
TurboDXF
TurboDXF is a Windows Dynamic Link Library for creating industry
standard DXF files from any Windows development tool. The DXF files
created by your application and TurboDXF can then be imported into many
popular Windows applications such as Corel Draw, Micrografx Designer and
Word for Windows. In addition the DXF files are fully compatible with all
CAD applications such as AutoCAD.

Features
1) Dynamic link library callable from many compilers and development

tools

2) Includes routines for drawing lines, arcs, circles, filled blocks,
polylines, text, points

3) Includes routines for creating multiple layers

Supported Applications
TurboDXF is the ideal addition to Visual Basic, Microsoft Excel,
ObjectVision, Turbo Pascal for Windows and any Windows C compiler:

1) Create DXF graphics in Visual Basic and export them to other
applications, like Corel Draw, for touch up and printing.

2) Create an ObjectVision application to view a record in a data base,
click a button and have that record added to the DXF file. When all
the records needed in the graphic have been added, lose the DXF file.
Open Corel Draw (or another supported application) to view the
graphic. TurboDXF includes simplified charting commands.

3) From C and C++ create applications that generate maps from data
bases. Viewing results of computer simulations graphically is much
more productive than pouring over pages of printed output.

All DXF files created by TurboDXF can be viewed in AutoCAD, MicroStation
and most otherCAD applications capable of importing DXF files.

Demonstration Version
The DLL included with this demonstration package is limited to creating 25
entities per drawing. The full version of the DLL will create an unlimited
number of elements and layers. The sample DXF files were created with the

TurboDXF 1 Ideal Engineering Software

full version of the DLL. When you run the demonstration applications you
will see only part of the sample DXF files.

TurboDXF
The TurboDXF DLL is written completely in Turbo Pascal for Windows. A
TurboDXF TPU (for DOS) is also available for Turbo Pascal v.6 and earlier .
In addition the DOS version includes full AutoCAD block and attribute
support.

Pricing
Both TurboDXF libraries (DOS and Windows) are priced at $50US
($60CDN) each. Both libraries can be ordered together for $80US
($90CDN). The libraries each include a printed manual and a disk with the
library, sample programs and sample output. Include $5 for shipping and
handling.

Ordering
Turbo DXF is available from Ideal Engineering Software.
Ideal Engineering Software
#105 1280 Fir Street
White Rock, British Columbia
Canada
V4B 4B1

As mentioned the cost is US$50 (CDN$65) for the Windows version of
TurboDXF. You will receive a full version of the TurboDXF DLL with which you
can create an unlimited number of entities. In addition you will receive a
printed manual and runtime versions of the Visual Basic and ObjectVision
applications.

Sample Applications
I have included five sample applications with this demo. The sample
applications included with this demonstration version of the TurboDXF DLL
are intended to highlight probable Windows applications as opposed to CAD
applications. Most Windows applications do not support layers, polylines,
three dimensional drawings, blocks and attributes. This DLL includes full
support of these DXF commands so you can easily create DXF files for
AutoCAD use.

To view the files that are produced by these applications you will need an
application that supports DXF imports. The software has been tested with
the following applications:

1) AutoCAD (DOS)
TurboDXF 2 Ideal Engineering Software

2) Drawing Librarian (DOS)
3) Drawing Librarian (Windows version)
4) Corel Draw (Windows)
5) Micrografx Designer (Windows)
6) Microsoft Word for Windows 2.0 (Windows)

TurboDXF 3 Ideal Engineering Software

The Sample Applications

1. A Microsoft Visual Basic program that creates the demo DXF file on
disk. This application includes the VBDEMO.BAS file with the SUB
declarations. When running the applications simply click the "Create
DXF file" button to make the sample DXF file. As noted above only
part of the DXF file will be created due to the 25 entity limit in the
demonstration DLL. Look at the file VBDEMO.DXF for the full output
from this program. In addition to the source files, a compiled EXE file
is and the Visual Basci runtime included.

2. A Turbo Pascal for Windows program that creates the same sample
DXF file. Compile the TPDEMO1.PAS file with Turbo Pascal for
Windows. Run the application and then double click to close the
window. Again the full sample file will not be created due to the 25
entity limit in the demonstration DLL. Check the file TPDEMO1.DXF
for the full results of this run (it is similar to the drawing created by
the Visual Basic example). This application is included in source
(.PAS) and compiled form. No extra software (other than Windows) is
required to run this application.

