
IPX & SPX Custom Controls v2.00
For

Visual BasicTM 3.0
&

WindowsTM 3.1

Introduction

in.doc

IPX (Internetwork Packet Exchange) protocol is a datagram (connectionless) service
used as the underlying protocol in Novell NetWare. IPX establishes no

connections nor guarantee of delivery. Each packet a workstation sends is treated
separately. SPX (Sequenced Packet Exchange) is a connection-oriented protocol

providing guaranteed packet delivery, flow control, and sequencing. SPX has
many of the characteristics of the transport level of OSI. IPX/SPX are

adaptations of protocols developed by Xerox(r), the Xerox Network System,
XNS(tm).

NetWare addressing is similar to the postal service's addressing system that identifies
recipients by country, state, city, street, number, apartment, and individual names.
NetWare addresses consist of three components: network number, node address, and
socket. Network numbers identify each segment of an internetwork. Network numbers
are assigned when NetWare file servers and bridges are installed. IPX derives the node
address from the address of each network adapter card. Socket numbers provide routing
within a node, since several processes can be running simultaneously. Processes can
open and close sockets to receive and send packets.

The IPX and SPX custom controls allow you to communicate with remote machines
connected by a local area network. To use the control, you must have the workstations
set up as NetWare clients. This involves loading IPX.COM or IPXODI.COM before
Windows loads. The examples provided also require installing NETX or VLMs because
they use several NetWare services to find other users.

The IPX and SPX custom controls are event driven and relieve the application from
polling the status of network communication channels. When new data is received from
a remote machine, the IPX or SPX custom control fires a Visual Basic subroutine
allowing the application to service the received information.

Several examples are provided showing how to use the controls. Further information
about IPX and SPX can be found in the following references: Client SDK
Documentation and C Programmer's Guide by Novell, C Programmer's Guide To
NetBIOS, IPX And SPX by W. David Schwaderer, Programmer's Guide to NetWare by
Charles Rose, and Network Programming in C, by Barry Nance.

Control Properties

(These properties apply to both controls, unless indicated otherwise)

Socket
[form.]Control.Socket[= numericexpression]

Sets the socket that the control listens to and sends packets out through.

Example: spx1.Socket = &H5454

ReceiveECBS
[form.]Control.ReceiveECBS[= numericexpression]

Settings
Default = 5

Sets the number of ECBs that are used to receive packets. Currently, this property
should only be set in the design environment and not at run time.

SendECBS
[form.]Control.SendECBS[= numericexpression]

Settings
Default = 1

Sets the number of ECBs that are used to send packets. Currently, this property should
only be set in the design environment and not at run time. In addition, this property
should currently be set to 1.

Channels
[form]Control.Channels[= numericexpression]
(not applicable for IPX)

Settings
Default = 1

Sets the maximum number of connections that the control will need to service. This
property can be set once after the control is loaded and cannot change until the control is
reloaded. Currently, this property has no effect.

Example: spx1.Channels = 1

Connection
[form]Control.Connection
(not applicable for IPX)

Returns the SPX connection ID assigned to this connection by SPX. This ID may be
used to make SPX calls in NWIPXSPX.DLL.

Example: id% = spx1.Connection

Send

[form.]Control.Send[= stringexpression]

Sends stringexpression to a remote node specified by RemoteName.

Example: spx1.Send="HELLO WORLD"

Received
[form.]Control.Received

Return Data Type String

Retrieves data retrieved from the network. When data is received, the control will call
the Visual Basic subroutine spx1_ReceiveData

Example:
Sub spx1_ReceiveData ()

Data$ = spx1.Received
End Sub

ReceivedFrom
[form.]Control.ReceivedFrom

Return Data Type String * 12

Returns the internet address (network, node, and socket) of the node that sent the most
recently received packet.

Example:
Sub spx1_ReceiveData()

From$ = spx1.ReceivedFrom
 Data$ = spx1.Received
 End Sub

Event
[form.]Control.Event

Return Data Type Integer

Retrieves an event about the connection. An event is any activity (received data, errors,
new connection with a remote, lost connection with a remote, etc.) related to the
connection. When an event occurs, the control will fire the subroutine spx1_LinkEvent.

