80x87 series coprocessors cannot work with
 Microsoft Binary Format numbers.

2. To make interlanguage calling between Basic, C, Pascal, FORTRAN,
 and MASM much easier. Otherwise, conversion routines would have to
 be used to send numeric values from one language to another.

3. To achieve consistency. IEEE is the accepted industry standard for
 C and FORTRAN compilers.

The following is a quick comparison of IEEE and MBF representations
for a double-precision number:

 Sign Bits Exponent Bits Mantissa Bits
 --------- ------------- -------------
 IEEE 1 11 52 + 1 (Implied)
 MBF 1 8 56

For more information on the differences between IEEE and MBF
floating-point representation, query in the Microsoft Knowledge Base on
the following words:

 IEEE and floating and point and appnote

Note that IEEE has more bits dedicated to the exponent, which allows
it to represent a wider range of values. MBF has more mantissa bits,
which allows it to be more precise within its narrower range.

General Floating-Point Concepts

It is very important to realize that any binary floating-point system
can represent only a finite number of floating-point values in exact
form. All other values must be approximated by the closest
representable value. The IEEE standard specifies the method for
rounding values to the "closest" representable value. QuickBasic
for MS-DOS supports the standard and rounds according to the IEEE
rules.

Also, keep in mind that the numbers that can be represented in IEEE
are spread out over a very wide range. You can imagine them on a
number line. There is a high density of representable numbers near 1.0
and -1.0 but fewer and fewer as you go towards 0 or infinity.

The goal of the IEEE standard, which is designed for engineering
calculations, is to maximize accuracy (to get as close as possible to
the actual number). Precision refers to the number of digits that you
can represent. The IEEE standard attempts to balance the number of
bits dedicated to the exponent with the number of bits used for the
fractional part of the number, to keep both accuracy and precision
within acceptable limits.

IEEE Details

Floating-point numbers are represented in the following form, where
[exponent] is the binary exponent:

 X = Fraction * 2^(exponent - bias)

[Fraction] is the normalized fractional part of the number, normalized
because the exponent is adjusted so that the leading bit is always a
1. This way, it does not have to be stored, and you get one more bit
of precision. This is why there is an implied bit. You can think of
this like scientific notation, where you manipulate the exponent to
have one digit to the left of the decimal point, except in binary, you
can always manipulate the exponent so that the first bit is a 1, since
there are only 1s and 0s.

[bias] is the bias value used to avoid having to store negative
exponents.

The bias for single-precision numbers is 127 and 1023 (decimal) for
double-precision numbers.

The values equal to all 0's and all 1's (binary) are reserved for
representing special cases. There are other special cases as well,
that indicate various error conditions.

Single-Precision Examples

 2 = 1 * 2^1 = 0100 0000 0000 0000 ... 0000 0000 = 4000 0000 hex
 Note the sign bit is zero, and the stored exponent is 128, or
 100 0000 0 in binary, which is 127 plus 1. The stored mantissa is
 (1.) 000 0000 ... 0000 0000, which has an implied leading 1 and
 binary point, so the actual mantissa is 1.

-2 = -1 * 2^1 = 1100 0000 0000 0000 ... 0000 0000 = C000 0000 hex
 Same as +2 except that the sign bit is set. This is true for all
 IEEE format floating-point numbers.

 4 = 1 * 2^2 = 0100 0000 1000 0000 ... 0000 0000 = 4080 0000 hex
 Same mantissa, exponent increases by one (biased value is 129, or
 100 0000 1 in binary.

 6 = 1.5 * 2^2 = 0100 0000 1100 0000 ... 0000 0000 = 40C0 0000 hex
 Same exponent, mantissa is larger by half -- it's
 (1.) 100 0000 ... 0000 0000, which, since this is a binary
 fraction, is 1-1/2 (the values of the fractional digits are 1/2,
 1/4, 1/8, etc.).

 1 = 1 * 2^0 = 0011 1111 1000 0000 ... 0000 0000 = 3F80 0000 hex
 Same exponent as other powers of 2, mantissa is one less than
 2 at 127, or 011 1111 1 in binary.

.75 = 1.5 * 2^-1 = 0011 1111 0100 0000 ... 0000 0000 = 3F40 0000 hex
 The biased exponent is 126, 011 1111 0 in binary, and the mantissa
 is (1.) 100 0000 ... 0000 0000, which is 1-1/2.

2.5 = 1.25 * 2^1 = 0100 0000 0010 0000 ... 0000 0000 = 4020 0000 hex
 Exactly the same as 2 except that the bit which represents 1/4 is
 set in the mantissa.

0.1 = 1.6 * 2^-4 = 0011 1101 1100 1100 ... 1100 1101 = 3DCC CCCD hex
 1/10 is a repeating fraction in binary. The mantissa is just shy
 of 1.6, and the biased exponent says that 1.6 is to be divided by
 16 (it is 011 1101 1 in binary, which is 123 in decimal). The true
 exponent is 123 - 127 = -4, which means that the factor by which
 to multiply is 2**-4 = 1/16. Note that the stored mantissa is
 rounded up in the last bit. This is an attempt to represent the
 unrepresentable number as accurately as possible. (The reason that
 1/10 and 1/100 are not exactly representable in binary is similar
 to the way that 1/3 is not exactly representable in decimal.)

0 = 1.0 * 2^-128 = all zeros -- a special case.

Other Common Floating-Point Errors

The following are common floating-point errors:

1. Round-off error

 This error results when all of the bits in a binary number cannot
 be used in a calculation.

 Example: Adding 0.0001 to 0.9900 (Single Precision)

 Decimal 0.0001 will be represented as:

 (1.)10100011011011100010111 * 2^(-14+Bias) (13 Leading 0s in
 Binary!)

 0.9900 will be represented as:

 (1.)11111010111000010100011 * 2^(-1+Bias)

 Now to actually add these numbers, the decimal (binary) points must
 be aligned. For this they must be Unnormalized. Here is the
 resulting addition:

 .000000000000011010001101 * 2^0 <- Only 11 of 23 Bits retained
 +.111111010111000010100011 * 2^0

 .111111010111011100110000 * 2^0

 This is called a round-off error because some computers round when
 shifting for addition. Others simply truncate. Round-off errors are
 important to consider whenever you are adding or multiplying two
 very different values.

2. Subtracting two almost equal values

 .1235
 -.1234

 .0001

 This will be normalized. Note that although the original numbers
 each had four significant digits, the result has only one
 significant digit.

3. Overflow and underflow

 This occurs when the result is too large or too small to be
 represented by the data type.

4. Quantizing error

 This occurs with those numbers that cannot be represented in exact
 form by the floating-point standard.

5. Division by a very small number

 This can trigger a "divide by zero" error or can produce bad
 results, as in the following example:

 A = 112000000
 B = 100000
 C = 0.0009
 X = A - B / C

 In QuickBasic for MS-DOS, X now has the value 888887, instead of
 the correct answer, 900000.

6. Output error

 This type of error occurs when the output functions alter the
 values they are working with.

Additional reference words: 1.00 2.00 3.00 4.00 4.00b 4.50 6.00 6.00b
 7.00 7.10 IEEETUTR
KBCategory:
KBSubcategory: RefsProd

How to Contribute Visual Basic Articles to the Microsoft KB
Article ID: Q70220

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic
 Programming System for Windows, version 3.0

SUMMARY
=======

This article explains how you can contribute Visual Basic articles to the
Microsoft Knowledge Base.

MORE INFORMATION
================

There are at least four different ways you can contribute to the Microsoft
Knowledge Base:

 - Contribute a fully-tested code sample containing ample comments and a
 short description.
 - Contribute a rough draft of an article that is complete with fully-
 tested technical information but that needs rewriting, editing, and
 formatting.
 - Contribute a fully-tested, well-written article that needs formatting.
 - Contribute a fully-tested, well-written article in the standard format.

All of these are equally valuable. Choose the method that is most
comfortable and quickest for you to do. In all cases, you will be given
credit for the article either in the Author field or in the body of the
article.

Submission Guidelines

When submitting an article, please ensure that it is fully tested and
includes all the following information:

 - Name of the author(s) or contributor(s)
 - Name of the person(s) who signed off on the technical review
 - Product name(s)
 - Product version number(s)
 - Operating system(s)

Contributions from Microsoft Employees

After your article has been technically reviewed, include the name of the
technical reviewer in your article, and mail it to the Knowledge Base Lead
(KBL) for your product. The KBL will make sure the article is added to the
KB and edited or rewritten as quickly as possible.

Contributions from Outside Microsoft

If you are not a Microsoft employee, you can still contribute. You need to
find a Microsoft employee to sponsor you and review your article for
technical accuracy.

If you need us to assign a sponsor for you, please send mail to:

 y-kbfeed@Microsoft.com

on the Internet. You can do this in CompuServe Mail by putting the
following on the TO: line of your message:

 >Internet: y-KBFeed@Microsoft.Com

In the body of the message, please include the name of the product name, a
short summary of your article, and your telephone number. We will have a
Microsoft sponsor call you to discuss your article. The sponsor will advise
you on the appropriateness of your article for the KB. If your article is
selected for the KB, your name will be included in the body of the article
as the contributor so that readers can contact you directly if they have
questions.

Writing Style

You don't have to be a writer to contribute to the KB. The Developer
Support Knowledge Base team can rewrite your material for you. All we need
is complete, well-tested technical information.

If you would prefer to write your own article, please follow these and the
other general guidelines listed in this article:

 - Emulate the writing style and standards used in the Visual
 Basic manuals and Help menu.

 - Use active voice, present tense, short sentences, and bullets to make
 your writing clear, crisp, and easy for the reader to follow.

 - When writing about bugs, list the symptoms first followed by the cause
 (if known), and then the workaround or resolution.

 - Spell check your article.

The goal of good writing is to be as invisible as possible to the reader.

Format Style

If you want to put your article in standard format, follow these
guidelines. Each article should be organized into sections. There are two
basic format styles:

 - Informational and how to articles use the SUMMARY/MORE INFORMATION
 format style. This article is an example of this format.

 - Bugs and other problem articles use the SYMPTOMS/CAUSE/RESOLUTION

 format style. For an example, query on the following words in the
 Microsoft Knowledge Base:

 visual and basic and bug

 Look at any one of the BUG or FIX articles. Many of these articles have
 a WORKAROUND section instead of a RESOLUTION section. In addition, many
 also include a STATUS section that either confirms the problem as a bug
 or tells the reader that the behavior described in the article is by
 design.

Reference Section

Many articles also include a REFERENCES section at the bottom of the
article. When referring to the manuals or products, please use the official
names. For example:

 - Microsoft Visual Basic Programming System for Windows, version 3.0,
 Professional Edition, "Professional Features Book 1," page 161,
 "SeeThru Property" section.

 - Microsoft Visual Basic Programming System for Windows, version 3.0,
 "Language Reference," page 333, "List Property" section.

Categorization and Reference Keywords

Add the following section to the bottom of each article:

Additional reference words:
KBCategory:
KBSubcategory:

On the top line, fill in any reference words that you think may be useful
when querying for the article

Leave the middle line blank.

On the bottom line, fill in the appropriate Visual Basic subcategory
keywords. To find the list of available keywords, query on the following
words in the Microsoft Knowledge Base:

 visual and basic and kbguide and subcatkey

Boilerplates

There are several boilerplates that go on many if not all articles. Put the
following at the top of every article to identify the product and version
numbers. Modify this boilerplate to give the actual product name:

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic
 Programming System for Windows, version 3.0

If Microsoft has confirmed that the problem described in the article is a
bug, please add the following STATUS section below the WORKAROUND or
RESOLUTION section:

STATUS
======

Microsoft has confirmed this to be a bug in the product(s) listed at the
beginning of this article. We are researching this problem and will post
new information here in the Microsoft Knowledge Base as it becomes
available.

Miscellaneous Guidelines

 - Always use the complete name of the product. For example, use Visual
 Basic, not VB. Use Microsoft Access, not Access.

 - Use the uppercase and lowercase standards as shown in the manuals. For
 example, controls such as command button and list box are in lowercase.

 - Write menu instructions using this wording:

 From the File menu, choose Save Project.

 - When you give code examples, always use Visual Basic's default control
 and procedure names, such as Command1, List1, Option1. This will avoid
 reader misunderstandings.

 - When you describe how to create a Visual Basic form, use complete
 sentences, and use the exact terminology used in the manual. Avoid
 using line-drawing characters in an article because of editing and
 interpretation problems. Instead, describe in complete sentences what
 controls go where and in what order.

 - Use active voice and engage the reader by using the second person (you)
 instead of using "the user," "the customer," or "one." Use "user" only
 when it is necessary to differentiate the user from the developer.

 - Use active voice such as: After you start Visual Basic, use x, call the
 y function, and click the z button. Avoid passive voice such as: After
 Visual Basic is started, x is used, the y function is called, and
 the z button is clicked.

 After writing your article, check for passive voice by looking at your
 use of the words have, is, and are. Where possible, change passive
 voice to active voice.

 - Enclose error messages in double quotation marks, and be sure to
 quote the exact error message displayed on the screen by the software.

 - Attempt to structure your article in a series of steps. There are many
 examples of this throughout the Visual Basic Knowledge Base.

 - List all version numbers mentioned in the article to the hundredths

 place in the following section at the bottom of every article. This will
 satisfy all potential article-body queries in the online services.

Additional reference words: 1.00 2.00 3.00 dskbguide kbartwrite
KBCategory:
KBSubcategory: RefsPSS

Why Cooper Software Is Listed in Visual Basic's Copyright
Article ID: Q72747

The information in this article applies to:

 - Microsoft Visual Basic programming system for Windows, versions
 1.0 and 2.0

SUMMARY
=======

The Microsoft Visual Basic copyright notice acknowledges Cooper
Software in both the sign-on dialog box and in the About dialog box
from the Help menu. Visual Basic uses technology from a forms engine
purchased from Cooper Software. The acknowledgment in Visual Basic is
part of the contract between Microsoft and Cooper Software.

Additional reference words: 1.00 2.00
KBCategory:
KBSubcategory: RefsThird

Technical Data Sheets Available for Visual Basic for Windows
Article ID: Q77906

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

You can obtain detailed sales literature in the United States by calling
Microsoft End User Sales at (800) 426-9400. Ask for the Visual Basic for
Windows package or the Visual Basic for MS-DOS package.

Outside of the United States, you can obtain these data sheets by
contacting your local Microsoft subsidiary or dealer.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: RefsPSS

Visual Basic Online Help Example Errors
Article ID: Q78772

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

There are several code examples in Visual Basic version 1.0's online
Help that do not behave as expected if actually copied and run. The
corresponding examples in the "Visual Basic: Language Reference" manual
contain the same errors.

STATUS
======

These problems do not exist in later versions of Visual Basic for Windows.

MORE INFORMATION
================

Under the topic "ActiveControl, Active Form Properties," the second
example demonstrating these properties contains an omission of the
Clipboard object. When copied and run as is, the error message
"Method Not Applicable For This Object" will be displayed.

The ActiveControl example contains the line in the EditCut_Click event
procedure for the menu item:

 SetText Screen.ActiveControl.SelText

This should be changed to read:

 Clipboard.SetText Screen.ActiveControl.SelText

Under the topic titled "Fonts Property," the example shows setting the
FontName = "". This will cause a run time error "Invalid Property
Value".

The example will also fail when attempting to select a printer
FontName as the screen FontName where no associated screen font exists
under Windows. For example, when the printer LinePrinter font is
selected for the screen, an error will occur because the screen does
not support this font. The examples for the topics "FontName Property"
and "FontCount Property" if modified as suggested in the online Help
to print the available printer fonts to the screen will fail for the
same reason.

The example for the Fonts Property follows:

 'Fonts Property Example

 Sub Form_Click ()

 Static X% ' A static variable.
 AutoRedraw = -1 ' Keep screen text.
 If X% = Printer.FontCount Then ' Check for last font.
 X% = 0 ' Set X%.
 Print ' Print blank line.
 FontName = "" ' Reset to default font.
 End If
 If X% = 0 Then Print "Printer Fonts" ' Print header.
 FontName = Printer.Fonts(X%) ' Set FontName.
 Print X%; "This is " + FontName + " font" ' Print message.
 X% = X% + 1 ' Set X%.

 End Sub

As stated above, this fails in two ways. The line resetting the
FontName property is syntactically incorrect. Also, the logic may
fail because of no corresponding screen font for the printer font.

Modifying the example to address both problems requires an On Error
trap routine and saving the values of FontName, FontBold, and FontSize
explicitly. The following example works properly.

 'Fonts Property Example
 Sub Form_Click ()
 On Error GoTo errHandler
 Static x% ' A static variable.
 Static savename$, savebold%, savesize' <<< added this!!

 AutoRedraw = -1 ' Keep screen text.
 If x% = Printer.fontcount Then ' Check for last font.
 x% = 0 ' Set X%.
 FontName = savename$ ' <<<add this! Reset to default font.
 Fontsize = savesize ' and this
 Fontbold = savebold% ' and this
 Print ' Print blank line.
 End If
 If x% = 0 Then
 Print "Printer Fonts" ' Print header.
 savename$ = FontName ' save all these
 savebold% = Fontbold ' to original settings
 savesize = Fontsize ' now
 End If
 FontName = Printer.Fonts(x%) ' Set FontName.
 Print x%; "This is " + FontName + " font" ' Print message.

 ExitSub:
 x% = x% + 1 ' Set X%.

 Exit Sub

 errHandler:

 Print x%; "This is " + Printer.Fonts(x%) + " name"
 Resume ExitSub:

 End Sub

Additional reference words: 1.00 2.00
KBCategory:
KBSubcategory: RefsDoc

List of Visual Basic Companion Products and Services Available
Article ID: Q78962

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

A file is available that lists Visual Basic companion products and
services available as of March 15, 1992. This file can be found in the
Software/Data Library by searching on the word VBADDONS, the Q number
of this article, or S13242. VBADDONS was archived using the PKware
file-compression utility.

The VBADDONS file ("Visual Basic Companion Products and Services")
contains the following sections:

 - Custom controls and .DLLs
 - Data access/connectivity
 - Graphics utilities and clip-art
 - Publications and services
 - Trademarks
 - Where to send additions or corrections

Additional reference words: 1.00 third-party add-on
KBCategory:
KBSubcategory: RefsThird

LONG: Visual Basic Companion Products & Services (Complete)
Article ID: Q78963

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

This article lists Visual Basic companion products and services.

MORE INFORMATION
================

This list is organized into the following sections:

 - Custom Controls and .DLLs
 - Data Access
 - Report Writers
 - LAN\Host Connectivity and Communications
 - Pen\Multimedia
 - Visual Basic Libraries and Tools
 - Windows Programming Tools and Utilities
 - Help File authoring tools
 - Graphics Utilities and Clip-Art
 - Publications and Training

For the latest version of this list, please obtain "Component Objects and
Companion Products for Visual Basic," which is available from:

Fawcette Technical Publications
280 Second Street, Suite 200,
Los Altos, CA 94022-3603
415-917-7650
$7 per copy ($4 each for orders of 20 or more).

CUSTOM CONTROLS AND .DLLS
=========================
ADDE, 17, Rue Louise Michel, 92301 Levallois-Perret, France
Contact: Xavier Ledur +33-1-47-58-78-41
Map Custom Control -- a window in which one or more overlapped geographical
maps (cities, countries, networks) are displayed. Zooming and positioning
functions are integrated in the control. The control can load maps from
"Cartes et Bases Windows," an existing Microsoft Windows graphical
environment map package. Sample maps from ADDE catalog come with it.

Autodesk, Inc., 2320 Marinship Way, Sausalito, CA 94965
Contact: (415) 332-2344
Fax: (415) 331-8093
Autodesk Animation Player for Visual Basic -- dynamic link library that
provides Visual Basic users with easy to use animation functionality to add

to Windows applications. The control plays industry-standard FLI and FLC
animations from hard disks or CD-ROMs.

Crescent Software, Inc., 11 Bailey Ave, Ridgefield, CT 06877 USA
Contact: Don Malin (203) 438-5300
Fax: (203) 431-4626
QuickPak Professional for Windows -- contains custom controls and a general
purpose set of utilities for use with Microsoft Visual Basic programming
system. QuickPak Professional for Windows provides routines for quickly
sorting and searching data, performing fast file operations, expression
evaluation, and other useful tasks.

Desaware, 5 Town & Country Village #790, San Jose, CA 95128
Contact: Gabriel Appleman (213) 943-3305 or Dan Appleman (408) 377-4770
Fax: (408) 371-3530
CompuServe: Dan Appleman 70303,2252
Custom Control Factory -- an interactive development tool for creating
custom controls including Animated Pushbuttons, Multistate Buttons,
enhanced buttons, checkbox and option button controls for Windows
applications.
CCF-Cursors -- provides you with complete control over cursors (mouse
pointers) in Visual Basic applications. Create your own cursors or convert
icons to cursors, and much more. Includes over 50 cursors.
SpyWorks-VB -- is an advanced development tool for use with Visual Basic.
The SpyWorks-VB package supports true owner-draw list boxes, in which you
can draw each entry under program control in any manner that you wish.

FarPoint Technologies, Inc., 585A Southlake Boulevard,
Southport Office Park Richmond, VA 23236
Sales/Info: (800) 645-5913 or (804) 378-0432
Tech Support: (804) 378-1011
FAX: (804) 378-1015
Visual Architect for Visual Basic -- Custom controls and other tools for
creating advanced applications, including a complete spreadsheet control.

INSYS, 268 Rue du Faubourg Saint-Antoine, 75012 Paris, France
Contact: M. Quentin +33-1-40-04-6-36
Insys Classes -- a collection of Visual Basic custom controls for business
oriented computing and communications applications, including: structured
text fields (numeric, alphanumeric, masked input), hierarchical list boxes,
structured list boxes, date/time management controls with spin buttons,
CPIC control, and a simple spreadsheet control.

MicroHelp, Inc., 4359 Shallowford Industrial Parkway, Marietta, GA 30066
Contact: Mark Novisoff (404) 516-0899 or 1-800-922-3383
Fax: (404) 516-1099
VB Tools 2.0 -- designed to add "pizazz" to Visual Basic programs. It
includes over 30 custom controls such as a grid, MDI child windows, 256
color control, and icon tag: also information on how to use Windows API
services, ASM routines, utility modules, a program providing $INCLUDE
capabilities, and much more.
MicroHelp Muscle -- libraries to include in Visual Basic applications.

OutRider Systems, P.O. Box 271669, Houston, TX 77277-1669
Contact: Jim Nech (713) 521-0486
ButtonTool -- custom control that enables developers to create many new
button types and styles using bitmaps, icons, and metafiles as backgrounds.

Edit Tool -- custom control mask for a custom edit box that formats date,
time, dollar, and numerical data.

Pinnacle Publishing, P.O. Box 8099, Federal Way, WA 98003
Contact: David Johnson (800) 231-1293 or (206) 941-2300
Graphics Server for Visual Basic -- custom control for integrating graphing
and charting capabilities into Visual Basic applications. It includes pie
charts, bar charts and a variety of other graphs in 2D or 3D.

Sheridan Software Systems, Inc., 65 Maxess Road, Melville, NY 11747
Contact: Joseph Modica (516) 753-0985
Fax (516) 293-4155
BBS numbers: 2400 Baud: (516) 753-5452 9600 baud: (516) 753-6510
VB Extenders -- 3-D Widgets (Versions 1, 2, and 3) are collections of
custom controls that support three-dimensional text boxes and controls on
Visual Basic forms. It includes standard set of six, plus controls for more
advanced functionality such as list boxes and menu options.

Software Paths Ltd., Clonmel House, 17 Harcourt Street
Dublin 2, Ireland
Contact: 010 353 1 780039
Fax : 010 353 1 780142
Data Validation Control -- offers automatic data-validation for text,
integer, floating point, date, time and currency values. Text validation
uses regular expressions, allowing complex pattern matching to be provided
automatically. Time, date and currency validation use the international
settings from WIN.INI or may be specified by the programmer.

TeraTech, 3 Choke Cherry Road, Suite 360, Rockville, MD 20850
Contact: (301) 424-3903
Fax: (301) 762-8185
Dazzle/VB -- custom control that displays realistic images in Visual Basic
(256 color) with Dazzle's special effects (wipe, fade); or zoom or adjust
colors. Also available in a professional version with true grey scale
support, on the fly compression, color support, and palette control.
Creating Visual Basic Custom Controls and .DLLs -- programmers can create
Dynamic Link Libraries (DLLs) that are callable from Visual Basic using any
of the following language tools. The .DLL must use Pascal calling
conventions (the standard for Microsoft Windows). Custom controls are
created with the Control Development Kit.

 Microsoft C/C++ 7.0 Microsoft Macro Assembler 6.0
 Microsoft FORTRAN 5.1 Microsoft COBOL 4.5
 Microsoft Quick C for Windows Borland Turbo Pascal for Windows
 Borland C++ Watcom C
 Zortech C++

DATA ACCESS
===========
Aaerdeus, Inc., 302 College Avenue, Palo Alto, CA 94306
Contact: Randy Burns (415) 325-7529
SQL Express -- dynamic link library and set of sample programs that allow
Microsoft SQL Server to be used with Microsoft Visual Basic.

Abacus Accounting Systems Inc., P.O. Box 3835, Postal Station "D"
Edmonton, AB T5L 4K1 10335-172 Street, Suite 208, Edmonton,
AB T5S 1K9 Canada

Contact: Tom Dawson (403) 489-5994
Fax: (403) 486-4335
vxBase -- DLL that allows Visual Basic programmers to create xBASE
applications for Windows in hours. It's all in the functions: vxAppendBlank
through vxZap -- 86 functions in all. Browse object supports user-definable
tables, on-screen editing, and visual relationships. Available as shareware
on MSBASIC forum on CompuServe or directly from Comsoft.

Akros, Inc., 115 N. Center Street, Ste. 204, Northville, MI 48167
Contact: (313) 347-3556
Fax: (313) 347-3765
VBPX -- provides a seamless interface between Visual Basic and the Borland
Paradox Engine. Contains over 50 functions in a single DLL for single and
multi-user support, sample application (with source code) and is runtime
and royalty free. Provides cost-effective application development.

AJS, PO Box 83220, Los Angles, CA 90083
Contact: Jim Taylor (800) 992-3383 or (310)215-9145
Visual/db -- Visual Basic developers can access dBase-compatible data and
index files using the Visual/db Source Document Relational Database
Management System. This is a standalone, single user, DBMS engine that
includes VB source code for creating stand alone applications.

Apex Software Corporation, 4516 Henry Street, Suite 401
Pittsburgh, PA 15213
Tel. (412) 681-4343
Contact: Richard F. DiGiovani (818) 594-7293
Agility/VB -- a database developer's tool for Visual Basic based on Apex's
powerful Apex Database Library. It is provided as a set of DLL functions
callable from Visual Basic programs, which the programmer defines and
relates to each other using a graphical View Editor. Provides complete
access to dBASE IV compatible files.

Blue Rose Software, Box 29574 Atlanta, GA 30359-0574
Contact: Richard Denton (404) 717-1225
DATABasic -- a B-tree database engine for use with Visual Basic featuring
speed, flexibility, small libraries, ease of maintenance, and rapid
software development. It provides an integrated development environment.
DATABasic eliminates an entire class of programming bugs -- synchronization
bugs between code and databases. (Includes source code at no extra charge.)

Borland International, 1800 Green Hill Rd, Scotts Valley, CA 95067
Contact: 408-439-1639
Paradox Engine Version 2.0 -- includes DLL for developing Windows
applications. You can create, read, and write Paradox tables, records, and
fields. Supports multi-user database functions such as multi-user file
locking, record locking, and password protection. Applications created with
the Paradox engine ship run time and royalty free.

Channel Computing, Inc., 53 Main Street, Newmarket, NH 03857
Contact: Max Klein (603) 659-2832
Forest & Trees -- a Data Access and Reporting Tool that lets Visual Basic
system users build an "electronic dashboard" to collect, combine, and
automatically monitor information from a wide range of spreadsheets,
database files and database servers.

Copia International, 1342 Avalon Court, Wheaton, IL 60187

Contact: Dorothy Gaden (708) 682-8898
AccSys for Paradox -- with the Microsoft Visual Basic, it provides the
programmer with total control over Paradox table files, primary and
secondary index files. Developers can create, read, write, modify, and
update Paradox files without having to control the internal file format.

Coromandel, 70-15 Austin Street, Third Floor, Forest Hills, NY 11375
Contact: Narayan Laksham, Director of Marketing, (800) 535-
3267, (718) 793-7963
Fax (718) 973-9710
ObjecTrieve for Visual Basic -- an ISAM DLL for Microsoft Windows and
Visual Basic. It is capable of storing and retrieving binary large objects
(BLOBS) such as scanned images, video, documents, bitmaps, etc. It includes
Visual Basic declarations and sample code.
DbControls -- database custom controls for Visual Basic. Build database
applications without writing any code. Uses ObjecTrieve's database engine,
with support for binary large objects (BLOBS), multiple variable-length
fields in the same record, unlimited number of indexes, and non-contiguous
multi-key parts.
DbControls for dBASE -- dtabase custom controls for Visual Basic. Read and
write dBASE III files without writing any code. Create new dBASE files from
your Visual Basic Applications.
DbControls for Btrieve -- database custom controls for Visual Basic. Read
and write Btrieve files without writing any code.
Integra SQL -- complements and extends the Visual Basic system by providing
high-performance relational database functionality, including building,
querying, updating and reporting of facilities.

DatTel Communications Systems, Inc., 3508 Market Street, Suite 415
Philadelphia, PA 19104
Contact: Ravi Gururaj (215) 564-5577
DataLIB -- dynamic link library (DLL) that allows Visual Basic programmers
to read and write Excel, Lotus 1-2-3, dBASE, and DIF, SYLK and ASCII files.
Includes all Visual Basic declarations and sample application.

Daytris Inc., 81 Bright Street, Suite 1E, Jersey City, NJ 07302
Contact: Todd C. Fearn (201) 200-0018
CDB for Windows -- sophisticated database toolkit for Windows developers
offering multi-user ISAM functionality, relational and network data models,
client server implementations, portability to MS-DOS and UNIX platforms,
and royalty free distribution of object files.

ETN Corporation, RD4 Box 659, Montoursville, PA 17754-9433
Contact: Wynne Yoder (717) 435-2202
PowerLibW -- library (DLL) of over 90 functions and a DBMS server that
provides dBX-base compatible I/O that the Microsoft Visual Basic programmer
may access. Supports expressions, filters, indexes, memos, relations, and
multiple database access.
Top D.B.A. -- utility for creating and modifying files (and accessing data)
used in the program development/testing phase of Visual Basic application
production via compatible DDE capabilities.

Gupta Technologies, 1040 Marsh Road, Menlo Park, CA 94025
Contact: (415) 321-9500
SQLBase Server -- multi-user SQL database engine that supports crash
recovery, password protection, on-line backup, and remote monitoring. Gupta
has DLLs that provide access to the server from Visual Basic client apps.

MDBS, PO BOX 6089, Lafayette, IN 47903
Fax: (317) 448 6428
Contact: Gary Rush (317) 447-1122
MDBS VI -- ISAM engine for Windows that has a Visual Basic interface for
creating sophisticated, powerful, Windows database applications. Includes a
Visual Basic global module and documentation for using Visual Basic with
MDBS VI.

Microsoft Corporation, One Microsoft Way, Redmond, WA 98027
Contact: Microsoft Inside Sales (800) 227-4679
Microsoft Visual Basic Library for SQL Server -- write Visual Basic
applications for Microsoft SQL Server using this library.

Natural Language, Inc., 2910 Seventh Street, Berkeley, California 94710
Contact: Mark Foster, (510) 849-8244 Paul Ricci, VP
Marketing (510) 849-8217
Fax: (510) 841-3628
Natural Language -- dynamic link library (DLL) that translates English
queries into SQL. Allows Visual Basic programmers to provide their
users with English-language interfaces to SQL databases.

Novell, Inc., 5918 West Courtyard Drive, Austin, TX 78732
Contact: Mary K. Ellsworth (512) 794-1488
Btrieve for Windows Developer's Kit -- a complete toolkit that enables
Visual Basic developers to write applications with Btrieve, Novell's
key-indexed record manager.

Outrider Systems, Inc., P.O. Box 271669, Houston, TX 77277-1669
Contact: Jim Nech (713) 521-0486
vBaseTool -- database engine that supports xBase III compatible data,
index, and memo fields.

Pioneer Software, 5540 Centerview Drive, Suite 324
Raleigh, North Carolina 27608
Contact: Sales: (800) 876-3101 or (919) 859-2220 Richard
Holcomb, VP of marketing
Q+E Database Library -- collection of DLLs that support access to database
resident information from Visual Basic applications. API supports
development of low memory usage, high performance, database-independent
Visual Basic applications. Connect to SQL databases from Oracle, Sybase,
Ingres, SQL Server, Microsoft, and Novell. Connect to DB2. Connect to
Paradox, dBASE, Btrieve, Excel XLS and ASCII text files.
Q+E Database/VB -- custom controls for Visual Basic allow you to create
full-featured, multi-user database applications without writing any code.
dBASE-compatible format supports record locking. Pictures and bitmaps can
be stored directly in the database. Complete database creation and
maintenance utility included.

PowerFlex Corp, Victoria, Australia
Contact: (03) 882 7599
PFX C-Lib -- finely-crafted DLL that allows you to access the data in your
current POWERFlex or Dataflex file from Visual Basic.

Quadbase Systems, Inc., 790 Lucerne Drive, Suite 51, Sunnyvale, CA 94086
Fax: (408) 738-6980
Contact: Fred Luk (408) 738-6989

Quadbase-SQL for Windows -- a DLL (dynamic link library) that is a
full-featured, compact, and high performance relational database
engine for Visual Basic programmers to build single and/or multi-user
applications that require advanced database features and industry
standard SQL. The system can directly sccess dBase IV, Lotus 123,
Foxpro index, and Clipper index files.

Raima Corporation, 3245 146th Place S.E., Suite 230, Bellevue, WA 98007
Contact: (206) 747-5570
Marketing contact: Bill Pieser
db_VISTA III Database Management System -- combines both relational
and network model database technologies for high-performance Visual
Basic application development. API can be easily called from Visual
Basic for database application development. Sample application in
Visual Basic available upon request.

SQLSoft, 10635 N.E. 38th Place, Bldg. 24, Suite B, Kirkland, WA 98942
Contact: James O'Farrell (206) 822-1287
VBOAS Design Kit V1.0 (Visual Basic Object Access for SQL Server) --
provides production application developers with high level Visual
Basic object access to Microsoft/Sybase SQL Server. In just a few lines of
Visual Basic code, you can connect to SQL Server, load data into Visual
Basic objects and execute TransAct SQL statements. Extensive, on-line
Windows help documents the usage of SQLVB Design Kit V1.0.

Sequiter Software Inc., #209, 9644-54 Ave., Edmonton, AB, Canada T6E 5V1
Tel. (403) 437-2410, Fax (403) 436-2999,
Europe Tel. +33.20.24.20.14, Europe fax +33.20.24.20.90
Contact: Ben Krueger (403) 437-2410
CodeBase 4.5 -- complete multi-user, multi-platform library for database
management. Compatible with dBASE IV/III, Clipper, and FoxPro 2.0 data,
index and memo files. Includes a Windows DLL for Visual Basic and on-line
documentation with Visual Basic declarations and examples.

Software Source, 42808 Christy St. Ste 222, Fremont, CA 94538
Fax (415) 651-6039
Contact: Sam Cohen (415) 623-7854
VB/ISAM -- extends Visual Basic with a set of simple functions to read and
write data file records by alphanumeric key. Capabilities include field-
structured (Get and Put) or unstructured access, read next, previous, or
approximate record, variable-length records and keys, and very large
records (up to 32KB) and files (up to 512MB).

TechGnosis, Inc., One Park Place, 621 N.W. 53rd Street, Suite 340
Boca Raton, FL 33487
Contact: Keith Toleman (407) 997-6687
SequeLink -- client-server data access for Visual Basic system. Provides
access to OS/2, UNIX, VAX/VMS, and AS400 servers. Supported databases
include Oracle, Sybase, Ingres, SQL Server, DBM, RDB, and SQL 400.

Unelko Corporation, 7428 E. Caren Drive, Scottsdale, AZ 85260
Contact: Tony Pitman (602) 991-7272
Fax: (602) 483-7674
Bridgit -- dynamic link library that contains functions to allow full
access to dBase III files, indexes, and memos. Two versions will be
available: one for dBase III and the other for Clipper index files.

XDB Systems, 14700 Sweitzer Lane, Laurel, MD 20707
Contact: (800) 488-4948
Fax: (301)317-7701
XDB -- DLL gives serious SQL power in Windows. It provides 100% of IBM's
DB2 SQL on your PC. Provides advanced SQL functionality such as dynamic
SQL, cascading referential integrity, concurrency control, transaction
processing, backup, recovery, and data security. Also supports DDE.

REPORT WRITERS
==============
Crystal Services, 1050 West Pender Street, Ste 2200
Vancouver, B.C. V6E357
Contact: Greg Kerfoot 604-681-3425
Quick Reports For Windows -- a Windows report writer that can access data
from dBase, Paradox and Btrieve databases. The product is a WYSIWYG report
designer that allows user to pick fields from their databases and place
them on a report and print this report to a window or printer.

Zen Software, Inc., 72 Bart Road, Monroe, CT 05468
Contact: Harlan Cooper (203) 268-6015
Excel Reporter -- Windows-based report writer. Allows developers and end
users to produce reports, forms and mailing labels from the data stored
in database files. Can be used as a standalone or called from within a
Visual Basic program via DDE.

LAN/HOST CONNECTIVITY AND COMMUNICATIONS
==
Attachmate, 13231 S.E. 36th Street, Bellevue, WA 98006
Contact: Posy Gering or Mike New (800) 426-6283
Extra for Windows 3.2 -- gives Visual Basic developers access to IBM
mainframes. Programs can be written to automatically integrate mainframe
information with PC applications using DDE, DLL calls, and Visual Basic
custom controls.

CNA Computer Systems Engineering, Inc., P.O. Box 70248, Bellevue, WA 98007
Contact: John Evans (206) 861-4736
ConnX -- connectivity tool allowing record level communication between
Visual Basic applications and indexed or sequential VAX RMS files while
supporting user and file level security.

Crescent Software, Inc., 11 Bailey Ave, Ridgefield, CT 06877 USA
Contact: Don Malin (203) 438-5300 Fax: (203) 431-4626
PDQComm for Windows -- complete collection of routines that make it easy to
add communications capabilities to programs written in Visual Basic.

Digital Communications Associates, Inc., 1000 Alderman Drive
Alpharetta, GA 30202-4199
Contact: Margaret Owens (404) 442-4521
IRMA Workstation for Windows' (IWW) Standard IRMA Scripting Language and
the Crosstalk products' Crosstalk Application Scripting Language (CASL) --
enable developers to write scripts that transfer information to and from
mainframes or information services using Microsoft Visual Basic
applications through dynamic data exchange (DDE). Supports XModem and
ZModem transfer protocols.

Distinct Corporation, P.O. Box 3410, Saratoga, CA 95070-1410
Contact: Chris Apap-Bologna (408) 741-0781

Distinct TCP/IP Software Development Kit Berkeley Sockets, RPC/XDR and
NFS toolkit for the Microsoft Windows environment -- includes Visual Basic
declarations. Allows developers to write custom TCP/IP network applications
or distributed applications for Windows. Accessed using a DLL.

Dome Software Corporation, 655 West Carmel Drive, Suite 151
Carmel, IN 46032
Fax: 317-573-8109
Contact: Ken Jones (317) 573-8100
Parley -- client server product that provides access to VAX or mainframe
data. It provides a network independent communication layer that fully
integrates a Visual Basic application into a variety of corporate data
sources (SQL and non-SQL sources).

The Frustum Group, Inc., 122 East 42nd Street, Suite 1700
New York, NY 10168
Contact: Chris Davis (212) 984-0760 or (800) 548-5660
Fax: (212) 687-8119
TransPortal PRO -- data-exchange toolkit that integrates Visual Basic
applications with on-line host applications (3270, 5250, or VT100). DLL can
be used to read from, write to, and send keystrokes directly to host
application. Includes Visual Basic declarations.

FutureSoft, 1001 South Dairy Ashford, Suite 203, Houston, TX 77077
Contact: Teri Taylor (713) 496-9400
DynaComm -- with each DynaComm product, Visual Basic system users will be
able to visually link their applications to DynaComm using DynaComm custom
controls. Planned to support IBM, HP, NEC, and Data General mainframes.

Groupe Bull, 7, Rue Ampere, 91343 Massy, France
Phone: +33-1-69-93-90-90
Affinity-Visual -- fully integrates the Microsoft Visual Basic system
with Bull's Affinity product. Affinity-Visual provides full Windows
graphical display services to existing host applications throughout
Bull environments.

JSB Corporation, 108 Wispering Pines Drive, Suite 115
Scotts Valley, CA 95066
Contact: (408) 438-8300
Fax: (408) 438-8360
JSB MutiView Desktop PC to Unix integration product -- supports DDE links
between Visual Basic and existing remote UNIX applications. Additionally,
it provides custom controls that provide communications links to UNIX
applications to allow Visual Basic programs to be clients of UNIX systems.

Microcom Inc., 55 Federal Road, Danbury, CT 06810
Contact: (800) 822-8224 or Howard Luxenberg (203) 730-4378
MicroCourier -- complete communication package for Windows for under $100.
Includes sample applications written in Visual Basic with full source code.

MicroHelp, Inc., 4359 Shallowford Industrial Parkway, Marietta, GA 30066
Contact: Mark Novisoff (404) 516-0899 or 1-800-922-3383
Fax: (404) 516-1099
MicroHelp Communications Library -- communications routines for Visual
Basic invoked exactly like SubPrograms and Functions, including automatic
file transfer routines using XModem, XModem CRC, YModem, YModem-Batch,
ZModem, CompuServe B, and ASCII transfers.

MicroHelp Network Library -- access to network interface routines. Supports
Novell, Lantastic, and NETBios compatible networks.

Microsoft Corporation, One Microsoft Way, Redmond, WA 98027
Contact: Microsoft Inside Sales (800) 227-4679
Microsoft LAN Manager Toolkit for Visual Basic -- tools to customize a LAN
Manager-based network using Microsoft Visual Basic. Includes a graphing
facility for displaying performance information and other system stats.
Sample utilities for common network management and diagnostic applications.

NetManage, Inc., 20823 Stevens Creek Blvd., Suite 100, Cupertino, CA 95014
Contact: Sales Dept. (408) 973-7171 Dan Geisler
Chameleon TCP/IP for Windows -- TCP/IP application package for Windows.
Includes TELNET, FTP, TFTP, SMTP/mail, name services, PING, network
management and diagnostics. Implemented as a Windows DLL callable from
Visual Basic applications as both client and server.
RPC-SDK: ONC Development Tools -- software development kit for building
distributed applications in Windows using Sun ONC RPC/XDR. Windows DLL
callable from Visual Basic applications as RPC client and server.
NEWT/SDK -- software development kit for Windows 3.0 TCP/IP communications
protocol. Offers the Visual Basic programmer direct access to the Berkeley
4.3BSD socket interface, FTP and SMTP.

Rochester Software Connection, 4909 Highway 52 North, Rochester, MN 55901
Contact: John Freund, Vice President of Sales & Marketing,
(507) 288-5922, (800) 829-3555
ShowCase WindowLink -- DLL allows you to link Visual Basic applications to
IBM AS/400 systems. Includes Visual Basic declarations and sample code.

Symbiotics, 725 Concord Ave, Cambridge, MA 02138
Contact: (800) 989-9174
NetWorks!Connect -- allows you to write programs that talk to each other
over a network using the language functions and commands you already know.
Fully compatible with Novell NetWare LAN Manger, and Banyan Vines. Also
Sun and HP UNIX platforms.

TechGnosis, Inc., One Park Place, 621 N.W. 53rd Street, Suite 340
Boca Raton, FL 33487
Contact: Keith Toleman (407) 997-6687
SequeLink Engine -- software development toolkit enabling workstation
access to host-based data and applications. Extends the functionality of
the company's SequeLink client/server architecture by enabling host
operating systems, applications, and non-relational DBMSs to act as
servers for Windows applications.

Wall Data Incorporated, 17769 N.E. 78th Place, Redmond, WA 98052
Contact: Catherine Rudolph (Marketing Communications) (800)48-RUMBA
Fax: (206) 885-9250
Rumba Application Development Kit -- complete development environment
enables Visual Basic developers to change how users interact with PC and
host applications. Includes advanced tools for creating connectivity links.
Rumba Tools for DDE and Rumba Tools for EHLLAPI -- enables advanced users
to create simplified and transparent connectivity links between PCs and
host computers. Rumba Tools for DDE allows Visual Basic applications to
exchange data continuously with Rumba using DDE. Also allows Visual Basic
applications to exchange data with Rumba using EHLLAPI.

PEN/MULIMEDIA
=============
New Media Graphics Corporation, 780 Boston Road, Billerica, MA 01821-0666
Contact: (800) 288-2207
Fax: (508) 663-6678
SuperVideo Windows -- a full line of video, framegrabbing, and compression
boards for desktop multimedia applications on PC and MCA computers using a
custom control. Display, capture, or compress full motion, true color video
in any Windows 3.x application.

StylusTech Inc., Suite 300, Building 600, One Kendall Square
Boston, MA 02139
Contact: (617) 277-7007
Fax: (617) 277-8907
Pen InputMaster -- first of a series of pencentric extensions to Visual
Basic. A multi-featured, combination custom control that supports three
methods of data input: entry field, entry field with character guides, and
pick list.

VISUAL BASIC LIBRARIES AND TOOLS
================================
Crescent Software, Inc., 11 Bailey Ave, Ridgefield, CT 06877 USA
Contact: Don Malin (203) 438-5300 Fax: (203) 431-4626
QuickPak Professional for Windows -- custom controls and a general purpose
set of utilities for use with Visual Basic programming system. QuickPak
Professional for Windows provides routines for quickly sorting and
searching data, performing fast file operations, expression evaluation,
and other useful tasks.

EMS Professional Shareware, 4505 Buckhurst Ct., Olney, MD 20832
Contact: (301) 924-3594 Fax (301) 963-2708
Public Domain Files -- file collection of public domain and shareware file
collections for Visual Basic programmers. Over 300 applications written in
Visual Basic and utilities.

Hewlett-Packard Company, 19310 Pruneridge Ave., M/S 49AW
Cupertino, CA 95014
Contact: Inquiry Manager (800) 452-4844
HP 82335B HP-IB for Windows and MS-DOS -- dynamic link library (DLL) and
language interface for creating HP-IP (IEEE 488) instrument control
programs for the most popular industry standard test equipment using Visual
Basic. The HP-IB interface card is included.

Kofax Image Products, 3 Jenner Street, Irvine, CA 92718
Fax: (714) 727-3144
Contact: Emily Backus (714) 727-1733
Kofax Image Processing Platform (KIPP) -- application-development software
and controller boards, compatible with the Visual Basic system, that serve
as the foundation for creating PC-based document image processing
applications and systems.

MicroHelp, Inc., 4636 Huntridge Drive, Roswell, GA 30075-2012
Contact: Mark Novisoff (404) 516-0899 or 1-800-922-3383
MicroHelp Muscle -- library for the professional programmer that includes
hundreds of assembly language routines and several high-level Visual Basic
routines.
VBXRef -- a comprehensive cross reference utility for Visual Basic

applications, including reference trees for procedures and variables.

National Instruments, 6504 Bridge Point Parkway, Austin, TX 78730-5039
Contact: Tim Dehne or Holly Matheny (512) 794-0100
NI-488.2 Windows Interface for Visual Basic -- links a Visual Basic
application to the NI-488.2 Windows GPIB driver software. System boards for
the IEEE 488 interface available as well. Products connect Visual Basic
with thousands of industry-standard programmable instruments.
NI-DAQ for Windows -- NI-DAQ Windows Interface for Visual Basic
applications using National Instruments' plug-in data acquisition boards.
DLL with high-level data acquisition functions for developing data
acquisition applications in Visual Basic.

Pinnacle Publishing, P.O. Box 8099, Federal Way, WA 98003
Contact: David Johnson (800) 231-1293 or (206) 941-2300
Graphics Server for Visual Basic -- custom control for integrating graphing
and charting capabilities into Visual Basic applications. Includes pie
charts, bar charts and a variety of other graphs in 2D or 3D.

Scientific Software Tools, Inc., 30 East Swedesford Road
Malvern, PA 19355
Contact: Elise Furman (215) 889-1454, Fax (215) 889-1630
DriverLINX\VB -- high-performance data-acquisition engine for developing
custom applications using Microsoft Visual Basic. Quickly create
sophisticated virtual instruments that you could only dream of in MS-DOS,
in just days, using DriverLINX\VB. DriverLINX takes the form of a custom
control that is added to the Toolbox of built-in Visual Basic controls.

Sheridan Software Systems, Inc., 65 Maxess Road, Melville, NY 11747
Contact: Joseph Modica (516) 753-0985, fax (516) 293-4155
BBS numbers: 2400 Baud: (516) 753-5452 9600 baud: (516) 753-6510
VB Assist -- Help utility that works alongside Visual Basic to speed
application development with utilities to set properties and much more.
Visual Basic 3.0 requires VBAssist version 2.0c or later.

TeraTech, 3 Choke Cherry Road, Suite 360, Rockville, MD 20850
Contact: (301) 424-3903
Fax: (301) 762-8185
ProMath/VB -- many mathematical, scientific, and statistical functions.
From integration to Bessel Functions to Curtosis and Skew. Complex numbers
and FFT are all supported.

The Young Software Works, PO Box 185 Cooper Station, New York, NY 10276
Contact: (212) 982-4127
FAX: (212) 673-1715
VB Project Archiver -- project management utility for Visual Basic
programmers. Provides project archiving capabilities using PKZip, LHARC, or
other compression utilities. Can determine which code and form modules are
active in a Visual Basic app for use as a simple version control system.

Ward Systems Group, Inc., 245 W. Patrick Street, Frederick, MD 21701
Contact: Marge Sherald (301) 662-7950
NeuroWindows -- a neural network programming tool, designed to work with
Microsoft Visual Basic. It builds powerful neural network applications that
perform a wide variety of pattern recognition and prediction tasks.

WINDOWS PROGRAMMING TOOLS AND UTILITIES

=======================================
Artisoft, 6920 Koll Center Parkway, Suite 209, Pleasanton, California 94566
Contact: (415) 426-5355 Corporate accounts national sales
manager: Brion Miller
Wired for Sound -- DLL that can add sound capabilities to any Visual Basic
form. Plays sound through PC speaker or sound boards. Includes API_SPEC.TXT
file with code examples for Visual Basic programmers.

Black Ice Software, Inc., Crane Road, Somers, NY 10589
Contact: (914) 277-7006 Laurie Welchoff; Jozef Nemeth, President
Fax: (914) 276-8418
TIFF SDK for Windows -- DLL that allows you to add TIFF 5.0 support to
Visual Basic applications without learning the complexity of the Tagged
Image File Format.

DemoSource, 8646 Corbin Avenue, Northridge CA, 91324-4130
Contact: Brian L. Berman (800) 888-8063 Fax (818) 772-2877
DemoSource -- a QuickLine voice library and VFEdit professional sound
editor compatible with Visual Basic. It enables PCs to dispense prerecorded
voice messages through standard touch-tone telephones for interactive mail
order catalogs and automated outbound dialing systems for sales and
telemarketing.

First Byte, 19840 Pioneer Avenue, Torrance, CA 90503
Contact: Michael Belanger (310) 793-0600 x 212 Sales rep/tech support
Monologue for Windows -- a DLL to make Visual Basic applications talk. It
is a text-to-speech utility that converts text into speech, to PC speaker
or sound board.

RealSound Inc., 4910 Amelia Earhart Drive, Salt Lake City, UT 84116
Fax (801) 359-2968
Contact: Janson Tanner (801) 359-2900
RealSound for Windows -- a DLL for Windows providing an exciting
enhancement to Visual Basic in hardware-quality digitized sound.

Silicon Valley Products, Corp., 8 Paquatuck Avenue
East Moriches, NY 11940-0564
Contact: Paul Norris (516) 878-6438
QuickLine -- dynamic link library for use with Visual Basic to control
TTI's telephone interface board for recording or playing messages,
decoding telephone touch tones, and placement of calls.

The Stirling Group, 172 Old Mill Road, Schaumberg, IL 60193
Contact: Viresh Bhatia, Managing Partner (708) 307-9197,
(800) 3-SHIELD (800-374-4353)
Fax: (708) 307-9340
TbxSHIELD -- a dynamic link library that allows you to create toolbox
controls to include in your applications. Controls can be of any size,
shape, or style. It can be created quickly and easily and includes Visual
Basic declarations and sample application.

VideoLogic, 245 First Street, Cambridge, MA 02142
Contact: Karyn Scott (617) 494-0530
DVA-4000/ISA -- digital video adapter that allows Visual Basic users to
seamlessly integrate full-motion video with standard graphics and text in
the Windows environment.

HELP FILE AUTHORING TOOLS
=========================
Blue Sky Software Corp., 7486 La Jolla Blvd. Ste 3, La Jolla, CA 92037
Contact: (619) 459-6365, (800) 677-4WIN
RoboHelp -- An automatic authoring tool that makes the process of creating
a Windows Help System just a matter of pointing and clicking. The user just
fills in the actual help text when prompted. Features a customized tool
palette. Generates source code for context sensitive help, hypertext link,
cross reference.

Software Interphase, Inc., 82 Cucumber Hill Road, Foster, RI 02825
Contact: 800-542-2742
Windows Help Magician -- create Windows Help files in a single integrated
environment. Uses advanced functions, and hotkeys. Allows you to test a
file instantly. Edit, test, write RTF file, compile and call WINHELP.EXE
in the same environment.

WexTech Systems, Inc., 310 Madison Avenue, Ste 905, New York, NY 10017
Contact: Steve Wexler (212) 949-9595
Fax: (212) 949-4007
Doc-to-Help -- Word for Windows 2.0 utility that allows you to create
professional-quality documentation and automatically convert that
documentation into Windows context-sensitive online help for your Visual
Basic application. Includes the Microsoft Windows Help Compiler.

GRAPHICS UTILITIES AND CLIP-ART
===============================
Data Techniques, 1000 Business Center Drive Suite 120, Savannah, GA 31405
Contact: (912) 651-8003
Image Man/VB -- object oriented Windows custom control that adds advanced
image display and print capabilities to applications. Supports TIFF, PCX,
GIF, EPSF, WMF, and BMP formats in 24 bit color.

Dynalink Technologies, P.O. Box 593, Beaconsfield, Quebec, Canada H9W 5V3
Contact: (800) 522-4624 Peter Krenjevich, (514) 489-3007
Clip'nSave 2.0 for Windows -- sreen capture and image conversion program.
It can capture any part of a screen to include in a Visual Basic program or
print. Reads and writes mono, gray, and color BMP, DIB, TIF, PCX, GIF, and
EPS files.

Eikon Systems Inc., 989 East Hillside Blvd, Suite 260
Foster City, CA 94404
Sales: (800) 727-2793
Contact: Jeff Galvin (415) 349-4664
Scrapbook+ -- a Windows utility for managing Clipboard images, bitmaps,
clip art, and other graphics. "Camera" tool allows you to create bitmap
images of any portion of a screen. Can convert graphics between TIF, PCX,
BMP, and MSP formats.

MicroCal, Inc., 22 Industrial Dr. E., Northampton, MA 01060
Contact: (800) 969-7720.
Origin -- powerful scientific and technical graphics software for Windows.
Supports DDE for plotting data from Visual Basic applications.

TechSmith Corporation, 1745 Hamilton Road, Suite 300, Okemos, MI 48864
Contact: (517) 347-0800
SnagIt -- screen capture utility for Windows. DDE support allows you to

add screen capture capability to Visual Basic applications.
DDE Watch -- monitoring and debugging tool for dynamic data exchange.

PUBLICATIONS AND TRAINING
=========================
Addison-Wesley Publishing Company, Inc., 1 Jacob Way, Reading, MA 01867
Orders: (800) 447-2226 or (617) 944-3700 or fax (617) 942-1117
Contact: (617) 944-3700 Editor: Julie Stillman x2773, (&
Claire Horne), Marketing: Ann Lane x2278
Using Visual Basic by William Murray and Chris Pappas -- a hands-on guide
to learning, using and mastering Visual Basic. The book emphasizes how to
design screens and place controls within Visual Basic. The authors lead
readers through a series of applications that will serve as templates for
applications. Includes disk.
Advanced Visual Basic by Mark Burgess -- due Summer, 1992.

Bantam Computer Books, 666 Fifth Avenue, New York, NY 10103
Contact: Jono Hardjowirogo (212) 492-9826
Visual Basic Programming with Windows Applications by Douglas Hergert --
a book oriented toward programmers with Basic experience interested in
developing business solutions.

Brady (Prentice Hall, owned by S & S), Simon and Shuster, Inc.
15 Columbus Circle, New York, NY 10023
Sales: (800) 223-2348
Contact: Gene Smith (503) 639-9822
Visual Basic by Steven Holzner and The Peter Norton Computing Group -- a
complete introduction to Visual Basic.

The Cobb Group, 9420 Bunsen Parkway, Suite 300, Louisville, KY 40220
Sales: (800) 223-8720
Contact: Melissa Haeberlin (502) 491-1900
Inside Visual Basic -- a 16-page monthly journal providing tips and
techniques for using the Visual Basic programming system.

Cooper Software Inc., 3523 A Haven Avenue, Menlow Park, CA 94025-9986
Fax: (415) 364-0593
Contact: Alan Cooper (415) 364-9150
QRC -- Quick reference card for Microsoft Windows 3.0. Quick reference to
all 597 Windows API calls.

ETN Corporation, RD4 Box 659, Montoursville, PA 17754-9433
Contact: (Technical Information): (717) 435-2202 Sales:
(800) 326-9273
Fax: (717) 435-2802
VB= mc^2: The Art of Visual Basic Programming by J.D. Evans -- a book
about advanced Visual Basic programming and Windows application design. It
includes a companion disk and extensive code samples and approaches Visual
Basic from a different angle. Order directly from ETN.

Fawcette Technical Publishing, 299 California Ave, Suite 120
Palo Alto, CA 94306-1912
Contact: Jim Fawcette (415) 688-1808 Fax (415) 688-1812
Basic Pro -- a bimonthly periodical for Basic professionals covering both
text-mode and Windows Basic development issues. Provides advertising space
for developers of Basic language products and add-on products, in addition
to regular letters to the editor, guest columnist, product review, and

upcoming industry event sections.

Microsoft Press, One Microsoft Way, Redmond, WA 98052-6399
Contact: Craig Johnson (206) 936-3895
The Microsoft Visual Basic Workshop -- a book and software package that is
a one-stop source of imaginative and useful Visual Basic forms and
subprograms to use in Microsoft Windows applications.
Microsoft Windows Multimedia -- Programmer's reference for creating Windows
applications that access multimedia functionality.

Microsoft University, 10700 Northrup Way, Bellevue, WA 98004-1447
(206) 828-1507
Microsoft University Visual Basic -- Advanced Topics course, a 3-day course
covering concepts needed to write sophisticated event-driven, graphical
programs and design applications that integrate with DDE and Windows DLLs.

Osborne/McGraw Hill, 2600 10th Street, Berkeley, CA 94710
Sales: (510) 549-6614
Contact: Jeff Pepper (415) 549-6638
Visual Basic Inside and Out By Gary Cornell -- a complete review of the
Visual Basic programming system for Windows.

Programmer's Warehouse, 8283 N. Hayden Road, Suite 195
Scottsdale, Arizona 85258
Contact: 800) 323-1809 or (602) 443-0580
Fax: (602) 443-0659
A full-service mail-order reseller for Visual Basic and all related
companion products.

Que (Prentice Hall, owned by S & S), 11711 North College Avenue
Carmel, IN 46032
Tel. (800) 428-5331 (317) 573-2500
Using Visual Basic by Roger Jennings -- a book for beginning and
intermediate programmers who want to write Visual Basic applications.
Includes advanced features such as DDE, as well as a complete keyword
reference section. Ships in April, 1992.
Visual Basic By Example by D.F. Scott -- beginning level overview with
many programming examples. Ships in April, 1992.
Visual Basic Programmer's Reference -- Currently on hold.

Sams (Prentice Hall, owned by S & S), 11711 North College Avenue
Carmel, IN 46032
Tel. (800) 628-7360
First Book of Visual Basic by Orvis -- a structured tutorial for the
novice computer user covering the Visual Basic language and modern
programming practice.

Tab/McGraw Hill, 13311 Monteray Lane, Blue Ridge Summit, PA 17294
Tel: 717-794-2191 or 800-822-8138 (for orders)
Visual Basic: Easy Windows Programming by Namir Shammas -- a hands-on
introduction to developing VB applications. Organized in a workbook format,
each chapter teaches a specific task such as constructing interfaces,
testing and debugging code, and producing executable files. Includes more
than 50 ready to use programming examples. Ships in February, 1992.
Visual Basic Power Programming by Namir Shammas -- a book designed to go
beyond the fundamentals of developing with Visual Basic. It provides a
programmer's toolbox complete with routines for file management, text and

graphics manipulation, scientific plotting, and more. The package includes
many reusable programs, modules, and forms. Ships in April, 1992.

Waite Group Press, 100 Shoreline Highway, Suite A-285
Mill Valley, CA 94941
Contact: (415) 331-0575
Visual Basic How-To by Robert Arnson, Dan Rosen, Mitchell Waite, and
Jonathan Zuck -- a book and disk package that contains hundreds of Visual
Basic solutions from how to make an interface to how to use the Windows API
functions.
Visual Basic Super Bible by Bryan Scott, Taylor Maxwell -- explains each
command, keyword, property, object and procedure of Visual Basic. 900
pages. All examples on disk. Ships April, 1992.

Windows Tech Journal, Oakley Publishing Company, PO Box 70167
Eugene, OR 97401-0110
Contact: J.D. Hildebrand (503) 747-0800 Fax: (503) 746-0071
Windows Tech Journal -- the monthly magazine of tools and techniques for
Windows programmers. Annual subscription (12 issues) is $29.95.

Microsoft expressly disclaims responsibility for, and makes no warranty,
express or implied, with respect to the accuracy of the content of this
document and the performance or reliability of products listed herein
which are produced by vendors independent of Microsoft. Please send
any additions or corrections to this list to:

Michael Risse
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052-6399
Tel. (206) 882-8080
Fax (206) 93-MS-FAX (206-936-7329)

Additional reference words:
KBCategory: Refs
KBSubcategory: RefsThird

Cobb Group's "Inside Visual Basic" Journal Article Titles
Article ID: Q83351

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 2.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

"Inside Visual Basic" is a monthly magazine published by The Cobb
Group, Inc. The following article titles are reprinted with permission
from the Cobb Group's "Inside Visual Basic" (c) January and February 1992
issues.

For more information, contact the Cobb Group at the following address
and phone number:

 The Cobb Group, Inc.
 9420 Bunsen Parkway
 Suite 300
 Louisville, KY 40220
 (800) 223-8720

January 1992 Issue Contents

"Creating a new control -- The combo dropdown list box"
"Wither Basic data-type codes"
"Keeping users informed with minimized icons"
"Speeding up list box clearing"
"Managing data in multiple database formats with QELIB"
"Displaying your forms faster"
"Simplify debugging and maintenance with a good naming convention"
"Creating smaller VB EXEs"
"Stop draggin' that text around"
"Soup to nuts software"

February 1992 Issue Contents

"Creating your own VB help system"
"VB classes available"
"VB books available"
"Where'd those !@#$%^ characters go?"
"Help is just a button away"
"Adding hot keys to your programs"
"Anyone need a sort?"
"Keeping your perspectives when resizing forms"
"Source code listings"

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: RefsPSS RefsThird

Visual Basic 3.0 Support Service Questions & Answers
Article ID: Q92552

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic
 programming system for Windows, version 3.0

1. Q. Where can I get information on Microsoft's no-charge startup
 and installation support services for Visual Basic version 3.0
 for Windows?

 A. The telephone number to call for no-charge technical support for
 Microsoft Visual Basic version 3.0 for Windows is (206)646-5105.
 Your telephone company will bill you for long-distance charges
 only. This service provides support for setup and installation
 questions only and is available 6:00 A.M. to 6:00 P.M. Pacific
 time, Monday through Friday.

2. Q. Where can I get information on fee-based technical support and
 programming assistance for Microsoft Visual Basic version 3.0
 for Windows?

 A. Microsoft OnCall is a fee-based service that provides technical
 support and programming assistance. The rate for this service is
 $2 per minute. The telephone number is (900)896-9876. Your
 telephone company will bill you for this service.

 If you are blocked from dialing the 900 number, you can call
 (206)646-5106. A $20 fee will be charged to your credit card
 for each call. Mastercard, Visa, and American Express cards
 are accepted.

 Microsoft offers additional comprehensive, fee-based technical
 support options. For more information about these options,
 please call Microsoft OnLine Sales at (800)443-4672.

3. Q. Where can I get information about support for Microsoft Visual
 Basic for Windows available on the CompuServe electronic
 information service?

 A. Microsoft technical support and programming assistance from
 other Visual Basic developers is available in the MSBASIC forum
 on CompuServe. Through the MSDN forum on CompuServe, you can also
 gain access to the Microsoft Knowledge Base, which contains
 descriptions of known problems and answers to many frequently
 asked questions. For more information, please call CompuServe at
 (800)848-8990 and ask for the CompuServe Information Manager
 software disk. The software disk provides you with an option that
 enables you to set up your own CompuServe account.

4. Q. Where can I get information about support for the Control
 Development Kit provided with the professional edition of
 Visual Basic for Windows?

 A. Support for the Microsoft Control Development Kit is currently
 provided only through CompuServe in the MSBASIC forum in section
 16 or through service requests in Microsoft OnLine support
 services. For more information about CompuServe, please call
 CompuServe at (800)848-8990. For more information about the
 Microsoft OnLine support services, please call (800)443-4672.

5. Q. Where can I get information about support for the Crystal
 Reports Custom Control and associated features in Microsoft
 Visual Basic version 3.0 for Windows?

 A. Support for the Crystal Reports Custom Control is provide solely
 by Crystal, a company separate from Microsoft. There is a detailed
 listing of all support options available to you from Crystal in
 the last 2 pages of the "Microsoft Visual Basic version 3.0
 Professional Features Book 2" manual.

6. Q. What is the Microsoft Download Service? how do I access it?

 A. Microsoft Download Service (MSDL) is a Bulletin Board system (BBS)
 that can be accessed by any user with a computer and a modem. The
 MSDL contains application notes, drivers, and other support
 files from Microsoft. MSDL supports 1200, 2400, and 9600 baud (V.32
 and V.42) with 8 data bits, 1 stop bit, and no parity. The
 supported protocols are Xmodem, Xmodem-1K, Ymodem (batch),
 Kermit, Super Kermit (Sliding Windows), and Zmodem. To connect
 to MSDL, call (206)936-6735 and follow the instructions.

7. Q. What is the Microsoft Developer Network? How do I get it?

 A. The Microsoft Developer Network (MSDN) is a newsletter and CD
 available together or separately. The newsletter is published every
 other month and the CD is published quarterly. Both the newsletter
 and the CD contain technical information for all developers who write
 applications using Microsoft operating systems or development tools.
 The CD contains code samples, technical articles, development tools,
 and the Microsoft Knowledge Base. For more information, please call
 (800)227-4679, or call (800)759-5474 to join.

8. Q. Where can I place an order or get upgrade and pricing information
 about Microsoft Visual Basic version 3.0 for Windows?

 A. For information regarding product updates, prices, and sales, please
 call Microsoft Customer Service at (800)426-9400. Note that no
 technical support is provided on this line.

Additional reference words: 3.00 ivrfax fasttips
KBCategory:
KBSubcategory: RefsProd

Name Property Cannot Be Set When Using Implicit Property
Article ID: Q93214

The information in this article applies to:

 - Microsoft Visual Basic for Windows, version 2.0

SUMMARY
=======

On Page 126 of the Visual Basic Programmer's Guide, it incorrectly states
that all controls have an implicit property you can use for storing or
retrieving values. Some controls supplied with the Professional Edition of
Visual Basic for Windows use the Name property as their implicit property,
which you cannot use at run-time.

MORE INFORMATION
================

The following controls from the Visual Basic Professional Edition use the
Name property as their implicit property:

 Common dialog
 MAPI session
 MAPI message
 Spin button

Attempting to access the implicit property of these controls results in one
of the following errors:

 'Name' property cannot be read at run time
 'Name' property cannot be set at run time

You access the implicit property of a control (also known as the "value of
a control" or the "default value of a control") by writing the control name
with no property. For example, with a text box named Text1, you can write
the following statement to assign a value to the Text property:

 Text1 = "hello world"

The following list shows the implicit properties for all the controls in
both the Standard and Professional Editions:

Standard Control Implicit Property

Check box Value
Combo box Text
Command button Value
Directory list box Path
Drive list box Drive
File list box FileName
Frame Caption
Grid Text
Image Picture

Label Caption
Line Visible
List box Text
Menu Enabled
OLE client Action
Option button Value
Picture box Picture
Scroll bar vertical Value
Scroll bar horizontal Value
Shape Shape
Text box Text
Timer Enabled

Professional Control Implicit Property

3D check box Value
3D command button Value
3D frame Caption
3D group push button Value
3D option button Value
3D panel Caption
Animated button Value
Common dialog Name (not usable)
Communications Input
Gauge Value
Graph QuickData
Key status Value
MAPI session Name (not usable)
MAPI message Name (not usable)
Masked edit Text
Multimedia MCI Command
Pen BEdit Text
Pen HEdit Text
Pen ink on bitmap Picture
Pen on-screen keyboard Visible
Picture clip Picture
Spin button Name (not usable)

Additional reference words: 2.00 docerr
KBCategory:
KBSubcategory: RefsDoc PrgCtrlsStd PrgCtrlsCus

Visual Basic MCI Control TimeFormat Property Information
Article ID: Q94012

The information in this article applies to:

 - The Microsoft Professional Toolkit for Microsoft Visual Basic
 programming system for Windows, version 1.0
 - The Professional Edition of Microsoft Visual Basic for Windows,
 version 2.0

SUMMARY
=======

The Multimedia Device Control (MCI.VBX) TimeFormat property does not
support all format settings with all device types. When you assign a value
to TimeFormat that is not supported by the device, the TimeFormat retains
its previous setting.

This article also describes MCI_FORMAT_MSF (2) and shows how to separate
the 4 bytes of a time value.

MORE INFORMATION
================

To determine if the current device supports a particular TimeFormat
setting, assign the value to TimeFormat. Then check TimeFormat to see if it
returns the value assigned. For example:

 For i = 0 To 10
 MMControl1.TimeFormat = i
 If MMControl1.TimeFormat = i Then
 MsgBox Format$(i) + " supported"
 Else
 MsgBox Format$(i) + " not supported"
 End If
 Next

Some of the time formats, such as MCI_FORMAT_TMSF, provide four separate
byte size numbers packed into one four byte long integer. The following
sample statements show how you can extract the four bytes into separate
variables:

 byte1 = MMControl1.Position And &HFF&
 byte2 = (MMControl1.Position And &HFF00&) \ &H100
 byte3 = (MMControl1.Position And &HFF0000) \ &H10000
 byte4 = (MMControl1.Position And &H7F000000) \ &H1000000
 If (MMControl1.Position And &H80000000) <> 0 Then
 ' put sign bit back into byte4
 byte4 = byte4 + &H80
 End If

The least significant byte is stored in byte1 and the most significant byte
is stored in byte4.

The following list shows all possible settings for TimeFormat:

 0 MCI_FORMAT_MILLISECONDS
 1 MCI_FORMAT_HMS
 2 MCI_FORMAT_MSF
 3 MCI_FORMAT_FRAMES
 4 MCI_FORMAT_SMPTE_24
 5 MCI_FORMAT_SMPTE_25
 6 MCI_FORMAT_SMPTE_30
 7 MCI_FORMAT_SMPTE_30DROP
 8 MCI_FORMAT_BYTES
 9 MCI_FORMAT_SAMPLES
 10 MCI_FORMAT_TMSF

The TimeFormat setting MCI_FORMAT_MSF is described in the README.TXT file
but is missing from the "Microsoft Visual Basic Professional Features
Custom Control Reference" for version 2.0. The following description of
MCI_FORMAT_MSF appears in the README.TXT file:

2 MCI_FORMAT_MSF Minutes, seconds, and frames are packed into a
 four-byte integer. From least significant byte to
 most significant byte, the individual data values
 follow:

 Minutes (least significant byte)
 Seconds
 Frames
 Unused (most significant byte)

The TimeFormat property affects the following properties.

 Position
 From
 To
 Start
 Length
 TrackLength
 TrackPosition

Microsoft has confirmed that this information should be included in the
"Microsoft Visual Basic Professional Features Custom Control Reference"
for version 2.0. We will post new information here when the documentation
has been updated with this additional information.

Additional reference words: 1.00 2.00 docerr
KBCategory:
KBSubcategory: RefsDoc

Corrections for Errors in Visual Basic Version 2.0 Manuals
Article ID: Q94373

The information in this article applies to:

- The Standard and Professional Editions of Microsoft Visual Basic
 programming system for Windows, version 2.0

SUMMARY
=======

Below are corrections for documentation errors in the manuals shipped
with Microsoft Visual Basic for Windows Standard Edition and
Professional Edition version 2.0.

This master list of corrections includes and adds to the corrections
already found in the README.TXT file shipped with Visual Basic 2.0.
Please use the article below as your master list for making
corrections to the Visual Basic 2.0 manuals.

MORE INFORMATION
================

Microsoft Visual Basic for Windows Standard Edition version 2.0
includes the following two manuals:

 - "Microsoft Visual Basic Programmer's Guide"
 - "Microsoft Visual Basic Language Reference"

In addition, the Professional Edition version 2.0 also includes:

 - "Microsoft Visual Basic Professional Features"

===
Corrections to "Microsoft Visual Basic Programmer's Guide," Version 2.0
===

Page Section/Note

 4 Visual Basic Documentation

 In the second bullet list item, replace "eight" with "seven."

 6 Using Online Documentation

 In the third line, replace "eight" with "seven."

 8 Figure 1.2 The Contents Screen

 This illustration does not show the actual Contents screen.

 15 Starting Visual Basic

 In the second table item under "Menu equivalent," change it to
 read, "Start command on the Run menu."

 19 Setting Properties

 In the second paragraph of step 3, change "...clicking the DOWN
 ARROW key at the right..." to "...clicking the down arrow at the
 right..."

 23 Simple Animation

 In the Setting column of the table, change "(White)" to
 "(Black)."

 In the paragraph following the table, change "... and the
 BackColor property to 0 (Black)" to "... and the BackColor
 property to black"

 26 File1_DblClick (Source Code)

 Form1.Open.Picture = ...

 Should read:

 Form1.Image1.Picture = ...

 66 Table 3.2 Operator(n)

 The values for (n) are incorrect:
 1,2,3,2,2 should be 1,3,2,0,4 (reading down the list).

201 Identifying the Current Mode

 In the paragraph at the bottom of the page, change the phrase after
 the semicolon to "the unavailable buttons appear dimmed on the
 toolbar."

210 Using the Calls Dialog

 Remove the "}" from the end of step 1.

216 Editing or Deleting a Watch Expression

 In the numbered list at the top of the page, remove the "(s)"
 from the word "expression" in the second step.

220 Assigning Values to Variables and Properties

 In the paragraph following the three lines of example
 statements, change the text to "The first statement alters a
 property of the currently active form, the second alters a property
 of the VScroll1 control, and the third assigns a value to a
 variable."

227 How to Handle Errors

 The list of steps is incorrectly numbered. The paragraph now

 numbered 2 should not be numbered. Remove the number 2 from
 that paragraph. Then replace the 3 in the following paragraph
 with 2 and replace the 4 in the last paragraph with 3.

229 Exiting an Error-Handling Routine

 In the table that describes ways to exit an error-handling
 routine, make the following changes:

 Replace the Resume entry with:

 Resume (0) Program execution resumes with the statement that
 caused the error or the most recently executed call
 out of the procedure containing the error-handling
 routine.

 Change the Resume Next entry by removing the period at the end
 of the sentence and adding "or with the statement immediately
 following the most recently executed call out of the procedure
 containing the error-handling routine."

 Change the Resume line entry by removing the period at the end of
 the sentence and adding "that must be in the same procedure as the
 error handler."

234 Change the note at the bottom of the page as follows:

 Remove everything after the first sentence. Add the following:

 If a Resume statement is executed, control returns to the most
 recently executed call out of the procedure containing the error
 handler. If a Resume Next statement is executed, control returns to
 whatever statement in the procedure containing the error-handling
 routine immediately follows the most recently executed call out of
 that procedure.

 For example, in the Calls list shown in Figure 10.3, if procedure
 A has an enabled error handler and Procedures B and C don't, an
 error occurring in Procedure C will be handled by Procedure A's
 error handler. If that error handler uses a Resume statement, upon
 exit, the program continues with a call to Procedure B. However, if
 Procedure A's error handler uses a Resume Next statement, upon
 exit, the program will continue with whatever statement in
 Procedure A follows the call to Procedure B. In neither case does
 the error handler return directly to either the procedure or the
 statement where the error originally occurred.

420 The Directory List Box

 In the code at the bottom of the page, change the first line
 as follows:

 GoHigher = 0 ' Initialize for currently expanded directory.

421 The File List Box

 Change the first paragraph as follows:

 "The file list box displays files contained in the directory
 specified by the Path property at run time. You can display
 all the files in the current directory on the current drive by
 using the following statement:"

 The paragraph that begins, "If you set the System property..."
 may be misleading. The following additional information is
 provided to clarify the meaning.