3. A Turbo Pascal for Windows program that creates a bar chart.
Enter 10 "Y" values as prompted. The sample program TPDEMO2.PAS
will create a scaled bar chart with your values.

4. A Borland ObjectVision (OV) application (OVDEMO1.OVD) that
creates a sample DXF file similar to the previous two applications.
Simply click on the button to create the file. You will require either the
runtime or full version of ObjectVision for this demo.

5. A Borland OV application (OVDEMO2.OVD) connected to a Paradox
data base to create a drawing of lines and text. There are about 20
records in the data base each consisting of two X,Y pairs (the end
points of the line) and a text string. You can change or add to the little
data base using the OV application. There are also "Open DXF", "Add
to DXF" and "Close DXF" buttons. Open the DXF file first (if you don't
the application will crash). Next scroll through the data base with the
"Previous" and "Next" buttons. When you see a record you like press
either (or both) "Add" buttons to add the text string and/or the line.
When finished press the "Close DXF" button and exit OV. Load the
DXF file into a supported application to see the graphic you created
from the data base. You will require either the runtime or full version
of ObjectVision for this demo. A DXF file created with this application
is in OVDEMO2.DXF.

TurboDXF 4 Ideal Engineering Software

6. I have started work on adding the DXF commands to Microsoft Excel.
Excel can register DLLs for its use. A future sample application could
allow the user to highlight a block of X,Y pairs and use TurboDXF to
create a polyline from the data.

To run the sample applications, copy the TURBODXF.DLL from the
distribution disk to your main Windows directory. Copy the applications
from the two diskettesto sub-directories on your hard disk. I have included
the Visual Basic runtime on Disk 1. To run the ObjectVision demos you will
have to use Disk 2 and PKUNZIP to decompress the runtime files. You will
require about 1Mb of disk space for the ObjectVision runtime. To view the
source code for either of these demos you have to install the respective
distribution software for those systems.

To run the Turbo Pascal applications you don't need any extra software. To
view the Pascal source code use Turbo Pascal for Windows or any text
editor.
To view the DXF results created by these programs you will need a DXF
aware program. See the above list for tested software.

TurboDXF 5 Ideal Engineering Software

Mini Manual
This section briefly describes the routines in this sample DLL. When you
purchase the full version you will receive a complete detailed manual. The
data types for all the calls are PChar,double and integer. Most applications
seem to support these data types. I had to use "double" because that is the
only floating point type that ObjectVision supports. If your development tool
has trouble with these data types let me know and I will do my best to
change the DLL.

The general format of a DXF file is:

1. Create and open the DXF file (ASCII)
2. Add some header information (drawing limits, layer names and colours

etc.)
3. Add all the entities (lines, arcs, polygons, text etc.)
4. Close the DXF file

The following procedures are included in the DLL. As these are Turbo
Pascal procedures (as opposed to functions) they don't return a value. See
the respective applications for the required code to register the DLL in each
environment.

DXFOpen(FileName:PChar)
This must be the first command issued. This opens the DXF file
and adds some house keeping information. The filename should
include the .DXF extension so other applications will recognize the
file.

DXFHeader(X1,Y1,X2,Y2:double)
The X's and Y's are the corners of the drawing. The X1,Y1 pair
defines the lower left corner while the other pair defines the upper
right corner. Most Windows applications ignore these numbers and
scale the drawing to fit their working area but all CAD applications
use it. You must include this call in your application because while
the application may not use the values they have places to fill in the
DXF file.

DXFStartTables(NumLayers : integer)
Again most Windows applications don't support layers the same way
CAD packages do. (Designer has layers but doesn't make the
translation from the DXF file - don't ask me why). The NumLayers
parameter is the number of DXFAddLayer calls you will be making.
Most Windows applications aren't sensitive to this number (ie you set
NumLayers=5 and call DXFAddLayer 10 times). CAD applications

TurboDXF 6 Ideal Engineering Software

are very sensitive to this parameter. If you are careless here you
could create a DXF file that will load into Corel Draw but not
AutoCAD. This may or may not be important. Just so you know.

