
Microsoft Binary Format and Turbo Pascal Real Conversions for Visual Basic

Table of Contents
Introduction

Overview of the Routines

Thanks and Acknowlegments

Disclaimer

Comments & Suggestions

Microsoft Binary Format and Turbo Pascal Real Conversions for Visual Basic

Introduction
One of the things that Microsoft left out of Visual Basic for Windows were the MKDMBF$,
MKSMBF$, CVDMBF, and CVSMBF functions.    These functions converted the old Microsoft
Binary Format numbers used by BASICA or older versions of QuickBASIC (3.0 and earlier) to
the new IEEE format.    Of course, there never was an internal function in QuickBASIC to
convert Turbo Pascal 6-byte Reals into numbers that QB could understand.    Two functions
included in this package, MDKTPR$ and CVDTPR, allow you to perform this conversion.   
They were included in this package because these routines were included in the original C
routines.

To assist Visual Basic programmers who need a way to access or convert the data created by
these older programs these routines are presented for your use without any charge or
registration required.

This is the second version of these routines to be released.    The first version was put
together rather quickly to meet my own and others deadlines.      It was quick and dirty and
was in need of some refinements and bug fixes. The most important change to the
conversion routines was changing them from Subs to Functions for this version and getting
rid of several global variables.      The other major change was putting everything into this
help file.    All of the conversion routines are in this file, as well as in the CVDMBF.BAS file that
you can add to your VB project.    If you don't want to load all of the routines into your project
you can use the Copy Topic button to just get the routines you want easily.

In case you are looking for routines to do the other MK?? and CV?? functions, they are
included in this package as well, since they are required for the proper operation of the MBF
routines.    These routines are from a Microsoft Knowledge base article that described using
the hmemcpy API call to perform this operation.

Microsoft Binary Format and Turbo Pascal Real Conversions for Visual Basic

Overview of the Routines
MKDMBF$ (OldNumberDP as Double)

This routine converts a IEEE double precision number to a MBF 8 byte string.

MKSMBF$ (OldNumberSP As Single)
This routine converts a IEEE single precision number to a MBF 4 byte string.

MKDTPR$ (OldNumberDP as Double)
This routine converts a IEEE double precision number to a Turbo Pascal 6 byte string.

CVDMBF (OldStringDP As String) as Double
This routine converts a MBF 8 byte string into a IEEE double precision number.

CVSMBF (OldStringSP as String) as Single
This routine converts a MBF 4 byte string into a IEEE single precision number.

CVDTPR (OldStringTP as String) as Double
This routine converts a Turbo Pascal 6 byte real string into a IEEE double precision
number.

Other MK??/CV?? Routines

Function MKDMBF$ (OldNumberDP As Double)
Dim X, Sign, Exponent As Integer
Dim NewNum As String
Dim OldString As String
Static ONA(0 To 7), NNA(0 To 7)
OldNum# = OldNumberDP
OldString = MKD$(OldNum#)
For X = 0 To 7

ONA(X) = Asc(Mid$(OldString, X + 1, 1))
Next
Sign = ONA(7) And 128
Exponent = ((ONA(7) And 127) * 2 ^ 4 And 255) + (ONA(6) 2 ^ 4 And 255)
If Exponent Then Exponent = (Exponent + 129 - 1023) And 255
For X = 6 To 1 Step -1

NNA(X) = ONA(X) * 2 ^ 4 And 255
NNA(X) = NNA(X) Or ONA(X - 1) 2 ^ 4 And 255

Next
For X = 0 To 5

NNA(X) = NNA(X) 2 ^ 1 And 255
NNA(X) = NNA(X) Or NNA(X + 1) * 2 ^ 7 And 255

Next
NNA(6) = NNA(6) 2 ^ 1 And 255
NNA(6) = NNA(6) Or Sign
NNA(7) = Exponent
MKDMBF$ = Space$(8)
For X = 0 To 7

Mid$(MKDMBF$, X + 1, 1) = Chr$(NNA(X))
Next

End Function

Function MKSMBF$ (OldNumberSP As Single)
Dim X, Sign, Exponent As Integer
Dim OldString As String
ReDim ONA(0 To 7)
ReDim NNA(0 To 3)
OldString = MKD$(CDbl(OldNumberSP))
For X = 0 To 7

ONA(X) = Asc(Mid$(OldString, X + 1, 1))
Next
Sign = ONA(7) And 128
Exponent = ((ONA(7) And 127) * 2 ^ 4 And 255) + (ONA(6) 2 ^ 4 And 255)
If Exponent Then Exponent = (Exponent + 129 - 1023) And 255
For X = 2 To 0 Step -1