Example:
Sub spx1_LinkEvent ()

Event% = spx1.Event

End Sub

Status
[form.]Control.Status [= { 0}]
(not applicable for IPX)

Status Initialization:
0 Disable

Status Information:
1 Control is listening for a connection
2 Control is trying to establish a connection
3 Control has established a connection, ready to send
4 Control is terminating the connection

Controls a connection and will contain status information. Setting the Status property to
0 will terminate any connection.

Example: spx1.Status = 0 'Terminate any connection

LinkType
[form.]Control.LinkType [= numericexpression]
(not applicable for IPX)

Settings
Default 1
1 establish a session with remote
2 listen for connection

Set the control's mode of operation. This may be changed at any time.
Example: spx1.LinkType = 2

LocalName
[form.]Control.LocalName

Return Data Type String * 12

Returns the internet address of the current workstation (network, node, and socket).

Example: myAddress = spx1.LocalName

RemoteName
[form.]Control.RemoteName[= string expression]

Set the internet address that the control will use to send and receive data. This may be

changed at any time.

Example: spx1.RemoteName = yourAddress

PacketType
[form.]Control.PacketType [= numericexpression]
(not applicable for SPX)

Sets the Packet Type field in the IPX header.

Settings
Default 0
0 UnKnown packet
4 IPX Packet

Example: ipx1.PacketType = 4

TaskID
[form.]Control.TaskID

Return Data Type Long

Returns the task ID from NWIPXSPX.DLL for the current task.

Example: myTaskID = spx1.TaskID

Control Events

LinkEvent()

This event is called each time an event for a connection occurs. An event might be an
IPX/SPX error or an event listed in the event table. The application should check the
value of the Event property during this event.

Example:
Sub spx1_LinkEvent()
 Event% = spx1.Event()
End Sub

ReceiveData()

This event is called each time data is received. The application should retrieve the value
of Received during this event.

Example:
Sub spx1_ReceiveData()
 Data$ = spx1.Received()
 End Sub

SentData()

This event is called each time the control has transmitted data.

Example:
Sub spx1_SentData()
 ' Ready to send next packet
 End Sub

Example Applications

NETCHAT.MAK

This example application uses the IPX control to send IPX packets to another
workstation and allow the users to chat to one another. The application uses a simple

protocol and finite state machine to connect to another application, send and receive data,
and then disconnect from the other application. This application also uses several calls

provided by NWCALLS.DLL to find all the other users and their internet addresses.

CLIENT.MAK & SERVER.MAK

These two examples demonstrate the SPX control in a simple client/server protocol. The
client application sends a directory command to the server, which returns a directory

listing of the server's current directory. To set an application, all that is needed is to set
the LinkType property to 2. To be a client, set the LinkType property to 1.

Event Values

Any of the following events will trigger a spx1_LinkEvent call. The value returned by
Event is listed in the left column and its meaning is listed on the right.

237 Abnormal Connection Termination

238 Invalid Connection

239 Connection Table Full

241 IPX/SPX Not Installed

242 No DOS Memory

243 No Free ECB

244 Lock Failed

245 Over the Maximum Limit

246 IPX/SPX Previously Initialized

252 Socket Not Opened
SPX Command Canceled with IPXCancelEvent

253 Malformed Packet
SPX Packet Overflow

255 SPX Socket Not Opened

Visual Basic Errors

The following is a list of special errors than can be returned by the IPX/SPX custom
controls. The value in the left column is the error code returned in the Visual Basic "Err"
variable and its meaning is on the right.

22001 IPX not installed
22002 SPX not installed
22003 Currently only 1 user allowed
22004 Socket not opened

Visual Basic is a trademark of Microsoft Corporation.
Windows is a registered trademark of Microsoft Corporation.
IPX/SPX, NetWare are registered trademarks of Novell, Inc.
Xerox Network System is a registered trademark of Xerox.

