
Custom Message Boxes in Visual Basic
Visual Basic's MsgBox function is a good one, a direct port from it's API counterpart

MessageBox. However, the biggest problem I have with MsgBox is the lack of formatting
capability. You're stuck with one font and four icons and you have no control over positioning,
size, color or alignment.

I've created a custom message box which I use for those situations where the standard
MsgBox function doesn't have the flexibility I want. With the CustomMsg sub and it's related
Message form I now have the capability to control the size of the box, or to put another icon in
the place of the four predefined icons we're allowed with the direct call. For example, just try
doing this with MsgBox...

The functions CustomMsg and WrapText and the form MsgForm use standard VB forms,
controls and code, which means you can you can determine any font characteristics you want
for the message text; you control the color and style of the form and title bar and you can add
any icon you want to the list of icons available for use with the form.

This week's example is as much useful utility as a how-to file; This ain't simple, and I
won't be covering all the code in the example section of this column, so you won't be able to
recreate this program by copying code from the sample section to your created forms.
However, you can download all source code from Windows Online in the file VB021EX.ZIP.

I've included a front end so you can see how the Custom Messagebox is called. It looks
like this...

As you can see, you can control a number of attributes of the box, such as...

Message and TitleBar Text

Icon to use (including no icon)

Width of the Box (Height is determined automatically), and

Modality of the Window

In addition, you can control additional attributes directly from code or at design time,
including font styles, form colors and everything else.

 How it Works...
There's nothing remarkable about the MessageForm itself except for the control array of

pictures used to contain available icons. The indexes of these arrays are what you refer to
when specifying which icon to use. This allows you to put whatever pictures you want into the
form and have them available at run time.

For the sake of both consistency and convenience, I've added pictures with indices of
16,32,48 and 64 and put the standard Windows messagebox icons in them. This helps keep
the CustomMsg function consistent with the MsgBox function. The interesting thing to note
here is that the array elements are non-contiguous. I've numbered the elements 1,2,3,4,5,16,
32, 48 and 64; Visual Basic doesn't mind the breaks in between. This means you can place
other numbered icons on the form as you require and call them by number.

 Extra Considerations...

I've included a very involved text justification routine in here called WrapText because I
needed to determine the exact size of the label after the message text was placed in it.
WrapText works for any control; it evaluates a text string based on the width of the destination
control and breaks that text string into individual lines that will fit in the control. It then places
each substring into a string array.

Code Sample

Do
 SpaceLoc% = InStr(StartPlc%, SourceTxt, " ")
 LFLoc% = InStr(StartPlc%, SourceTxt, LF)
 If SpaceLoc% = 0 And LFLoc% = 0 Then
 NextWord$ = Mid$(SourceTxt, StartPlc%)
 ElseIf SpaceLoc% <> 0 And LFLoc% = 0 Then
 NextWord$ = Mid$(SourceTxt, StartPlc%, SpaceLoc% - StartPlc% +
1)
 ElseIf SpaceLoc% = 0 And LFLoc% <> 0 Then
 NextWord$ = Mid$(SourceTxt, StartPlc%, LFLoc% - StartPlc% + 2)
 ElseIf SpaceLoc% <> 0 And LFLoc% <> 0 Then
 'which comes first? Space or LF?
 If SpaceLoc% < LFLoc% Then 'Space came first...
 NextWord$ = Mid$(SourceTxt, StartPlc%, SpaceLoc% -
StartPlc% + 1)
 Else
 NextWord$ = Mid$(SourceTxt, StartPlc%, LFLoc% - StartPlc%
+ 2)
 End If
 End If

 TabLoc% = InStr(NextWord$, Chr$(9))
 If TabLoc% <> 0 Then
 Lft$ = Left$(NextWord$, InStr(NextWord$, Chr$(9)) - 1)
 Rit$ = Mid$(NextWord$, InStr(NextWord$, Chr$(9)) + 1)
 NextWord$ = Lft$ + Space$(gTabSize) + Rit$
 DebugMsg$ = DebugMsg$ + "TAB Found at " + Format$(TabLoc%,
"0") + LF
 End If

 WordLen% = Len(NextWord$)
 DebugMsg$ = DebugMsg$ + "Word found is [" + NextWord$ + "]" + LF
 DebugMsg$ = DebugMsg$ + "Word Length is " + Format$(WordLen%) + LF

 If DestForm.TextWidth(CreatedTxt(LineQty%) + NextWord$) >
DestCtrl.width Then
 LineQty% = LineQty% + 1
 End If

 CreatedTxt(LineQty%) = CreatedTxt(LineQty%) + NextWord$
 StartPlc% = StartPlc% + WordLen%

 If StartPlc% >= SourceLength% Then Exit Do
Loop

After WrapText formats the text with linefeeds at the appropriate locations, the text is
placed in the destination control. Since Label1's AutoSize property is set to TRUE we can now
use the label's dimensions to position the icon and set the height of the form accordingly.

 How to Use It...
The best example of how CustomMsg is called is in Command3, which is the "Show

Message" button, natch...

Sub Command3_Click ()
 Msg$ = Text1.Text
 Titl$ = "Test Message"
 FormWidth%=Val(Text2.Text)
 If Check1.Value = 1 Then OKBtn% = MODAL Else OKBtn% = MODELESS
 CustomMsg Msg$, IconNumber, Titl$, FormWidth%, OKBtn%
End Sub

The parameters passed to CustomMsg are as follows:

Msg$ The message string to use
IconNumber the Index number of the icon picture to use

(Passing zero yields no icon)
Titl$ The titlebar string
FormWidth% Width of the form in Twips (remember Scalemode is TWIPS)
OKBtn% If TRUE, the form is displayed Modally and the OK button is

visible. The OK button must be clicked to hide the form.
If FALSE, the form is displayed normally with no button.
Focus can be set to other forms, etc. This is handy when you
want to pop up a message without hanging the system with a
modal form.

Like I said above, there's no example this week; this is a bit too complex to put into an
example section you recreate. If you want this code, feel free to download it from Windows
Online as VB021EX.ZIP. Feel free to use this message box in any of your applications!

Enjoy!

For Windows Online "the Weekly"