 The default value for the System and Hidden properties is False.
 The default value for the Normal, Archive, and ReadOnly properties
 is True.

 When Normal = True, any file that does not have the System or
 Hidden attribute is displayed. When Normal = False, you can
 still display files with ReadOnly and/or Archive attributes by
 setting the appropriate attribute to True (ReadOnly = True,
 Archive = True).

 When System = True, any file with the System attribute is displayed
 unless it also has the Hidden attribute.

 When Hidden = True, any file with the Hidden attribute is displayed
 unless it also has the System attribute.

 To display any file that has both Hidden and System among its
 attributes, both Hidden and System must be True. However, files that
 have either Hidden or System attributes are displayed as well.

424 Writing Code for the WinSeek Application

 In the second paragraph, change the first sentence as follows:

 "The WinSeek application resolves this ambiguity by determining
 if the path of the dirList box is different from the currently
 highlighted directory."

425 The cmdSearch_Click Procedure

 In the sample code shown, change the reference to
 "dirList,ListIndex" (note the comma) in the If statement to
 the following:

 If dirList.Path <> dirList.List (dirList.ListIndex) Then

482 Change the last sentence in the paragraph at the top of the
 page to this:

 "When the user activates the object (the graph), the server
 application (MS Graph) is invoked by the client application
 (Visual Basic), and the object's data is opened for editing."

541 New Keywords in Visual Basic 2.0

 Include the keyword "Count" in the list.

===
Corrections to "Microsoft Visual Basic Language Reference," Version 2.0
===

Page Section/Note

 82 DateValue Function

 Change the last sentence in the second paragraph of the
 Remarks section to this:

 "For example, in addition to recognizing 12/30/1991 and
 12/30/91, DateValue recognizes December 30, 1991 and Dec 30,
 1991.

167 GetData Method

 The following line of code is not correct:

 Picture = Clipboard.GetData()

 It should be:

 Picture1.Picture = Clipboard.GetData()

 And the following line is not correct:

 Picture = LoadPicture()

 It should be:

 Picture1.Picture = LoadPicture()

320 Print Method

 In the description of expressionlist at the top of the page,
 the term "text expression" should read "string expression."

386 Shell Function

 Change the second sentence in the description of commandstring
 to this:

 "If the program name in commandstring does not include a .BAT,
 .COM, .EXE, or .PIF extension, .EXE is assumed."

412 Text Box Control

 The Toolbox Icon and figure shows the menu control, not the text
 box control.

489 Not Operator

 Search in the Visual Basic Help menu for more current information
 about the Not operator.

None Me Keyword

 The Me keyword is not documented in the "Microsoft Visual Basic
 Language Reference." For complete information about the Me
 keyword, search in the Visual Basic Help menu.

===
Corrections to "Microsoft Visual Basic Professional Features," Version 2.0
===

Custom Control Reference

Page Section/Note

153 Two lines in the code example for the ExtraData property need
 to be corrected to produce the graph illustrated on that page.
 Change references to ThisPoint to Graph1.ThisPoint and add the
 following line as the first line of code:

 Graph1.GraphType = 2

247 DeviceID Property

 The second paragraph in Remarks that starts with "The device
 ID may be used..." is not true.

248 DisplayhWnd Property

 The DisplayhWnd property is not a valid property of the MCI
 control. The property in the manual should be hWndDisplay. The
 documentation on page 248 for DisplayhWnd actually applies to
 the hWndDisplay property.

263 Done Event

 The syntax for the Done event should be:

 "Sub MMControl_Done(NotifyCode As Long)

ODBC Object Reference

Page Section/Note

 11 "Creating a New Table" (Code)

 The following line of code is incorrect:

 Dim f1, f1, f3, f4, f5 as New Field

 It needs to be broken up into individual statements:

 Dim f1 as New Field
 Dim f2 as New Field
 Dim f3 as New Field
 Dim f4 as New Field
 Dim f5 as New Field

Help Compiler Guide

Page Section/Note

126 Remove the extraneous text near the top of the page beginning
 with ".para." and ending with "end."

Additional reference words: 2.00
KBCategory:
KBSubcategory: RefsDoc

Visual Basic User Groups in the U.S.A. and Other Countries
Article ID: Q95831

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic
 for Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

Below is a non-exhaustive list of Visual Basic User Groups throughout
the world including their name, contact name, address, and if applicable
their voice phone, FAX phone and CompuServe ID numbers. The list is broken
down into the following three geographic regions:

1. United States
2. Canada
3. International Countries

The geographic regions are sorted alphabetically by state, province, or
country within their region.

MORE INFORMATION
================

Visual Basic User Groups in the United States:

Tucson Computer Society
Contact: Bruce Fulton
516 E. Mabel
Tucson, AZ 85705
Voice Phone: 602/577-7700

Pasadena PC UG
Contact: Rod Ream
2026 S. 6th St.
Alahambra, CA 91830
Voice Phone: 818/280-6850

Berkeley PC UG
Contact: Gustavo Edelstyn
2625 Alcatraz Avenue #271
Berkeley, CA 94705
Voice Phone: 415/553-8739
CompuServe ID:71552,3052

San Fransisco PC UG
Contact: Dov Gorman
1127 Bancroft Way
Berkeley, CA 94702

Voice Phone: 510/339-3414

Sacramento PC UG
Contact: Larry Clarke
345 Pruewett Drive
Folsom, CA 95630
Voice Phone: 916/983-3950

Orange Coast PC UG
Contact: Wendy Sarrett
3700 Park View Lane #22D
Irvine, CA 92715
714/966-3925

Diablo Valley PC UG
Contact: Steve Israel
1635 School St. Suite 101
Morago, CA 94556-1125
Voice Phone: 510/376-7174

Napa Valley PC UG
Contact: Frank Sommer
1253 Monticello Road
Napa, CA 94558
Voice Phone: 707/258-2509

North Orange County CC
Contact: Bill Hinds
712 N. Clinton
Orange, CA 92667
Voice Phone: 714/633-4874
CompuServe ID:76516,2623

BASIC PRO Magazine
Contact: Jim Fawcette
c/o Basic Pro
299 California Ave - Suite 190
Palo Alto, CA 94306-1912

Silicon Valley Com. Soc.
Contact: Allan Colby
107 Lake Road
Portola Valley, CA 94028
Voice Phone: 415/851-4567
71257,760

Pinellas IBM PC UG
Contact: Thomas Kiehl
14155 102nd Avenue N
Largo, FL 34644

Chicago Computer Society
Contact: Allan Wolff
1560 N. Sandburg Terrace #1715
Chicago, IL 60610
Voice Phone: 312/787-8966
CompuServe ID:72430,2717

Indianapolis Computer Society
Contact: Bill Seltzer
2064 Emily Dr
Indianapolis, IN 46260

Indianapolis Comp. Soc.
Contact: Bill Seltzer
2064 Emily Dr
Indianapolis, IN 46260
Voice Phone: 317/549-9011

Kentucky Indiana PC UG
Contact: Tim Landgrave
200 Whittington Parkway Suite 100A
Louisville, KY 40222
CompuServe ID:71760,12

The Cobb Group
Contact: Blake Ragsdale
9420 Bunsen Parkway Suite 300
Louisville, KY 40220
CompuServe ID:71321,1127

Boston Computer Society
Contact: Jim Wieler
15 Lanark Road
Arlington, MA 02147
Voice Phone: 617/648-1768
CompuServe ID:72570,66

Boston Computer Society
Contact: Bill Goodridge
30 Woodfield Road
Wellesley, MA 02181
Voice Phone: 617/239-0958

Twin City PC UG
Contact: Bill Willis
5860 73rd Ave N. #207
Brooklyn Park, MN 55429
Voice Phone: 612/566-9464

Las Vegas Computer Soc.
Contact: Carl Jarnberg
3111 S. Valley View
Suite A214
Las Vegas, NV 89102
Voice Phone: 702/876-0603

ACGNJ
Contact: James Boyd
60 Feronia Wayt
Rutherford, NJ 07070
Voice Phone: 201/438-6166

Philadelphia Area Com. Soc.

Contact: Steve Longo
c/o LaSalle University
1900 West Olney
Philadelphia, PA 19141
Voice Phone: 215/951-1255

Houston Area League
Contact: Fred Thorlin
10819 Lakeside Forest Lane
Houston, TX 77042-1025
Voice Phone: 713/784-8906
CompuServe ID:73317,662

N. Texas PC UG
Contact: Woody Pewitt
1301 East Parkerville Road
Desoto, TX 75115
Voice Phone: 214/230-3485
CompuServe ID:71670,3203

Utah Blue Chips
Contact: Jim Murtha
7563 s. 960 east
Midville, UT 84047
FAX Phone: 801-533-8004

Pac N'West PC UG
Contact: Sean Bleichschmidt
12831 N.E. 14th Place
Bellevue, WA 98005
Voice Phone: 206/455-4317

Capital PC UG
Contact: Charles Kelly
1800 G St. NW Room 408
Washington DC 20550
Voice Phone: 202/357-9796
CompuServe ID:71044,1124

User Groups in Canada:

Philadelphia Area Com. Soc.
Contact: Steve Longo
c/o LaSalle University
1900 West Olney
Philadelphia, PA 19141
Voice Phone: 215/951-1255

Winnepeg PC UG
Contact: Kent Sharkey
210 Montgomery Ave
Winnipeg Manitoba, Canada
Voice Phone: 204/989-6870

Toronto Win UG

Contact: Don Roy
6327 Atherley Crescent
Mississaugua Ontario Canada L5N 2J1
Voice Phone: 416/826-0320
CompuServe ID:76675,1272

International User Groups:

Taiwan VB Program Group
Contact: Andy Kuo
U Lead Systems, Inc.
12F-A, 563 Chung Hsiao E. Rd - Section 4
Taipei, Taiwan R.O.C.
Fax Phone: 011-86-2-764-9599

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: RefsThird

Differences Between VCP Version 1.0 and VB Version 2.0 or 3.0
Article ID: Q98544

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic programming system
 for Windows, versions 2.0 and 3.0
- Microsoft Visual C++ programming system for Windows and MS-DOS,
 version 1.0
- Microsoft Visual Control Pack, version 1.0

SUMMARY
=======

If you have the Professional edition of Microsoft Visual Basic version 2.0
or 3.0 for Windows, you have everything that the Microsoft Visual Control
Pack (VCP) has and more.

All controls, tools, and documentation shipped with the Microsoft Visual
Control Pack are identical to those same controls, tools, and documentation
shipped with the Professional Edition of Microsoft Visual Basic versions
2.0 for Windows, with two exceptions:

 - A new copy of the MSCOMM.VBX custom control that works with Visual C++
 version 1.0 comes with the Visual Control Pack version 1.0.
 - Enhanced Control Development Kit (CDK) documentation including helpful
 hints on creating custom controls for use with Microsoft Visual C++
 version 1.0 comes with the Visual Control Pack version 1.0.

MORE INFORMATION
================

The Microsoft Visual Control Pack includes a newer MSCOMM.VBX custom
control. This newer MSCOMM.VBX is slightly enhanced to work with Microsoft
Visual C++ version 1.0. The newer control does not work any differently or
any better than the one that comes with Visual Basic version 2.0 for
Windows.

If you have Visual C++ version 1.0 and currently own the Professional
Edition of Microsoft Visual Basic version 2.0 for Windows, you can get a
free copy of the new MSCOMM.VBX custom control from Microsoft Visual Basic
Product Support by calling (206)646-5105.

The new MSCOMM.VBX custom control and the enhanced CDK documentation come
with the Professional Edition of Microsoft Visual Basic version 3.0 for
Windows. The enhanced CDK documentation was also shipped as part of the
April 1993 release of the Microsoft Developer Network (MSDN) CD.

Additional reference words: 1.00 2.00 3.00 VC++
KBCategory:
KBSubcategory: RefsProd

Data Manager Source Code Available on CompuServe
Article ID: Q99643

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 3.0

SUMMARY
=======

The source code for the Visual Basic Data Manager is available. You may
download the source code, modify, and distribute it royalty free. To obtain
the source code, download DATAMGR.EXE, a self-extracting file, from the
Microsoft Software Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for DATAMGR.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download DATAMGR.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \softlib\mslfiles directory
 Get DATAMGR.EXE

MORE INFORMATION
================

The source code has been made available because of a press release
announcement made by Microsoft that stated that the source code for the
Visual Basic version 3.0 Data Manager would be available on CompuServe.

Additional reference words: 3.00 CISFile3.00 softlib S14635
KBCategory:
KBSubcategory: RefsProd

International and U.S. Support for Crystal Reports
Article ID: Q100368

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, version 3.0

SUMMARY
=======

Microsoft supports setup and installation for the Crystal Reports product
shipped with the Professional Edition of Microsoft Visual Basic version 3.0
for Windows. For other Crystal Reports support, please contact Crystal
Services, not Microsoft.

MORE INFORMATION
================

The following lists international and U.S. telephone numbers you can call
to get technical support for Crystal Reports. Also listed is the CompuServe
ID and mailing address for Crystal Reports support.

Canada/US
 Crystal Services
 Suite 2200 - 1050 West Pender Street
 Vancouver, BC, Canada V6E 3S7

 Phone: 604-669-8379 (8:00am - 5:00pm pacific time)
 Fax: 604-681-7163
 BBS: 604-681-9516

 Product support via CompuServe:
 Send CompuServe mail to : 71035,2430

England
 Company: Contemporary Software
 Phone: 273-483-979
 Fax: 273-486-224

Netherlands
 Company: Microscope
 Phone 10-456-3799
 Fax 10-456-5549

Australia
 Company: Sourceware
 Phone: 2-427-7999
 Fax: 2-427-7255
 "Ask for Tony Johnson"

For a complete list of Crystal Reports support offerings see the last three
pages (PSS 1 - PSS 3) of the "Microsoft Visual Basic Professional Features
Book 2" manual

Additional reference words: 3.00
KBCategory:
KBSubcategory: RefsProd PrgCtrlsCus

LONG: Corrections for Errors in VB Version 3.0 Manuals
Article ID: Q100369

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SUMMARY
=======

This article is a master list of corrections for documentation errors
in the Microsoft Visual Basic version 3.0 for Windows manuals.

Included are corrections to version 3.0 of the following manuals and files
that ship with both the Standard and Professional Editions:

 - Online Help file VB.HLP
 - "Microsoft Visual Basic for Windows Programmer's Guide"
 - "Microsoft Visual Basic for Windows Language Reference"

Also included are corrections to version 3.0 of the following manuals
that ship with the Professional Edition only:

 - "Microsoft Visual Basic for Windows Professional Features Book 1"
 - Custom Control Reference
 - Control Development Guide
 - Help Compiler Guide

 - "Microsoft Visual Basic for Windows Professional Features Book 2"
 - Data Access Guide
 - Appendixes
 - Crystal Reports for Visual Basic User's Manual

This master list of corrections includes and adds to the correction
list found in "Part 4: Notes for Microsoft Visual Basic Online Help"
and "Part 5: Notes for Microsoft Visual Basic Programmer's Guide" of
the README.TXT file shipped with the product. Please use this article
as your master list for making corrections to the manuals and help file.

MORE INFORMATION
================

===
Corrections to the Online Help File VB.HLP
===

Rediminsioning an Array

Help says that you can rediminsion an array from -32768 to 32767. Actually,
you cannot use the bottom number. That is, you can rediminsion an array
from -32767 to 32767 as in this example:

Sub Form_Load ()
 Redim x%(-32767 To 32767)
End Sub

Error Message Help

Online Help is not available for dialogs or error messages that occur
at design time. For ISAM errors, use the Search dialog in Help.

"Couldn't find installable ISAM"

An external file dynamic link library (DLL) file couldn't be found.
This file is required for operations such as attaching or accessing
external tables.

Possible causes:

1) An entry in the [Installable ISAM] section in VB.INI or
<APPNAME>.INI is incorrect. For example, this error occurs if you're
accessing a Paradox external table, and the Paradox entry of the .INI
file points to a nonexistent directory. Exit Visual Basic, make
necessary corrections in VB.INI or <APPNAME>.INI using Microsoft
Windows Notepad or another text editor, restart Visual Basic, and try
the operation again.

2) One of the entries in the [Installable ISAM] section in VB.INI
points to a network drive, and that drive isn't connected. Check to
make sure the network is available and the proper drive letter is
established, and try the operation again.

Attributes Property

The Help topic for the attributes property and the DATACONS.TXT file
incorrectly list DB_SYSTEMOBJECT as having a value of &H80000002. The
correct value is H80000000.

Index Property (Data Access)

The information listed in the Index Property (Data Access) Help topic is
not correct. Here is the correct information for this topic:

Applies To
 Table object

Description
 With data access, determines which existing index is the current index
 used to sort records in a Table and in recordsets created from that
 Table. The default is blank. Not available at design time; read/write at
 run time.

Syntax
 table.Index [= indexname]

Remarks
 The order of the data in a table is determined by the order in which the
 data is added to the table. To alter the order of records fetched from
 the table when using a Table object, set the Index property to the name
 of an index in the Indexes collection of the Table's TableDef object. For
 example, to set the index to be used on a Seek against the Titles table:

 Dim Tb as Table, Db as Database
 Set Db = OpenDatabase("Biblio.MDB")
 Set Tb = Db.OpenTable("Titles")
 Tb.Index = "PubID"
 Tb.Seek "=", 3

 The specified index must already be defined. If you set the Index
 property to an index that doesn't exist, or if the index isn't set when
 you use the Seek method, an error occurs.

 In the Professional Edition, you can create a new Index in a Table by
 creating a new Index object, setting its properties, then appending it to
 the Indexes collection of the Table's TableDef.

 The records in a Table can be ordered only according to the indexes
 defined for it. To sort the Table records in some other order, create a
 new Index for the table and append it to the Table's Index Collection, or
 create a Dynaset or Snapshot that has a different sort order. To specify
 the sort order for Dynasets and Snapshots, use the Sort property after
 the Dynaset or Snapshot has been created. You can also set the order of a
 Dynaset or Snapshot by including an Order By clause in a SQL statement
 used to define the Dynaset or Snapshot.

 The Index property of a control array element is not the same as the
 Index property of a data access object.

Data Type
 String

OpenQueryDef Example Code

In the example, the name of the parameter is "Enter State" not "State
Wanted," and the name of the existing query is "By State" not "Get State."

===
Corrections to "Programmer's Guide"
===

(Page 188) The New Keyword

 In the example at the top of the page, the local form
 variable F is declared with the New keyword using the
 Dim statement. To make the form variable and the
 loaded form instance persist, use a Static or Global
 variable instead.

(Page 194) Determining the Type of an Object Variable

 You can use the If...TypeOf statement to determine the

 control type of a custom control:

 If TypeOf object Is objecttype

 The identifier you use for 'object' is the class name of the custom
 control. See the section "Specific Control Object Types" (P. 186)
 for more information.

(Page 461) The Options Property

 The constant values shown are in hexidecimal and should be preceded
 with the &H notation. For example, DB_SQLPASSTHROUGH = &H40, not
 decimal 40. See online Help (Options Property) or the file
 DATACONS.TXT for the correct values.

(Page 454) BIBLIO.MAK and DATAMGR.EXE

 The second sentence of the first paragraph should read:

 If you installed the sample applications, you will find this
 application in the \DATACTRL subdirectory of the Visual Basic
 SAMPLES subdirectory (\VB\SAMPLES\DATACTRL).

 The third sentence of the second paragraph shoul read:

 You will find DATAMGR.EXE in the main Visual Basic directory
 (\VB).

(Page 456) Getting a Quick Start. Item 6.

 Delete the second sentence which begins "Set the DataSource
 property for Label1 ..." under item 6.

(Page 458) Setting Database Properties at Design Time

 This section incorrectly states that at design time the RecordSource
 property of the Data Control lists all tables and queries. The
 RecordSource property lists the tables in a database, not the
 queries.

 At design time, if the DatabaseName or Connect property of the Data
 Control is set, the RecordSource property will retrieve a list of
 all available tables. If the user knows of a valid SQL query for the
 database, the RecordSource property will allow the query to be typed
 in, but it does not list the queries.

(Page 459) The Connect Property

 In the table for the Connect property setting, change the Connect
 setting for Paradox from the following:

 paradox;pwd=password;

 to:

 paradox 3.x;pwd=password;

 NOTE: The database name in the Connect setting must match (except
 for case) the database name in the VB.INI file. See page 148
 of "Professional Features Book 2."

(Page 460) The DatabaseName Property

 The first paragraph on this page incorrectly says the RecordSource
 property of the Data Control lists all tables and queries. The
 RecordSource property lists the tables, not the queries.

 At design time, if the DatabaseName or Connect property of the Data
 Control is set, the RecordSource property will retrieve a list of
 all available tables. If the user knows of a valid SQL query for the
 database, the RecordSource property will allow the query to be typed
 in, but it does not list the queries.

(Page 462) The RecordSource Property

 The first sentence in the second paragraph should be changed to
 remove the reference to queries. Queries are not returned by the
 RecordSource Property. In other words, change the following:

 At design time you can choose from a list of database
 tables and queries by first ...

 to:

 At design time you can choose from a list of database
 tables by first ...

 In addition, the following text and example should be changed:

 For example, the following SQL query returns all of the columns
 in the bibliography for authors who live in New York:

 Data1.DatabaseName = "BIBLIO.MDB"
 Data1.RecordSource = "Select * from Titles where state = 'NY'"
 Data1.Refresh

 The above should read:

 For example, the following SQL query returns all of the columns
 in the bibliography for publishers based in New York:

 Data1.DatabaseName = "BIBLIO.MDB"
 Data1.RecordSource = "Select * from Publishers where
 state ='NY'"
 Data1.Refresh

(Page 465) Adding a New Record

 In the second paragraph in this section, the last sentence
 should read, "Notice that using the buttons on the data
 control or one of the Move methods to move to another record
 will automatically save your added record."

(Page 530) Determining How an Object Is Displayed

 In the first paragraph, the second sentence should read,
 "the Icon check box," not "th eIcon check box."

(Page 550) Creating Invisible Objects

 In the sample code, the following line has incorrect syntax:

 MyWord = ObjVar.SuggestWord MyWord

 The code should look like this:

 MyWord = ObjVar.SuggestWord (MyWord)

(Page 552) Limitations in Visual Basic

 Under the discussion "Arrays and User-Defined Types," the third
 bulleted item should read: "You cannot assign the return value
 of a property or method to an array variable or a variable of a
 user-defined type."

(Page 554) Closing an Object

 In the paragraph after the sample code, second sentence: It is
 not true that invoking a Close method on an object sets
 variables that refer to the object to Nothing.

(Page 582) Determining the Files You Need to Distribute

 The following additional files are required for distributing
 your Visual Basic applications:

 DLL Name Required by (Professional Edition Only)
 --
 PDIRJET.DLL Crystal Reports for Visual Basic
 PDBJET.DLL Crystal Reports for Visual Basic
 MSAJT110.DLL Crystal Reports for Visual Basic
 MSAES110.DLL Crystal Reports for Visual Basic
 PDSODBC.DLL ODBC and Crystal Reports for Visual Basic

(Page 643) Symbol Tables

 The first bullet item under Module Symbol Table should be under
 Global Symbol Table:

 - The actual text of the names of Sub and Function procedures

==
Corrections to "Language Reference"
==

(Page 21-22) Action Property (OLE)

 In the Settings table, in Setting 5, the reference to None in
 the second sentence of the third paragraph should read as
 follows:

 "If the Paste was not successful, the OleType property will be
 set to 3 (None)."

 In Setting 12, the constant should be OLE_READ_FROM_FILE, not
 ReadFromFile. In Setting 14, the constant should be
 OLE_INSERT_OBJ_DLG.

(Page 41) AutoActivate Property

 In the Note, replace the words "the double-click event" with
 "a DblClick event."

(Page 53) BorderStyle Property

 The OLE control cannot have a setting of 2. Remove the setting
 and description for Setting 2 in the OLE control table.

(page 57) Caption property

 For labels, the caption is limited to 1024 characters, not 2048.

(Page 65) Check Box Control

 Add DataField and DataSource to the Properties list.

(Page 82) Color Property

 The "Applies To" line should read "Common dialog (Color
 dialog)."

(Page 89) Common Dialog Control

 Add "FilterIndex" and "MaxFileSize" to the Properties (File
 dialogs) list.

(Page 90) CompactDatabase Function

 The Syntax line indicates that both the second and third function
 parameters are optional. This is incorrect. The second parameter
 is required. Use DB_LANG_GENERAL as the default.

(Page 93) Connect Property

 In the Note, change "SourceTable" to "SourceTableName."

(Page 97) Copies Property

 The "Applies To" line should read "Common dialog (Print dialog)."

(Page 97) Controls Collection

 The following three statements are incorrect:

 If TypeOf Frm.Controls(I) Is Not Menu Then
 Frm.Controls(I).Enabled = State
 End If

 Replace them with the following four statements:

 If TypeOf Frm.Controls(I) Is Menu Then
 Else
 Frm.Controls(I).Enabled = State
 End If

(Page 100) CreateDatabase Function

 Three corrections are necessary:

 - In the code example, replace "False" with "DB_VERSION10."
 - In the table above the code example, replace "DB_COMPACT_ENCRYPT"
 with "DB_ENCRYPT."
 - The Syntax line indicates that both the second and third function
 parameters are optional. This is incorrect. The second parameter
 is required. Use DB_LANG_GENERAL as the default.

(Page 111) Data Control

 Add UpdateControls and UpdateRecord to the Methods list.

(Page 112) Database Object

 In the Properties list, the QueryTimeout Property should be
 identified as being available only in the Professional Edition.

(Page 117) DataText Property

 In the code example, change the two instances of "MSDRAW" to
 "MSGRAPH."

(Page 134) DefaultExt Property

 The "Applies To" line should read:

 "Common dialog (File dialogs)."

(Page 144) Dir, Dir$ Functions

 Line 11 of the sample program is incorrect. It reads:

 If GetAttr(Path + DirName) And ATTR_DIRECTORY = ATTR_DIRECTORY Then

 It should read:

 If GetAttr(Path + DirName) = ATTR_DIRECTORY Then

(Page 185) Field Object

 The Properties list should refer to SourceField and
 SourceTable, not SourceFieldName and SourceTableName.

(Page 187) Fields Property

 The third line of the Example (Professional Edition Only) given at
 the bottom of the page is incorrect. It should be changed to:

 TempIndex.Fields = "LName;FName"

 The correct version has no space between the two fields.

(Page 195) FileTitle Property

 The "Applies To" line should read:

 "Common dialog (File dialogs)."
 Add the following to the Remarks section:

 Note: If the OFN_NOVALIDATE flag is set, the FileTitle property
 will not return a value.

(Page 198) Filter Property (Common Dialog)

 At the beginning of the topic, add "Applies To...Common dialog
 (File dialogs)." In the Remarks section, after the third
 paragraph, add this text:

 Here is an example of a Filter in which the user can choose
 text files or picture files that include bitmaps and icons:
 Text(*.txt)|*.txt|Pictures(*.bmp;*.ico)|*.bmp;*.ico

(Page 199) FilterIndex Property

 The "Applies To" line should read
 "Common dialog (File dialogs)."

(Page 229) Frame Control

 Add the Name Property to the Properties list.

(Page 231) FromPage, ToPage Properties

 The "Applies To" line should read
 "Common dialog (Print dialog)."

(Page 240) GetAttr Function

 The final Sub...End Sub block in code should read as follows:

 Sub File1_Click ()
 Const ATTR_READONLY = 1, ATTR_HIDDEN = 2 ' Declare
 Const ATTR_SYSTEM = 4, ATTR_ARCHIVE = 32 ' Constants.
 Dim Attr, FName, Msg ' Declare variables.
 If Right(Dir1.Path, 1) = "\" Then ' See if root file.
 FName = Dir1.Path & File1.FileName ' Get file path.
 Else
 FName = Dir1.Path & "\" & File1.FileName ' Get file
 ' path.
 End If
 Attr = GetAttr(FName) ' Get attributes.
 If Attr > 7 Then Attr = Attr Xor ATTR_ARCHIVE ' Disregard
 'Archive.
 Select Case Attr ' Look up attributes.

 Case 0: Msg = "Normal"
 Case ATTR_READONLY: Msg = "Read-Only"
 Case ATTR_HIDDEN: Msg = "Hidden"
 Case ATTR_HIDDEN + ATTR_READONLY: Msg = "Hidden and Read-Only"
 Case ATTR_SYSTEM: Msg = "System"
 Case ATTR_READONLY + ATTR_SYSTEM: Msg = "Read-Only and System"
 Case ATTR_HIDDEN + ATTR_SYSTEM: Msg = "Hidden and System"
 Case ATTR_READONLY + ATTR_HIDDEN + ATTR_SYSTEM:
 - Msg = "Read-Only," + Msg = " Hidden, and System"
 End Select
 MsgBox UCase(FName) & " is a " & Msg & " file." ' Display
 ' message.
 End Sub

(Page 256) hDC Property

 The Usage line should read:

 {[form.] [commondialog. | picturebox.] | Printer.}hDC

 Also, the second paragraph of the Remarks should read:

 "With a common dialog control, this property returns a device
 context for the printer selected in the Print dialog box when
 the..." (the rest of the text remains the same).

(Page 258) Height, Width Properties

 The See Also line should refer to the "Width # Statement," not
 the "Width Statement."

(Page 268) hWnd Property

 In the example code, the last argument in the SetWindowPos Declare
 (ByVal f as Long) is incorrect, it should be ByVal f as Integer.
 As written, the code generates a "Bad DLL Calling Convention" error.
 Change the Long to Integer and the call works.

 In addition, the following line of code doesn't work:

 mnuTopmost.Checked = Not mnuTopmost.checked

 This is because the Value property of a check box does not accept -1
 (the results of NOT on 0), which is the initial value. Replace the
 incorrect line of code with this code:

 If mnuTopMost.Checked = 1 Then
 mnuTopMost.Checked = 0
 Else
 mnuTopMost.Checked = 1
 End if

(Page 274) Image Control

 Add DataField and DataSource to the Properties list.

(Page 279) Index Property (Data Access)

 The following information, in the Remarks section, is incorrect:

 To set this property with a data control, specify the TableDef,
 set the index, and then Refresh the control:

 Data1.RecordSource = "Publishers"
 Data1.Database.TableDefs("Publishers").Index = "PrimaryKey"
 Data1.Refresh

 Replace it with the following:

 You cannot set the Index property with a data control. To use an
 indexed field in Visual Basic, use a SQL statement similar to the
 following example:

 Data1.RecordSource = "SELECT * FROM Publishers ORDER BY Zip"
 Data1.Refresh

 By using the ORDER BY clause in the SQL syntax, you can simulate
 the effect of the Index property.

(Page 279) Index Property (Data Access)

 The "Applies To" says TableDef but should say "Table."

(Page 280) InitDir Property

 The "Applies To" line should read:

 "Common dialog (File dialogs)."

(Page 280) Indexes Collection

 The See Also section makes reference to a "CreateIndex Method."
 This method does not exist. The reference should be omitted.

(Page 281) Input # Statement

 The last paragraph, second-to-last sentence is incorrect. Change it
 to read as follows:

 "For strings not delimited by double quotation marks, the end of a
 string is assumed when a comma or the end of a line is encountered."

(Page 297) KeyDown, KeyUp Events

 The See Also should refer to the SendKeys Statement, not the
 SendKeys Method.

(Page 299) KeyPress Events

 The See Also should refer to the SendKeys Statement,
 not the SendKeys Method.

(Page 303) Label Control

 Add the DataField, DataSource, and Parent properties to the
 Properties list.

(Page 336-338) ListFields Method

 In the second table, the fifth and sixth entries in the Field
 column should be SourceTable and SourceField, not SourceTableName
 and SourceFieldName. The code example and the headings of the table
 below it should also refer to SourceTable and SourceField.

(Page 345) ListTables Method

 In Remarks, the first paragraph under the TableType field table
 should read:

 "When you use the ListTables method to create a Snapshot, you
 can evaluate the contents of the Attributes field in the
 Snapshot by referring to the TableDef property settings table
 in the Attributes property topic.

(Page 361) Max, Min Properties (Common Dialog)

 At the beginning of the topic, add:

 "Applies To...Common dialog (Font, Print dialogs)."

(Page 363) MaxFileSize Property

 The "Applies To" line should read:

 "Common dialog (File dialogs)."

(Page 381) MousePointer Property

 The Note section near the bottom of the page is incorrect. It
 should read:

 Note When set for the Screen object, MousePointer changes for the
 Visual Basic application; that is, it only overrides the
 application's MousePointer settings.

(Page 390) Name Property

 The "Applies To" line should include the Database object.

(Page 418) OpenQueryDef Method

 In the example, the name of the parameter is "Enter State" not
 "State Wanted," and the name of the existing query is "By State" not
 "Get State."

(Page 432) Partition Function

 In the code in Example 3, the second five lines of code
 duplicate the first five lines and should be deleted.

(Page 439) Picture Box Control

 Add DataField and DataSource to the Properties list.

(Page 444) PopupMenu Method

 In the Syntax line, there should be a comma immediately before
 the y.

(Page 455) PrinterDefault Property

 The "Applies To" line should read:

 "Common dialog (Print dialog)."

(Page 536-537) SourceFieldName, SourceTableName Properties

 All references to SourceFieldName and SourceTableName in this
 topic should refer to "SourceField" and "SourceTable" instead.

(Page 538) SourceTableName Property

 There should be a full entry for the "SourceTableName" topic.
 See online Help for the text of this topic.

(Page 565) Text Box Control

 The second piece of art is incorrect. It should show a text box on a
 form but instead, it shows a menu title and menu items on a form.
 Also, add DataField and DataSource to the Properties list.

(Page 595) Validate Event

 In the third paragraph following the Constants table, change "edit
 buffer" to "copy buffer."

(Page 619) Trappable Errors

 In Appendix B, the odd header is wrong. It should read
 "Trappable Errors," not "Trappable Error Messages."

(Page 634) Trappable Error Messages

 In Table B.6 ("Data Access Trappable Error Messages"),
 Error #3137 should be deleted.

===
Corrections to "Professional Features Book 1 -- Custom Control Reference"
===

(Page xxii) Visual Basic Executable (.EXE) Files

 The Visual Basic run-time file is listed incorrectly. The first
 bulleted item should read VBRUN300.DLL, not VBRUN200.DLL.

(Page 69) CDHolding Property

 Cross out the following paragraph. It is incorrect. It contradicts

 the Remarks under CDTimeout Property:

 When the Carrier Detect line is high (CDHolding=True) and the
 CDTimeout number of milliseconds has passed, the communications
 control sets the CommEvent property to MSCOMM_ER_CDTO (Carrier Detect
 Timeout Error), and generates the OnComm event.

(page 78) Input Property

 The Remarks section lists the SendMessage syntax incorrectly. Replace
 it with this syntax:

 pMSComm->SendMessage(UM_INPUT,cbData,lpData)

(Page 107) Graphs Within Graphs

 This section states, "The graph control can have child windows.
 You can place other controls (including more graphs) within a
 graph."

 This information is incorrect. The graph control in Visual Basic
 version 3.0 does not support child controls. You cannot place a
 control of any type on a graph and have it belong to the graph.
 The entire section should be removed.

(Page 147) Graph Control

 In Example 1, the following line contains two "=" characters:

 Graph1.LabelText = "Data point" = Str$(i%)

 The line should read:

 Graph1.LabelText = "Data point" + Str$(i%)

(Page 148) Graph Control

 In Example 2, the following line contains two "=" characters:

 Graph1.LabelText = "Label" = Str$(i%)

 The line should read:

 Graph1.LabelText = "Label" + Str$(i%)

(Page 176) Key Status Control

 The table for the Value property incorrectly states that False
 is the default value. The default value is determined by the
 state of the keyboard.

(Page 180) MAPI Session Control

 There should be no footnotes, since the MAPI controls are
 only available in Visual Basic.

(Page 186) MAPI Messages Control

 There should be no footnotes, since the MAPI controls are
 only available in Visual Basic.

===
Corrections to "Professional Features Book 1 -- Help Compiler Guide"
===

(Page 68) Running Macros When a User Enters a Topic

 Insert the following sentence after the first sentence: "Macro
 calls can be authored in footnotes that use an exclamation (!)
 as the reference mark."

(Page 117) Mapping Context Sensitive Objects

 The text attached to the third bullet is incorrect. There must be
 exactly one space between the context number and the context string.
 The example on the following page is also incorrect. It should be
 corrected to reduce the multiple spaces to one space as follows:

 [MAP]

 Edit_Window 0x001
 Control_Menu 0x002
 Maximize_Icon 0x003
 ... and so on ...

===
Corrections to "Professional Features Book 2 -- Data Access Guide"
===

(Page 31) Creating New Table Definitions

 Delete the following line of code from the example:

 On Error Resume Next

(Page 58) Using the Options Argument

 Change the example code near the middle of the page to this:

 Dim Options%
 Dim Db As Database
 Dim T As Table
 Set Db = OpenDatabase ("BIBLIO.MDB")
 Options% = DB_DENYWRITE + DB_DENYREAD
 Set T = Db.OpenTable ("Titles", Options%)

(Page 96-97) QueryDef Example Code

 In the example, the name of the parameter is "Enter State" not
 "State Wanted," and the name of the existing query is "By State" not
 "Get State."

(Page 108) Transaction Logging

 The reference to a trappable error (2004) in the last sentence is
 incorrect. There is no such error code. When a transaction log
 fills, it does not cause error 2004.

(Page 139) Accessing Paradox Tables

 The following line is incorrect:

 conn$ = "Paradox;"

 It should read as follows:

 conn$ = "Paradox 3.X"

(Page 154) Accessing Microsoft SQL Server Databases

 The reference to two versions of INSTCAT.SQL (INSTCAT.SQL and
 INSTCAT.48) that are supposedly used differently depending on
 whether the backend is Microsoft SQL Server or Sybase, is an
 error. The single version of INSTCAT.SQL provided by Microsoft
 on the Visual Basic version 3.0 disks is complete and sufficient
 for both Microsoft SQL Server and Sybase SQL Server, versions 4.2
 and later. The file named INSTCAT.48, if you have it, is not
 useful and can be deleted.

 The instructions on how to run INSTCAT.SQL, which formerly were
 found in Appendix D of the version 2.0 "Professional Features"
 manual, are no longer included in the manual. Page 154 of the
 version 3.0 manual says you can find information on setup,
 configuration, and operational issues when accessing tables from
 SQL Server in a file named SQLSVR.HLP. In fact, this file does
 not exist. The correct file name is DRVSSRVR.HLP, and you should
 find it in the \WINDOWS\SYSTEM directory.

 In the DRVSSRVR.HLP file, search on "INSTCAT.SQL" to find the
 syntax of the ISQL batch command that you need to use to run the
 INSTCAT.SQL file.

Additional reference words: 3.00 docerr
KBCategory:
KBSubcategory: RefsDoc

README.TXT for Standard Edition of VB ver 3.0 for Windows
Article ID: Q100492

The information in this article applies to:

- Standard Edition of Microsoft Visual Basic programming system for
 Windows, version 3.0

SUMMARY
=======

The following article contains the complete contents of the README.TXT file
distributed with Microsoft Standard Edition of Visual Basic version 3.0 for
Windows.

MORE INFORMATION
================

 README.TXT

 Release Notes for Microsoft (R) Visual Basic (TM) Standard Edition

 Version 3.00

 (C) Copyright Microsoft Corporation, 1993

This document contains release notes for Microsoft Visual Basic Standard
Edition version 3.0 for Windows. Information in this document is more
current than that in the manuals or online Help.

How to Use This Document

To view README.TXT on screen in Windows Notepad, maximize the Notepad
window.

To print README.TXT, open it in Windows Write, Microsoft Word, or another
word processor. Then select the entire document and format the text in
10-point Courier before printing.

 Read Part 1 - Software Installation Information - before installing.

========
Contents
========

Part Description
---- -----------
 1 Software Installation Information
 2 Notes and Tips
 3 Notes for "Learning Microsoft Visual Basic" Tutorial

 4 Notes for Microsoft Visual Basic Online Help
 5 Notes for Microsoft Visual Basic "Programmer's Guide"
 6 Notes for Microsoft Visual Basic "Language Reference"

===
Part 1: Software Installation Information
===

To install Visual Basic, use the Program Manager or File Manager to start
SETUP.EXE as you would any other Windows-based application. For example,
if you are installing from drive A:

- From the Program Manager File menu, choose Run.

- In the Run dialog box, type A:SETUP and choose OK.

 Or

- From the File Manager, double-click the SETUP.EXE file icon
 on drive A.

File Sharing for OLE and Data Access

You will need SHARE.EXE to enforce file and byte range locking if the
following programs are running simultaneously:

- Two Visual Basic applications that perform data access
- Two instances of one Visual Basic application that performs data access
- Microsoft Access and a Visual Basic application that performs data
 access

If you are running Microsoft Windows 3.0 or Windows 3.1 (i.e. not
Windows for Workgroups), you will need to change your AUTOEXEC.BAT
as follows:

 SHARE /L:500 /F:5100

If the /L or the /F setting to SHARE has a larger value than listed here,
leave the setting as it is rather than reducing it.

Please make this change as soon as possible in your system.

Note

If you ship .EXE files to users that use OLE or data access, they must
add this setting to their AUTOEXEC.BAT file as well.

Visual C++ and GRID.VBX

If you plan to install Microsoft Visual C++(TM) Development System for
Windows on your system, you may overwrite the grid control in your Windows
\SYSTEM directory. Before installing Visual C++, make a backup of GRID.VBX.
If you have already installed Visual C++, you can re-install GRID.VBX by

running Setup again, choosing the Custom Installation button, and then
selecting the Microsoft Visual Basic option.

======================
Part 2: Notes and Tips
======================
--
Data Access Compatibility - Visual Basic 2.0 and 3.0
--

The new functionality of the Microsoft Access engine in Visual Basic 3.0
will affect the behavior of your VB 2.0 code. Visual Basic 3.0 will
now assume that all SQL statements take the form of Access SQL (see the
Access documentation). You can passthrough SQL to ODBC; as a second
parameter to the CreateDynaset method, you must specify &H40 to indicate
SQL passthrough. Note that if you used backend-specific SQL with
CreateDynaset, you must add this parameter.

ATI Driver

If you have an ATI Wonder card, moving the data control around at design
time may cause a GP fault. Contact ATI for more information.

--
BackColor Displayed Incorrectly with 256-Color Bitmaps
--

If you have a 256-color bitmap in any control (or the form) that has a
BackColor property, it is possible that the background color of that object
will not display correctly if no color in the bitmap's palette matches the
background color.

"Communication Link Failure" Error

If you receive a "Communication Link Failure" error when executing queries
against a Microsoft or Sybase SQL Server, you can retry the operation with
asynchronous execution disabled. To do this, add the following entry to
your VB.INI file:

 [Debug]
 RmtTrace=16

Visual Basic will continue to run synchronously until this line is removed
from VB.INI.

OLE Class Names

To get a reference to a currently running OLE application by using its
class name, you must use:

 GetObject(, "classname")

that is, GetObject has to have an empty file name. A file name of "" will
create a new instance of the server for class name. This is contradictory
to what is documented.

OLE Control: In-Place Activation

The Visual Basic OLE 2.0 control supports "Inside-Out Activation," which
corresponds to "activation on GetFocus." If a server designates this
capability and you specify AutoActivate = GETFOCUS, then:

- The object is initially deactivated the first time the control gets the
 focus.

- The object is not fully deactivated when the control loses focus.
 Instead, the object is directed to tear down any floating user interface
 it may have, such as tool pallettes.

Note that AutoActivate = GETFOCUS is only supported if the server claims to
be "inside-out-capable," further reducing the possibility of looping
re-activation when a non-insitu server closes and gives focus back to the
control.

OLE Control: Pasting Objects from the Clipboard

Applications that provide objects behave differently when an object is
deleted. When you delete an OLE object (set Action = 10), the object's
application may or not close. If the application does close, any objects on
the Clipboard associated with that application may also be closed. Because
of this, you may not be able to cut an object (copy, then delete), since
deleting the object may also cause the data on the Clipboard to be deleted.

Another instance of this behavior is when you try to copy an object, then
paste the object back onto itself. This action may cause an error, because
in order to paste over an existing object, the existing object is first
deleted. If the application associated with the object closes, and
subsequently deletes any objects it has on the Clipboard, the Clipboard no
longer contains an object to paste.

OLE Control: The PasteOK Property

The following applies to objects on the Clipboard that come from an OLE
object:

- When PasteOK returns True, there is no guarantee that the Paste operation
 will succeed. For example, PasteOK returns True and the Paste fails when
 there is a linked object on the Clipboard and you are pasting into an
 object whose OleTypeAllowed property is set to 1 (Embedded).

- PasteOK returns False when there is a linked object on the Clipboard and
 you are pasting into an object whose OleTypeAllowed property is set to

 0 (Linked).

OLE Control: Link Target

You cannot activate a linked object as hidden (set Verb = -3). You can,
however, activate an embedded object as hidden.

OLE Constants in CONSTANT.TXT

OLE has also defined two new standard verbs relating to the two states that
an in-place-active object can have. The following corresponding constants
have been added to CONSTANT.TXT:

Constant Description
-------- -----------
VERB_INPLACEUIACTIVATE Object fully in-place active, including floating
 UI. Only one at a time per top-level form can be
 in this state.

VERB_INPLACEACTIVATE Object is semi-active; it is running and ready to
 respond to user input like clicking within the
 object or changing the mouse pointer as the user
 moves the mouse over different parts of the
 object. Any number of objects can be in this
 state at a time.

So, if you have a number of inside-out-capable objects on a form, where the
user has specified AutoActivate = ONGETFOCUS, the objects take turns at
being in-place-UI-Active. The new verbs allow the Visual Basic programmer
to cause these objects to be in the in-place-active state. For example, if
you want to create a form with several of these objects, and you want the
form to be as responsive as possible to user input, you would put the
following code for each control into your Form_Load event handler:

 OLEControl.Verb = VERB_INPLACEACTIVATE
 OLEControl.Action = OLE_ACTIVATE

See the file CONSTANT.TXT for more information.

Windows 3.0 and the PopupMenu Method

Under Windows 3.0, pop-up menus invoked during a MouseDown event in some
cases do not recognize menu selections made with the mouse. If that occurs,
you can still make a selection using the arrow keys and the Enter key.

--
Saving ASCII Forms in Source Code Managers
--

When using source code managers, you need to change the read-only bit on
the binary file (.FRX) as well as the form file (.FRM) to save the form.

==
Part 3: Notes for "Learning Microsoft Visual Basic" Tutorial
==

Save Project Before Run

The Save Project Before Run Environment Option (under the Options menu)
should be set to "No" when running the "Learning Visual Basic" tutorial.
Some of the lessons may be impaired if this option is set to "Yes." By
default, this setting is "No."

==
Part 4: Notes for Microsoft Visual Basic Online Help
==

Error Message Help

Online Help is not available for dialogs or error messages that occur at
design time. For ISAM errors, use the Search dialog in Help.

"Couldn't find installable ISAM"

An external file dynamic link library (DLL) file couldn't be found. This
file is required for operations such as attaching or accessing external
tables.

Possible causes:

1) An entry in the [Installable ISAM] section in VB.INI or <APPNAME>.INI is
 incorrect. For example, this error occurs if you're accessing a Paradox
 external table, and the Paradox entry of the .INI file points to a
 nonexistent directory. Exit Visual Basic, make necessary corrections in
 VB.INI or <APPNAME>.INI using Microsoft Windows Notepad or another text
 editor, restart Visual Basic, and try the operation again.

2) One of the entries in the [Installable ISAM] section in VB.INI points to
 a network drive, and that drive isn't connected. Check to make sure the
 network is available and the proper drive letter is established, and try
 the operation again.

===
Part 5: Notes for Microsoft Visual Basic "Programmer's Guide"
===

Page Section/Note
---- ------------
188 The New Keyword

 In the example at the top of the page, the local form
 variable F is declared with the New keyword using the
 Dim statement. To make the form variable and the
 loaded form instance persist, use a Static or Global

 variable instead.

194 Determining the Type of an Object Variable

 You can use the If...TypeOf statement to determine the
 control type of a custom control:

 If TypeOf object Is objecttype

 The identifier you use for 'object' is the class name of
 the custom control. See the section "Specific Control
 Object Types" (p. 186) for more information.

461 The Options Property

 The constant values shown are in hexidecimal and should be
 preceded with the &H notation. For example,
 DB_SQLPASSTHROUGH = &H40, not decimal 40. See online Help
 (Options Property) or the file DATACONS.TXT for the correct
 values.

462 The RecordSource Property

 The following text and example should be changed:

 For example, the following SQL query returns all of the columns
 in the bibliography for authors who live in New York:

 Data1.DatabaseName = "BIBLIO.MDB"
 Data1.RecordSource = "Select * from Titles where state = 'NY'"
 Data1.Refresh

 The above should read:

 For example, the following SQL query returns all of the columns
 in the bibliography for publishers based in New York:

 Data1.DatabaseName = "BIBLIO.MDB"
 Data1.RecordSource = "Select * from Publishers where state = 'NY'"
 Data1.Refresh

465 Adding a New Record

 In the second paragraph in this section, the last sentence
 should read, "Notice that using the buttons on the data
 control or one of the Move methods to move to another record
 will automatically save your added record."

530 Determining How an Object Is Displayed

 In the first paragraph, the second sentence should read,
 "the Icon check box," not "th eIcon check box."

550 Creating Invisible Objects

 In the sample code, the following line has incorrect syntax:

 MyWord = ObjVar.SuggestWord MyWord

 The code should look like this:

 MyWord = ObjVar.SuggestWord (MyWord)

552 Limitations in Visual Basic

 Under the discussion "Arrays and User-Defined Types," the third
 bulleted item should read: "You cannot...Assign the return value
 of a property or method to an array variable or a variable of a
 user-defined type."

554 Closing an Object

 In the paragraph after the sample code, second sentence: It is
 not true that invoking a Close method on an object sets variables
 that refer to the object to Nothing.

582 Determining the Files You Need to Distribute

 The following additional files are required for distributing
 your Visual Basic applications:

 DLL Name Required by (Professional Edition Only)
 -------- ---------------------------------------
 PDIRJET.DLL Crystal Reports for Visual Basic
 PDBJET.DLL Crystal Reports for Visual Basic
 MSAJT110.DLL Crystal Reports for Visual Basic
 MSAES110.DLL Crystal Reports for Visual Basic
 PDSODBC.DLL ODBC and Crystal Reports for Visual Basic

===
Part 6: Notes for Microsoft Visual Basic "Language Reference"
===

Page Section/Note
---- ------------
21-22 Action Property (OLE)

 In the Settings table, in Setting 5, the reference to None in the
 second sentence of the third paragraph should read as follows:
 "If the Paste was not successful, the OleType property will be set
 to 3 (None)." In Setting 12, the constant should be
 OLE_READ_FROM_FILE, not ReadFromFile. In Setting 14, the constant
 should be OLE_INSERT_OBJ_DLG.

41 AutoActivate Property

 In the Note, replace the words "the double-click event" with
 "a DblClick event."

53 BorderStyle Property

 The OLE control cannot have a setting of 2. Remove the setting and
 description for Setting 2 in the OLE control table.

65 Check Box Control

 Add DataField and DataSource to the Properties list.

82 Color Property

 The "Applies To" line should read "Common dialog (Color dialog)."

89 Common Dialog Control

 Add "FilterIndex" and "MaxFileSize" to the Properties (File dialogs)
 list.

93 Connect Property

 In the Note, change "SourceTable" to "SourceTableName."

97 Copies Property

 The "Applies To" line should read "Common dialog (Print dialog)."

100 CreateDatabase Function

 In the code example, replace "False" with "DBVERSION10." Also, in
 the table above the code example, replace "DB_COMPACT_ENCRYPT" with
 "DB_ENCRYPT."

111 Data Control

 Add UpdateControls and UpdateRecord to the Methods list.

112 Database Object

 In the Properties list, the QueryTimeout Property should be
 identified as being available only in the Professional Edition.

117 DataText Property

 In the code example, change the two instances of "MSDRAW" to
 "MSGRAPH."

134 DefaultExt Property

 The "Applies To" line should read "Common dialog (File dialogs)."

185 Field Object

 The Properties list should refer to SourceField and SourceTable, not
 SourceFieldName and SourceTableName.

195 FileTitle Property

 The "Applies To" line should read "Common dialog (File dialogs)."
 Add the following to the Remarks section:

 Note: If the OFN_NOVALIDATE flag is set, the FileTitle property will
 not return a value.

198 Filter Property (Common Dialog)

 At the beginning of the topic, add "Applies To...Common dialog (File
 dialogs)." In the Remarks section, after the third paragraph, add
 this text:

 Here is an example of a Filter in which the user can choose text
 files or picture files that include bitmaps and icons:

 Text(*.txt)|*.txt|Pictures(*.bmp;*.ico)|*.bmp;*.ico

199 FilterIndex Property

 The "Applies To" line should read "Common dialog (File dialogs)."

229 Frame Control

 Add the Name Property to the Properties list.

231 FromPage, ToPage Properties

 The "Applies To" line should read "Common dialog (Print dialog)."

240 GetAttr Function

 The final Sub...End Sub block in code should read as follows:

 Sub File1_Click ()
 Const ATTR_READONLY = 1, ATTR_HIDDEN = 2 ' Declare constants.
 Const ATTR_SYSTEM = 4, ATTR_ARCHIVE = 32
 Dim Attr, FName, Msg ' Declare variables.
 If Right(Dir1.Path, 1) = "\" Then ' See if root file.
 FName = Dir1.Path & File1.FileName ' Get file path.
 Else
 FName = Dir1.Path & "\" & File1.FileName ' Get file path.
 End If
 Attr = GetAttr(FName) ' Get attributes.
 If Attr > 7 Then Attr = Attr Xor ATTR_ARCHIVE ' Disregard Archive.
 Select Case Attr ' Look up attributes.
 Case 0: Msg = "Normal"
 Case ATTR_READONLY: Msg = "Read-Only"
 Case ATTR_HIDDEN: Msg = "Hidden"
 Case ATTR_HIDDEN + ATTR_READONLY: Msg = "Hidden and Read-Only"
 Case ATTR_SYSTEM: Msg = "System"
 Case ATTR_READONLY + ATTR_SYSTEM: Msg = "Read-Only and System"
 Case ATTR_HIDDEN + ATTR_SYSTEM: Msg = "Hidden and System"
 Case ATTR_READONLY + ATTR_HIDDEN + ATTR_SYSTEM:
 - Msg = "Read-Only," + Msg = " Hidden, and System"
 End Select
 MsgBox UCase(FName) & " is a " & Msg & " file." ' Display message.
 End Sub

256 hDC Property

 The Usage line should read:

 {[form.] [commondialog. | picturebox.] | Printer.}hDC

 Also, the second paragraph of the Remarks should read, "With a
 common dialog control, this property returns a device context for
 the printer selected in the Print dialog box when the..." (the rest
 of the text remains the same).

258 Height, Width Properties

 The See Also line should refer to the "Width # Statement," not the
 "Width Statement."

274 Image Control

 Add DataField and DataSource to the Properties list.

280 InitDir Property

 The "Applies To" line should read "Common dialog (File dialogs)."

297 KeyDown, KeyUp Events

 The See Also should refer to the SendKeys Statement, not the
 SendKeys Method.

299 KeyPress Events

 The See Also should refer to the SendKeys Statement, not the
 SendKeys Method.

303 Label Control

 Add the DataField, DataSource, and Parent properties to the
 Properties list.

336- ListFields Method
338
 In the second table, the fifth and sixth entries in the Field column
 should be SourceTable and SourceField, not SourceTableName and
 SourceFieldName. The code example and the headings of the table
 below it should also refer to SourceTable and SourceField.

345 ListTables Method

 In Remarks, the first paragraph under the TableType field table
 should read: "When you use the ListTables method to create a
 Snapshot, you can evaluate the contents of the Attributes field in
 the Snapshot by referring to the TableDef property settings table in
 the Attributes property topic.

361 Max, Min Properties (Common Dialog)

 At the beginning of the topic, add "Applies To...Common dialog
 (Font, Print dialogs)."

363 MaxFileSize Property

 The "Applies To" line should read "Common dialog (File dialogs)."

390 Name Property

 The "Applies To" line should include the Database object.

432 Partition Function

 In the code in Example 3, the second five lines of code duplicate
 the first five lines and should be deleted.

439 Picture Box Control

 Add DataField and DataSource to the Properties list.

444 PopupMenu Method

 In the Syntax line, there should be a comma in front of the y.

455 PrinterDefault Property

 The "Applies To" line should read "Common dialog (Print dialog)."

536- SourceFieldName, SourceTableName Properties
537
 All references to SourceFieldName and SourceTableName in this topic
 should refer to "SourceField" and "SourceTable" instead.

538 SourceTableName Property

 There should be a full entry for the "SourceTableName" topic. See
 online Help for the text of this topic.

565 Text Box Control

 The second piece of art is incorrect. It should show a text box
 on a form but instead shows a menu title and menu items on a form.
 Also, add DataField and DataSource to the Properties list.

595 Validate Event

 In the third paragraph following the Constants table, change "edit
 buffer" to "copy buffer."

619 Trappable Errors

 In Appendix B, the odd header is wrong. It should read "Trappable
 Errors," not "Trappable Error Messages."

634 Trappable Error Messages

 In Table B.6 ("Data Access Trappable Error Messages"), Error #3137
 should be deleted.

Additional reference words: 3.00
KBCategory:
KBSubcategory: RefsDoc

README.TXT for Professional Edition of VB 3.0 for Windows
Article ID: Q100493

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, version 3.0

SUMMARY
=======

The following article contains the complete contents of the README.TXT
file distributed with the Professional Edition of Microsoft Visual Basic
version 3.0 for Windows.

MORE INFORMATION
================

README.TXT

Release Notes for Microsoft (R) Visual Basic (R) Professional Edition
Version 3.00. (C) Copyright Microsoft Corporation, 1993

This document contains release notes for Microsoft Visual Basic
Professional Edition version 3.0 for Windows. Information in this document
is more current than that in the manuals or online Help.

How to Use This Document

To view README.TXT on screen in Windows Notepad, maximize the Notepad
window.

To print README.TXT, open it in Windows Write, Microsoft Word, or another
word processor. Then select the entire document and format the text in
10-point Courier before printing.

Read Part 1 - Software Installation Information - before installing.

========
Contents
========

Part Description
--
1 Software Installation Information
2 Notes and Tips
3 Notes for "Learning Microsoft Visual Basic" Tutorial
4 Notes for Microsoft Visual Basic Online Help
5 Notes for Microsoft Visual Basic "Programmer's Guide"
6 Notes for Microsoft Visual Basic "Language Reference"
7 Notes for Microsoft Visual Basic "Custom Control Reference"

8 Notes for Microsoft Visual Basic "Data Access Guide"

===
Part 1: Software Installation Information
===

To install Visual Basic, use the Program Manager or File Manager to start
SETUP.EXE as you would any other Windows-based application. For example,
if you are installing from drive A:

 - From the Program Manager File menu, choose Run.
 - In the Run dialog box, type A:SETUP and choose OK.

 Or

 - From the File Manager, double-click the SETUP.EXE file icon
 on drive A.

File Sharing for OLE and Data Access

You will need SHARE.EXE to enforce file and byte range locking if the
following programs are running simultaneously:

 - Two Visual Basic applications that perform data access
 - Two instances of one Visual Basic application that performs data access
 - Microsoft Access and a Visual Basic application that performs data
 access

If you are running Microsoft Windows 3.0 or Windows 3.1 (i.e. not
Windows for Workgroups), you will need to change your AUTOEXEC.BAT
as follows:

 SHARE /L:500 /F:5100

If the /L or the /F setting to SHARE has a larger value than listed here,
leave the setting as it is rather than reducing it.

Please make this change as soon as possible in your system.

NOTE: If you ship .EXE files to users that use OLE or data access, they
must add this setting to their AUTOEXEC.BAT file as well.

Visual C++ and GRID.VBX

If you plan to install Microsoft Visual C++(TM) Development System for
Windows on your system, you may overwrite the grid control in your Windows
\SYSTEM directory. Before installing Visual C++, make a backup of GRID.VBX.
If you have already installed Visual C++, you can re-install GRID.VBX by
running Setup again, choosing the Custom Installation button, and then
selecting the Microsoft Visual Basic option.

Using Visual Basic 3.0 with SQL Server and Access 1.0

If you choose to install the SQL Server ODBC driver, you will find the file
INSTCAT.SQL in the \VB\ODBC directory. This is a stored procedure file that
the SQL Server administrator must run on the server to prepare the server
to accept Visual Basic as a client. However, this version of INSTCAT.SQL is
incompatible with Microsoft Access 1.0. If you are also using Access 1.0
as a client for that SQL Server, you should use the INSTCAT.SQL that was
included with Access 1.0. Visual Basic 3.0 will work correctly with
INSTCAT.SQL from Access 1.0 except that it will be unable to delete indexes
from tables.

Setup and LZEXPAND.DLL

Visual Basic's Setup program uses LZEXPAND to install ODBC. If you
encounter a system error while Visual Basic is calculating free disk space,
check for this file in your Windows \SYSTEM directory. If an older version
of LZEXPAND.DLL exists along your path, remove the file and continue with
Setup.

======================
Part 2: Notes and Tips
======================

--
Data Access Compatibility - Visual Basic 2.0 and 3.0
--

The new functionality of the Microsoft Access engine in Visual Basic 3.0
will affect the behavior of your VB 2.0 code. Visual Basic 3.0 will
now assume that all SQL statements take the form of Access SQL (see the
Access documentation). You can passthrough SQL to ODBC; as a second
parameter to the CreateDynaset method, you must specify &H40 to indicate
SQL passthrough. Note that if you used backend-specific SQL with
CreateDynaset, you must add this parameter.

ATI Driver

If you have an ATI Wonder card, moving the data control around at design
time may cause a GP fault. Contact ATI for more information.

--
BackColor Displayed Incorrectly with 256-Color Bitmaps
--

If you have a 256-color bitmap in any control (or the form) that has a
BackColor property, it is possible that the background color of that object
will not display correctly if no color in the bitmap's palette matches the
background color.

"Communication Link Failure" Error

If you receive a "Communication Link Failure" error when executing queries
against a Microsoft or Sybase SQL Server, you can retry the operation with
asynchronous execution disabled. To do this, add the following entry to
your VB.INI file:

 [Debug]
 RmtTrace=16

Visual Basic will continue to run synchronously until this line is removed
from VB.INI.

OLE Class Names

To get a reference to a currently running OLE application by using its
class name, you must use:

 GetObject(, "classname")

that is, GetObject has to have an empty file name. A file name of "" will
create a new instance of the server for class name. This is contradictory
to what is documented.

OLE Control: In-Place Activation

The Visual Basic OLE 2.0 control supports "Inside-Out Activation," which
corresponds to "activation on GetFocus." If a server designates this
capability and you specify AutoActivate = GETFOCUS, then:

 - The object is initially deactivated the first time the control gets the
 focus.
 - The object is not fully deactivated when the control loses focus.
 Instead, the object is directed to tear down any floating user interface
 it may have, such as tool pallettes.

Note that AutoActivate = GETFOCUS is only supported if the server claims to
be "inside-out-capable," further reducing the possibility of looping
re-activation when a non-insitu server closes and gives focus back to the
control.

OLE Control: Pasting Objects from the Clipboard

Applications that provide objects behave differently when an object is
deleted. When you delete an OLE object (set Action = 10), the object's
application may or not close. If the application does close, any objects
on the Clipboard associated with that application may also be closed.
Because of this, you may not be able to cut an object (copy, then delete),
since deleting the object may also cause the data on the Clipboard to be
deleted.

Another instance of this behavior is when you try to copy an object, then

paste the object back onto itself. This action may cause an error, because
in order to paste over an existing object, the existing object is first
deleted. If the application associated with the object closes, and
subsequently deletes any objects it has on the Clipboard, the Clipboard no
longer contains an object to paste.

OLE Control: The PasteOK Property

The following applies to objects on the Clipboard that come from an OLE
object:

 - When PasteOK returns True, there is no guarantee that the Paste
 operation will succeed. For example, PasteOK returns True and the Paste
 fails when there is a linked object on the Clipboard and you are pasting
 into an object whose OleTypeAllowed property is set to 1 (Embedded).
 - PasteOK returns False when there is a linked object on the Clipboard and
 you are pasting into an object whose OleTypeAllowed property is set to
 0 (Linked).

OLE Control: Link Target

You cannot activate a linked object as hidden (set Verb = -3). You can,
however, activate an embedded object as hidden.

OLE Constants in CONSTANT.TXT

OLE has also defined two new standard verbs relating to the two states that
an in-place-active object can have. The following corresponding constants
have been added to CONSTANT.TXT:

Constant Description
--
VERB_INPLACEUIACTIVATE Object is fully in-place active, including
 floating UI. Only one at a time per top-level
 form can be in this state.

VERB_INPLACEACTIVATE Object is semi-active; it is running and ready to
 respond to user input like clicking within the
 object or changing the mouse pointer as the user
 moves the mouse over different parts of the
 object. Any number of objects can be in this
 state at a time.

So, if you have a number of inside-out-capable objects on a form, where the
user has specified AutoActivate = ONGETFOCUS, the objects take turns at
being in-place-UI-Active. The new verbs allow the Visual Basic programmer
to cause these objects to be in the in-place-active state. For example, if
you want to create a form with several of these objects, and you want the
form to be as responsive as possible to user input, you would put the
following code for each control into your Form_Load event handler:

 OLEControl.Verb = VERB_INPLACEACTIVATE
 OLEControl.Action = OLE_ACTIVATE

See the file CONSTANT.TXT for more information.

Windows 3.0 and the PopupMenu Method

Under Windows 3.0, pop-up menus invoked during a MouseDown event in some
cases do not recognize menu selections made with the mouse. If that occurs,
you can still make a selection using the arrow keys and the Enter key.

--
Saving ASCII Forms in Source Code Managers
--

When using source code managers, you need to change the read-only bit on
the binary file (.FRX) as well as the form file (.FRM) to save the form.

Crystal Reports for Visual Basic

All prices in the Crystal Reports for Visual Basic editor, CRW.EXE, are
listed in US dollars.

If you are calling Crystal Services from outside the United States for
support or more information, please contact your local international
long distance carrier if you need assistance.

==
Part 3: Notes for "Learning Microsoft Visual Basic" Tutorial
==

Save Project Before Run

The Save Project Before Run Environment Option (under the Options menu)
should be set to "No" when running the "Learning Visual Basic" tutorial.
Some of the lessons may be impaired if this option is set to "Yes." By
default, this setting is "No."

==
Part 4: Notes for Microsoft Visual Basic Online Help
==

Error Message Help

Online Help is not available for dialogs or error messages that occur at
design time. For ISAM errors, use the Search dialog in Help.

"Couldn't find installable ISAM"

An external file dynamic link library (DLL) file couldn't be found. This
file is required for operations such as attaching or accessing external
tables.

Possible causes:

1. An entry in the [Installable ISAM] section in VB.INI or <APPNAME>.INI is
 incorrect. For example, this error occurs if you're accessing a Paradox
 external table, and the Paradox entry of the .INI file points to a
 nonexistent directory. Exit Visual Basic, make necessary corrections in
 VB.INI or <APPNAME>.INI using Microsoft Windows Notepad or another text
 editor, restart Visual Basic, and try the operation again.

2. One of the entries in the [Installable ISAM] section in VB.INI points to
 a network drive, and that drive isn't connected. Check to make sure the
 network is available and the proper drive letter is established, and try
 the operation again.

===
Part 5: Notes for Microsoft Visual Basic "Programmer's Guide"
===

Page Section/Note

188 The New Keyword

 In the example at the top of the page, the local form
 variable F is declared with the New keyword using the
 Dim statement. To make the form variable and the
 loaded form instance persist, use a Static or Global
 variable instead.

194 Determining the Type of an Object Variable

 You can use the If...TypeOf statement to determine the
 control type of a custom control:

 If TypeOf object Is objecttype

 The identifier you use for 'object' is the class name of
 the custom control. See the section "Specific Control
 Object Types" (p. 186) for more information.

461 The Options Property

 The constant values shown are in hexidecimal and should be
 preceded with the &H notation. For example,
 DB_SQLPASSTHROUGH = &H40, not decimal 40. See online Help
 (Options Property) or the file DATACONS.TXT for the correct
 values.

462 The RecordSource Property

 The following text and example should be changed:

 For example, the following SQL query returns all of the columns
 in the bibliography for authors who live in New York:

 Data1.DatabaseName = "BIBLIO.MDB"
 Data1.RecordSource = "Select * from Titles where state = 'NY'"
 Data1.Refresh

 The above should read:

 For example, the following SQL query returns all of the columns
 in the bibliography for publishers based in New York:

 Data1.DatabaseName = "BIBLIO.MDB"
 Data1.RecordSource = "Select * from Publishers where state = 'NY'"
 Data1.Refresh

465 Adding a New Record

 In the second paragraph in this section, the last sentence
 should read, "Notice that using the buttons on the data
 control or one of the Move methods to move to another record
 will automatically save your added record."

530 Determining How an Object Is Displayed

 In the first paragraph, the second sentence should read,
 "the Icon check box," not "th eIcon check box."

550 Creating Invisible Objects

 In the sample code, the following line has incorrect syntax:

 MyWord = ObjVar.SuggestWord MyWord

 The code should look like this:

 MyWord = ObjVar.SuggestWord (MyWord)

552 Limitations in Visual Basic

 Under the discussion "Arrays and User-Defined Types," the third
 bulleted item should read: "You cannot...Assign the return value
 of a property or method to an array variable or a variable of a
 user-defined type."

554 Closing an Object

 In the paragraph after the sample code, second sentence: It is
 not true that invoking a Close method on an object sets variables
 that refer to the object to Nothing.

582 Determining the Files You Need to Distribute

 The following additional files are required for distributing
 your Visual Basic applications:

 DLL Name Required by (Professional Edition Only)

 --
 PDIRJET.DLL Crystal Reports for Visual Basic
 PDBJET.DLL Crystal Reports for Visual Basic
 MSAJT110.DLL Crystal Reports for Visual Basic
 MSAES110.DLL Crystal Reports for Visual Basic
 PDSODBC.DLL ODBC and Crystal Reports for Visual Basic

===
Part 6: Notes for Microsoft Visual Basic "Language Reference"
===

Page Section/Note

21-22 Action Property (OLE)

 In the Settings table, in Setting 5, the reference to None in the
 second sentence of the third paragraph should read as follows:
 "If the Paste was not successful, the OleType property will be set
 to 3 (None)." In Setting 12, the constant should be
 OLE_READ_FROM_FILE, not ReadFromFile. In Setting 14, the constant
 should be OLE_INSERT_OBJ_DLG.

41 AutoActivate Property

 In the Note, replace the words "the double-click event" with
 "a DblClick event."

53 BorderStyle Property

 The OLE control cannot have a setting of 2. Remove the setting and
 description for Setting 2 in the OLE control table.

65 Check Box Control

 Add DataField and DataSource to the Properties list.

82 Color Property

 The "Applies To" line should read "Common dialog (Color dialog)."

89 Common Dialog Control

 Add "FilterIndex" and "MaxFileSize" to the Properties (File dialogs)
 list.

93 Connect Property

 In the Note, change "SourceTable" to "SourceTableName."

97 Copies Property

 The "Applies To" line should read "Common dialog (Print dialog)."

100 CreateDatabase Function

 In the code example, replace "False" with "DBVERSION10." Also, in
 the table above the code example, replace "DB_COMPACT_ENCRYPT" with

 "DB_ENCRYPT."

111 Data Control

 Add UpdateControls and UpdateRecord to the Methods list.

112 Database Object

 In the Properties list, the QueryTimeout Property should be
 identified as being available only in the Professional Edition.

117 DataText Property

 In the code example, change the two instances of "MSDRAW" to
 "MSGRAPH."

134 DefaultExt Property

 The "Applies To" line should read "Common dialog (File dialogs)."

185 Field Object

 The Properties list should refer to SourceField and SourceTable, not
 SourceFieldName and SourceTableName.

195 FileTitle Property

 The "Applies To" line should read "Common dialog (File dialogs)."
 Add the following to the Remarks section:

 Note: If the OFN_NOVALIDATE flag is set, the FileTitle property will
 not return a value.

198 Filter Property (Common Dialog)

 At the beginning of the topic, add "Applies To...Common dialog (File
 dialogs)." In the Remarks section, after the third paragraph, add
 this text:

 Here is an example of a Filter in which the user can choose text
 files or picture files that include bitmaps and icons:

 Text(*.txt)|*.txt|Pictures(*.bmp;*.ico)|*.bmp;*.ico

199 FilterIndex Property

 The "Applies To" line should read "Common dialog (File dialogs)."

229 Frame Control

 Add the Name Property to the Properties list.

231 FromPage, ToPage Properties

 The "Applies To" line should read "Common dialog (Print dialog)."

240 GetAttr Function

 The final Sub...End Sub block in code should read as follows:

Sub File1_Click ()
Const ATTR_READONLY = 1, ATTR_HIDDEN = 2 ' Declare constants.
Const ATTR_SYSTEM = 4, ATTR_ARCHIVE = 32
Dim Attr, FName, Msg ' Declare variables.
If Right(Dir1.Path, 1) = "\" Then ' See if root file.
 FName = Dir1.Path & File1.FileName ' Get file path.
Else
 FName = Dir1.Path & "\" & File1.FileName ' Get file path.
End If
Attr = GetAttr(FName) ' Get attributes.
If Attr > 7 Then Attr = Attr Xor ATTR_ARCHIVE ' Disregard Archive.
Select Case Attr ' Look up attributes.
 Case 0: Msg = "Normal"
 Case ATTR_READONLY: Msg = "Read-Only"
 Case ATTR_HIDDEN: Msg = "Hidden"
 Case ATTR_HIDDEN + ATTR_READONLY: Msg = "Hidden and Read-Only"
 Case ATTR_SYSTEM: Msg = "System"
 Case ATTR_READONLY + ATTR_SYSTEM: Msg = "Read-Only and System"
 Case ATTR_HIDDEN + ATTR_SYSTEM: Msg = "Hidden and System"
 Case ATTR_READONLY + ATTR_HIDDEN + ATTR_SYSTEM: Msg = "Read-Only,"
 - + Msg = " Hidden, and System"
End Select
MsgBox UCase(FName) & " is a " & Msg & " file." ' Display message.
End Sub

256 hDC Property

 The Usage line should read:

 {[form.] [commondialog. | picturebox.] | Printer.}hDC

 Also, the second paragraph of the Remarks should read, "With a
 common dialog control, this property returns a device context for
 the printer selected in the Print dialog box when the..." (the rest
 of the text remains the same).

258 Height, Width Properties

 The See Also line should refer to the "Width # Statement," not the
 "Width Statement."

274 Image Control

 Add DataField and DataSource to the Properties list.

280 InitDir Property

 The "Applies To" line should read "Common dialog (File dialogs)."

297 KeyDown, KeyUp Events

 The See Also should refer to the SendKeys Statement, not the
 SendKeys Method.

299 KeyPress Events

 The See Also should refer to the SendKeys Statement, not the
 SendKeys Method.

303 Label Control

 Add the DataField, DataSource, and Parent properties to the
 Properties list.

336- ListFields Method
338
 In the second table, the fifth and sixth entries in the Field column
 should be SourceTable and SourceField, not SourceTableName and
 SourceFieldName. The code example and the headings of the table
 below it should also refer to SourceTable and SourceField.

345 ListTables Method

 In Remarks, the first paragraph under the TableType field table
 should read: "When you use the ListTables method to create a
 Snapshot, you can evaluate the contents of the Attributes field in
 the Snapshot by referring to the TableDef property settings table in
 the Attributes property topic.

361 Max, Min Properties (Common Dialog)

 At the beginning of the topic, add "Applies To...Common dialog
 (Font, Print dialogs)."

363 MaxFileSize Property

 The "Applies To" line should read "Common dialog (File dialogs)."

390 Name Property

 The "Applies To" line should include the Database object.

432 Partition Function

 In the code in Example 3, the second five lines of code duplicate
 the first five lines and should be deleted.

439 Picture Box Control

 Add DataField and DataSource to the Properties list.

444 PopupMenu Method

 In the Syntax line, add a comma immediately before the y.

455 PrinterDefault Property

 The "Applies To" line should read "Common dialog (Print dialog)."

536- SourceFieldName, SourceTableName Properties
537

 All references to SourceFieldName and SourceTableName in this topic
 should refer to "SourceField" and "SourceTable" instead.

538 SourceTableName Property

 There should be a full entry for the "SourceTableName" topic. See
 online Help for the text of this topic.

565 Text Box Control

 The second piece of art is incorrect. It should show a text box
 on a form but instead shows a menu title and menu items on a form.
 Also, add DataField and DataSource to the Properties list.

595 Validate Event

 In the third paragraph following the Constants table, change "edit
 buffer" to "copy buffer."

619 Trappable Errors

 In Appendix B, the odd header is wrong. It should read "Trappable
 Errors," not "Trappable Error Messages."

634 Trappable Error Messages

 In Table B.6 ("Data Access Trappable Error Messages"), Error #3137
 should be deleted.

===
Part 7: Notes for Microsoft Visual Basic "Custom Control Reference"
===

Page Section/Note
--
xxii Visual Basic Executable (.EXE) Files

 The Visual Basic run-time file is listed incorrectly. The first
 bulleted item should read VBRUN300.DLL, not VBRUN200.DLL.