NNA(X) = ONA(X + 4) * 2 ^ 4 And 255
NNA(X) = NNA(X) Or ONA(X + 3) 2 ^ 4 And 255

Next
For X = 0 To 1

NNA(X) = NNA(X) 2 ^ 1 And 255
NNA(X) = NNA(X) Or NNA(X + 1) * 2 ^ 7 And 255

Next
NNA(2) = NNA(2) 2 ^ 1 And 255
NNA(2) = NNA(2) Or Sign
NNA(3) = Exponent
MKSMBF$ = Space$(4)
For X = 0 To 3

Mid$(MKSMBF$, X + 1, 1) = Chr$(NNA(X))
Next

End Function

Function MKDTPR$ (OldNumberDP As Double)
Dim X, Sign, Exponent As Integer
Dim NewNum, OldString As String
Static ONA(0 To 7), NNA(0 To 5)
OldNum# = OldNumberDP
OldString = MKD$(OldNum#)
For X = 0 To 7

ONA(X) = Asc(Mid$(OldString, X + 1, 1))
Next
Sign = ONA(7) And 128
Exponent = (((ONA(7) And 127) * 2 ^ 4 And 255) + (ONA(6) 2 ^ 4 And 255) + 129 -
1023) And 255
For X = 5 To 1 Step -1

NNA(X) = ONA(X + 1) * 2 ^ 4 And 255
NNA(X) = NNA(X) Or ONA(X) 2 ^ 4 And 255

Next
For X = 1 To 4

NNA(X) = NNA(X) 2 ^ 1 And 255
NNA(X) = NNA(X) Or NNA(X + 1) * 2 ^ 7 And 255

Next
NNA(5) = NNA(5) 2 ^ 1 And 255
NNA(5) = NNA(5) Or Sign
NNA(0) = Exponent
MKDTPR$ = Space$(6)
For X = 0 To 5

Mid$(MKDTPR$, X + 1, 1) = Chr$(NNA(X))
Next

End Function

Function CVDMBF (OldStringDP As String) As Double
Dim X, Sign, Exponent As Integer
Dim NewNum As String
Static ONA(0 To 7), NNA(0 To 7)
For X = 0 To 7

ONA(X) = Asc(Mid$(OldStringDP, X + 1, 1)): NNA(X) = 0
Next
Sign = ONA(6) And 128
Exponent = ONA(7) - 129 + 1023
NNA(6) = Exponent * 2 ^ 4 And 255
NNA(7) = (Exponent 2 ^ 4 And 255) Or Sign
For X = 6 To 1 Step -1

ONA(X) = ONA(X) * 2 ^ 1 And 255
ONA(X) = ONA(X) Or ONA(X - 1) 2 ^ 7 And 255

Next
ONA(0) = ONA(0) * 2 ^ 1 And 255
For X = 6 To 2 Step -1

NNA(X) = NNA(X) Or ONA(X) 2 ^ 4 And 255
NNA(X - 1) = ONA(X) * 2 ^ 4 And 255

Next
For X = 0 To 7

NewNum = NewNum + Chr$(NNA(X))
Next
CVDMBF = CVD(NewNum)

End Function

Function CVSMBF (OldStringSP As String) As Single
Dim X, Sign, Exponent As Integer
Dim NewNum As String
Static ONA(0 To 3), NNA(0 To 7)
For X = 0 To 3

ONA(X) = Asc(Mid$(OldStringSP, X + 1, 1))
Next
For X = 0 To 7

NNA(X) = 0
Next
Sign = ONA(2) And 128
Exponent = ONA(3) - 129 + 1023
NNA(6) = Exponent * 2 ^ 4 And 255
NNA(7) = (Exponent 2 ^ 4 And 255) Or Sign
For X = 2 To 1 Step -1

ONA(X) = ONA(X) * 2 ^ 1 And 255
ONA(X) = ONA(X) Or ONA(X - 1) 2 ^ 7 And 255

Next
ONA(0) = ONA(0) * 2 ^ 1 And 255
For X = 6 To 4 Step -1

NNA(X) = NNA(X) Or ONA(X - 4) 2 ^ 4 And 255
NNA(X - 1) = ONA(X - 4) * 2 ^ 4 And 255

Next
For X = 0 To 7

NewNum = NewNum + Chr$(NNA(X))
Next
CVSMBF = CSng(CVD(NewNum))

End Function

Function CVDTPR (OldStringTP As String) As Double
Dim X, Sign, Exponent As Integer
Dim NewNum As String
Static ONA(0 To 5), NNA(0 To 7)
For X = 0 To 5