TurboDXF 7 Ideal Engineering Software

DXFAddLayer(LayerName : PChar; LayerColor : integer);
This procedure adds layers to the drawing. If you are using AutoCAD
(or another application that truly supports layers) you will be able to
selectively turn the layers on and off. This is fundamental to CAD
drawings. Most Windows applications (Corel Draw and Micrografx
Designer for example) do not properly support DXF layers. Each
entity that is added to a layer is given that layers color. The
LayerColor is an integer as follows:
1. red
2. blue
3. yellow
4. cyan
5. black
6. white
7. magenta

DXFStartViewTable(NumViews:integer)
AutoCAD supports named views. In AutoCAD you can call up a
named view. This will zoom to a pre-defined view. Most Windows
applications don't support these named views. A call to this
procedure must be included for the DXF file to be read by any
application. Even if your intended application doesn't support
named views you must include this procedure. Simply set
NumViews to 0.

DXFAddView(ViewName: PChar;Height,Width,CentreX,CentreY :
double);

If NumViews in the above (DXFStartTable) is "n" (non-zero) then
include "n" calls to this procedure. Note that this is really only useful
if you will be using AutoCAD to view your DXF drawings. The
ViewName is a string. The other parameters are self explanatory.

DXFEndTables
No parameters. A call to this procedure is always required. This
closes the "housekeeping" section of the DXF file and prepares the
file to accept entity data.

TurboDXF 8 Ideal Engineering Software

DXFAddText10(X1,Y1,Z1,Height,Rotate : double;Txt,LayerName :
PChar)

This is the standard command to add text to the DXF file. The "10"
suffix indicates it is AutoCAD rel. 10 compatible. There is another
more sophisticated command in the full version of TurboDXF that
supports the richer AutoCAD rel. 11 text command. The Z1 value is
only required in AutoCAD since most Windows applications force all
the elements to zero. Experiment with the Z1 to see if your
application supports it. The height is the text height. In AutoCAD it
is in the units of the drawing (feet or meters for example). Windows
applications tend to scale the drawing to fit their drawing space so
again experimentation is required. Rotate is the angular rotation in
degrees.Txt is the text string you want to add. Line breaks are not
supported. To do a paragraph of text you will need multiple
DXFAddText10 calls.

DXFAddPoint(X1,Y1,Z1 : double; Layer : PChar);
Adds a point to a drawing at the X,Y,Z coordinates. Points are very
small (their size is not a parameter) and I have never really found an
application for them. I suppose if you had enough of them you could
create some sort of scatter diagram. I think it would be better to add
small circles instead. Included for completeness.

DXFAddArc(X1,Y1,Z1,Radius,StartAngle,EndAngle : double;Layer :
PChar)

X,Y,Z is the centre point for the arc. Radius is self explanatory. The
two angle parameters are in degrees (positive counter-clockwise
from parallel). Note that a StartAngle of -10 is the same as 350. See
any of the demo applications.

DXFAddSolid(X1,Y1,Z1,X2,Y2,Z2,X3,Y3,Z3,X4,Y4,Z4 : double;Layer :
PChar)

A four point filled polygon. The fill colour is the layer colour. Set the
"4" series parameters equal to the "3" series to get a triangle. There
is a DXFAddBlock command that makes creating bar charts easier. It
calls this procedure.

DXFAddLine(X1,Y1,Z1,X2,Y2,Z2: double;LayerName : PChar);
Very simple. Adds a line from the first point to the second. The colour
of the line is set by the layer the line is on. These lines are always
hairlines (very thin).

DXFAddPoly(Layer : PChar)
The DXF format supports polylines. Polylines are multi-segment lines
that can have varying thicknesses. The lines are filled with the colour

TurboDXF 9 Ideal Engineering Software

of the layer. To create a polyline call this procedure once. For each
segment of the polyline call the DXFAddVertex procedure with the
point (vertex) data. Add as many vertices as required then finish with
a DXFEndPoly.

TurboDXF 10 Ideal Engineering Software

DXFAddVertex
Call this procedure after a single call to DXFAddPoly. Call it as many
times as required for each vertex. True DXF aware applications
support different start and end widths for a line segment. On the
other hand Windows applications support of polylines is very
variable. Corel Draw ignores the line thickness. Micrografx Designer
makes each segment the same thickness as the StartWidth. Load one
of the demo drawings into AutoCAD to see the variable width
polyline. For multi segment lines this is easier than multiple calls to
the DXFAddLine procedure.