147 Graph Control

 In Example 1, the following line contains two "=" characters:

 Graph1.LabelText = "Data point" = Str$(i%)

 The line should read:

 Graph1.LabelText = "Data point" + Str$(i%)

148 Graph Control

 In Example 2, the following line contains two "=" characters:

 Graph1.LabelText = "Label" = Str$(i%)

 The line should read:

 Graph1.LabelText = "Label" + Str$(i%)

176 Key Status Control

 The table for the Value property incorrectly states that False is
 the default value. The default value is determined by the state
 of the keyboard.

180 MAPI Session Control

 There should be no footnotes, since the MAPI controls are
 only available in Visual Basic.

186 MAPI Messages Control

 There should be no footnotes, since the MAPI controls are
 only available in Visual Basic.

==
Part 8: Notes for Microsoft Visual Basic "Data Access Guide"
==

Page Section/Note
--
23 Creating New Table Definitions

 Delete the following line of code from the example:

 On Error Resume Next

Additional reference words: 3.00
KBCategory:
KBSubcategory: RefsDoc

PACKING.LST for Standard Edition of VB 3.0 for Windows
Article ID: Q100494

The information in this article applies to:

- Standard Edition of Microsoft Visual Basic programming system for
 Windows, version 3.0

SUMMARY
=======

The following article contains the complete contents of the PACKING.LST
file distributed with the Standard Edition of Microsoft Visual Basic
version 3.0 for Windows.

MORE INFORMATION
================

 PACKING.LST

 Disk Contents for Microsoft (R) Visual Basic
 for Windows, Standard Edition
 Version 3.0
 (C) Copyright Microsoft Corporation, 1993

This file lists all the files on the distribution disks provided
with this product.
===
NOTE: Most of the files on the distribution disks are compressed
(indicated by an underscore character "_" in the file extension)
and must be decompressed before they are used.

The Setup program on Disk 1 decompresses files as it installs them.

Files with a PA_ extension decompress to multiple .ICO files. These
files cannot be decompressed manually.

If you need to decompress files manually, you can do so by running
setup from the file manager or program manager in the following way:

1. Choose the Run item from the File menu.
2. Type SETUP.EXE /Z [source file] [destination file]

The /Z switch activates an internal decompression system. SETUP.EXE must be
run from within Windows.

***** DISK1 ****

msajt110.dl_ data access windows\system\msajt110.dll
arrows.pa_ icons vb\icons\arrows\arrows.pak
comm.pa_ icons vb\icons\comm\comm.pak
computer.pa_ icons vb\icons\computer\computer.pak
dragdrop.pa_ icons vb\icons\dragdrop\dragdrop.pak

elements.pa_ icons vb\icons\elements\elements.pak
flags.pa_ icons vb\icons\flags\flags.pak
industry.pa_ icons vb\icons\industry\industry.pak
mail.pa_ icons vb\icons\mail\mail.pak
misc.pa_ icons vb\icons\misc\misc.pak
office.pa_ icons vb\icons\office\office.pak
traffic.pa_ icons vb\icons\traffic\traffic.pak
writing.pa_ icons vb\icons\writing\writing.pak
vboa300.dl_ ole windows\system\vboa300.dll
dispcalc.ex_ ole vb\dispcalc.exe
dispcalc.re_ ole vb\dispcalc.reg
ole2.re_ ole windows\system\ole2.reg
readme.tx_ always vb\readme.txt
calc.fr_ samples vb\samples\calc\calc.frm
calc.ic_ samples vb\samples\calc\calc.ico
calc.ma_ samples vb\samples\calc\calc.mak
calc1.fr_ samples vb\samples\calc\calc.frx
calldll1.fr_ samples vb\samples\calldlls\calldlls.frx
calldlls.fr_ samples vb\samples\calldlls\calldlls.frm
calldlls.ma_ samples vb\samples\calldlls\calldlls.mak
declares.ba_ samples vb\samples\calldlls\declares.bas
frmmenus.fr_ samples vb\samples\calldlls\frmmenus.frm
array.fr_ samples vb\samples\controls\array.frm
button.fr_ samples vb\samples\controls\button.frm
button1.fr_ samples vb\samples\controls\button.frx
check.fr_ samples vb\samples\controls\check.frm
controls.ma_ samples vb\samples\controls\controls.mak
listbox.fr_ samples vb\samples\controls\listbox.frm
main2.fr_ samples vb\samples\controls\main.frm
multi.fr_ samples vb\samples\controls\multi.frm
number.fr_ samples vb\samples\controls\number.frm
scroll.fr_ samples vb\samples\controls\scroll.frm
wordwrap.fr_ samples vb\samples\controls\wordwrap.frm
biblio.fr_ samples vb\samples\datactrl\biblio.frm
biblio1.fr_ samples vb\samples\datactrl\biblio.frx
biblio.ma_ samples vb\samples\datactrl\biblio.mak
datactl.ba_ samples vb\samples\datactrl\datactl.bas
dde.ba_ samples vb\samples\dde\dde.bas
dde.ma_ samples vb\samples\dde\dde.mak
execute.fr_ samples vb\samples\dde\execute.frm
main.fr_ samples vb\samples\dde\main.frm
alarm.fr_ samples vb\samples\envir\alarm.frm
alarm.ma_ samples vb\samples\envir\alarm.mak
alarm1.fr_ samples vb\samples\envir\alarm.frx
seek.fr_ samples vb\samples\filectls\seek.frm
winseek.ma_ samples vb\samples\filectls\winseek.mak
fileproc.ba_ samples vb\samples\fileio\fileproc.bas
recedit.ba_ samples vb\samples\fileio\recedit.bas
recedit.fr_ samples vb\samples\fileio\recedit.frm
recedit.ma_ samples vb\samples\fileio\recedit.mak
bfly1.bm_ samples vb\samples\firstapp\bfly1.bmp
bfly2.bm_ samples vb\samples\firstapp\bfly2.bmp
butterf.fr_ samples vb\samples\firstapp\butterf.frm
butterf.ma_ samples vb\samples\firstapp\butterf.mak
butterf1.fr_ samples vb\samples\firstapp\butterf.frx
picview.fr_ samples vb\samples\firstapp\picview.frm
picview.ma_ samples vb\samples\firstapp\picview.mak

blanker.fr_ samples vb\samples\graphics\blanker.frm
blanker.ma_ samples vb\samples\graphics\blanker.mak
blanker1.fr_ samples vb\samples\graphics\blanker.frx
loan.fr_ samples vb\samples\grid\loan.frm
loan.ma_ samples vb\samples\grid\loan.mak
loan1.fr_ samples vb\samples\grid\loan.frx
filopen.ba_ samples vb\samples\mdi\filopen.bas
find1.fr_ samples vb\samples\mdi\find.frm
mdi.fr_ samples vb\samples\mdi\mdi.frm
mdi1.fr_ samples vb\samples\mdi\mdi.frx
mdinote.ba_ samples vb\samples\mdi\mdinote.bas
mdinote.ma_ samples vb\samples\mdi\mdinote.mak
notepad.fr_ samples vb\samples\mdi\notepad.frm
about.fr_ samples vb\samples\menus\about.frm
edit.fr_ samples vb\samples\menus\edit.frm
edit1.fr_ samples vb\samples\menus\edit.frx
textedit.ba_ samples vb\samples\menus\textedit.bas
textedit.ma_ samples vb\samples\menus\textedit.mak
click.fr_ samples vb\samples\mouse\click.frm
drag.fr_ samples vb\samples\mouse\drag.frm
drag1.fr_ samples vb\samples\mouse\drag.frx
main1.fr_ samples vb\samples\mouse\main.frm
mouse.ma_ samples vb\samples\mouse\mouse.mak
scribble.fr_ samples vb\samples\mouse\scribble.frm
frmmain.fr_ samples vb\samples\objects\frmmain.frm
multinst.fr_ samples vb\samples\objects\multinst.frm
multinst.ma_ samples vb\samples\objects\multinst.mak
objects.ba_ samples vb\samples\objects\objects.bas
objects.ma_ samples vb\samples\objects\objects.mak
about1.fr_ samples vb\samples\ole\about.frm
ole2chld.fr_ samples vb\samples\ole\ole2chld.frm
ole2demo.ma_ samples vb\samples\ole\ole2demo.mak
ole2mdi.fr_ samples vb\samples\ole\ole2mdi.frm
ole2mod1.ba_ samples vb\samples\ole\ole2mod1.bas
ole2mod2.ba_ samples vb\samples\ole\ole2mod2.bas
oleauto.ba_ samples vb\samples\ole\oleauto.bas
oleauto.fr_ samples vb\samples\ole\oleauto.frm
oleauto.ma_ samples vb\samples\ole\oleauto.mak
fontdial.fr_ samples vb\samples\print\fontdial.frm
tccancel.fr_ samples vb\samples\print\tccancel.frm
timecar1.fr_ samples vb\samples\print\timecard.frx
timecard.fr_ samples vb\samples\print\timecard.frm
timecard.ma_ samples vb\samples\print\timecard.mak
mssetup.ex always msvb2set.tmp_mssetup.exe
mscomstf.dl_ always msvb2set.tmp\mscomstf.dll
mscustom.dl_ always msvb2set.tmp\mscustom.dll
msdetstf.dl_ always msvb2set.tmp\msdetstf.dll
msinsstf.dl_ always msvb2set.tmp\msinsstf.dll
msshlstf.dl_ always msvb2set.tmp\msshlstf.dll
msuilstf.dl_ always msvb2set.tmp\msuilstf.dll
packing.ls_ always vb\packing.lst
setup.ex_ always msvb2set.tmp\setup.exe
setup.ls_ always msvb2set.tmp\setup.lst
vbsetup.ex_ always msvb2set.tmp\vbsetup.exe
vbsetup.in_ always msvb2set.tmp\vbsetup.ini
message.fr_ samples vb\setupkit\setup1\message.frm
path.fr_ samples vb\setupkit\setup1\path.frm

path1.fr_ samples vb\setupkit\setup1\path.frx
setup1.ba_ samples vb\setupkit\setup1\setup1.bas
setup1.fr_ samples vb\setupkit\setup1\setup1.frm
setup1.gl_ samples vb\setupkit\setup1\setup1.glb
setup1.ma_ samples vb\setupkit\setup1\setup1.mak
setup11.fr_ samples vb\setupkit\setup1\setup1.frx
status.fr_ samples vb\setupkit\setup1\status.frm
shell.dl_ always windows\system\shell.dll
ver.dl_ always windows\system\ver.dll
cbtlib4.dl_ tutorial vb\vb.cbt\cbtlib4.dll
vb.ex_ visual basic vb\vb.exe

***** DISK2 ****

biblio.md_ data access vb\biblio.mdb
msaes110.dl_ data access windows\system\msaes110.dll
vbdb300.dl_ data access windows\system\vbdb300.dll
xbs110.dl_ dbase driver windows\system\xbs110.dll
pdx110.dl_ paradox driver windows\system\pdx110.dll
btrv110.dl_ btrieve driver windows\system\btrv110.dll
external.tx_ data access vb\external.txt
btrieve.tx_ data access vb\btrieve.txt
perform.tx_ data access vb\perform.txt
datamgr.ex_ data access vb\datamgr.exe
datamgr.hl_ data access vb\datamgr.hlp
msafinx.dl_ visual basic windows\system\msafinx.dll
msole2.vb_ visual basic windows\system\msole2.vbx
msolevbx.dl_ visual basic windows\system\msolevbx.dll
ole2nls.dl_ ole windows\system\ole2nls.dll
ole2.dl_ ole windows\system\ole2.dll
aboutbo3.fr_ samples vb\samples\iconworks\aboutbox.frx
aboutbox.fr_ samples vb\samples\iconworks\aboutbox.frm
colorpa1.fr_ samples vb\samples\iconworks\colorpal.frx
colorpal.fr_ samples vb\samples\iconworks\colorpal.frm
iconedi1.fr_ samples vb\samples\iconworks\iconedit.frx
iconedit.fr_ samples vb\samples\iconworks\iconedit.frm
iconwrks.ba_ samples vb\samples\iconworks\iconwrks.bas
iconwrks.gb_ samples vb\samples\iconworks\iconwrks.gbl
iconwrks.hl_ samples vb\samples\iconworks\iconwrks.hlp
iconwrks.ic_ samples vb\samples\iconworks\iconwrks.ico
iconwrks.ma_ samples vb\samples\iconworks\iconwrks.mak
screen.ic_ samples vb\samples\iconworks\screen.ico
toolpal.bm_ samples vb\samples\iconworks\toolpal.bmp
viewico1.fr_ samples vb\samples\iconworks\viewicon.frx
viewicon.fr_ samples vb\samples\iconworks\viewicon.frm
compress.ex_ samples vb\setupkit\kitfiles\compress.exe
compress.tx_ samples vb\setupkit\kitfiles\compress.txt
expand.ex_ samples vb\setupkit\kitfiles\expand.exe
setupa.ex_ samples vb\setupkit\kitfiles\setup.exe
setupa.ls_ samples vb\setupkit\kitfiles\setup.lst
setupkit.dl_ samples vb\setupkit\kitfiles\setupkit.dll
setupwiz.ex_ samples vb\setupkit\kitfiles\setupwiz.exe
setupwiz.hl_ samples vb\setupkit\kitfiles\setupwiz.hlp
setupwiz.in_ samples vb\setupkit\kitfiles\setupwiz.ini
commdlg.dl_ visual basic windows\system\commdlg.dll
ddeml.dl_ visual basic windows\system\ddeml.dll
cbt.ex_ tutorial vb\vb.cbt\cbt.exe

code.ma_ tutorial vb\vb.cbt\code.mak
country.ma_ tutorial vb\vb.cbt\country.mak
form1.fr_ tutorial vb\vb.cbt\form1.frm
form2.fr_ tutorial vb\vb.cbt\form2.frm
formchi.fr_ tutorial vb\vb.cbt\formchi.frm
formchi1.fr_ tutorial vb\vb.cbt\formchi.frx
mdinpad.fr_ tutorial vb\vb.cbt\mdinpad.frm
mdinpad1.fr_ tutorial vb\vb.cbt\mdinpad.frx
payment.fr_ tutorial vb\vb.cbt\payment.frm
payment.ma_ tutorial vb\vb.cbt\payment.mak
sweden.fr_ tutorial vb\vb.cbt\sweden.frm
sweden1.fr_ tutorial vb\vb.cbt\sweden.frx
vb.le_ tutorial vb\vb.cbt\vb.les
vbrun300.dl_ visual basic windows\system\vbrun300.dll
cmdialog.vb_ visual basic windows\system\cmdialog.vbx
grid.vb_ visual basic windows\system\grid.vbx

***** DISK3 ****

autoload.ma_ visual basic vb\autoload.mak
bright.di_ visual basic vb\bright.dib
constant.tx_ visual basic vb\constant.txt
datacons.tx_ visual basic vb\datacons.txt
compobj.dl_ ole windows\system\compobj.dll
ole2conv.dl_ ole windows\system\ole2conv.dll
ole2prox.dl_ ole windows\system\ole2prox.dll
ole2disp.dl_ ole windows\system\ole2disp.dll
storage.dl_ ole windows\system\storage.dll
pastel.di_ visual basic vb\pastel.dib
rainbow.di_ visual basic vb\rainbow.dib
vb.hl_ visual basic vb\vb.hlp

Additional reference words: 3.00
KBCategory:
KBSubcategory: RefsDoc

PACKING.LST for Professonal Edition of VB 2.0 for Windows
Article ID: Q100631

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic programming system
 for Windows, version 2.0

SUMMARY
=======

The following article contains the complete contents of the PACKING.LST
file distributed with Microsoft Professional Edition of Visual Basic
version 2.0 for Windows.

MORE INFORMATION
================

 PACKING.LST

 Disk Contents for Microsoft (R) Visual Basic
 for Windows, Professional Edition
 Version 2.0
 (C) Copyright Microsoft Corporation, 1992

This file lists all the files on the distribution disks provided
with this product.
===
NOTE: Most of the files on the distribution disks are compressed
(indicated by an underscore character "_" in the file extension)
and must be decompressed before they are used.

The Setup program on Disk 1 decompresses files as it installs them.

Files with a PA_ extension decompress to multiple .ICO or .BMP files.

If you need to decompress files manually, you can do so by running
setup from the file manager or program manager in the following way:

1. Choose the Run item from the File menu.
2. Type SETUP.EXE /Z [source file] [destination file]

The /Z switch activates an internal decompression system. SETUP.EXE must be
run from within Windows.

***** DISK1 ****

assorted.pa_ clip art vb\bitmaps\assorted\assorted.pak
vbapi.hl_ control dev kit vb\cdk\vbapi.hlp
hc31.ex_ help compiler vb\hc\hc31.exe
dragdrop.pa_ icons vb\icons\dragdrop\dragdrop.pak
elements.pa_ icons vb\icons\elements\elements.pak
industry.pa_ icons vb\icons\industry\industry.pak
traffic.pa_ icons vb\icons\traffic\traffic.pak

mcimmp.dr_ visual basic vb\intro2vb.exemcimmp.dr_
mmp.dl_ clip art vb\metafile\business\yen.wmfmmp.dl_
oemsetup.in_ data access vb\odbc\vbodbc.hlpoemsetup.inf
proreadm.tx_ always vb\readme.txt
mssetup.ex always msvb2set.tmp_mssetup.exe
mscomstf.dl_ data access vb\odbc\mscomstf.dll
mscustom.dl_ always msvb2set.tmp\mscustom.dll
msdetstf.dl_ data access vb\odbc\msdetstf.dll
msinsstf.dl_ data access vb\odbc\msinsstf.dll
msshlstf.dl_ data access vb\odbc\msshlstf.dll
msuilstf.dl_ data access vb\odbc\msuilstf.dll
packing.ls_ visual basic vb\packing.lst
setup.ex_ always msvb2set.tmp\setup.exe
setup.ls_ always msvb2set.tmp\setup.lst
vbsetup.ex_ always msvb2set.tmp\vbsetup.exe
vbsetup.in_ always msvb2set.tmp\vbsetup.ini
alarm.fr_ samples vb\samples\envir\alarm.frm
alarm.ma_ samples vb\samples\envir\alarm.mak
alarm1.fr_ samples vb\samples\envir\alarm.frx
ver.dl_ always windows\system\ver.dll
vbknowlg.hl_ knowledgebase vb\vbknowlg.hlp
cbt.ex_ tutorial vb\vb.cbt\cbt.exe
vdg.ex_ visual design guide vb\vb.cbt\vdg.exe
vdg.le_ visual design guide vb\vb.cbt\vdg.les
vbrun200.dl_ visual basic windows\system\vbrun200.dll

***** DISK2 ****

win31wh.h9_ windows api vb\winapi\win31wh.hlp
 Split file, part 1 of 3

***** DISK3 ****

win31wh.10_ windows api vb\winapi\win31wh.hlp
 Split file, part 2 of 3

***** DISK4 ****

circlock.bm_ clip art vb\bitmaps\gauge\circlock.bmp
dome.bm_ clip art vb\bitmaps\gauge\dome.bmp
horz.bm_ clip art vb\bitmaps\gauge\horz.bmp
horz1.bm_ clip art vb\bitmaps\gauge\horz1.bmp
semicirc.bm_ clip art vb\bitmaps\gauge\semicirc.bmp
therbot.bm_ clip art vb\bitmaps\gauge\therbot.bmp
therlft.bm_ clip art vb\bitmaps\gauge\therlft.bmp
thermid.bm_ clip art vb\bitmaps\gauge\thermid.bmp
thermidh.bm_ clip art vb\bitmaps\gauge\thermidh.bmp
therrt.bm_ clip art vb\bitmaps\gauge\therrt.bmp
thertop.bm_ clip art vb\bitmaps\gauge\thertop.bmp
vert.bm_ clip art vb\bitmaps\gauge\vert.bmp
volbot.bm_ clip art vb\bitmaps\gauge\volbot.bmp
voltop.bm_ clip art vb\bitmaps\gauge\voltop.bmp
toolbar.pa_ clip art vb\bitmaps\toolbar2\toolbar.pak
cdk.tx_ control dev kit vb\cdk\cdk.txt
circ1.c_ control dev kit vb\cdk\circ1\circ1.c
circ1.de_ control dev kit vb\cdk\circ1\circ1.def
circ1.h_ control dev kit vb\cdk\circ1\circ1.h

circ1.rc_ control dev kit vb\cdk\circ1\circ1.rc
circ1.vb_ control dev kit vb\cdk\circ1\circ1.vbx
circ1cd.bm_ control dev kit vb\cdk\circ1\circ1cd.bmp
circ1cu.bm_ control dev kit vb\cdk\circ1\circ1cu.bmp
circ1eu.bm_ control dev kit vb\cdk\circ1\circ1eu.bmp
circ1mu.bm_ control dev kit vb\cdk\circ1\circ1mu.bmp
makefil1._ control dev kit vb\cdk\circ1\makefile
circ2.c_ control dev kit vb\cdk\circ2\circ2.c
circ2.de_ control dev kit vb\cdk\circ2\circ2.def
circ2.h_ control dev kit vb\cdk\circ2\circ2.h
circ2.rc_ control dev kit vb\cdk\circ2\circ2.rc
circ2.vb_ control dev kit vb\cdk\circ2\circ2.vbx
circ2cd.bm_ control dev kit vb\cdk\circ2\circ2cd.bmp
circ2cu.bm_ control dev kit vb\cdk\circ2\circ2cu.bmp
circ2eu.bm_ control dev kit vb\cdk\circ2\circ2eu.bmp
circ2mu.bm_ control dev kit vb\cdk\circ2\circ2mu.bmp
makefil2._ control dev kit vb\cdk\circ2\makefile
cntr.c_ control dev kit vb\cdk\cntr\cntr.c
cntr.de_ control dev kit vb\cdk\cntr\cntr.def
cntr.h_ control dev kit vb\cdk\cntr\cntr.h
cntr.rc_ control dev kit vb\cdk\cntr\cntr.rc
cntr.vb_ control dev kit vb\cdk\cntr\cntr.vbx
cntrcd.bm_ control dev kit vb\cdk\cntr\cntrcd.bmp
cntrcu.bm_ control dev kit vb\cdk\cntr\cntrcu.bmp
cntreu.bm_ control dev kit vb\cdk\cntr\cntreu.bmp
cntrmu.bm_ control dev kit vb\cdk\cntr\cntrmu.bmp
makefil4._ control dev kit vb\cdk\cntr\makefile
libentry.as_ control dev kit vb\cdk\libentry.asm
libentry.ob_ control dev kit vb\cdk\libentry.obj
makefil5._ control dev kit vb\cdk\pal\makefile
pal.c_ control dev kit vb\cdk\pal\pal.c
pal.de_ control dev kit vb\cdk\pal\pal.def
pal.h_ control dev kit vb\cdk\pal\pal.h
pal.rc_ control dev kit vb\cdk\pal\pal.rc
pal.vb_ control dev kit vb\cdk\pal\pal.vbx
palcd.bm_ control dev kit vb\cdk\pal\palcd.bmp
palcu.bm_ control dev kit vb\cdk\pal\palcu.bmp
paleu.bm_ control dev kit vb\cdk\pal\paleu.bmp
palmu.bm_ control dev kit vb\cdk\pal\palmu.bmp
makefil7._ control dev kit vb\cdk\push\makefile
push.c_ control dev kit vb\cdk\push\push.c
push.de_ control dev kit vb\cdk\push\push.def
push.h_ control dev kit vb\cdk\push\push.h
push.rc_ control dev kit vb\cdk\push\push.rc
push.vb_ control dev kit vb\cdk\push\push.vbx
pushcd.bm_ control dev kit vb\cdk\push\pushcd.bmp
pushcu.bm_ control dev kit vb\cdk\push\pushcu.bmp
pusheu.bm_ control dev kit vb\cdk\push\pusheu.bmp
pushmu.bm_ control dev kit vb\cdk\push\pushmu.bmp
pushvb1.h_ control dev kit vb\cdk\push\pushvb1.h
vbapi.h_ control dev kit vb\cdk\vbapi.h
vbapi.li_ control dev kit vb\cdk\vbapi.lib
vbx.rc_ control dev kit vb\cdk\vbx.rcv
makefil9._ control dev kit vb\cdk\xlist\makefile
xlist.c_ control dev kit vb\cdk\xlist\xlist.c
xlist.de_ control dev kit vb\cdk\xlist\xlist.def
xlist.h_ control dev kit vb\cdk\xlist\xlist.h

xlist.rc_ control dev kit vb\cdk\xlist\xlist.rc
xlist.vb_ control dev kit vb\cdk\xlist\xlist.vbx
xlistcd.bm_ control dev kit vb\cdk\xlist\xlistcd.bmp
xlistcu.bm_ control dev kit vb\cdk\xlist\xlistcu.bmp
xlisteu.bm_ control dev kit vb\cdk\xlist\xlisteu.bmp
xlistmu.bm_ control dev kit vb\cdk\xlist\xlistmu.bmp
xlistvb1.h_ control dev kit vb\cdk\xlist\xlistvb1.h
arrows.pa_ icons vb\icons\arrows\arrows.pak
comm.pa_ icons vb\icons\comm\comm.pak
computer.pa_ icons vb\icons\computer\computer.pak
flags.pa_ icons vb\icons\flags\flags.pak
mail.pa_ icons vb\icons\mail\mail.pak
misc.pa_ icons vb\icons\misc\misc.pak
office.pa_ icons vb\icons\office\office.pak
writing.pa_ icons vb\icons\writing\writing.pak
vbodbca.dl_ data access vb\bcdll\vbodbca.dll
calc.fr_ samples vb\samples\calc\calc.frm
calc.ic_ samples vb\samples\calc\calc.ico
calc.ma_ samples vb\samples\calc\calc.mak
calc1.fr_ samples vb\samples\calc\calc.frx
calldll1.fr_ samples vb\samples\calldlls\calldlls.frx
calldlls.fr_ samples vb\samples\calldlls\calldlls.frm
calldlls.ma_ samples vb\samples\calldlls\calldlls.mak
declares.ba_ samples vb\samples\calldlls\declares.bas
frmmenus.fr_ samples vb\samples\calldlls\frmmenus.frm
array.fr_ samples vb\samples\controls\array.frm
button.fr_ samples vb\samples\controls\button.frm
button1.fr_ samples vb\samples\controls\button.frx
check.fr_ samples vb\samples\controls\check.frm
controls.ma_ samples vb\samples\controls\controls.mak
listbox.fr_ samples vb\samples\controls\listbox.frm
main2.fr_ samples vb\samples\controls\main.frm
multi.fr_ samples vb\samples\controls\multi.frm
number.fr_ samples vb\samples\controls\number.frm
scroll.fr_ samples vb\samples\controls\scroll.frm
wordwrap.fr_ samples vb\samples\controls\wordwrap.frm
dde.ba_ samples vb\samples\dde\dde.bas
dde.ma_ samples vb\samples\dde\dde.mak
execute.fr_ samples vb\samples\dde\execute.frm
main.fr_ samples vb\samples\dde\main.frm
seek.fr_ samples vb\samples\filectls\seek.frm
winseek.ma_ samples vb\samples\filectls\winseek.mak
fileproc.ba_ samples vb\samples\fileio\fileproc.bas
recedit.ba_ samples vb\samples\fileio\recedit.bas
recedit.fr_ samples vb\samples\fileio\recedit.frm
recedit.ma_ samples vb\samples\fileio\recedit.mak
bfly1.bm_ samples vb\samples\firstapp\bfly1.bmp
bfly2.bm_ samples vb\samples\firstapp\bfly2.bmp
butterf.fr_ samples vb\samples\firstapp\butterf.frm
butterf.ma_ samples vb\samples\firstapp\butterf.mak
butterf1.fr_ samples vb\samples\firstapp\butterf.frx
picview.fr_ samples vb\samples\firstapp\picview.frm
picview.ma_ samples vb\samples\firstapp\picview.mak
flip.fr_ samples vb\samples\flip\flip.frm
flip.ma_ samples vb\samples\flip\flip.mak
form.ic_ samples vb\samples\flip\form.ico
blanker.fr_ samples vb\samples\graphics\blanker.frm

blanker.ma_ samples vb\samples\graphics\blanker.mak
blanker1.fr_ samples vb\samples\graphics\blanker.frx
loan.fr_ samples vb\samples\grid\loan.frm
loan.ma_ samples vb\samples\grid\loan.mak
loan1.fr_ samples vb\samples\grid\loan.frx
aboutdl1.fr_ samples vb\samples\jigsaw\aboutdlg.frx
aboutdlg.fr_ samples vb\samples\jigsaw\aboutdlg.frm
global2.ba_ samples vb\samples\jigsaw\global.bas
jigsaw.fr_ samples vb\samples\jigsaw\jigsaw.frm
jigsaw.gb_ samples vb\samples\jigsaw\jigsaw.gbl
jigsaw.ma_ samples vb\samples\jigsaw\jigsaw.mak
jigsaw1.fr_ samples vb\samples\jigsaw\jigsaw.frx
jsprocs.ba_ samples vb\samples\jigsaw\jsprocs.bas
misc20.ic_ samples vb\samples\jigsaw\misc20.ico
openfile.fr_ samples vb\samples\jigsaw\openfile.frm
maillst.fr_ samples vb\samples\mapi\maillst.frm
mailoptf.fr_ samples vb\samples\mapi\mailoptf.frm
mailsup.ba_ samples vb\samples\mapi\mailsup.bas
msgview.fr_ samples vb\samples\mapi\msgview.frm
newmsg.fr_ samples vb\samples\mapi\newmsg.frm
vbmail.fr_ samples vb\samples\mapi\vbmail.frm
vbmail.ma_ samples vb\samples\mapi\vbmail.mak
fileope2.fr_ samples vb\samples\mdi\fileopen.frm
fileope5.fr_ samples vb\samples\mdi\fileopen.frx
filopen.ba_ samples vb\samples\mdi\filopen.bas
find1.fr_ samples vb\samples\mdi\find.frm
mdi.fr_ samples vb\samples\mdi\mdi.frm
mdi1.fr_ samples vb\samples\mdi\mdi.frx
mdinote.ba_ samples vb\samples\mdi\mdinote.bas
mdinote.ma_ samples vb\samples\mdi\mdinote.mak
notepad.fr_ samples vb\samples\mdi\notepad.frm
about.fr_ samples vb\samples\menus\about.frm
edit.fr_ samples vb\samples\menus\edit.frm
opensave.fr_ samples vb\samples\menus\opensave.frm
textedit.ba_ samples vb\samples\menus\textedit.bas
textedit.ma_ samples vb\samples\menus\textedit.mak
click.fr_ samples vb\samples\mouse\click.frm
drag.fr_ samples vb\samples\mouse\drag.frm
drag1.fr_ samples vb\samples\mouse\drag.frx
main1.fr_ samples vb\samples\mouse\main.frm
mouse.ma_ samples vb\samples\mouse\mouse.mak
scribble.fr_ samples vb\samples\mouse\scribble.frm
frmmain.fr_ samples vb\samples\objects\frmmain.frm
multinst.fr_ samples vb\samples\objects\multinst.frm
multinst.ma_ samples vb\samples\objects\multinst.mak
objects.ba_ samples vb\samples\objects\objects.bas
objects.ma_ samples vb\samples\objects\objects.mak
about1.fr_ samples vb\samples\ole\about.frm
file.fr_ samples vb\samples\ole\file.frm
file1.fr_ samples vb\samples\ole\file.frx
insert.fr_ samples vb\samples\ole\insert.frm
links.fr_ samples vb\samples\ole\links.frm
oledemo.ba_ samples vb\samples\ole\oledemo.bas
oledemo.ma_ samples vb\samples\ole\oledemo.mak
olemain.fr_ samples vb\samples\ole\olemain.frm
regview.fr_ samples vb\samples\ole\regview.frm
regview.ic_ samples vb\samples\ole\regview.ico

regview.ma_ samples vb\samples\ole\regview.mak
regview1.fr_ samples vb\samples\ole\regview.frx
infofor1.fr_ samples vb\samples\picclip\infoform.frx
infoform.fr_ samples vb\samples\picclip\infoform.frm
redtop.fr_ samples vb\samples\picclip\redtop.frm
redtop.ma_ samples vb\samples\picclip\redtop.mak
redtop1.fr_ samples vb\samples\picclip\redtop.frx
fontdial.fr_ samples vb\samples\print\fontdial.frm
tccancel.fr_ samples vb\samples\print\tccancel.frm
timecar1.fr_ samples vb\samples\print\timecard.frx
timecard.fr_ samples vb\samples\print\timecard.frm
timecard.ma_ samples vb\samples\print\timecard.mak
cansend.fr_ samples vb\samples\vbterm\cansend.frm
termset.fr_ samples vb\samples\vbterm\termset.frm
termset1.fr_ samples vb\samples\vbterm\termset.frx
vbterm.fr_ samples vb\samples\vbterm\vbterm.frm
vbterm.gl_ samples vb\samples\vbterm\vbterm.glo
vbterm.ma_ samples vb\samples\vbterm\vbterm.mak
vbterm1.fr_ samples vb\samples\vbterm\vbterm.frx
message.fr_ samples vb\setupkit\setup1\message.frm
path.fr_ samples vb\setupkit\setup1\path.frm
path1.fr_ samples vb\setupkit\setup1\path.frx
setup1.ba_ samples vb\setupkit\setup1\setup1.bas
setup1.fr_ samples vb\setupkit\setup1\setup1.frm
setup1.gl_ samples vb\setupkit\setup1\setup1.glb
setup1.ma_ samples vb\setupkit\setup1\setup1.mak
setup11.fr_ samples vb\setupkit\setup1\setup1.frx
status.fr_ samples vb\setupkit\setup1\status.frm
shell.dl_ always windows\system\shell.dll
cbtlib4.dl_ tutorial vb\vb.cbt\cbtlib4.dll
vb.li_ always windows\system\vb.lic
win31wh.11_ windows api vb\winapi\win31wh.hlp
 Split file, part 3 of 3
winhelp.ex_ always windows\winhelp.exe

***** DISK5 ****

circ3.c_ control dev kit vb\cdk\circ3\circ3.c
circ3.de_ control dev kit vb\cdk\circ3\circ3.def
circ3.h_ control dev kit vb\cdk\circ3\circ3.h
circ3.hl_ control dev kit vb\cdk\circ3\circ3.hlp
circ3.hp_ control dev kit vb\cdk\circ3\circ3.hpj
circ3.rc_ control dev kit vb\cdk\circ3\circ3.rc
circ3.rt_ control dev kit vb\cdk\circ3\circ3.rtf
circ3.vb_ control dev kit vb\cdk\circ3\circ3.vbx
circ3cd.bm_ control dev kit vb\cdk\circ3\circ3cd.bmp
circ3cu.bm_ control dev kit vb\cdk\circ3\circ3cu.bmp
circ3eu.bm_ control dev kit vb\cdk\circ3\circ3eu.bmp
circ3mu.bm_ control dev kit vb\cdk\circ3\circ3mu.bmp
circ3vb1.h_ control dev kit vb\cdk\circ3\circ3vb1.h
makefil3._ control dev kit vb\cdk\circ3\makefile
makefil6._ control dev kit vb\cdk\pix\makefile
pictblt.c_ control dev kit vb\cdk\pix\pictblt.c
pictblt.h_ control dev kit vb\cdk\pix\pictblt.h
pictblt.ob_ control dev kit vb\cdk\pix\pictblt.obj
pix.c_ control dev kit vb\cdk\pix\pix.c
pix.de_ control dev kit vb\cdk\pix\pix.def

pix.h_ control dev kit vb\cdk\pix\pix.h
pix.rc_ control dev kit vb\cdk\pix\pix.rc
pix.vb_ control dev kit vb\cdk\pix\pix.vbx
pixcd.bm_ control dev kit vb\cdk\pix\pixcd.bmp
pixcu.bm_ control dev kit vb\cdk\pix\pixcu.bmp
pixeu.bm_ control dev kit vb\cdk\pix\pixeu.bmp
pixmu.bm_ control dev kit vb\cdk\pix\pixmu.bmp
pixvb1.h_ control dev kit vb\cdk\pix\pixvb1.h
2darrow1.wm_ clip art vb\metafile\arrows\2darrow1.wmf
2darrow2.wm_ clip art vb\metafile\arrows\2darrow2.wmf
2darrow3.wm_ clip art vb\metafile\arrows\2darrow3.wmf
2darrow4.wm_ clip art vb\metafile\arrows\2darrow4.wmf
3darrow1.wm_ clip art vb\metafile\arrows\3darrow1.wmf
3darrow2.wm_ clip art vb\metafile\arrows\3darrow2.wmf
3darrow3.wm_ clip art vb\metafile\arrows\3darrow3.wmf
3darrow4.wm_ clip art vb\metafile\arrows\3darrow4.wmf
3darrow5.wm_ clip art vb\metafile\arrows\3darrow5.wmf
3darrow6.wm_ clip art vb\metafile\arrows\3darrow6.wmf
3darrow7.wm_ clip art vb\metafile\arrows\3darrow7.wmf
3dxarrow.wm_ clip art vb\metafile\arrows\3dxarrow.wmf
3dxcirar.wm_ clip art vb\metafile\arrows\3dxcirar.wmf
halfarrw.wm_ clip art vb\metafile\arrows\halfarrw.wmf
hortarrw.wm_ clip art vb\metafile\arrows\hortarrw.wmf
hozcirar.wm_ clip art vb\metafile\arrows\hozcirar.wmf
layerarw.wm_ clip art vb\metafile\arrows\layerarw.wmf
lrgearrw.wm_ clip art vb\metafile\arrows\lrgearrw.wmf
medarrw1.wm_ clip art vb\metafile\arrows\medarrw1.wmf
medarrw2.wm_ clip art vb\metafile\arrows\medarrw2.wmf
multarw1.wm_ clip art vb\metafile\arrows\multarw1.wmf
multarw2.wm_ clip art vb\metafile\arrows\multarw2.wmf
multarw3.wm_ clip art vb\metafile\arrows\multarw3.wmf
multarw4.wm_ clip art vb\metafile\arrows\multarw4.wmf
smallarw.wm_ clip art vb\metafile\arrows\smallarw.wmf
tinyarrw.wm_ clip art vb\metafile\arrows\tinyarrw.wmf
vertarrw.wm_ clip art vb\metafile\arrows\vertarrw.wmf
vrtcirar.wm_ clip art vb\metafile\arrows\vrtcirar.wmf
vrtcurar.wm_ clip art vb\metafile\arrows\vrtcurar.wmf
xarrow.wm_ clip art vb\metafile\arrows\xarrow.wmf
dbnmp3.od_ data access vb\odbc\dbnmp3.dll
instcat.sq_ data access vb\odbc\instcat.sql
odbc.in_ data access vb\odbc\odbc.inf
odbc.od_ data access vb\odbc\odbc.dll
odbcadm.ex_ data access vb\odbc\odbcadm.exe
odbcadm.hl_ data access vb\odbc\odbcadm.hlp
odbcinst.od_ data access vb\odbc\odbcinst.dll
odbsetup.ex_ data access vb\odbc\setup.exe
setupi.od_ data access vb\odbc\setupi.dll
sqlsetup.od_ data access vb\odbc\sqlsetup.dll
sqlsrvr.od_ data access vb\odbc\sqlsrvr.dll
startodb.ex_ data access vb\odbc\startodb.exe
vbodbc.hl_ data access vb\odbc\vbodbc.hlp
aboutbo3.fr_ samples vb\samples\iconworks\aboutbox.frx
aboutbox.fr_ samples vb\samples\iconworks\aboutbox.frm
colorpa1.fr_ samples vb\samples\iconworks\colorpal.frx
colorpal.fr_ samples vb\samples\iconworks\colorpal.frm
iconedi1.fr_ samples vb\samples\iconworks\iconedit.frx
iconedit.fr_ samples vb\samples\iconworks\iconedit.frm

iconwrks.ba_ samples vb\samples\iconworks\iconwrks.bas
iconwrks.gb_ samples vb\samples\iconworks\iconwrks.gbl
iconwrks.hl_ samples vb\samples\iconworks\iconwrks.hlp
iconwrks.ic_ samples vb\samples\iconworks\iconwrks.ico
iconwrks.ma_ samples vb\samples\iconworks\iconwrks.mak
savedlg.fr_ samples vb\samples\iconworks\savedlg.frm
savedlg1.fr_ samples vb\samples\iconworks\savedlg.frx
screen.ic_ samples vb\samples\iconworks\screen.ico
toolpal.bm_ samples vb\samples\iconworks\toolpal.bmp
viewico1.fr_ samples vb\samples\iconworks\viewicon.frx
viewicon.fr_ samples vb\samples\iconworks\viewicon.frm
aboutbo1.fr_ samples vb\samples\mci\aboutbox.frm
animate.fr_ samples vb\samples\mci\animate.frm
cd.fr_ samples vb\samples\mci\cd.frm
global3.ba_ samples vb\samples\mci\global.bas
mcitest.ba_ samples vb\samples\mci\mcitest.bas
mcitest.fr_ samples vb\samples\mci\mcitest.frm
mcitest.ma_ samples vb\samples\mci\mcitest.mak
mcitest.mi_ samples vb\samples\mci\mcitest.mid
mcitest.mm_ samples vb\samples\mci\mcitest.mmm
mcitest.wa_ samples vb\samples\mci\mcitest.wav
opendlg.fr_ samples vb\samples\mci\opendlg.frm
wave.fr_ samples vb\samples\mci\wave.frm
delay.fr_ samples vb\samples\pen\delay.frm
delay1.fr_ samples vb\samples\pen\delay.frx
editsubf.fr_ samples vb\samples\pen\editsubf.frm
gestfrm.fr_ samples vb\samples\pen\gestfrm.frm
grafpapr.bm_ samples vb\samples\pen\grafpapr.bmp
inkfrm.fr_ samples vb\samples\pen\inkfrm.frm
iobfrm.fr_ samples vb\samples\pen\iobfrm.frm
iobfrm1.fr_ samples vb\samples\pen\iobfrm.frx
keybrd.fr_ samples vb\samples\pen\keybrd.frm
keybrd1.fr_ samples vb\samples\pen\keybrd.frx
penapi.tx_ samples vb\samples\pen\penapi.txt
penmain.fr_ samples vb\samples\pen\penmain.frm
penmain1.fr_ samples vb\samples\pen\penmain.frx
pensmpl.ma_ samples vb\samples\pen\pensmpl.mak
rcfrm.fr_ samples vb\samples\pen\rcfrm.frm
rulepapr.bm_ samples vb\samples\pen\rulepapr.bmp
skbface.bm_ samples vb\samples\pen\skbface.bmp
transfrm.fr_ samples vb\samples\pen\transfrm.frm
about2.fr_ samples vb\samples\savings\about.frm
about3.fr_ samples vb\samples\savings\about.frx
college.fr_ samples vb\samples\savings\college.frm
college1.fr_ samples vb\samples\savings\college.frx
fileope3.fr_ samples vb\samples\savings\fileopen.frm
fileope4.fr_ samples vb\samples\savings\fileopen.frx
general.fr_ samples vb\samples\savings\general.frm
general1.fr_ samples vb\samples\savings\general.frx
graph.fr_ samples vb\samples\savings\graph.frm
graph1.fr_ samples vb\samples\savings\graph.frx
gridfor1.fr_ samples vb\samples\savings\gridform.frx
gridform.fr_ samples vb\samples\savings\gridform.frm
mdiform.fr_ samples vb\samples\savings\mdiform.frm
mdiform1.fr_ samples vb\samples\savings\mdiform.frx
sample.sa_ samples vb\samples\savings\sample.sav
savings.ba_ samples vb\samples\savings\savings.bas

savings.hl_ samples vb\samples\savings\savings.hlp
savings.ma_ samples vb\samples\savings\savings.mak
selform.fr_ samples vb\samples\savings\selform.frm
aboutbo2.fr_ samples vb\samples\vbodbc\aboutbox.frm
aboutbo5.fr_ samples vb\samples\vbodbc\aboutbox.frx
addfield.fr_ samples vb\samples\vbodbc\addfield.frm
cpystru.fr_ samples vb\samples\vbodbc\cpystru.frm
databox.fr_ samples vb\samples\vbodbc\databox.frm
dynagri1.fr_ samples vb\samples\vbodbc\dynagrid.frx
dynagrid.fr_ samples vb\samples\vbodbc\dynagrid.frm
dynaset.fr_ samples vb\samples\vbodbc\dynaset.frm
dynaset1.fr_ samples vb\samples\vbodbc\dynaset.frx
find.fr_ samples vb\samples\vbodbc\find.frm
indexadd.fr_ samples vb\samples\vbodbc\indexadd.frm
join.fr_ samples vb\samples\vbodbc\join.frm
opendb.fr_ samples vb\samples\vbodbc\opendb.frm
query.fr_ samples vb\samples\vbodbc\query.frm
query1.fr_ samples vb\samples\vbodbc\query.frx
replace.fr_ samples vb\samples\vbodbc\replace.frm
replace1.fr_ samples vb\samples\vbodbc\replace.frx
sql.fr_ samples vb\samples\vbodbc\sql.frm
sql1.fr_ samples vb\samples\vbodbc\sql.frx
tables.fr_ samples vb\samples\vbodbc\tables.frm
tables1.fr_ samples vb\samples\vbodbc\tables.frx
tblstru.fr_ samples vb\samples\vbodbc\tblstru.frm
vdmdi.fr_ samples vb\samples\vbodbc\vdmdi.frm
vdmdi1.fr_ samples vb\samples\vbodbc\vdmdi.frx
visdata.ba_ samples vb\samples\vbodbc\visdata.bas
visdata.ic_ samples vb\samples\vbodbc\visdata.ico
visdata.ma_ samples vb\samples\vbodbc\visdata.mak
zoom.fr_ samples vb\samples\vbodbc\zoom.frm
compress.ex_ samples vb\setupkit\kitfiles\compress.exe
compress.tx_ samples vb\setupkit\kitfiles\compress.txt
expand.ex_ samples vb\setupkit\kitfiles\expand.exe
setupa.ex_ samples vb\setupkit\kitfiles\setup.exe
setupa.ls_ samples vb\setupkit\kitfiles\setup.lst
setupkit.dl_ samples vb\setupkit\kitfiles\setupkit.dll
commdlg.dl_ visual basic windows\system\commdlg.dll
ddeml.dl_ visual basic windows\system\ddeml.dll
fx.dl_ visual basic windows\system\fx.dll
olecli.dl_ visual basic windows\system\olecli.dll
code.ma_ tutorial vb\vb.cbt\code.mak
country.ma_ tutorial vb\vb.cbt\country.mak
form1.fr_ tutorial vb\vb.cbt\form1.frm
form2.fr_ tutorial vb\vb.cbt\form2.frm
formchi.fr_ tutorial vb\vb.cbt\formchi.frm
mdinpad.fr_ tutorial vb\vb.cbt\mdinpad.frm
payment.fr_ tutorial vb\vb.cbt\payment.frm
payment.ma_ tutorial vb\vb.cbt\payment.mak
sweden.fr_ tutorial vb\vb.cbt\sweden.frm
vb.le_ tutorial vb\vb.cbt\vb.les
gsw.ex_ controls windows\system\gsw.exe
gswdll.dl_ controls windows\system\gswdll.dll

***** DISK6 ****

bullet.bm_ help compiler vb\hc\bullet.bmp

emdash.bm_ help compiler vb\hc\emdash.bmp
hc31.er_ help compiler vb\hc\hc31.err
helpref.hl_ help compiler vb\hc\helpref.hlp
iconwrks.bm_ help compiler vb\hc\iconwrks.bmp
iconwrks.hp_ help compiler vb\hc\iconwrks.hpj
iconwrks.ph_ help compiler vb\hc\iconwrks.ph
iconwrks.rt_ help compiler vb\hc\iconwrks.rtf
iwedit.sh_ help compiler vb\hc\iwedit.shg
mrbc.ex_ help compiler vb\hc\mrbc.exe
shed.ex_ help compiler vb\hc\shed.exe
shed.hl_ help compiler vb\hc\shed.hlp
track.do_ help compiler vb\hc\track.doc
winhelp.tx_ help compiler vb\hc\winhelp.txt
3dlrsign.wm_ clip art vb\metafile\business\3dlrsign.wmf
alphbord.wm_ clip art vb\metafile\business\alphbord.wmf
alphtrpn.wm_ clip art vb\metafile\business\alphtrpn.wmf
answmach.wm_ clip art vb\metafile\business\answmach.wmf
apptbook.wm_ clip art vb\metafile\business\apptbook.wmf
calcultr.wm_ clip art vb\metafile\business\calcultr.wmf
calendar.wm_ clip art vb\metafile\business\calendar.wmf
cent.wm_ clip art vb\metafile\business\cent.wmf
check.wm_ clip art vb\metafile\business\check.wmf
clipbord.wm_ clip art vb\metafile\business\clipbord.wmf
coins.wm_ clip art vb\metafile\business\coins.wmf
computer.wm_ clip art vb\metafile\business\computer.wmf
copymach.wm_ clip art vb\metafile\business\copymach.wmf
deutsch.wm_ clip art vb\metafile\business\deutsch.wmf
digitals.wm_ clip art vb\metafile\business\digitals.wmf
digitnum.wm_ clip art vb\metafile\business\digitnum.wmf
dime.wm_ clip art vb\metafile\business\dime.wmf
disk35.wm_ clip art vb\metafile\business\disk35.wmf
disk525.wm_ clip art vb\metafile\business\disk525.wmf
dollar.wm_ clip art vb\metafile\business\dollar.wmf
dollars.wm_ clip art vb\metafile\business\dollars.wmf
envlback.wm_ clip art vb\metafile\business\envlback.wmf
envlfrnt.wm_ clip art vb\metafile\business\envlfrnt.wmf
fileclsd.wm_ clip art vb\metafile\business\fileclsd.wmf
fileopen.wm_ clip art vb\metafile\business\fileopen.wmf
guilder.wm_ clip art vb\metafile\business\guilder.wmf
harddisk.wm_ clip art vb\metafile\business\harddisk.wmf
laptop1.wm_ clip art vb\metafile\business\laptop1.wmf
laptop2.wm_ clip art vb\metafile\business\laptop2.wmf
micrchip.wm_ clip art vb\metafile\business\micrchip.wmf
money.wm_ clip art vb\metafile\business\money.wmf
moneybag.wm_ clip art vb\metafile\business\moneybag.wmf
monitor.wm_ clip art vb\metafile\business\monitor.wmf
monystk1.wm_ clip art vb\metafile\business\monystk1.wmf
monystk2.wm_ clip art vb\metafile\business\monystk2.wmf
nickel.wm_ clip art vb\metafile\business\nickel.wmf
payphone.wm_ clip art vb\metafile\business\payphone.wmf
pcomputr.wm_ clip art vb\metafile\business\pcomputr.wmf
penny.wm_ clip art vb\metafile\business\penny.wmf
peseta.wm_ clip art vb\metafile\business\peseta.wmf
phone.wm_ clip art vb\metafile\business\phone.wmf
postcard.wm_ clip art vb\metafile\business\postcard.wmf
pound.wm_ clip art vb\metafile\business\pound.wmf
poundbag.wm_ clip art vb\metafile\business\poundbag.wmf

printer.wm_ clip art vb\metafile\business\printer.wmf
prntout1.wm_ clip art vb\metafile\business\prntout1.wmf
prntout2.wm_ clip art vb\metafile\business\prntout2.wmf
prntout3.wm_ clip art vb\metafile\business\prntout3.wmf
quarter.wm_ clip art vb\metafile\business\quarter.wmf
rolodex.wm_ clip art vb\metafile\business\rolodex.wmf
ruble.wm_ clip art vb\metafile\business\ruble.wmf
satedish.wm_ clip art vb\metafile\business\satedish.wmf
satelit1.wm_ clip art vb\metafile\business\satelit1.wmf
satelit2.wm_ clip art vb\metafile\business\satelit2.wmf
typewrtr.wm_ clip art vb\metafile\business\typewrtr.wmf
yen.wm_ clip art vb\metafile\business\yen.wmf
anibuton.vb_ controls windows\system\anibuton.vbx
cmdialog.vb_ controls windows\system\cmdialog.vbx
gauge.vb_ controls windows\system\gauge.vbx
graph.vb_ controls windows\system\graph.vbx
grid.vb_ controls windows\system\grid.vbx
keystat.vb_ controls windows\system\keystat.vbx
mci.vb_ controls windows\system\mci.vbx
mscomm.vb_ controls windows\system\mscomm.vbx
msmapi.vb_ controls windows\system\msmapi.vbx
msmasked.vb_ controls windows\system\msmasked.vbx
oleclien.vb_ controls windows\system\oleclien.vbx
pencntrl.vb_ controls windows\system\pencntrl.vbx
picclip.vb_ controls windows\system\picclip.vbx
spin.vb_ controls windows\system\spin.vbx
threed.vb_ controls windows\system\threed.vbx
win30api.tx_ windows api vb\winapi\win30api.txt
win31api.hl_ windows api vb\winapi\win31api.hlp
win31ext.tx_ windows api vb\winapi\win31ext.txt

***** DISK7 ****

autopro.ma_ controls vb\autoload.mak
bright.di_ visual basic vb\bright.dib
demo.ex_ controls vb\demo.exe
intro2vb.ex_ visual basic vb\intro2vb.exe
pastel.di_ visual basic vb\pastel.dib
proconst.tx_ visual basic vb\constant.txt
rainbow.di_ visual basic vb\rainbow.dib
samples.tx_ visual basic vb\samples.txt
ctrlref.hl_ controls vb\ctrlref.hlp
vb.ex_ visual basic vb\vb.exe

***** DISK8 ****

vb.hl_ visual basic vb\vb.hlp

Additional reference words: 2.00
KBCategory:
KBSubcategory: RefsDoc

README.TXT for Professional Edition of VB Ver 2.0 for Windows
Article ID: Q100632

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic programming system
 for Windows, version 2.0

SUMMARY
=======

The following article contains the complete contents of the README.TXT file
distributed with Microsoft Professional Edition of Visual Basic version 2.0
for Windows.

MORE INFORMATION
================

 README.TXT

 Release Notes for Microsoft (R) Visual Basic (TM) Professional Edition

 Version 2.00

 (C) Copyright Microsoft Corporation, 1992

This document contains release notes for Microsoft Visual Basic for Windows
Professional Edition version 2.0. Information in this document is more
current than that in the manuals or online Help.

 **
 Read Part 1 - Software Installation Information - before installing.
 **

========
Contents
========

Part Description
---- -----------
 1 Software Installation Information

 2 Notes and Tips

 3 Notes for Microsoft Visual Basic "Language Reference"

 4 Notes for Microsoft Visual Basic "Programmer's Guide"

 5 Updated Information

 6 Custom Controls

 7 Help Compiler

 8 ODBC Information

Part 1: Software Installation Information
===

Before installing Visual Basic 2.0 Professional Edition, you should make
backup copies of all the distribution disks. Do not write-protect the
distribution disks you use to install Visual Basic. If you do, Visual
Basic cannot be successfully installed.

SETUP.EXE is a Windows application; that is, it is run from Windows rather
than from the MS-DOS prompt. SETUP.EXE will only run in Windows Standard or
Enhanced mode. It will not run in Real mode. You can determine how Windows
is configured on your computer by choosing About from the Help menu in the
Program Manager.

To install Visual Basic 2.0 Professional, use Program Manager or File
Manager to start SETUP.EXE as you would any other Windows-based
application. For example, if you are installing from drive A:

 - From the Program Manager File menu, choose Run.

 - In the Run dialog box, type A:SETUP and choose OK.

 -or-

 - From the File Manager, double-click on the SETUP.EXE file icon
 on drive A.

Most of the files on these disks are compressed and must be expanded before
they can be used. For Visual Basic to work properly, you must install the
files using SETUP.EXE. You cannot simply copy the files to your hard disk.

If you want to install Visual Basic 2.0 Professional Edition in a directory
other than where you've installed Visual Basic 1.0, you should specify this
on the Installation Location screen. If you install Visual Basic 2.0
Professional Edition in the same directory as Visual Basic 1.0, most of the
program, sample, icon, and tutorial files will be updated.

During setup, Visual Basic installs the custom controls GRID.VBX and
OLECLIEN.VBX into your Windows system directory. If you have custom
controls with the same name as the custom controls included with Visual
Basic 2.0, and these controls are not the same GRID.VBX and OLECLIEN.VBX as
were distributed with the Microsoft Professional Toolkit for Visual Basic
1.0, then Visual Basic installs GRID.VBX and OLECLIEN.VBX in your Visual
Basic directory.

The WINHELP.EXE and COMMDLG.DLL files included with Visual Basic 2.0 are
the latest English versions of these files. They will upgrade an older
version, regardless of the language (e.g., French and German) of the older
version.

IMPORTANT INFORMATION ABOUT ODBC INSTALLATION

After installing Visual Basic Professional, in order to install ODBC

functionality you must run the setup ODBC program from the end of the
Visual Basic Professional setup, or from the ODBC setup icon, or from
setup in the \VB\ODBC subdirectory. Follow the instructions from the setup
program and refer to the ODBC setup documentation in your documentation
set. ODBC Setup is a Windows program and should be run from within
Windows.

Part 2 : Notes and Tips
=======================

Using Command-Line Options

Visual Basic can be started using command line options. The syntax is:

VB [[/R[UN] fname] [/C[MD] commandline]]|[/M[AKE] projname[.mak] [exename]]

Option Explanation

/RUN Runs the application specified by the filename (fname).

/CMD Allows you to input a command-line argument that you can later
 use via the Command function. See online Help for more
 information.

/MAK Loads the project named in projname and executes the Make .EXE
 command from the File menu to create an executable file
 whose name is provided as exename. See the "Microsoft Visual
 Basic "Programmer's Guide" for more information.

The fname parameter to the /RUN option must have a .MAK extension if it
is to be treated as a project file. Any file with a different extension
will be loaded as either a form or module into a new project.

Copying Icons to the Clipboard

To copy an icon (.ICO file) from a picture box to the Clipboard, you must
set its AutoRedraw property to True, and copy its Image property to the
Clipboard by specifying the CF_BITMAP format in the SetData method.

Limit on Size of MultiLine Text Boxes

The Text property of text box with MultiLine = True is limited to
approximately 30K of text, while the limit is 32K if MultiLine = False.

Setting the Visible Property of Modal Forms to False
--

If you set the Visible property of a modal form to False, the form becomes
a modeless form. If you need to return a form to a modal state after hiding
it, use formid.Show 1 instead of formid.Visible = True.

Shortcut Keys Interrupting the "Learning Microsoft Visual Basic" Lessons
--

"Learning Microsoft Visual Basic" uses shortcut keys for accessing property
settings in the Properties window. These keys may conflict with Shortcut
keys you have set for making another Windows application active (set in the
Program Manager Item Properties dialog.) Specifically, Ctrl+Shift+H, W, L,
T, N, C, and V are used by Learning Visual Basic. If you have these key
combinations as Shortcut keys for other Windows-based applications, you may
accidentally activate these applications while running "Learning Visual
Basic" is running.

Limit on Number of Objects per Application
--

There is a limit of 512 distinct objects in an application. Visual Basic
uses 80 of these for global objects, data types, and standard controls.
Thus, your application can have up to 432 form types or control classes.
Each custom control class and form type that you create for your
application is included in this limit. Each form uses one object and each
custom control uses two. Note that custom controls may have multiple
control classes in one .VBX file. This corrects the documentation in
Appendix D, "Specifications and Limitations" in the "Programmers Guide."

Creating Toolbars or Status Bars with Borders on Top or Bottom
--

Setting BorderStyle to 1 - Fixed Single creates a border on all four sides
of an aligned picture box. If you want to create a toolbar or status bar
with borders on only the top or bottom, set BorderStyle to 0 - None. Then,
write code in the Picture_Resize event to create a line each time a
form is shown or resized. Either place a line control in the picture box
and reset the X1, X2, Y1, and Y2 properties, or include the Line statement.
For example:

Picture1.Line (0, Picture1.Height) - (Picture1.Width, Picture1.Height)

OLE Client Custom Control Error Messages

The following error messages correct and add to those contained in the
"Language Reference."

31005 Object closed
31006 Can't close
31007 Can't paste
31008 Invalid property value
31009 Object not empty
31010 Property is read-only
31011 Type of object cannot be created
31012 No object name
31013 No document
31014 This action is reserved for future use
31015 Cannot execute object
31016 Server class was not specified before the registration
 database was accessed
31017 Invalid format on set data or set data text
31018 Server Class is not set
31019 Source document is not set
31020 Source item is not set

Closing Help Files

The code to close a Visual Basic application's Help file when the
application concludes is as follows:

Declare Function WinHelp Lib "user.exe" (ByVal hWnd As Integer, ByVal
helpfilename$, ByVal hCommand As Integer, ByVal ddata As Long) As Integer

Sub Form_Unload (Cancel As Integer)
 Const HELP_QUIT = 2
 ErrCode% = WinHelp(Form1.hWnd, app.HelpFile, HELP_QUIT, 0)
End Sub

Creating Single-Column or Single-Row Grids
--

To create a single-column or single-row grid where the column or row is not
fixed, set the appropriate Col and FixedCol properties at run time.

Naming Conflicts

Do not name any control "Line" or "Timer" as you will be unable to
access its properties. The prohibited names conflict with the names of the
Line method and Timer function respectively.

Picture formats accepted by DDE client Picture controls
--

In Windows version 3.1 and above, picture controls acting as clients in a
DDE conversation will accept CF_METAFILE, CF_BITMAP, and CF_DIB format
graphics. In Windows version 3.0, DDE client Picture controls accept only
CF_BITMAP and CF_DIB format graphics.

Implicit Methods for Custom Controls

There are methods that apply to controls and forms which are not exposed
via the VBM_METHOD interface. Custom controls have no way of altering,
supplementing, or removing these methods when invoked on instances of the
custom control. Examples of these methods are PrintForm, Refresh, LinkPoke,
LinkRequest, LinkExecute, and SetFocus. The LinkPoke, LinkRequest, and
LinkExecute methods apply only to controls with standard DDE properties;
SetFocus applies only to controls with MODEL_fFocusOk.

Specifying the Size Property of a Field Object
--

When specifying the Size property of a field object that you are creating,
you should use the length of the corresponding Visual Basic data type.
Visual Basic only allows you to create fields using the sizes of the Visual
Basic data types. For instance, if you are creating a Currency field, you
should create a field of eight bytes. If you are copying one field to
another, use the setting of the Type property of the source field to
determine the type, and hence the size, of the destination field.

Part 3 : Notes for Microsoft Visual Basic "Language Reference"
==

Page Section\Note

82 DateValue Function

 Change the last sentence in the second paragraph of the Remarks
 section as follows:

 "For example, in addition to recognizing 12/30/1991 and 12/30/91,
 DateValue recognizes December 30, 1991 and Dec 30, 1991.

320 Print Method

 In the description of expressionlist at the top of the page, the
 term "text expression" should read "string expression".

386 Shell Function

 Change the second sentence in the description of commandstring as
 follows:

 "If the program name in commandstring does not include .BAT, .COM,
 .EXE, or .PIF extension, .EXE is assumed."

489 Not Operator

 See online Help for more current information.

None Me Keyword

 The Me keyword is not documented in the "Language Reference." See
 online Help for complete information.

Part 4: Notes for Microsoft Visual Basic "Programmer's Guide"
===

Page Section\Note
---- ------------

 4 Visual Basic Documentation

 In the second bullet list item, replace "eight" with "seven".

 6 Using Online Documentation

 In the second sentence, replace "eight" with "seven".

 8 Figure 1.2 The Contents Screen

 This illustration does not depict the actual Contents screen.

 15 Starting Visual Basic

 In the second table item, under "Menu equivalent," change to read,
 "Start command on the Run menu".

 19 Setting Properties

 In the second paragraph of step 3, change "Clicking the DOWN ARROW
 key at the right ..." to "Clicking the down arrow at the right ..."

 23 Simple Animation

 In the Setting column of the table, change "(White)" to "(Black)".

 In the paragraph following the table, change "... and the BackColor
 property to 0 (Black)" to "... and the BackColor property to
 black"

201 Identifying the Current Mode

 In the paragraph at the bottom of the page, the phrase after the
 semicolon should read, "the unavailable buttons appear dimmed on
 the toolbar."

210 Using the Calls Dialog

 Remove the ")" from the end of step 1.

216 Editing or Deleting a Watch Expression

 In the numbered list at the top of the page, remove the "(s)" from
 the word "expression" in the second step.

220 Assigning Values to Variables and Properties

 In the paragraph following the three lines of example statements,
 change to read, "The first statement alters a property of the
 currently active form, the second alters a property of the VScroll1
 control, and the third assigns a value to a variable."

227 How to Handle Errors

 The list of steps is incorrectly numbered. The paragraph now
 numbered 2 should not be numbered. Remove the number 2 from that
 paragraph. Then replace the 3 in the following paragraph with 2 and
 replace 4 in the last paragraph with 3.

229 Exiting an Error-Handling Routine

 In the table that describes ways to exit an error-handling
 routine, make the following changes:

 Replace the Resume entry with:

 Resume (0) Program execution resumes with the statement that
 caused the error or the most recently executed call
 out of the procedure containing the error-handling

 routine.

 Change the Resume Next entry by removing the period at the end of
 the sentence and adding "or with the statement immediately
 following the most recently executed call out of the procedure
 containing the error-handling routine."

 Change the Resume line by removing the period at the end of the
 sentence and adding, "that must be in the same procedure as the
 error handler."

234 Change the note at the bottom of the page as follows:

 Remove everything after the first sentence. Add the following:

 If a Resume statement is executed, control returns to the most
 recently executed call out of the procedure containing the
 error handler. If a Resume Next statement is executed, control
 returns to whatever statement in the procedure containing the
 error-handling routine immediately follows the most recently
 executed call out of that procedure. For example, in the Calls
 list shown in Figure 10.3, if procedure A has an enabled error
 handler and Procedure B and C don't, an error occurring in
 Procedure C will be handled by Procedure A's error handler. If
 that error handler uses a Resume statement, upon exit, the program
 continues with a call to Procedure B. However, if Procedure A's
 error handler uses a Resume Next statement, upon exit, the program
 will continue with whatever statement in Procedure A follows the
 call to Procedure B. In neither case does the error handler return
 directly to either the procedure or the statement where the error
 originally occurred.

420 The Directory List Box

 In the code at the bottom of the page, change the first line as
 follows:

 GoHigher = 0 ' Initialize for currently expanded directory.

421 The File List Box

 Change the first paragraph as follows:

 "The file list box displays files contained in the directory
 specified by the Path property at run time. You can display all
 the files in the current directory on the current drive using the
 following statement:"

 The paragraph that begins, "If you set the System property..."
 may be misleading. The following additional information is provided
 to clarify meaning.

 The default value for the System and Hidden properties is False.
 The default value for the Normal, Archive, and ReadOnly properties
 is True.

 When Normal = True, any file that does not have the System or

 Hidden attribute is displayed. When Normal = False, you can still
 display files with ReadOnly and/or Archive attributes by setting
 the appropriate attribute to True (i.e., ReadOnly = True,
 Archive = True).

 When System = True, any file with the System attribute is displayed
 unless it also has the Hidden attribute.

 When Hidden = True, any file with the Hidden attribute is displayed
 unless it also has the System attribute.

 To display any file that has both Hidden and System among its
 attributes, both Hidden and System must be True. However, files
 having either Hidden or System attributes will be displayed as well.

424 Writing Code for the WinSeek Application

 In the second paragraph, change the first sentence as follows:

 "The WinSeek application resolves this ambiguity by determining if
 the path of the dirList box is different from the currently
 highlighted directory."

425 The cmdSearch_Click Procedure

 In the sample code shown, change the If statement as follows:

 If dirList.Path <> dirList.List (dirList.ListIndex) Then

482 Change the last sentence in the paragraph at the top of the page
 as follows:

 "When the user activates the object (the graph), the server
 application (MS Graph) is invoked by the client application (Visual
 Basic), and the object's data is opened for editing."

Part 5: Updated Information
===========================

Online Resource Information

The WIN30API.TXT and WIN31EXT.TXT files are ASCII text files containing the
functions and constants in the Microsoft Windows 3.0 and 3.1 API, declared
in the format used by Microsoft Visual Basic.

They include:

- External procedure declarations for all the Microsoft Windows API
 functions that can be called from Visual Basic.

- Global constant declarations for all the constants used by the Microsoft
 Windows API.

- Type declarations for the user-defined types (structures) used by the
 Microsoft Windows API.

WIN30API.TXT is too large for the Notepad editor supplied with Microsoft
Windows, but it can be loaded by Microsoft Word. To use WIN30API.TXT, load
it into an editor (such as Microsoft Word) that can handle large files.
Copy the declarations you want and paste them into any module in your
Visual Basic application.

The file WIN31API.HLP contains the WIN30API.TXT and WIN31EXT.TXT file
declarations in help file format. Use this file to easily cut and paste
declarations into your Visual Basic 2.0 programs.

NOTE: Some of the Windows API declarations are very long. Some editors will
wrap these onto a second line, and will copy them as multiple lines rather
than as a single line. Declarations in Visual Basic cannot span lines, so
if you paste these as multiple lines Visual Basic reports an error. If this
happens, you can either adjust the margins in the editor before copying, or
remove the line break after pasting.

You can place the declarations that you copy from the WIN31API.HLP file in
the Declarations section of any form or module. You can also place the
constant declarations anywhere in any form or module if you remove the
Global keyword.

Once you have pasted the declaration for a Windows API routine (as well as
any associated constant and type declarations) into your application, you
can call that routine as you would call any Visual Basic procedure.

WARNING: Visual Basic cannot verify the data you pass to Microsoft Windows
API routines. Calling a Microsoft Windows API routine with an invalid
argument can result in unpredictable behavior - your application, Visual
Basic, or Windows could crash or hang. When experimenting with Windows API
routines, save your work often.

The WIN31WH.HLP file contains complete reference information for the
functions, messages, and data structures in the Microsoft Windows 3.1
API. This is the same file that is shipped with the Microsoft Windows
Software Development Kit. Open it by double-clicking the WIN SDK Help
icon in the Visual Basic group in the Windows Program Manager.

WIN31WH.HLP provides detailed information about each of the functions,
messages, and data structures in the Microsoft Windows API.

Installing Online Resource Files

WINSDK.HLP, APIXREF.HLP, and WINAPI.TXT are old versions of Windows 3.0 API
support files that were included with the Visual Basic 1.0 Professional
Toolkit. These files are not deleted when you install Visual Basic
2.0, but you may want to delete them yourself. The installed files
WIN31WH.HLP, WIN30API.TXT, WIN31EXT.TXT, and WIN31API.HLP are replacements
for the older files.

Part 6: Custom Control Reference
================================

Installing Custom Controls

Visual Basic 2.0 installs custom controls in the Windows system directory.
If you previously installed the Visual Basic 1.0 Professional Toolkit, you
may have old versions of controls in the \VB\VBX directory. You should
remove any older versions of controls you may have on your machine.

VB.LIC

Please make sure that the copy of VB.LIC in the \windows\system directory
is the only one on your computer. Otherwise, you may encounter problems
loading the new custom controls.

If an older VB.LIC is being used, or you have a missing or incorrectly
installed VB.LIC file, the following message appears when you try to add
the custom control file to your project:

 "License file for custom control not found. You do not have an
 appropriate license to use this custom control in the design
 environment."

Animated Button (ANIBUTON.VBX) Update

"Value" is the default value of the control.

Unlike the standard command button, when you press [Enter] on an animated
command button, a Click event is NOT generated. You can use the KeyPress
event to detect a click if necessary.

Communications Control (MSCOMM.VBX) Update
--

The port address and interrupt address can be changed from the Windows
Control Panel.

The following defined constants for the Handshaking property have been
added to the CONSTANT.TXT file:

 Global Const MSCOMM_HANDSHAKE_NONE = 0
 Global Const MSCOMM_HANDSHAKE_XONXOFF = 1
 Global Const MSCOMM_HANDSHAKE_RTS = 2
 Global Const MSCOMM_HANDSHAKE_RTSXONXOFF = 3

InBufferCount property: This property is Read/Write at run time.

SThreshold property: The MSCOMM_EV_SEND event is only fired once, when the
number of characters crosses the SThreshold. For example, if SThreshold
equals five the MSCOMM_EV_SEND event occurs only when the number of
characters drops from five to four in the output queue. If there are never
more than SThreshold characters in the output queue the event is never
fired.

OnComm Event: The MSCOMM_ER_RXOVER only gets set when the receive queue
overflows. It will not get set after a Chr$(26), EOF.

PortOpen property: If either the DTREnable or RTSEnable properties are set

to True before the port is opened, the properties are set to False when the
port is closed. Otherwise, the DTR and RTS lines remain in their previous
state.

The DSR_EVENT is only fired when DSR goes from -1 to 0.

Graph (GRAPH.VBX) Update

The Graph control includes the Palette property. Refer to online Help.

MAPI (Messaging API) Update

The RESOLVE_NAME action resets RecipType.

Masked Edit Control (MSMASKED.VBX) Update

The Text property is not available at design time.

Multimedia Control (MCI.VBX) Update

All references to the DisplayhWnd property should be hWndDisplay.

DeviceType property should refer to "Videodisc" not "Videodisk" as a
device.

TimeFormat property should include
 2 MCI_FORMAT_MSF Minutes, seconds, and frames are packed into a
 four-byte integer. From least significant byte to
 most significant byte, the individual data values
 follow:

 Minutes (least significant byte)
 Seconds
 Frames
 Unused (most significant byte)

Pen Controls (PENCNTRL.VBX) Update
--

The error constants are incorrect on pages 278, 280, 287, 288, and 297. The
correct values are defined in online Help.

The Ink On Bitmap and On-Screen Keyboard controls refer to CONSTANT.TXT.
The correct file for constant definitions is PENAPI.TXT in the
SAMPLES\PEN directory.

For the SKB_Change event of the On-Screen Keyboard Control, there
is one additional possible value for the ChangeCode parameter:

 SKN_TERMINATED The on-screen keyboard has been closed.

This constant is defined in the file PENAPI.TXT.

The Distribution Note at the beginning of the chapter "Pen Edit
Controls" should say the custom control file is named PENCNTRL.VBX.

To facilitate the interaction between Microsoft Windows For Pen API and
Visual Basic, we have created two new APIs in the PENCNTRL.VBX file:

 CPointerToVBType(ByVal lpSrc As Long, vbDest As Any, ByVal cNum By
Integer)

 - Copies cNum number of bytes from a memory location pointed to by lpSrc
 and places them in the vbDest memory location.

 VBTypeToCPointer(vbSrc As Any, ByVal lpDest As Long, ByVal cNum By
Integer)

 - This reverses the process, copying from Visual Basic memory to a
 location specified by lpDest.

These two functions are used when dealing with RcResult or when
pen data is required to be accessed by a Visual Basic program.

Shipping PENWIN.DLL with Your Application

PENWIN.DLL is a fully redistributable component of Windows for
Pen Computing. Because applications will seek to leverage the
Pen API - Visual Basic controls in particular - PENWIN.DLL can
be shipped with your application. There are some considerations
to keep in mind when shipping PENWIN.DLL with your application:

1. PENWIN.DLL functions ONLY under Windows 3.1. It WILL NOT
 WORK with Windows 3.0 because it functions only as an
 installable device driver (a feature not present in Windows
 3.0).

2. As with other redistributable components (such as COMMDLG.DLL
 and the OLE libraries), it is the responsibility of the
 application vendor to determine whether PENWIN.DLL has
 already been installed (there is a GetSystemMetrics() call
 for this) and to ensure that the version of PENWIN.DLL with
 the latest version stamping is the one that is running. These
 issues are the same for all redistributable components, and
 further information is contained in the Windows SDK.

3. Unlike some of the other redistributable components, if your
 application installs PENWIN.DLL for the first time, or
 replaces the current version with a later one, Windows will
 have to be restarted. As an installable driver PENWIN.DLL
 can be loaded only at Windows boot time. Restarting Windows
 can be accomplished via an ExitWindows() call or by simply
 prompting the user to do so.

 NOTE: To install PENWIN.DLL on a Windows 3.1 system follow the
 directions listed under the "Pen Sample" in the file SAMPLES.TXT
 in the SAMPLES subdirectory.

4. PENWIN.DLL may be in either the \WINDOWS or the \WINDOWS\SYSTEM

 directory. The default will be \WINDOWS, but since Windows for Pen
 Computing is an OEM product, Microsoft cannot completely control where
 PENWIN.DLL is located on a particular machine.

To get a good feel for the Pen Windows controls, you are encouraged to
use and experiment with the Pen sample application (PENSMPL.MAK).

Spin Control (SPIN.VBX) Update

Removed TabIndex property.

3D Command Button (THREED.VBX) Update

Under certain video drivers, the 3D Command button will not print when
performing a PrintForm operation. This problem occurs when printing
from the design environment or at run-time. If you are distributing an
application that causes 3D Command buttons to be printed you may want to
implement an alternative method of printing a form as outlined in
KnowledgeBase article Q84066, "How to Print Entire VB Form and
Control the Printed Size." This article can be found in the online
KnowledgeBase provided with the Visual Basic 2.0 Professional Edition.

Part 7: Help Compiler
=====================

HC31.EXE and Using Protected Mode Memory
--

Version 3.10.504 of the Windows Help Compiler (HC31.EXE) requires
protected- mode memory. A number of system configurations support
protected- mode memory by providing DMPI or VCPI servers. The following
configurations provide protected-mode memory access to the Help Compiler,
although not all configurations have been fully tested.

* Microsoft Windows version 3.0 or 3.1
 The best way to access protected mode memory is to run the Help Compiler
 in an MS-DOS session under Windows 3.1 enhanced or standard modes. You
 can also compile in an MS-DOS session under Windows 3.0 enhanced mode.

* EMM386 under MS-DOS
 The Help Compiler runs under EMM386 (if the noems option is not used and
 enough EMS memory is allocated to EMM386).