ONA(X) = Asc(Mid$(OldStringTP, X + 1, 1))
Next
For X = 0 To 7

NNA(X) = 0
Next
Sign = ONA(5) And 128
Exponent = ONA(0) - 129 + 1023
NNA(6) = Exponent * 2 ^ 4 And 255
NNA(7) = (Exponent 2 ^ 4 And 255) Or Sign
For X = 5 To 2 Step -1

ONA(X) = ONA(X) * 2 ^ 1 And 255
ONA(X) = ONA(X) Or ONA(X - 1) 2 ^ 7 And 255

Next
ONA(0) = ONA(0) * 2 ^ 1 And 255
For X = 6 To 2 Step -1

NNA(X) = NNA(X) Or ONA(X - 1) 2 ^ 4 And 255
NNA(X - 1) = ONA(X - 1) * 2 ^ 4 And 255

Next
For X = 0 To 7

NewNum = NewNum + Chr$(NNA(X))
Next
CVDTPR = CVD(NewNum)

End Function

Microsoft Binary Format and Turbo Pascal Real Conversions for Visual Basic

Other MK??/CV?? Routines
MKI$
MKL$
MKS$
MKD$

CVI
CVL
CVS
CVD

Function MKI$ (X As Integer)
temp$ = Space$(2)
hmemcpy ByVal temp$, X, 2
MKI$ = temp$

End Function

Function MKL$ (X As Long)
temp$ = Space$(4)
hmemcpy ByVal temp$, X, 4
MKL$ = temp$

End Function

Function MKS$ (X As Single)
temp$ = Space$(4)
hmemcpy ByVal temp$, X, 4
MKS$ = temp$

End Function

Function MKD$ (X As Double)
temp$ = Space$(8)
hmemcpy ByVal temp$, X, 8
MKD$ = temp$

End Function

Function CVI (X As String) As Integer
If Len(X) <> 2 Then

MsgBox "Illegal Function Call"
Stop

End If
hmemcpy temp#, ByVal X, 2
CVI = temp#

End Function

Function CVL (X As String) As Long
If Len(X) <> 4 Then

MsgBox "Illegal Function Call"
Stop

End If
hmemcpy temp#, ByVal X, 4
CVL = temp#

End Function

Function CVS (X As String) As Single
If Len(X) <> 4 Then

MsgBox "Illegal Function Call"
Stop

End If
hmemcpy temp#, ByVal X,4
CVS = temp#

End Function

Function CVD (X As String) As Double
If Len(X) <> 8 Then

MsgBox "Illegal Function Call"
Stop

End If
hmemcpy temp#, ByVal X, 8
CVD = temp#

End Function

Microsoft Binary Format and Turbo Pascal Real Conversions for Visual Basic

Declaration for and Description of the
hmemcpy API Call

The hmemcpy routine copies bytes from a source buffer to a destination    buffer. This routine
is used to copy the value of each byte in a numeric value, in the case of the MK??$
functions, or string, in the case of the CV?? functions, to a corresponding byte in the
destination    buffer.    The hmemcpy routine requires you to pass strings by value (ByVal)
instead of passing the location of the string descriptor. It is also    required that the string size
is initialized to the correct number of characters.

This declaration should be put in the General|Declarations section of your program and
should be placed all on one line.    See the other MK??/CV?? routines for how this call is used.

Declare Sub hmemcpy Lib "kernel" (hpvDest As Any, hpvSource As Any, ByVal cbCopy As Long)

Microsoft Binary Format and Turbo Pascal Real Conversions for Visual Basic

Thanks and Acknowledgments
First I would like to thank David W. Terry for putting the original C routines on CompuServe
for all to use.      These original routines are in REALCN.ZIP in the IBMPRO forum C file
library.

I would also like to thank Bryan Donaldson, Fred Bunn, and Mark Howard, all of whom
contributed to the creation and debugging of these routines.      Also, a thank you to
Kenneth Jamieson who suggested several of the refinements found in this version.

Microsoft Binary Format and Turbo Pascal Real Conversions for Visual Basic

Disclaimer
No warranties or guarantees are made for these routines and you are solely responsible for
their use or misuse.    The routines are considered Public Domain. You may use or modify
them as needed.

All the company names and products mentioned in this document    are trademarks of the
respective companies.

Since I don't have a copy of Turbo Pascal, I was unable to test the TP related routines a
throughly as I would have liked.    If you encounter problems with them, let me know so that I
can make corrections to it.

Microsoft Binary Format and Turbo Pascal Real Conversions for Visual Basic

Comments & Suggestions
I would like to hear from anyone who gets any use out of these routines.      I am also
available for programming projects and consulting in Visual Basic. You may contact me at:

J. Frank Carr
1532 Amber Trail
Duluth, GA 30136    USA

Voice Mail: (404) 880-5762

CIS:    75120, 2420

America OnLine:    JFCarr