DXFEndPoly
Required once after all the calls to DXFAddVertex are made. This
finishes the polyline. No parameters are required.

DXFAdd3DFace(X1,Y1,Z1,X2,Y2,Z2,X3,Y3,Z3,X4,Y4,Z4:double;Layer:
PChar)

Adds a 3D polygon to the DXF file. Parameters as before. This is a 3D
command so Windows support is variable (typically non-existent).
Use DXFAddSolid. AutoCAD supports this command. Very useful for
creating surfaces etc.

DXFAddCircle(X1,Y1,Z1,Radius,Extrusion:double;LayerName:PChar)
Adds a circle centred at X,Y,Z. Radius is self-explanatory. The
extrusion makes the circle into a tube in 3D. Typically not supported
in Windows applications but you should experiment with your
application.

DXFClose
When all the entities have been added a single call to this procedure
will close the DXF file. One and only one call is required

DXFAddBar(X1,Y1,Width,Height:double; Layer:PChar)
Adds a bar to the DXF file. This is a very simple and useful way of
creating bar charts. Simplifies the use of the DXFAddSolid
procedure. The X,Y pair is the lower left corner of the bar. The width
and height are self-explanatory. The colour of the bar will be
controlled by the layer. See the sample program GRAFDEMO.PAS.

TurboDXF 11 Ideal Engineering Software

DXFAddXAxis(X1, Y1, X2 : double; NumTicks : integer; Layer : PChar)
This procedure adds an X axis to the DXF file. This is intended to be
used with DXFAddBar above to create DXF bar charts. The X1,Y1
pair is the start point of the axis (usually 0,0). X2 is the ending X
value (ie Max X). The number of ticks is controlled with NumTicks --
text labels will be printed just below the axis at all ticks. See the
sample program GRAFDEMO.PAS.

DXFAddYAxis(X1, Y1, Y2 : double; NumTicks : integer; Layer : PChar)
This procedure adds an Y axis to the DXF file. This is intended to be
used with DXFAddBar above to create DXF bar charts. The X1,Y1
pair is the start point of the axis (usually 0,0). Y2 is the ending Y
value (ie Max Y). The number of ticks is controlled with NumTicks --
text labels will be printed just below the axis at all ticks. See the
sample program GRAFDEMO.PAS.

TurboDXF 12 Ideal Engineering Software

Turbo Pascal Sample Program TPDEMO1.PAS
Program TPDemo1;
uses WinCrt;

Procedure DXFOpen(FileName:PChar); far; external 'TURBODXF' index 1;
Procedure DXFHeader(X1,Y1,X2,Y2:double); far; external 'TURBODXF' index 2;
Procedure DXFStartTables(NumLayers : integer); far; external 'TURBODXF' index 3;
Procedure DXFAddLayer(LayerName : PChar; LayerColor : integer); far; external 'TURBODXF' index 4;
Procedure DXFStartViewTable(NumViews:integer); far; external 'TURBODXF' index 5;
Procedure DXFAddView(ViewName: PChar;

 Height,Width,CentreX,CentreY : double);far; external 'TURBODXF' index 6;
Procedure DXFEndTables; far; external 'TURBODXF' index 7;
Procedure DXFAddText10(X1,Y1,Z1,Height,Rotate : double; Txt,LayerName : PChar); far; external

 'TURBODXF'index 9;
Procedure DXFAddPoint(X1,Y1,Z1 : double; Layer : PChar); far; external 'TURBODXF' index 10;
Procedure DXFAddArc(X1,Y1,Z1,Radius,StartAngle,EndAngle : double;Layer : PChar); far; external