* 386Max
 The Help Compiler runs as a DMPI client with version 6.01 of 386Max
 (the version shipped with C7 or its equivalent). The Help Compiler may
 also work with some earlier versions of 386Max as a VCPI client if
 enough EMS memory is configured.

* QEMM
 Under version 6.02 of QEMM, the Help Compiler runs as a DPMI
 client. It should also work under some earlier versions of QEMM
 as a VCPI client, provided it is configured with enough EMS memory.

* EMS Memory Requirements

 You need enough EMS memory to hold the Help Compiler and dynamic data
 being compiled. The exact amount of memory needed depends heavily on the
 size of the help file you want to compile. Between 1MB and 2MB should
 meet most needs.

Part 8: ODBC Information
========================

If you use Windows for Workgroups and the ODBC object layer with
SQL Sever installed on a Novell NetWare LAN, you will not be able to
access SQL Server from ODBC. The Network Integration Kit (NIK) will
resolve this problem. For details please contact Microsoft Product
Support at the numbers listed in the Visual Basic Help file.

The Database object now supports the QueryTimeout property. Refer to the
online help.

For information on distributing Visual Basic ODBC applications, refer to
the online Help contents screen.

Additional reference words: 2.00
KBCategory:
KBSubcategory: RefsDoc

PACKING.LST for Professional Edition of VB 3.0 for Windows
Article ID: Q100633

The information in this article applies to:

 - The Professional Edition of Microsoft Visual Basic for Windows,
 version 3.0

SUMMARY
=======

The following article contains the complete contents of the PACKING.LST
file distributed with Microsoft Professional Edition of Visual Basic
version 3.0 for Windows.

MORE INFORMATION
================

PACKING.LST

Disk Contents for Microsoft (R) Visual Basic for Windows,
Professional Edition Version 3.0
(C) Copyright Microsoft Corporation, 1993

This file lists all the files on the distribution disks provided
with this product.
===
NOTE: Most of the files on the distribution disks are compressed
(indicated by an underscore character "_" in the file extension)
and must be decompressed before they are used.

The Setup program on Disk 1 decompresses files as it installs them.

Files with a PA_ extension decompress to multiple .ICO files. These
files cannot be decompressed manually.

If you need to decompress files manually, you can do so by running
setup from the file manager or program manager in the following way:

1. Choose the Run item from the File menu.
2. Type SETUP.EXE /Z [source file] [destination file]

The /Z switch activates an internal decompression system. SETUP.EXE must be
run from within Windows.

***** DISK1 ****

assorted.pa_ clip art vb\bitmaps\assorted\assorted.pak
circlock.bm_ clip art vb\bitmaps\gauge\circlock.bmp
dome.bm_ clip art vb\bitmaps\gauge\dome.bmp
horz.bm_ clip art vb\bitmaps\gauge\horz.bmp
horz1.bm_ clip art vb\bitmaps\gauge\horz1.bmp
semicirc.bm_ clip art vb\bitmaps\gauge\semicirc.bmp
therbot.bm_ clip art vb\bitmaps\gauge\therbot.bmp

therlft.bm_ clip art vb\bitmaps\gauge\therlft.bmp
thermid.bm_ clip art vb\bitmaps\gauge\thermid.bmp
thermidh.bm_ clip art vb\bitmaps\gauge\thermidh.bmp
therrt.bm_ clip art vb\bitmaps\gauge\therrt.bmp
thertop.bm_ clip art vb\bitmaps\gauge\thertop.bmp
vert.bm_ clip art vb\bitmaps\gauge\vert.bmp
volbot.bm_ clip art vb\bitmaps\gauge\volbot.bmp
voltop.bm_ clip art vb\bitmaps\gauge\voltop.bmp
outbmps.pa_ clip art vb\bitmaps\outbmps\outbmps.pak
toolbar.pa_ clip art vb\bitmaps\toolbar3\toolbar.pak
circ1.c_ control dev kit vb\cdk\circ1\circ1.c
circ1.de_ control dev kit vb\cdk\circ1\circ1.def
circ1.h_ control dev kit vb\cdk\circ1\circ1.h
circ1.rc_ control dev kit vb\cdk\circ1\circ1.rc
circ1.vb_ control dev kit vb\cdk\circ1\circ1.vbx
circ1cd.bm_ control dev kit vb\cdk\circ1\circ1cd.bmp
circ1cu.bm_ control dev kit vb\cdk\circ1\circ1cu.bmp
circ1eu.bm_ control dev kit vb\cdk\circ1\circ1eu.bmp
circ1mu.bm_ control dev kit vb\cdk\circ1\circ1mu.bmp
makefil1._ control dev kit vb\cdk\circ1\makefile
circ2.c_ control dev kit vb\cdk\circ2\circ2.c
circ2.de_ control dev kit vb\cdk\circ2\circ2.def
circ2.h_ control dev kit vb\cdk\circ2\circ2.h
circ2.rc_ control dev kit vb\cdk\circ2\circ2.rc
circ2.vb_ control dev kit vb\cdk\circ2\circ2.vbx
circ2cd.bm_ control dev kit vb\cdk\circ2\circ2cd.bmp
circ2cu.bm_ control dev kit vb\cdk\circ2\circ2cu.bmp
circ2eu.bm_ control dev kit vb\cdk\circ2\circ2eu.bmp
circ2mu.bm_ control dev kit vb\cdk\circ2\circ2mu.bmp
makefil2._ control dev kit vb\cdk\circ2\makefile
cntr.c_ control dev kit vb\cdk\cntr\cntr.c
cntr.de_ control dev kit vb\cdk\cntr\cntr.def
cntr.h_ control dev kit vb\cdk\cntr\cntr.h
cntr.rc_ control dev kit vb\cdk\cntr\cntr.rc
cntr.vb_ control dev kit vb\cdk\cntr\cntr.vbx
cntrcd.bm_ control dev kit vb\cdk\cntr\cntrcd.bmp
cntrcu.bm_ control dev kit vb\cdk\cntr\cntrcu.bmp
cntreu.bm_ control dev kit vb\cdk\cntr\cntreu.bmp
cntrmu.bm_ control dev kit vb\cdk\cntr\cntrmu.bmp
makefil4._ control dev kit vb\cdk\cntr\makefile
makefil5._ control dev kit vb\cdk\pal\makefile
pal.c_ control dev kit vb\cdk\pal\pal.c
pal.de_ control dev kit vb\cdk\pal\pal.def
pal.h_ control dev kit vb\cdk\pal\pal.h
pal.rc_ control dev kit vb\cdk\pal\pal.rc
pal.vb_ control dev kit vb\cdk\pal\pal.vbx
palcd.bm_ control dev kit vb\cdk\pal\palcd.bmp
palcu.bm_ control dev kit vb\cdk\pal\palcu.bmp
paleu.bm_ control dev kit vb\cdk\pal\paleu.bmp
palmu.bm_ control dev kit vb\cdk\pal\palmu.bmp
makefil7._ control dev kit vb\cdk\push\makefile
push.c_ control dev kit vb\cdk\push\push.c
push.de_ control dev kit vb\cdk\push\push.def
push.h_ control dev kit vb\cdk\push\push.h
push.rc_ control dev kit vb\cdk\push\push.rc
push.vb_ control dev kit vb\cdk\push\push.vbx
pushcd.bm_ control dev kit vb\cdk\push\pushcd.bmp

pushcu.bm_ control dev kit vb\cdk\push\pushcu.bmp
pusheu.bm_ control dev kit vb\cdk\push\pusheu.bmp
pushmu.bm_ control dev kit vb\cdk\push\pushmu.bmp
pushvb1.h_ control dev kit vb\cdk\push\pushvb1.h
vbapi.hl_ control dev kit vb\cdk\vbapi.hlp
hc31.ex_ help compiler vb\hc\hc31.exe
arrows.pa_ icons vb\icons\arrows\arrows.pak
comm.pa_ icons vb\icons\comm\comm.pak
computer.pa_ icons vb\icons\computer\computer.pak
dragdrop.pa_ icons vb\icons\dragdrop\dragdrop.pak
elements.pa_ icons vb\icons\elements\elements.pak
flags.pa_ icons vb\icons\flags\flags.pak
industry.pa_ icons vb\icons\industry\industry.pak
mail.pa_ icons vb\icons\mail\mail.pak
misc.pa_ icons vb\icons\misc\misc.pak
office.pa_ icons vb\icons\office\office.pak
traffic.pa_ icons vb\icons\traffic\traffic.pak
writing.pa_ icons vb\icons\writing\writing.pak
mcimmp.dr_ never mcimmp.dr_
mmp.dl_ never mmp.dl_
oemsetup.in_ never oemsetup.inf
vboa300.dl_ ole windows\system\vboa300.dll
dispcalc.ex_ ole vb\dispcalc.exe
dispcalc.re_ ole vb\dispcalc.reg
proreadm.tx_ always vb\readme.txt
mssetup.ex always msvb2set.tmp_mssetup.exe
mscomstf.dl_ data access vb\odbc\mscomstf.dll
mscustom.dl_ always msvb2set.tmp\mscustom.dll
msdetstf.dl_ data access vb\odbc\msdetstf.dll
msinsstf.dl_ data access vb\odbc\msinsstf.dll
msshlstf.dl_ data access vb\odbc\msshlstf.dll
msuilstf.dl_ data access vb\odbc\msuilstf.dll
packing.ls_ visual basic vb\packing.lst
setup.ex_ always msvb2set.tmp\setup.exe
setup.ls_ always msvb2set.tmp\setup.lst
vbsetup.ex_ always msvb2set.tmp\vbsetup.exe
vbsetup.in_ always msvb2set.tmp\vbsetup.ini
calc.fr_ samples vb\samples\calc\calc.frm
calc.ic_ samples vb\samples\calc\calc.ico
calc.ma_ samples vb\samples\calc\calc.mak
calc1.fr_ samples vb\samples\calc\calc.frx
calldll1.fr_ samples vb\samples\calldlls\calldlls.frx
calldlls.fr_ samples vb\samples\calldlls\calldlls.frm
calldlls.ma_ samples vb\samples\calldlls\calldlls.mak
declares.ba_ samples vb\samples\calldlls\declares.bas
frmmenus.fr_ samples vb\samples\calldlls\frmmenus.frm
array.fr_ samples vb\samples\controls\array.frm
button.fr_ samples vb\samples\controls\button.frm
button1.fr_ samples vb\samples\controls\button.frx
check.fr_ samples vb\samples\controls\check.frm
controls.ma_ samples vb\samples\controls\controls.mak
listbox.fr_ samples vb\samples\controls\listbox.frm
main2.fr_ samples vb\samples\controls\main.frm
multi.fr_ samples vb\samples\controls\multi.frm
number.fr_ samples vb\samples\controls\number.frm
scroll.fr_ samples vb\samples\controls\scroll.frm
wordwrap.fr_ samples vb\samples\controls\wordwrap.frm

biblio.fr_ samples vb\samples\datactrl\biblio.frm
biblio1.fr_ samples vb\samples\datactrl\biblio.frx
biblio.ma_ samples vb\samples\datactrl\biblio.mak
datactl.ba_ samples vb\samples\datactrl\datactl.bas
dde.ba_ samples vb\samples\dde\dde.bas
dde.ma_ samples vb\samples\dde\dde.mak
execute.fr_ samples vb\samples\dde\execute.frm
main.fr_ samples vb\samples\dde\main.frm
alarm.fr_ samples vb\samples\envir\alarm.frm
alarm.ma_ samples vb\samples\envir\alarm.mak
alarm1.fr_ samples vb\samples\envir\alarm.frx
seek.fr_ samples vb\samples\filectls\seek.frm
winseek.ma_ samples vb\samples\filectls\winseek.mak
fileproc.ba_ samples vb\samples\fileio\fileproc.bas
recedit.ba_ samples vb\samples\fileio\recedit.bas
recedit.fr_ samples vb\samples\fileio\recedit.frm
recedit.ma_ samples vb\samples\fileio\recedit.mak
bfly1.bm_ samples vb\samples\firstapp\bfly1.bmp
bfly2.bm_ samples vb\samples\firstapp\bfly2.bmp
butterf.fr_ samples vb\samples\firstapp\butterf.frm
butterf.ma_ samples vb\samples\firstapp\butterf.mak
butterf1.fr_ samples vb\samples\firstapp\butterf.frx
picview.fr_ samples vb\samples\firstapp\picview.frm
picview.ma_ samples vb\samples\firstapp\picview.mak
blanker.fr_ samples vb\samples\graphics\blanker.frm
blanker.ma_ samples vb\samples\graphics\blanker.mak
blanker1.fr_ samples vb\samples\graphics\blanker.frx
loan.fr_ samples vb\samples\grid\loan.frm
loan.ma_ samples vb\samples\grid\loan.mak
loan1.fr_ samples vb\samples\grid\loan.frx
filopen.ba_ samples vb\samples\mdi\filopen.bas
find1.fr_ samples vb\samples\mdi\find.frm
mdi.fr_ samples vb\samples\mdi\mdi.frm
mdi1.fr_ samples vb\samples\mdi\mdi.frx
mdinote.ba_ samples vb\samples\mdi\mdinote.bas
mdinote.ma_ samples vb\samples\mdi\mdinote.mak
notepad.fr_ samples vb\samples\mdi\notepad.frm
about.fr_ samples vb\samples\menus\about.frm
edit.fr_ samples vb\samples\menus\edit.frm
textedit.ba_ samples vb\samples\menus\textedit.bas
textedit.ma_ samples vb\samples\menus\textedit.mak
click.fr_ samples vb\samples\mouse\click.frm
drag.fr_ samples vb\samples\mouse\drag.frm
drag1.fr_ samples vb\samples\mouse\drag.frx
main1.fr_ samples vb\samples\mouse\main.frm
mouse.ma_ samples vb\samples\mouse\mouse.mak
scribble.fr_ samples vb\samples\mouse\scribble.frm
frmmain.fr_ samples vb\samples\objects\frmmain.frm
multinst.fr_ samples vb\samples\objects\multinst.frm
multinst.ma_ samples vb\samples\objects\multinst.mak
objects.ba_ samples vb\samples\objects\objects.bas
objects.ma_ samples vb\samples\objects\objects.mak
about1.fr_ samples vb\samples\ole\about.frm
ole2chld.fr_ samples vb\samples\ole\ole2chld.frm
ole2demo.ma_ samples vb\samples\ole\ole2demo.mak
ole2mdi.fr_ samples vb\samples\ole\ole2mdi.frm
ole2mod1.ba_ samples vb\samples\ole\ole2mod1.bas

ole2mod2.ba_ samples vb\samples\ole\ole2mod2.bas
oleauto.ba_ samples vb\samples\ole\oleauto.bas
oleauto.fr_ samples vb\samples\ole\oleauto.frm
oleauto.ma_ samples vb\samples\ole\oleauto.mak
infofor1.fr_ samples vb\samples\picclip\infoform.frx
infoform.fr_ samples vb\samples\picclip\infoform.frm
redtop.fr_ samples vb\samples\picclip\redtop.frm
redtop.ma_ samples vb\samples\picclip\redtop.mak
redtop1.fr_ samples vb\samples\picclip\redtop.frx
fontdial.fr_ samples vb\samples\print\fontdial.frm
tccancel.fr_ samples vb\samples\print\tccancel.frm
timecar1.fr_ samples vb\samples\print\timecard.frx
timecard.fr_ samples vb\samples\print\timecard.frm
timecard.ma_ samples vb\samples\print\timecard.mak
cansend.fr_ samples vb\samples\vbterm\cansend.frm
termset.fr_ samples vb\samples\vbterm\termset.frm
termset1.fr_ samples vb\samples\vbterm\termset.frx
vbterm.fr_ samples vb\samples\vbterm\vbterm.frm
vbterm.gl_ samples vb\samples\vbterm\vbterm.glo
vbterm.ma_ samples vb\samples\vbterm\vbterm.mak
vbterm1.fr_ samples vb\samples\vbterm\vbterm.frx
dialer.ma_ samples vb\samples\vbterm\dialer.mak
dialer.fr_ samples vb\samples\vbterm\dialer.frm
message.fr_ samples vb\setupkit\setup1\message.frm
path.fr_ samples vb\setupkit\setup1\path.frm
path1.fr_ samples vb\setupkit\setup1\path.frx
setup1.ba_ samples vb\setupkit\setup1\setup1.bas
setup1.fr_ samples vb\setupkit\setup1\setup1.frm
setup1.gl_ samples vb\setupkit\setup1\setup1.glb
setup1.ma_ samples vb\setupkit\setup1\setup1.mak
setup11.fr_ samples vb\setupkit\setup1\setup1.frx
status.fr_ samples vb\setupkit\setup1\status.frm
shell.dl_ always windows\system\shell.dll
ver.dl_ always windows\system\ver.dll
vbknowlg.hl_ knowledgebase vb\vbknowlg.hlp
cbt.ex_ tutorial vb\vb.cbt\cbt.exe
cbtlib4.dl_ tutorial vb\vb.cbt\cbtlib4.dll
vdg.ex_ visual design guide vb\vb.cbt\vdg.exe
vdg.le_ visual design guide vb\vb.cbt\vdg.les
vb.li_ always windows\system\vb.lic

***** DISK2 ****

win31wh.h1_ windows api vb\winapi\win31wh.hlp
 Split file, part 1 of 2

***** DISK3 ****

cdk.tx_ control dev kit vb\cdk\cdk.txt
tn001.tx_ control dev kit vb\cdk\tn001.txt
tn002.tx_ control dev kit vb\cdk\tn002.txt
libentry.as_ control dev kit vb\cdk\libentry.asm
libentry.ob_ control dev kit vb\cdk\libentry.obj
makefil6._ control dev kit vb\cdk\pix\makefile
pictblt.c_ control dev kit vb\cdk\pix\pictblt.c
pictblt.h_ control dev kit vb\cdk\pix\pictblt.h
pix.c_ control dev kit vb\cdk\pix\pix.c

pix.de_ control dev kit vb\cdk\pix\pix.def
pix.h_ control dev kit vb\cdk\pix\pix.h
pix.rc_ control dev kit vb\cdk\pix\pix.rc
pix.vb_ control dev kit vb\cdk\pix\pix.vbx
pixcd.bm_ control dev kit vb\cdk\pix\pixcd.bmp
pixcu.bm_ control dev kit vb\cdk\pix\pixcu.bmp
pixeu.bm_ control dev kit vb\cdk\pix\pixeu.bmp
pixmu.bm_ control dev kit vb\cdk\pix\pixmu.bmp
pixvb1.h_ control dev kit vb\cdk\pix\pixvb1.h
vbapi.h_ control dev kit vb\cdk\vbapi.h
vbapi.li_ control dev kit vb\cdk\vbapi.lib
vbx.rc_ control dev kit vb\cdk\vbx.rcv
wps.ex_ control dev kit vb\cdk\wps.exe
makefil9._ control dev kit vb\cdk\xlist\makefile
xlist.c_ control dev kit vb\cdk\xlist\xlist.c
xlist.de_ control dev kit vb\cdk\xlist\xlist.def
xlist.h_ control dev kit vb\cdk\xlist\xlist.h
xlist.rc_ control dev kit vb\cdk\xlist\xlist.rc
xlist.vb_ control dev kit vb\cdk\xlist\xlist.vbx
xlistcd.bm_ control dev kit vb\cdk\xlist\xlistcd.bmp
xlistcu.bm_ control dev kit vb\cdk\xlist\xlistcu.bmp
xlisteu.bm_ control dev kit vb\cdk\xlist\xlisteu.bmp
xlistmu.bm_ control dev kit vb\cdk\xlist\xlistmu.bmp
xlistvb1.h_ control dev kit vb\cdk\xlist\xlistvb1.h
maillst.fr_ samples vb\samples\mapi\maillst.frm
maillst1.fr_ samples vb\samples\mapi\maillst.frx
mailoptf.fr_ samples vb\samples\mapi\mailoptf.frm
mailsup.ba_ samples vb\samples\mapi\mailsup.bas
msgview.fr_ samples vb\samples\mapi\msgview.frm
msgview1.fr_ samples vb\samples\mapi\msgview.frx
newmsg.fr_ samples vb\samples\mapi\newmsg.frm
vbmail.fr_ samples vb\samples\mapi\vbmail.frm
vbmail1.fr_ samples vb\samples\mapi\vbmail.frx
vbmail.ma_ samples vb\samples\mapi\vbmail.mak
firsttab.bm_ samples vb\samples\msout\firsttab.bmp
lasttab.bm_ samples vb\samples\msout\lasttab.bmp
midtab.bm_ samples vb\samples\msout\midtab.bmp
phone.fr_ samples vb\samples\msout\phone.frm
phone1.fr_ samples vb\samples\msout\phone.frx
phone.ma_ samples vb\samples\msout\phone.mak
phone.md_ samples vb\samples\msout\phone.mdb
delay.fr_ samples vb\samples\pen\delay.frm
delay1.fr_ samples vb\samples\pen\delay.frx
editsubf.fr_ samples vb\samples\pen\editsubf.frm
gestfrm.fr_ samples vb\samples\pen\gestfrm.frm
grafpapr.bm_ samples vb\samples\pen\grafpapr.bmp
inkfrm.fr_ samples vb\samples\pen\inkfrm.frm
iobfrm.fr_ samples vb\samples\pen\iobfrm.frm
iobfrm1.fr_ samples vb\samples\pen\iobfrm.frx
keybrd.fr_ samples vb\samples\pen\keybrd.frm
keybrd1.fr_ samples vb\samples\pen\keybrd.frx
penapi.tx_ samples vb\samples\pen\penapi.txt
penmain.fr_ samples vb\samples\pen\penmain.frm
penmain1.fr_ samples vb\samples\pen\penmain.frx
pensmpl.ma_ samples vb\samples\pen\pensmpl.mak
rcfrm.fr_ samples vb\samples\pen\rcfrm.frm
rulepapr.bm_ samples vb\samples\pen\rulepapr.bmp

skbface.bm_ samples vb\samples\pen\skbface.bmp
transfrm.fr_ samples vb\samples\pen\transfrm.frm
win31wh.h2_ windows api vb\winapi\win31wh.hlp
 Split file, part 2 of 2

***** DISK4 ****

biblio.md_ data access vb\biblio.mdb
circ3.c_ control dev kit vb\cdk\circ3\circ3.c
circ3.de_ control dev kit vb\cdk\circ3\circ3.def
circ3.h_ control dev kit vb\cdk\circ3\circ3.h
circ3.hl_ control dev kit vb\cdk\circ3\circ3.hlp
circ3.hp_ control dev kit vb\cdk\circ3\circ3.hpj
circ3.rc_ control dev kit vb\cdk\circ3\circ3.rc
circ3.rt_ control dev kit vb\cdk\circ3\circ3.rtf
circ3.vb_ control dev kit vb\cdk\circ3\circ3.vbx
circ3cd.bm_ control dev kit vb\cdk\circ3\circ3cd.bmp
circ3cu.bm_ control dev kit vb\cdk\circ3\circ3cu.bmp
circ3eu.bm_ control dev kit vb\cdk\circ3\circ3eu.bmp
circ3mu.bm_ control dev kit vb\cdk\circ3\circ3mu.bmp
circ3vb1.h_ control dev kit vb\cdk\circ3\circ3vb1.h
circ3vb2.h_ control dev kit vb\cdk\circ3\circ3vb2.h
makefil3._ control dev kit vb\cdk\circ3\makefile
xbs110.dl_ dbase driver windows\system\xbs110.dll
pdx110.dl_ paradox driver windows\system\pdx110.dll
btrv110.dl_ btrieve driver windows\system\btrv110.dll
external.tx_ data access vb\external.txt
btrieve.tx_ data access vb\btrieve.txt
perform.tx_ data access vb\perform.txt
datamgr.ex_ data access vb\datamgr.exe
datamgr.hl_ data access vb\datamgr.hlp
2darrow1.wm_ clip art vb\metafile\arrows\2darrow1.wmf
2darrow2.wm_ clip art vb\metafile\arrows\2darrow2.wmf
2darrow3.wm_ clip art vb\metafile\arrows\2darrow3.wmf
2darrow4.wm_ clip art vb\metafile\arrows\2darrow4.wmf
3darrow1.wm_ clip art vb\metafile\arrows\3darrow1.wmf
3darrow2.wm_ clip art vb\metafile\arrows\3darrow2.wmf
3darrow3.wm_ clip art vb\metafile\arrows\3darrow3.wmf
3darrow4.wm_ clip art vb\metafile\arrows\3darrow4.wmf
3darrow5.wm_ clip art vb\metafile\arrows\3darrow5.wmf
3darrow6.wm_ clip art vb\metafile\arrows\3darrow6.wmf
3darrow7.wm_ clip art vb\metafile\arrows\3darrow7.wmf
3dxarrow.wm_ clip art vb\metafile\arrows\3dxarrow.wmf
3dxcirar.wm_ clip art vb\metafile\arrows\3dxcirar.wmf
halfarrw.wm_ clip art vb\metafile\arrows\halfarrw.wmf
hortarrw.wm_ clip art vb\metafile\arrows\hortarrw.wmf
hozcirar.wm_ clip art vb\metafile\arrows\hozcirar.wmf
layerarw.wm_ clip art vb\metafile\arrows\layerarw.wmf
lrgearrw.wm_ clip art vb\metafile\arrows\lrgearrw.wmf
medarrw1.wm_ clip art vb\metafile\arrows\medarrw1.wmf
medarrw2.wm_ clip art vb\metafile\arrows\medarrw2.wmf
multarw1.wm_ clip art vb\metafile\arrows\multarw1.wmf
multarw2.wm_ clip art vb\metafile\arrows\multarw2.wmf
multarw3.wm_ clip art vb\metafile\arrows\multarw3.wmf
multarw4.wm_ clip art vb\metafile\arrows\multarw4.wmf
smallarw.wm_ clip art vb\metafile\arrows\smallarw.wmf
tinyarrw.wm_ clip art vb\metafile\arrows\tinyarrw.wmf

vertarrw.wm_ clip art vb\metafile\arrows\vertarrw.wmf
vrtcirar.wm_ clip art vb\metafile\arrows\vrtcirar.wmf
vrtcurar.wm_ clip art vb\metafile\arrows\vrtcurar.wmf
xarrow.wm_ clip art vb\metafile\arrows\xarrow.wmf
dbnmp3.od_ sql server driver vb\odbc\dbnmp3.dl_
instcat.sq_ sql server driver vb\odbc\instcat.sql
drvssrvr.hl_ sql server driver vb\odbc\drvssrvr.hl_
sqlsrvr.od_ sql server driver vb\odbc\sqlsrvr.dl_
aboutbo3.fr_ samples vb\samples\iconworks\aboutbox.frx
aboutbox.fr_ samples vb\samples\iconworks\aboutbox.frm
colorpa1.fr_ samples vb\samples\iconworks\colorpal.frx
colorpal.fr_ samples vb\samples\iconworks\colorpal.frm
iconedi1.fr_ samples vb\samples\iconworks\iconedit.frx
iconedit.fr_ samples vb\samples\iconworks\iconedit.frm
iconwrks.ba_ samples vb\samples\iconworks\iconwrks.bas
iconwrks.gb_ samples vb\samples\iconworks\iconwrks.gbl
iconwrks.hl_ samples vb\samples\iconworks\iconwrks.hlp
iconwrks.ic_ samples vb\samples\iconworks\iconwrks.ico
iconwrks.ma_ samples vb\samples\iconworks\iconwrks.mak
screen.ic_ samples vb\samples\iconworks\screen.ico
toolpal.bm_ samples vb\samples\iconworks\toolpal.bmp
viewico1.fr_ samples vb\samples\iconworks\viewicon.frx
viewicon.fr_ samples vb\samples\iconworks\viewicon.frm
aboutbo1.fr_ samples vb\samples\mci\aboutbox.frm
aboutbo6.fr_ samples vb\samples\mci\aboutbox.frx
animate.fr_ samples vb\samples\mci\animate.frm
cd.fr_ samples vb\samples\mci\cd.frm
cd1.fr_ samples vb\samples\mci\cd.frx
global3.ba_ samples vb\samples\mci\global.bas
mcitest.ba_ samples vb\samples\mci\mcitest.bas
mcitest.fr_ samples vb\samples\mci\mcitest.frm
mcitest1.fr_ samples vb\samples\mci\mcitest.frx
mcitest.ma_ samples vb\samples\mci\mcitest.mak
mcitest.mi_ samples vb\samples\mci\mcitest.mid
mcitest.mm_ samples vb\samples\mci\mcitest.mmm
mcitest.wa_ samples vb\samples\mci\mcitest.wav
opendlg.fr_ samples vb\samples\mci\opendlg.frm
wave.fr_ samples vb\samples\mci\wave.frm
aboutbo2.fr_ samples vb\samples\visdata\aboutbox.frm
aboutbo5.fr_ samples vb\samples\visdata\aboutbox.frx
addfield.fr_ samples vb\samples\visdata\addfield.frm
attach.fr_ samples vb\samples\visdata\attach.frm
cpystru.fr_ samples vb\samples\visdata\cpystru.frm
databox.fr_ samples vb\samples\visdata\databox.frm
dataform.fr_ samples vb\samples\visdata\dataform.frm
datafor1.fr_ samples vb\samples\visdata\dataform.frx
dynagri1.fr_ samples vb\samples\visdata\dynagrid.frx
dynagrid.fr_ samples vb\samples\visdata\dynagrid.frm
dynaset.fr_ samples vb\samples\visdata\dynaset.frm
dynaset1.fr_ samples vb\samples\visdata\dynaset.frx
find.fr_ samples vb\samples\visdata\find.frm
indexadd.fr_ samples vb\samples\visdata\indexadd.frm
join.fr_ samples vb\samples\visdata\join.frm
opendb.fr_ samples vb\samples\visdata\opendb.frm
query.fr_ samples vb\samples\visdata\query.frm
query1.fr_ samples vb\samples\visdata\query.frx
replace.fr_ samples vb\samples\visdata\replace.frm

replace1.fr_ samples vb\samples\visdata\replace.frx
seek4.fr_ samples vb\samples\visdata\seek.frm
sql.fr_ samples vb\samples\visdata\sql.frm
sql1.fr_ samples vb\samples\visdata\sql.frx
tables.fr_ samples vb\samples\visdata\tables.frm
tables1.fr_ samples vb\samples\visdata\tables.frx
tblstru.fr_ samples vb\samples\visdata\tblstru.frm
tableobj.fr_ samples vb\samples\visdata\tableobj.frm
tableob1.fr_ samples vb\samples\visdata\tableobj.frx
vdmdi.fr_ samples vb\samples\visdata\vdmdi.frm
vdmdi1.fr_ samples vb\samples\visdata\vdmdi.frx
visdata.ba_ samples vb\samples\visdata\visdata.bas
visdata.ic_ samples vb\samples\visdata\visdata.ico
visdata.ma_ samples vb\samples\visdata\visdata.mak
zoom.fr_ samples vb\samples\visdata\zoom.frm
compress.ex_ samples vb\setupkit\kitfiles\compress.exe
compress.tx_ samples vb\setupkit\kitfiles\compress.txt
expand.ex_ samples vb\setupkit\kitfiles\expand.exe
setupa.ex_ samples vb\setupkit\kitfiles\setup.exe
setupa.ls_ samples vb\setupkit\kitfiles\setup.lst
setupkit.dl_ samples vb\setupkit\kitfiles\setupkit.dll
setupwiz.ex_ samples vb\setupkit\kitfiles\setupwiz.exe
setupwiz.hl_ samples vb\setupkit\kitfiles\setupwiz.hlp
setupwiz.in_ samples vb\setupkit\kitfiles\setupwiz.ini
code.ma_ tutorial vb\vb.cbt\code.mak
country.ma_ tutorial vb\vb.cbt\country.mak
form1.fr_ tutorial vb\vb.cbt\form1.frm
form2.fr_ tutorial vb\vb.cbt\form2.frm
formchi.fr_ tutorial vb\vb.cbt\formchi.frm
formchi1.fr_ tutorial vb\vb.cbt\formchi.frx
mdinpad.fr_ tutorial vb\vb.cbt\mdinpad.frm
mdinpad1.fr_ tutorial vb\vb.cbt\mdinpad.frx
payment.fr_ tutorial vb\vb.cbt\payment.frm
payment.ma_ tutorial vb\vb.cbt\payment.mak
sweden.fr_ tutorial vb\vb.cbt\sweden.frm
sweden1.fr_ tutorial vb\vb.cbt\sweden.frx
vb.le_ tutorial vb\vb.cbt\vb.les
gsw.ex_ controls windows\system\gsw.exe
gswdll.dl_ controls windows\system\gswdll.dll
winhelp.ex_ always windows\winhelp.exe

***** DISK5 ****

bullet.bm_ help compiler vb\hc\bullet.bmp
emdash.bm_ help compiler vb\hc\emdash.bmp
hc31.er_ help compiler vb\hc\hc31.err
helpref.hl_ help compiler vb\hc\helpref.hlp
iconwrks.bm_ help compiler vb\hc\iconwrks.bmp
iconwrks.hp_ help compiler vb\hc\iconwrks.hpj
iconwrks.ph_ help compiler vb\hc\iconwrks.ph
iconwrks.rt_ help compiler vb\hc\iconwrks.rtf
iwedit.sh_ help compiler vb\hc\iwedit.shg
mrbc.ex_ help compiler vb\hc\mrbc.exe
shed.ex_ help compiler vb\hc\shed.exe
shed.hl_ help compiler vb\hc\shed.hlp
track.do_ help compiler vb\hc\track.doc
winhelp.tx_ help compiler vb\hc\winhelp.txt

3dlrsign.wm_ clip art vb\metafile\business\3dlrsign.wmf
alphbord.wm_ clip art vb\metafile\business\alphbord.wmf
alphtrpn.wm_ clip art vb\metafile\business\alphtrpn.wmf
answmach.wm_ clip art vb\metafile\business\answmach.wmf
apptbook.wm_ clip art vb\metafile\business\apptbook.wmf
calcultr.wm_ clip art vb\metafile\business\calcultr.wmf
calendar.wm_ clip art vb\metafile\business\calendar.wmf
cent.wm_ clip art vb\metafile\business\cent.wmf
check.wm_ clip art vb\metafile\business\check.wmf
clipbord.wm_ clip art vb\metafile\business\clipbord.wmf
coins.wm_ clip art vb\metafile\business\coins.wmf
computer.wm_ clip art vb\metafile\business\computer.wmf
copymach.wm_ clip art vb\metafile\business\copymach.wmf
deutsch.wm_ clip art vb\metafile\business\deutsch.wmf
digitals.wm_ clip art vb\metafile\business\digitals.wmf
digitnum.wm_ clip art vb\metafile\business\digitnum.wmf
dime.wm_ clip art vb\metafile\business\dime.wmf
disk35.wm_ clip art vb\metafile\business\disk35.wmf
disk525.wm_ clip art vb\metafile\business\disk525.wmf
dollar.wm_ clip art vb\metafile\business\dollar.wmf
dollars.wm_ clip art vb\metafile\business\dollars.wmf
envlback.wm_ clip art vb\metafile\business\envlback.wmf
envlfrnt.wm_ clip art vb\metafile\business\envlfrnt.wmf
fileclsd.wm_ clip art vb\metafile\business\fileclsd.wmf
fileopen.wm_ clip art vb\metafile\business\fileopen.wmf
guilder.wm_ clip art vb\metafile\business\guilder.wmf
harddisk.wm_ clip art vb\metafile\business\harddisk.wmf
laptop1.wm_ clip art vb\metafile\business\laptop1.wmf
laptop2.wm_ clip art vb\metafile\business\laptop2.wmf
micrchip.wm_ clip art vb\metafile\business\micrchip.wmf
money.wm_ clip art vb\metafile\business\money.wmf
moneybag.wm_ clip art vb\metafile\business\moneybag.wmf
monitor.wm_ clip art vb\metafile\business\monitor.wmf
monystk1.wm_ clip art vb\metafile\business\monystk1.wmf
monystk2.wm_ clip art vb\metafile\business\monystk2.wmf
nickel.wm_ clip art vb\metafile\business\nickel.wmf
payphone.wm_ clip art vb\metafile\business\payphone.wmf
pcomputr.wm_ clip art vb\metafile\business\pcomputr.wmf
penny.wm_ clip art vb\metafile\business\penny.wmf
peseta.wm_ clip art vb\metafile\business\peseta.wmf
phone.wm_ clip art vb\metafile\business\phone.wmf
postcard.wm_ clip art vb\metafile\business\postcard.wmf
pound.wm_ clip art vb\metafile\business\pound.wmf
poundbag.wm_ clip art vb\metafile\business\poundbag.wmf
printer.wm_ clip art vb\metafile\business\printer.wmf
prntout1.wm_ clip art vb\metafile\business\prntout1.wmf
prntout2.wm_ clip art vb\metafile\business\prntout2.wmf
prntout3.wm_ clip art vb\metafile\business\prntout3.wmf
quarter.wm_ clip art vb\metafile\business\quarter.wmf
rolodex.wm_ clip art vb\metafile\business\rolodex.wmf
ruble.wm_ clip art vb\metafile\business\ruble.wmf
satedish.wm_ clip art vb\metafile\business\satedish.wmf
satelit1.wm_ clip art vb\metafile\business\satelit1.wmf
satelit2.wm_ clip art vb\metafile\business\satelit2.wmf
typewrtr.wm_ clip art vb\metafile\business\typewrtr.wmf
yen.wm_ clip art vb\metafile\business\yen.wmf
odbc.in_ data access vb\odbc\odbc.inf

odbc.od_ data access vb\odbc\odbc.dl_
odbcadm.ex_ data access vb\odbc\odbcadm.ex_
odbcinst.od_ data access vb\odbc\odbcinst.dll
odbsetup.ex_ data access vb\odbc\setup.exe
odb_mssu.ex_ data access vb\odbc_mssetup.exe
odbsetup.ls_ data access vb\odbc\setup.lst
odbcstp.ex_ data access vb\odbc\odbcstp.exe
commdlg.od_ data access vb\odbc\commdlg.dll
ctl3d.od_ data access vb\odbc\ctl3d.dll
lzexpand.dl_ data access vb\odbc\lzexpand.dll
ver.od_ data access vb\odbc\ver.dll
ora6win.od_ oracle driver vb\odbc\ora6win.dl_
oracle.tx_ oracle driver vb\odbc\oracle.tx_
orasetup.od_ oracle driver vb\odbc\orasetup.dl_
sqora.od_ oracle driver vb\odbc\sqora.dl_
drvoracl.hl_ oracle driver vb\odbc\drvoracl.hl_
odbcinst.hl_ data access vb\odbc\odbcinst.hl_
mscpxlt.od_ data access vb\odbc\mscpxlt.dl_
10070220.cp_ data access vb\odbc\10070220.cp_
10070437.cp_ data access vb\odbc\10070437.cp_
10070850.cp_ data access vb\odbc\10070850.cp_
10070860.cp_ data access vb\odbc\10070860.cp_
10070861.cp_ data access vb\odbc\10070861.cp_
10070863.cp_ data access vb\odbc\10070863.cp_
10070865.cp_ data access vb\odbc\10070865.cp_
msole2.vb_ controls windows\system\msole2.vbx
crystal.vb_ controls windows\system\crystal.vbx
gauge.vb_ controls windows\system\gauge.vbx
keystat.vb_ controls windows\system\keystat.vbx
mci.vb_ controls windows\system\mci.vbx
mscomm.vb_ controls windows\system\mscomm.vbx
msmapi.vb_ controls windows\system\msmapi.vbx
msmasked.vb_ controls windows\system\msmasked.vbx
msoutlin.vb_ controls windows\system\msoutlin.vbx
picclip.vb_ controls windows\system\picclip.vbx
spin.vb_ controls windows\system\spin.vbx
win30api.tx_ windows api vb\winapi\win30api.txt
win31api.hl_ windows api vb\winapi\win31api.hlp
win31ext.tx_ windows api vb\winapi\win31ext.txt
winmmsys.tx_ windows api vb\winapi\winmmsys.txt

***** DISK6 ****

msafinx.dl_ visual basic windows\system\msafinx.dll
compobj.dl_ ole windows\system\compobj.dll
ole2nls.dl_ ole windows\system\ole2nls.dll
ole2.dl_ ole windows\system\ole2.dll
ole2.re_ ole windows\system\ole2.reg
ole2conv.dl_ ole windows\system\ole2conv.dll
ole2prox.dl_ ole windows\system\ole2prox.dll
ole2disp.dl_ ole windows\system\ole2disp.dll
storage.dl_ ole windows\system\storage.dll
crxlate.dl_ report writer windows\system\crxlate.dll
ctl3d.cr_ report writer windows\system\ctl3d.dll
p3conv.dl_ report writer windows\system\p3conv.dll
p3dib.dl_ report writer windows\system\p3dib.dll
p3file.dl_ report writer windows\system\p3file.dll

p3info.dl_ report writer windows\system\p3info.dll
pdbjet.dl_ report writer windows\system\pdbjet.dll
pdctjet.dl_ report writer windows\system\pdctjet.dll
pdirjet.dl_ report writer windows\system\pdirjet.dll
pdsodbc.dl_ report writer windows\system\pdsodbc.dll
msabc110.dl_ report writer windows\system\msabc110.dll
commdlg.dl_ visual basic windows\system\commdlg.dll
ddeml.dl_ visual basic windows\system\ddeml.dll
vbrun300.dl_ visual basic windows\system\vbrun300.dll
cmdialog.vb_ visual basic windows\system\cmdialog.vbx
crpe.dl_ controls windows\system\crpe.dll
grid.vb_ visual basic windows\system\grid.vbx

***** DISK7 ****

autopro.ma_ controls vb\autoload.mak
bright.di_ visual basic vb\bright.dib
datacons.tx_ visual basic vb\datacons.txt
msajt110.dl_ data access windows\system\msajt110.dll
msaes110.dl_ data access windows\system\msaes110.dll
vbdb300.dl_ data access windows\system\vbdb300.dll
demo.ex_ controls vb\demo.exe
pastel.di_ visual basic vb\pastel.dib
proconst.tx_ visual basic vb\constant.txt
rainbow.di_ visual basic vb\rainbow.dib
samples.tx_ visual basic vb\samples.txt
ctrlref.hl_ controls vb\ctrlref.hlp
vb.ex_ visual basic vb\vb.exe

***** DISK8 ****

a_to_b.md_ report writer vb\report\a_to_b.mdb
crystal.md_ report writer vb\report\crystal.mdb
empdata.md_ report writer vb\report\empdata.mdb
crw.ex_ report writer vb\report\crw.exe
crw.hl_ report writer vb\report\crw.hlp
crw.ne_ report writer vb\report\crw.net
labels.tx_ report writer vb\report\labels.txt
crvbxsam.ma_ report writer vb\report\crvbxsam.mak
crvbxsam.fr_ report writer vb\report\crvbxsam.frm
form2a.fr_ report writer vb\report\form2.frm
form3.fr_ report writer vb\report\form3.frm
vbxmdb.rp_ report writer vb\report\vbxmdb.rpt

***** DISK9 ****

msolevbx.dl_ controls windows\system\msolevbx.dll
vb.hl_ visual basic vb\vb.hlp
anibuton.vb_ controls windows\system\anibuton.vbx
graph.vb_ controls windows\system\graph.vbx
pencntrl.vb_ controls windows\system\pencntrl.vbx
threed.vb_ controls windows\system\threed.vbx

Additional reference words: 3.00
KBCategory:
KBSubcategory: RefsDoc

Developer Services Offers Solution Provider Packages
Article ID: Q100781

The information in this article applies to:

- Microsoft Visual Basic for Windows, version 3.0

SUMMARY
=======

Solution Provider Services is a new package that customers can buy
to get technical help. This package is sold through Developer
Services.

MORE INFORMATION
================

For more information on the Solution Provider packages or to purchase
the package, call Developer Services at 1-800-227-4679 and ask to speak
to someone about the "Solution Provider" packages.

Customers who already have the Solution Provider package can use it
by calling 1-800-227-4679 followed by extension 11700 and then their
five-digit member number for technical support.

Additional reference words: 3.00
KBCategory:
KBSubcategory: RefsProd

How to Get Entire VB KB in 2 Help Files with Full-Text Search
Article ID: Q105541

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows,
 versions 2.0 and 3.0

SUMMARY
=======

You can get the complete Microsoft Visual Basic for Windows Knowledge Base
in two help files with (VBKB_FT.EXE) or without (VBKB.EXE) full-text
search. These help files will be updated regularly. The latest versions
were created in February 1994.

 - VBKB_FT.EXE is a collection of indexed Help files and dynamic link
 libraries (.DLL files) that give you the complete Microsoft Visual Basic
 for Windows Knowledge Base in two Help files with full-text search.

 - VBKB.EXE is the same collection of articles without full-text search.

MORE INFORMATION
================

Contents of VBKB_FT.EXE with Full-Text Search S14447
--

 - README.TXT

 - VB_BUGS.HLP (latest versions of the articles that discuss bugs, fixes,
 or updates to Visual Basic for Windows)

 - VB_BUGS.IND (index required for VB_BUGS.HLP for full-text search)

 - VB_TIPS.HLP (latest versions of the articles that give tips and
 techniques for Visual Basic for Windows)

 - VB_TIPS.IND (index required for VB_TIPS.HLP for full-text search)

 - FTENGINE.DLL (required for full-text search -- put in WINDOWS directory)

 - FTUI.DLL (required for full-text search -- put in WINDOWS directory)

 - MVAPI.DLL (required for full-text search -- put in WINDOWS directory)

Contents of VBKB.EXE without Full-Text Search S14347
--

 - README.TXT

 - VB_BUGS.HLP (latest versions of the articles that discuss bugs, fixes,
 or updates to Visual Basic for Windows)

 - VB_TIPS.HLP (latest versions of the articles that give tips and
 techniques for Visual Basic for Windows)

MORE INFORMATION
================

There are over 600 categorized articles in the Visual Basic for Windows
collection. The two help files that hold these articles have been placed in
a self-extracting file that you can download from several different
places (listed below). Choose to download either VBKB_FT.EXE (the full-text
search version) or VBKB.EXE (the version without full-text search).

The Help files in VBKB_FT.EXE have an additional Find button that allows
full-text search. The Help files in VBKB.EXE do not have the Find button
and do not allow full-text search. The technical content in VBKB.EXE is
identical to that in VBKB_FT.EXE. VBKB.EXE is less than a megabyte in size
while VBKB_FT.EXE is approximately 2.5 megabytes. VBKB_FT.EXE is larger
because it includes index and .DLL files needed for full-text search.

To obtain the Help files, download VBKB.EXE or VBKB_FT.EXE. Then run it in
an empty directory to extract the files.

 - Download VBKB_FT.EXE -- if you want to use full-text search to query the
 Microsoft Visual Basic Knowledge Base. The Help files in this package
 include a Find button that allows you to search the Microsoft Knowledge
 Base for any word you choose.

 - Download VBKB.EXE if you want a smaller package and don't need full-text
 search. The Help files in this package have only the Search button,
 which allows you to search for article Q numbers (the number that
 identifies each Microsoft Knowledge Base article).

Where to Find VBKB.EXE and VBKB_FT.EXE

Download either VBKB.EXE or VBKB_FT.EXE (both are self-extracting files)
from the Microsoft Software Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for and download VBKB.EXE
 -or-
 Search for and download VBKB_FT.EXE

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download VBKB.EXE or VBKB_FT.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \softlib\mslfiles directory
 Get VBKB.EXE
 -or-
 Get VBKB_FT.EXE

After downloading either VBKB.EXE or VBKB_FT.EXE, run it to extract the
files it contains.

Send Comments and Corrections to y-KBFeed@Microsoft.Com

If you have corrections, comments, or feedback on any of the articles in
the Visual Basic for Windows collection, please send the Q number of the
article along with your comments in a personal electronic mail message
to y-KBFeed@Microsoft.Com on the Internet. You can do this in CompuServe
Mail by putting the following on the TO: line of your message:

 >Internet: y-KBFeed@Microsoft.Com

In the text, please ask that your message be given to the Visual Basic
Knowledge Base Lead (KBL). Please send mail to the same address if you have
feedback on how we could improve the Microsoft Knowledge Base or if you
would like to contribute articles.

Additional reference words: 2.00 3.00 softlib on-line
KBCategory:
KBSubcategory: RefsProd

How to Write C DLLs and Call Them from Visual Basic
Article ID: Q106553

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic
 for Windows, version 3.0

SUMMARY
=======

This article outlines how to use DLLs with Visual Basic. It covers the
following issues:

Section A

1.0 What Is a DLL
1.1 Why Use a DLL
1.2 Anatomy of a DLL
1.3 DLL Memory Management Issues
1.4 Building a DLL Using Visual C++
1.5 Example C DLL

Section B

2.0 Calling DLLs from Visual Basic
2.1 DLL Parameters
2.2 Trouble Shooting
2.3 Example Visual Basic Calling Program

MORE INFORMATION
==================

SECTION A

1.0 What Is a DLL

DLLs (Dynamic Link Libraries) are an important aspect of Windows. A DLL
contains functions that your executable program can call during execution.
In other words, a DLL is a library of functions that your program can link
with dynamically.

A link can be static or dynamic. Static links don't change. All the address
information needed by your program to access the library function is fixed
when the executable file is created and remains unchanged during execution.

Dynamic links are created as needed. When your program needs a function
that is not in the executable file, Windows loads the dynamic link library
(the DLL), making all of its functions available to your application. At
that time, Windows resolves the address of each function and dynamically

links it to your application.

All Custom controls used in Visual Basic are DLLs. The only difference is
that they require special handling in terms of messages received from
Visual Basic.

1.1 Why Use DLLs

Here are four reasons why you might want to use a DLL:

 - Access to C Run-Time Functions:

 The C run-time library has many useful functions that would not be
 available to Visual Basic programmers were it not for DLLs. For example,
 the _dos_getdiskfree function allows you to calculate the total amount
 of disk space and the free disk space available on a drive.

 - Access to Windows API (Application Programming Interface) Functions that
 Require Callback Routines:

 Some Windows API functions require a callback function. A callback
 function is a function that Windows will call while executing the API
 call. An example of this sort of function is EnumTaskWindows, which
 will give the handle of all windows that are owned by a particular task.

 - Speed:

 C is a fully compiled language that works at a level that is fairly
 close to native machine code. This means that the execution of programs
 that are well written in C will be fast.

 - Load on Use:

 Code and data from a DLL are loaded only when needed. A DLL can be
 organized such that only required parts are loaded as opposed to the
 entire DLL. This reduces the amount of memory required and the time
 taken to load.

1.2 Anatomy of a DLL

Every DLL must contain a LibMain function and should contain a Windows Exit
Procedure (WEP) in addition to the exported functions that can be called by
an executable program.

 - LibMain:

 A DLL must contain the LibMain function. The LibMain function is called
 by the system to initialize the DLL. LibMain is called only once -- when
 the first program that requires the DLL is loaded. The following are the
 parameters passed to LibMain:

 - HANDLE : Handle to the instance of the DLL.
 - WORD : Library's data segment.
 - WORD : Heap size.
 - LPSTR : Command line parameters.

 - WEP:

 The WEP (Windows Exit Procedure) performs cleanup for a DLL before the
 library is unloaded. Although a WEP function was required for every DLL
 in previous versions of the Windows operating system, for version 3.1 it
 is optional. A WEP should be included in the module definition file
 (.DEF) in Visual C, for example:

 EXPORTS
 WEP

 - Exported Functions:

 These are the functions you want to call from your DLL. They are denoted
 by _export. _export is used for backward compatibility. All the
 functions you want to call must also be listed in the (.DEF) file of
 your DLL.

1.3 DLL Memory management issues
--

Use the large memory model.

C stores all variables defined as static or global (defined outside of a
function) in the program's heap space, and C stores all other variables on
the stack.

In the small and medium model, all pointers are near by default. This means
that the data is accessed by 16-bit offsets to either the data segment (DS)
register, or the stack segment (SS) register. Unfortunately, the compiler
has no way of knowing whether the offset is from the DS or the SS. In most
programs this would not be a problem because the DS and SS point to the
same segment. A DLL, however, is a special case.

A DLL has its own data segment but shares its stack with the calling
program. This means that the DS and the SS do not point to the same
location. The easiest solution to this problem is to build the DLL in the
large memory model where all variables are referenced by a 32-bit value.

Why Allocate Memory Dynamically?

Allocating memory dynamically is a Windows-friendly technique. Declaring
large arrays of data takes up space in either your program's stack, which
is limited to 64K, or you program's Data Segment, which wastes disk space
and Windows memory. It is better to ask Windows for the memory when you
need it, and then free it when you have finished.

Allocating Memory

In Windows, you can dynamically allocate two types of memory, local and
global. Local memory is limited to 64K, and in the case of a DLL, local
memory is shared with the program that called the DLL. Global memory is
all of the memory available to Windows after it has loaded.

Local memory is allocated and managed using the LocalAlloc, LocalLock
LocalUnlock, and LocalFree functions -- as in this example:

 char* pszBuffer;

 pszBuffer = (char *) LocalAlloc (LPTR, 20);
 ...
 LocalFree (pszBuffer);

It is faster to allocate local memory than it is to allocate global memory.
But allocations from the local heap are limited to 64K, which must be
shared amongst all programs that are calling the DLL. It is best to use
local memory when small, short lived blocks of memory are required.

Global memory is allocated and managed using the GlobalAlloc, GlobalLock
GlobalUnlock, and GlobalFree functions -- as in this example:

 HGLOBAL hglb;
 char* pszBuffer;

 hglb = GlobalAlloc (GHND, 2048);
 // GHND allocates the memory as moveable and
 // initialized to 0
 // 2048 is the amount of memory to be allocated...
 pszBuffer = GlobalLock (hglb);
 ...
 GlobalUnlock (hglb);
 GlobalFree (hglb);

The GlobalAlloc function allocates memory in multiples of 4K.

If you want to share memory allocated in the DLL with other programs, you
should allocate it using the GMEM_SHARED flag. If you want to share the
memory through DDE, you must allocate it by using the GMEM_DDESHARE flag.

Be Careful When Storing Data in Static Variables
--

If you try to store data in a DLL using global or static variables, don't
be surprised if these values have changed when you next call your DLL. The
data stored in this way will be common to all applications that access this
DLL. No matter how many applications use a DLL, there is only one instance
of the DLL. The best way to get around this is to return structures from
the DLL and pass them in again when they are needed.

File Handles

It is not possible to share file handles between applications or DLLs. Each
application has its own file-handle table. For two applications to use the
same file using a DLL, they must both open the file individually.

1.4 Building a DLL Using Visual C++

Here are the steps necessary to build a DLL using Visual C++:

1. Start Visual C++.

2. Create a new project by choosing New from the Project menu. Select the
 following options:

 - Set the Project Type to "Windows dynamic-link library (.DLL)"
 - Clear the "Use Microsoft Foundation Classes" check box.

 You can also set or view these options later by choosing Project from
 the Options menu.

3. Add your existing .C and .DEF files to the project by using the dialog
 box that comes up when you choose Edit from the Project menu. Or enter
 your code directly in the Visual C++ editing window. (See the .C and
 .DEF example code listed below.)

4. From the Project menu, choose the Build <yourname>.DLL option.

1.5 Example C DLL

The following DLL contains the GetDiskInfo function, which can be called
from Visual Basic. It will return the disk space available, the current
drive name and the volume name.

C Code Example, DISKINFO.C:

#include <windows.h>
#include <dos.h>

int CALLBACK LibMain (HANDLE hInstance, WORD wDataSeg, WORD wHeapSize,
LPSTR lpszCmdLine)
{
 if (wHeapSize > 0)
 UnlockData (0); //Unlocks the data segment of the library.
 return 1;
}

void __export CALLBACK GetDiskInfo (char *cDrive, char *szVolumeName,
unsigned long *ulFreeSpace)
{
 unsigned drive;
 struct _diskfree_t driveinfo;
 struct _find_t c_file;

 _dos_getdrive (&drive);
 _dos_getdiskfree(drive, &driveinfo);

 if (!_dos_findfirst("*.*", _A_VOLID, &c_file))
 wsprintf(szVolumeName, "%s", c_file.name);
 else
 wsprintf (szVolumeName, "NO LABEL");

 *cDrive = drive + 'A' -1;

 *ulFreeSpace = (unsigned long) driveinfo.avail_clusters * (unsigned
 long) driveinfo.sectors_per_cluster * (unsigned long)

 driveinfo.bytes_per_sector;
}

Use the following DISKINFO.DEF file in Visual C++:

 LIBRARY diskinfo
 DESCRIPTION 'GetDiskInfo Can be called from Visual Basic'
 EXETYPE WINDOWS 3.1
 CODE PRELOAD MOVEABLE DISCARDABLE
 DATA PRELOAD MOVEABLE SINGLE
 HEAPSIZE 4096
 EXPORTS
 GetDiskInfo @1

NOTE: The LIBRARY name in the .DEF file must be the same as the DLL file
name, or else Visual Basic will give you "Error in loading DLL." For
example, create the file DISKINFO.DLL using the LIBRARY DISKINFO statement
in the .DEF file above.

SECTION B

2.0 Calling DLLs from Visual Basic

In Visual Basic, all functions, including DLL functions, that you want to
call must first be declared by using the Declare statement. You can declare
your functions in the declarations section of a Form or a Module. If you
declare a DLL procedure or function in a Form, it is private to that Form.
To make it public, you must declare it in a Module. The following is an
example Declare statement:

 Declare Sub getdiskinfo Lib "c:\somepath\diskinfo.dll"
 (ByVal mydrive As String, ByVal myvolume As String, free As Long)

You must enter the entire Declare statement as one, single line. This
particular Declare statement declares the user-defined procedure
GETDISKINFO located in user-created DISKINFO.DLL file.

Once you declare the function, you can call and use the function just as
you would call and use a Visual Basic function.

2.1 DLL Parameters

Because DLLs are typically written in C, DLLs can use a wide variety of
parameters not directly supported by Visual Basic. As a result, when
passing parameters, he programmer has to find the appropriate data type to
pass.

Passing Arguments by Value or by Reference
--

By default, Visual Basic passes all arguments by reference. (When passing
by reference, Visual Basic supplies a 32-bit far address.) However, many
DLL functions expect an argument to be passed by value. This can be
achieved by placing the ByVal keyword in front of the argument declaration.

The following sections show you how to convert parameters to Visual Basic.

8- to 16-Bit Numeric Parameters

Pass 8- to 16-bit numeric parameters (int, short, unsigned int, unsigned
short, BOOL, and WORD) as Integer.

32-bit Numeric Parameters

Pass 32-bit numeric parameters (long, unsigned long, and DWORD) as LONG.

32-Bit Signed Integer Parameters

Pass 32-bit signed integer parameters as Currency or Double.

Object Handles

All handles are unique 16-bit integer values associated with a Window and
are passed by value, so pass these parameters as Integer.

Strings

Strings include the LPSTR and LPBYTE data types (pointer to characters or
pointer to unsigned characters). Pass these parameters as (ByVal paramname
As String). DLL functions cannot return Visual Basic strings. They do
sometimes return LPSTRs, which can be copied into Visual Basic strings
by using API functions.

To pass Visual Basic strings directly, pass them as (param As String).

NOTE: Visual Basic strings require special handling, so don't pass strings
directly unless the DLL explicitly requires it.

Pointers to Numeric Values

Pass pointers to numeric values by simply not using the ByVal keyword.

Structures

If the Visual Basic user-defined type matches the structure expected by the
DLL, the structure can be passed by reference.

NOTE: Structures cannot be passed by value.

Pointers to Arrays

Pass the first element of the array by reference.

Pointers to functions

Visual Basic does not support callback functions, so DLL functions that
have pointers to functions cannot be used with Visual Basic.

Null Pointers

If a DLL expects a Null pointer, pass it as (ByVal paramname As Any). You
can use &0 or &0H as the value of paramname.

2.2 Trouble Shooting

Below are solutions to some problems you may encounter.

System Resources Keep Getting Lower After the DLL Is Called

If your DLL is using GDI objects, you must remember to free them after
using them. This may not be obvious in Visual Basic, but when using the
Windows SDK (software development kit) if you create a GDI object (for
example, CreateBrushIndirect), you must delete it by using DeleteObject
later on.

Bad DLL Calling Convention Error

This error is often caused by incorrectly omitting or including the ByVal
keyword from the Declare statement. This error can also be caused if the
wrong parameters are passed.

Error in loading DLL

This error occurs when you call a dynamic-link library procedure and the
file specified in the procedure's Declare statement cannot be loaded. You
can use the Microsoft Windows API function LoadLibrary to find out more
specific information about why a DLL fails to load.

General Protection (GP) Fault

GP faults occur when your program writes to a block of memory that doesn't
belong to it. The two most likely reasons for this are:

 - You overstepped an array boundary. C does not check that the array
 subscript you are writing to is valid. Therefore, you can easily write
 to memory you don't own.

 - You are using a pointer to a memory location that you have freed. The
 best option is to assign NULL to all pointers after you free their
 memory.

A GP fault can also occur when an incorrect variable type is passed to the
DLL function.

2.3 Example Visual Basic Calling Program
--
There are two parts to calling a DLL in a Visual Basic program. First you
declare the function, and then you use it in event code.

Here is an example of a Declare statement. The Declare statement should be
put in a module or in a form's General Declarations section.

 ' Enter the following Declare as one, single line:
 Declare Sub getdiskinfo Lib "c:\dllartic\diskinfo.dll"
 (ByVal mydrive As String, ByVal myvolume As String, free As Long)

Specify ByVal statements exactly as shown, or else a GP fault may occur.

Once the function is declared, you can use it in event code. The following
example uses a function from the DLL in the Command1 Click event code:

Sub Command1_Click ()
 Dim drive As String * 1
 Dim volume As String * 20
 Dim free As Long
 Call getdiskinfo(drive, volume, free)
 Text1.Text = drive
 Text2.Text = volume
 Text3.Text = Str$(free)
End Sub

Additional reference words: 3.00
KBCategory:
KBSubCategory: APrgOther RefsDoc

LONG: VB Pro 3.0 SAMPLES.TXT: Descriptions of Sample Programs
Article ID: Q107990

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, version 3.0

SUMMARY
=======

The following article contains the complete contents of the SAMPLES.TXT
file distributed with the Professional Edition of Visual Basic version 3.0
for Windows. SAMPLES.TXT describes the sample programs shipped with this
product.

MORE INFORMATION
================

 SAMPLES.TXT

 Samples Notes for Microsoft (R) Visual Basic (R)
 Professional Edition

 Version 3.00

 (C) Copyright Microsoft Corporation, 1993

========
Contents
========

Sample Description
------ -----------
 1 MAPI
 2 Multimedia
 3 Outline
 4 Pen
 5 PicClip
 6 ODBC
 7 Communications

===============
1: MAPI Sample
===============

Program example using the MSMAPI.VBX controls, MapiMessages and
MapiSession controls.

NOTE: To run this sample, you need a MAPI-compliant messaging
 system such as the one contained in Microsoft Windows for
 Workgroups.

BRIEF DESCRIPTION:
This sample program illustrates the use of the MAPI controls by

sending and receiving electronic mail.

BACKGROUND:
The MapiSession control establishes a MAPI session and signs off
from a MAPI session. The MapiMessages control allows you to
perform a variety of messaging systems functions after a messaging
session has been established. These functions include accessing,
downloading, and sending messages, displaying the details and
address book dialog boxes, accessing data attachments, resolving
recipient names during addressing, and performing compose, reply,
reply-all, forward, and deleting actions on messages.

FILES:
 MAILLST.FRM.......Form for displaying the list of mail messages.
 MAILLST.FRX.......The binary portion of the mail messages form.
 MAILOPTF.FRM......Form for setting options.
 MAILSUP.BAS.......Module of support routines for the example.
 MSGVIEW.FRM.......Form in which a viewed message is displayed.
 MSGVIEW.FRX.......The binary portion of the viewed messages form.
 NEWMSG.FRM........Form for creating a new message.
 VBMAIL.FRM........The main form.
 VBMAIL.FRX........The binary portion of the main form.
 VBMAIL.MAK........The MAKE file for the project.

TO RUN:
After starting the Visual Basic environment (VB.EXE), you can load
files in this sample program by choosing Open Project from the File
menu and selecting the VBMAIL.MAK file.

=====================
2: Multimedia Sample
=====================

This sample program illustrates the use of some of the device types
supported by the Media Control Interface (MCI). The four device
types used in this program are:

Device Type Description
--
MMMovie Plays Multimedia movie files (*.MMM).
CDAudio Plays audio discs from the CD-ROM drive.
Sequencer Plays MIDI sequencer sound files (*.MID).
WaveAudio Plays digitized waveform sound files (*.WAV).

HARDWARE REQUIREMENTS:
In order to access a CD-ROM drive or a sound card, the hardware,
along with any supporting device drivers, should be installed
and configured for the machine. The following table lists
the hardware required for the MCI device types used in this
program:

Device Type Hardware

MMMovie No extra hardware. *See software requirements.
CDAudio CD-ROM drive.
Sequencer Sound card (e.g., Sound Blaster Pro)
WaveAudio Sound card.

SOFTWARE REQUIREMENTS:
In order to run the MCI application, Microsoft Windows with
Multimedia Extensions 1.0, or Windows with Multimedia must be
installed. The Multimedia Extensions include device drivers for
the different types of MCI devices.

To access a specific MCI device type, the corresponding MCI device
driver must be installed. The following table lists the device
drivers required for the MCI device types used in this program:

Device Type Device Driver
--
MMMovie MCIMMP.DRV *See note below.
CDAudio MCICDA.DRV
Sequencer MCISEQ.DRV
WaveAudio MCIWAVE.DRV

The [mci] section of the SYSTEM.INI file contains a list of the
installed MCI device types. This is what your file would look
like if all 4 of the above device types were installed:

[mci]
CDAudio=mcicda.drv
WaveAudio=mciwave.drv
Sequencer=mciseq.drv
MMMovie=mcimmp.drv

BACKGROUND:
The MCI control provides a high-level interface for using
multimedia devices. Using the property settings of a control, you
can determine the settings and the actions of a device.

The MCI control is also smart enough to know what actions are
relevant for the current state of a device. For example, if you
click a "Pause" button while playing a movie, the "Play" button
is automatically re-enabled.

MMMovie NOTE:
If you are unable to run an animation movie (*.MMM file), make
sure the MCIMMP.DRV and MMP.DLL files are installed on your
machine. To install the animation driver from Windows 3.1, run
the "Drivers" applet from the Control Panel, insert Disk 1 of the
Professional Edition. Select "Unlisted Driver," and accept "A:\"
as the directory. You will then be ready to use the animation
features of the MCI control.

FILES:
 ABOUTBOX.FRM.......The dialog box for the "About Box."
 ABOUTBOX.FRX.......The binary portion of the "About Box" form.
 ANIMATE.FRM........Form for playing Multimedia Movie files.
 CD.FRM.............The form for playing compact disc audio.
 CD.FRX.............The binary portion of the compact disc form.
 GLOBAL.BAS.........Global data types and declarations.
 MCITEST.BAS........Global Subs and Functions.
 MCITEST.FRM........The main form.
 MCITEST.FRX........The binary portion of the main form.

 MCITEST.MAK........The make file for the project.
 MCITEST.MID........Sample MIDI sequencer file.
 MCITEST.MMM........Sample Multimedia Movie file.
 MCITEST.WAV........Sample waveform file.
 OPENDLG.FRM........Form for holding the common dialog control.
 WAVE.FRM...........Form for playing waveform and MIDI files.

TO RUN:
In the Visual Basic environment (VB.EXE), you can load the files
in this sample program by choosing Open Project from the File
menu, and selecting the MCITEST.MAK file.

Two additional files appear in the Project Window:

MCI.VBX............MCI control.
CMDIALOG.VBX.......Common Dialog control.

==================
3: Outline Sample
==================
Program example using the MSOUTLIN.VBX control.

BRIEF DESCRIPTION:
This sample program illustrates the use of the Outline control
with an address book database application.

BACKGROUND:
The outline control allows users to graphically present hierarchically
structured data in a variety of different ways.

FILES:
 PHONE.FRM.........The main form.
 PHONE.FRX.........Binary data for the main form.
 PHONE.MAK.........The MAKE file for the project.
 PHONE.MDB.........Database file.
 PHONE.LDB.........Database file.
 FIRSTTAB.BMP......Bitmap for the project.
 LASTTAB.BMP.......Bitmap for the project.
 MIDTAB.BMP........Bitmap for the project.

TO RUN:
After starting the Visual Basic environment (VB.EXE), you can load
files in this sample program by choosing Open Project from the File
menu and select the PHONE.MAK file.

==============
4: Pen Sample
==============

NOTE: To run this sample you must have Windows for Pen Computing,
 or install the PENWIN.DLL file. See below.

BRIEF DESCRIPTION of PEN SAMPLE PROGRAM:
This sample program illustrates many uses of the Pen controls:

 * the new On-Screen Keyboard control
 * inking and displaying bitmaps on the new InkOnBitmap control

 * handwriting recognition in both delayed and non-delayed mode
 * recognition of gestures
 * transfer of ink data between controls
 * manipulation of the Recognition Context data structure
 * and more.

The file PENAPI.TXT contains function and constant declarations
for the entire set of Windows for Pen Computing API.

FILES:
 DELAY.FRM.........Form for demonstrating Delayed Recognition.
 DELAY.FRX.........The binary for DELAY.FRM.
 EDITSUBF.FRM......Support Form for Gesture demonstration.
 GESTFRM.FRM.......Form for demonstrating Custom Gestures.
 INKFRM.FRM........Form for showing transfer of Ink data.
 IOBFRM.FRM........Form demonstrating the Ink On Bitmap control.
 IOBFRM.FRX........The binary for IOBFRM.FRM.
 KEYBRD.FRM........Form for the On-Screen Keyboard Button demo.
 KEYBRD.FRX........The binary for KEYBRD.FRM.
 PENAPI.TXT........Pen function declarations and constants.
 PENMAIN.FRM.......Main form.
 PENMAIN.FRX.......The binary for MAIN.FRM.
 PENSMPL.MAK.......The MAKE file for the project.
 RCFRM.FRM.........Form demonstrating the Recognition Context.
 GRAFPAPR.BMP......Bitmap for creating graph paper effect.
 RULEPAPR.BMP......Bitmap for creating ruled paper effect.
 SKBFACE.BMP.......Bitmap of default keyboard on SKB Button.
 TRANSFRM.FRM......Form for demonstrating transfer of ink data.

TO RUN:
After starting the Visual Basic environment (VB.EXE), you can load
files in this sample program by choosing Open Project from the File
menu and select the PENSMPL.MAK file.

Installing PENWIN.DLL:
This procedure will result in a system that will let you run
applications that contain Visual Basic BEdit, HEdit, InkOnBitmap,
and SKB Button controls and call the Windows for Pen Computing APIs.
You will not be able to perform handwriting recognition or draw ink
on the screen. Microsoft Windows 3.1 is required.

SYSTEM.INI Changes
The following items must be added or changed in your SYSTEM.INI
file so that the pen extensions will work. NOTE: Back up your old
SYSTEM.INI file before proceeding.

1. In the "[boot]" section:
 Add "penwindows" to the list of drivers after "drivers=".
 For example:
 drivers = mmsystem.dll penwindows

2. In the "[drivers]" section:
 Add a new item "penwindows" and set it equal to the path to
 PENWIN.DLL.
 For example:
 penwindows = C:\WINDOWS\PENWIN.DLL

3. Restart Windows.

When Windows is restarted, PENWIN.DLL will be loaded as an
installed driver, and you will be able to run applications
containing Visual Basic BEdit, HEdit, InkOnBitmap, and SKB
Button controls and call the Windows for Pen Computing APIs.

==================
5: PicClip Sample
==================

Program example using the PICCLIP.VBX control.

BRIEF DESCRIPTION:
This sample program illustrates one of the many possible uses of
the Picture Clipping control.

BACKGROUND:
This sample application uses the PicClip control to spin a top.

FILES:
 INFOFORM.FRM......The information form.
 INFOFORM.FRX......The binary data for the information form.
 REDTOP.FRM........The main form.
 REDTOP.FRX........The binary data for the main form.
 REDTOP.MAK........The MAKE file for the project.

TO RUN:
After starting the Visual Basic environment (VB.EXE), you can
load files in this sample program by choosing Open Project from
the File menu and selecting the REDTOP.MAK file.

========
6: ODBC
========

Program example using ODBC and the VT (Virtual Table) object layer.

NOTE: To access ODBC data sources with this sample, you must
 first install ODBC using the ODBC setup program provided
 with Visual Basic Professional Edition.

BRIEF DESCRIPTION:
This sample program illustrates various programming techniques
used to access data through the VT layer built into the Visual Basic
Professional Edition. It behaves like a general purpose database utility
capable of the following functions:

 1. Table Creation
 2. Table Modification (adding and deleting fields and indexes)
 3. Data Browsing/Modifying one record at a time using a
 dynaset or a table.
 4. Data Browsing via the Grid control (non-updatable)
 5. Data Browsing/Modifying via the new Data Control
 6. Data Export to Tab Delimited text file
 7. Direct SQL Statement execution for any SQL supported
 functions such as Insert, Update, Delete, Drop, Create,

 Dump, etc.
 8. AdHoc Query tool that helps users unfamiliar with SQL
 create complex queries with where clauses, joins, order
 by and group by expressions while limiting output to
 selected columns
 9. Transaction Processing
 10. Copying table structures and data to same or different
 server
 11. Support of Microsoft Access, Dbase 3, Dbase 4, FoxPro 2.0, Paradox
 3.x, Btrieve, SQL and Oracle data, both DDL and DML.

The code contains comments to help explain the use of the various
methods in the data access layer. Code and forms may be copied from
this application to other applications with minimal modification.

ODBC BACKGROUND:
ODBC (Open Database Connectivity) is a standard adopted by
multiple vendors designed to enable users to connect to any data
source with a single application. This is achieved through a
layered approach including:

 1. Programming Layer-embedded functions in the development
 tool which in this case is Visual Basic Professional.
 2. Driver Manager-the basic ODBC library that routes calls
 to the appropriate driver.
 3. Data Driver - the library of functions that acts upon a
 specific database backend such as SQL Server, Xbase,
 Excel, etc. (note that SQL Server is the first of many
 drivers to become available for ODBC)

These layers work together to enable data access from any source
for which an ODBC driver exists. The sample application will work,
without modification, on any new level one ODBC driver that becomes
available. With multiple drivers, connections may be made to
different data sources from the same application at the same time
enabling seamless data access from disparate data sources.

FILES:
 ABOUTBOX.FRM......Standard "About box" for the application.
 ABOUTBOX.FRX......Icon for the "About Box".
 ADDFIELD.FRM......Form to add fields to Tables.
 CPYSTRU.FRM.......Form to copy Table structures.
 DATABOX.FRM.......General purpose list form.
 DYNAGRID.FRM......Form used to display data in a Grid control.
 DYNAGRID.FRX......Icon for DYNAGRID.FRM.
 DYNASET.FRM.......Form to display data in single record mode.
 DYNASET.FRX.......Icon for DYNASET.FRM
 FIND.FRM..........Form used to find records in a Dynaset.
 INDEXADD.FRM......Form used to add indexes to Tables.
 JOIN.FRM..........Form used to add Joins to the Query Builder.
 OPENDB.FRM........Form used to open a database.
 QUERY.FRM.........Form used to build Queries.
 QUERY.FRX.........Icon for QUERY.FRM.
 REPLACE.FRM.......Form to perform global replaces on a Table.
 REPLACE.FRX.......Icon for REPLACE.FRM.
 SEEK.FRM..........Form used to get input for Seek function on
 Table form.

 SQL.FRM...........Form to enter and execute SQL statements.
 SQL.FRX...........Icon for SQL.FRM.
 TABLES.FRM........Form used to display table lists.
 TABLES.FRX........Icon for TABLES.FRM.
 TABLEOBJ.FRM......Form used to display data in Table object
 TABLEOBJ.FRX......Icon for TABLEOBJ.FRM
 TBLSTRU.FRM.......Form to display and modify table structures.
 VDMDI.FRM.........Main MDI form for the application.
 VDMDI.FRX.........Icon for VDMDI.FRM.
 VISDATA.BAS.......Support functions for the application.
 VISDATA.ICO.......Icon for the applicaiton.
 VISDATA.MAK.......Make file for applicaiton.
 ZOOM.FRM..........Form to zoom in on character data in the
 dynaset forms.

TO RUN:
After starting the Visual Basic environment (VB.EXE), you can
load files in this sample program by choosing Open Project from
the File menu and selecting the VISDATA.MAK file in the
SAMPLES\VISDATA directory.

To open a local database, choose the type of database and a file
open common dialog will be provided with the file type set to the
requested data file type.

If you choose ODBC from the File/Open menu, the next dialog you
will see is the Open Database form. Because you probably have no
servers entered, you will need to enter a name for an existing
SQL server on your network. If you already know the user ID and
password, you can add them as well. The Database name is optional.
Once you have entered this data, select 'Okay' and you should be
able to log on to the server. You may get some more dialogs in
the process. Answer any questions you can and ask the SQL
administrator for help if you run into problems or don't know some
of the parameters.

Once a database is open, double-click a table name to open the table
in the selected mode (Single Record or Table View). Use the Query
Builder to create dynasets with selected data from one or more tables
at a time. If "Use Data Control" or "Use Grid" is chosen, a dynaset
will be created. However, the following objects will be created only
under the following circumstances when the "No Data Control" option is
selected:

Data Type Feature Chosen Object Type Created
--
Microsoft Access Table Open Table
Microsoft Access Query Open Dynaset
Microsoft Access Execute SQL Dynaset
ISAM Table Open Table
ISAM Execute SQL Dynaset
ODBC Any Dynaset

The table is always updatable and the dynaset will be updatable in
most cases except on ODBC with no unique index, certain multiple
table joins, and other SQL select statements such as count(*),
max(), and so on.

