
README for VBTERM

The enclosed VB project comprises a simple VT100-like terminal
emulator. I should warn you that it is neither complete (in that
it doesn't support all VT100 escape sequences, handle function
or cursor keys, etc.), well designed, or fully debugged.

*** see note at end of file ***
The VT100 emulation seems sufficient to use with CompuServe,
which was a prime requirement of mine. On the other hand,
more demanding systems (such as UNIX's VI editor) will not
work.

The design of the program reflects its random creation. I tried a
lot of different things (some of which I'll discuss below) to make
this work, and if I was to do this all over again it would be better
structured.

The program seems to be reliable at this point, but there are
undoubtedly more bugs to be found. If you find any and fix
them, let me know and I'll incorporate them in a future upload.
Send those fixes to [76701,11].

DESIGN OVERVIEW

As I mentioned, the design of the program isn't elegant, and so
it's hard to tell what's just randomly present and what was a
painfully generated bit of twisted code. So let me explain ...

There's two non-obvious aspects of this program. The first is
how to interact with the serial port, while the second is how to
draw, scroll, and maintain a "terminal" screen using VB and
windows functions.

The serial stuff is quite easy, and is all held in the file
SERIAL.BAS. There are 6 API calls I make to windows to
handle the the serial port. The first is the OpenComm()
routine, which returns a handle to the open port. The next two
routines allow me to configure the port as I need. First, I call
BuildCommDCB(), which takes an MS/DOS style MODE
command (e.g., COM1:9600,n,8,1) and builds a data structure
known as a DCB. Then, I pass the DCB (after adjusting a few
parameters to my liking) to windows using the
SetCommState() routine. At this point, the serial port is
opened and configured for use. To write to the serial port, I use
the WriteComm() routine, and to read from it I use
ReadComm(). The only difficulty I encountered is that
whenever windows detects an error on the serial port, be it
buffer overflow, line noise, etc., it will stop retuning data with
ReadComm(). To clear the error, you have to call the routine
GetCommError(), which will clear the error condition and allow
you to resume reading data.

Driving the screen was a bit more difficult. Initially, I just used

the Print command in VB to output data, but it was obvious
that it alone was insufficient. First of all, it doesn't handle any
VT100 style escape sequences, and second it doesn't scroll the
screen. (It also turns out that it doesn't handle CR LF
sequences very well, giving the effect of double spaced type for
everything you receive).

Clearly, I was going to have to handle each character received
individually. If you look into the file vt100.bas, you'll see
there's a routine called Term_Put that takes a string and
displays it in our terminal window. You'll see that (along with a
lot of other stuff) it loops through each character, deciding if it
is a character that is "magic" (such as an escape, return, line
feed, etc.), or just a printing character. When it encounters a
magic character, it performs whatever action is necessary (e.g.,
for the return character, it sets the current x position to 0).
When it encounters a displayable character, it just buffers the
character up for later display.

[A brief digression: The overhead for making calls to the
windows routines that display text is very high. In the first
iteration of the program, I would output each character as I
received it. This worked, but the program was unable to keep
up with even 2400 baud. For reasons of speed alone, I decided
to save up as much text as I could before passing it along to
windows; this has resulted in a tremendous performance gain.
Hence, you see all of the code involved with checking to see if
there's any buffered text to decide if something needs to be
written.]

The logic for handling escape sequences is crude. When an ESC
character is seen, a flag is set, and all incoming data is diverted
to the AddEscape() subroutine. The end of the sequence is
detected when a letter is received (this works on almost all ANSI
style escape sequences with only a few esoteric exceptions). I
then do a couple of SELECT CASE statements to get to some
code that knows how to handle the escape sequence properly.
(See below for comments on attributes).

The actual output is done with the windows TextOut() API,
rather than using the VB Print command. I thought the
performance was marginally better, although I didn't test this
enough to make a solid comparison. The TextOut() routine
takes, as its argument, the hDC of the window I'm updating (I
called the form TTY), the x and y coordinates of where I want to
write, the string, and its length. All very straightforward.

Scrolling presents an interesting problem for the terminal
emulator. When the emulator receives a line feed and the
cursor is on the last line of the window, it needs to move the
text up rather than moving the "cursor" down. To do this I could
just repaint all the text, but that's too slow. Instead, I used the
API routine BitBlt(), which will copy one portion of the display
(in this case lines 2 through 24) to another portion of the
display (lines 1 through 23). BitBlt() also serves to clear the

last line out after the scroll (in fact, you see I use it elsewhere to
clear to end of line, etc.).

The "cursor" also uses BitBlt(); to draw the cursor, I just copy a
region onto itself inverting the data in the process.

Attributes (underline, etc.) are handled by just setting the
various VB "font" properties. Since there's no "fontreverse"
property, I just simulate it by setting reversed text to grey
instead of black. It's a cop-out, and I may fix it later (or you can
fix it and send me the update! ;-)).

The last thing about the display that needs to be mentioned is
handling "paint" messages. If I want to be able to pop windows
above the terminal screen, or minimize it, etc., the code has to
be able to recreate the screen when a "paint" message is
received. To do this, I have to remember all the text that is on
the display. This is done using two buffers, ScrImage and
ScrAttr. The first buffer holds the actual text that's on the
dislay, while the second hold the attributes of each character
(so I know to redraw it as underline, etc.). A fair amount of
work is done making sure that these buffers match what is on
the screen.

Last, it's worth mentioning how these things get tied together.
Unlike the keyboard, the com ports don't generate any
"messages", so any com program has to constantly check for
new data rather than being told about it. My first go at the
program had a timer that constantly checked for new data. This
worked OK, but it really didn't have the crispness I wanted. So,
I settled for an endless polling loop in the program. All the
routine does is constantly read from the serial port and send
any received text off to the display. In order to prevent the
program from bringing windows to a halt, it calls the VB routine
DoEvents() on every loop, which lets other applications on the
system run.

Other than these features, there's a capture-to-file feature
which I've thrown in; all that does is open a file and print to it
with the received text. It should be simple to add XMODEM to
the package, but that is left to the reader...

I hope you find this useful in your use of VB. As I said, the code
is far from perfect, but it does work and illustrates some non-
obvious points. Best of Luck!

Charles McGuinness
[76701,11]

*** MODIFICATIONS ***

Several corrections have been made to the source

code originally distributed as VBTERM.ZIP. From a
functional standpoint, correct updating of the screen
has been added, as well as calculating the cursor
position. Also, full screen movement commands
have been mostly added as well as some color
support. The result of this is that you can probably
call just about any interactive service which supports
ANSI or VT100 full screen text interfaces and have
the program work correctly. The main problem the
previous version experienced was an incorrect
declaration for a function in the Windows GDI DLL,
where a ByVal keyword was missing.

I began to add xmodem and ymodem transfer to this
program, but it will be simpler and more appropriate
to add this as callable DLL function. Please look for
this version in the next month or so.

If anyone else has plans on working on this, please
see if you can organize the menu to support a dialing
directory, etc. so that modem commands are not
required. This will make the program much more
useable for most persons.

I would like to cite the creator of the original version
of this software, Charles McGuinness for his efforts
and his support of the public domain concept, which I
am hopefully also endorsing here.

Robert C. Evans, Jr.
6121,17 [also Jerry Gentry]