'TURBODXF' index 11;
Procedure DXFAddSolid(X1,Y1,Z1,
 X2,Y2,Z2,
 X3,Y3,Z3,
 X4,Y4,Z4 : double;
 Layer : PChar);far; external 'TURBODXF' index 12;
Procedure DXFAddLine(X1,Y1,Z1,X2,Y2,Z2: double;LayerName : PChar); far;

external 'TURBODXF' index 13;
Procedure DXFAddPoly(Layer : PChar);far; external 'TURBODXF' index 14;
Procedure DXFAddVertex(X1, Y1, Z1, StartWidth, EndWidth : double;
 Layer : PChar);far; external 'TURBODXF' index 15;
Procedure DXFEndPoly; far; external 'TURBODXF' index 16;
Procedure DXFAdd3DFace(X1,Y1,Z1,X2,Y2,Z2,X3,Y3,Z3,X4,Y4,Z4:double;
 Layer:PChar);far; external 'TURBODXF' index 17;
Procedure DXFAddCircle(X1,Y1,Z1,Radius,Extrusion:double; LayerName:PChar); far; external

'TURBODXF' index 18;
Procedure DXFClose; far; external 'TURBODXF' index 19;
Procedure DXFAddBar(X1,Y1,Width,Height:double; Layer:PChar);far; external 'TURBODXF' index 20;
Procedure DXFAddXAxis(X1,Y1,X2:double;NumTicks:integer;Layer:PChar);far; external 'TURBODXF'

 index 21;
Procedure DXFAddYAxis(X1,Y1,Y2:double;NumTicks:integer;Layer:PChar);far; external 'TURBODXF'

 index 22;
{===}

var
 i : integer;
 DXFFileName : PChar;

begin
 DXFFileName := 'TPDEMO1.DXF';
 Writeln('Testing TURBODXF DLL. Creating DXF file: ',DXFFileName);
 DXFOpen(DXFFileName); Create and open the ASCII file

 DXFHeader(1,1,10,10); Define the drawing limits. Lower left at
1,1. Upper right at 10,10

 DXFStartTables(5); 5 layers

 DXFADDLayer('LINES',1); Add the layers, The number is
the colour code.
 DXFADDLayer('TEXT',7);
 DXFADDLayer('ARC',1);
 DXFADDLayer('SOLID',5);
 DXFADDLayer('POLY',7);

 DXFStartViewTable(0); No defined views. Call needed for DXF
compatibility.

 DXFEndTables; Required. No parameters.

TurboDXF 13 Ideal Engineering Software

 DXFAddBar(-2,-2,15,16,'POLY'); The first entity. On layer
'POLY'. This makes the
background.

 for I := 1 to 5 do
 DXFAddBar(I*2,1,1,I*2,'SOLID'); Add 5 bars on layer SOLID.

 for I := 1 to 5 do Add 5 bars on layer LINES
 DXFAddBar(I*2-1,1,1,I*2-1,'LINES');

 DXFAddPoly('POLY'); Add a polyline. Applications
vary in their support of this
entity.
 DXFAddVertex(3,1,0,0.5,0.25,'POLY');
 DXFAddVertex(4,3,0,0.35,0.5,'POLY');
 DXFAddVertex(5,3,0,0.75,0.15,'POLY');
 DXFAddVertex(7,5,0,0.25,0.25,'POLY');
 DXFEndPoly; End the polyline.

 DXFAddLine(0,0.5,0,10,0.5,0,'LINES'); Add a line.

 DXFAddLine(0,0.5,0,0,8,0,'LINES');

 DXFAddText10(2,12,0,0.5,0,'TurboDXF! from Ideal','TEXT'); Add some text. This is the
title

 DXFAddCircle(3,3,0,2,0,'ARC'); Add a circle.
X,Y,Z,Thickness,Radius.

 for I := 1 to 8 do
 DXFAddText10(3,7,0,0.25,I*45,'TurboDXF!','TEXT'); Add the text "spokes"

 DXFAddArc(6,5,0,5,-10,110,'ARC'); Add an arc. X,Y,Z,Radius,Start
angle, end angle

 DXFAddSolid(7.5,1,0,9.5,1,0,9.5,6,0,7.5,3,0,'TEXT'); Add a filled solid

 DXFAddXAxis(0,0,10,10,'TEXT'); Add an x axis...

 DXFAddYAxis(0,0,10,10,'TEXT'); and a y axis.

 DXFClose; Close the DXF file.

 Writeln('Test Complete. DXF file closed.');
 writeln('Use Corel Draw, Micrografx Designer etc to view.');

end.

When compiled and run this Pascal program creates the TPDEMO1.DXF
file.. The source code for this program can be found in TPDEMO1.PAS.

TurboDXF 14 Ideal Engineering Software