==========================
7: Communications Samples
==========================

VBTERM Sample

VBTERM is a terminal emulation program example using MSCOMM.VBX.

BRIEF DESCRIPTION:
This sample program illustrates how to use the communications
control with a serial port.

BACKGROUND:
MSCOMM.VBX allows you to open a serial port, change its settings,
send and receive data through the port, and monitor and set many
of the different data lines. It's dual-method access allows for
both polling and event driven communications.

FILES:
 CANSEND.FRM.......Dialog box used during file transfer.
 TERMSET.FRM.......Form used to change the serial port settings.
 TERMSET.FRX.......Binary data for TERMSET.FRM.
 VBTERM.FRM........The main form.
 VBTERM.FRX........Binary data for VBTERM.FRM.
 VBTERM.GLO........Global declarations.
 VBTERM.MAK........The MAKE file for the project.

TO RUN:
After starting the Visual Basic environment (VB.EXE), you can load
files in this sample program by choosing Open Project from the File
menu and select the VBTERM.MAK file.

Dialer Sample

DIALER is a program example demonstrating how to dial out using
MSCOMM.VBX with a modem.

FILES:
 DIALER.FRM........The main form.
 DIALER.MAK........The MAKE file for the project.

TO RUN:
After starting the Visual Basic environment (VB.EXE), you can load
files in this sample program by choosing Open Project from the File
menu and select the DIALER.MAK file.

Additional reference words: 3.00
KBCategory: Refs
KBSubcategory: RefsDoc

DOC: WinHelp Declaration Incorrect in Windows Ver 3.1 API Ref
Article ID: Q108036

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 version 3.0

SUMMARY
=======

This article corrects a documentation error for the WinHelp function call
as described in the Windows version 3.1 API Reference help file that
shipped with Microsoft Visual Basic version 3.0 for Windows.

MORE INFORMATION
================

The declaration is incorrectly shown as:

Declare Function WinHelp Lib "User" (ByVal hWnd As Integer,
 ByVal lpHelpFile As String,
 ByVal wCommand As Integer,
 dwData As Any) As Integer

The correct declaration is as follows:

Declare Function WinHelp Lib "User" (ByVal hWnd As Integer,
 ByVal lpHelpFile As String,
 ByVal wCommand As Integer,
 ByVal dwData As Any) As Integer

NOTE: Each Declare statement must be entered as one, single line.

Notice that the "ByVal" keyword was omitted from the last parameter in the
online reference. This means that the function is passing the last
parameter "dwData" by reference. It needs to be passed by value.

The most common error that occurs when using the incorrect declaration is a
message box stating "Help topic does not exist."

Additional reference words: 3.00
KBCategory: Refs
KBSubcategory: RefsDoc

LONG: List of Trappable Errors for Visual Basic 3.0
Article ID: Q108340

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0
--

SUMMARY
=======

This article lists error codes and messages for the errors that you can
trap at run time by using the On Error statement and the Err function.

MORE INFORMATION
================

When running VB.EXE, you can follow these steps to get more information
on a specific error.

1. Stop your program if it is currently running.

2. Press the F8 key to go from design mode to break mode.

3. Press Ctrl+B to activate the debug window.

4. Enter the following statement and wait for the error message to appear:

 Error <error-number>

5. Press the F1 key.

Trappable Errors

 3 Return without GoSub
 5 Illegal function call
 6 Overflow
 7 Out of memory
 9 Subscript out of range
 10 Duplicate definition
 11 Division by zero
 13 Type mismatch
 14 Out of string space
 16 String formula too complex
 17 Can't continue
 19 No Resume
 20 Resume without error
 28 Out of stack space
 35 Sub or Function not defined
 48 Error in loading DLL
 49 Bad DLL calling convention
 51 Internal error
 52 Bad file name or number

 53 File not found
 54 Bad file mode
 55 File already open
 57 Device I/O error
 58 File already exists
 59 Bad record length
 61 Disk full
 62 Input past end of file
 63 Bad record number
 64 Bad file name
 67 Too many files
 68 Device unavailable
 70 Permission denied
 71 Disk not ready
 74 Can't rename with different drive
 75 Path/File access error
 76 Path not found
 91 Object variable not Set
 92 For loop not initialized
 93 Invalid pattern string
 94 Invalid use of Null
 95 Cannot destroy active form instance
 260 No timer available
 280 DDE channel not fully closed; awaiting response from foreign
 application
 281 No More DDE channels
 282 No foreign application responded to a DDE initiate
 283 Multiple applications responded to a DDE initiate
 284 DDE channel locked
 285 Foreign application won't perform DDE method or operation
 286 Timeout while waiting for DDE response
 287 User pressed Escape key during DDE operation
 288 Destination is busy
 289 Data not provided in DDE operation
 290 Data in wrong format
 291 Foreign application quit
 292 DDE conversation closed or changed
 293 DDE Method invoked with no channel open
 294 Invalid DDE Link format
 295 Message queue filled; DDE message lost
 296 PasteLink already performed on this control
 297 Can't set LinkMode; invalid LinkTopic
 298 DDE requires ddeml.dll
 320 Can't use character device names in file names: ' '
 321 Invalid file format
 340 Control array element ' ' doesn't exist
 341 Invalid control array index
 342 Not enough room to allocate control array ' '
 343 Object not an array
 344 Must specify index for object array
 345 Reached limit: cannot create any more controls for this form
 360 Object already loaded
 361 Can't load or unload this object
 362 Can't unload controls created at design time
 363 Custom control ' ' not found
 364 Object was unloaded
 365 Unable to unload within this context

 366 No MDI Form available to load
 380 Invalid property value
 381 Invalid property array index
 382 ' ' property cannot be set at run time
 383 ' ' property is read-only
 384 A form can't be moved or sized while minimized or maximized
 385 Must specify index when using property array
 386 ' ' property not available at run time
 387 ' ' property can't be set on this control
 388 Can't set Visible property from a parent menu
 389 Invalid key
 390 No Defined Value
 391 Name not available
 392 MDI child forms cannot be hidden
 393 ' ' property cannot be read at run time
 394 ' ' property is write-only
 395 Can't use separator bar as menu name
 400 Form already displayed; can't show modally
 401 Can't show non-modal form when modal form is displayed
 402 Must close or hide topmost modal form first
 403 MDI forms cannot be shown modally
 404 MDI child forms cannot be shown modally
 420 Invalid object reference
 421 Method not applicable for this object
 422 Property ' ' not found
 423 Property or control ' ' not found
 424 Object required
 425 Invalid object use
 426 Only one MDI Form allowed
 427 Invalid object type; Menu control required
 428 Popup menu must have at least one submenu
 429 OLE Automation server cannot create object
 430 Class does not support OLE Automation
 431 OLE Automation server cannot load file
 432 OLE Automation file or object name syntax error
 433 OLE Automation object does not exist
 434 Access to OLE Automation object denied
 435 OLE initialization error
 436 OLE Automation method returned unsupported type
 437 OLE Automation method did not return a value
 438 OLE Automation no such property or method
 439 OLE Automation argument type mismatch
 440 OLE Automation error.
 441 Error loading VBOA300.DLL
 442 OLE Automation Lbound or Ubound on non Array value
 443 OLE Automation Object does not have a default value
 444 Method not applicable in this context
 460 Invalid Clipboard format
 461 Specified format doesn't match format of data
 480 Can't create AutoRedraw image
 481 Invalid picture
 482 Printer error
 520 Can't empty Clipboard
 521 Can't open Clipboard
 600 Set value not allowed on collections
 601 Get value not allowed on collections
 602 General ODBC error: ' '

 603 ODBC - SQLAllocEnv failure
 604 ODBC - SQLAllocConnect failure
 605 OpenDatabase - invalid connect string
 606 ODBC - SQLConnect failure ' '
 607 Access attempted on unopened DataBase
 608 ODBC - SQLFreeConnect error
 609 ODBC - GetDriverFunctions failure
 610 ODBC - SQLAllocStmt failure
 611 ODBC - SQLTables (TableDefs.Refresh) failure: ' '
 612 ODBC - SQLBindCol failure
 613 ODBC - SQLFetch failure: ' '
 614 ODBC - SQLColumns (Fields.Refresh) failure: ' '
 615 ODBC - SQLStatistics (Indexes.Refresh) failure: ' '
 616 Table exists - append not allowed
 617 No fields defined - cannot append table
 618 ODBC - SQLNumResultCols (CreateDynaset) failure: ' '
 619 ODBC - SQLDescibeCol (CreateDynaset) failure: ' '
 620 Dynaset is open - CreateDynaset method not allowed
 621 Row-returning SQL is illegal in ExecuteSQL method
 622 CommitTrans/Rollback illegal - Transactions not support
 623 Name not found in this collection
 624 Unable to Build Data Type Table
 625 Data type of field ' ' not supported by target database
 626 Attempt to Move past EOF
 627 Dynaset is not updatable or Edit method has not been invoked
 628 ' ' Dynaset method illegal - no scrollable cursor support
 629 Warning: (ODBC - SQLSetConnectOption failure)
 630 Property is read-only
 631 Zero rows affected by Update method
 632 Update illegal without previous Edit or AddNew method
 633 Append illegal - Field is part of a TableDefs collection
 634 Property value only valid when Field is part of a Dynaset
 635 Cannot set the property of an object which is part of a Database
 object
 636 Set field value illegal without previous Edit or AddNew method
 637 Append illegal - Index is part of a TableDefs collection
 638 Access attempted on unopened Dynaset
 639 Field type is illegal
 640 Field size illegal for specified Field Type
 641 illegal - no current record
 642 Reserved parameter must be FALSE
 643 Property Not Found
 644 ODBC - SQLConfigDataSource error ' '
 645 ODBC Driver does not support exclusive access to Dynasets
 646 GetChunk: Offset/Size argument combination illegal
 647 Delete method requires a name argument
 648 Data access objects require VBDB300.DLL
2420 Syntax error in number
2421 Syntax error in date
2422 Syntax error in string
2423 Invalid use of '.', '!', or '()'.
2424 Unknown name
2425 Unknown function name
2426 Function isn't available in expressions
2427 Object has no value
2428 Invalid arguments used with domain function
2429 In operator without ()

2430 Between operator without And
2431 Syntax error
2432 Syntax error
2433 Syntax error
2434 Syntax error
2435 Extra)
2436 Missing),], or
2437 Invalid use of vertical bars
2438 Syntax error
2439 Wrong number of arguments used with function
2440 IIF function without ()
2442 Invalid use of parentheses
2443 Invalid use of Is operator
2445 Expression too complex
2446 Out of memory during calculation
2447 Invalid use of '.', '!', or '()'.
2448 Can't set value.
2449 Invalid method in expression.
2450 Invalid reference to form ' '.
2451 Invalid reference to report ' '.
2452 Invalid reference to Parent property.
2453 Invalid reference to control ' '.
2454 Invalid reference to '! '.
2455 Invalid reference to property ' '.
2456 Invalid form number reference.
2457 Invalid report number reference.
2458 Invalid control number reference.
2459 Can't refer to Parent property in Design view.
2460 Can't refer to Dynaset property in Design view.
2461 Invalid section reference.
2462 Invalid section number reference.
2463 Invalid group level reference.
2464 Invalid group level number reference.
2465 Invalid reference to field ' '.
2466 Invalid reference to Dynaset property.
2467 Object referred to in expression no longer exists.
2468 Invalid argument used with DatePart, DateAdd or DateDiff function.
2469 1 in validation rule: '|2'.
2470 in validation rule.
2471 in query.
2472 in linked master field.
2473 1 in '|2' expression.
2474 No control is active.
2475 No form is active.
2476 No report is active.
2477 Invalid subclass ' ' referred to in TypeOf function.
3000 Reserved error (); there is no message for this error.
3001 Invalid argument.
3002 Couldn't start session.
3003 Couldn't start transaction; too many transactions already nested.
3004 Couldn't find database ' '.
3005 ' ' isn't a valid database name.
3006 Database ' ' is exclusively locked.
3007 Couldn't open database ' '.
3008 Table ' ' is exclusively locked.
3009 Couldn't lock table ' '; currently in use.
3010 Table ' ' already exists.

3011 Couldn't find object ' '.
3012 Object ' ' already exists.
3013 Couldn't rename installable ISAM file.
3014 Can't open any more tables.
3015 ' ' isn't an index in this table.
3016 Field won't fit in record.
3017 Field length is too long.
3018 Couldn't find field ' '.
3019 Operation invalid without a current index.
3020 Update without AddNew or Edit.
3021 No current record.
3022 Can't have duplicate key; index changes were unsuccessful.
3023 AddNew or Edit already used.
3024 Couldn't find file ' '.
3025 Can't open any more files.
3026 Not enough space on disk.
3027 Couldn't update; database is read-only.
3028 Couldn't initialize data access because file 'SYSTEM.MDA' couldn't
 be opened.
3029 Not a valid account name or password.
3030 ' ' isn't a valid account name.
3031 Not a valid password.
3032 Can't delete account.
3033 No permission for ' '.
3034 Commit or Rollback without BeginTrans.
3035 Out of memory.
3036 Database has reached maximum size.
3037 Can't open any more tables or queries.
3038 Out of memory.
3039 Couldn't create index; too many indexes already defined.
3040 Disk I/O error during read.
3041 Incompatible database version.
3042 Out of MS-DOS file handles.
3043 Disk or network error.
3044 ' ' isn't a valid path.
3045 Couldn't use ' '; file already in use.
3046 Couldn't save; currently locked by another user.
3047 Record is too large.
3048 Can't open any more databases.
3049 ' ' is corrupted or isn't a Microsoft Access database.
3050 Couldn't lock file; SHARE.EXE hasn't been loaded.
3051 Couldn't open file ' '.
3052 MS-DOS file sharing lock count exceeded. You need to increase the
 number of locks installed with SHARE.EXE.
3053 Too many client tasks.
3054 Too many Memo or Long Binary fields.
3055 Not a valid file name.
3056 Couldn't repair this database.
3057 Operation not supported on attached tables.
3058 Can't have Null value in index.
3059 Operation canceled by user.
3060 Wrong data type for parameter ' '.
3061 1 parameters were expected, but only |2 were supplied.
3062 Duplicate output alias ' '.
3063 Duplicate output destination ' '.
3064 Can't open action query ' '.
3065 Can't execute a non-action query.

3066 Query must have at least one output field.
3067 Query input must contain at least one table or query.
3068 Not a valid alias name.
3069 Can't have action query ' ' as an input.
3070 Can't bind name ' '.
3071 Can't evaluate expression.
3073 Operation must use an updatable query.
3074 Can't repeat table name ' ' in FROM clause.
3075 1 in query expression '|2'.
3076 in criteria expression.
3077 in expression.
3078 Couldn't find input table or query ' '.
3079 Ambiguous field reference ' '.
3080 Joined table ' ' not listed in FROM clause.
3081 Can't join more than one table with the same name ().
3082 JOIN operation ' ' refers to a non-joined table.
3083 Can't use internal report query.
3084 Can't insert into action query.
3085 Undefined function ' ' in expression.
3086 Couldn't delete from specified tables.
3087 Too many expressions in GROUP BY clause.
3088 Too many expressions in ORDER BY clause.
3089 Too many expressions in DISTINCT output.
3090 Resultant table may not have more than one Counter field.
3091 HAVING clause () without grouping or aggregation.
3092 Can't use HAVING clause in TRANSFORM statement.
3093 ORDER BY clause () conflicts with DISTINCT.
3094 ORDER BY clause () conflicts with GROUP BY clause.
3095 Can't have aggregate function in expression ().
3096 Can't have aggregate function in WHERE clause ().
3097 Can't have aggregate function in ORDER BY clause ().
3098 Can't have aggregate function in GROUP BY clause ().
3099 Can't have aggregate function in JOIN operation ().
3100 Can't set field ' ' in join key to Null.
3101 Join is broken by value(s) in fields ' '.
3102 Circular reference caused by ' '.
3103 Circular reference caused by alias ' ' in query definition's SELECT
 list.
3104 Can't specify Fixed Column Heading ' ' in a crosstab query more
 than once.
3105 Missing destination field name in SELECT INTO statement ().
3106 Missing destination field name in UPDATE statement ().
3107 Couldn't insert; no insert permission for table or query ' '.
3108 Couldn't replace; no replace permission for table or query ' '.
3109 Couldn't delete; no delete permission for table or query ' '.
3110 Couldn't read definitions; no read definitions permission for table
 or query ' '.
3111 Couldn't create; no create permission for table or query ' '.
3112 Couldn't read; no read permission for table or query ' '.
3113 Can't update ' '; field not updatable.
3114 Can't include Memo or Long Binary when you select unique values
 ().
3115 Can't have Memo or Long Binary in aggregate argument ().
3116 Can't have Memo or Long Binary in criteria () for aggregate
 function.
3117 Can't sort on Memo or Long Binary ().
3118 Can't join on Memo or Long Binary ().

3119 Can't group on Memo or Long Binary ().
3120 Can't group on fields selected with '*' ().
3121 Can't group on fields selected with '*'.
3122 ' ' not part of aggregate function or grouping.
3123 Can't use '*' in crosstab query.
3124 Can't input from internal report query ().
3125 ' ' isn't a valid name.
3126 Invalid bracketing of name ' '.
3127 INSERT INTO statement contains unknown field name ' '.
3128 Must specify tables to delete from.
3129 Invalid SQL statement; expected 'DELETE', 'INSERT', 'PROCEDURE',
 'SELECT', or 'UPDATE'.
3130 Syntax error in DELETE statement.
3131 Syntax error in FROM clause.
3132 Syntax error in GROUP BY clause.
3133 Syntax error in HAVING clause.
3134 Syntax error in INSERT statement.
3135 Syntax error in JOIN operation.
3136 Syntax error in LEVEL clause.
3137 Missing semicolon (;) at end of SQL statement.
3138 Syntax error in ORDER BY clause.
3139 Syntax error in PARAMETER clause.
3140 Syntax error in PROCEDURE clause.
3141 Syntax error in SELECT statement.
3142 Characters found after end of SQL statement.
3143 Syntax error in TRANSFORM statement.
3144 Syntax error in UPDATE statement.
3145 Syntax error in WHERE clause.
3146 ODBC--call failed.
3147 ODBC--data buffer overflow.
3148 ODBC--connection failed.
3149 ODBC--incorrect DLL.
3150 ODBC--missing DLL.
3151 ODBC--connection to ' ' failed.
3152 ODBC--incorrect driver version ' 1'; expected version '|2'.
3153 ODBC--incorrect server version ' 1'; expected version '|2'.
3154 ODBC--couldn't find DLL ' '.
3155 ODBC--insert failed.
3156 ODBC--delete failed.
3157 ODBC--update failed.
3158 Couldn't save record; currently locked by another user.
3159 Not a valid bookmark.
3160 Table isn't open.
3161 Couldn't decrypt file.
3162 Null is invalid.
3163 Couldn't insert or paste; data too long for field.
3164 Couldn't update field.
3165 Couldn't open .INF file.
3166 Missing memo file.
3167 Record is deleted.
3168 Invalid .INF file.
3169 Illegal type in expression.
3170 Couldn't find installable ISAM.
3171 Couldn't find net path or user name.
3172 Couldn't open PARADOX.NET.
3173 Couldn't open table 'MSysAccounts' in SYSTEM.MDA.
3174 Couldn't open table 'MSysGroups' in SYSTEM.MDA.

3175 Date is out of range or is in an invalid format.
3176 Couldn't open file ' '.
3177 Not a valid table name.
3178 Out of memory.
3179 Encountered unexpected end of file.
3180 Couldn't write to file ' '.
3181 Invalid range.
3182 Invalid file format.
3183 Not enough space on temporary disk.
3184 Couldn't execute query; couldn't find linked table.
3185 SELECT INTO remote database tried to produce too many fields.
3186 Couldn't save; currently locked by user ' 2' on machine '|1'.
3187 Couldn't read; currently locked by user ' 2' on machine '|1'.
3188 Couldn't update; currently locked by another session on this
 machine.
3189 Table ' 1' is exclusively locked by user '|3' on machine '|2'.
3190 Too many fields defined.
3191 Can't define field more than once.
3192 Couldn't find output table ' '.
3193 (unknown)
3194 (unknown)
3195 (expression)
3196 Couldn't use ' '; database already in use.
3197 Data has changed; operation stopped.
3198 Couldn't start session. Too many sessions already active.
3199 Couldn't find reference.
3200 Can't delete or change record. Since related records exist in table
 ' ', referential integrity rules would be violated.
3201 Can't add or change record. Referential integrity rules require
a related record in table ' '.
3202 Couldn't save; currently locked by another user.
3203 Can't specify subquery in expression ().
3204 Database already exists.
3205 Too many crosstab column headers ().
3206 Can't create a relationship between a field and itself.
3207 Operation not supported on Paradox table with no primary key.
3208 Invalid Deleted entry in [dBASE ISAM] section in INI file.
3209 Invalid Stats entry in [dBASE ISAM] section in INI file.
3210 Connect string too long.
3211 Couldn't lock table ' '; currently in use.
3212 Couldn't lock table ' 1'; currently in use by user '|3' on machine
 '|2'.
3213 Invalid Date entry in [dBASE ISAM] section in INI file.
3214 Invalid Mark entry in [dBASE ISAM] section in INI file.
3215 Too many Btrieve tasks.
3216 Parameter ' ' specified where a table name is required.
3217 Parameter ' ' specified where a database name is required.
3218 Couldn't update; currently locked.
3219 Can't perform operation; it is illegal.
3220 Wrong Paradox sort sequence.
3221 Invalid entries in [Btrieve ISAM] section in WIN.INI.
3222 Query can't contain a Database parameter.
3223 ' ' isn't a valid parameter name.
3224 Btrieve--data dictionary is corrupted.
3225 Encountered record locking deadlock while performing Btrieve
 operation.
3226 Errors encountered while using the Btrieve DLL.

3227 Invalid Century entry in [dBASE ISAM] section in INI file.
3228 Invalid CollatingSequence entry in [Paradox ISAM] section in INI
 file.
3229 Btrieve--can't change field.
3230 Out-of-date Paradox lock file.
3231 ODBC--field would be too long; data truncated.
3232 ODBC--couldn't create table.
3233 ODBC--incorrect driver version.
3234 ODBC--remote query timeout expired.
3235 ODBC--data type not supported on server.
3236 ODBC--encountered unexpected Null value.
3237 ODBC--unexpected type.
3238 ODBC--data out of range.
3239 Too many active users.
3240 Btrieve--missing WBTRCALL.DLL.
3241 Btrieve--out of resources.
3242 Invalid reference in SELECT statement.
3243 None of the import field names match fields in the appended table.
3244 Can't import password-protected spreadsheet.
3245 Couldn't parse field names from first row of import table.
3246 Operation not supported in transactions.
3247 ODBC--linked table definition has changed.
3248 Invalid NetworkAccess entry in INI file.
3249 Invalid PageTimeout entry in INI file.
3250 Couldn't build key.
3251 Feature not available.
3252 Illegal reentrancy during query execution.
3254 ODBC--Can't lock all records.
3255 ODBC--Can't change connect string parameter.
3256 Index file not found.
3257 Syntax error in WITH OWNERACCESS OPTION declaration.
3258 Query contains ambiguous (outer) joins.
3259 Invalid field data type.
3260 Couldn't update; currently locked by user ' 2' on machine '|1'.
3261
3262
3263 Invalid database object.
3264 No fields defined - cannot append table.
3265 Name not found in this collection.
3266 Append illegal - Field is part of a TableDefs collection.
3267 Property value only valid when Field is part of a recordset.
3268 Cannot set the property of an object which is part of a Database
 object.
3269 Append illegal - Index is part of a TableDefs collection.
3270 Property not found.
3271 Invalid property value.
3272 Object is not an array.
3273 Method not applicable for this object.
3274 External table isn't in the expected format.
3275 Unexpected error from external database driver ().
3276 Invalid database ID.
3277 Can't have more than 10 fields in an index.
3278 Database engine has not been initialized.
3279 Database engine has already been initialized.
3280 Can't delete a field that is part of an index.
3281 Can't delete an index that is used in a relationship.
3282 Can't perform operation on a nontable.

3283 Primary key already exists.
3284 Index already exists.
3285 Invalid index definition.
3286 Invalid type for Memo field.
3287 Can't create index on Memo field or Long Binary field.
3288 Invalid ODBC driver.
3289 Paradox: No primary index.
3290 Syntax error.
3291 Syntax error in CREATE TABLE statement.
3292 Syntax error in CREATE INDEX statement.
3293 Syntax error in column definition.
3294 Syntax error in ALTER TABLE statement.
3295 Syntax error in DROP INDEX statement.
3296 Syntax error in DROP statement.
3297 Operation not supported in version 1.1
3298 Couldn't import. No records found or all records contained errors.
3299 Several tables exist with that name; please specify owner, as in
 'owner.table'.

Additional reference words: 3.00
KBCategory:
KBSubcategory: RefsDoc

LONG: VB 3.0 EXTERNAL.TXT: Using External Database Tables
Article ID: Q108422

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SUMMARY
=======

The following article contains the complete contents of the EXTERNAL.TXT
file distributed with the Standard and Professional Editions of Visual
Basic version 3.0 for Windows. EXTERNAL.TXT describes how to access
external database tables using the data control.

MORE INFORMATION
================

 EXTERNAL.TXT

 Release Notes for Microsoft (R) Visual Basic (TM) Standard Edition

 Version 3.00

 (C) Copyright Microsoft Corporation, 1993

This document contains release notes for Microsoft Visual Basic for
Windows Standard Edition version 3.0. Information in this document is
more current than that in the manuals or online Help.

Visual Basic Standard Edition users can access external database tables
using the data control. Professional Edition users should read Appendix
C, "Accessing External Databases," in the "Data Access Guide,"
"Professional Features," Book 2.

How to Use This Document

To view EXTERNAL.TXT on screen in Windows Notepad, maximize the Notepad
window.

To print EXTERNAL.TXT, open it in Windows Write, Microsoft Word, or another
word processor. Then select the entire document and format the text in
10-point Courier before printing.

========
Contents
========

Part Description
---- -----------
 1 Accessing External Databases

 2 Opening External Tables

 3 Achieving Optimal Performance with External Tables

====================================
Part 1: Accessing External Databases
====================================

The Standard Edition of Visual Basic can open any of the supported
external databases. The following database formats are
currently supported:

- Microsoft Access / Visual Basic (databases other than the open database)
- Btrieve (with data definition files FILE.DDF and FIELD.DDF)
- dBASE III and dBASE IV
- FoxPro and FoxPro for Windows
- Paradox

Note

Visual Basic can read and write Microsoft Access databases since it
shares a common database engine with Microsoft Access. References to
"Visual Basic" databases include those databases created or manipulated
by Microsoft Access.

Pros and Cons of Accessing External Databases

You have two choices when using data from external sources.

You can directly access the external database table, or you can import
the data into your Visual Basic database. It would make sense to
directly access the table if it is already on an established external
database which is being actively updated. In this case the mechanisms
already set up to update, manage and share the data can remain in place,
but your application will have to deal with the extra overhead involved
in fetching the external data.

External tables can be used in most respects like any other table in
your Visual Basic database while they are being used by other
applications sharing the same host server. You can also combine
operations that include external data from external tables with data
stored in the local database. If you choose to import data from external
tables into Visual Basic tables, this can be accomplished through
Microsoft Access, or you can also use a Visual Basic application. Visual
Basic is especially adept at reading ASCII-delimited files using the
INPUT # statement.

The next sections discuss how to access external tables. Note that
you can have an existing Microsoft Access or Visual Basic database that
already has tables attached to it. Attached tables have linkage
information built into the database that permits Visual Basic to
access the data as if it were a part of your database. In this case,
Visual Basic can extract data from these attached tables without any
extra work on your part.

Tips for Using External Tables

When you use an external database table, consider the following tips:

- Before your application uses any data access objects, you'll need to
 provide Visual Basic with the location of the .INI file that contains
 initialization parameters for each of the external databases you expect
 to use. You can do this using the SetDataAccessOption statement. For
 more information, search Help for "SetDataAccessOption."

- The initialization file must contain a section that includes necessary
 external database setup information. See the section "Initialization
 File Details" below for a listing of the .INI file settings needed to
 connect to each of the supported databases.

Note

If you do not have the correct entries (as described below) in your
VB.INI or Appname.INI file you will trigger the trappable error
"Cannot find installable ISAM."

* If you access an external table from a Microsoft Access database,
you may need to supply a password. You can do this by using the
SetDefaultWorkspace statement. For example, the following code
indicates the user name is "Chrissy" and the password is "HighIQ."

 SetDefaultWorkspace "Chrissy", "HighIQ"

For more details, see SetDefaultWorkspace in the Language Reference or
in Help.

* If you access an external table from Btrieve, Paradox, or an SQL
database, you may need to supply a password. Note that this password is
different from a Microsoft Access user password; it's the password set
in the external database. The database password is supplied in the Connect
property of the data control using the PWD identifier. For example,
the following Connect string includes a password:

 "Paradox;PWD=mypword;"

* To access an external table on a network, you must connect to the
network and have access to the database file or directory. If your
network redirector supports it, and you want Visual Basic to automatically
connect to the appropriate file server each time you open an external
table, specify the fully-qualified network path name for the file in the
DatabaseName, Connect and RecordSourceName properties. There is no
mechanism to provide a network share password. In cases where a password is
required to gain access to a network share, you'll have to connect to the
share, provide a password, and pre-assign a drive letter to the share
before starting your program.

For example, if you use a Microsoft LAN Manager network, you might enter
the following path to connect to a remote dBASE file:

\\server\share\datadir\author.dbf

To provide this path when opening a remote dBASE III table, use this code:

' Assume we want to attach a dBASE III table called AUTHOR
' on the \\SERVER\SHARE\DATADIR server.
'
Data1.Databasename = "\\SERVER\SHARE\DATADIR"
Data1.RecordSource = "AUTHOR"
Data1.Connect = "dBASE III"
Data1.Refresh

As long as the dBASE file is not moved, the data will be available to your
application. Generally, the syntax for attaching other types of external
files is similar to the technique shown above.

* When defining external tables, only Paradox will support primary
key definitions. Paradox tables require primary keys.

* Although you can use an attached table as if it were a Microsoft
Access table, there are special considerations. For information about
working with attached tables, see "Using Attached External Tables" later
in this document.

* When you work with multiple external database tables, occasionally
you may find the Updatable property is False. Generally, this is due to
the complexity of the query. To be able to consistently update external
tables, you may find it easier to access them in simpler queries.

* When Visual Basic manipulates external databases, it creates
temporary indexes for the queries being performed on the workstation's
hard disk - even if the database is on an external (networked) device.
Temporary space is allocated from the directory indicated by the TEMP
environment string variable, which usually points to the \WINDOWS\TEMP
directory. If your system has not established a TEMP environment
variable, if it points to an invalid path or if your workstation does
not have sufficient space for these temporary indexes, your application
may behave unpredictably as Windows and Visual Basic run out of resource
space. The amount of space needed is a function of the size of the
external table and can vary from a few thousand bytes to several
megabytes.

* When deleting records from dBASE or FoxPro databases, the records
may reappear when the table is closed and reopened. To tell Visual Basic
not to fetch deleted records, set the DELETED parameter in the .INI file
to "On" (the default).

===============================
Part 2: Opening External Tables
===============================

The method for opening each of the external databases is roughly the
same. Subsequent sections in this appendix deal with the
individual characteristics for each of the supported external database
formats. When using the data control to directly open external tables,
you will need to either work interactively with Visual Basic's
Properties window at design time to set the individual properties
for the data control, or use code in your application to make the
settings.

Accessing Paradox Tables

Visual Basic can access external tables from Paradox versions 3.0 and 3.5.
If you provide the correct password, Visual Basic can open encrypted
Paradox tables. If you open an external Paradox table, you can extract
and update data even if others are using it in Paradox.

When opening external Paradox database tables directly, you'll also need
to specify the name of the directory (not a filename) as the DatabaseName
property of the data control and the name of the table file in the
RecordSource property. For example, to open a Paradox file "Author.DB"
and use the name "ParaAuthor" to reference it as a table object, use the
following code:

data1.Connect = "Paradox;" ' Specify database type
data1.DatabaseName = "C:\Paradox" ' Point to directory
data1.RecordSource = "Author" ' Name database table file
data1.Refresh
While Not data1.RecordSet.EOF
 Print data1.RecordSet(0) ' Dump field(0) to the form
 data1.RecordSet.MoveNext ' for all records
Wend

Important

Paradox stores important information about a table's primary key in an
index (.PX) file. If you access a Paradox table that has a primary key,
Visual Basic needs the .PX file to open the external table. If you delete
or move this file, you won't be able to open the external table. If you
attach a Paradox table that doesn't have a primary key, you cannot
update data in the table using Visual Basic. To be able to update
the table, define a primary key in Paradox.

Paradox to Microsoft Access Data-Type Conversions

When you access an external Paradox table, Visual Basic translates
Paradox data types into the corresponding Visual Basic data types.
The following table lists the data-type conversions.

Paradox data type Microsoft Access data type

Alphanumeric Text
Currency Number (FieldSize property set to Double)
Date Date/Time
Number Number (FieldSize property set to Double)
Short number Number (FieldSize property set to Integer)

Accessing dBASE and FoxPro Files

Visual Basic can directly open external .DBF files in dBASE III, dBASE
IV, or FoxPro version 2.0 or 2.5 format. If you directly open a dBASE
or FoxPro table file, you can view and update data, even if others are
using it with dBASE or FoxPro. If you access a dBASE or FoxPro file,
you can also tell Visual Basic to use one or more index files
(.NDX or .MDX for dBASE; .IDX or .CDX for FoxPro) to improve
performance.

For dBASE and FoxPro databases, Visual Basic keeps track of the table
indexes in a special information (.INF) file. When you use Visual Basic
to update the data in your .DBF file, Visual Basic also updates the index
files to reflect your changes. The .INF file is created for you when
you use Visual Basic to create a new index for a dBASE or FoxPro table,
or you can create them yourself with a text editor.

The format for the .INF files is as follows:

TableName.INF contains:
NDX1=<Index 1 Filename>.NDX
NDX2=<Index 2 Filename>.NDX
NDXn=<Index n Filename>.NDX

For example, an .INF file for the Authors table would be AUTHORS.INF
and it might contain:

NDX1=CityIndx.NDX
NDX2=NameIndx.NDX

Place these index and .INF files in the same directory as the other
dBASE III files. FoxPro and dBASE databases are not maintained in a
single file but in a disk directory which contains separate data, index,
and other support files. When opening external FoxPro and dBASE database
tables directly, you'll also need to specify the name of the directory
(not a filename) as the DatabaseName property in the data control and
the name of the table file in the RecordSource property. For example, to
open a FoxPro version 2.5 file "Author.DBF", use this code:

data1.Connect = "FoxPro 2.5;" ' Specify database type
data1.DatabaseName = "C:\FoxPro" ' Point to directory
data1.RecordSource = "Author" ' Name database table file
data1.Refresh
While Not data1.RecordSet.EOF
 Print data1.RecordSet(0) ' Dump field(0) to the form
 data1.RecordSet.MoveNext ' for all records
Wend

FoxPro and dBASE Memo fields are located in separate files. These files
cannot be located or moved outside of the directory containing the table
files. FoxPro and dBASE database systems do not physically delete records
but merely mark them for deletion at a later time. You must PACK the .DBF
file (using your own utilities) to remove these records from the .DBF
files. The CompactDatabase function will not affect attached tables. If you
use the .INI file setting DELETED = ON (in the [dBASE ISAM] section),
Visual Basic filters out deleted records so that they do not appear in
recordsets. With DELETED=OFF, all records are included in the recordsets
you create, including deleted records. This allows dBASE and FoxPro users
to undelete records. In this case, when you access a dBASE or FoxPro table,
Visual Basic builds a Dynaset from the records. When you delete a record,
Visual Basic deselects the record in the Dynaset and marks the record as
deleted in the .DBF file. If you refresh the Dynaset or reopen the table
the records will still be present.

Important
=========

If you access a .DBF file and associate an index file (.NDX or .MDX for
dBASE or .IDX; .CDX for FoxPro), Visual Basic needs the index file to
open the attached table. If you delete or move index files or the
information (.INF) file, you won't be able to open the external table.
Additionally, if you use dBASE or FoxPro to update data in a .DBF file
that you have accessed from your Visual Basic Database, you must also
update any dBASE or FoxPro indexes associated with the .DBF file.
If the index files are not current when Visual Basic tries to use them,
the results of your queries are unpredictable.

dBASE and FoxPro to Microsoft Access Data-Type Conversions
--
When you access a dBASE or FoxPro file, Visual Basic translates dBASE
and FoxPro data types into the corresponding Microsoft Access data types.
The following table lists the data-type conversions.

dBASE data type Microsoft Access data type
--
Character Text
Date Date/Time
General (FoxPro only) OLE
Logical Yes/No
Memo Memo
Numeric, Float Number (FieldSize property set to Double)

Accessing Btrieve Tables

Using Visual Basic, you can directly open in Btrieve 5.1x format.
To use Btrieve tables, you must have the data definition files FILE.DDF
and FIELD.DDF, which tell Visual Basic the structure of your tables.
These files are created by Xtrieve* or by another .DDF
file-building program. If you delete or move these files or your data
files, you won't be able to open an attached Btrieve table.
For more information on using Btrieve with Visual Basic, see the text
file BTRIEVE.TXT in your Visual Basic directory.

When accessing Btrieve database tables, you'll need to specify the
name of the Btrieve data file (.DDF) as the DatabaseName (DATABASE=
in the Connect property) and the name of the table file in the
SourceTableName property. In this case the Btrieve file name may have no
bearing on the name of the table. The correct file names are stored in the
FILE.DDF file.

For example, to open a Btrieve file "FILE.DDF" to reference the Btrieve
database table "Author", use this code:

data1.Connect = "Btrieve;" ' Specify database type
data1.DatabaseName = "C:\Btrieve\FILE.DDF" ' Point to database file
data1.RecordSource = "Author" ' Name database table file
data1.Refresh

While Not data1.RecordSet.EOF
 Print data1.RecordSet(0) ' Dump field(0) to the form
 data1.RecordSet.MoveNext ' for all records
Wend

WIN.INI Initialization File Settings

The Btrieve driver uses the [BTRIEVE] section of the WIN.INI file
(not VB.INI) when it accesses Btrieve files. After you install
Visual Basic and specify that you want to access Btrieve files,
the WIN.INI file contains the following default settings:

[BTRIEVE]
Options=/m:64 /p:4096 /b:16 /f:20 /l:40 /n:12 /t:c:\VB3\BTRIEVE.TRN

The following table gives a brief description of each switch.
You should consult your Btrieve documentation and BTRIEVE.TXT
supplied with Visual Basic for a definitive and current listing
of these settings. If you install another application that modifies
these settings from the values shown, Visual Basic may not function
normally.

Switch Definition

/m Memory size
/p Page size
/b Pre-image buffer size
/f Open files
/l Multiple locks
/n Files in a transaction
/t Transaction file name.
 (Must be visible to all Btrieve users.)

NOTE

To use Btrieve data, you must have the Btrieve for Windows dynamic-link
library (WBTRCALL.DLL), which is not provided with Visual Basic.
This file is available with Novell* Btrieve for Windows, Novell NetWare*
SQL, and other Windows-based products that use Btrieve. If you expect to
share a Btrieve database, you will need to make sure that the path given
for the transaction file (as specified above) is visible on the net to all
users of the database. Generally, this file is placed on a common server
that all users have access to. The default setting for this parameter
does not take this into account.

Btrieve to Microsoft Access Data-Type Conversions

When you access a Btrieve table, Visual Basic translates
Btrieve data types into the corresponding Microsoft Access data types.

The following table lists the data-type conversions.

Btrieve data type Microsoft Access data type

Date, time Date/Time
Float or bfloat (4-byte) Number (FieldSize property set to
 Single)
Float or bfloat (8-byte),
 decimal, numeric Number (FieldSize property set to Double)
Integer (1-, 2-, or 4-byte) Number (FieldSize property set to Byte,
 Integer, or Long Integer)
Logical Yes/No
Lvar OLE Object

Money Currency
Note Memo
String, lstring, zstring Text

==
Part 3: Achieving Optimal Performance with External Tables
==

Although you can use external tables as if they're regular Microsoft Access
tables, it's important to keep in mind that they aren't actually in your
Visual Basic database. Each time you view data in an external table,
Visual Basic has to retrieve records from another file. This can take
time, especially if the external table is on a network.

If you're using an external table on a network, follow these guidelines
for best results:

* View only the data you need. Don't page up and down unnecessarily
in the data. Avoid jumping to the last record in a large table unless
you want to add new records to the table.

* Use queries to limit the number of records that you fetch.
This way, Visual Basic can transfer less data over the network.

* In queries that involve external tables, avoid using functions
in query criteria. In particular, avoid using aggregate functions,
such as DSum, anywhere in your queries. When you use an aggregate
function, Visual Basic retrieves all of the data in the external table in
order to execute the query.

* If you often add records to an external table, add the records
to a Microsoft Access-format table and use an action query to append
all added records in one operation. This saves time because Visual
Basic won't have to retrieve all the records in the external table.

* Remember that other users may be trying to use an external table
at the same time you are. When a Visual Basic Database is on a network,
you should avoid locking records longer than necessary.

NOTE

If the information stored in the attached table link properties changes
(for example, the database file is moved or a password is changed),
you won't be able to open the attached table. To specify current
information, delete the outdated link and attach the table again.

Initialization File Details

When Visual Basic is installed, you can install as many of the external
database drivers as you want. For those drivers that are installed,
an associated .INI file entry is made. Shown below are the default
settings for all supported external database drivers. In some cases,
these .INI file settings are discussed earlier in the specific driver
sections. When you ship your application, it will be necessary to create
an initialization file that has the correct .INI settings for the
drivers you want to support.

NOTE

To determine the number of retries on commit locks, Visual Basic uses
the following formula for the actual retry count:

Count = LockRetry * CommitLockRetry

VB.INI or <Appname>.INI Default Settings
--

[Options]
SystemDB=C:\MYPATH\SYSTEM.MDA ; Access SYSTEM.MDA for use only if
 ; Microsoft Access is being used
[ISAM]
PageTimeout=5 ;500 ms - non-read-locked page timeout
MaxBufferSize=128 ;128K
LockRetry=20 ;20 - retries on Read/Write locks
CommitLockRetry=20 ;20 - retries on Commit locks
ReadAheadPages=16 ;16 pages

[Installable ISAMs]
Paradox 3.X=C:\VB\pdx110.DLL ;Path of the Paradox driver
FoxPro 2.0=C:\VB\xbs110.DLL ;Path of the FoxPro 2.0 driver
FoxPro 2.5=C:\VB\xbs110.DLL ;Path of the FoxPro 2.5 driver
dBASE III=C:\VB\xbs110.DLL ;Path of the dBASE III driver
dBASE IV=C:\VB\xbs110.DLL ;Path of the dBASE IV driver
Btrieve=C:\VB\btrv110.DLL ;Path of the Btrieve driver

[Paradox ISAM]
PageTimeout=600 ;60 seconds
ParadoxUserName=Joe User ;Name displayed when lock
 ; conflicts occur
ParadoxNetPath=P:\PDOXDB\ ;Path to the PARADOX.NET file
CollatingSequence=Ascii ;Collating sequence of your files
 ; (Ascii, International, Norwegian-Danish,
 ; or Swedish-Finnish)

[BTrieve ISAM]
PageTimeout=600 ;60 seconds
[dBase ISAM]
PageTimeout=600 ;60 seconds CollatingSequence=Ascii
 ;Collating sequence
 ;(Ascii or International)
Century=Off ;Use of four-digit dates
 ;(On or Off)
Date=American ;Date format: correlates to
 ;the SET DATE command in dBase
Mark=47 ;Decimal value of the ascii
 ;mark character:correlates to the
 ;SET MARK command in dBase
Deleted=ON ;Show and operate on deleted records
 ;Deleted=On: never operate
 ;on deleted records

WIN.INI

The following line must appear in WIN.INI (located in your Windows
directory) if you intend to use external Btrieve tables. The details
of this entry are discussed in the Btrieve section earlier in this
appendix.

[BTRIEVE]
Options= /m:64 /P:4096 /b:16 /f:20 /l:40 /n:12 /t:c:\VB\BTRIEVE.TRN

Additional reference words: 3.00
KBCategory: Refs
KBSubcategory: RefsDoc

VB 3.0 CONSTANT.TXT Gives Values for Named Constants
Article ID: Q108468

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SUMMARY
=======

The CONSTANT.TXT file is distributed with the Standard and Professional
Editions of Visual Basic version 3.0 for Windows.

CONSTANT.TXT is the global constant file for Visual Basic. The
CONSTANT.TXT file provides an electronic copy of named constants
mentioned in the Visual Basic manuals and sample programs.

For convenient programming access to all global constants, you can load
the CONSTANT.TXT file into a code module in Visual Basic.

If you are updating a Visual Basic application written with an older
version, you should replace your global constants with the constants in
the CONSTANT.TXT file.

MORE INFORMATION
================

Constants for Both Standard and Professional Editions

The CONSTANT.TXT file defines named Const constants for the following
topics. All of these apply to both the Standard and Professional Editions
of Microsoft Visual Basic for Windows, version 3.0:

Action Property
Actions
Align (picture box)
Alignment
Arrange Method for MDI Forms
AutoActivate modes
BorderStyle (form)
BorderStyle (Shape and Line)
Button parameter masks
Check Value
Clipboard formats
CMDIALOG.VBX
ColAlignment, FixedAlignment Properties
Color Dialog Flags
Colors
Common Dialog Control
Data control
DisplayTypes
Drag (controls)

DragMode
DragOver
DrawMode
DrawStyle
Editmode property values
Enumerated Types
ErrNum (LinkError)
Error Constants
Error event Response arguments
Event Parameters
File Open/Save Dialog Flags
FillStyle
Fillstyle Property
Fonts Dialog Flags
Function Parameters
General
Grid
Help Constants
Key Codes
LinkMode (forms and controls)
MiscFlag Bits
MousePointer
MsgBox parameters
MsgBox return values
OLE Client Control
OLEType
OLETypeAllowed
Options property values
Printer Dialog Flags
Properties
QueryUnload
ScaleMode
ScrollBar
SetAttr, Dir, GetAttr functions
Shape
Shift parameter masks
Show parameters
SizeModes
Special Verb Values
System Colors
Update Event Constants
UpdateOptions
Validate event Action arguments
Variant VarType tags
VerbFlag Bit Masks
WindowState
ZOrder Method

Constants for Professional Edition

The Professional Edition includes the following controls:

1. 3-D Controls (Frame/Panel/Option/Check/Command/Group Push)
2. Animated Button
3. Gauge Control
4. Graph Control Section

5. Key Status Control
6. Spin Button
7. MCI Control (Multimedia)
8. Masked Edit Control
9. Comm Control
10. Outline Control

The CONSTANT.TXT file defines the values of named Const constants for
the following topics which apply to the Professional Edition of
Microsoft Visual Basic for Windows:

3D Controls
Action
Alignment (Check Box)
Alignment (Frame)
Alignment (Option Button)
Alignment (Panel)
Animated Button
Area Chart Options
Autosize (Command Button)
Autosize (Panel)
Autosize (Ribbon Button)
Bar Chart Options
BevelInner (Panel)
BevelOuter (Panel)
Click Filter property
ClipMode
Colors
Comm Control
Cycle property
Data Arrays
Draw Mode
Error code constants
ERROR CONSTANT DECLARATIONS (MAPI CONTROLS)
Event constants
FloodType (Panel)
Font3D (Panel, Command Button, Option Button, Check Box, Frame)
Gantt Chart Options
GAUGE
Graph Control
Graph Types
Grids
Handshaking
HLC Chart Options
Key Status Control
Line Styles
Line/Polar Chart Options
MAPI MESSAGE CONTROL CONSTANTS
Masked Edit Control
MCI Control (Multimedia)
MISCELLANEOUS GLOBAL CONSTANT DECLARATIONS (MAPI CONTROLS)
Mode Property
NotifyValue Property
Orientation Property
Outline
Outline Control Error Constants
Patterns

PicDrawMode Property
PictureDnChange (Ribbon Button)
PictureType
Pie Chart Options
Print Options
RecordMode Porperty
ShadowColor (Panel, Frame)
ShadowStyle (Frame)
SpecialOp Property
Spin Button
SpinOrientation
Statistics
Style
Style Property
Symbols
TextPosition Property
TimeFormat Property

REFERENCES
==========

 - Online Help file VB.HLP
 - "Microsoft Visual Basic Version 3.0 for Windows: Programmer's Guide"
 - "Microsoft Visual Basic Version 3.0 for Windows: Language Reference"

Additional reference words: 3.00
KBCategory: Refs
KBSubcategory: RefsDoc

VB 3.0 DATACONS.TXT: Const Constant Values for Data Access
Article ID: Q108469

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SUMMARY
=======

The following article contains the complete contents of the DATACONS.TXT
file distributed with the Standard and Professional Editions of Visual
Basic version 3.0 for Windows. DATACONS.TXT gives the values of named
constants used for data access in Visual Basic.

The DATACONS.TXT file is required as a supplement to the following
manual, because this manual gives the names of the constants without
specifying all the values:

 - Microsoft Visual Basic 3.0: Professional Features Book 2: Data Access
 Guide

MORE INFORMATION
================

DATACONS.TXT

'
' Data Access constants
'

' Option argument values (CreateDynaset, etc)
Global Const DB_DENYWRITE = &H1
Global Const DB_DENYREAD = &H2
Global Const DB_READONLY = &H4
Global Const DB_APPENDONLY = &H8
Global Const DB_INCONSISTENT = &H10
Global Const DB_CONSISTENT = &H20
Global Const DB_SQLPASSTHROUGH = &H40

' SetDataAccessOption
Global Const DB_OPTIONINIPATH = 1

' Field Attributes
Global Const DB_FIXEDFIELD = &H1
Global Const DB_VARIABLEFIELD = &H2
Global Const DB_AUTOINCRFIELD = &H10
Global Const DB_UPDATABLEFIELD = &H20

' Field Data Types
Global Const DB_BOOLEAN = 1
Global Const DB_BYTE = 2

Global Const DB_INTEGER = 3
Global Const DB_LONG = 4
Global Const DB_CURRENCY = 5
Global Const DB_SINGLE = 6
Global Const DB_DOUBLE = 7
Global Const DB_DATE = 8
Global Const DB_TEXT = 10
Global Const DB_LONGBINARY = 11
Global Const DB_MEMO = 12

' TableDef Attributes
Global Const DB_ATTACHEXCLUSIVE = &H00010000
Global Const DB_ATTACHSAVEPWD = &H00020000
Global Const DB_SYSTEMOBJECT = &H80000002
Global Const DB_ATTACHEDTABLE = &H40000000
Global Const DB_ATTACHEDODBC = &H20000000

' ListTables TableType
Global Const DB_TABLE = 1
Global Const DB_QUERYDEF = 5

' ListTables Attributes (for QueryDefs)
Global Const DB_QACTION = &HF0
Global Const DB_QCROSSTAB = &H10
Global Const DB_QDELETE = &H20
Global Const DB_QUPDATE = &H30
Global Const DB_QAPPEND = &H40
Global Const DB_QMAKETABLE = &H50

' ListIndexes IndexAttributes values
Global Const DB_UNIQUE = 1
Global Const DB_PRIMARY = 2
Global Const DB_PROHIBITNULL= 4
Global Const DB_IGNORENULL= 8
' ListIndexes FieldAttributes value
Global Const DB_DESCENDING = 1 'For each field in Index

' CreateDatabase and CompactDatabase Language constants
Global Const DB_LANG_GENERAL = ";LANGID=0x0809;CP=1252;COUNTRY=0"
Global Const DB_LANG_SPANISH = ";LANGID=0x040A;CP=1252;COUNTRY=0"
Global Const DB_LANG_DUTCH = ";LANGID=0x0413;CP=1252;COUNTRY=0"
'VB3 and Access 1.1 Databases:
Global Const DB_LANG_SWEDFIN = ";LANGID=0x040C;CP=1252;COUNTRY=0"
'VB3 and Access 1.1 Databases:
Global Const DB_LANG_NORWDAN = ";LANGID=0x0414;CP=1252;COUNTRY=0"
'VB3 and Access 1.1 Databases:
Global Const DB_LANG_ICELANDIC = ";LANGID=0x040F;CP=1252;COUNTRY=0"
'Access 1.0 Databases only:
Global Const DB_LANG_NORDIC = ";LANGID=0x041D;CP=1252;COUNTRY=0"

' CreateDatabase and CompactDatabase options
Global Const DB_VERSION10 = 1 ' Microsoft Access Version 1.0
Global Const DB_ENCRYPT = 2 ' Make database encrypted.
Global Const DB_DECRYPT = 4 ' Decrypt database while compacting.

'Collating order values

Global Const DB_SORTGENERAL = 256 ' Sort by EFGPI rules (English,
French,
 ' German,Portuguese, Italian)
Global Const DB_SORTSPANISH = 258 ' Sort by Spanish rules
Global Const DB_SORTDUTCH = 259 ' Sort by Dutch rules
Global Const DB_SORTSWEDFIN = 260 ' Sort by Swedish, Finnish rules
Global Const DB_SORTNORWDAN = 261 ' Sort by Norwegian, Danish rules
Global Const DB_SORTICELANDIC = 262 ' Sort by Icelandic rules
Global Const DB_SORTPDXINTL = 4096 ' Sort by Paradox international rules
Global Const DB_SORTPDXSWE = 4097 ' Sort by Paradox Swedish, Finnish
 ' rules
Global Const DB_SORTPDXNOR = 4098 ' Sort by Paradox Norwegian, Danish
 ' rules
Global Const DB_SORTUNDEFINED = -1 ' Sort rules are undefined or unknown

Additional reference words: 3.00
KBCategory: Refs
KBSubcategory: RefsDoc

Category Keywords for All Visual Basic KB Articles
Article ID: Q108753

The information in this article applies to:

- Microsoft Visual Basic for Windows, versions 2.0 and 3.0

SUMMARY
=======

Each article in the Visual Basic for Windows collection contains at least
one keyword (called a KBSubcategory keyword) that places the article in an
appropriate category. This article lists all the KBSubcategory keywords.

MORE INFORMATION
================

Category & Subcategory Description KBSubcategory Keyword
--
Setup / Installation (Setins) Setins

Environment-specific Issues (Envt)
 VB Design Environment EnvtDes
 Run-Time Environment EnvtRun

Programming (Prg)
 Visual Basic Forms and Controls
 Standard Controls / Forms PrgCtrlsStd
 Custom Controls PrgCtrlsCus
 Third-Party Controls PrgCtrlsThird

 Optimization
 Memory Management PrgOptMemMgt
 General Optimization Tips PrgOptTips

 General VB Programming PrgOther

Advanced programming (APrg)
 Network APrgNet

 Windows Programming (APIs / DLLs)
 Printing APrgPrint
 Graphics APrgGrap
 Windowing APrgWindow
 INI Files APrgINI
 Other API / DLL Programming APrgOther

 Data Access
 ODBC APrgDataODBC
 IISAM APrgDataIISAM
 Access APrgDataAcc
 General Database Programming APrgDataOther

 3rd Party DLL's APrgThirdDLL

Inter-Application Programmability (IAP)
 OLE IAPOLE
 DDE IAPDDE
 3rd Party Interoperability IAPThird

Tools (Tls)
 Setup Toolkit / Wizard TlsSetWiz
 Control Development Kit (CDK) TlsCDK
 Help Compiler (HC) TlsHC

References (Refs)
 Documentation / Help File Fixes RefsDoc
 Product Information RefsProd
 Third-Party Information RefsThird
 PSS-Only Information RefsPSS

Using Keywords to Query the KB

At Microsoft, we use the subcategory keywords to organize the articles for
Help files and for the FastTips Catalog. You can use them to query the
Microsoft Knowledge Base for Visual Basic articles that apply to that
category or subcategory. For example, you can find all the general database
programming articles by querying on the following words in the Microsoft
Knowledge Base:

 visual and basic and APrgDataOther

Use the asterisk (*) wildcard to find articles that fall into the general
categories or into an intermediate subcategory. The first element in each
keyword is the category. For example, to find all the articles that apply
to Visual Basic Forms and Controls regardless of whether they are standard,
custom, or third-party controls, use the following words to query the
Microsoft Knowledge Base:

 visual and basic and PrgCtrls*

To find all advanced programming articles, query on these words:

 visual and basic and APrg*

Add KBSubcategory Keyword to Each Article

When contributing an article to the Visual Basic Knowledge Base, add the
appropriate KBSubcategory keyword to the bottom of the article on the
KBSubcategory line. Each article in the Visual Basic for Windows
collection contains the following section at the bottom of the article:

Additional reference words:
KBCategory:
KBSubcategory: <keyword>

An article usually has only one subcategory keyword, but it may have more.

If you are interested in contributing, please obtain the guidelines by

querying on the following words in the Microsoft Knowledge Base:

 visual and basic and kbguide and kbartwrite

Additional reference words: 3.00 dskbguide subcatkey
KBCategory:
KBSubcategory: RefsPSS

LONG: How to Call Windows API from VB - General Guidelines
Article ID: Q110219

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows,
 versions 2.0 and 3.0

SUMMARY
=======

This article gives general guidelines and examples to introduce you to the
process of calling Windows API functions from a Visual Basic application.
The examples used in this article are discussed individually in other
articles in the Microsoft Knowledge Base. They are repeated here as
examples for those new to the process of calling Windows API functions.

One of the most powerful features of Microsoft Visual Basic is the Declare
statement, which allows you, the Visual Basic programmer, to call the
routines in any Dynamic Link Library (DLL). Microsoft Windows is itself a
collection of DLLs, so Visual Basic can call almost any of the functions in
the Microsoft Windows Application Programming Interface (API). By calling
these routines you can perform tricks that are impossible in Visual Basic
alone.

MORE INFORMATION
================

The Windows API can appear daunting at first. You need to approach it with
a sense of adventure: for a Visual Basic programmer, the Windows API is a
huge unexplored jungle of over five hundred functions. Fortunately, Visual
Basic takes care of so many details for you that you will never have to
learn anything about most of these functions. But some of them do things
that are very hard to do in Visual Basic alone. And a few of them allow you
to do things in your Visual Basic application that you can't do any other
way. This article is your guide to the API jungle.

Backups Are Crucial

As with any good adventure, there are risks as well. When calling the
Windows API, you may declare a function incorrectly or pass it the wrong
values. As a result, you may get a general protection (GP) fault or an
Unexpected Application Error (UAE). Fortunately, insurance for this
adventure is cheap: always save your work before you run it. Keep backups
for every version.

Additional Resources You Might Want

While reading this article and trying out the examples, you may find it
helpful to keep the Visual Basic Programmer's Guide handy. Chapter 24,
"Calling Procedures in DLLs" explains details only touched on here.

To go beyond this article, you need to get documentation for the Windows
API. The Professional Edition of Visual Basic includes this information in
two Help files (WIN31WH.HLP and WIN31API.HLP) and a text file (WINAPI.TXT)
the complete list of Visual Basic DLL procedure, constant, and user-defined
type declarations for the Windows API. You can search for the declaration
you want in the WIN31API.HLP Help file; then copy and paste them into your
code. Alternatively, you can copy the declarations from the WINAPI.TXT
file. You'll find all three files in the \VB\WINAPI directory

Two-Step Process

There are two steps to using a DLL procedure in Visual Basic. First you
declare it once. Then you call it as many times as it is needed. The
remainder of this article provides a number of examples you can use to test
this two-step process.

Declaring DLL Routines

Most DLL routines, including those in the Windows API, are documented using
notation from the C programming language. This is only natural, as most
DLLs are written in C. However, this poses something of a challenge for the
intrepid Visual Basic programmer who wants to call these routines.

In order to translate the syntax of a typical API routine into a Visual
Basic Declare statement, you have to understand something about how both C
and Visual Basic pass their arguments. The usual way for C to pass numeric
arguments is "by value": a copy of the value of the argument is passed to
the routine.

Sometimes C arguments are pointers, and these arguments are said to be
passed "by reference." Passing an argument by reference allows the called
routine to modify the argument and return it. C strings and arrays are
always passed by reference.

Visual Basic, on the other hand, usually passes all of its arguments by
reference. In effect, when you pass arguments to a Visual Basic procedure
you are actually passing "far" (32 bit) pointers to those values. In order
to pass arguments to a C routine that expects its arguments to be passed by
value, you have to use the ByVal keyword with the argument in the
Declaration statement.

Obviously, if a DLL routine is expecting an argument to be passed by value
and you pass a pointer instead, it is not going to behave as you expect.
Likewise, if the routine is expecting a pointer to a value and you pass the
value itself, the routine is going to attempt to access the wrong memory
location and probably cause a GP fault or UAE. So be careful.

One added wrinkle to this is that Visual Basic strings do not use the same
format as C strings. Visual Basic has overloaded the ByVal keyword to mean
"pass a C string" when it is used with a string argument in a declare
statement.

C argument types and their equivalent declarations in Visual Basic:

If the argument is Declare it as

--
standard C string (LPSTR, char far *) ByVal S$
Visual Basic string (see note) S$
integer (WORD, HANDLE, int) ByVal I%
pointer to an integer (LPINT, int far *) I%
long (DWORD, unsigned long) ByVal L&
pointer to a long (LPDWORD, LPLONG, DWORD far *) L&
standard C array (A[]) base type array (no ByVal)
Visual Basic array (see note) A()
struct (typedef) S As Struct

NOTE: You will never pass a Visual Basic string or array to a DLL routine
unless the DLL was written specifically for use with Visual Basic. Visual
Basic strings and arrays are represented in memory by "descriptors" (not
pointers), which are useless to DLL routines that were not written with
Visual Basic in mind.

There is one more complication to this, however. Some Windows functions
take a 32 bit argument that sometimes is a "far" (32 bit) pointer to
something and sometimes is just a 32 bit value. The fourth argument in the
SendMessage function is like this. If you are going to call it with just a
pointer or with just a value, you can declare it appropriately. For
example, you could declare SendMessage to take a pointer to a string:

 ' Enter the following Declare statement as one, single line:
 Declare Function SendMessage Lib "user"
 (ByVal hWnd%, ByVal msg%, ByVal wp%, ByVal lp$) As Long

Or you could declare it to take a 32 bit value:

 ' Enter the following Declare statement as one, single line:
 Declare Function SendMessage Lib "user"
 (ByVal hWnd%, ByVal msg%, ByVal wp%, ByVal lp&) As Long

Notice the fourth argument is declared ByVal lp$ in the first example and
ByVal lp& in the second.

However, what if you want to call it with both kinds of arguments in the
same program? If you declare it one way and call it another, you will get
an error message from Visual Basic. The solution is to declare the argument
As Any:

 ' Enter the following Declare statement as one, single line:
 Declare Function SendMessage Lib "user"
 (ByVal hWnd%, ByVal msg%, ByVal wp%, lp As Any) As Long

The Any "data type" tells Visual Basic not to do any type checking for that
argument. So now you can pass it anything as long as it is what the
function is expecting. If an argument is declared As Any, you must specify
whether the argument is passed by value or not -- when you actually call
the function. You do this by using ByVal for strings and for arguments that
should be passed by value, and omitting ByVal for arguments that should be
passed by reference. Use the appropriate entry from the second column in
the table shown above as the argument when you call the function.

For example, if you have declared the fourth argument in SendMessage As
Any, you can pass a string in that argument:

 buflen& = SendMessage(txthWnd, EM_GETLINE, lineNum%, ByVal buf$)

Notice you use the ByVal keyword in the call. This tells Visual Basic that
you want to pass a standard C string. If you don't include the ByVal, you
will pass a Visual Basic string descriptor, which is not something
SendMessage knows how to handle.

You can also pass an array:

 dummy& = SendMessage(any_hWnd%, EM_SETTABSTOPS, NumCol%, ColSizes(1))

Notice you do not use ByVal in this case because you want to pass a pointer
(specifically a pointer to the indicated element in the array -- all
subsequent array elements are packed into memory after it).

You can pass a long integer value as the fourth argument:

 dummy& = SendMessage(txthWnd, EM_LINESCROLL, 0, ByVal ScrollAmount&)

Note the use of ByVal here. You want to pass the value itself, rather than
a pointer to the value. It's very important that you pass a Long integer
for this argument. If you pass a normal Integer Visual Basic will not
convert it into Long.

If you're careful to match up what you're passing with what the routine
expects, you should have no trouble calling the Windows API to get Visual
Basic to do what you want as demonstrated in the examples that comprise the
remainder of this article.

Scoping Out the System

One of the nice things about Windows is that it insulates you from a lot of
the details of the system. You can print to the printer without knowing
what kind it is; you can display things on the screen without knowing its
resolution. However, there may be times when your application needs to know
key information about the system. For example, you may want your
application to perform different calculations depending on whether the
system has a math coprocessor or not.

Fortunately, Windows provides several functions that you can use to obtain
this kind of information. For example the GetWinFlags API function can give
you a lot of information.

Place this declaration in the declarations section of a form or module, or
in the global module:

 Declare Function GetWinFlags Lib "kernel" () As Long

As functions in the Windows API go, this one is very simple. It is found in
the Windows "kernel" DLL. It takes no arguments (hence the empty
parentheses in the declaration) and returns a Long integer. This Long will
have bits, or flags, set to indicate certain facts about the system. Here
are some of the flags:

 Const WF_CPU286 = &H2&

 Const WF_CPU386 = &H4&
 Const WF_CPU486 = &H8&
 Const WF_STANDARD = &H10&
 Const WF_ENHANCED = &H20&
 Const WF_80x87 = &H400&

Place the constants in the Declarations section of the form or module where
you declare the GetWinFlags function.

Now you can call GetWinFlags and use the And operator with these constants
to test the value returned. For example:

 Dim WinFlags As Long
 WinFlags = GetWinFlags()
 If WinFlags And WF_ENHANCED Then
 Print "Windows Enhanced Mode ";
 Else
 Print "Windows Standard Mode ";
 End If
 If WinFlags And WF_CPU486 Then Print "on a 486"
 If WinFlags And WF_CPU386 Then Print "on a 386"
 If WinFlags And WF_CPU286 Then Print "on a 286"
 If WinFlags And WF_80x87 Then Print "Math coprocessor available"

There's one important fact about the system that this function does not
provide: the version of Windows. You can obtain that information with the
GetVersion function:

 Declare Function GetVersion Lib "Kernel" () as Long

This returns a Long integer containing the version numbers of MS-DOS and
Windows. Here's the code that extracts the version information:

 Dim Ver As Long, WinVer As Long, DosVer As Long
 Ver = GetVersion()
 WinVer = Ver And &HFFFF
 Print "Windows " + Format$(WinVer Mod 256) + "." + Format$(WinVer \ 256)
 DosVer = Ver \ &H10000
 Print "MS-DOS " + Format$(DosVer \ 256) + "." + Format$(DosVer Mod 256)

GetSystemMetrics is another Windows function that provides useful system
information. You declare it like this:

 Declare Function GetSystemMetrics Lib "User" (ByVal nIndex%) As Integer

This function is located in the "User" DLL. It takes one argument: an
integer indicating which item of system information you want it to return.
This argument, like most arguments to Windows API functions, is passed by
value. Because Visual Basic usually passes arguments by reference, you have
to include the ByVal keyword to specify the argument should be passed by
value. This is very important. Forgetting ByVal when it is needed or
including it when it isn't often leads to problems.

GetSystemMetrics provides a potpourri of information. For example, you can
use it to find out if a mouse is installed in the system with code like
this:

 Const SM_MOUSEPRESENT = 19
 If GetSystemMetrics(SM_MOUSEPRESENT) Then Print "Mouse installed"

Some other useful information provided by GetSystemMetrics is the size of
the arrow bitmaps used by standard horizontal and vertical scroll bars.
This is important because the size of these bitmaps varies with the
resolution of the display and the display driver installed. When you create
an application that uses a horizontal scroll bar control, you usually give
it a fixed height; likewise, when you create a form with a vertical scroll
bar control, you usually give it a fixed width. You fix these sizes based
on what looks good on your system. Unfortunately, what looks good on your
display can look strange on a display that has a different resolution. If
you are writing applications that need to look good on a variety of display
resolutions, you need to write code that can determine the standard size of
scroll bars on the current display and dynamically resize your scroll bar
controls to match. You need to write code like this:

 Const SM_CXVSCROLL = 2
 Const SM_CYHSCROLL = 3
 ScaleMode = 3 'Pixels
 VScroll1.Width = GetSystemMetrics(SM_CXVSCROLL)
 HScroll1.Height = GetSystemMetrics(SM_CYHSCROLL)

Notice that the values returned by the GetSystemMetrics function are always
in pixels, so you need to set the ScaleMode of the form to 3 (pixels)
before setting the sizes of the scroll bars.

There are a lot of other system values you can obtain using
GetSystemMetrics, but not all of them are useful to Visual Basic
programmers. Here are a few of the interesting ones:

 Const SM_CXSCREEN = 0 'Width of screen in pixels
 Const SM_CYSCREEN = 1 'Height of screen in pixels
 Const SM_CYCAPTION = 4 'Height of form titlebar in pixels
 Const SM_CXICON = 11 'Width of icon in pixels
 Const SM_CYICON = 12 'Height of icon in pixels
 Const SM_CXCURSOR = 13 'Width of mousepointer in pixels
 Const SM_CYCURSOR = 14 'Height of mousepointer in pixels
 Const SM_CYMENU = 15 'Height of top menu bar in pixels

Yet another function that provides system information is GetDeviceCaps.
This function returns information about a particular device in the system,
such as the printer or the display. Like many of the functions you will see
in this article, the declaration for GetDeviceCaps is too long to fit on
one line, but you must type it all on one, single line:

 ' Enter the following Declare statement as one, single line:
 Declare Function GetDeviceCaps Lib "GDI" (ByVal hDC%, ByVal nIndex%)
 As Integer

GetDeviceCaps is found in the "GDI" DLL and it takes two arguments. The
first allows you to specify the device for which you want information. When
calling the function from Visual Basic, supply either the hDC property of a
form or the hDC property of the Printer object. The second argument
specifies the device information you want to get. There are a lot of
possible values for this second argument, but only a couple of them are
very interesting to the Visual Basic programmer. For example, you can find

out how many colors the screen or printer supports:

 Const PLANES = 14
 Const BITSPIXEL = 12
 Dim Cols As Long
 Cols = GetDeviceCaps(hDC, PLANES) * 2 ^ GetDeviceCaps(hDC, BITSPIXEL)

The number of colors a device supports is the product of the number of
color planes it has and the number of bits per pixel in each plane. Because
each bit can represent two colors, you have to raise 2 to the power of the
number of bits per pixel, and then multiply that by the number of color
planes, to get the total number of colors that the device can display.

Some Useful Tricks

That's enough poking about in the system. Here are some useful tricks.
If you have used the Shell function in Visual Basic, you have probably
discovered that it will only run files that have the extension .EXE, .COM,
.PIF, or .BAT. But you can double-click almost any file in the File
Manager, and Windows does the right thing. For example, if it is a .TXT
file, Windows starts Notepad. How would you add this kind of functionality
to your own applications?

Windows stores the association between data files and their related
application (such as the association between a .TXT file and the NOTEPAD
application) in the WIN.INI file in the Extensions section. Windows also
provides a function called GetProfileString that reads the WIN.INI file for
you. Here is the Declare for GetProfileString:

 ' Enter the following Declare statement on one, single line:
 Declare Function GetProfileString Lib "Kernel"
 (ByVal Sname$, ByVal Kname$, ByVal Def$, ByVal Ret$, ByVal Size%)
 As Integer

GetProfileString searches the WIN.INI section specified in the first
argument for the key specified in the second argument and returns the value
for that key in the third argument. The fourth argument provides the length
of the string passed as the third argument.

Therefore, once you know the extension of a file, you can use
GetProfileString to find the parent application for files with that
extension. Here's a function that does that:

 Function FindApp (Ext As String) As String
 ' Find the parent app for a file with the given extension
 Dim Sname As String, Ret As String, Default As String
 Ret = String$(255, 0)
 Default = Ret
 Sname = "Extensions"
 nSize = GetProfileString(Sname, Ext, Default, Ret, Len(Ret))
 If Left$(Ret, 1) <> Chr$(0) Then
 FindApp = Mid$(Ret, 1, InStr(Ret, "^") - 1)
 End If
 End Function

GetProfileString is an example of a Windows function that returns a string

by modifying one of its arguments. To use these kinds of functions, you
must create a string and fill it with something (character code 0 in the
example above) before you call the function. This is because Windows cannot
enlarge strings the way Visual Basic can, so whenever you pass a string to
Windows you must ensure that it is long enough to hold the largest possible
string that Windows might return.

You can add new values to WIN.INI using the WriteProfileString function:

 ' Enter the following Declare statement on one, single line:
 Declare Function WriteProfileString Lib "Kernel"
 (ByVal Sname$, ByVal Kname$, ByVal Set$) As Integer

This function searches the WIN.INI file for the section specified in the
first argument and the key specified in the second argument. Then it
replaces the key value with the value specified in the third argument. If
the key is not found, it adds the key and its value to the specified
section. If it does not find the section, it adds that to WIN.INI as well.

Some applications use their own private .INI files rather than using
WIN.INI -- Visual Basic has its own VB.INI, for example. You can use the
functions GetPrivateProfileString and WritePrivateProfileString to
manipulate other .INI files:

 ' Enter each of the following Declare statements on one, single line:
 Declare Function GetPrivateProfileString Lib "Kernel"
 (ByVal Sname$, ByVal Kname$, ByVal Def$, ByVal Ret$, ByVal Size%,
 ByVal Fname$) As Integer
 Declare Function WritePrivateProfileString Lib "Kernel"
 (ByVal Sname$, ByVal Kname$, ByVal Set$, ByVal Fname$) As Integer

These work exactly like GetProfileString and WriteProfileString, except
they have one additional argument that specifies the path and filename of
the .INI file.

Now, where should you put that custom .INI file? One obvious place is the
Windows directory. But people name that directory all sorts of things:
\WINDOWS or \WIN3 or who knows what. It might not even be at the root
level. How can you find it? Well, Windows knows where this directory is,
and it provides a function to tell you:

 ' Enter the following Declare statement on one, single line:
 Declare Function GetWindowsDirectory Lib "User"
 (ByVal P$, ByVal S%) As Integer

The first argument is a string that the function will fill with the path to
the Windows directory; the second argument is the length of this string.
Again, because you are passing a string to be filled by Windows, you must
make sure it is large enough to accommodate whatever string Windows might
provide. In this case, the Windows Reference warns that it should be at
least 144 characters. On the other hand, 144 characters is the worst case
so in most cases there will be a lot of unused characters that you will
need to trim off. The GetWindowsDirectory function returns an integer value
that indicates the actual length of the returned string. So here's some
fancy code that calls the function and trims the returned string all in one
line:

 Dim WinPath As String
 WinPath = String$(145, Chr$(0))
 WinPath = Left$(WinPath, GetWindowsDirectory(WinPath, Len(WinPath)))

In addition, there is usually a \SYSTEM directory within the windows
directory. Once again, that could be called anything, and once again
Windows provides a function to find it: GetSystemDirectory.

This function is declared in exactly the same way as GetWindowsDirectory
and can be called in the same way, so substitute it in the declaration and
code above and try it out.

Another sensible place to put that .INI file is in the same directory as
the application. It should be trivial to figure out what directory a
running Visual Basic application is stored in, but it's not. This
information isn't provided through the Command$ system variable,
unfortunately. And even CurDir$ isn't reliable because the application
could have been run using a full path without changing the current
directory to the application's directory. Windows API calls to the
GetModuleHandle and GetModuleFileName functions give you what you need.
Here are the declarations:

 ' Enter each of the following Declare statement on one, single line:
 Declare Function GetModuleHandle Lib "Kernel"
 (ByVal FileName$) As Integer
 Declare Function GetModuleFileName Lib "Kernel"
 (ByVal hModule%, ByVal FileName$, ByVal nSize%) As Integer

GetModuleHandle takes the filename of a running program and returns a
"module handle." All you need to know about the module handle is that it is
an integer and you pass it to the GetModuleFileName function.

GetModuleFilename takes three arguments; the first is the module handle
returned by GetModuleHandle. The second is a string that the function fills
with the complete path and filename of the program specified by the module
handle. The third is the size of this string. The value returned by
GetModuleFilename is the length of the path that it placed in the string
you passed.

Using these two functions, obtaining the path to a running program is easy:

 Dim hMod As Integer, Path As String
 hMod = GetModuleHandle%("MyApp.EXE")
 Path = String$(145, Chr$(0))
 Path = Left$(Path, GetModuleFileName%(hMod, Path, Len(Path))

Notice that you are again passing a large string and using the value
returned by the function to trim the string down to size with Left$.

Another trick you can perform with GetModuleHandle is limiting your
application to a single instance. Normally, Windows allows you to run
multiple instances (copies) of the same program. Most of the time this is a
handy feature, but sometimes it can cause problems. If your program uses
data
files, having more than one instance of the program accessing those files
at the same time can leave the files in an inconsistent state. You could
write the program so that it works correctly even if there are multiple

copies running, but that's a lot of work and sometimes it's not even
possible. An easier method is to just ensure that only one copy of the
program can be run. Thanks to GetModuleHandle and another Windows function,
GetModuleUsage, this is easy:

 Declare Function GetModuleUsage Lib "Kernel" (ByVal hModule%) As Integer

GetModuleUsage returns how many instances of the specified program exist.
The program is specified by passing GetModuleUsage a module handle, which
is what GetModuleHandle returns. Putting code like this in the Form_Load
event for your startup form (or in your Sub Main if you don't have a
startup form) ensures that only a single instance of your application can
be run:

 If GetModuleUsage(GetModuleHandle("YOURAPP.EXE")) > 1 Then
 MsgBox "This program is already loaded!", 16
 End
 End If

GetModuleHandle and GetModuleUsage work for DLLs as well as ordinary
executable files, so you could use this technique to find out how many
Visual Basic executables are running by using GetModuleUsage with the
module handle for VBRUN100.DLL.

Sending Messages to Controls

Windows is built around messages. The Windows system sends messages to
applications. You see these messages in your Visual Basic program as
events. In addition, applications send messages to each other (this is the
basis for DDE), and applications even send messages to themselves.

You can get in on the action. By sending messages to controls, you can get
them to do things that would otherwise be impossible, such as setting
tab stops in list boxes and getting a single line of text from a multi-line
text box. You can also do things by sending a single message that would
take a lot more Basic code to accomplish, such as emptying a list box.
You send messages with SendMessage function:

 ' Enter the following Declare statement as one, single line:
 Declare Function SendMessage Lib "User"
 (ByVal hWnd%, ByVal msg%, ByVal wp%, lp As Any) As Long

The first argument identifies the recipient of the message. Windows uses
"handles" to keeps track of everything it uses. Handles are integer ID
numbers that Windows assigns to things -- like the module handles used
earlier to refer to programs.

Controls are just another kind of window as far as Windows is concerned.
Controls are identified by their window handle, or hWnd. To send a message
to a control you need its hWnd.

Visual Basic provides the hWnd for a form through the hWnd property.
Unfortunately, there is no such property for any of the controls. The
controls are windows and do have hWnds, but Visual Basic doesn't provide
them for you. So you have to resort to some subterfuge. Windows has a
function called GetFocus that will return the hWnd for the window that has

the focus:

 Declare Function GetFocus Lib "user" () As Integer

And we can give the focus to any control using the Visual Basic SetFocus
method. So to get the hWnd for a control, use code similar to this:

 AnyControl.SetFocus
 control_hWnd = GetFocus()

The second argument in the SendMessage function is the message number. All
of the message numbers are some offset from the WM_USER message, which has
the value 1024 (&H400 in hexadecimal notation). The complete list of
message numbers is included in the WINAPI.TXT file.

The last two arguments in SendMessage supply additional information for a
particular message. What they contain varies from message to message.
Notice that the last argument was declared As Any. This is different from
the way the SendMessage function is declared in the WINAPI.TXT file. It
allows you to pass any data type as the fourth argument.

The Long integer value that SendMessage returns depends on what message you
sent. Sometimes you send a message to tell a control to do something, and
the return value is zero if the control could perform the action and non-
zero if it could not. Sometimes you send a message to a control to find out
something about that control, and in those cases the return value is the
information you requested. And sometimes the return value means nothing at
all.

Try out SendMessage by starting with something simple: emptying list boxes.
If you've spent much time programming with list boxes, you are probably
annoyed that there is no simple way to empty a list. Instead of telling the
list box to simply empty itself, you have to loop through all the entries
and use the RemoveItem method on each one. But there's a better way.

Windows provides a message (LB_RESETCONTENT) that you can send to a list
box to make it empty itself in one step.

 Const WM_USER = &H400
 Const LB_RESETCONTENT = WM_USER + 5

Here is a procedure that uses this message to empty any list box:

 Sub ClearListBox(Ctrl As Control)
 Ctrl.SetFocus
 dummy& = SendMessage(GetFocus(), LB_RESETCONTENT, 0, ByVal 0&)
 End Sub

The RESETCONTENT message needs no additional information, so the last two
arguments to SendMessage are zero. Notice that the last argument is ByVal
0& (zero followed by an ampersand character). The ampersand is very
important; it ensures that a long (32 bit) zero is passed. There is no
useful information returned when this message is sent, so the SendMessage
function is assigned to a dummy variable.

You can also empty combo box lists in the same way; just use this constant
for the message:

 Const CB_RESETCONTENT = WM_USER+11

While on the topic of lists, there's an easy way to find strings in a list.
You can loop through all the items in the list, but why bother when the
LB_FINDSTRING message allows you to find a string in a list box with a
single function call? When you send the LB_FINDSTRING message, the
SendMessage function returns the index of the first item in the list that
matches the string you specified (so obviously you should only use this
message with sorted list boxes).

 Const LB_FINDSTRING = WM_USER + 16
 Dim itemNum As Long
 itemNum = SendMessage(GetFocus(), LB_FINDSTRING, -1, ByVal "Visual")
 Print "Windows is item: "; Format$(itemNum)

This finds the first list item that begins with "Visual" and returns its
index in the list. It will match even if there are additional characters
following the specified string, so the example above would match "Visual
Basic" if it was the first string in the list beginning with "Visual."
Again, this technique works as well with combo boxes as it works with list
boxes. Just use the message:

 Const CB_FINDSTRING = WM_USER + 12

And, speaking of combo boxes, here's a neat trick for a dropdown list combo
box (a combo box with the Style property set to 2). This code drops the
list automatically when the combo box gets the focus:

 Sub Combo1_GotFocus ()
 Const CB_SHOWDROPDOWN = WM_USER + 15
 Dummy& = SendMessage(GetFocus(), CB_SHOWDROPDOWN, 1, ByVal 0&)
 End Sub

Sending messages in the GotFocus event for a control is a good technique
because it allows you to avoid explicitly setting the focus to a control to
get its hWnd.

Another useful message is LB_GETTOPINDEX. When you send this message to a
list box, the SendMessage function returns the index of the first visible
item in the list. This is valuable if the list has been scrolled and you
want to determine which items are actually visible in the list (in a
DragDrop event, for example).

 Const LB_GETTOPINDEX = WM_USER+15
 FirstItem& = SendMessage(GetFocus(), LB_GETTOPINDEX, 0, ByVal 0&)

You can also send a message to scroll a list box to make any item the first
visible item in the list:

 Const LB_SETTOPINDEX = WM_USER+24
 Success& = SendMessage(GetFocus(), LB_SETTOPINDEX, item%, ByVal 0&)

You could combine this message with the LB_FINDSTRING message to scroll the
list box so that the list item found by LB_FINDSTRING is at the top of the
list.

One especially valuable use of SendMessage is to set the tabstops in a list
or
text box. You have probably discovered that list boxes and multi-line text
boxes handle tabs automatically, so if you assign text that contains tabs
(character code 9) the columns line up automatically. Unfortunately, Visual
Basic gives you no way to adjust where the columns fall -- except by
sending a message. For a list box, the message is:

 Const LB_SETTABSTOPS = WM_USER + 19

When you send this message, you must supply an array of integers that
specify the new tab positions. (These positions are specified in terms of
characters; when the list box or text box contains a proportional font,
these are "average" characters.) This array is the fourth argument to the
SendMessage function; the number of elements in the array is the third
argument. Notice that to pass an array to a Windows function, you actually
pass the first element of the array:

 ReDim tabs(3) As Integer
 tabs(1) = 10
 tabs(2) = 50
 tabs(3) = 90
 List.SetFocus
 dummy& = SendMessage(GetFocus(), LB_SETTABSTOPS, 0, ByVal 0&)
 dummy& = SendMessage(GetFocus(), LB_SETTABSTOPS, 3, tabs(1))

The first call to SendMessage clears any existing tabstops; the second sets
three tabstops as specified in the array.

You can set the tabstops in a multi-line text box as well; just send the
message EM_SETTABSTOPS:

 Const EM_SETTABSTOPS = WM_USER + 27

This won't work for a single-line text box. Speaking of multi-line text
boxes, there are several useful messages you can send to a multi-line text
box to get information that Visual Basic does not provide. For example, you
can send the EM_GETLINECOUNT message to get the number of lines text in a
multi-line text box:

 Const EM_GETLINECOUNT = WM_USER+10
 lineCount& = SendMessage(GetFocus(), EM_GETLINECOUNT, 0, ByVal 0&)

You can obtain the text contained in any line of a multi-line text box with
the message:

 Const EM_GETLINE = WM_USER + 20

When sending this message, you have to provide the number of the line you
want to retrieve in the third argument to SendMessage, and the string to be
filled with the contents of the line as the fourth argument. There's one
odd thing about this string. Normally, when you pass a string to a Windows
function you also supply the size of the string as an argument. However,
the usual place for that information is in the third argument, and that is
already being used to specify which line you want retrieved. So you have to
place the length of the string in the first two bytes of the string, using
code like this:

 Dim LineNum As Integer, linelength As Integer, buf As String
 'Set linelength to some reasonable value
 buf = String$(linelength, chr$(0))
 buf = Chr$(linelength Mod 256) + Chr$(linelength \ 256) + Buf
 ' Enter the following two lines as one, single line:
 buf = Left$(buf,
 SendMessage(GetFocus(), EM_GETLINE, lineNum, ByVal buf))

Another handy message for multi-line text boxes is EM_LINESCROLL, which
allows you to scroll them horizontally and vertically. You specify the
amount to scroll in the fourth argument of the SendMessage function: place
the number of characters to scroll horizontally in the high word (by
multiplying by 65536) and the number of lines to scroll vertically in the
low order word. For example:

 Sub ScrollIt (ctl As Control, chars As Integer, lines As Integer)
 Const EM_LINESCROLL = WM_USER + 6
 Dim scroll As Long
 scroll = chars * 65536 + lines
 ctl.SetFocus
 dummy& = SendMessage(GetFocus(), EM_LINESCROLL, 0, ByVal scroll)
 End Sub

This is a relative scroll: if you use the value 2 the text box will scroll
down by two lines; if you use the value -65536 the text box will scroll
left by one character.

Another feature that Visual Basic does not directly support is a way to
restrict the number of characters that can be entered in a text box. You
can do this by responding to the various Key events, but there is an easier
way: send the EM_LIMITTEXT message to the text box:

 Sub Text1_GotFocus()
 Const EM_LIMITTEXT = WM_USER+21
 dummy& = SendMessage(GetFocus(), EM_LIMITTEXT, numChars, ByVal 0&)
 End Sub

Here the third argument specifies the maximum number of characters the text
box will accept. If you want to set it back to normal, send EM_LIMITTEXT
with that argument set to zero. You can also restrict the number of
characters accepted by a combo box by sending the combo box the message
CB_LIMITTEXT:

 Const CB_LIMITTEXT = WM_USER+1

One last trick: turn a text box into a password control. Windows provides
automatic support for text boxes that display asterisks (or some other
character) instead of the actual characters the user types. To take
advantage of this support, set a style bit in the text box. Normally you
set style bits when you create a control, but you can't do that because
Visual Basic creates the control for you.

Fortunately, Windows allows you to set that bit after the control is
created (this is one of the few style bits that you can change after a
control is created). The functions that get and set the style information
for a window are as follows:

 ' Enter each of the following Declare statements as one, single line:
 Declare Function GetWindowLong Lib "User"
 (ByVal hWnd%, ByVal nIndex%) As Long
 Declare Function SetWindowLong Lib "User"
 (ByVal hWnd%, ByVal nIndex%, ByVal NewLong&) As Long

To set the password style bit, call GetWindowLong to get the style
information, use the Or operator to set the bit, and then call
SetWindowLong to store the new style. Once again, do this in the GotFocus
event so you don't have to worry about using SetFocus to get the hWnd:

 Sub Text1_GotFocus ()
 Const ES_PASSWORD = &H20
 Const EM_SETPASSWORD = 1052
 Const GWL_STYLE = -16
 Const Asterisk = 42
 Dim TxthWnd As Integer, WindowLong As Long
 TxthWnd = GetFocus()
 WindowLong = GetWindowLong(TxthWnd, GWL_STYLE)
 WindowLong = WindowLong Or ES_PASSWORD
 WindowLong = SetWindowLong(TxthWnd, GWL_STYLE, WindowLong)
 WindowLong = SendMessage(TxthWnd, EM_SETPASSWORD, Asterisk, ByVal 0&)
 End Sub

You can define the character you want displayed in place of the actual
characters the user types by sending the EM_SETPASSWORD message to the
control. This example sets the password character to asterisks. If you want
to use a different character, supply a different ANSI character code when
you send the EM_SETPASSWORD message.

There are some limitations to this password functionality. For one thing,
the characters in the text box are not stored as asterisks; they are just
displayed that way. This is good, because it allows your code to easily
check what the user typed. But it is also bad, because any user can select
the contents of the text box, copy it, and paste it somewhere else and see
the actual characters that were typed in the text box. Whether you consider
this a flaw depends on whether you expect the text box containing a
password to sit around on a screen where some malicious users can copy it.
Usually, this is not a problem. But it is something to keep in mind.

Exploring on Your Own

The Windows API is like an enormous hidden world that is just waiting to be
explored. The API documentation is the treasure map, and like the maps in
all good adventure stories, it requires some translation to be useful. And
you aren't limited to just the Windows API. Almost any DLL contains
functions that you might find useful. For example, many spell checkers are
implemented as DLLs; if you know how to declare and call the functions in
one of these DLLs, you can add spell-checking to your Visual Basic programs
(assuming that you obey the copyright restrictions for the DLL, of course).

Finding out how to declare and call the DLL functions can be tough
sometimes, however. You'll learn to keep your eyes open for anything that
looks like API documentation. Who knows what treasure you'll discover
inside some obscure DLL? And as new versions of Windows appear, the

treasure will only increase. The Multimedia Extensions for Microsoft
Windows are just a collection of DLLs, after all. With the right hardware,
think of how much fun you'll have calling those from your Visual Basic
programs.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: APrgOther RefsProd

LONG: Microsoft Consulting Services Naming Conventions for VB
Article ID: Q110264

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0

SUMMARY
=======

It is a good idea to establish naming conventions for your Visual Basic
code. This article gives you the naming conventions used by Microsoft
Consulting Services (MCS).

This document is a superset of the Visual Basic coding conventions
found in the Visual Basic "Programmer's Guide."

NOTE: The third-party controls mentioned in this article are manufactured
by vendors independent of Microsoft. Microsoft makes no warranty, implied
or otherwise, regarding these controls' performance or reliability.

MORE INFORMATION
================

Naming conventions help Visual Basic programmers:

 - Standardize the structure, coding style and logic of an application.
 - Create precise, readable, and unambiguous source code.
 - Be consistent with other language conventions (most importantly,
 the Visual Basic Programmers Guide and standard Windows C Hungarian
 notation).
 - Be efficient from a string size and labor standpoint, thus
 allowing a greater opportunity for longer and fuller object names.
 - Define the minimal requirements necessary to do the above.

Setting Environment Options

Use Option Explicit. Declare all variables to save programming time by
reducing the number of bugs caused by typos (for example, aUserNameTmp
vs. sUserNameTmp vs. sUserNameTemp). In the Environment Options dialog, set
Require Variable Declaration to Yes. The Option Explicit statement
requires you to declare all the variables in your Visual Basic program.

Save Files as ASCII Text. Save form (.FRM) and module (.BAS) files as
ASCII text to facilitate the use of version control systems and minimize
the damage that can be caused by disk corruption. In addition, you can:

 - Use your own editor
 - Use automated tools, such as grep
 - Create code generation or CASE tools for Visual Basic
 - Perform external analysis of your Visual Basic code

To have Visual Basic always save files as ASCII text, from the
Environment Options dialog, set the Default Save As Format option to Text.

Object Naming Conventions for Standard Objects
--

The following tables define the MCS standard object name prefixes.
These prefixes are consistent with those documented in the Visual Basic
version 3.0 Programmers Guide.

Prefix Object Type Example
--
ani Animation button aniMailBox
bed Pen Bedit bedFirstName
cbo Combo box and drop down list box cboEnglish
chk Checkbox chkReadOnly
clp Picture clip clpToolbar
cmd (3d) Command button (3D) cmdOk (cmd3dOk)
com Communications comFax
ctr Control (when specific type unknown) ctrCurrent
dat Data control datBiblio
dir Directory list box dirSource
dlg Common dialog control dlgFileOpen
drv Drive list box drvTarget
fil File list box filSource
frm Form frmEntry
fra (3d) Frame (3d) fraStyle (fra3dStyle)
gau Gauge gauStatus
gpb Group push button gpbChannel
gra Graph graRevenue
grd Grid grdPrices
hed Pen Hedit hedSignature
hsb Horizontal scroll bar hsbVolume
img Image imgIcon
ink Pen Ink inkMap
key Keyboard key status keyCaps
lbl Label lblHelpMessage
lin Line linVertical
lst List box lstPolicyCodes
mdi MDI child form mdiNote
mpm MAPI message mpmSentMessage
mps MAPI session mpsSession
mci MCI mciVideo
mnu Menu mnuFileOpen
opt (3d) Option Button (3d) optRed (opt3dRed)
ole OLE control oleWorksheet
out Outline control outOrgChart
pic Picture picVGA
pnl3d 3d Panel pnl3d
rpt Report control rptQtr1Earnings
shp Shape controls shpCircle
spn Spin control spnPages
txt Text Box txtLastName
tmr Timer tmrAlarm
vsb Vertical scroll bar vsbRate

Object Naming Convention for Database Objects

Prefix Object Type Example

db ODBC Database dbAccounts
ds ODBC Dynaset object dsSalesByRegion
fdc Field collection fdcCustomer
fd Field object fdAddress
ix Index object ixAge
ixc Index collection ixcNewAge
qd QueryDef object qdSalesByRegion
qry (suffix) Query (see NOTE) SalesByRegionQry
ss Snapshot object ssForecast
tb Table object tbCustomer
td TableDef object tdCustomers

NOTE: Using a suffix for queries allows each query to be sorted with its
associated table in Microsoft Access dialogs (Add Table, List Tables
Snapshot).

Menu Naming Conventions

Applications frequently use an abundance of menu controls. As a result,
you need a different set of naming conventions for these controls. Menu
control prefixes should be extended beyond the initial mnu label by adding
an additional prefix for each level of nesting, with the final menu
caption at the end of the name string. For example:

Menu Caption Sequence Menu Handler Name

Help.Contents mnuHelpContents
File.Open mnuFileOpen
Format.Character mnuFormatCharacter
File.Send.Fax mnuFileSendFax
File.Send.Email mnuFileSendEmail

When this convention is used, all members of a particular menu group are
listed next to each other in the object drop-down list boxes (in the code
window and property window). In addition, the menu control names clearly
document the menu items to which they are attached.

Naming Conventions for Other Controls

For new controls not listed above, try to come up with a unique three
character prefix. However, it is more important to be clear than to stick
to three characters.

For derivative controls, such as an enhanced list box, extend the prefixes
above so that there is no confusion over which control is really being
used. A lower-case abbreviation for the manufacturer would also typically
be added to the prefix. For example, a control instance created from the
Visual Basic Professional 3D frame could uses a prefix of fra3d to avoid
confusion over which control is really being used. A command button from
MicroHelp could use cmdm to differentiate it from the standard command
button (cmd).

Third Party Controls

Each third party control used in an application should be listed in the
application's overview comment section, providing the prefix used for the
control, the full name of the control, and the name of the software vendor:

Prefix Control Type Vendor

cmdm Command Button MicroHelp

Variable and Routine Naming

Variable and function names have the following structure:

<prefix><body><qualifier><suffix>

Part Description Example
--
<prefix> Describes the use and scope of the variable. iGetRecordNext
<body> Describes the variable. iGetNameFirst
<qualifier> Denotes a derivative of the variable. iGetNameLast
<suffix> The optional Visual Basic type character. iGetRecordNext%

Prefixes:

The following tables define variable and function name prefixes that are
based on Hungarian C notation for Windows. These prefixes should be used
with all variables and function names. Use of old Basic suffixes (such as
%, &, #, etc.) are discouraged.

Variable and Function Name Prefixes:

Prefix Converged Variable Use Data Type Suffix

b bln Boolean Integer %
c cur Currency - 64 bits Currency @
d dbl Double - 64 bit Double #
 signed quantity
dt dat Date and Time Variant
e err Error
f sng Float/Single - 32 Single !
 bit signed
 floating point
h Handle Integer %
i Index Integer %
l lng Long - 32 bit Long &
 signed quantity
n int Number/Counter Integer %
s str String String $
u Unsigned - 16 bit Long &
 unsigned quantity
 udt User-defined type
vnt vnt Variant Variant
a Array

NOTE: the values in the Converged column represent efforts to pull
together the naming standards for Visual Basic, Visual Basic for
Applications, and Access Basic. It is likely that these prefixes will
become Microsoft standards at some point in the near future.

Scope and Usage Prefixes:

Prefix Description

g Global
m Local to module or form
st Static variable
(no prefix) Non-static variable, prefix local to procedure
v Variable passed by value (local to a routine)
r Variable passed by reference (local to a routine)

Hungarian notation is as valuable in Visual Basic as it is in C.
Although the Visual Basic type suffixes do indicate a variable's data
type, they do not explain what a variable or function is used for, or
how it can be accessed. Here are some examples:

iSend - Represents a count of the number of messages sent
bSend - A Boolean flag defining the success of the last Send operation
hSend - A Handle to the Comm interface

Each of these variable names tell a programmer something very different.
This information is lost when the variable name is reduced to Send%.
Scope prefixes such as g and m also help reduce the problem of name
contention especially in multi-developer projects.

Hungarian notation is also widely used by Windows C programmers and
constantly referenced in Microsoft product documentation and in industry
programming books. Additionally, the bond between C programmers and
programmers who use Visual Basic will become much stronger as the Visual
C++ development system gains momentum. This transition will result in
many Visual Basic programmers moving to C for the first time and many
programmers moving frequently back and forth between both environments.

The Body of Variable and Routine Names

The body of a variable or routine name should use mixed case and should
be as long as necessary to describe its purpose. In addition, function
names should begin with a verb, such as InitNameArray or CloseDialog.

For frequently used or long terms, standard abbreviations are
recommended to help keep name lengths reasonable. In general, variable
names greater than 32 characters can be difficult to read on VGA
displays.

When using abbreviations, make sure they are consistent throughout the
entire application. Randomly switching between Cnt and Count within
a project will lead to unnecessary confusion.

Qualifiers on Variable and Routine Names
--

Related variables and routines are often used to manage and manipulate a
common object. In these cases, use standard qualifiers to label the
derivative variables and routines. Although putting the qualifier after
the body of the name might seem a little awkward (as in sGetNameFirst,
sGetNameLast instead of sGetFirstName, sGetLastName), this practice will
help order these names together in the Visual Basic editor routine lists,
making the logic and structure of the application easier to understand.

The following table defines common qualifiers and their standard meaning:

Qualifier Description (follows Body)

First First element of a set.
Last Last element of a set.
Next Next element in a set.
Prev Previous element in a set.
Cur Current element in a set.
Min Minimum value in a set.
Max Maximum value in a set.
Save Used to preserve another variable that must be reset later.
Tmp A "scratch" variable whose scope is highly localized within the
 code. The value of a Tmp variable is usually only valid across
 a set of contiguous statements within a single procedure.
Src Source. Frequently used in comparison and transfer routines.
Dst Destination. Often used in conjunction with Source.

User Defined Types

Declare user defined types in all caps with _TYPE appended to the end of
the symbol name. For example:

 Type CUSTOMER_TYPE
 sName As String
 sState As String * 2
 lID as Long
 End Type

When declaring an instance variable of a user defined type, add a prefix to
the variable name to reference the type. For example:

 Dim custNew as CUSTOMER_TYPE

Naming Constants

The body of constant names should be UPPER_CASE with underscores (_)
between words. Although standard Visual Basic constants do not include
Hungarian information, prefixes like i, s, g, and m can be very useful in
understanding the value and scope of a constant. For constant names,
follow the same rules as variables. For Example:

 mnUSER_LIST_MAX ' Max entry limit for User list (integer value,
 ' local to module)
 gsNEW_LINE ' New Line character string (global to entire
 ' application)

Variant Data Type

If you know that a variable will always store data of a particular type,
Visual Basic can handle that data more efficiently if you declare a
variable of that type.

However, the variant data type can be extremely useful when working with
databases, messages, DDE, or OLE. Many databases allow NULL as a valid
value for a field. Your code needs to distinguish between NULL, 0 (zero),
and "" (empty string). Many times, these types of operations can use a
generic service routine that does not need to know the type of data it
receives to process or pass on the data.

For example:

 Sub ConvertNulls(rvntOrg As Variant, rvntSub As Variant)
 ' If rvntOrg = Null, replace the Null with rvntSub
 If IsNull(rvntOrg) Then rvntOrg = rvntSub
 End Sub

The are some drawbacks, however, to using variants. Code statements
that use variants can sometimes be ambiguous to the programmer.

For example:

 vnt1 = "10.01" : vnt2 = 11 : vnt3 = "11" : vnt4 = "x4"
 vntResult = vnt1 + vnt2 ' Does vntResult = 21.01 or 10.0111?
 vntResult = vnt2 + vnt1 ' Does vntResult = 21.01 or 1110.01?
 vntResult = vnt1 + vnt3 ' Does vntResult = 21.01 or 10.0111?
 vntResult = vnt3 + vnt1 ' Does vntResult = 21.01 or 1110.01?
 vntResult = vnt2 + vnt4 ' Does vntResult = 11x4 or ERROR?
 vntResult = vnt3 + vnt4 ' Does vntResult = 11x4 or ERROR?

The above examples would be much less ambiguous and easier to read,
debug, and maintain if the Visual Basic type conversion routines were
used instead.

For Example:

 iVar1 = 5 + val(sVar2) ' use this (explicit conversion)
 vntVar1 = 5 + vntVar2 ' not this (implicit conversion)

Commenting Your Code

All procedures and functions should begin with a brief comment describing
the functional characteristics of the routine (what it does). This
description should not describe the implementation details (how it does
it) because these often change over time, resulting in unnecessary comment
maintenance work, or worse yet, erroneous comments. The code itself and
any necessary in-line or local comments will describe the implementation.

Parameters passed to a routine should be described when their functions are
not obvious and when the routine expects the parameters to be in a specific
range. Function return values and global variables that are changed by the

routine (especially through reference parameters) must also be described at
the beginning of each routine.

Routine header comment blocks should look like this (see the next
section "Formatting Your Code" for an example):

Section Comment Description

Purpose What the routine does (not how).
Inputs Each non-obvious parameter on a separate line with
 in-line comments
Assumes List of each non-obvious external variable, control, open file,
 and so on.
Returns Explanation of value returned for functions.
Effects List of each effected external variable, control, file, and
 so on and the affect it has (only if this is not obvious)

Every non-trivial variable declaration should include an in-line comment
describing the use of the variable being declared.

Variables, controls, and routines should be named clearly enough that in-
line commenting is only needed for complex or non-intuitive
implementation details.

An overview description of the application, enumerating primary data
objects, routines, algorithms, dialogs, database and file system
dependencies, and so on should be included at the start of the .BAS module
that contains the project's Visual Basic generic constant declarations.

NOTE: The Project window inherently describes the list of files in a
project, so this overview section only needs to provide information on
the most important files and modules, or the files the Project window
doesn't list, such as initialization (.INI) or database files.

Formatting Your Code

Because many programmers still use VGA displays, screen real estate must
be conserved as much as possible, while still allowing code formatting
to reflect logic structure and nesting.

Standard, tab-based, block nesting indentations should be two to four
spaces. More than four spaces is unnecessary and can cause statements to
be hidden or accidentally truncated. Less than two spaces does not
sufficiently show logic nesting. In the Microsoft Knowledge Base, we
use a three-space indent. Use the Environment Options dialog to set the
default tab width.

The functional overview comment of a routine should be indented one
space. The highest level statements that follow the overview comment
should be indented one tab, with each nested block indented an
additional tab.

For example:

'**
'Purpose: Locate first occurrence of a specified user in UserList array.

'Inputs: rasUserList(): the list of users to be searched
' rsTargetUser: the name of the user to search for
'Returns: the index of the first occurrence of the rsTargetUser
' in the rasUserList array. If target user not found, return -1.
'**
'Enter the next two lines as one, single line:
Function iFindUser (rasUserList() As String, rsTargetUser as String)
 As Integer
 Dim i As Integer ' loop counter
 Dim bFound As Integer ' target found flag
 iFindUser = -1
 i = 0
 While i <= Ubound(rasUserList) and Not bFound
 If rasUserList(i) = rsTargetUser Then
 bFound = True
 iFindUser = i
 End If
 Wend
End Function

Variables and non-generic constants should be grouped by function rather
than by being split off into isolated areas or special files. Visual
Basic generic constants such as HOURGLASS should be grouped in a single
module (VB_STD.BAS) to keep them separate from application-specific
declarations.

Operators

Always use an ampersand (&) when concatenating strings, and use the plus
sign (+) when working with numerical values. Using a plus sign (+) with
nonnumerical values, may cause problems when operating on two variants.

For example:

 vntVar1 = "10.01"
 vntVar2 = 11
 vntResult = vntVar1 + vntVar2 ' vntResult = 21.01
 vntResult = vntVar1 & vntVar2 ' vntResult = 10.0111

Scope

Variables should always be defined with the smallest scope possible.
Global variables can create enormously complex state machines and make
the logic of an application extremely difficult to understand. Global
variables also make the reuse and maintenance of your code much more
difficult.

Variables in Visual Basic can have the following scope:

Scope Variable Declared In: Visibility

Procedure-level Event procedure, sub, or Visible in the
 function procedure in which
 it is declared
Form-level, Declarations section of a form Visible in every

Module-level or code module (.FRM, .BAS) procedure in the
 form or code
 module
Global Declarations section of a code Always visible
 module (.BAS, using Global
 keyword)

In a Visual Basic application, only use global variables when there is
no other convenient way to share data between forms. You may want to
consider storing information in a control's Tag property, which can be
accessed globally using the form.object.property syntax.

If you must use global variables, it is good practice to declare all of
them in a single module and group them by function. Give the module a
meaningful name that indicates its purpose, such as GLOBAL.BAS.

With the exception of global variables (which should not be passed),
procedures and functions should only operate on objects that are passed
to them. Global variables that are used in routines should be identified
in the general comment area at the beginning of the routine. In addition,
pass arguments to subs and functions using ByVal, unless you explicitly
want to change the value of the passed argument.

Write modular code whenever possible. For example, if your application
displays a dialog box, put all the controls and code required to perform
the dialog's task in a single form. This helps to keep the application's
code organized into useful components and minimizes its runtime overhead.

Third Party Controls

NOTE: The products discussed below are manufactured by vendors
independent of Microsoft. Microsoft makes no warranty, implied or
otherwise, regarding these products' performance or reliability.

The following table lists standard third party vendor name prefix
characters to be used with control prefixes:

Vendor Abbv

MicroHelp (VBTools) m
Pioneer Software p
Crescent Software c
Sheridan Software s
Other (Misc) o

The following table lists standard third party control prefixes:

Control Control Abbr Vendor Example VBX File
Type Name Name

Alarm Alarm almm MicroHelp almmAlarm MHTI200.VBX
Animate Animate anim MicroHelp animAnimate MHTI200.VBX
Callback Callback calm MicroHelp calmCallback MHAD200.VBX
Combo Box DB_Combo cbop Pioneer cbopComboBox QEVBDBF.VBX
Combo Box SSCombo cbos Sheridan cbosComboBox SS3D2.VBX
Check Box DB_Check chkp Pioneer chkpCheckBox QEVBDBF.VBX

Chart Chart chtm MicroHelp chtmChart MHGR200.VBX
Clock Clock clkm MicroHelp clkmClock MHTI200.VBX
Button Command cmdm MicroHelp cmdmCommandButton MHEN200.VBX
 Button
Button DB_Command cmdp Pioneer cmdpCommandButton QEVBDBF.VBX
Button (Group) Command cmgm MicroHelp cmgmBtton MHGR200.VBX
 Button
 (multiple)
Button Command cmim MicroHelp cmimCommandButton MHEN200.VBX
 Button
 (icon)
CardDeck CardDeck crdm MicroHelp crdmCard MHGR200.VBX
Dice Dice dicm MicroHelp dicmDice MHGR200.VBX
List Box (Dir) SSDir dirs Sheridan dirsDirList SS3D2.VBX
List Box (Drv) SSDrive drvs Sheridan drvsDriveList SS3D2.VBX
List Box (File) File List film MicroHelp filmFileList MHEN200.VBX
List Box (File) SSFile fils Sheridan filsFileList SS3D2.VBX
Flip Flip flpm MicroHelp flpmButton MHEN200.VBX
Scroll Bar Form Scroll fsrm MicroHelp fsrmFormScroll ???
Gauge Gauge gagm MicroHelp gagmGauge MHGR200.VBX
Graph Graph gpho Other gphoGraph XYGRAPH.VBX
Grid Q_Grid grdp Pioneer grdpGrid QEVBDBF.VBX
Scroll Bar Horizontal hsbm MicroHelp hsbmScroll MHEN200.VBX
 Scroll Bar
Scroll Bar DB_HScroll hsbp Pioneer hsbpScroll QEVBDBF.VBX
Graph Histo hstm MicroHelp hstmHistograph MHGR200.VBX
Invisible Invisible invm MicroHelp invmInvisible MHGR200.VBX
List Box Icon Tag itgm MicroHelp itgmListBox MHAD200.VBX
Key State Key State kstm MicroHelp kstmKeyState MHTI200.VBX
Label Label (3d) lblm MicroHelp lblmLabel MHEN200.VBX
Line Line linm MicroHelp linmLine MHGR200.VBX
List Box DB_List lstp Pioneer lstpListBox QEVBDBF.VBX
List Box SSList lsts Sheridan lstsListBox SS3D2.VBX
MDI Child MDI Control mdcm MicroHelp mdcmMDIChild ???
Menu SSMenu mnus Sheridan mnusMenu SS3D3.VBX
Marque Marque mrqm MicroHelp mrqmMarque MHTI200.VB
Picture OddPic odpm MicroHelp odpmPicture MHGR200.VBX
Picture Picture picm MicroHelp picmPicture MHGR200.VBX
Picture DB_Picture picp Pioneer picpPicture QEVBDBF.VBX
Property Vwr Property pvrm MicroHelp pvrmPropertyViewer MHPR200.VBX
 Viewer
Option (Group) DB_RadioGroup radp Pioneer radqRadioGroup QEVBDBF.VBX
Slider Slider sldm MicroHelp sldmSlider MHGR200.VBX
Button (Spin) Spinner spnm MicroHelp spnmSpinner MHEN200.VBX
Spreadsheet Spreadsheet sprm MicroHelp sprmSpreadsheet MHAD200.VBX
Picture Stretcher strm MicroHelp strmStretcher MHAD200.VBX
Screen Saver Screen Saver svrm MicroHelp svrmSaver MHTI200.VBX
Switcher Switcher swtm MicroHelp swtmSwitcher ???
List Box Tag tagm MicroHelp tagmListBox MHEN200.VBX
Timer Timer tmrm MicroHelp tmrmTimer MHTI200.VBX
ToolBar ToolBar tolm MicroHelp tolmToolBar MHAD200.VBX
List Box Tree trem MicroHelp tremTree MHEN200.VBX
Input Box Input (Text) txtm MicroHelp inpmText MHEN200.VBX
Input Box DB_Text txtp Pioneer txtpText QEVBDBF.VBX
Scroll Bar Vertical vsbm MicroHelp vsbmScroll MHEN200.VBX
 Scroll Bar
Scroll Bar DB_VScroll vsbp Pioneer vsbpScroll QEVBDBF.VBX

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: PrgOther RefsDoc

How to Add Items into Control Menu Box of Visual Basic Form
Article ID: Q110498
--
The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0
--

SUMMARY
=======

To add items into the Control-menu box of a Visual Basic Form, you can use
the AppendMenu API (application programming interface) function in Windows.
However, Visual Basic cannot directly detect any events for the added menu
item. To catch the message for the added menu item, you can use a subclass
control. You can write subclass controls using Microsoft C, but not using
Visual Basic. Alternatively, you can obtain subclass controls from third-
party programs such as SpyWorks from Desaware.

The Control-menu box, found in the upper-left corner of a Visual Basic
form, is also known as the System-menu box in other products for Windows.
The default Control-menu box contains the following nine entries including
separators:

 Restore
 Move
 Size
 Minimize
 Maximize

 Close Alt+F4

 Switch to... Ctrl+Esc

MORE INFORMATION
================

In Windows programming terms, subclassing is the process of creating a
message handling procedure and intercepting messages for a given window,
handling any messages you choose, and passing the rest to the window's
original message handler.

The subclass procedure is a message filter that performs nondefault
processing for a few key messages, and passes other messages to a default
window procedure using the CallWindowProc API function. The CallWindowProc
function passes a message to the Windows system, which in turns sends the
message to the target window procedure. The target window procedure cannot
be called directly by the subclass procedure because the target procedure
(in this case a window procedure) is exported.

How to Contact Desaware

NOTE: Desaware products are manufactured independent of Microsoft.

Microsoft makes no warranty, implied or otherwise, regarding these
products' performance or reliability.

 Desaware
 5 Town & Country Village #790
 San Jose, CA 95128
 Contact: Gabriel Appleman (213) 943-3305
 Dan Appleman (408) 377-4770
 Fax: (408) 371-3530

The Desaware company offers the following products:

 - Custom Control Factory -- An interactive development tool for creating
 custom controls including animated pushbuttons, multistate buttons,
 enhanced buttons, check boxes, and option button controls for Windows
 applications.

 - CCF-Cursors -- Provides you with complete control over cursors (mouse
 pointers) in Visual Basic applications. Create your own cursors or
 convert icons to cursors, and much more. Includes over 50 cursors.

 - SpyWorks-VB -- An advanced development tool for use with Visual Basic.
 SpyWorks contains subclass controls.

This information is subject to change.

Additional reference words: 3.00
KBCategory: APrg Refs
KBSubcategory: APrgOther RefsThird

DOCERR: GetPrivateProfileString Declaration Incorrect in API
Article ID: Q110826

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 version 3.0

SUMMARY
=======

This article corrects a documentation error for the GetPrivateProfileString
function call as described in the Windows version 3.1 API Reference help
file that shipped with Microsoft Visual Basic version 3.0 for Windows.

MORE INFORMATION
================

The declaration is incorrectly shown as:

Declare Function GetPrivateProfileString Lib "Kernel"
 (ByVal lpApplicationName As String,
 lpKeyName As Any,
 ByVal lpDefault As String,
 ByVal lpReturnedString As String,
 ByVal nSize As Integer,
 ByVal lpFileName As String) As Integer

The correct declaration is as follows:

Declare Function GetPrivateProfileString Lib "Kernel"
 (ByVal lpApplicationName As String,
 ByVal lpKeyName As Any,
 ByVal lpDefault As String,
 ByVal lpReturnedString As String,
 ByVal nSize As Integer,
 ByVal lpFileName As String) As Integer

NOTE: Each Declare statement must be entered as one, single line.

Notice that the "ByVal" keyword was omitted from the second parameter in
the online reference. This means that the function is passing the second
parameter (lpKeyName) by reference. It needs to be passed by value.

The most common problem that occurs when using the incorrect declaration is
that when the function is called, it returns a copy of "lpdefault" in the
"lpReturnedString" parameter instead of the actual value referenced by
KeyName.

Additional reference words: 3.00
KBCategory: Refs
KBSubcategory: RefsDoc

Fixlist for Visual Basic for Windows as of 14-Feb-1994
Article ID: Q111475

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0

SUMMARY
=======

This single fixlist article lists the fixed bugs in Visual Basic for
Windows. Each of these fixed bugs is completely described in an article in
the Microsoft Knowledge Base. The titles and article identification numbers
(Q numbers) are listed below. For more information on any one of these
fixed bugs, please see the complete article in the Microsoft Knowledge
Base.

If you prefer, you can have any of these articles faxed to you by using
Microsoft FastTips. To use this service, call (800) 963-4300 and follow the
prompts. When prompted to enter the Item ID, enter the Q number (without
the Q) to have the fixed bug article faxed to you.

A similar article lists the unfixed bugs. To get both these lists, query on
the following word in the Microsoft Knowledge Base:

 kblist

===
FIXED PROBLEMS IN VISUAL BASIC VERSIONS 1.0, 2.0, AND 3.0 FOR WINDOWS
===

FIX: VB Debug.Print in MouseMove Event Causes MouseMove Event
Article ID: Q72679

FIX: Overflow in VB Drawing Circle Segment w/ Radius of Zero
Article ID: Q73280

FIX: UAE When Place More than 64K in VB List Box or Combo Box
Article ID: Q73374

FIX: Pull-Down on Drive Box Disabled When Change Width of Box
Article ID: Q73809

FIX: UAE/GPF Changing MS-DOS Win Display If VB at Breakpoint
Article ID: Q74193

FIX: Overflow Error If Print Long String to Form or Printer
Article ID: Q74517

FIX: Control Overlaid by 2nd Control Won't Refresh If Moved
Article ID: Q74519

FIX: Open Project Dialog Misbehaves If Project Dir Deleted

Article ID: Q75519

FIX: Text Not Highlighted When Copy Immediate Win to Clipboard
Article ID: Q75762

FIX: Undocumented Separator Property of a VB Menu Item
Article ID: Q76550

FIX: Can't Have Menu with No Caption Bar/Buttons/Control Box
Article ID: Q76553

FIX: ControlBox Property False Disables Focus w/ Keys in Menus
Article ID: Q76556

FIX: StretchBlt() Gives UAE/GPF with 256-Color Video Drivers
Article ID: Q77314

FIX: Visual Basic List Box Won't Open if Resized at Run Time
Article ID: Q79030

FIX: Text Too Narrow with Italic Fonts in Visual Basic Labels
Article ID: Q79117

FIX: SendKeys Causes Erratic Mouse Behavior on IBM PS/2
Article ID: Q79603

FIX: DDE from Excel to VB Ver 1.0 Uses Up Windows GDI Heap
Article ID: Q80440

FIX: File Not Loaded If No Extension in Load Picture Dialog
Article ID: Q80643

FIX: Panel Custom Control Caption Not Dimmed When Disabled
Article ID: Q80868

FIX: Graph Custom Control Incompatible w/ HP II Series Printer
Article ID: Q80912

FIX: Animated Button Custom Control: Caption May Be Truncated
Article ID: Q81223

FIX: Graph Control's Negative Values Plot As Positive
Article ID: Q81451

FIX: Gauge: Incomplete Paint with Max-Min Difference > 100
Article ID: Q81462

FIX: Grid: Changing Font Properties Resets ColWidth, RowHeight
Article ID: Q81463

FIX: VB Graph Custom Control: BottomTitle Text May Disappear
Article ID: Q81950

FIX: Outline Transparent in 3D Button When Outline=False
Article ID: Q82160

FIX: Graph Custom Control: LabelText May Overlap

Article ID: Q82874

FIX: Graph Custom Control Legends May Print Incorrectly
Article ID: Q82875

FIX: Grid Cell Border May Not Display with Some BackColors
Article ID: Q83759

FIX: Omitting Year for DateValue May Give Unexpected Results
Article ID: Q84115

FIX: Toolkit 3-D Option & Check Controls Don't Repaint in 3.1
Article ID: Q84475

FIX: Toolkit Setup Routine Causes Out of String Space Error
Article ID: Q85155

FIX: Grid Custom Control RemoveItem Does Not Update RowHeight
Article ID: Q85436

FIX: GP Fault or UAE When Unload Form in DragOver Event
Article ID: Q93233

FIX: UAE/GPF Occurs If EXE Uses Variable Length String in Type
Article ID: Q93256

FIX: UAE/GPF When Use Static Array in Event Procedure After F5
Article ID: Q93257

FIX: UAE/GPF When VB Control Name Identical to Property Name
Article ID: Q93424

FIX: UAE/GPF When Square Brackets '[]' Around MSGBOX Function
Article ID: Q93425

FIX: GPF/UAE When Converting String > 32K to Double Precision
Article ID: Q93435

FIX: VB Painting Problem Occurs When Low on System Resources
Article ID: Q93436

FIX: Result Differs When Comparing Single w/ Double Precision
Article ID: Q93437

FIX: GPF/UAE When Closing DDE Application from the Task List
Article ID: Q94166

FIX: GPF/UAE w/ Stop Command in Event Procedure & Deleted Sub
Article ID: Q94167

FIX: GPF When Pasting 8 Bit .DIB File into Anibutton Control
Article ID: Q94168

FIX: VB MCITEST CD Player Sample Displays Incorrect Track
Article ID: Q94185

FIX: GPF/UAE After Undoing Edit of Option Explicit Statement

Article ID: Q94216

FIX: GPF/UAE When Assign NULL to VBM_GETPROPERTY of type HLSTD
Article ID: Q94217

FIX: Using Graphics Method on DB Objects May Cause GPF/UAE
Article ID: Q94242

FIX: Adding Watch Point in VB May Cause UAE in Windows 3.0
Article ID: Q94243

FIX: GPF/UAE When Large Tag w/ MultiSelect of 30+ Controls
Article ID: Q94244

FIX: Setting Add Watch May Cause Your Program to Reset
Article ID: Q94290

FIX: Setting Add Watch May Cause GP Fault or UAE
Article ID: Q94292

FIX: Painting Problems When FontItalic Set True for Text Box
Article ID: Q94293

FIX: Grid Control Paints Incorrectly When Press PGUP or PGDN
Article ID: Q94296

FIX: GPF/UAE When New Project Loaded After Large Previous Proj
Article ID: Q94351

FIX: No Out of Memory Error Generated with Text Box > 32K
Article ID: Q94698

FIX: Attempting to Refresh Null TableDef Field Causes GP Fault
Article ID: Q94773

FIX: GPF When Using 8514 Driver with Long String in Text Box
Article ID: Q94774

FIX: Changing Decimal Separator Causes Load Errors for Form
Article ID: Q94776

FIX: GPF When Making .EXE File If Forms Saved as Binary
Article ID: Q94892

FIX: Bad .MAK File Prevents Display of Make EXE File Dialog
Article ID: Q94939

FIX Large Sub or Function or Module Can Cause GP Fault or UAE
Article ID: Q95285

FIX: GPF/UAE When Create or Use Huge Array w/ Large Elements
Article ID: Q95290

FIX: Error Message: Timeout While Waiting for DDE Response
Article ID: Q95428

FIX: FixedCols Can Cause Paint Problem with Grid Control

Article ID: Q95429

FIX: Problems Calling DoEvents from a Scroll Bar Change Event
Article ID: Q95498

FIX: MAPI: GPF When Attempt to Download 923 or More Messages
Article ID: Q95501

FIX: Extra Chars in Masked Edit Cause Empty InvalidText Box
Article ID: Q95508

FIX: Text Box/Mask Edit in Select Mode If MsgBox in LostFocus
Article ID: Q95509

FIX: Focus Rectangle Remains When Grid Loses Focus
Article ID: Q95514

FIX: GPF When Erase User-Defined Array of Variable Strings
Article ID: Q95525

FIX: Loading Proj Gives Err: Custom control 'Graph' not found
Article ID: Q95590

FIX: GPF When Making EXE If Declare Is Missing Lib & DLL Name
Article ID: Q95829

FIX: Resizing MDIForm with UI Does Not Update Height & Width
Article ID: Q96097

FIX: Scroll Bar Thumb Doesn't Do Change Event as It Should
Article ID: Q96798

FIX: Can't Open ODBCADM.HLP Err Msg During Data Access Setup
Article ID: Q97083

FIX: No Menu Event with Maximized MDI Child
Article ID: Q97135

FIX: Mouse Misbehaves After Changing Graph Visible Property
Article ID: Q97588

FIX: OLE Client: Copying Linked Object Gives Err: Can't Paste
Article ID: Q97619

FIX: GPF/UAE with Huge Array Size as Multiple of 64K Bytes
Article ID: Q98990

FIX: Erase Won't Clear Contents of Huge Fixed Array as Variant
Article ID: Q99457

FIX: VB 2.0 Prof Demo Causes Error: Invalid File Format
Article ID: Q100611

FIX: Repaint Prob Adding Graphical Control as Child of Graph
Article ID: Q102606

FIX: GPF with Long Formulas in Crystal Reports Custom Control

Article ID: Q108658

FIX: Double-Click Still Maximizes/Restores If MaxButton=False
Article ID: Q110309

Additional reference words: kblist
KBCategory:
KBSubCategory: RefsProd

Buglist for Visual Basic for Windows as of 14-Feb-1994
Article ID: Q111476

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 1.0, 2.0, and 3.0

SUMMARY
=======

This single buglist article lists the unfixed bugs in Visual Basic for
Windows. Each of these bugs is completely described in an article in the
Microsoft Knowledge Base. The titles and article identification numbers
(Q numbers) are listed below. For more information on any of these bugs,
please see the complete article in the Microsoft Knowledge Base.

If you prefer, you can have any of these articles faxed to you by using
Microsoft FastTips. To use this service, call (800) 963-4300 and follow the
prompts. When prompted to enter the Item ID, enter the Q number (without
the Q) to have the bug article faxed to you.

A similar article lists the fixed bugs. To get both these lists, query on
the following word in the Microsoft Knowledge Base:

 kblist

===
UNFIXED BUGS IN VISUAL BASIC VERSIONS 1.0, 2.0, AND 3.0 FOR WINDOWS
===

BUG: TABs Paste Incorrectly as | to VB.EXE's Immediate Window
Article ID: Q73700

BUG: Scroll Box Flashing Not Updated If Bar Resized w/ Focus
Article ID: Q73839

BUG: [Character May Sort Incorrectly in List or Combo Box
Article ID: Q74132

BUG: Can Click in Code Window Without Activating it in VB.EXE
Article ID: Q74194

BUG: Pressing ESC or CTRL+BREAK Makes Mouse Pointer Disappear
Article ID: Q74409

BUG: No Beep When Click Form and the Menu Design Window Is Up
Article ID: Q74518

BUG: Incorrectly Accessing System Menu of Hidden Form
Article ID: Q74564

BUG: ExtFloodFill Won't Fill Over QBColors If AutoRedraw=True
Article ID: Q75640

BUG: Duplicate Procedure Name Alters Original Capitalization
Article ID: Q76514

BUG: No Option Button Active (Dotted) in Frame
Article ID: Q76520

BUG: Italic and Large Fonts Display Poorly in Text Boxes
Article ID: Q76555

BUG: Dir List Box Does Not Give Error 68 Device Unavailable
Article ID: Q76628

BUG: FormName Not in Correct Order After Out of Memory Error
Article ID: Q76983

BUG: LinkTimeOut of -1 Waits Only 6553.5 Secs Before Time Out
Article ID: Q77243

BUG: DateSerial Does Not Give Error for Invalid Month or Day
Article ID: Q77393

BUG: Incorrect Focus Shift for Disabled Control in Break Mode
Article ID: Q77734

BUG: Extra Click Event if Double-Click When Mouse Button Down
Article ID: Q77738

BUG: CTRL+LEFT/RIGHT ARROW Behaves Differently When Edit/Type
Article ID: Q77928

BUG: ToolBox Picture Control Bitmap Too Small on EGA
Article ID: Q78132

BUG: Using Nonstandard Icons Can Cause UAE/GP Fault/Hang
Article ID: Q78380

BUG: Right Mouse Button Causes Remote Control Menus
Article ID: Q78773

BUG: Multiline Text Box Contents Not Gray When Enabled=False
Article ID: Q78892

BUG: Visual Basic Code Window Hides Split View if Resized
Article ID: Q79057

BUG: Invalid outside Sub Error When Copy or Paste to General
Article ID: Q79240

BUG: Resetting ListIndex Property Generates Click Event
Article ID: Q79241

BUG: Some Property Values May Be Incorrect in Maximized Form
Article ID: Q79242

BUG: Option Button w/ Focus Selected When Click Form Caption
Article ID: Q79602

BUG: Click Event May Fail to Occur in Cascading Menu
Article ID: Q80023

BUG: TAB Character Can Incorrectly Cause KeyUp/KeyDown Events
Article ID: Q80286

BUG: MDI Child CTRL+INSERT in Properties List Causes UAE/GPF
Article ID: Q80777

BUG: No Resources Causes Failed to Open Graphics Server Error
Article ID: Q80780

BUG: Gauge Custom Control: No Error for Illegal NeedleWidth
Article ID: Q80905

BUG: MDI Child Left/Top Property Wrong in Properties Bar
Article ID: Q80907
BUG: MDI Child Control: Large Height/Width Value Not Accepted
Article ID: Q80908

BUG: Grid Custom Control: Scroll Bars Displayed Unnecessarily
Article ID: Q80967

BUG: Gauge Custom Control: Valid NeedleWidth Range 1 to 32767
Article ID: Q81187

BUG: 3-D Panel Control Doesn't Resize to Key Status Control
Article ID: Q81449

BUG: Vertical Linear Gauge Loses Upper Border's Bottom Pixels
Article ID: Q81460

BUG: InnerBottom/InnerRight Defines Gauge Fill Area Badly
Article ID: Q81461

BUG: Graph: ExtraData May Not Say: Invalid Property Value
Article ID: Q81472

BUG: 3D Command Button Shows Outline when Outline = False
Article ID: Q81951

BUG: Scroll Control: UAE/GPF If Drag Method in GotFocus Event
Article ID: Q81955

BUG: Grid: No Error Changing FixedAlignment on Non-Fixed Col
Article ID: Q81998

BUG: Graph: AutoInc Increments ThisPoint Instead of ThisSet
Article ID: Q81999

BUG: Animated Button: 8 Pt. Roman/Mdrn Fonts Don't Underline
Article ID: Q82004

BUG: Graph Axis Titles Don't Switch on Horizontal Bar Graphs
Article ID: Q83463

BUG: Menu Can Cover Top of MDI Child Control If BorderStyle=0
Article ID: Q83858

BUG: VB Graph Custom Control: SeeThru Paints Incorrectly
Article ID: Q84236

BUG: Must Call API to Print Color Text on Color Printer in VB
Article ID: Q84269

BUG: Some Controls Not Printed with PrintForm in Windows 3.1
Article ID: Q84471

BUG: THREED.VBX: Command/Group Push Buttons Show Invalid File
Article ID: Q84553

BUG: Common Dialog Custom Controls Don't Display Printer Fonts
Article ID: Q84839

BUG: MDI Child Control Skips Index with Control Array
Article ID: Q87765

BUG: Generic / Text Only Printer Driver Prints 66 Lines
Article ID: Q87767

BUG: Illegal function call / Division By Zero Errors
Article ID: Q94778

BUG: Stack Fault When Move Sets Tiny Width in 2-Item Combo Box
Article ID: Q95197

BUG: GPF/UAE If Multi-Select Controls w/ No Common Properties
Article ID: Q95430

BUG: Type Mismatch Error If Use VAL Function on Big Hex Value
Article ID: Q95431

BUG: Stack Fault May Occur If Trapping Divide By Zero
Article ID: Q95499

BUG: GPF When Close Form That Contains a Single MCI Control
Article ID: Q95500

BUG: Neg ScaleHeight Resizes Control When Form Saved as ASCII
Article ID: Q95513

BUG: Stack Fault When Move Makes Combo Box Width Too Small
Article ID: Q95830

BUG: Unable to Edit LinkNotify Event If Control Has Long Name
Article ID: Q97027

BUG: ODBC Getchunk Method on Non-Memo Field Causes GPF/UAE
Article ID: Q97082

BUG: OLE DataText Prop Doesn't Free Memory When Object Closed
Article ID: Q97136

BUG: Changing Default Printer Doesn't Effect Printer.Fonts
Article ID: Q99705

BUG: Wrong Menu Click Event After Hiding Menu
Article ID: Q99872

BUG: MaskedEdit MaxLength Reset to 64 When Mask=""
Article ID: Q99873

BUG: Overflow Error When CurrentX Or CurrentY Greater Than 32K
Article ID: Q100190

BUG: VB Pro Setup Fails to Correctly Associate .HLP Files
Article ID: Q100191

BUG: Out of Memory Error on Show Next from Debug Menu
Article ID: Q100192

BUG: 3D Button Loses 256-Color Palette When Load 2nd Bitmap
Article ID: Q100193

BUG: Grid Control Repaints When Another Form Is Made Active
Article ID: Q100195

BUG: Unload in 3D GroupPush Button Causes GP Fault
Article ID: Q100327

BUG: Referencing Data Object Gives Error: Object not an Array
Article ID: Q100367

BUG: GPF in Some Video Drivers When Load RLE Bitmaps > 20K
Article ID: Q100610

BUG: Font3D Property Set Incorrectly in THREED.VBX Controls
Article ID: Q100612

BUG: Data Access Setup Can Give Incorrect Error Message
Article ID: Q100613

BUG: Ref to NPV / IRR / MIRR Gives Undefined Functions Error
Article ID: Q101245

BUG: Incorrect Result When Multiple Aggregate Functions in SQL
Article ID: Q101256

BUG: Incorrect Behavior in MaskedEdit BorderStyle Property
Article ID: Q101257

BUG: Problems Printing Projects to HPLJ4
Article ID: Q101379

BUG: ALT+MINUS SIGN Does Not Work with Maximized MDI Forms
Article ID: Q101380

BUG: GP Fault When Opening Menu Design Window in VB.EXE
Article ID: Q101381

BUG: VB Dynasets Incorrectly Bypass Defaults on SQL Server
Article ID: Q101522

BUG: Bad Result If Multiple Aggregate Functions in SQL Stmt
Article ID: Q101553

BUG: Out of Memory w/ Var Named ClientLeft/Top/Width/Height
Article ID: Q102069

BUG: Setup Wizard Error: Sharing Violation Reading Drive C:
Article ID: Q102478

BUG: Domain Functions Available Only Within SQL Statement
Article ID: Q102479

BUG: Can't Load Custom Control DLL: PICCLIP.VBX in Windows 3.0
Article ID: Q102649

BUG: Out of Memory w/ MSOLE2.VBX When SHARE.EXE Not Loaded
Article ID: Q103438

BUG: Invalid Argument Err on Execute Method w/ SQL Passthrough
Article ID: Q103976

BUG: GPF in VB.EXE at 0038:3B6F w/ Compile-Time Error & Set
Article ID: Q105140

BUG: Error 13 (Type Mismatch) & Error 3061 w/ SQL Queries
Article ID: Q105171

BUG: Overflow in VB version 3.0 ICONWRKS Sample Program
Article ID: Q105808

BUG: VB Printer.Width/Height Values Incorrect for Plotter
Article ID: Q106495

BUG: VB Setup Files Modified or Corrupted, Using \WINDOWS Path
Article ID: Q106496

BUG: Name Not Found in This Collection When Deleting Member
Article ID: Q107362

BUG: Incorrect VB Error When Delete Index on Open Table
Article ID: Q107363

BUG: First Item Can Disappear in Outline Control Style 0 or 2
Article ID: Q108659

BUG: Out of Memory Error When Adding 35-50 Pen Controls
Article ID: Q110989

Additional reference words: 1.00 2.00 3.00 kblist
KBCategory:
KBSubcategory: RefsProd

PRB: Insufficient Disk Space Error When Setup Copies Files
Article ID: Q74648

The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
 - Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

If you receive an "Insufficient disk space" error message when running
Visual Basic's Setup program, it may be caused by using Windows with a
temporary Windows swap file instead of the permanent Windows swap
file.

MORE INFORMATION
================

Pages 520 through 529 in the "Microsoft Windows User's Guide" version
3.0 manual discuss Windows swap files. Permanent swap files are
contiguous so that your disk does not contain files in fragmented
pieces, which may happen if you are using temporary swap files.
Temporary Windows swap files may grow in size, which may cause the
"Insufficient disk space" error during the execution of Visual Basic's
Setup program. However, permanent Windows swap files will not change
in size, so using permanent Windows swap files may help to avoid the
"Insufficient disk space" error.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: Setins

Example of Client-Server DDE Between Visual Basic Applications
Article ID: Q74861

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

This article outlines the steps necessary to initiate dynamic data
exchange (DDE) between a Microsoft Visual Basic destination application
and a Visual Basic source application.

This article demonstrates how to:

 - Create a Visual Basic application to function as a DDE source.
 - Create a Visual Basic application to function as a DDE destination.
 - Initiate a manual DDE link (information updated upon request from the
 destination) between the destination application and the source
 application.
 - Use LinkRequest to update information in the destination application
 from information in the source application.
 - Initiate a automatic DDE link (information updated automatically from
 source to destination) between the destination application and the
 source application.
 - Use LinkPoke to send information from the destination application to
 the source application.
 - Change the LinkMode property between automatic and manual.

MORE INFORMATION
================

This information is included with the Help file provided with Microsoft
Professional Toolkit for Visual Basic version 1.0, Microsoft Visual Basic
version 2.0, and Microsoft Visual Basic version 3.0.

A destination application sends commands through DDE to the source
application to establish a link. Through DDE, the source provides data to
the destination at the request of the destination or accepts information
at the request of the destination.

Step-by-Step Example

The steps below show how to establish a DDE conversation between two
Visual Basic applications.

STEP ONE: Create the Source Application in Visual Basic

1. Start a new project in Visual Basic. Form1 is created by default.

2. Change the Caption property of Form1 to Source.

3. Change the Form1 LinkMode property to 1 - Source.

4. Put a Text Box (Text1) on Form1.

5. Save the form and project with the name SOURCE.

6. From the File menu, choose Make EXE File. In the Make EXE File dialog
 box, choose OK to accept SOURCE.EXE as the name of the EXE file.

STEP TWO: Create the Destination Application in Visual Basic
--
1. From the File menu, choose New Project. Form1 is created by default.

2. Change the Caption property of Form1 to Destination.

3. Add the following controls to Form1, and give them the properties
 indicated:

 Default Name Caption Name

 Text1 (Not applicable) Text1
 Option1 Manual Link ManualLink
 Option2 Automatic Link AutomaticLink
 Command1 Poke Poke
 Command2 Request Request

4. Add the following code to the General Declaration section of Form1:

 Const AUTOMATIC= 1
 Const MANUAL = 2
 Const NONE = 0

 '(NOTE: For Visual Basic version 1.0, also add the following
 ' constants:
 'Const True = -1
 'Const False = 0

5. Add the following code to the Load event procedure of Form1:

 Sub Form_Load ()
 'This procedure will start the VB source application.

 z% = Shell("SOURCE", 1)

 z% = DoEvents() 'Causes Windows to finish processing Shell command.

 Text1.LinkMode = NONE 'Clears DDE link if it already exists.

 Text1.LinkTopic = "Source|Form1" 'Sets up link with VB source.
 Text1.LinkItem = "Text1" 'Set link to text box on source.
 Text1.LinkMode = MANUAL 'Establish a manual DDE link.
 ManualLink.Value = TRUE 'Sets appropriate option button.
 End Sub

6. Add the following code to the Click event procedure of ManualLink:

 Sub ManualLink_Click ()
 Request.Visible = TRUE 'Make request button valid.
 Text1.LinkMode = NONE 'Clear DDE Link.
 Text1.LinkMode = MANUAL 'Reestablish new LinkMode.
 End Sub

7. Add the following code to the Clink event procedure of AutomaticLink:

 Sub AutomaticLink_Click ()
 Request.Visible = FALSE 'No need for button with automatic link.
 Text1.LinkMode = NONE 'Clear DDE Link.

 Text1.LinkMode = AUTOMATIC 'Reestablish new LinkMode.
 End Sub

8. Add the following code to the Click event procedure of Request:

 Sub Request_Click ()
 'With a manual DDE link, this button will be visible, and when
 'selected it will request an update of information from the source
 'application to the destination application.
 Text1.LinkRequest
 End Sub

9. Add the following code to the Click event procedure of Poke:

 Sub Poke_Click ()
 'With any DDE link, this button will be visible, and when it's
 'selected, will poke information from the destination application
 'into the source application.
 Text1.LinkPoke
 End Sub

STEP THREE: Run the Visual Basic Destination Application
--
Choose one of these options:

 - Run the Visual Basic destination application from the VB.EXE
 environment by skipping to step 4 below.
 - Save the application. Then create an .EXE file and run it from Windows
 by beginning with step 1 below.

1. From the File menu, choose Save, and save the form and project with
 the name DEST.

2. From the File menu, choose Make EXE File, and give it the name DEST.EXE.

3. Exit the Visual Basic environment (VB.EXE).

4. Run the application from Windows if it's an .EXE file or from the
 VB.EXE environment.

5. Form1 of the destination application will load and the source
 application will automatically start.

STEP FOUR: Experiment with DDE Between Visual Basic Applications
--

1. Try typing some text into the source application's text box. Then click
 the Request button. The text appears in the destination application's
 text box.

2. Click the Automatic Link button and then type some more text into the
 source application's text box. The text is automatically updated in the
 destination application's text box.

3. Type some text into the destination application's text box. Then click
 the Poke button to send the text to the source application's text box.

For additional information on dynamic data exchange (DDE) between Visual
Basic and other Windows-based applications, query on the following words
in the Microsoft Knowledge Base:

 DDE and Visual Basic

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: IAPDDE

DDE Example Between Visual Basic and Word for Windows
Article ID: Q74862

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

This article outlines the steps necessary to initiate dynamic data exchange
(DDE) between a Microsoft Visual Basic application and a Microsoft Word for
Windows (WINWORD.EXE) document at run time.

This article demonstrates how to:

 - Prepare a Word for Windows document for active DDE.
 - Initiate a manual DDE link (information updated upon request from
 the destination) between the Visual Basic application (the
 destination) and the document loaded into Word for Windows (the source).
 - Use LinkRequest to update information in the Visual Basic destination
 based on information contained in the Word for Windows source.
 - Initiate a automatic DDE link (information updated automatically from
 source to destination) between the Visual Basic destination and the
 Word for Windows source.
 - Use LinkPoke to send information from the Visual Basic destination to
 the Word for Windows source.
 - Change the LinkMode property between automatic and manual.

MORE INFORMATION
================

This information is included with the Help file provided with Microsoft
Professional Toolkit for Visual Basic version 1.0, Microsoft Visual Basic
version 2.0, and Microsoft Visual Basic version 3.0.

A destination application sends commands through DDE to the source
application to establish a link. Through DDE, the source provides data
to the destination at the request of the destination or accepts information
at the request of the destination.

Example Showing How to Establish a DDE Conversation

The steps below give an example of how to establish a DDE conversation
between a Visual Basic application and a document loaded into Word for
Windows (WINWORD.EXE).

STEP ONE: Create the Source Document in Word for Windows
--

1. Start Microsoft Word for Windows. Document1 is created by default.

 NOTE: The Tip of the Day option in Microsoft Word version 6.0 for
 Windows must be turned off in order for this to work.

2. From the Window menu, choose Arrange All. This removes maximization if
 the document was maximized. Note that the title at the top of the
 WINWORD.EXE main title bar is now:

 Microsoft Word

 instead of:

 Microsoft Word - Document1

3. Press CTRL+SHIFT+END to select to the end of the document.

4. From the Insert menu (or the Edit menu in Microsoft Word version 6.0),
 choose Bookmark. Under Bookmark Name, type:

 DDE_Link

 Press the ENTER key. This sets a bookmark for the entire document. This
 bookmark functions as the LinkItem in the DDE conversation.

5. From the File menu, choose Save As, and save the document with the
 name SOURCE.DOC.

 NOTE: SOURCE.DOC must be saved to the working directory used by the
 Visual Basic application or the DDE won't work. Specifying the path in
 the SHELL statement in Visual Basic will not work.

6. Exit from Word for Windows. For this particular example to function
 correctly, WINWORD.EXE must not be loaded and running.

STEP TWO: Create the Destination Application in Visual Basic
--

1. Start Visual Basic. Form1 is created by default.

2. Create the following controls on Form1, giving the controls the
 properties shown in the table:

 Default Name Caption Name
 --
 Text1 (Not applicable) Text1
 Option1 Manual Link ManualLink
 Option2 Automatic Link AutomaticLink
 Command1 Poke Poke
 Command2 Request Request

3. Add the following code to the General Declaration section of Form1:

 Const AUTOMATIC = 1
 Const MANUAL = 2
 Const NONE = 0

4. Add the following code to the Load event procedure of Form1:

 Sub Form_Load ()
 'This procedure starts WINWORD.EXE, loads the document that was
 'created earlier, and prepares for DDE by creating a bookmark to
 'the whole document. This bookmark is necessary because it
 'functions as the LinkItem for the source in the DDE conversation.

 z% = Shell("WinWord Source.Doc",1)

 z% = DoEvents () 'Process Windows events to ensure that
 'WINWORD.EXE is executed before any attempt is
 'made to perform DDE with it.

 Text1.LinkMode = NONE 'Clears DDE link if it exists.
 Text1.LinkTopic = "WinWord|Source" 'Sets up link with WINWORD.EXE.
 Text1.LinkItem = "DDE_Link" 'Set link to bookmark on document.
 Text1.LinkMode = MANUAL 'Establish a manual DDE link.
 ManualLink.Value = TRUE
 End Sub

5. Add the following code to the Click event procedure of the Manual
 Link button:

 Sub ManualLink_Click ()
 Request.Visible = TRUE 'Make request button valid.
 Text1.LinkMode = NONE 'Clear DDE Link.
 Text1.LinkMode = MANUAL 'Reestablish new LinkMode.
 End Sub

6. Add the following code to the Click event procedure of the Automatic
 Link button:

 Sub AutomaticLink_Click ()
 Request.Visible = FALSE 'No need for button with automatic link.
 Text1.LinkMode = NONE 'Clear DDE Link.
 Text1.LinkMode = AUTOMATIC 'Reestablish new LinkMode.
 End Sub

7. Add the following code to the Click event procedure of the Request
 button:

 Sub Request_Click ()
 'With a manual DDE link this button is visible. Clicking this button
 'requests an update of information from the source application to the
 'destination application.
 Text1.LinkRequest
 End Sub

8. Add the following code to the Click event procedure of the Poke button:

 Sub Poke_Click ()
 'With any DDE link, this button is visible. Clicking this button
 'pokes information from the destination application into the source
 'application.
 Text1.LinkPoke
 End Sub

STEP THREE: Try it out

Now, you have two choices. You can run the Visual Basic destination
application from the Visual Basic VB.EXE environment by skipping to step 4
below, or you can save the application, create an .EXE file, and run that
from Windows by beginning with step 1 below.

1. From the File menu, choose Save, and save the form and project with
 the name DEST.

2. From the File menu, choose Make EXE File with the name DEST.EXE.

3. Exit from the Visual Basic environment (VB.EXE).

4. Run the application. Run an .EXE file from Windows, or if you're in the
 Visual Basic environment, from the Run menu, choose Start.

 Form1 of the Visual Basic destination application will be loaded, and
 Word for Windows will automatically start and load SOURCE.DOC.

5. Make sure the main title bar in WINWORD.EXE reads "Microsoft Word,"
 not "Microsoft Word - SOURCE.DOC." If the title bar is not correct,
 choose Arrange All from the Window menu.

STEP FOUR: Experiment with DDE Between Visual Basic and Word for Windows
--
1. Try typing some text into the document in Word for Windows. Then click
 the Request button. The text appears in the text box.

2. Click the Automatic Link button. Then type some more text into the
 document in Word for Windows. The text is automatically updated in the
 Visual Basic text box.

3. Type some text in the text box in the Visual Basic application. Then
 click the Poke button. The text goes to the Word for Windows document.

Note that if in the WINWORD.EXE document, you delete the total contents of
the bookmark, the bookmark is also deleted. Any attempt to perform DDE with
this WINWORD.EXE session after deleting the bookmark causes this error:

 Foreign applications won't perform DDE method or operation.

If this happens, you must recreate the bookmark in the document in Word for
Windows before performing any further DDE operations.

In Visual Basic version 1.0, you need to add the following two global
constants to the form's general declarations section:

 CONST TRUE = -1
 CONST FALSE = NOT TRUE

Additional reference words: 1.00 2.00 3.00 winword
KBCategory:
KBSubcategory: IAPDDE

DDE from Visual Basic for Windows to Excel for Windows
Article ID: Q75089

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
- Microsoft Excel for Windows, version 5.0

SUMMARY
=======

This article describes how to initiate a dynamic data exchange (DDE)
conversation between a Visual Basic destination application and a
Microsoft Excel source application.

This article demonstrates how to:

 - Prepare a Microsoft Excel for Windows document for active DDE.
 - Initiate a manual DDE link (information updated upon request from the
 destination) between Visual Basic (the destination) and Excel (the
 source).
 - Use the LinkRequest method to update information in Visual Basic (the
 destination) based on information contained in Excel (the source).
 - Initiate a automatic DDE link (information updated automatically from
 source to destination) between Visual Basic (the destination) and Excel
 (the source).
 - Use the LinkPoke method to send information from Visual Basic (the
 destination) to Excel (the source).
 - Change the LinkMode property between automatic and manual.

MORE INFORMATION
================

A destination application sends commands through DDE to the source
application to establish a link. Through DDE, the source provides data to
the destination at the request of the destination or accepts information
at the request of the destination.

The procedure below is as an example showing how to establish a DDE
conversation between Visual Basic and Excel for Windows.

STEP ONE: Create the Source Spreadsheet in Excel
--

1. Start Excel. A document (spreadsheet) with Sheet1 as the title is
 created by default.

2. From the File menu, choose Save As, and save the document (spreadsheet)
 naming it SOURCE.XLS

4. Exit Excel. For this example to function properly, Excel must not
 be loaded and running.

STEP TWO: Create the Destination Application in Visual Basic
--

The destination is the application that performs the link operations. It
prompts the source to send information or informs the source that
information is being sent to it.

1. Start Visual Basic (VB.EXE). Form1 is created by default.

2. Add the following controls to Form1, and give them the properties
 indicated:

 Default Name Caption Name

 Text1 (not applicable) Text1
 Option1 Manual Link ManualLink
 Option2 Automatic Link AutomaticLink
 Command1 Poke Poke
 Command2 Request Request

3. Add the following code to the general Declaration section of Form1:

 Const AUTOMATIC = 1
 Const MANUAL = 2
 Const NONE = 0

4. Add the following code to the Load event procedure of Form1:

 Sub Form_Load ()
 'This procedure starts Excel and loads SOURCE.XLS, the
 'spreadsheet created above.
 Dim ErrorTries As Integer
 ErrorTries = 0
 On Error GoTo errorhandler

 z% = Shell("c:\EXCEL\excel SOURCE.XLS", 1)

 DoEvents 'Process Windows events to ensure that
 'Excel executes before making any attempt
 'to perform DDE.

 Text1.LinkMode = NONE 'Clear DDE link if it already exists.
 'Text1.LinkTopic = "Excel|source.xls"
 'Set up link with Excel:

 Text1.LinkTopic = "Excel|C:\VB3\[SOURCE.XLS]Sheet1"

 Text1.LinkItem = "R1C1" 'Set link to first cell on spreadsheet.
 Text1.LinkMode = MANUAL 'Establish a manual DDE link.
 ManualLink.Value = True
 Exit Sub

 errorhandler:
 If Err = 282 And ErrorTries < 15 Then
 ErrorTries = ErrorTries + 1
 DoEvents

 Resume
 Else
 Error Err
 End If

 End Sub

5. Add the following code to the Click event procedure of the Manual Link
 button:

 Sub ManualLink_Click ()
 Request.Visible = TRUE 'Make request button valid.
 Text1.LinkMode = NONE 'Clear DDE Link.
 Text1.LinkMode = MANUAL 'Reestablish new LinkMode.
 End Sub

6. Add the following code to the Click event procedure of the
 Automatic Link button:

 Sub AutomaticLink_Click ()
 Request.Visible = FALSE 'No need for button with automatic link.
 Text1.LinkMode = NONE 'Clear DDE Link.
 Text1.LinkMode = AUTOMATIC 'Reestablish new LinkMode.
 End Sub

7. Add the following code to the Click event procedure of the
 Request button:

 Sub Request_Click ()
 'With a manual DDE link this button will be visible and when
 'selected it will request an update of information from the source
 'application to the destination application.
 Text1.LinkRequest
 End Sub

8. Add the following code to the Click event procedure of the Poke
 button:

 Sub Poke_Click ()
 'With any DDE link this button will be visible and when selected
 'it will poke information from the destination application to the
 'source application.
 Text1.LinkPoke
 End Sub

STEP THREE: Run the Visual Basic Destination Application
--

You have two choices:

 - Run the Visual Basic destination application from the Visual Basic
 environment by skipping to step 4 below.
 - Save the application. Then create an .EXE file, and run it from Windows
 by beginning with step 1 below.

1. From the Visual Basic File menu, choose Save, and save the Form and
 Project naming both DEST.

2. From the File menu, choose Make EXE File. Name it DEST.EXE.

3. Exit from Visual Basic.

4. Run the application from Windows if an .EXE file or from the Visual
 Basic environment.

5. Form1 of the destination application will be loaded and Excel will
 automatically start with the document SOURCE.XLS loaded.

6. Make sure the main title bar in Excel reads "Microsoft Excel," not
 "Microsoft Excel - SOURCE.XLS." If the title bar is incorrect, choose
 Arrange All from the Window menu.

STEP FOUR: Experiment with DDE between Visual Basic and Excel

1. Try typing some text in R1C1 in the spreadsheet. Then click the Request
 button. The text appears in the text box.

 Be sure to press the ENTER key after entering text into an Excel cell
 before clicking the Request button in the Visual Basic program. If you
 don't, a "Timeout while waiting for DDE response" error message will
 display because of the TEXT1.LINKREQUEST statement. This occurs because
 while entering text into a cell, Excel is in a polling loop for data
 entry. No real data is transferred to the cell until you press ENTER.
 Therefore, Visual Basic continues to request the data from the cell, but
 Excel does not pay attention to the request until it exits the polling
 loop, which results in the DDE time-out message.

2. Choose the Automatic Link button and then type some more text in
 R1C1 of the spreadsheet. The text is automatically updated in the
 Visual Basic text box.

3. Type some text in the text box in the Visual Basic application and
 choose the Poke button. The text is sent to R1C1 in the Excel
 spreadsheet.

Note: If you have the Ignore Remote Requests option selected in the
Excel Workspace dialog box, you will not be able to establish DDE from
Visual Basic. Make sure the Ignore Remote Requests option isn't selected.

For Visual Basic version 1.0 add the following constants to the general
declarations of the form:

 CONST TRUE = -1
 CONST FALSE = NOT TRUE

For more information on DDE between Visual Basic and other Windows-based
applications, query on the following words in the Microsoft Knowledge Base:

 DDE and Visual Basic

Additional reference words: 1.00 2.00 3.00 4.00
KBCategory:
KBSubcategory: IAPDDE

Using DDE Between Visual Basic and Q+E for Windows
Article ID: Q75090
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
--

SUMMARY
=======

This article describes how to initiate a Dynamic Data Exchange (DDE)
conversation between a Microsoft Visual Basic for Windows destination
application and a Pioneer Software Q+E for Windows source application.
(Q+E is a database query tool.)

This article demonstrates how to:

1. Prepare a Q+E database file for active DDE.

2. Initiate a manual DDE link (information updated upon request from the
 destination) between Visual Basic for Windows (the destination) and
 Q+E (the source).

3. Use LinkRequest to update information in Visual Basic for Windows
 (the destination) based on information contained in Q+E (the source).

4. Initiate a automatic DDE link (information updated automatically from
 source to destination) between Visual Basic for Windows (the
 destination) and Q+E (the source).

5. Use LinkPoke to send information from Visual Basic for Windows (the
 destination) to Q+E (the source).

6. Change the LinkMode property between Automatic and Manual.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

A destination application sends commands through DDE to the source
application to establish a link. Through DDE, the source provides data
to the destination at the request of the destination or accepts
information at the request of the destination.

The following steps serve as a example of how to establish a DDE
conversation between Visual Basic for Windows and Q+E.

First, generate a Q+E database file to act as the source.

1. Create a database (.DBF) file (see the Q+E manuals for the

 procedure). For this example, you will use one of the default
 files, ADDR.DBF, that is provided with Microsoft Excel for Windows.

2. If Q+E is already running, exit Q+E. For this example to work
 properly, Q+E must not be loaded and running.

Next, create the destination application in Visual Basic for Windows.

The destination is the application that performs the link operations. It
prompts the source to send information or informs the source that
information is being sent.

1. Start Visual Basic for Windows. Form1 will be created by default.

2. Create the following controls with the following properties on
 Form1:

 Default Name Caption Name
 ------------ ------- -------
 Text1 (not applicable) Text1
 Option1 Manual Link ManualLink
 Option2 Automatic Link AutomaticLink
 Command1 Poke Poke
 Command2 Request Request

 (In Visual Basic version 1.0 for Windows, set the CtlName Property
 for the above objects instead of the Name property.)

3. Add the following code to the General Declaration section of Form1:

 Const AUTOMATIC = 1
 Const MANUAL = 2
 Const NONE = 0

 ' Const TRUE = -1 ' In Visual Basic 1.0 for Windows uncomment
 ' Const FALSE = 0 ' these two lines.

4. Add the following code to the Load event procedure of Form1:

Sub Form_Load () ' This procedure will start Q+E and load the
 ' file "ADDR.DBF".
 z% = Shell("C:\EXCEL\QE C:\EXCEL\QE\ADDR.DBF",1)
 z% = DoEvents () ' Process Windows events. This
 ' ensures that Q+E will be
 ' executed before any attempt is
 ' made to perform DDE with it.
 Text1.LinkMode = NONE ' Clears DDE link if it already
 ' exists.
 Text1.LinkTopic = "QE|QUERY1" ' Sets up link with Q+E.
 Text1.LinkItem = "R1C1" ' Set link to first cell on
 ' spreadsheet.
 Text1.LinkMode = MANUAL ' Establish a manual DDE link.
 ManualLink.Value = TRUE
End Sub

5. Add the following code to the Click event procedure of the
 Manual Link button:

Sub ManualLink_Click ()
 Request.Visible = TRUE ' Make request button valid.
 Text1.LinkMode = NONE ' Clear DDE Link.
 Text1.LinkMode = MANUAL ' Reestablish new LinkMode.
End Sub

6. Add the following code to the Click event procedure of the
 AutomaticLink button:

Sub HotLink_Click ()
 Request.Visible = FALSE ' No need for button with automatic link.
 Text1.LinkMode = NONE ' Clear DDE Link.
 Text1.LinkMode = AUTOMATIC ' Reestablish new LinkMode.
End Sub

7. Add the following code to the Click event procedure of the
 Request button:

Sub Request_Click ()
 ' With a manual DDE link this button will be visible and when
 ' selected it will request an update of information from the source
 ' application to the destination application.
 Text1.LinkRequest
End Sub

8. Add the following code to the Click event procedure of the Poke
 button:

Sub Poke_Click ()
 ' With any DDE link this button will be visible and when selected
 ' it will poke information from the destination application to the
 ' source application.
 Text1.LinkPoke
End Sub

You can now run the Visual Basic for Windows destination application
from the Visual Basic for Windows environment (skip to step 4) or you
can save the application and create an .EXE file and run that from
Windows (continue to step 1):

1. From the File menu, save the Form and Project using the name
 CLIENT.

2. From the File menu, choose Make an EXE File, and name it CLIENT.EXE.

3. Exit Visual Basic for Windows.

4. Run the application (from Windows if an .EXE file, or from the Run
 menu if from the Visual Basic for Windows environment). Form1 of
 the destination application will be loaded and Q+E will automatically
 be started with the database file ADDR.DBF loaded.

5. Make sure that the main title bar in Q+E reads "Q + E," NOT
 "Q + E - ADDR.DBF." If the title bar is incorrect, then from the
 Window menu of Q+E, choose Arrange All.

You can now experiment with DDE between Visual Basic for Windows and Q+E
for Windows:

1. Try typing some text in R1C1 (the cell that holds the name "Tyler")
 in the Q+E spreadsheet and then choose the Request button. The text
 will appear in the Visual Basic for Windows text box.

2. Choose the Automatic Link button and then type some more text in
 R1C1 of the Q+E spreadsheet. The text is automatically updated
 in the Visual Basic for Windows text box.

3. Type some text in the text box in the Visual Basic for Windows
 application and choose the Poke button. The text is sent to R1C1 in
 the Q+E spreadsheet.

Note that if you do not have the Allow Editing option checked on
the Edit menu in Q+E, you will not be able to change the contents of
the Q+E spreadsheet. This may prevent some DDE operations. For
example, attempting to LinkPoke to Q+E from Visual Basic for Windows
when the Allow Editing option is not chosen will cause the program to
crash and result in a "Foreign application won't perform DDE method or
operation" error message. Attempting to change the contents of the
spreadsheet from Q+E will result in a "Use the allow editing command
before making changes" error message. From the Edit menu of Q+E,
choose Allow Editing to enable this option. When viewed from the Edit
menu, Allow Editing should have a check mark next to it when enabled.

You can also establish DDE between applications at design time. For
more information, see page 356 of the "Microsoft Visual Basic:
Programmer's Guide" version 1.0 manual, or Chapter 20 of the "Microsoft
Visual Basic Programmer's Guide" version 2.0 manual.

For additional information on DDE between Microsoft Visual Basic for
Windows and other Windows applications query on the following words
in the Microsoft Knowledge Base:

 DDE and Visual Basic

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: IAPDDE

DDE Example Between Visual Basic and Windows Program Manager
Article ID: Q76551
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
- Microsoft Windows, version 3.0 and 3.1
--

SUMMARY
=======

This article demonstrates how to send dynamic data exchange (DDE)
interface commands to the Microsoft Windows Program Manager from
Microsoft Visual Basic for Windows using DDE.

The interface commands available through DDE with the Windows Program
Manager are as follows:

 CreateGroup(GroupName,GroupPath)
 ShowGroup(GroupName,ShowCommand)
 AddItem(CommandLine,Name,IconPath,IconIndex,XPos,YPos)
 DeleteGroup(GroupName)
 ExitProgman(bSaveState)

A full explanation of the above commands can be found in Chapter 22,
pages 19-22 of the "Microsoft Windows Software Development Kit Guide
to Programming" version 3.0 manual.

An application can also obtain a list of Windows groups from the
Windows Program Manager by issuing a LinkRequest to the "PROGMAN" item.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

The following program demonstrates how to use four of the five Windows
Program Manager DDE interface commands and the one DDE request:

1. Run Visual Basic for Windows, or from the File menu, choose New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 is created by default.

2. Create the following controls with the given properties on Form1:

 Object Name Caption
 ------ -------- -------
 TextBox Text1
 Button Command1 Make
 Button Command2 Delete
 Button Command3 Request

 (In Visual Basic version 1.0 for Window set the CtlName Property
 for the above objects instead of the Name property.)

3. Add the following code to the Command1_Click event:

Sub Command1_Click ()
 Text1.LinkTopic = "ProgMan|Progman"
 Text1.LinkMode = 2 ' Establish manual link.

 Text1.LinkExecute "[CreateGroup(Test Group)]"
 ' Make a group in Windows Program Manager.

 Text1.LinkExecute "[AddItem(c:\vb\vb.exe, Visual Basic)]"
 ' Add an item to that group.

 Text1.LinkExecute "[ShowGroup(Test Group, 7)]"
 ' Iconize the group and focus to VB application.

 On Error Resume Next ' Disconnecting link with Windows Program
 Text1.LinkMode = 0 ' Manager causes an error in Windows 3.0.
 ' This is a known problem with Windows Program Manager.
End Sub

4. Add the following code to the Command2_Click event:

Sub Command2_Click ()
 Text1.LinkTopic = "ProgMan|Progman"
 Text1.LinkMode = 2 ' Establish manual link.

 Text1.LinkExecute "[DeleteGroup(Test Group)]"
 ' Delete the group and all items within it.

 On Error Resume Next ' Disconnecting link with Windows Program
 Text1.LinkMode = 0 ' Manager causes an error in Windows 3.0.
 ' This is a known problem with Windows Program Manager.
End Sub

5. Add the following code to the Command3_Click event:

Sub Command3_Click ()
 Text1.LinkTopic = "ProgMan|Progman"
 Text1.LinkItem = "PROGMAN"
 Text1.LinkMode = 2 ' Establish manual link.
 Text1.LinkRequest ' Get a list of the groups.

 On Error Resume Next ' Disconnecting link with Windows Program
 Text1.LinkMode = 0 ' Manager causes an error in Windows 3.0.
 ' This is a known problem with Windows Program Manager.
End Sub

5. Press the F5 key to run the program.

6. Choose the Make button, then choose the Delete button. Note the
 result.

7. Choose the Request button. This will put a list of the groups

 in the Windows Program Manager to be placed in the text box. The
 individual items are delimited by a carriage return plus linefeed.

As noted in the Windows Software Development Kit (SDK) manual
mentioned above, the ExitProgman() command will only work if Windows
Program Manager is NOT the shell (the startup program when you start
Windows).

For a more comprehensive explanation of the CreateGroup, ShowGroup,
AddItem, DeleteGroup, and ExitProgman commands, query on the
following words in the Microsoft Knowledge Base:

 DDE and CreateGroup

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: IAPDDE

Visual Basic and DDE/OLE with Other Windows Applications
Article ID: Q76562

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

Microsoft Visual Basic for Windows can link to a number of Windows
applications through dynamic data exchange (DDE). Visual Basic can
also, through the addition of custom controls, link to other Windows
applications through object linking and embedding (OLE). Custom
controls for OLE support are provided with Microsoft Professional
Toolkit for Visual Basic, available from Microsoft End User Sales and
Service or from your nearest dealer of Microsoft products.

MORE INFORMATION
================

Visual Basic has built-in support for DDE. Visual Basic can link and
share information with any other Windows application that also
supports DDE.

Additional articles in this Knowledge Base discuss exactly how to
establish a DDE link between Visual Basic and the following
applications:

 - Another Visual Basic application
 - Microsoft Word for Windows
 - Microsoft Excel for Windows
 - Q+E (shipped with Microsoft Excel)

To locate these articles, query on the following words:

 Visual and Basic and DDE

A Visual Basic application can also use OLE to link with any other
Windows application that supports OLE.

OLE controls are not built into Visual Basic itself, but are readily
available through the Microsoft Professional Toolkit for Visual Basic,
available from Microsoft End User Sales and Service or your nearest
Microsoft dealer.

A more challenging approach to obtain OLE support is to write your own
custom control. With the Visual Basic Control Development Kit (CDK),
along with either the Microsoft Windows Software Development Kit (SDK)
and Microsoft C or Microsoft QuickC for Windows, you can create a
custom control that supports OLE and add it to your Visual Basic
application. The Visual Basic CDK is shipped as part of Microsoft

Professional Toolkit for Microsoft Visual Basic version 1.0 for
Windows.

Below is a list of applications for Microsoft Windows and their
abilities to support DDE and/or OLE.

 Product Version Supports DDE Supports OLE
 ------- ------- ------------ ------------

 Bookshelf 1.0 No Yes
 Money 1.0 No Yes
 Publisher 1.0 No Yes
 Visual Basic 1.0 Yes No and Yes*
 Excel 3.0 Yes Yes
 PowerPoint 2.0 No Yes
 Project 1.0 No No
 Word 1.0 Yes No
 Word 2.0 Yes Yes
 Works 2.0 No No

* Not built into Visual Basic itself, but is available through
 Microsoft Professional Toolkit for Visual Basic or through another
 Visual Basic custom control.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: IAPOLE IAPDDE

PRB: Workaround for Not Enough Memory to Load Tutorial Error
Article ID: Q78000

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

Under any one of the conditions listed in the CAUSE section, If you try to
run the Visual Basic tutorial, a message box will tell you, "Not Enough
Memory To Load Tutorial."

CAUSE
=====

 - The Visual Basic tutorial is not actually installed.
 - The current directory is not pointing to the location of VB.EXE.
 - The VB.LES file is corrupt.

RESOLUTION
==========

You can verify that the current directory is pointing to the location of
VB.EXE by clicking the Visual Basic Icon in the Program Manager and
choosing File Properties from the Program Manager Menu. The Working
Directory option should specify the correct location of VB.EXE.

The subdirectory \VB\VB.CBT\ contains files for the Visual Basic
tutorial. If the file VB.LES has been modified or replaced by another
file, the tutorial cannot be run and two erroneous dialog boxes will
open. The messages displayed in these dialog boxes are incorrect and
should be ignored.

The first dialog box has the title "Visual Basic Tutorial" and
displays the message "Out of memory". Choosing the OK button will
clear this box and another one will open.

The second dialog box is titled "Microsoft Visual Basic." It displays
the message "Not enough memory to load tutorial." Choose the OK button
to clear this box.

To correct this problem, reinstall Visual Basic so that the VB.LES file
is replaced by the correct file. Note that to reinstall Visual Basic
correctly, you must first delete all files from the previous installation.
Remember to save all of your program files (*.FRM, *.MAK, and so on) before
deleting the previous installation.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: Setins

VB CDK VBAPI.LIB Contains CodeView Information
Article ID: Q78211

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 2.0
- Microsoft Visual Basic programming system for Windows, version 1.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SUMMARY
=======

The Microsoft Visual Basic Control Development Kit (CDK) provides a
library of Visual Basic API functions, VBAPI.LIB, which contains
Microsoft CodeView information. This CodeView information may not be
usable by non-Microsoft languages. The Visual Basic CDK was included
with Microsoft Professional Toolkit for Microsoft Visual Basic
programming system version 1.0 for Windows. And the CodeView information
is provided with Visual Basic version 2.0.

A version of VBAPI.LIB without Microsoft CodeView information is
available in the Software/Data Library and can be found by searching
on the word VBAPI, the Q number of this article, or S13227. VBAPI was
archived using the PKware file-compression utility.

Additional reference words: 1.00 2.00
KBCategory:
KBSubcategory: TlsCDK

How to Subclass a VB Form Using VB CDK Custom Control
Article ID: Q78398

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

In Windows programming terms, subclassing is the process of creating a
message handling procedure and intercepting messages for a given
window, handling any messages you choose, and passing the rest to the
window's original message handler.

The subclass procedure is basically a message filter that performs
non-default processing for a few key messages, and passes other
messages to a default window procedure using CallWindowProc(). The
CallWindowProc() function passes a message to the Windows system,
which in turns sends the message to the target window procedure. The
target window procedure cannot be called directly by the subclass
procedure because the target procedure (in this case a window
procedure) is exported.

Below is a simple example of how to subclass a Visual Basic form by
writing a custom control using the Visual Basic Control Development
Kit (CDK). The Visual Basic CDK is shipped as part of Microsoft
Professional Toolkit for Microsoft Visual Basic version 1.0 for Windows
and as part of the Professional Edition of Microsoft Visual Basic versions
2.0 and 3.0 for Windows.

MORE INFORMATION
================

The following code example demonstrates how to subclass a form from a
custom control using the Visual Basic Custom CDK.

This example is developed using the CIRCLE.C program example from the
CIRCLE1 project supplied with the CDK package. Only the file(s) that
have changed from this project are included, and it is assumed that
you have the additional CDK files as well as a C compiler capable of
creating a Windows 3.0 compatible dynamic link library (DLL).

The basic idea for subclassing is to examine the window structure for
a window directly using the GetWindowLong function to determine the
address of the original window procedure. You can then change the
address of the target window's window procedure to the address of your
subclass procedure using SetWindowLong. In your subclass
window procedure, you handle the messages you wish and use
CallWindowProc to pass along other messages to the original window
procedure.

//=================== CIRCLE1 ==================
// CIRCLE.C
// An example of subclassing a Visual Basic Form
//==

#define NOCOMM
#include <windows.h>

#include <vbapi.h>
#include "circle.h"

//declare the subclass procedure
LONG FAR PASCAL _export SbClsProc(HWND,USHORT,USHORT,LONG);

//far pointer to the default procedure
FARPROC lpfnOldProc = (FARPROC) NULL ;

//get the controls parent handle(form1)
HWND hParent ;

//--
// Circle Control Procedure
//--
LONG FAR PASCAL _export CircleCtlProc (HCTL hctl, HWND hwnd,
 USHORT msg, USHORT wp, LONG lp)
{
 LONG lResult ;
 switch (msg)
 {
 case WM_CREATE:
 switch (VBGetMode())
 {
 //this will only be processed during run mode
 case MODE_RUN:
 {
 hParent = GetParent (hwnd) ;
 //get the address instance to normal proc
 lpfnOldProc = (FARPROC) GetWindowLong
 (hParent, GWL_WNDPROC) ;
 //reset the address instance to the new proc
 SetWindowLong (hParent,
 GWL_WNDPROC, (LONG) SbClsProc) ;
 }
 break ;
 }
 break ;
 }
 // call the default VB proc
 lResult = VBDefControlProc(hctl, hwnd, msg, wp, lp);
 return lResult;

}

LONG FAR PASCAL _export SbClsProc (HWND hwnd, USHORT msg,
 USHORT wp, LONG lp)
{
 switch (msg)

 {
 case WM_SIZE:
 {
 //place size event here for example...
 }
 break;
 case WM_DESTROY:
 SetWindowLong (hwnd, GWL_WNDPROC,
 (LONG) lpfnOldProc) ;
 break ;
 }
 // call CircleCtlProc to process any other messages
 return (CallWindowProc(lpfnOldProc, hwnd, msg, wp, lp));
}

;==
;Circle.def - module definition file for CIRCLE3.VBX control
;==
LIBRARY CIRCLE
EXETYPE WINDOWS
DESCRIPTION 'Visual Basic Circle Custom Control'

CODE MOVEABLE
DATA MOVEABLE SINGLE

HEAPSIZE 1024

EXPORTS
 WEP @1 RESIDENTNAME
 SbClsProc @2
;--

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: TlsCDK

VB CDK Custom Property Name Cannot Start with Numeric Value
Article ID: Q78399

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 2.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

The Property Name (npszName) field in the PROPINFO structure for the
Visual Basic Control Development Kit (CDK) cannot start with a numeric
value.

This information needs to be added to page 143 of the "Microsoft Visual
Basic: Control Development Guide" shipped with Microsoft Professional
Toolkit for Visual Basic 1.0 for Windows, or page 132 of the "Microsoft
Visual Basic: Control Development Guide" shipped with the earlier CDK
add-on for Microsoft Visual Basic.

MORE INFORMATION
================

When a control property starts with a numeric value, Visual Basic will
generate the binding/syntax checking error "Expected: end-of-statement."
However, the property works correctly in the Visual Basic design mode
from the Properties bar (or the Properties window in version 2.0)

Steps to Reproduce Problem

1. Rebuild the Circle3 example provided with the CDK after changing
 the PROPINFO Property_FlashColor structure in CIRCLE3.H to the
 following:

 PROPINFO Property_FlashColor =
 {
 "2FlashColor", DT_COLOR | PF_fGetData | PF_fSetData |
 PF_fSaveData | PF_fEditable, OFFSETIN(CIRCLE,
 FlashColor)
 } ;

2. While in Visual Basic development environment (VB.EXE) with the
 Circle3 control loaded, assign the 2FlashColor property a value:

 Circle1.2FlashColor = 2

3. Press F5 to generate the "Expected: end-of-statement" error
 message. The text "FlashColor" will be selected for the syntax error.

Additional reference words: 1.00 2.00
KBCategory:

KBSubcategory: TlsCDK

PRB: SETUP.EXE Error: Insufficient Disk Space on: C:\WINDOWS
Article ID: Q78961

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 2.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

Visual Basic displays the following message during setup if there is
less 382K of space in version 2.0 or less than 330K of space in version
1.0 available to Windows on the drive where Windows resides -- which may
be different from the drive where you are installing Visual Basic.

 Error - Insufficient disk space on: C:\WINDOWS

STATUS
======

This behavior is by design.

MORE INFORMATION
================

At first, SETUP.EXE for Visual Basic copies the files VBSETUP.EXE and
VBRUN100.DLL into the Windows subdirectory. If there is not enough
space on the drive where Windows resides (such as in C:\WINDOWS),
Visual Basic will display the error.

This is the disk space available to Windows just before setup. This
may differ from the amount of space reported at the MS-DOS command
prompt outside of Windows because of temporary files that Windows
creates during operation.

VBSETUP.EXE is deleted when setup is completed. VBRUN100.DLL is copied
over to the Visual Basic subdirectory, but is not deleted from the
Windows subdirectory.

Additional reference words: 1.00 2.00
KBCategory:
KBSubcategory: Setins

Call VBSetErrorMessage() In Response to VBM_ Messages Only
Article ID: Q80403

The information in this article applies to:

- Microsoft Visual Basic Control Development Kit (CDK) for Microsoft
 Visual Basic Programming system for Windows, version 1.0
- Microsoft Professional Toolkit for Microsoft Visual Basic, version 1.0
- Professional Edition of Microsoft Visual Basic for Windows, version 2.0

SYMPTOMS
========

The Visual Basic Control Development Kit (CDK) API function
VBSetErrorMessage() operates correctly only when called in response
to a VBM_ message, such as VBM_SETPROPERTY.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

The VBSetErrorMessage() function can be called from a custom control in
response to a VBM_ message to pass an error number and message back to
Visual Basic. When execution returns to Visual Basic, a trappable
run-time error will occur, with the error number and message specified
in the call to VBSetErrorMessage.

The VBSetErrorMessage routine works only in response to messages that
originate from Visual Basic itself (VBM_ messages). Visual Basic
responds to the return code for VBM_ messages, and in turn sets the
error condition in the program. If the return code for a VBM_ message
is True, Visual Basic will generate an error condition. For other
messages (non VBM_ messages), Visual Basic must pass along the return
code to the originator of the message (usually Windows); therefore,
Visual Basic will not generate an error condition for these messages.

Reference(s):

"Microsoft Visual Basic: Control Development Guide," (c) 1992, page
117 (shipped with Professional Toolkit)

"Microsoft Visual Basic: Control Development Guide," (c) 1991, page
108 (part no. 20666)

Additional reference words: 1.00 2.00
KBCategory:
KBSubcategory: TlsCDK

Getting Program Manager Group Names into Combo Box in VB
Article ID: Q80410

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

To get a list of group names in the Windows 3.0 Program Manager, you can
call the Windows API GetPrivateProfileString function from a Visual Basic
program. This article describes a method of using the Windows API
GetPrivateProfileString function to get all the group names from Program
Manager and place them into a Visual Basic combo box.

MORE INFORMATION
================

Windows initialization (.INI) files contain information that defines
your Windows environment. Examples of Windows initialization files are
WIN.INI and SYSTEM.INI, which are commonly found in the C:\WINDOWS
subdirectory. Windows and Windows applications can use the information
stored in these files to configure themselves to meet your needs and
preferences. For a description of initialization files, read the
WININI.TXT file that comes with Microsoft Windows 3.0.

An initialization file is composed of at least an application name and
a key name. The contents of Windows initialization files have the
following format:

 [Application name]
 keyname=value

The GetPrivateProfile family of API functions are used to retrieve
information from any initialization file that you specify.

To declare this API function within your program, include the
following Declare statement in the global module or the general
Declarations section of a Visual Basic form. The entire Declare
statement must be on one, single line.

Declare Function GetPrivateProfileString% Lib "Kernel"
 (ByVal lpAppName$, ByVal lpKeyName$, ByVal lpDefault$,
 ByVal lpReturnedString$, ByVal nSize%, ByVal lpFileName$)

The formal arguments to these functions are described as follows:

Argument Description
-------- -----------

lpAppName$ Name of a Windows application that appears in the

 .INI file.

lpKeyName$ Key name that appears in the .INI file.

lpFileName$ Points to a string that names the .INI file. If
 lpFileName does not contain a path to the file,
 Windows searches for the file in the Windows
 directory.

lpDefault$ Specifies the default value for the given
 key if the key cannot be found in the
 .INI file.

lpReturnedString$ Specifies the buffer that receives the character
 string.

nSize% Specifies the maximum number of characters
 (including the last null character) to be copied to
 the buffer.

Code Example

To get the group names from Program Manager into a combo box, do the
following:

1. Start Visual Basic or from the File menu, select New Project (ALT,
 F, N) if Visual Basic is already running. Form1 will be created by
 default.

2. Add a combo box (Combo1) to Form1.

3. Within the global Declarations section of Form1, add the following
 Windows API function declaration. Note that the Declare statement
 below must appear on a single line.

 Declare Function GetPrivateProfileString% Lib "kernel"
 (ByVal lpAppName$, ByVal lpKeyName$,ByVal
 lpDefault$,ByVal lpReturnString$,ByVal nSize%,
 ByVal lpFileName$)

4. Within the Form_Load event procedure for Form1, add the following
 code:

 Sub Form_Load()
 ' This is the name of the group in the PROGMAN.INI file
 lpAppName$ = "Groups"

 ' All group names start with Group: Group1, Group2, etc.
 lpKeyName$ = "Group"

 ' If no group found return value in lpDefault$
 lpDefault$ = ""

 ' Initialize string
 lpReturnString$ = Space$(128)
 Size% = Len(lpReturnString$)

 ' This is the path and name the PROGMAN.INI file.
 lpFileName$ = "c:\windows\progman.ini"

 Valid% = 1
 i% = 0

 While (Valid%)

 i% = i% + 1

 ' The following three lines must be typed on a single line
 Valid% = GetPrivateProfileString(lpAppName$, lpKeyName$
 + LTrim$(Str$(i%)), lpDefault$, lpReturnString$,
 Size%, lpFileName$)

 ' Discard the trailing spaces and null character.
 group$ = Left$(lpReturnString$, Valid%)

 ' check to see if string was returned. Change arguments
 ' passed to the Mid$ statement to change what is displayed in combo
 ' box. By setting number to 15 this strips c:\windows\
 ' and .GRP
 ' The following 2 lines must be on one line
 If Valid% > 0 Then combo1.AddItem Mid(group$, 12,
 Len(group$) - 15)
 Wend

 ' Set text of combo box to first item in list
 combo1.listindex = 0

 End Sub

5. From the Run menu, choose Start (ALT, R, S). The combo box will
 contain the filenames (without the extension) of the group (.GRP
 extension) files in the Windows directory. The group name conforms
 to the MS-DOS filename convention; it is limited to eight
 characters.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: IAPDDE

VB DDE to Excel with Embedded TAB Can Truncate String in Excel
Article ID: Q82157
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
--

SUMMARY
=======

If you send strings containing TAB characters in a dynamic data
exchange (DDE) conversation from Microsoft Visual Basic for Windows
to Microsoft Excel, the string may be truncated in Excel if you
specify a specific row and column in the Visual Basic for Windows
LinkItem property. If you do not specify a column in the LinkItem
property but only specify a specific row, your string will be parsed
by Excel, and each TAB will cause the characters following the TAB to
be entered into the following cell in Excel.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

This behavior occurs when the following is true:

 - A string that you are trying to send to Excel through DDE contains
 an embedded TAB.

 - You set your LinkItem property to a specific Excel cell (both row
 and column, such as R1C1, meaning row 1 column 1).

The attempted conversation will result in a truncated string. For
example, if you pass the following string to Excel

 "The cow jumped" + Chr$(9) + "over the moon"

and if the two conditions above are true, the only thing you will see
on the Excel side is "The cow jumped". The rest of the string will be
lost.

The following code example passes strings to Excel from a list box
with TAB-delimited columns. Run the program twice, and uncomment the
LinkItem line to see the different behavior.

Steps to Reproduce Behavior

1. Run Visual Basic for Windows, or from the File menu, choose New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 is created by default.

2. Put a text box on the form (Form1), and change the Name (change
 CtlName in Visual Basic version 1.0 for Windows) property to "ddebox".

3. Put a list box (List1) and a command button (Command1) on Form1.

4. Add the following code to the Form_Load procedure:

Sub Form_Load ()
 Form1.Show
 ' Add items to list box with TABs embedded.
 List1.AddItem "hey" + Chr$(9) + "is"
 List1.AddItem "for" + Chr$(9) + "horses"
End Sub

5. Add the following code to the Command1_Click event procedure:

Sub Command1_Click ()
 Const NONE = 0, COLD = 2 ' Define constants.

 If ddebox.LinkMode = NONE Then
 Z% = Shell("Excel", 4) ' Start Excel.
 ' Set link topic.
 ddebox.LinkTopic = "Excel|Sheet1"
 ddebox.LinkItem = "" ' Set link item.
 ddebox.LinkMode = COLD ' Set link mode.
 End If

 ' Loop through all items in list box:
 For i% = 0 To List1.ListCount - 1
 Row$ = Format$(i% + 1) ' Format row variable.
 ' ddebox.LinkItem = "R"+Row$ ' Take out comment to send entire
 ' string.
 ' Comment next line when uncommenting above line.
 ddebox.LinkItem = "R" + Row$ + "C1" ' This statement truncates
 ' string in Excel.
 ddebox.text = List1.list(i%) ' Assign text box to list box string.
 ddebox.LinkPoke ' Send the string to Excel.
 Next

 ddebox.LinkMode = NONE
End Sub

For best results, make sure Excel is not running before you start the
program. When you start the program, notice the list box has the
strings added to it during the form Load event. If you choose the
command button to initialize the DDE conversation with the program
typed in exactly as shown, the following will appear in Excel:

hey ' This will be in cell A1.
for ' This will be in cell A2.

If you change the assignment statement of the LinkItem of the ddebox
from

 ddebox.LinkItem = "R" + Row$ + "C1"

to

 ddebox.LinkItem = "R"+ Row$

notice that the entire string is passed to Excel with the following
results:

hey is ' These words will be in A1 and B1.
for horses ' These words will be in A2 and B2.

The reason for this behavior is that Excel uses TABs as its delimiter.
You can use this method to send multiple items to Excel, placing them
in their own cells if desired. If that is not the desired result, you
will have to make sure you compensate for the lost parts of the string.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: IAPDDE

VB Example of Using DDE LinkExecute to Word for Windows 2.0
Article ID: Q82879
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
- Microsoft Word for Windows, versions 2.0 and 6.0
--

SUMMARY
=======

This article demonstrates how to send a LinkExecute event to Microsoft
Word for Windows from Microsoft Visual Basic for Windows using dynamic
data exchange (DDE).

The commands available through DDE with Word for Windows are as
follows:

 - Any Macro in Word for Windows
 - Any embedded WordBasic command built into Word for Windows

A full explanation of the above commands can be found in Word for
Windows online Help under the topic "WordBasic."

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

The following example program demonstrates how to:

 - Automatically start Word for Windows
 - Automatically send text typed in a Visual Basic for Windows text
 box to the Word for Windows document
 - Print the Word for Windows document to the selected printer.

1. Start Visual Basic for Windows, or from the File menu, choose New
 Project (press ALT, F, N) if Visual Basic for Windows is already
 running. Form1 is created by default.

2. Create the following controls with the given properties on Form1:

 Object Name Caption

 TextBox Text1
 Button Command1 Start Word
 Button Command2 Link
 Button Command3 Send Text
 Button Command4 Print

 (In Visual Basic version 1.0 for Windows set the CtlName Property

 for the above objects instead of the Name property.)

3. Add the following code to the Command1_Click event:

 Sub Command1_Click ()
 x = Shell("winword.exe", 7) ' Start Word for Windows minimized
 ' without the focus.
 x = DoEvents() ' This gives WinWord time to load.
 End Sub

4. Add the following code to the Command2_Click event procedure:

 Sub Command2_Click ()
 text1.LinkMode = 0 ' Clears DDE link if it already exists.
 text1.LinkTopic = "WinWord|document1" ' Set up link w/ WINWORD.EXE.

 text1.LinkMode = 2 ' Establish a manual DDE link.
 text1.linktimeout = 60 ' Set the time for a response to 6 seconds.
 ' If a DDETIMEOUT occurs increase the Text1.Linktimeout.

 ' Enter the following two lines as one, single line:
 text1.LinkExecute
 "[InsertBookmark .Name="+Chr$(34)+"Test"+Chr$(34)+"]"

 ' NOTE: the space is necessary as shown before .Name in the above
 ' LinkExecute statement.

 ' For Microsoft Word version 6.0, use the following instead and
 ' enter the two lines as one single line -- after removing the
 ' single quotation mark from the start of both lines:
 ' text1.LinkExecute
 ' "[EditBookmark .Name ="+Chr$(34)+"Test"+Chr$(34)+"]"

 text1.LinkItem = "Test" ' Set link to a bookmark on document.
 End Sub

5. Add the following code to the Command3_Click event procedure:

 Sub Command3_Click ()
 text1.LinkPoke ' Sends the contents of the text box.
 End Sub

6. Add the following code to the Command4_Click event procedure:

 Sub Command4_Click ()
 text1.LinkExecute "[FilePrintDefault]" ' Prints the doc with the
 ' default printer settings.
 End Sub

7. Press the F5 key to run the program.

8. Choose the Start Word button.

9. Choose the Link button. This will establish a DDE conversation with
 Word's Document1 and create a bookmark called Test using LinkExecute
 and the embedded InsertBookmark WordBasic command. It will then set
 the LinkItem to this newly created bookmark in Document1.

10. Type some text in the text box and choose the Send Text command
 button to send the contents of the text box to Word for Windows.

11. Choose the Print button to print the document in Word for Windows.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: IAPDDE

VB CDK: Example of Subclassing a Visual Basic Form
Article ID: Q83806

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 versions 2.0 and 3.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SUMMARY
=======

The subclass procedure is a message filter that performs non-default
processing for a few key messages, and passes other messages to a
control's default window procedure using CallWindowProc. The
CallWindowProc function passes a message to Windows, which in turn
sends the message to the target window procedure. The target window
procedure cannot be called directly by the subclass procedure because
the target procedure is exported.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

The following code example demonstrates how to subclass a form using
the Microsoft Visual Basic for Windows Custom Control Development Kit
(CDK).

This example is developed using the CIRCLE.C source file from the
CIRCLE1 project supplied with the CDK package. Only the file(s) that
have changed from this project are included, and it is assumed that
you have the additional CDK files.

 //=================== CIRCLE1 ==============================
 // CIRCLE.C
 // An example of subclassing a Visual Basic for Windows Form
 //==

#define NOCOMM
#include <windows.h>

#include <vbapi.h>
#include "circle.h"

// Declare the subclass procedure.
LONG FAR PASCAL _export SbClsProc(HWND,USHORT,USHORT,LONG);

// Far pointer to the default procedure.
FARPROC lpfnOldProc = (FARPROC) NULL ;

// Get the controls parent handle(form1).

HWND hParent ;

//--
// Circle Control Procedure
//--
LONG FAR PASCAL _export CircleCtlProc (HCTL hctl, HWND hwnd,
 USHORT msg, USHORT wp, LONG lp)
{
 LONG lResult ;
 switch (msg)
 {
 case WM_CREATE:
 switch (VBGetMode())
 {
 // This will only be processed during run mode.
 case MODE_RUN:
 {
 hParent = GetParent (hwnd) ;
 // Get the address instance to normal proc.
 lpfnOldProc = (FARPROC) GetWindowLong
 (hParent, GWL_WNDPROC) ;
 // Reset the address instance to the new proc.
 SetWindowLong (hParent,
 GWL_WNDPROC, (LONG) SbClsProc) ;
 }
 break ;
 }
 break ;
 }
 // Call the default VB for Windows proc.
 lResult = VBDefControlProc(hctl, hwnd, msg, wp, lp);
 return lResult;

}

LONG FAR PASCAL _export SbClsProc (HWND hwnd, USHORT msg,
 USHORT wp, LONG lp)
{
 switch (msg)
 {
 case WM_SIZE:
 {
 // Place size event here for example...
 }
 break;
 case WM_DESTROY:
 SetWindowLong (hwnd, GWL_WNDPROC,
 (LONG) lpfnOldProc) ;
 break ;
 }
 // Call CircleCtlProc to process any other messages.
 return (CallWindowProc(lpfnOldProc, hwnd, msg, wp, lp));
}

;===
;Circle.def - module definition file for CIRCLE3.VBX control
;===

LIBRARY CIRCLE
EXETYPE WINDOWS
DESCRIPTION 'Visual Basic Circle Custom Control'

CODE MOVEABLE
DATA MOVEABLE SINGLE

HEAPSIZE 1024

EXPORTS
 WEP @1 RESIDENTNAME
 SbClsProc @2
;--
Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: TlsCDK

VB Example of Using DDE to Run a Word 2.0 for Windows Macro
Article ID: Q85857

The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
 - Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

This article demonstrates how to send a LinkExecute command to Word
for Windows version 2.0 from Visual Basic using dynamic data exchange
(DDE) to run a macro.

MORE INFORMATION
================

The following example program demonstrates how to automatically start
Word for Windows and execute a WinWord macro called MyMacro.

Steps to Create Example Program

1. Run Visual Basic, or from the File menu, choose New Project (ALT,
 F, N) if Visual Basic is already running. Form1 is created by
 default.

2. Create the following controls on Form1 with the following
 properties:

 Object CtrlName Caption
 ------ -------- -------

 TextBox Text1
 Button Command1 Start Word
 Button Command2 MyMacro

3. Add the following code to the Command1 Click event:

Sub Command1_Click ()
 x = Shell("winword.exe", 7) 'Start Word for Windows
 'minimized without the focus
 End Sub

4. Add the following code to the Command2 Click event:

Sub Command2_Click ()
 Text1.LinkMode = 0 'Clears DDE link if it already exists.
 Text1.LinkTopic = "Winword|document1" 'Sets up link with
 'WINWORD.EXE.
 Text1.LinkMode = 2 'Establish a cold DDE link.
 Text1.LinkTimeout = 60 'Set the time for a response to 6 seconds;

 'if a DDETIMEOUT occurs, increase the
 'Text1.LinkTimeout
' Enter the following two lines as one, single line:
Text1.LinkExecute
 "[ToolsMacro .Name ="+Chr$(34)+"MyMacro"+Chr$(34)+",.Run]"
 '(Note that the space is necessary as shown before .Name in the
 ' above LinkExecute statement.)
End Sub

5. Create a macro called MyMacro in WinWord that inserts "hello world" in
 the document:

 a. Switch to WinWord.

 b. From the Tools menu, choose Macro.

 c. Type "MyMacro" in the Macro Name field. Choose the Edit button.

 d. Type the following:

 Insert "Hello World"

 e. From the File menu, choose Close. At the "Do you want to keep
 the changes to Global: MyMacro?" prompt, choose Yes (this will save
 the newly created MyMacro macro).

 f. From the File menu, choose Exit. At the "Do you want to save the
 global glossary and command changes?" prompt, choose Yes. (The
 MyMacro macro has been added to the WinWord NORMAL.DOT file.)

6. Press F5 to run the program.

7. Choose the Start Word button.

8. Choose the MyMacro button. This will establish a DDE conversation with
 Word Document1 and execute the MyMacro macro.

9. Switch to WinWord to verify that the Document1 contains "Hello
 World," confirming that the MyMacro macro has been run (the CTRL+HOME
 key combination will move the cursor back to the beginning of
 the document).

Additional reference words: 1.00 2.00 3.00 winword
KBCategory:
KBSubcategory: IAPDDE

How to Use a Linked Paintbrush Object with OLECLIEN.VBX
Article ID: Q86776

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, version 2.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SUMMARY
=======

The following example program demonstrates how to use the Visual Basic
OLE Client (OLECLIEN.VBX) custom control to create a linked Paintbrush
object.

The following OLEClient property settings are required to create a
Paintbrush Object Linking and Embedding (OLE) object:

 Class - "PBrush"

 SourceDoc - The full path of a bitmap file to use (for example,
 c:\windows\arches.bmp).

 SourceItem - A string containing the pixel coordinates of the part
 of the bitmap to display. These coordinates should be
 in the format "x1 y1 x2 y2".

This information applies to the OLECLIEN.VBX custom control in Visual Basic.

Note that Windows version 3.0 Paintbrush does not support OLE; you must
have Windows version 3.1 in order to use this example.

MORE INFORMATION
================

The following program demonstrates how to create a linked Paintbrush
object in Visual Basic using the OLECLIEN.VBX custom control.

Step-by-Step Example

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose Add File. In the Files box, select the
 OLECLIEN.VBX custom control file. The OLE Client tool appears in
 the Toolbox.

3. Place a command button and an OLEClient control on Form1.

4. Enter the following code:

 Sub Command1_Click()
 OLEClient1.Class = "PBrush"

 OLEClient1.Protocol = "StdFileEditing"
 OLEClient1.SourceDoc = "c:\windows\arches.bmp"

 ' The SourceItem for Paintbrush is the coordinates of
 ' of an object image in bitmap - "x1 y1 x2 y2".
 OLEClient1.SourceItem = "0 0 121 159"

 OLEClient1.ServerType = 0 ' Linked.
 OLEClient1.Action = 1 ' CreateFromFile.
 Command1.Enabled = 0
 End Sub

 Sub OleClient1_DblClick ()
 OLEClient1.Action = 7 ' Activate (open for editing).
 End Sub

 Sub Form_Unload (Cancel As Integer)
 OLEClient1.Action = 9 ' Close (terminate connection).
 End Sub

5. Press F5 to run the program. Click the command button to create
 the OLE object. Double-clicking the OLEClient control will start
 Paintbrush for you to edit the OLE object.

Reference(s):

"Microsoft Professional Toolkit for Visual Basic: Custom Control
 Reference" Pages 196-232

Additional reference words: 1.00 2.00
KBCategory:
KBSubcategory: IAPOLE

How to Obtain a Listing of Classes for OLE Client Control
Article ID: Q87001

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, version 2.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SUMMARY
=======

Below is an example of how to obtain a list of the Object Linking and
Embedding (OLE) class properties for the OLE Client control in Visual Basic.
This example is based on the ServerAcceptFormats example on page 214 in the
"Microsoft Professional Toolkit for Visual Basic: Custom Control Reference"
for version 1.0.

This example gets the information from the REG.DAT file in your
Windows directory. It uses the ServerClasses property to return a
listing of the classes to a list box. The Class property is discussed
on pages 198-201 and 207 of the "Microsoft Professional Toolkit for
Visual Basic: Custom Control Reference" for version 1.0. The
ServerClasses property is discussed on pages 201 and 217 in the same
manual.

Note that the CtlName property in Visual Basic version 1.0 has been
changed to the Name property in Visual Basic version 2.0.

MORE INFORMATION
================

This example uses a single form with two list boxes, two labels, and
one OLE Client control. One list box should have a CtlName (or Name) of
Identifier, and the other list box should have a CtlName (or Name) of
FileType. Each label is placed above a list box, with the captions
of Identifier and File Type, respectively.

There are three event procedures (Form_Load, Identifier_Click, and
FileType) and one procedure, located in the general section of Form1,
called Fillitems(S$).

The example results in two lists. The available OLE classes are listed
in the Identifier list box, and the Class File Types are listed in the File
Type list box.

When you click a certain class in the Identifier list box, the
associated class display is highlighted in the second
Identifier-Display list box.

Step-by-Step Example

1. Start Visual Basic or from the File menu, choose New Project (ALT,
 F, N) if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose Add File. In the Files box, select the
 OLECLIENT.VBX custom control file. The OLE Client tool will appear
 in the Toolbox.

3. Add two label boxes (Label1 and Label2) and two list boxes (List1 and
 List2) to Form1. Position Label1 above List1, and Label2 above List2.

4. Change the Control Name of List1 to Identifier, and change the Caption
 of Label1 to Identifier.

5. Change the Control Name of List2 to FileType, and change the Caption
 of Label2 to FileType.

6. Add the following code to the Form_Load event procedure:

 Sub Form_Load ()
 Dim I As Integer
 ' Fill the Identifier and FileType list boxes
 For I = 0 To OLEClient1.ServerClassCount - 1
 Identifier.AddItem OLEClient1.ServerClasses(I)
 FileType.AddItem OLEClient1.ServerClassesDisplay(I)
 Next I
 End Sub

7. Add the following code to the Identifier_Click event procedure
 after you have changed the control name in step 4 above:

 Sub Identifier_Click ()
 ' When user selects a Class, highlight the associated ClassDisplay.
 FileType.ListIndex = Identifier.ListIndex
 ' Display information associated with the selected class.
 FillItems (OLEClient1.ServerClasses(Identifier.ListIndex))
 End Sub

8. Add the following code to the FileType_Click event procedure after
 you have changed the control name in step 4:

 Sub FileType_Click ()
 ' When user selects a ClassDisplay, highlight the associated Class.
 Identifier.ListIndex = FileType.ListIndex
 End Sub

9. Add the following code to the (general) section of the form's Code window
 under Object:

 Sub FillItems (S$)
 Dim I As Integer
 ' Set the ServerClass.
 OLEClient1.ServerClass = S$
 End Sub

Additional reference words: 1.00 2.00
KBCategory:
KBSubcategory: IAPOLE

Visual Basic 3.0 Setup & Installation Questions & Answers
Article ID: Q92546

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic
 programming system for Windows, version 3.0

1. Q. I am having difficulty with the ODBC Setup and Installation. Is
 there any information on how this should be done for various
 databases?

 A. There are several help files and text files that deal specifically
 with ODBC setup and connections issues. You can find a list of these
 and other information files by following three steps:

 1. Open the Visual Basic help file.
 2. Choose the Contents button.
 3. Select "Other Information sources."

2. Q. The setup program for Microsoft Visual Basic version 3.0 for Windows
 takes from 15 to 30 minutes to finish. Is this normal?

 A. No, this is not normal behavior for Visual Basic setup. We are aware
 of one configuration that displays this symptom. The problem is with
 an SCSI (scuzzy) driver (ASPIDOS) loaded in high memory. If you load
 this driver in low memory, there is no problem.

3. Q. I successfully installed Microsoft Visual Basic version 3.0 for
 Windows with no error messages, but all the help file icons in the
 VB group in Program Manager are gray MS-DOS icons. When I choose
 these icons, I get an error message that says:

 Cannot Run Program. There is no application associated with
 this file. Choose Associate from the File menu to create an
 association.

 Why does this happen?

 A. This is a known problem with The Setup program in the Professional
 edition of Visual Basic version 3.0 for Windows. The Setup program
 adds the following problem line to the extensions section of
 the WIN.INI file if no association for .HLP files currently exists:

 HLP=D:\WINDOWS\SETUPWIZ.INI ^.HLP

 To fix the problem replace the line with this line:

 HLP=WINHELP.EXE ^.HLP

 For more information on this problem, please see Microsoft Knowledge
 Base article Q100191.

Additional reference words: 3.00 ivrfax fasttips

KBCategory:
KBSubcategory: Setins

Visual Basic 3.0 Programming Questions & Answers
Article ID: Q92550

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic
 programming system for Windows, version 3.0

1. Q. I use the picture control to group other controls. However when
 I select the picture control, the other controls do not remain on
 top of the picture control. How can I correct this problem?

 A. This problem occurs if you place the controls on the form in the
 same place as the picture control but not in the picture control.
 itself. To group the controls in a picture control, you must first
 select the Picture control and then draw the desired control within
 the Picture control. For more information, please see Chapter 3 of
 the "Microsoft Visual Basic version 3.0 Programmer's Guide."

2. Q. How can I make calls from Visual Basic to the functions in the
 Windows Application Programming Interface (API) or other dynamic
 link libraries (DLLs)?

 A. To call a subroutine or function from one of the Windows APIs
 or any other DLL, you need to first provide a Declare statement for
 that subroutine or function in your Visual Basic application. The
 exact syntax for the declaration for each Windows API function
 can be found in the WIN31API.HLP help file included with the
 Professional Edition of Visual Basic. For more information, please
 see Chapter 24 of the "Microsoft Visual Basic version 3.0
 Programmer's Guide."

3. Q. Is there a reference available that lists the correct Visual Basic
 declarations for the Multimedia API functions?

 A. Yes, the file is called WINMMSYS.TXT. It comes with the Professional
 edition of Visual Basic. You can find it in the \VB\WINAPI directory.

4. Q. Is there a reference available that lists the correct Visual Basic
 declarations for the Windows for Workgroups API functions?

 A. No, at this time such a file is not available from Microsoft.
 However, you can obtain a copy of the Windows for Workgroups SDK from
 the WINEXT forum on CompuServe.

5. Q. I followed the examples in the manuals and in the help file on how to
 use Domain functions such as DSum and DCount, but I keep receiving
 this error:

 Reference to undefined function or array.

 Why?

 A. The examples provided for the Domain Aggregate functions are

 incorrect. These functions must be used within an SQL Statement
 just as SQL Aggregate functions such as Sum and Count are used.
 Please look at the SQL Aggregate examples to see how to use these
 functions within an SQL Statement. For more information, query
 on the following words in the Microsoft Knowledge Base:

 DOMAIN and FUNCTION and SQL

6. Q. I want to sort the records referenced by the Data Control in my
 application. I tried to use the Index Property as described in
 the example in the manual and in the help file, but I receive the
 following error message:

 Property 'Index' not found

 Why?

 A. The examples provided in the Index Property are incorrect. The Index
 property does not apply to the Data Control. To sort the records
 referenced by the Data Control, use the ORDER BY Clause within an
 SQL Statement in the RecordSource property of the Data Control.

7. Q. Is there a better way than the Print Form method to print Forms
 and Controls in a program?

 A. Yes, it is possible to print forms and/or controls and specify
 the printed size by using various Windows API function calls.
 This process is documented in Microsoft Knowledge Base article
 Q85978. You can also find this article in the top 10 Microsoft
 Knowledge Base articles that are in the Visual Basic help file.
 To view these articles, select "Technical Support" from the
 Contents screen in the Visual Basic help file. Then select
 "Knowledge Base Articles on Visual Basic."

Additional reference words: 3.00 ivrfax fasttips
KBCategory:
KBSubcategory: PrgCtrlsStd APrgOther TlsCDK

How to Establish a Network DDE Link Using Visual Basic
Article ID: Q93160
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
--

SUMMARY
=======

This article demonstrates how to establish a network Dynamic Data Exchange
(DDE) link between two computers running Microsoft Windows for Workgroups.

MORE INFORMATION
================

Under DDE, a destination (or client) application sends commands through DDE
to the source (or server) application to establish a link. Through DDE, the
source provides data to the destination at the request of the destination
or accepts information at the request of the destination. When you use DDE
with Windows version 3.0 or 3.1 based applications, the source and
destination applications are both located on the same computer.

When you use Network DDE with Windows for Workgroups based applications,
DDE functions exactly the same way as standard DDE except that the source
and destination applications are located on different computers.

Before establishing a network DDE link, you must first establish a network
DDE share for the conversation by calling the API NDdeShareAdd() function
located in the NDDEAPI.DLL file. Here is the Visual Basic declaration:

' Enter the following as one, single line:
Declare Function NDdeShareAdd Lib "NDDEAPI.DLL" (Server As Any, ByVal Level
 As Integer, ShareInfo As NDDESHAREINFO, ByVal nSize As Long) As Integer

Enter the entire statement as a single line. The first parameter is always
a 0 and is passed with ByVal 0& from Visual Basic. The second parameter is
always 2. The next parameter is a filled ShareInfo structure (given below).
The last parameter is the size of the ShareInfo structure.

Here is The structure of the NDDESHAREINFO structure:

 Type NDDESHAREINFO
 szShareName As String * MAX_NDDESHARENAME_PLUSONE
 lpszTargetApp As Long 'LPSTR lpszTargetApp
 lpszTargetTopic As Long 'LPSTR lpszTargetTopic
 lpbPassword1 As Long 'LPBYTE lpbPassword1
 cbPassword1 As Long 'DWORD cbPassword1;

 dwPermissions1 As Long 'DWORD dwPermissions1;
 lpbPassword2 As Long 'LPBYTE lpbPassword2;
 cbPassword2 As Long 'DWORD cbPassword2;

 dwPermissions2 As Long 'DWORD dwPermissions2;
 lpszItem As Long 'LPSTR lpszItem;
 cAddItems As Long 'LONG cAddItems;
 lpNDdeShareItemInfo As Long
 End Type

The following table describes each field of the NDDESHAREINFO type:

Field Name Purpose

szShareName Name of the share to add.
lpszTargetApp Pointer to null-terminated string containing the
 service or application name.
lpszTargetTopic Pointer to null-terminated string holding the topic name
lpbPassword1 Pointer to the read-only password -- uppercase, null-
 terminated string. If null, pass null string, not zero.
cbPassword1 Length of read-only password
dwPermissions1 Full access password
cbPassword2 Length of the full access password
dwPermissions2 Permissions allowed by the full access password

Here are the permissions allowed for dwPermissions:

Name Value Function

NDDEACCESS_REQUEST &H1 Allows LinkRequest
NDDEACCESS_ADVISE &H2 Allows LinkAdvise
NDDEACCESS_POKE &H4 Allows LinkPoke
NDDEACCESS_EXECUTE &H8 Allows LinkExecute
NDDEACCESS_START_APP &H10 Starts source application on connect

Here are the possible return values from NDdeShareAdd():

Name Value Meaning

NDDE_NO_ERROR 0 No error.
NDDE_BUF_TOO_SMALL 2 Buffer is too small to hold information.
NDDE_INVALID_APPNAME 13 Application name is not valid.

NDDE_INVALID_ITEMNAME 9 Item name is not valid.
NDDE_INVALID_LEVEL 7 Invalid level; nLevel parameter must be 2.
NDDE_INVALID_PASSWORD 8 Password is not valid.
NDDE_INVALID_SERVER 4 Computer name is not valid; lpszServer
 parameter must be NULL.
NDDE_INVALID_SHARE 5 Share name is not valid.
NDDE_INVALID_TOPIC 10 Topic name is not valid.
NDDE_OUT_OF_MEMORY 12 Not enough memory to complete request.
NDDE_SHARE_ALREADY_EXISTS 15 Existing shares cannot be replaced.

There are two steps to establish a network Dynamic Data Exchange (DDE) link
between two computers running Microsoft Windows for Workgroups. First,
create the DDE source application. Second, create the DDE destination
application.

Step One -- Create DDE source application

The following steps show you how to create a Visual Basic DDE source
and destination application that communicates through a network DDE link.

1. From the DDE source computer, start Visual Basic or if Visual Basic is
 already running, from the File menu, choose New Project (ALT, F, N).
 Form1 is created by default.

2. Change the LinkTopic property of Form1 to VBTopic.

3. If you are running Visual Basic version 2.0 or 3.0 for Windows, change
 the LinkMode property of Form1 to 1 - Source. In Visual Basic version
 1.0, this property is already set to 1 - Server; don't change it.

4. Add a text box (Text1) to Form1.

5. Change the Name property (CTlName in version 1.0) of Text1 to VBItem.

6. Add a timer (Timer1) to Form1.

7. From the File menu, choose New Module (ALT, F, M). Module1 is created.

8. Add the following code to the general declarations section of Module1,
 and enter all lines as a single line even though they may be shown on
 multiple lines for readability:

 ' DDE access options
 Global Const NDDEACCESS_REQUEST = &H1
 Global Const NDDEACCESS_ADVISE = &H2
 Global Const NDDEACCESS_POKE = &H4
 Global Const NDDEACCESS_EXECUTE = &H8
 Global Const NDDEACCESS_START_APP = &H10
 Global Const MAX_NDDESHARENAME_PLUSONE = 65
 Type NDDESHAREINFO
 szShareName As String * MAX_NDDESHARENAME_PLUSONE
 lpszTargetApp As Long 'LPSTR lpszTargetApp
 lpszTargetTopic As Long 'LPSTR lpszTargetTopic
 lpbPassword1 As Long 'LPBYTE lpbPassword1
 cbPassword1 As Long 'DWORD cbPassword1;
 dwPermissions1 As Long 'DWORD dwPermissions1;
 lpbPassword2 As Long 'LPBYTE lpbPassword2;
 cbPassword2 As Long 'DWORD cbPassword2;
 dwPermissions2 As Long 'DWORD dwPermissions2;
 lpszItem As Long 'LPSTR lpszItem;
 cAddItems As Long 'LONG cAddItems;
 lpNDdeShareItemInfo As Long
 End Type
 Declare Function NDdeShareAdd Lib "NDDEAPI.DLL" (Server As Any, ByVal
 Level As Integer, ShareInfo As NDDESHAREINFO,
 ByVal Size As Long) As Integer
 Declare Function lstrcpy Lib "KERNEL" (szDest As Any, szSource As Any)
 As Long
 'If using Visual Basic version 1.0, add the following declarations
 'Global Const False = 0
 'Global Const True = Not False

9. Add the following code to the Form_Load event of Form1:

 Sub Form_Load ()
 Dim r As Integer
 Dim szShareName As String ' Net DDE share name
 Dim szTargetName As String ' Net DDE target name
 Dim szTopicName As String ' Net DDE source topic name
 Dim szItemName As String
 Dim szReadOnlyPassword As String ' Read-only pw Net DDE share
 Dim szFullAccessPassword As String ' Full access password
 Dim ShareInfo As NDDESHAREINFO

 Dim ShareInfoSize As Long
 Dim Result As Integer
 szShareName = "VBDDESource$" + Chr$(0)
 szTargetName = "VBTARGET" + Chr$(0)
 szTopicName = "VBTopic" + Chr$(0)
 szItemName = Chr$(0) 'All items are allowed
 szReadOnlyPassword = Chr$(0) 'No password
 szFullAccessPassword = Chr$(0)
 'Provide the share, target, topic, and item names along with
 'passwords that identify the network DDE share
 ShareInfo.szShareName = szShareName
 ShareInfo.lpszTargetApp = lstrcpy(ByVal szTargetName,
 ByVal szTargetName)
 ShareInfo.lpszTargetTopic = lstrcpy(ByVal szTopicName,
 ByVal szTopicName)
 ShareInfo.lpszItem = lstrcpy(ByVal szItemName, ByVal szItemName)

 ShareInfo.cbPassword1 = 0
 ShareInfo.lpbPassword1 = lstrcpy(ByVal szReadOnlyPassword,
 ByVal szReadOnlyPassword)
 ShareInfo.dwPermissions1 = NDDEACCESS_REQUEST Or NDDEACCESS_ADVISE Or
 NDDEACCESS_POKE Or NDDEACCESS_EXECUTE Or NDDEACCESS_START_APP
 ShareInfo.cbPassword2 = 0
 ShareInfo.lpbPassword2 = lstrcpy(ByVal szFullAccessPassword,
 ByVal szFullAccessPassword)
 ShareInfo.dwPermissions2 = NDDEACCESS_REQUEST Or NDDEACCESS_ADVISE Or
 NDDEACCESS_POKE Or NDDEACCESS_EXECUTE Or NDDEACCESS_START_APP
 ShareInfo.lpNDdeShareItemInfo = 15
 Result = NDdeShareAdd(ByVal 0&, 2, ShareInfo, Len(ShareInfo))
 ' Start the timer that will continually update the text box and
 ' the DDE link item with random data.
 timer1.Interval = 1000
 timer1.Enabled = True

 End Sub

10. Add the following code to the Timer1_Timer event procedure:

 Sub Timer1_Timer ()
 ' Display random value 0 - 99 in the text box (DDE source data).
 Randomize Timer
 VBItem.Text = Format$(Rnd * 100, "0")
 End Sub

11. From the File menu, choose Make EXE File...

12. Name the file VBTARGET.EXE and choose OK to create the .EXE file.

13. From the File Manager or Program Manager, run VBTARGET.EXE to display
 a random value in the text box every second.

Step Two -- Create the DDE destination application
--

14. From the DDE destination computer, start Visual Basic or if Visual
 Basic is already running, from the File menu, choose New Project (ALT,
 F, N). Form1 is created by default.

15. Add a text box (Text1) to Form1.

16. Add the following code to the Form_Load event of Form1:

 Sub Form_Load ()
 Dim r As Long
 Dim szComputer As String ' Network server name.
 Dim szTopic As String
 ' Identify the network server where the DDE source application
 ' is running. The following statement assumes the source computer
 ' name is COMPUTER1. Change it to your source computer name.
 szComputer = "\\COMPUTER1"
 ' Identify the DDE share established by the source application
 szTopic = "VBDDESource$"
 Text1.LinkMode = 0
 ' The link topic identifies the computer name and link topic
 ' as established by the DDE source application
 Text1.LinkTopic = szComputer + "\" + "NDDE$" + "|" + szTopic
 Text1.LinkItem = "VBItem" ' Name of text box in DDE source app

 Text1.LinkMode = 1 ' Automatic link.
 End Sub

 'For this program to work, set the szComputer variable (above) to the
 'computer name that holds the DDE source application. Find the name
 'in the Network section of Windows for Workgroups Control Panel.

17. From the Run menu, choose Start to run the program.

You should see the same random values generated on the source computer
displayed in the text box of the destination computer. If you receive
the error message "DDE method invoked with no channel open" on the
Text1.LinkMode = 1 statement in Step 16, make sure the szComputer
variable is set correctly.

Additional reference words: 1.00 2.00 3.00 NETDDE
KBCategory:
KBSubcategory: APrgNet IAPDDE

Use COMPRESS-r to Avoid Error: Could not execute: SETUP1.EX 2
Article ID: Q93426

The information in this article applies to:

 - Professional Edition of Microsoft Visual Basic for Windows,
 versions 2.0 and 3.0

SUMMARY
=======

Files used with the Setup Kit must be decompressed or compressed by using
COMPRESS -r <filename>. The following error can occur if you use a method
other than COMPRESS -r to create a file with an underscore as the last
character:

 Error - Could not execute: SETUP1.EX 2

However, VER.DLL must be named VER.DL_ on the setup disk and must not be
compressed.

MORE INFORMATION
================

This information is included with the Help file provided with the
Professional Edition of Microsoft Visual Basic version 3.0 for Windows.

The filename listed in the error message above can be different from
SETUP1.EX if you customized the Setup Kit.

The following two commands both create a file named SETUP1.EX_, but they
are not equivalent:

 COMPRESS -r SETUP1.EXE (correct)
 COMPRESS SETUP1.EXE SETUP1.EX_ (incorrect)

The COMPRESS.EXE option -r compresses a file, replaces the last character
of the filename with an underscore (_), and stores the replaced character
in the compressed file. When the Setup Kit uses VER.DLL to decompress a
file, VER.DLL reads the character from the file and restores the file to
its original name.

If you create a file with an underscore as the last character without
using COMPRESS -r, VER.DLL renames the file by removing the underscore.
For example, SETUP1.EX_ becomes SETUP1.EX.

NOTE: If you create a custom setup, the default SETUP.LST will not include
VER.DLL (or more precisely VER.DL_) as a file to copy. Ensure that you do
copy the .DLL file. You will want to make sure it is there in all cases.

Additional reference words: 2.00 3.00 errmsg
KBCategory:
KBSubcategory: TlsSetWiz

DDE Conversation Can Cause Error Message: DDE Channel Locked
Article ID: Q95462

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SUMMARY
=======

The error message "DDE channel locked" indicates that an attempt is being
made to open a DDE conversation between two objects that are already
engaged in a conversation. However, usually the error message occurs in a
Visual Basic application as a result of a non-Visual Basic DDE Server
application failing to post or send a DDE message Visual Basic is
expecting.

The best overall solution is to alter the DDE server application so that it
correctly sends the appropriate DDE messages.

Both "DDE channel locked" and "Timeout while waiting for DDE response" are
errors that can be trapped in Visual Basic, so you can work around the
problem by performing the following steps:

1. Turn on error trapping. For example:

 On Local Error GoTo DDEerrhand:

2. In your error handling routine, trap error #284 ("DDE channel locked")
 and set the LinkTimeout property to 1. This triggers the error message
 "Timeout while waiting for DDE response" much quicker.

3. Also, in your error handling routine trap error #286 ("Timeout while
 waiting for DDE response"), reset the LinkTimeout value, re-establish
 the link, and execute a RESUME statement, as in this example:

 DDEerrhand:
 Select Case Err
 Case 284:
 OldLinkMode = Text1.LinkMode
 OldTimeout = Text1.LinkTimeout
 Text1.LinkTimeout = 1
 Resume
 Case 286:
 Text1.LinkTimeout = OldTimeout
 Text1.LinkMode = 0
 Text1.LinkMode = OldLinkMode
 Resume
 End Select

MORE INFORMATION
================

The DDE conversation guidelines set by the Windows Software Development Kit
(SDK) require that Visual Basic sometimes wait for an expected DDE message.
If that message is never correctly sent or posted to Visual Basic, the
following scenario is likely to occur, leading to the error message "DDE
channel locked":

1. At some point between when Visual Basic established the conversation and
 the conversation terminated, the DDE server application fails to post or
 send a message that Visual Basic is expecting as a normal part of the
 DDE termination procedure.

2. At this point, Visual Basic is in a PeekMessage loop waiting for a
 message from the server indicating that the server application has also
 terminated the DDE conversation. Because Visual Basic is yielding the
 CPU inside the loop, the Visual Basic code continues to execute and the
 DDE conversation appears to have terminated normally from the server
 side.

3. Because Visual Basic is still waiting for the expected DDE message from
 the server application, the DDE channel is still open. Any attempt to
 reopen the channel (such as setting the LinkMode property for the
 control performing the DDE) results in a "DDE channel locked" error.

If no further DDE actions are attempted, you will receive a "Timeout while
waiting for DDE response" error message. The timeout will occur after a
number of milliseconds equal to the communicating control's LinkTimeout
property.

Additional reference words: 1.00 2.00 3.00 errmsg
KBCategory:
KBSubcategory: IAPDDE

How to Use DDE to Display Microsoft Access Data in VB
Article ID: Q96845

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, version 2.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SUMMARY
=======

This article demonstrates how to use DDE to obtain and display data from a
Microsoft Access database. While Microsoft Access does not support poking
data into a database, it does provide several LinkTopics, so you can get
information out from a database.

Using supported LinkTopics, you can receive:

 - The contents of a Microsoft Access table
 - The result of a stored query in the Microsoft Access database
 - The result of a SQL expression that you pass to Microsoft Access
 - Specifics about a Microsoft Access database

MORE INFORMATION
================

Below you'll find example code and a detailed list of the LinkTopics
and LinkItems supported by Microsoft Access. For the most updated list
of LinkTopics and LinkItems supported by Microsoft Access, query on the
following words in the Microsoft Knowledge Base:

 access and DDE and item and topic and server

LinkTopics Supported

Here are the LinkTopics supported by Microsoft Access:

System : List of supported LinkTopics.
<Database> : <Database> is the filename of an existing database.
<TableName> : <TableName> is a table within the specified database.
<QueryName> : <QueryName> is a query within the specified database.
SQL <SQL Statement> : Result of a SQL Query where <SQL Statement> is a
 valid SQL expression.

LinkItems Supported for Each LinkTopic

Here are the LinkItems supported for each LinkTopic and the results they
return

System:

 SysItems - List of LinkItems supported by the System LinkTopic.
 Formats - List of formats Microsoft Access can post to the clipboard.
 Status - Busy or Ready.
 Topics - List of all open databases.
 <Macro> - Name of a macro to be executed.

Database:

 TableList - List of tables
 QueryList - List of queries
 MacroList - List of scripts
 ReportList - List of reports
 FormList - List of forms
 ModuleList - List of modules
 <Macro> - The name of a macro to be executed.

Table Name, Query Name, and SQL <expression>:

 All - All the data in the table including the column names.
 Data - All rows of data without the column names.
 FieldCount - Count of columns in the table or query results.
 FieldNames - List of Columns.
 NextRow - The next row in the table or query. When the conversation
 begins, NextRow returns the first row. If the current row
 is the last record, a NextRow request fails.
 PrevRow - The previous row in the table or query. If PrevRow is the
 first request over a new channel, the last row of the
 table or query is returned. If the current row is the
 first record, a PrevRow request fails.
 FirstRow - Data in the first row.
 LastRow - Data in the last row.
 <Macro> - The name of a macro to be executed.

Although all three LinkTopics (table name, query name, and SQL expression)
return contents from the database and all three support the same LinkItems,
their syntax structures differ slightly. Each LinkTopic must specify the
database the object is in, a semicolon (;), the keyword (TABLE, QUERY, or
SQL), and the name of an existing table, query, or SQL expression. Here are
the syntax structures:

 [db Name];TABLE <Table name>
 [db Name];QUERY <Query name>
 [db Name];SQL <SQL expression>;

Here are examples:

 Text1.LinkTopic = "C:\ACCESS\NWIND.MDB;TABLE Employees"
 Text1.LinkTopic = "C:\ACCESS\NWIND.MDB;QUERY Sales Totals"
 Text1.LinkTopic = "C:\ACCESS\NWIND.MDB;SQL Select * from Employees;"

Note that all SQL statements must end with a semicolon (;).

Step-by-Step Example

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose Add File. In the Files box, select the
 GRID.VBX custom control file. The grid tool appears in the Toolbox.

3. Add two list boxes (List1 and List2) to Form1. The List1 box holds the
 list of Tables and the List2 box holds the Queries.

4. Add two command buttons (Command1 and Command2) to Form1, placing the
 Command1 button beneath the List1 box and the Command2 button beneath
 the List2 box. Change the following properties:

 Default Name Caption

 Command1 GetTableList Get &Table List
 Command2 GetQueryList Get &Query List

5. Add a grid control (Grid1) to Form1 giving it the following properties:

 Default Name FixedCols

 Grid1 Grid1 0

 The user chooses to display a table or the results of a query in Grid1.

6. Add two text boxes (Text1 and Text2) to Form1. The Text2 box acts as the
 destination for the data added to List1 and List2, so the user doesn't
 need to see this text box. But the Text1 box needs to be visible to the
 user because it acts as the destination for individual rows returned
 from a query or table.

7. Add two more command buttons to Form1, placing them beneath the Text1
 box. Give the two command buttons the following properties:

 Default Name Caption

 Command1 NextRow &Next Row
 Command2 PrevRow &Previous Row

8. Add the following code to the General Declarations section of Form1:

 Const None = 0
 Const Automatic = 1
 Const Manual = 2
 Const dbname = "C:\ACCESS\NWIND.MDB" ' Change Paths as necessary
 Const accesspath = "C:\ACCESS\MSACCESS.EXE "

9. Add the following three Sub procedures to the General Declarations
 section of Form1:

 Sub ClearGrid ()
 ' Select all grid cells.
 Grid1.SelStartCol = 0
 Grid1.SelStartRow = 1
 Grid1.SelEndCol = Grid1.Cols - 1
 Grid1.SelEndRow = Grid1.Rows - 1
 ' Clear the cells.
 Grid1.Clip = ""

 ' Clean up the grid.
 Grid1.Col = Grid1.FixedCols
 Grid1.Row = Grid1.FixedRows
 Grid1.SelEndCol = Grid1.SelStartCol
 Grid1.SelEndRow = Grid1.SelStartRow
 End Sub

 Sub PopulateGrid (IsTable%, QueryOrTable$)
 If IsTable% Then
 Text1.LinkTopic = "MSACCESS|" + dbname + ";TABLE " + QueryOrTable$
 Else
 Text1.LinkTopic = "MSACCESS|" + dbname + ";QUERY " + QueryOrTable$
 End If
 Text1.LinkItem = "FieldCount"
 Text1.LinkMode = Automatic
 Grid1.Cols = Val(Text1.Text)

 Text1.LinkItem = "FieldNames"
 Grid1.FixedRows = 0 ' Cannot additem to a fixed row
 Grid1.AddItem Text1.Text, 0
 Grid1.FixedRows = 1

 On Error GoTo LastRowErr
 Text1.LinkItem = "LastRow"
 Grid1.AddItem Text1.Text, 1
 Text1.LinkItem = "PrevRow"
 Do
 Grid1.AddItem Text1.Text, 1
 Text1.LinkRequest
 Loop
 Exit Sub
 LastRowErr:
 Exit Sub ' Error occurs when last row is reached
 End Sub

 Sub GetList (L As ListBox, ListType$)
 text2.LinkMode = None
 text2.LinkTopic = "MSAccess|" + dbname
 text2.LinkItem = ListType$
 text2.LinkMode = Automatic
 StartPos% = 1
 Do
 Pos% = InStr(StartPos%, text2.Text, Chr$(9))
 If Pos% = 0 Then Exit Do
 L.AddItem Mid$(text2.Text, StartPos%, Pos% - StartPos%)
 StartPos% = Pos% + 1
 Loop
 End Sub

10. Add the following code to the Form_Load event of Form1:

 Sub Form_Load ()
 result% = Shell(accesspath + dbname, 1)
 End Sub

11. Add the following code to the GetQueryList_Click event procedure:

 Sub GetQueryList_Click ()
 GetList List2, "QueryList"
 End Sub

12. Add the following code to the GetQueryList_Click event procedure:

 Sub GetTableList_click ()
 GetList List1, "TableList"
 End Sub

13. Add the following code to the List1_Click event procedure:

 Sub List1_Click ()
 Table$ = List1.Text
 ClearGrid
 PopulateGrid True, Table$
 End Sub

14. Add the following code to the List2_Click event procedure:

 Sub List2_Click ()
 Query$ = List1.Text
 ClearGrid
 PopulateGrid False, Query$
 End Sub

15. Add the following code to the NextRow_Click event procedure:

 Sub NextRow_click ()
 On Error GoTo NextRowErrHand:
 Text1.LinkItem = "NextRow" ' Get the next row of results
 Exit Sub
 NextRowErrHand:
 MsgBox "Last row reached"
 Exit Sub
 End Sub

16. Add the following code to the PrevRow_Click event procedure:

 Sub PrevRow_Click ()
 On Error GoTo PrevRowErrHand
 Text1.LinkItem = "PrevRow"
 Exit Sub
 PrevRowErrHand:
 MsgBox "First Row Reached"
 Exit Sub
 End Sub

17. From the Run menu, choose Start (ALT, R, S) to run the program.
 Microsoft Access is shelled with the NWIND.MDB sample database open
 and Form1 showing on the screen.

18. Choose the Get Table List button to see a list of all the tables in the
 NWIND database displayed in the List1 box.

19. Choose the Get Query List button to see a list of the previously
 defined queries that exist in the NWIND database displayed in the List2

 box.

20. Select one of the items in either the List1 or List2 box to see the
 results displayed in Grid1.

21. Choose the Next Row button to see the second row displayed in the Text1
 box. Continue to choose the Next Row button to display successive rows
 until you get to the last row. When you get to the last row, a message
 box appears to tell you that you reached the last row.

22. Choose the Prev Row button. The row previous to the one displayed in
 the Text1 box is displayed.

Additional reference words: 1.00 2.00
KBCategory:
KBSubcategory: IAPDDE

OLE Embedding & Linking Word for Windows Objects into VB Apps
Article ID: Q97618

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, version 2.0
- Microsoft Word for Windows, version 2.0
--

SUMMARY
=======

This article shows by example how to use the object linking and embedding
(OLE) client custom control (OLECLIEN.VBX) with Microsoft Word for Windows.
The example demonstrates both how to embed and how to link a Word for
Windows document into a Visual Basic application.

NOTE: In Word for Windows, version 6.0 or 6.0a, the Bookmark menu item
moved from the Insert menu to the View menu.

MORE INFORMATION
================

Embedding an object encapsulates the data displayed in the Visual Basic OLE
client control and makes the data inaccessible to other applications,
unlike the data in an linked object. In addition, embedding an object does
not require that a file already exist for the object to be usable.

Linking an object, on the other hand, does require that a file already
exist, and it requires a LinkItem setting. For a Word for Windows document,
the LinkItem can be any bookmark within the document.

The example shown below demonstrates how to use:

 - Embedded Word for Windows objects
 - Linked Word for Windows objects

The following OLE client control property settings are required to create a
Word for Windows OLE object:

 Property Value

 Class "WordDocument"
 Protocol "StdFileEditing"

In addition, linked objects require the following OLE client control
property settings:

 Property Value

 SourceDoc The full path of the document to use (such as
C:\OLETEST.DOC)
 SourceItem A bookmark (OLE_Link is used in this example)

Here are the steps you need to follow to create the example:

Step One: Create the Word for Windows Document You Want to Link Or Embed
--
1. Start Word for Windows. Document1 is created by default.

2. Press CTRL+SHIFT+END to select to the end of the document.

3. From the Insert menu, choose Bookmark. Under Bookmark Name, type:

 OLE_Link

 and press ENTER to set a bookmark for the entire document. This bookmark
 functions as the LinkItem.

4. From the File menu, choose Save As, and save the document with the
 name C:\OLETEST.DOC. (If the path is different, change the ServerDoc
 property on OleClient1 to reflect the correct path.)

Step Two: Create the Visual Basic Application That Will Hold the Document

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose Add File and add OLECLIEN.VBX to the project.

3. Add the following controls to Form1, and give them the properties shown:

 Default Name Caption Name
 --
 OleClient1 N/A OleClient1
 Option1 &Embed Object OptionEmbed
 Option2 &Link Object OptionLink
 Command1 Embed WinWord Object Command1

4. Change the Value property on OptionEmbed to True.

5. Add the following code to the general declarations section of Form1:

 Dim fshowing As Integer

 Const OLE_LINKED = 0
 Const OLE_EMBEDDED = 1
 Const OLE_STATIC = 2

 Const OLE_CREATE = 0
 Const OLE_CREATE_FROM_FILE = 1
 Const OLE_UPDATE = 6
 Const OLE_ACTIVATE = 7
 Const OLE_DELETE = 10

6. Add the following code to the click event of Command1:

 Sub Command1_Click ()

 ' Unload the current object so a new object can be loaded
 If fshowing Then
 OleClient1.Action = OLE_DELETE

 End If

 OleClient1.Class = "WordDocument"
 OleClient1.Protocol = "StdFileEditing"
 If OptionEmbed Then
 ' Data is managed by Visual Basic
 OleClient1.ServerType = OLE_EMBEDDED
 OleClient1.Action = OLE_CREATE
 Else
 OleClient1.SourceDoc = "C:\OLETEST.DOC"
 OleClient1.SourceItem = "OLE_Link"
 OleClient1.ServerType = OLE_LINKED
 OleClient1.Action = OLE_CREATE_FROM_FILE
 End If
 OleClient1.Action = OLE_UPDATE
 fshowing = True

 End Sub

7. Add the following code to the DblClick event of OleClient1:

 Sub OleClient1_DblClick ()
 OleClient1.Action = OLE_ACTIVATE
 End Sub

8. Add the following code to the Click event of OptionEmbed:

 Sub OptionEmbed_Click ()
 Command1.Caption = "Embed WinWord Object"
 End Sub

9. Add the following code to the Click event of OptionLink:

 Sub OptionLink_Click ()
 Command1.Caption = "Link WinWord Object"
 End Sub

8. From the Run menu, choose Start (ALT+R, S) to run the program.

9. Click the Embed WinWord Object button to activate Word for Windows.

10. Type some text into the active Word document.

11. Close Word and click the Yes button when asked if you want to update
 the Object in OleClient1. The Word for Windows icon is painted in the
 OleClient1 control.

12. Double-click the OLE client control to reactivate Word and redisplay
 the text you entered.

13. Click OptionLink. The caption of button changes to Link WinWord Object.

14. Click the Link WinWord Object button. The Word icon remains in the OLE
 client control, however it is now linked to the document created in the
 first part of this example, not the embedded object.

15. Double-click the OLE client control to activate Word for Windows and

 redisplay the text you entered in the first document.

Additional reference words: 2.00
KBCategory:
KBSubcategory: IAPOLE

PRB: Error: Setup could not be completed due to system errors
Article ID: Q98554

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0

SYMPTOMS
========

During Visual Basic setup, you may encounter this error:

 Setup could not be completed due to system errors

Then setup terminates. This error usually occurs while setup is calculating
the amount of free disk space.

CAUSE
=====

This error occurs because Visual Basic setup is attempting to use an older
version of LZEXPAND.DLL that it found on your computer. In all reported
cases of this problem, the LZEXPAND.DLL file is dated 7-Aug-91 and is
usually located in the WINDOWS directory.

One product that may install a copy of LZEXPAND.DLL dated 7-Aug-91 is
MicroHelp Muscle version 1.0. However, it is possible that other products
not sold by Microsoft may also install this file.

RESOLUTION
==========

To overcome this problem, perform the following steps:

1. Exit from Windows to MS-DOS.

2. Find the LZEXPAND.DLL file that's dated 7-Aug-91. It may be located in
 the WINDOWS or WINDOWS\SYSTEM directory, but it is usually in the
 WINDOWS directory.

3. Delete or rename the LZEXPAND.DLL dated 7-Aug-91 to a new name.

4. Locate a copy of LZEXPAND.DLL on your computer that has a date later
 than 7-Aug-91, and put it in the WINDOWS\SYSTEM directory.

5. If you don't find a later version of LZEXPAND.DLL, run the Windows Setup
 program from the Windows distribution disks. This will install a later
 version of LZEXPAND.DLL in the WINDOWS\SYSTEM directory.

6. Start Windows.

7. Run the Visual Basic setup program again.

The error should no longer occur.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: Setins

PRB: GP Fault with Visual Basic DDE Sample & Word for Windows
Article ID: Q99812

The information in this article applies to:

- Microsoft Visual Basic for Windows, versions 2.0 and 3.0
- Microsoft Word for Windows, versions 2.0a, 2.0b, and 2.0c

SYMPTOMS
========

Running the Visual Basic DDE sample with Microsoft Word for Windows may
cause a general protection (GP) fault.

STATUS
======

Microsoft has confirmed this to be a problem with Microsoft Word for
Windows versions 2.0a, 2.0b, and 2.0c. We are researching this problem
and will post new information here in the Microsoft Knowledge Base as
it becomes available.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Word for Windows (WINWORD.EXE).

2. Start Visual Basic version 3.0 for Windows.

3. From the File menu, choose Open Project (ALT, F, O). Then open the
 DDE.MAK project from the \VB\SAMPLES\DDE directory.

4. From the Run menu, choose start (ALT, R, S), or press F5.
 The main form of DDE.MAK is titled DDE Experimenter.

5. From the DDE Experimenter form, select WinWord as the Application
 and Document1 as the Topic. The Item automatically becomes \Doc.

6. Select the Manual option.

7. Click the Connect button. The caption for the command button
 will change to Disconnect.

7. Type text into the text box in the Destination Data section of the
 DDE Experimenter form.

8. Click the Poke button.

9. Select the Automatic option.

At this point, a GP fault occurs in USER.EXE. The address of the GP fault

varies depending on the version of Word for Windows. Although the message
indicates that Visual Basic caused the GP fault, the problem is actually
caused by Word for Windows, not Visual Basic.

Additional reference words: 3.00 WinWord 2.00
KBCategory:
KBSubcategory: IAPDDE

How to Change the Setup Application Name in SETUP1.EXE
Article ID: Q101743

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic
 programming system for Windows, version 3.00.

SUMMARY
=======

The Setup Wizard in Visual Basic version 3.0 creates SETUP1.EXE that
when executed displays a blue background with white letters that say:
"<EXE NAME> Setup," where <EXE NAME> is the name of your application. This
article explains how to change that message to something other than the
default.

MORE INFORMATION
================

To change the display of <EXE NAME>, follow these steps:

1. Run the Setup Wizard as you normally would to create installation disks.

2. Start Visual Basic and load the project SETUP1A.MAK (The Setup Wizard
 created this project in the C:\VB\SETUPKIT\SETUP1 directory).

3. In the General Declarations section of SETUP1A.FRM, change the
 value of constant APPNAME:

 Const APPNAME = "<Whatever you want to put here>"

4. From the File menu, choose Make EXE to create the file SETUP1.EXE.

5. Exit to MS-DOS.

6. Copy and compress the file SETUP1.EXE to your distribution disk.

 C:\VB\SETUPKIT\KITFILES\COMPRESS -r SETUP1.EXE A:\

 This will copy over the old SETUP1.EX_ that was created on the
 distribution disk by the Setup Wizard.

Additional reference words: 3.00
KBCategory:
KBSubcategory: TlsSetWiz

Additions to 'Determining the Files You Need to Distribute'
Article ID: Q103439

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 3.0

SUMMARY
=======

After producing an executable program (.EXE file) in Microsoft Visual
Basic version 3.0 for Windows, if you want to distribute, sell or test
that .EXE file on another computer that does not have Visual Basic version
3.0 for Windows installed, you need to know which files to distribute with
your .EXE file. These files are listed on pages 579-582 in the Visual Basic
version 3.0 for Windows "Programmer's Guide." This article gives a list
of files to be appended to that list.

MORE INFORMATION
================

Note that VBRUN300.DLL must always be distributed with your executable
program.

Below is a list of files that need to be appended to the list provided on
pages 579-582 in the "Programmer's Guide."

File Names to Distribute: Required if your program....
--
PDIRJET.DLL Uses Crystal Reports for
PDBJET.DLL Visual Basic.
MSAJT110.DLL
MSAES110.DLL

PDSODBC.DLL Uses ODBC and Crystal Reports for
 Visual Basic.

MSAFINX.DLL Uses the IIF or any of the
 financial functions.

Additional reference words: 3.00
KBCategory:
KBSubcategory: TlsSetWiz

How to Run a WinHelp Macro from a Help File
Article ID: Q104165

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 1.0, 2.0, and 3.0

SUMMARY
=======

This article shows by example how to invoke WinHelp macros in a Help file
upon first entering a topic or upon clicking a hot spot. The examples show
you how to modify the example help topic source file VB\HC\ICONWRKS.RTF
using Microsoft Word version 2.0 for Windows. After making the changes and
compiling the .RTF file into a Help file (.HLP file), you will be able to
execute a macro upon first entering the topic or upon clicking a hot spot.

MORE INFORMATION
================

To run a macro when a topic is first entered, enter the macro call into
a custom footnote with an exclamation (!) as the footnote mark. To do
this in Microsoft Word version 2.0 for Windows, follow these steps:

1. Open the file VB\HC\ICONWRKS.RTF.

2. Locate the beginning of this topic heading:

 Editor: Commands and Tools

 Place the text caret at the beginning of the line, in front of the pound
 (#) character.

3. From the Insert menu, choose Footnote and select Custom Footnote Mark.
 Enter the exclamation mark (!) and choose the OK button. The Footnotes
 area appears at the bottom of the window with the caret on a line that
 begins with the exclamation mark (!).

4. Enter this text:

 About()

5. To save this change, from the File menu, choose Close. In each of the
 subsequent three dialogs, press the Enter key to select the default
 button.

6. At the command prompt, set the current directory to VB\HC. Then enter
 the following command to compile the help file:

 HC31 ICONWRKS.HPJ

7. Load the resulting ICONWRKS.HLP file into WINHELP.EXE. To do this in the
 Program Manger, from the File menu, choose Run. Then enter the full path

 of VB\HC\ICONWRKS.HLP. The IconWorks help file appears.

8. Click the hot spot Commands and Tools to jump to the topic that contains
 the macro call. When the topic appears, the About() macro displays a
 dialog box titled About Help.

To run a macro immediately when a hot spot is clicked, format the hot spot
text as double-underlined text followed by an exclamation mark (!) and the
macro call -- both formatted as hidden text. To do this in Microsoft Word
version 2.0 for Windows, follow these steps:

1. Open the file VB\HC\ICONWRKS.RTF.

2. From the Tools menu, choose Options. Select the View Category. In the
 section labeled Nonprinting Characters, check Paragraph Marks and
 Hidden Text.

3. Place the text caret at the beginning of the second line of the file
 (the line following the heading). Enter the text "Call Macro!About()"
 without the quotation marks, and press the Enter key.

4. Select the text "Call Macro" up to but not including the exclamation
 mark. From the Format menu, choose Character. Change the setting in the
 combo box labeled Underline from None to Double. Choose the OK button.

5. Select the text "!About()" up to but not including the paragraph
 character at the end of the line. From the Format menu, choose
 Character. In the Style section, check Hidden.

6. Close the file. Compile it using the Help compiler (HC31.EXE). Then view
 the compiled .HLP file using WINHELP.EXE. See the previous example for
 an explanation of how to do this.

7. Click the Call Macro hot spot. The About() macro displays a dialog box
 titled About Help.

Additional reference words: 3.00
KBCategory: Tls
KBSubCategory: TlsHC

How to Manipulate Groups & Items in Program Manager Using DDE
Article ID: Q104943

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows,
 versions 1.0, 2.0, and 3.0

SUMMARY
=======

Program Manager has a DDE command-string interface that allows other
applications to create, display, delete, and reload groups; add
items to groups; replace items in groups; delete items from groups;
and close Program Manager. The following commands perform these actions:

 - CreateGroup
 - Reload (Windows 3.1 only)
 - DeleteGroup
 - ShowGroup
 - ReplaceItem (Windows 3.1 only)
 - DeleteItem (Windows version 3.1 only)
 - AddItem

MORE INFORMATION
================

Perform the following steps to produce an application that manipulates
Program Manager using DDE:

1. Start Visual Basic or if Visual Basic is already running, choose New
 Project from the File menu (ALT, F, N). Form1 is created by default.

2. Add a Textbox control (Text1) to Form1

3. Add a Label control (Label1) to Form1 and change the caption to Group.

4 Add a Textbox control (Text2) to Form1 and change the caption to GGroup.

5. Add a Label control (Label2) to Form1 and change the caption to Item.

6. Add a Textbox control (Text3) to Form1 and change the caption to GItem.

7. Add a Label control (Label3) to Form1 and change the caption to Command
 Line.

8. Add a Textbox control (Text4) to Form1 and change the caption to
ItemExe.

9. Add a Command Button control (Command1) to Form1 and name it CGroup for
 create group.

10. Add the following code to the CGroup_Click event of Form1:

 Sub CGroup_Click ()
 Dim cmd As String
 On Error GoTo CGError
 text1.LinkMode = 0
 text1.LinkTopic = "Progman|Progman"
 text1.LinkMode = 2
 cmd = "[CreateGroup(" + GGroup.Text + ")]"
 text1.LinkExecute cmd
 CGDone: text1.LinkMode = 0
 Exit Sub
 CGError:
 MsgBox "Error Adding Group"
 Resume CGDone
 End Sub

11. Add a Command Button control (Command2) to Form1 and name it DGroup for
 Delete Group.

12. Add the following code to the DGroup_Click event of Form1:

 Sub DGroup_Click ()
 Dim cmd As String
 On Error GoTo DGError
 text1.LinkMode = 0
 text1.LinkTopic = "Progman|Progman"
 text1.LinkMode = 2
 cmd = "[DeleteGroup(" + GGroup.Text + ")]"
 text1.LinkExecute cmd
 DGDone: text1.LinkMode = 0
 Exit Sub
 DGError:
 MsgBox "Error Deleting Group"
 Resume DGDone
 End Sub

13. Add a Command Button control (Command3) to Form1 and name it SGroup
 for ShowGroup.

14. Add the following code to the SGroup_Click event of Form1:

 Sub SGroup_Click ()
 Dim cmd As String
 On Error GoTo SGError
 text1.LinkMode = 0
 text1.LinkTopic = "Progman|Progman"
 text1.LinkMode = 2
 cmd = "[ShowGroup(" + GGroup.Text + ", 1" + ")]"
 text1.LinkExecute cmd
 SGDone: text1.LinkMode = 0
 Exit Sub
 SGError:
 MsgBox "Error Showing Group"
 Resume SGDone
 End Sub

15. Add a Command Button control (Command4) to Form1 and name it

 Reload.

16. Add the following code to the Reload_Click event of Form1:

 Sub Reload_Click ()
 Dim cmd As String
 On Error GoTo RLError
 text1.LinkMode = 0
 text1.LinkTopic = "Progman|Progman"
 text1.LinkMode = 2
 cmd = "[Reload(" + GGroup.Text + ")]"
 text1.LinkExecute cmd
 RLDone: text1.LinkMode = 0
 Exit Sub
 RLError:
 MsgBox "Error Reloading Group"
 Resume RLDone
 End Sub

17. Add a Command Button control (Command5) to Form1 and name it
 AItem for add item.

18. Add the following code to the AItem_Click event of Form1:

 Sub AItem_Click ()
 Dim cmd As String
 On Error GoTo AIError
 text1.LinkMode = 0
 text1.LinkTopic = "Progman|Progman"
 text1.LinkMode = 2
 '*** The ShowGroup is necessary because AddItem changes the group
 '*** with the focus. ShowGroup forces the group you want the
 '*** action taken to get the focus.
 If (Len(GGroup.Text) > 0) Then
 cmd = "[ShowGroup(" + GGroup.Text + ", 1" + ")]"
 text1.LinkExecute cmd
 End If
 cmd = "[Additem(" + ItemExe.Text + "," + GItem.Text + ")]"
 text1.LinkExecute cmd
 AIDone:
 text1.LinkMode = 0
 Exit Sub
 AIError:
 MsgBox "Error adding Item"
 Resume AIDone
 End Sub

19. Add a Command Button control (Command6) to Form1 and name it
 DItem for delete item.

20. Add the following code to the DItem_Click event of Form1:

 Sub DItem_Click ()
 Dim cmd As String
 On Error GoTo DIError
 text1.LinkMode = 0
 text1.LinkTopic = "Progman|Progman"

 text1.LinkMode = 2
 '*** ShowGroup is necessary because DeleteItem changes the group
 '*** with the focus. ShowGroup forces the group you want the action
 '*** taken to get the focus.
 If (Len(GGroup.Text) > 0) Then
 cmd = "[ShowGroup(" + GGroup.Text + ", 1" + ")]"
 text1.LinkExecute cmd
 End If
 cmd = "[DeleteItem(" + GItem.Text + ")]"
 text1.LinkExecute cmd
 DIDone: text1.LinkMode = 0
 Exit Sub
 DIError:
 MsgBox "Error Deleting Item"
 Resume DIDone
 End Sub

21. Add a Command Button control (Command7) to Form1 and name it
 RItem for replace item.

22. Add the following code to the RItem_Click event of Form1:

 Sub RItem_Click ()
 Dim cmd As String
 On Error GoTo RIError
 text1.LinkMode = 0
 text1.LinkTopic = "Progman|Progman"
 text1.LinkMode = 2
 '*** ShowGroup forces the group you want the action taken on
 '*** to get the focus.
 If (Len(GGroup.Text) > 0) Then
 cmd = "[ShowGroup(" + GGroup.Text + ", 1" + ")]"
 text1.LinkExecute cmd
 End If
 cmd = "[ReplaceItem(" + GItem.Text + ")]"
 text1.LinkExecute cmd
 cmd = "[Additem(" + ItemExe.Text + "," + GItem.Text + ")]"
 text1.LinkExecute cmd
 RIDone: text1.LinkMode = 0
 Exit Sub
 RIError:
 MsgBox "Error Replacing Item"
 Resume RIDone
 End Sub

23. From the Run menu, choose Start (ALT, R, S) or press the F5 key to run
 the program. Enter the group you want created in the GGroup textbox
 and click the Create Group button. You will now see the group you
 created in Program Manager. To add an item to a group, enter the
 group in the GGroup textbox. Enter the item you want added in the
 GItem textbox and enter the command line in the ItemExe textbox.
 The item will now be in the group you specified.

For more information, refer to the "Programmers Reference, Volume 1:
Overview Microsoft Windows SDK," chapter 17, "Shell Dynamic DataExchange
Interface." Also, look in the Windows SDK Help file in the Progman topic.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: IAPDDE

How to Use DDE Between Excel and Visual Basic
Article ID: Q105447

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SUMMARY
=======

This article outlines the steps necessary to initiate dynamic data
exchange (DDE) between an Excel Macro and Visual Basic application at
run time.

This article demonstrates how to:

 - Prepare an Excel Macro that will perform DDE.
 - Initiate a manual DDE link.
 - Use Poke to send information from the Excel Worksheet to the Visual
 Basic application.

MORE INFORMATION
================

A destination application sends commands through DDE to the source
application to establish a link. Through DDE, the source provides data to
the destination at the request of the destination or accepts information
at the request of the destination.

Example Showing How to Establish a DDE Conversation

The steps below give an example of how to establish a DDE conversation
between an Excel Worksheet and a Visual Basic application.

Preparing Visual Basic for DDE

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Add a text box to form1.

3. Change the following properties :

 Control Name Caption Properties
 --
 Form1 Form1 Form1 LinkMode : 1-Source
 LinkTopic : Form1
 TextBox Text1 Text1 LinkItem : Text1

4. Save the project as DDE.MAK, and save the form as DDE.FRM.

5. From the File menu, choose Make Exe File, and name the .EXE file
 DDE.EXE to enable the link.

6. Close Visual Basic.

Preparing Excel for DDE

1. When you start Excel, Sheet1.XLS is created for you by default.
 In Cell C2, type the text you want to send to the Visual Basic
 application. Save the Sheet1 spreadsheet.

2. Create a new Macro Sheet in Excel by choosing New from the File Menu
 and then selecting Macro Sheet.

3. Type the following macro :

 Record1 (a)
 chan=INITIATE("dde","Form1")
 =POKE(chan,"text1",'A:\SHEET1.XLS'!C2)
 =TERMINATE(chan)
 =RETURN(chan)

 The Initiate function starts the Visual Basic application if it is
 not already running and establishes the link with Form1. The Poke
 function puts text from cell C2 of the Sheet1 worksheet into the
 Text1 box on form1. The Terminate function terminates the link, and
 the Return function ends the macro.

 Important Notes

 The following are requirements. You must:

 - Save the Worksheet before attempting the Link.

 - Store the application in the path by making sure the application
 directory is in the path.

 - Not specify the path to the application in the Initiate function.

4. From the Macro menu, choose Run.

5. You will see a message box saying Run Macro. In the reference section,
 type 'Macro1.xlm!Record1' and click the OK button.

6. If DDE.EXE is not running, you will a message box saying "Remote Data
not
 accessible. Start application 'DDE.EXE'." Click Yes.

7. If DDE.EXE was in the path, it will be run minimized. When you maximize
 it, you will see the data from Sheet1 in the Text1 box. If you don't see
 the data, save Sheet1 and try again.

Additional reference words: 3.00
KBCategory:

KBSubCategory: IAPDDE

How to Copy and Paste DDE Links Using CF_LINK in Visual Basic
Article ID: Q106238

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
--

SUMMARY
=======

Visual Basic programs can provide an Edit Copy command that puts text
onto the Clipboard along with the information needed to make a DDE link to
that text. Likewise, you can provide an Edit Paste command that extracts
the text and an Edit Paste Link command that extracts the DDE link
information, and then initiates a DDE conversation to the source text.
You can implement these clipboard operations using the GetText and SetText
format CF_LINK (&HBF00) with a string of the format:

 Application|Topic!Item

The Visual Basic manuals and Help menu do not describe how to use the
Clipboard format CF_LINK.

NOTE: Visual Basic only supports Clipboard DDE operations for text.

MORE INFORMATION
================

When a Visual Basic DDE source program uses SetText with format CF_LINK,
the format of the string is exe|topic!item.

 - exe is the value of App.EXEName.
 - topic is a form's LinkTopic value.
 - item is the Name of a control.

For example:

 Project1|Form1!Text1

Step-by-Step Example

1. Start Visual Basic or from the File menu, choose Open Project
 (ALT, F, O) if Visual Basic is already running. Form1 is created.

2. Change the form property LinkMode to 1 - Source.

3. Place a text box named Text1 on the form.

4. From the Window menu, choose Menu Design and create the following
 menu structure.

 Caption Name Indent Level

 Edit mEdit 0
 Copy mCopy 1
 Paste mPaste 1
 Paste Link mPasteLink 1

5. Enter the following code in the general declarations section:

 Const CF_TEXT = 1
 Const CF_LINK = &HBF00

6. Enter the following code into the form:

 Sub mEdit_Click ()
 mCopy.Enabled = Text1.SelLength > 0
 mPaste.Enabled = Clipboard.GetFormat(CF_TEXT)
 mPasteLink.Enabled = Clipboard.GetFormat(CF_LINK)
 End Sub

 Sub mCopy_Click ()
 Clipboard.Clear
 Clipboard.SetText Text1.SelText, CF_TEXT
 Clipboard.SetText "Project1|Form1!Text1", CF_LINK
 End Sub

 Sub mPaste_Click ()
 Text1.LinkMode = 0 ' discontinue previous link
 Text1.SelText = Clipboard.GetText(CF_TEXT)
 End Sub

 Sub mPasteLink_Click ()
 Dim topic As String ' app|topic!item
 Dim bang As Integer ' index of ! within topic

 topic = Clipboard.GetText(CF_LINK)
 bang = InStr(topic, "!")
 If bang <> 0 Then
 Text1.LinkMode = 0
 Text1.LinkTopic = Mid$(topic, 1, bang - 1)
 Text1.LinkItem = Mid$(topic, bang + 1)
 On Error Resume Next
 Text1.LinkMode = 1 ' automatic
 If Err <> 0 Then
 MsgBox "Cannot paste link"
 End If
 End If
 End Sub

7. From the File menu, choose Make EXE and click OK. This creates
 PROJECT1.EXE.

8. Launch PROJECT1.EXE twice so that two instances are running. Position
 them so that you can see them both at the same time. In the first
 instance, select the text in the text box, then from the Edit menu
 choose copy. Switch to the second instance and from the Edit menu
 choose Paste Link. Switch back to the first instance and change the
 contents of the text box. These changes appear immediately in the

 second instance.

Additional reference words: 3.00
KBCategory:
KBSubCategory: IAPDDE

Sample .MAK for Compiling VB Custom Control in Borland C++ 3.1
Article ID: Q107776
--
The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 version 3.0
--

SUMMARY
=======

This article gives a sample .MAK file for compiling a Microsoft Visual
Basic custom control using Borland C++ version 3.1. Sample C code is not
provided with this example.

Borland C++ is manufactured by Borland International, Inc., a vendor
independent of Microsoft. We make no warranty, implied or otherwise,
regarding this product's performance or reliability.

MORE INFORMATION
================

Run the MAKE utility without the -N compatibility option when using the
sample .MAK file below.

SAMPLE.MAK
==========

.nosilent
OBJPATH = ..\obj\ # comment to prevent trailing \
MAINTPATH = ..\maint\ # comment to prevent trailing \
BMPFILES = winqcd.bmp winqcu.bmp winqeu.bmp winqmu.bmp
DLGFILES =
HDRFILES = $(KMSTOOLS)\kms-win.h winq.h icdefs.h vbdefs.h
OBJFILES = $(OBJPATH)winqmain.obj $(OBJPATH)winqsubs.obj
 $(OBJPATH)winqfile.obj
$(OBJPATH)splay.obj
RESFILES = $(KMSTOOLS)\kms-res.h winq-res.h

.path.obj = $(OBJPATH)

.path.res = $(OBJPATH)

.path.rsp = $(MAINTPATH)

.path.sym = $(OBJPATH)

LIBPATH = $(BORPATH)\LIB;c:\vb3.0\cdk;c:\idk\lib\win
CDEFS = -DSTRICT
MEM = s
DLL = !
MODEL = (MEM)(DLL)
CFLAGS = -n$(OBJPATH) -m$(MODEL) -WD /I$(KMSTOOLS) /I$(BORPATH)/include
/Ic:\vb3.0\cdk /Ic:\idk\include

Implicit rules

!if $d(OBJPATH)
.rc.res:
 $(RC) $(RFLAGS) -r $&.rc
 copy $&.res $(OBJPATH)$&.res
 del $&.res
!else
.rc.res:
 $(RC) $(RFLAGS) -r $&.rc
!endif

Links

winq100.vbx: $(MAINTPATH)bcc.rsp $(OBJFILES) winq.res winq.def
 $(LNK) /Twd/v/x/P-/L$(LIBPATH) @&&|
c0d$(MEM) $(OBJFILES)
$<
$(OBJPATH)$&.map
vbapi.lib cwc.lib icwin.lib import
winq.def
|
 rc $(OBJPATH)winq.res $<

winq.res: $(BMPFILES) $(DLGFILES) $(RESFILES) winq.rc

$(MAINTPATH)bcc.rsp: $(MAINTPATH)makefile.mak
 copy &&|
$(CDEFS) $(CFLAGS)
| $(MAINTPATH)bcc.rsp

Compiles

winqinc.sym: $(MAINTPATH)bcc.rsp winqinc.cpp $(RESFILES) $(HDRFILES)
 del $(OBJPATH)*.sym
 $(CC) -H=$(OBJPATH)winqinc.sym @$(MAINTPATH)bcc.rsp {$&.cpp }

$(OBJPATH)winqmain.obj:
 $(MAINTPATH)bcc.rsp winqinc.sym $(RESFILES) $(HDRFILES)
winqmain.cpp
 $(CC) -H=$(OBJPATH)winqmain.sym @$(MAINTPATH)bcc.rsp {$&.cpp }

$(OBJPATH)winqsubs.obj: $(MAINTPATH)bcc.rsp winqinc.sym $(RESFILES)
 $(HDRFILES)
winqsubs.cpp
 $(CC) -H=$(OBJPATH)winqinc.sym @$(MAINTPATH)bcc.rsp {$&.cpp }

$(OBJPATH)winqfile.obj: $(MAINTPATH)bcc.rsp winqinc.sym $(RESFILES)
 $(HDRFILES)
winqfile.cpp
 $(CC) -H=$(OBJPATH)winqinc.sym @$(MAINTPATH)bcc.rsp {$&.cpp }

$(OBJPATH)splay.obj: $(MAINTPATH)bcc.rsp $(RESFILES) $(HDRFILES)
splay.cpp
$(CC) @$(MAINTPATH)bcc.rsp {$&.cpp }

Additional reference words: 3.00
KBCategory: Tls
KBSubcategory: TlsCDK

VB Ver 3.0 CDK TN001.TXT: Support for DT_OBJECT Properties
Article ID: Q107872

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 version 3.0

SUMMARY
=======

The following article contains the complete contents of the TN001.TXT file
installed in the CDK directory of the Professional Edition of Visual
Basic version 3.0 for Windows.

MORE INFORMATION
================

TN001.TXT

Microsoft Visual Basic 3.00
Microsoft Corporation Technical Notes

TN001.TXT: Support for DT_OBJECT Properties

This note describes how to use OLE Automation by creating a custom control
property whose data type is DT_OBJECT.

==

Introduction

The Visual Basic version 3.0 Control Development Kit allows you to create
custom controls that support OLE Automation. A custom control can define
a DT_OBJECT type property, whose value is a 4-byte pointer to an IDispatch
interface. If your control can contain or refer to an OLE object, you
may want to expose this ability via a property of type DT_OBJECT.

This allows you to use Visual Basic statements such as:

 Dim MyObject As OBJECT
 Set MyObject = Control.Object
 MyObject.Method...

or, more directly:

 Control.Object.Method

Reference Counts

OLE has strict guidelines for maintaining reference counts on interface
pointers. Functions that return interface pointers increment the reference
count on the pointer on behalf of the caller. For example, calling
VBGetControlProperty for a DT_OBJECT property causes the returned
interface pointer to be incremented. However, the caller is responsible
for eventually releasing the reference to the interface pointer
by using IUnknown::Release().

If the property is PF_fGetMsg, you are responsible for incrementing the
reference count on the interface pointer you return in your VBM_GETPROPERTY
message code.

Example

You may want to create a control that is an OLE container, meaning that you
expose a pointer to an IDispatch interface via a DT_OBJECT property.
When the OLE object is initially created within the control, the control
could establish a connection to the OLE object by setting a pointer to an
IDispatch interface via IUnknown::QueryInterface(). The reference count for
the interface pointer would then be incremented from zero to one.

When the control is destroyed, or the control causes the OLE object
it contains to be released, the control would also need to release the
interface pointer using IUnknown::Release(). If the DT_OBJECT property is
PF_fGetData, then all reference count maintenance associated with fetching
the property is automatically handled by Visual Basic. If, on the other
hand, the DT_OBJECT property is PF_fGetMsg, you would need to call
IUnknown::AddRef() on the interface pointer in your VBM_GETPROPERTY message
code.

If there is no valid IDispatch interface, VBGetControlProperty returns
NULL (DWORD 0).

Property Flags

Because the IDispatch interface pointer can be used only at run time,
you cannot save or load an interface pointer while saving or loading a
form. For this reason, you cannot use the PF_fSaveData flag on your
DT_OBJECT property.

You might want use to PF_fSaveMsg to enable you to do more sophisticated
processing at save or load time. For example, you could handle
VBM_SAVEPROPERTY by serializing the OLE object corresponding to the
interface pointer into the form file, and handle VBM_LOADPROPERTY by
deserializing the object and getting a pointer to an IDispatch interface to
it to set your property.

A property defined as DT_OBJECT cannot be set. This means that you cannot
use the property flags PF_fSetData or PF_fSetMsg. In addition, you should
specify the PF_fNoRuntimeW flag for a DT_OBJECT property.

Because you cannot view or modify the value of a DT_OBJECT property at

design time, you should specify the PF_fNoShow flag for your DT_OBJECT
property.

Note

You should not designate a DT_OBJECT property as the default property
for your control.

Additional reference words: 3.00
KBCategory: IAP
KBSubcategory: IAPOLE

PRB: VB.LIC License File Not Found, Can't Load MSOUTLIN.VBX
Article ID: Q107991

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 versions 2.0 and 3.0

SYMPTOMS
========

Under certain conditions, running the Professional Edition of Visual
Basic version 2.0 or 3.0 can give the following sequence of two error
messages:

 - License file for custom control not found. You do not have an
 appropriate license to use this custom control in the design
 environment.

 - Can't load Custom Control DLL: 'D:\WINDOWS\SYSTEM\MSOUTLIN.VBX'

CAUSE
=====

This can be caused by an old VB.LIC file. This is commonly caused by
installing the Visual Control Pack after installing Visual Basic for
Windows.

WORKAROUND
==========

To work around this problem, decompress the VB.LIC file from your master
diskettes for Visual Basic version 3.0.

The PACKING.LST file on master disk number 1 describes on which disk to
obtain VB.LIC. PACKING.LST describes how to decompress VB.LIC. Replace
your current VB.LIC file with the decompressed VB.LIC from the master
disk.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

VB.LIC File

For more information about the VB.LIC file, query on the following words in
the Microsoft Knowledge Base:

 License and VB.LIC and Visual and Basic

Microsoft Visual Control Pack (VCP)

If you have the Professional edition of Microsoft Visual Basic version 2.0
or 3.0 for Windows, you have everything that the Microsoft Visual Control
Pack (VCP) contains and more.

All controls, tools, and documentation shipped with the Microsoft Visual
Control Pack are identical to those same controls, tools, and documentation
shipped with the Professional Edition of Microsoft Visual Basic versions
2.0 for Windows, with two exceptions:

 - A new copy of the MSCOMM.VBX custom control that works with Visual C++
 version 1.0 comes with the Visual Control Pack version 1.0.

 - Enhanced Control Development Kit (CDK) documentation including helpful
 hints on creating custom controls for use with Microsoft Visual C++
 version 1.0 comes with the Visual Control Pack version 1.0.

Additional reference words: 2.00 3.00
KBCategory: Tls
KBSubcategory: TlsCDK

How VB Can Use OLE Automation with Word Version 6.0
Article ID: Q108043

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0
- Microsoft Word for Windows, version 6.0

SUMMARY
=======

This article shows by example how to use Microsoft Word version 6.0 Object
Linking and Embedding (OLE) Automation from Visual Basic. Microsoft Word
version 6.0 offers a single OLE object that supports most WordBasic
statements and functions as methods. This allows you to create and run
WordBasic code from Visual Basic.

NOTE: The technique described in this article may not work if Microsoft
Word version 6.0 is set to do background printing. When background printing
is on, setting Word=Nothing may cause the Print Job to be canceled. If you
encounter this problem, you can work around it by making the Word object
variable's scope local to the form rather than to the Sub procedure. Or you
can avoid the problem by turning background printing off (On is the the
default for Word for Windows). To turn background printing off, choose
Options from the Tools menu. Then click the Print tab, and clear the
checkbox for background printing.

MORE INFORMATION
================

Example of OLE Automation

You can invoke the CreateObject function in Visual Basic using
Word.Basic as the class name for the WordBasic object. The following
example creates and uses a WordBasic OLE object:

Sub WordExample ()
 Dim Word As Object 'Declare an object variable
 Set Word = CreateObject("Word.Basic") 'Set the object pointer
 Word.FileNew 'Create a new File in Word
 Word.Bold 'Make the Font Bold
 Word.FontSize 24 'Make the Font 24 point in size
 Word.CenterPara 'Center Text on page
 Word.Insert "Isn't VB Great!!" 'Insert some text
 Word.FilePrintDefault 'Print the current document
 Word.FileClose 2 'Close file without saving.
 Set Word = Nothing 'Clear the object pointer.
End Sub

The CreateObject function will launch Word version 6.0 if it is not
already running, otherwise it will use the currently-active instance of
Word.

The Set Word = Nothing statement will exit Word if Word was launched by
the CreateObject statement.

OLE Automation cannot invoke the FileExit method of WordBasic. Because
OLE Automation cannot start a new instance of Word after the initial
instance, OLE Automation assumes that the user started Word and the user
is responsible for exiting the application.

Troubleshooting Common Problems When Using OLE Automation

The following are answers to common problems that you may encounter when
using the Word.Basic OLE object from Visual Basic:

1. The CreateObject function could cause an error under any of the
 following circumstances:

 - Word is not registered in the Windows REG.DAT file.

 - Windows is low on system resources.

 - Your user-defined NORMAL.DOT template and/or automatically loading
 macros in Word could run automatic actions that might conflict with
 your requested OLE Automation commands.

 - The OLE server application is not found. With Windows version 3.1,
 object linking and embedding (OLE) clients look for a server
 application in the following order:

 1) The location specified in the Windows REG.DAT file.
 2) The location specified in the WIN.INI file.
 3) The WINDOWS directory.
 4) The WINDOWS\SYSTEM directory.
 5) The location specified in the MS-DOS PATH environment variable
 (which is specified in the AUTOEXEC.BAT file).

2. The WordBasic language allows certain shortcuts that are not supported
 by Visual Basic. For example, the following statement is valid in
 WordBasic but not in Visual Basic:

 FormatFont .Bold = 1

 Visual Basic does not support named parameters, such as .Bold above.
 Visual Basic requires you to convert this to the following:

 Dim Word As Object 'Declare an object variable
 Set Word = CreateObject("Word.Basic") 'Set the object pointer
 Word.FormatFont ,,,,,,,,,,,,,,,,True 'Format selection as bold.

 Fortunately, many WordBasic methods are implemented with more than one
 method, which can simplify the syntax required by Visual Basic. For
 example, WordBasic has a direct Bold method which you can invoke as
 follows from Visual Basic:

 Word.Bold

3. Visual Basic requires you to pass all arguments up to the last necessary
 argument. The following example shows the arguments for the ToolsMacro
 method of WordBasic.

 To run a Word macro use this syntax:

 Dim Word As Object 'Declare an object variable
 Set Word = CreateObject("Word.Basic") 'Set the object pointer
 Word.ToolsMacro "MyMacro", True 'Run the macro called MyMacro

 To rename a Word macro use this syntax:

 Word.ToolsMacro "MyMacro", False, False, 0, False, True,
 "Description for Your Macro", "NewMacroName"

4. The online help for Microsoft Word version 6.0 doesn't always show the
 arguments in the correct order. For example, Word ToolsMacro parameters
 should be in this order:

 ToolsMacro .Name = text [, .Run][, .Edit][, .Show = number][, .Delete]
 [,.Rename] [, .Description = text][, .NewName = text][, .SetDesc]

5. WordBasic methods that return strings have a syntax that includes a
 dollar sign, $, to indicate the return type. Visual Basic requires you
 to enclose these $ methods in square brackets []. The following example
 returns the text stored in the bookmark "MyBookMark":

 Dim Word As Object 'Declare an object variable
 Set Word = CreateObject("Word.Basic") 'Set the object pointer
 MyVar = Word.[GetBookMark$]("MyBookMark") 'Return text from bookmark

What is OLE Automation?

Object linking and embedding (OLE) Automation is a Windows protocol that
allows an application to share data or control another application. OLE
Automation is an industry standard that applications use to expose their
OLE objects to development tools, macro languages, and other containers
that support OLE Automation.

Word for Windows provides other applications with an object called
Basic and a class name called Word.Basic. Using this object, other
applications can send WordBasic instructions to Microsoft Word
version 6.0 for Windows.

Applications such as Visual Basic version 3.0 applications that support OLE
Automation can use OLE Automation with Word version 6.0, but Word cannot
use OLE Automation to gain access to other applications. Using the
terminology of Dynamic Data Exchange (DDE), this means that Word can act as
a server for another application but cannot act as the client.

A spreadsheet application may expose a worksheet, chart, cell, or range
of cells -- all as different types of OLE objects. A word processor
might expose OLE objects such as application, paragraph, sentence,
bookmark, or selection. You use Visual Basic to manipulate these objects
by invoking methods on the object, or by getting and setting the objects
properties, just as you would with the objects in Visual Basic.

REFERENCES
==========

 - "Visual Basic version 3.0: Programmer's Guide," Chapter 23, "Programming
 Other Applications' Objects."

 - See the following online Help topics in Visual Basic version 3.0:
 OLE Automation, CreateObject Function, Object Property, Set Statement

Additional reference words: 3.00 OLE2 OA winword w4wmacro wm_word
 officeinterop 6.00 6.00a
KBCategory: IAP
KBSubcategory: IAPOLE

PRB: DDE Error When Running Setup on Norton Desktop
Article ID: Q108498

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SYMPTOMS
========

The Setup Toolkit provided with Visual Basic version 3.0 is used to create
distribution disks for applications created with Visual Basic. If Norton
Desktop for Windows version 2.0 or 2.2 is being used as the Windows Shell,
Windows will report the error message, "An application using DDE did not
respond to the system's exit command," shortly after SETUP1 is complete.

CAUSE
=====

The error message occurs because the Norton Desktop shell and the Program
Manager each handle DDE messages differently. SETUP1 calls two routines
to create groups and items, CreateProgManGroup and CreateProgManItem. Each
routine establishes a DDE link and then terminates it after the group or
item is created. After the termination of the link, not enough time is
being given to the Norton Desktop shell to acknowledge the terminated link.

RESOLUTION
==========

Modify the SETUP1.MAK program to allow the Norton Desktop shell to
acknowledge the termination of DDE links. To do this, call the DoEvents
function after each call to CreateProgManGroup or CreateProgManItem.

Here are the changes you need to make to the SETUP1.FRM file in the
Form_Load event. The SETUP1.FRM is part of the SETUP1.MAK file, which is
typically in the \VB\SETUPKIT\SETUP1 directory.

 CreateProgManGroup Setup1, "My Loan Application", "LOAN.GRP"

 For i% = 1 To 10
 z% = DoEvents()
 Next

 CreateProgManItem Setup1, destPath$ + "LOAN.EXE", "My Loan Application"

 For i% = 1 To 10
 z% = DoEvents()
 Next

As you can see, the loop of DoEvents is included after each and every call
to CreateProgManGroup and CreateProgManItem. If more calls to these
procedures are added, additional loops of DoEvents must be included after
those calls. If the SETUP1A.MAK program is being used, the same changes

must be made to the SETUP1A.FRM Form_Load event. These changes will not
affect installations on computers that use the Program Manager shell.

MORE INFORMATION
================

The SETUP1.MAK program is part of the Setup Toolkit provided with Visual
Basic version 3.0. SETUP1.MAK can be modified by the user or the Setup
Wizard to design a custom setup that will install the user's application
on other computers. It is typically located in the \VB\SETUPKIT\SETUP1
directory.

When the setup program is run on a target computer, the SETUP1.EXE program
is copied to the computer's hard drive and launched. The SETUP1 program
then proceeds to copy all of the user's application over to the hard drive.
At the conclusion of this process, SETUP1 initiates a series of DDE links
to the Program Manager. This is to create the program groups and items for
the user's application.

When you use Norton Desktop version 2.0 or 2.2 for Windows as the Windows
Shell, the DDE links are successful in creating the necessary program
groups and items, and the user's application is installed intact. However,
some time after the SETUP1 program ends, the error message (An application
using DDE did not respond to the system's exit command) appears. Options to
retry, continue, and close are displayed in the dialog box. If the user
chooses close, the error will disappear and the user's application will
still be installed successfully.

Additional reference words: 3.00 norton desktop progman dde error
KBCategory: Tls
KBSubCategory: TlsSetWiz

PRB: Extra Repaint of VB CDK Graphical Custom Control
Article ID: Q108710
--
The information in this article applies to:

 - Professional Edition of Microsoft Visual Basic for Windows,
 version 3.0
--

SYMPTOMS
========

You can use the Visual Basic Control Development Kit (CDK) to design a
graphical custom control to perform visual effects. However, when
another control such as a Visual Basic button becomes visible on the
same form as your custom control, the graphical control repaints even
though its client area has not been invalidated.

CAUSE
=====

The repaint logic in Visual Basic causes this behavior. Graphical
controls get a VBM_PAINT message every time their container gets a
WM_PAINT message, regardless of whether the graphical control is in the
invalidated area.

The VBM_PAINT message is the paint notification for graphical controls.
The value of the VBM_PAINT constant is defined in the VBAPI.H file in
Visual Basic's CDK directory. WM_PAINT is a message for windowed
controls. For examples of VBM_PAINT and WM_PAINT, see the PIX.C file in
Visual Basic's CDK directory.

WORKAROUND
==========

You can work around this behavior in the VBM_PAINT handler with the
following C code:

 if (!RectVisible((HDC)wParam,(LPRECT)lParam)) {
 // Control is not in the paint region
 // Don't bother to repaint
 break;
 }

Additional reference words: 3.00 flash flicker
KBCategory: Tls
KBSubcategory: TlsCDK

Category Keywords for All Visual Basic KB Articles
Article ID: Q108753

The information in this article applies to:

- Microsoft Visual Basic for Windows, versions 2.0 and 3.0

SUMMARY
=======

Each article in the Visual Basic for Windows collection contains at least
one keyword (called a KBSubcategory keyword) that places the article in an
appropriate category. This article lists all the KBSubcategory keywords.

MORE INFORMATION
================

Category & Subcategory Description KBSubcategory Keyword
--
Setup / Installation (Setins) Setins

Environment-specific Issues (Envt)
 VB Design Environment EnvtDes
 Run-Time Environment EnvtRun

Programming (Prg)
 Visual Basic Forms and Controls
 Standard Controls / Forms PrgCtrlsStd
 Custom Controls PrgCtrlsCus
 Third-Party Controls PrgCtrlsThird

 Optimization
 Memory Management PrgOptMemMgt
 General Optimization Tips PrgOptTips

 General VB Programming PrgOther

Advanced programming (APrg)
 Network APrgNet

 Windows Programming (APIs / DLLs)
 Printing APrgPrint
 Graphics APrgGrap
 Windowing APrgWindow
 INI Files APrgINI
 Other API / DLL Programming APrgOther

 Data Access
 ODBC APrgDataODBC
 IISAM APrgDataIISAM
 Access APrgDataAcc
 General Database Programming APrgDataOther

 3rd Party DLL's APrgThirdDLL

Inter-Application Programmability (IAP)
 OLE IAPOLE
 DDE IAPDDE
 3rd Party Interoperability IAPThird

Tools (Tls)
 Setup Toolkit / Wizard TlsSetWiz
 Control Development Kit (CDK) TlsCDK
 Help Compiler (HC) TlsHC

References (Refs)
 Documentation / Help File Fixes RefsDoc
 Product Information RefsProd
 Third-Party Information RefsThird
 PSS-Only Information RefsPSS

Using Keywords to Query the KB

At Microsoft, we use the subcategory keywords to organize the articles for
Help files and for the FastTips Catalog. You can use them to query the
Microsoft Knowledge Base for Visual Basic articles that apply to that
category or subcategory. For example, you can find all the general database
programming articles by querying on the following words in the Microsoft
Knowledge Base:

 visual and basic and APrgDataOther

Use the asterisk (*) wildcard to find articles that fall into the general
categories or into an intermediate subcategory. The first element in each
keyword is the category. For example, to find all the articles that apply
to Visual Basic Forms and Controls regardless of whether they are standard,
custom, or third-party controls, use the following words to query the
Microsoft Knowledge Base:

 visual and basic and PrgCtrls*

To find all advanced programming articles, query on these words:

 visual and basic and APrg*

Add KBSubcategory Keyword to Each Article

When contributing an article to the Visual Basic Knowledge Base, add the
appropriate KBSubcategory keyword to the bottom of the article on the
KBSubcategory line. Each article in the Visual Basic for Windows
collection contains the following section at the bottom of the article:

Additional reference words:
KBCategory:
KBSubcategory: <keyword>

An article usually has only one subcategory keyword, but it may have more.

If you are interested in contributing, please obtain the guidelines by

querying on the following words in the Microsoft Knowledge Base:

 visual and basic and kbguide and kbartwrite

Additional reference words: 3.00 dskbguide subcatkey
KBCategory:
KBSubcategory: RefsPSS

How to View Microsoft Word Toolbars Using OLE Control
Article ID: Q112044

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0
- Microsoft Word for Windows, version 6.0

SUMMARY
=======

This article shows by example how to make a Visual Basic program display
Microsoft Word version 6.0 toolbars. It is not possible to display the
toolbars using the OLE control alone, so the following example uses an
OLE object in combination with the OLE control.

MORE INFORMATION
================

When editing a Microsoft Word document that is in an OLE control, you
may find it helpful to use the Microsoft Word toolbars. However, if you
close all your toolbars, there is no way to use the OLE control alone
to get the toolbars back. The following example shows how to access
the Word toolbars after closing them.

Step-by-Step Example

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Add an MSOLE2 control (OLE1) to Form1. When the Insert Object dialog box
 asks what type of object to insert, choose the Create From File option.
 and select a Microsoft Word .DOC file.

3. Set the SizeMode property of the OLE1 control to 1 (Stretch).

4. Add a command button (Command1) to Form1.

5. Add the following code to the click event of the Command1 button:

 Sub Command1_Click()
 Dim wbObject As Object
 ole1.Action = 7
 Set wbObject = CreateObject("Word.basic")
 wbObject.ViewToolbars "Standard", , , , , , , 1
 End Sub

6. Run the program.

7. Double-click the OLE1 control. If you see the toolbars, close them and
 press the ESC key to return control to Visual Basic. Double-click the
 OLE1 control again. This time the toolbars are gone. Now click the

 Command1 button to bring up the Standard toolbar. To bring up any of
 the other toolbars from this point, move the mouse pointer over the
 Standard toolbar. Then click the right mouse button, and choose the
 toolbar you want.

Additional reference words: 3.00
KBCategory:
KBSubcategory: IAPOLE PrgCtrlsCus

How to Navigate Excel Objects from Visual Basic Version 3.0
Article ID: Q112194

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0
- Microsoft Excel for Windows, version 5.0

SUMMARY
=======

This article explains three methods you can use to navigate and access
Excel Application objects:

 - Using longhand and default properties
 - Using aliasing
 - Using the Parent and Application methods of Excel version 5.0 objects
 to access any Excel object

MORE INFORMATION
================

Each object in Microsoft Excel version 5.0 exists somewhere in the
application's hierarchy of objects. You choose among these objects by
navigating down that application's hierarchy. At the top of this hierarchy
is the Application object. Whatever events or actions you assign to the
Application object affect the entire application. For example:

 ' Close the application
 [Object].Application.Quit

Replace [Object] with any variable that points to any valid Excel
Application Object, which can be created from the following example:

 ' MyObject represents [Object] and OLE1 represents an OLE control
 ' that contains an Excel Worksheet object.
 MyObject = OLE1.Object
 Set MyObject = CreateObject("Excel.Sheet")
 Set MyObject = GetObject("C:\EXCEL\EXAMPLES\SAMPLES.XLS")

The Application object contains other large objects. For example, you can
use the following code to refer to the collection of Workbooks currently
loaded in Excel:

 [Object].Application.Workbooks

If you want to retrieve a single workbook from the collection, use the Item
method. For example, to refer to the first workbook:

 [Object].Application.Workbooks.Item(1)

To close the first workbook:

 [Object].Application.Workbooks.Item(1).Close

Accessing Objects Using Longhand Reference or Default Properties
--

Each workbook contains a collection of worksheets, each worksheet contains
a collection of cells, and so on. (See the Excel documentation and Help
menu for specific details about Excel's object hierarchy.) In code,
referring to a specific cell could look like this:

 ' Following refers to cell A1 on Sheet1 in the first workbook.
 ' Enter the following two lines as one, single line:
 [Object].Application.Workbooks.Item(1).
 WorkSheets.Item("Sheet1").Cells.Item(1,1)

This reference can be lengthy and complex; however shortcuts are available.
Understanding the navigation operator (.) is fundamental to successful
object programming.

Short Cuts:

All objects have a default property and method. For collections the default
method is the Item method. For most objects the Name property is the
default property. This convention was implemented to simplify programming.
For example the previous sample can be simplified to:

 [Object].Application.Workbooks(1).WorkSheets("Sheet1").Cells(1,1)

Accessing Objects by Aliasing Objects

You can use aliasing to simplify object programming. If you were to write a
lot of code that was manipulating Sheet1, for example, the syntax could
become lengthy. To prevent this, create an object that points to the lowest
common object. This is known as aliasing. Use the Set statement to create
an alias.

 Dim Sheet1 as Object
 ' Alias Sheet1 to represent [Object]...WorkSheets("Sheet1")
 Set Sheet1 = [Object].Application.Workbooks(1).WorkSheets("Sheet1")
 ' Now just use the variable Sheet1 to refer to Sheet1.
 Sheet1.Cells(1,1).Value = "Title"
 Sheet1.Cells(1,2).Value = "ID"
 Sheet1.Cells(1,3).Value = "Cost"
 Sheet1.Cells(2,1).Value = "Phone"
 Sheet1.Cells(2,2).Value = 123413423
 Sheet1.Cells(2,3).Value = 89.95

Accessing Objects by Using Parent and Application Methods

The Parent and Application methods allow you to navigate back up the object
hierarchy. The Application method navigates back to the application object,
and the Parent method navigates up one level of the object hierarchy. All
the examples in this article started with [Object]. As long as [Object] is
a valid Excel object, all of those statements are also valid. Regardless of
the context of [Object].

This is very helpful when programming the Excel object from Visual
Basic version 3.0. Excel exposes only the three objects that can be used as
entry points to Excel. These are:

 - Excel.Application
 - Excel.Sheet
 - Excel.Chart

Don't be confused by Excel.Application.5. Excel.Application will
always point to the latest version of Excel. Excel.Application.5 will point
only to Excel version 5.0.

There is no exposed Workbook object, so there's no way to access the
Workbook object directly. However, this is not a problem because the Parent
method of a Worksheet or Chart object returns the Workbook object. The
following example code illustrates this point.

NOTE: oleExcel is an OLE control that contains an Excel.Sheet object.

 ' Declare object references:
 Dim Xlapp As object
 Dim XLWkb As object
 Dim XLWks As object
 Dim XLWksNew As object

 oleExcel.Action = 7 ' Activate OLE Object

 Set XLWks = oleExcel.Object ' Alias Worksheet object
 Set XLWkb = XLWks.Parent ' Alias WorkBook object
 Set Xlapp = XLWks.Application ' Alias Application object

 ' Add a new worksheet to the Workbook and name it:
 Set XLWksNew = XLWkb.Worksheets.add ' Assign alias to new Worksheet
 XLWksNew.Name = "VB3 OLE Automation" & XLWkb.Worksheets.count

 ' Make the 3rd Worksheet of the Workbook active:
 XLWkb.Worksheets(3).Activate

 ' Display the dialog for InsertPicture:
 Xlapp.dialogs(342).[Show] ' xlDialogInsertPicture = 342

REFERENCES
==========

 - Office Development Kit, Programming Integrated Solutions

Additional reference words: 5.00 3.00 officeinterop w_VBApp W_Excel
 WM_OLE OA OLE Automation
KBCategory:
KBSubcategory: IAPOLE

How to Print an Embedded Word Document in Visual Basic
Article ID: Q112196

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0
- Microsoft Word for Windows, version 6.0

SUMMARY
=======

Microsoft Word for Windows version 6.0 disables the ability to use the
FilePrint and FilePrintDefault methods while an object is being edited in
an OLE container. While the menu options may not be enabled, it is
still possible to get around this in code. This article explains how.

MORE INFORMATION
================

Commands that are part of the workspace are the responsibility of the top
container (the Visual Basic application). That is, the application is
responsible for the organization of windows, file level operations, and how
edits are ultimately saved. The top container must supply a single File
menu that contains file level commands such as Open, Close, Save, and
Print. If the object is an opened object server application, the commands
in its File menu are modified to show containership (Close & Return to
<container doc>, Exit & Return to <container doc>).

A well-behaved OLE server will not allow workspace commands to be executed.
This is why they are disabled. To work around the problem, edit the object
in the server application instead of using in-place editing. In the server
workspace, commands are enabled. Therefore, you can edit the object in the
server workspace and use OLE Automation to control the server to execute
the Workspace commands.

Example Program Using OLE Automation

The following example activates the Word object in the server, and uses
OLE Automation to execute the FilePrintDefault method.

NOTE: By default, Word sets background printing On. If Word quits before
printing is completed, the print job is aborted. There are two ways to
work around this:

 - Define the Word Objects globally. The objects will remain in memory
 until the container application (Visual Basic) quits. This is the
 easiest way to do it.

 -or-

 - Disable background printing in Word. You can do this by using OLE
 automation. The command is not available during in-place editing. The

 following example shows how to do this in code.

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Add a command button (Command1) to Form1.

3. Add an MSOLE2.VBX control (OLE1) to Form1. When the Insert Object
 dialog comes up, choose the Create From File option button, and select a
 Word for Windows document.

4. Add the following code to the Command1_Click event:

 Sub Command_Click()
 ' Open application in separate application Window:
 ole1.Verb = -2
 ' Activate Object:
 ole1.Action = 7
 Dim WB As object
 ' Alias WordBasic Object:
 Set WB = ole1.Object.application.wordbasic
 ' Disable background printing:
 WB.ToolsOptionsPrint , , , , , , , , , , , 0
 WB.FilePrintDefault 'Print the Word Object.
 ' Hint: it may be necessary to check page layout parameters before
 ' printing. If parameters are outside of the printable region, Word
 ' will display an error message.
 End Sub

5. Run the program, and click the Command1 button.

Additional reference words: 3.00
KBCategory:
KBSubcategory: IAPOLE PrgCtrlsCus

Retrieving Groups & Items from Program Manager Using DDE in VB
Article ID: Q112384

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic
 programming system for Windows, versions 1.0, 2.0, and 3.0

SUMMARY
=======

Program Manager (Progman) has a DDE command-string interface that allows
other applications to view the groups and items that currently exist within
Progman.

MORE INFORMATION
================

Perform the following steps to produce an application that will retrieve
the group and items from Progman by using DDE:

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add two Text box controls (tGroups and tItems) to Form1. Set the visible
 property on both to false. The DDE link needs these controls.

3. Add two Combo box controls (ComGroups and ComItems) to Form1.

4. Add a Command button (cGroups) to Form1 and change the caption
 property to Groups.

5. Add the following code to the cGroups_Click () event:

 Sub cGroups_Click ()
 Dim sGroups As String
 Dim pos As Integer
 On Error GoTo GError
 tGroups.LinkMode = 0
 tGroups.LinkTopic = "Progman|Progman"
 tGroups.LinkMode = 2
 tGroups.LinkItem = "groups"
 tGroups.LinkRequest

 ' Parse groups that come back:
 sGroups = tGroups.Text
 pos = InStr(1, sGroups, Chr(13))
 While pos
 ComGroups.AddItem RTrim$(Mid$(sGroups, 1, pos - 1))
 sGroups = LTrim$(Mid$(sGroups, pos + 2))
 ' The + 2 on the previous line gets past the line feed chr(10)
 pos = InStr(1, sGroups, Chr(13))
 Wend

 ' Select first member in combo box:

 ComGroups.ListIndex = 1
 GDone:
 tGroups.LinkMode = 0
 Exit Sub
 GError:
 MsgBox "Error in getting groups"
 Resume GDone
 End Sub

6. Add another Command button (cItems) to Form1, and change the caption to
 Items.

7. Add the following code to the cItems_Click () event:

 Sub cItems_Click ()
 Dim sItems As String
 On Error GoTo IError

 ' Clear the combo box:
 ComItems.Clear
 If (Len(ComGroups.Text)) Then
 tItems.LinkMode = 0
 tItems.LinkTopic = "Progman|Progman"
 tItems.LinkMode = 2
 tItems.LinkItem = ComGroups.Text
 tItems.LinkRequest

 ' Parse items that come back:
 sItems = tItems.Text
 pos = InStr(1, sItems, Chr(13))
 While pos
 ComItems.AddItem RTrim$(Mid$(sItems, 1, pos - 1))
 sItems = LTrim$(Mid$(sItems, pos + 2))
 ' The + 2 on the previous line gets past the line feed chr(10)
 pos = InStr(1, sItems, Chr(13))
 Wend
 End If

 ' Select first member in combo box:
 ComItems.ListIndex = 1
 IDone:
 tItems.LinkMode = 0
 Exit Sub
 IError:
 MsgBox "Error in getting items"
 Resume IDone
 End Sub

8. From the Run menu, choose Start (ALT, R, S) or press the F5 key to run
 the program. Press the Groups button and all the groups on Progman will
 be loaded into the ComGroups Combo box. Then press the Items button
 and all the items in the group selected in the ComGroups Combo box
 will be put into the ComItems Combo box.

REFERENCES
==========

More information can be found in:

 - "Programmers Reference, Volume 1: Overview Microsoft Windows SDK,"
 Chapter 17, "Shell Dynamic Data Exchange Interface DDEML."
 - Progman topic in the Windows SDK Help menu.

Additional reference words: 1.00 2.00 3.00 interop icon
KBCategory:
KBSubcategory: IAPDDE

How to Find Articles On Visual Basic For Applications
Article ID: Q112391

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Word for Windows, version 6.0
- Microsoft Excel, version 5.0
- Microsoft Office for Windows, version 4.0

For information about Visual Basic for Applications and OLE Automation, use
a combination of the following reference words to query the Microsoft
Knowledge Base:

Reference Word Meaning

6.00 Applies to Word 6.0
6.00a Applies to Word 6.0a
IAPOLE Inter-Application Programming OLE issues
IAPOLEAuto Inter-Application OLE Automation issues
officeinterop Issues between office applications
w4wmacro WordBasic issues
XL5 In the title of Excel version 5.0 *only* articles

If you want to limit your query to one or two products, add the
product mnemonic keywords to your query:

Product name Product Mnemonic

Excel (Cross-platform issues) WM_Excel
Excel for Windows W_Excel
Microsoft Office for Windows W_Office
Visual Basic for Applications W_VBApp
Visual Basic for Windows B_VBasic
Microsoft Word (Windows & Macintosh) WM_Word

Additional reference words: 5.00 3.00 officeinterop w_VBApp W_Excel
WM_OLE OA OLE Automation
KBCategory:
KBSubcategory: IAPOLE

How to Create Excel Chart w/ OLE Automation from Visual Basic
Article ID: Q112417
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows version 3.0
- Microsoft Excel, version 5.0

SUMMARY
=======

This article shows by example how to insert data into a Microsoft Excel
version 5.0 worksheet and create a chart by using OLE automation in a
Visual Basic application.

MORE INFORMATION
================

There are five key points you need to keep in mind when creating an Excel
chart in a Visual Basic program.

 - A chart can be either on a Worksheet or a Chart sheet.
 - A chart on a Worksheet is a ChartObject.
 - A ChartObject has a Chart property, which is a Chart Object.
 - The data associated with the Chart is part of the SeriesCollection.
 - You can add a new data series with a Named Range.

NOTE: Complete definitions for these objects can be found in the Excel
documentation.

A Workbook has a Charts collection, which is the collection of all Chart
sheets in the workbook. All Charts on WorkSheets are part of that
WorkSheet's ChartObjects collection. Therefore to add a new Chart to a
Worksheet, you can use the Add method on the worksheets ChartObject
collection.

The SeriesCollection property of the Chart object contains the reference to
the data linked to the table. In the example below, you'll add two data
series -- each of which contains 10 data points -- by using the Add method
on the SeriesCollection object.

Although the example passes the Range of cells containing the data as a
named range, you could specify a Range in R1C1 notation.

Steps to Create Example Program

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add a command button (Command1) to Form1.

3. Add the following code to the Command1_Click event procedure:

 Sub Command1_Click()
 Dim objXLsheet As Object ' Object reference to Excel Worksheet
 Dim objRange1 As Object ' First series in the chart
 Dim objRange2 As Object ' Second series in the chart
 Dim objChart1 As Object ' Object reference to the chart we create

 Dim iRow As Integer ' Index variable for the current Row
 Dim iCol As Integer ' Index variable for the current Row

 Dim strTmpRange As String ' Temporarily hold Range in R1C1 notation

 Const cNumCols = 10 ' Number of points in each Series
 Const cNumRows = 2 ' Number of Series

 ' Create a Worksheet Object:
 Set objXLsheet = CreateObject("Excel.Sheet")

 Randomize Timer

 ' Insert Random data into Cells for the two Series:
 For iRow = 1 To cNumRows
 For iCol = 1 To cNumCols
 objXLsheet.Cells(iRow, iCol).Value = Int(Rnd * 50) + 1
 Next iCol
 Next iRow

 ' Insert Named Ranges:
 For iRow = 1 To cNumRows
 ' Enter the following two lines as one, single line:
 strTmpRange = "R" & iRow & "C" & Format$(1) & ":R" & iRow & "C"
 & Format$(cNumCols)
 ' Enter the following two lines as one, single line:
 objXLsheet.Parent.Names.Add "Range" & Format$(iRow), "=Sheet1!"
 & strTmpRange
 Next iRow

 ' Add a ChartObject to the worksheet:
 Set objChart1 = objXLsheet.ChartObjects.Add(100, 100, 200, 200)

 ' Assign the Ranges created above as the individual series
 ' for the chart:
 For iRow = 1 To cNumRows
 objChart1.Chart.SeriesCollection.Add "Range" & Format$(iRow)
 Next iRow

 ' Make Excel Visible:
 objXLsheet.application.Visible = True
 DoEvents

 ' Save the Worksheet to disk. The parent of a WorkSheet is WorkBook.
 objXLsheet.Parent.SaveAs "C:\VB\XLCHART.XLS"

 ' Close this instance of Excel:
 objXLsheet.application.Quit
 End Sub

4. Press the F5 key to run the program, and click the command button.

At this point, Excel starts, and it loads and displays the worksheet with
the newly created chart. If you dont already have a file name as specified
on the jXLSheet.Parent.SaveAs line of code, Excel saves the file and closes
itself down. If you already have a file with the same name, Excel brings up
a dialog asking you if you would like to overwrite the existing file.

Additional reference words: 3.00
KBCategory:
KBSubcategory: IAPOLE

How to Save an Embedded Word Document in Visual Basic
Article ID: Q112440

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Word for Windows, version 6.0

SUMMARY
=======

Word version 6.0 for Windows disables the ability to do a FileSaveAs while
an object is being edited in an OLE container. While these methods may not
be enabled, it is possible to work around this limitation in code. This
article explains how.

MORE INFORMATION
================

Commands that are part of the workspace are the responsibility of the top
container (the Visual Basic application). That is, the application is
responsible for the organization of windows, file level operations, and how
edits are ultimately saved. The top container must supply a single File
menu that contains file level commands such as Open, Close, Save, and
Print.

If the object is an opened object server application, the commands in its
File menu are modified to show containership (Close & Return to <container
doc>, Exit & Return to <container doc>).

A well-behaved OLE server will not allow workspace commands to be executed.
This is why they are disabled. To work around the problem, edit the object
in the server application -- without using in-place editing. In the server,
you'll find that the workspace commands are enabled. Therefore edit the
object in the server and use OLE Automation to control the server to
execute

the Workspace commands.

Step-by-Step Example

The following example uses an OLE2 control called OLE1, which contains an
embedded Word version 6.0 document and a CommonDialog control called
CMDialog1. To make the code generic, the OLE1 control is passed to the
WordFileSave subroutine.

1. Start a new project in Visual Basic, Form1 is created by default.

2. Add a command button (Command1), MSOLE2.VBX (OLE1) control, and a
 CMDIALOG.VBX (CMDialog1) control to Form1.

3. Add the following code to the Command1_Click event:

 Sub Command1_Click ()
 ' Pass the name of the Control to WordFileSave subroutine.
 WordFileSave OLE1
 End Sub

4. Add the following code to the general declarations section of Form1:

 Sub WordFileSave (OLECtrl As Control)
 'Purpose: Example of how to save an embedded Word object from
 'Visual Basic as a Word Document.

 'Overview of technique: '
 'Activate Object. Select its contents. Copy contents to clipboard.
 'Launch a hidden instance of Word. Create a new file.
 'Paste clipboard into document. Save document.

 Dim Word As Object 'Alias to Hidden instance of Word.
 'Only if Word is not already running.
 Dim WB As Object 'alias to WordBasic object.

 OLECtrl.Action = 7 'Activate OLE control. This must be done in order
 'to have the Word Basic alias act on the correct
 'instance of Word.
 Set WB = CreateObject("Word.Basic") 'Set the object variable.

 WB.editselectall 'Select the contents of the embedded object.
 WB.EditCopy 'Copy the selection to the clipboard.
 OLECtrl.Action = 9 'Deactivate the OLE control. This must be
 'done before the following set statements to
 'reference the correct instances of Word.

 'Use the Common dialog control to display a SaveAs dialog.
 CMDialog1.Filter = "Word Document (*.Doc)|*.doc" 'Set the filter
 CMDialog1.DefaultExt = "*.doc" 'Set the default extension
 CMDialog1.FileName = OLECtrl.SourceDoc 'Set default filename
 CMDialog1.Action = 2 'Display the dialog.

 Set WB = Nothing 'Free the WB object reference.
 Set Word = GetObject("", "Word.Document.6") 'Create a hidden inst.
 Set WB = Word.application.Wordbasic 'Set WB to the WordBasic object
 'of the new instance of Word.

 WB.filenew 'Create a New file in hidden instance of Word.
 WB.editpaste 'Paste contents of clipboard into new document.
 WB.filesaveas CMDialog1.Filename 'Save file as selected by user.
 WB.fileclose 'Close document.

 Set WB = Nothing 'Free WordBasic object
 Set Word = Nothing 'Free Word Document object, if Word wasn't
 'running previously, Word will shut itself down
 'from memory; otherwise, it is up to the user to
 'shut Word down.
 End Sub

5. Run the program. The program will ask you to input a name and then save

 the document to the name that you input.

Additional reference words: 3.00
KBCategory:
KBSubcategory: IAPOLE PrgCtrlsCus

How VB Can Use OLE Automation with Excel Version 5.0
Article ID: Q112443
--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0
- Microsoft Excel, version 5.0
--

SUMMARY
=======

This article shows by example how to embed a Microsoft Excel version 5.0
Worksheet object in a Visual Basic application, and then manipulate it by
using OLE Automation and an MSOLE2.VBX control.

Microsoft Excel version 5.0 offers OLE objects that support Worksheet and
Chart functionality using Visual Basic for Applications.

MORE INFORMATION
================

A worksheet in Excel is sometimes called a spreadsheet. It is the primary
document used in Excel to store and manipulate data. A worksheet consists
of cells organized into columns and rows and is always a part of a
workbook.

Step-by-Step Example of OLE 2.0 Automation
--

The following example shows how to use OLE automation to accomplish some
common tasks on a worksheet, such as adding data, computing a sum and
selecting cells.

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add the following constant declarations, taken from the CONSTANT.TXT
 file, into the general declarations section of Form1:

 Const OLE_CREATE_EMBED = 0
 Const OLE_ACTIVATE = 7

3. Add the MSOLE2.VBX file to the project, using the Add File option in the
 File Menu. MSOLE2.VBX is found in the WINDOWS\SYSTEM directory. The OLE
 control will appear as an option on the Visual Basic toolbar. Add an OLE
 control (OLE1) to Form1. Cancel the Insert Object Dialog box that pops
 up. You will be left with an empty OLE1 object on Form1. Set the OLE1
 control's SizeMode property to Stretch.

4. Add a command button (Command1) to Form1. Set the Caption to: Embed
 Excel 5.0 Object. Add the following code to the Command1 Click event to
 embed an Excel version 5.0 worksheet into the OLE1 control. Because the
 SizeMode property is set to Stretch, the Worksheet automatically sizes
 itself in the OLE1 control when the code is executed.

 Sub Command1_Click()
 ole1.Class = "Excel.Sheet.5"
 ole1.Action = OLE_CREATE_EMBED
 End Sub

5. Place another Command button (Command2) on Form1. Change the Command
 button's Caption to: Add Data. Add the following code to the Command2
 click event:

 Sub Command2_Click ()
 ole1.Action = OLE_ACTIVATE
 ole1.Object.cells(1, 1).value = "Jan"
 ole1.Object.cells(2, 1).value = 3
 ole1.Object.cells(3, 1).value = 4
 ole1.Object.cells(4, 1).value = 6
 End Sub

 The "ole1.Object" part is Visual Basic code. The rest of the line
 (cells(2,1).value = 1) is Excel's Visual Basic for Applications code.

6. Choose Start from the Run menu or press the F5 key to run the program.
 Click Command1 to see the worksheet. Click Command2 to see the
 information added to the worksheet. Choose End from the Run menu to
 return to development.

7. Add another Command button (Command3) to experiment with functions. Add
 the following code to the Command3 Click event code. The SUM function
 is one of many Excel functions that you can use in an experiment. Run
 the application, and press the command buttons to see the effect.

 Sub Command3_Click()
 ole1.Action = OLE_ACTIVATE
 ole1.Object.Range("A2:A4").Select

 ' Try any one of the following lines, or add some pauses between them
 ' to see the selections taking place and the active cell changing.
 ' To try a line, remove the single quotation mark to uncomment the
 ' line:

 ' ole1.Object.Range("C6").Activate
 ' ole1.Object.cells(6, 1).value = "=SUM(R2C:R4C)"
 ' ole1.Object.Range("A6").Select

 End Sub

How to Find Out More

To find out more about Microsoft Excel's Visual Basic for Applications,
open a new module sheet in Excel, and choose Object Browser from the View
menu, or press the F2 key. The Object Browser lists all the objects in
Excel and their related objects and methods. The Object Browser
demonstrates the heirachical nature of the object model.

If you want to try something new, but are unsure of the syntax, it is a
good idea to start the Macro recorder in Microsoft Excel, step through the

process manually, switch off the Macro recorder, and view the code in
the current module. Then cut and paste the code into the Visual Basic event
procedure. Usually all that is required is a prefix of ole1.object.

Additional reference words: 3.00 W_VBApp
KBCategory:
KBSubcategory: IAPOLE

POSITION.HLP File for VB OLE Automation w/ Word for Windows
Article ID: Q112733
--
The information in the article applies to:

- Standard and Professional Editions of Microsoft Visual Basic,
 for Windows, version 3.0
- Microsoft Word for Windows, version 6.0
--

SUMMARY
=======

The contents of POSITION.TXT, a file currently being shipped with the Word
Development Kit (WDK), is available as a Help file (POSITION.HLP) for use
by Visual Basic version 3.0 programmers who want to use OLE Automation to
access WordBasic in Microsoft Word version 6.0.

POSITION.HLP provides a listing of WordBasic functions and all their
required parameters in the proper order, which is not the case in Word
version 6.0 Help file.

To get obtain POSITION.HLP, download POSITION.EXE, a self-extracting file,
from the Microsoft Software Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for POSITION.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download POSITION.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \softlib\mslfiles directory
 Get POSITION.EXE

MORE INFORMATION
================

WordBasic statements or functions in Microsoft Word version 6.0 can take
named arguments. But Visual Basic version 3.0 does not support named
arguments. This means that when a Visual Basic version 3.0 application
sends WordBasic commands through OLE Automation, Visual Basic must specify
all the parameters to a WordBasic function in the proper order. The same
call in WordBasic may only require some of the parameters using named
arguments, and those parameters could be provided in any order.

For most WordBasic statements the positioning of the arguments is
documented in the WordBasic Help topics or printed reference entries for
those statements. However, some statements' arguments are not listed in
proper order, or the arguments are irrelevant or have no effect. These

arguments are not documented in WordBasic Help or in the printed reference.

For example, the InsertIndex statement corresponds to the Index tab in the
Index and Tables dialog box. The InsertIndex statement takes a number of
arguments that have to do with other tabs in the dialog box, such as the
Table of Contents tab. Because these arguments are irrelevant to inserting
an index, they are ignored and therefore not documented in WordBasic Help
or in the printed reference. But the Visual Basic version 3.0 OLE
Automation programmer needs to be aware of these arguments so that he or
she can correctly specify arguments by position.

Additional reference words: 3.00 6.00 2.00 OLE2 readme softlib S14663
KBCategory: IAP
KBSubCategory: IAPOLE

How to Perform Microsoft Access Macro Action Via DDE from VB
Article ID: Q112767

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SUMMARY
=======

From Visual Basic, you cannot directly use a form or report that was
created by the Microsoft Access engine. This article shows by example
how to use DDE to do it indirectly. The example prints one of the
built-in reports from the NWIND.MDB sample database by using DDE and
the OpenReport macro action in Microsoft Access.

MORE INFORMATION
================

For more information about Microsoft Access macro actions, please see
the Microsoft Access documentation or Help menu. A Visual Basic
application can call most of these actions by using DDE.

Step-by-Step Example

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add a text box (Text1) and Command button (Command1) to Form1.

3. Place the following code in the Command1 button's click event:

 ' Note the time-out has to be long enough to allow for the print
 ' to complete or an error will occur.
 Sub Command1_Click ()
 Text1.LinkTimeout = 600 'Set DDE Time-out for 60 Seconds
 Text1.LinkTopic = "MSACCESS|SYSTEM"
 Text1.LinkMode = 2 ' Establish manual DDE link to Microsoft Access.
 Text1.LinkExecute "[OPENREPORT Catalog]" 'Open and Print Report
 Text1.LinkMode = 0 ' Terminate the DDE link to Microsoft Access
 End Sub

4. Start Microsoft Access and open the NWIND.MDB sample database.

5. Run the Visual Basic program, and click the Command1 button.

Additional reference words: 3.00
KBCategory:
KBSubcategory: IAPDDE APrgDataAcc

