
Help Contents
Browse Bound Control version 1.0

developed by Gabriel Oancea
Copyright© Delta Soft Inc. 1993

Description description; features, important tips
Properties list of all properties and the index of the custom properties
Events list of all the events supported and the index of the custom events
Constants values for constants and error messages
Keyboard summary list of all the available keys while in browse at run-time

The Browse control is a shareware application, that means you are free to use and
test it for 30 days. After this period of time, if you decide you like it you have to
register it with the author (see address and Compuserve ID below).

You are free to distribute the demo version of the control in any way you like, if you
distribute it with all the documentation enclosed. You are not allowed to sell it.

For inquiries please contact Gabriel Oancea, Compuserve ID: 70404,655, or contact
Delta Soft Inc., 12 Danton Court, Ajax, Ontario, Canada, postal code L1S 3G1.
Telephone: (416) 619-2018.

Description

The Browse control can be used in conjunction with the standard VB Data control to view the contents of
any database file in a table format. It allows you to select the number and content of the data columns
to be displayed, allows editing of the data in the browse window, with data pre- and post-validation - if
editing for the respective column is enabled.

Please read the sub-chapters listed below in order to get accustomed with the Browse control.

Introduction a short introduction to the control
Editing how to handle editing
Other features goodies

Introduction

Example

The way the control appears to the users is very similar with a browse created with Clipper TBrowse
class, or with the standard xBase BROWSE command: each column has a column header, each row is
a record, the user can scroll horizontally and verically either using scroll bars or with the keyboard.
Columns can be frozen at the left side of the control window, etc. There are many improvements
compared to the DOS based browses, all the standard Windows and VB features are available.

The RecordSource (of the Data control) can have as many records as you like, sorted and filtered as
you like, the Browse will display them as provided by the Data control.

How it works:
Create the Data control on the form, you can make it invisible. Set the properties of the Data control, if
required. For example you could set the database and record source.
Then create a Browse control and set the DataSource property to the name of the Data control. Set the
other Browse properties you want to set at design time.

Now you need to write some initialization code, namely to tell the Browse control how many data
columns you will display, and what is the field name and size for each of this columns. You can
optionally set the column headers, column data/header alignment, enable edit for columns of your
choice, set the number of columns to be "frozen" to the left, set the columns that are displayed in a
special colour.

The initialization code can be writen either in the Form_Load() or after the Data control initialization /
refresh procedure (for example if you set/change the RecordSource at runtime)

If editing is enabled you might want to write code to pre- and post-validation of data entry.

See the example application as well, the code is commented.

Introduction Example:

The example below assumes you have a form (Form1) on which there is a Data control Data1 and a
Browse control Brw1. We assume that the Database is set to BIBLIO.MDB and the record source to
the Titles table, also the DataSource property of the Brw1 control is set to the Data1 control.

Option Explicit

Sub Form_Load()
' we want to browse 3 fields from the Titles table
Brw1.Cols = 3 ' set the number of columns

' set the data width for each column (from 0 to Cols - 1, that is 0 to 2)
Brw1.ColWidth(0) = 50 ' Title
Brw1.ColWidth(1) = 20 ' Author
Brw1.ColWidth(2) = 20 ' ISBN

'Set the column headers for each column
Brw1.Header(0) = "Publication title"
Brw1.Header(1) = "Author"
Brw1.Header(2) = "ISB No"

'Set the column data source: the field names
Brw1.ColField(0) = "Title"
Brw1.ColField(1) = "Author"
Brw1.ColField(2) = "ISBN"

' Here you can set also the column alignment, edit enabling, special
' colouring, and other browse properties

End Sub

Editing

Example

One of the most handy features of the control is on-the-spot editing, with data pre-validation and post-
validation and an edit flag for each column.

How does the user see it: while browsing a file he/she can either press ENTER to start editing the
current (highlighted) field, or just simply start entering the text. Press ENTER when done if you
want to save the current field, press ESC to cancel.

All the nice features are there: Cut, Copy and Paste to/from the clipboard, undo, scrolling, etc. -
like any normal text box. The normal xBase editing keys are available: press ENTER or PAGEUP /
PAGEDOWN to exit edit mode and save, press ESC or click with the mouse outside the edit area to
cancel changes. Press UP or DOWN arrows to save and move to the next record up or down.

How do you program it: very simple: just set the property ColEdit(x) = True, (where x is the column
number for which you want to enable editing; you can enable editing of all columns, of one
column or of none, default is none). Then you write code for the EditWhen / EditValid event if
you want to do some data validation. The control will take care of the rest (Click on Example
above for details).

Some hints and requirements:
Write data validation routines, the control will not attempt any validation at all. That means that if
the user enters incompatible data you will get a run-time error.
Do not enable for editing the key (indexed) fields, only if absolutely required
NEVER move the record pointer in the EditWhen / EditValid events !! Also do not request any
Action from the browse while in one of this events, there is no need for the REFRESHLINE, this is
done for you.

Editing Example

The example below assumes you have a form (Form1) on which there is a Data control Data1 and a
Browse control Brw1. We assume that the Database is set to BIBLIO.MDB and the record source to
the Titles table, also the DataSource property of the Brw1 control is set to the Data1 control.

Option Explicit

Sub Form_Load()
Dim k As Integer

' we want to browse 3 fields from the Titles table
Brw1.Cols = 3 ' set the number of columns

' set the data width for each column (from 0 to Cols - 1, that is 0 to 2)
Brw1.ColWidth(0) = 50 ' Title
Brw1.ColWidth(1) = 20 ' Author
Brw1.ColWidth(2) = 20 ' ISBN

'Set the column headers for each column
Brw1.Header(0) = "Publication title"
Brw1.Header(1) = "Author"
Brw1.Header(2) = "ISB No"

'Set the column data source: the field names
Brw1.ColField(0) = "Title"
Brw1.ColField(1) = "Author"
Brw1.ColField(2) = "ISBN"

For k = 0 To 2
Brw1.ColEdit(k) = True ' enable editing for all columns

Next k
' Here you can set also the column alignment, special
' colouring, and other browse properties

End Sub

Sub Brw1_EditWhen(nCol As Integer, cField As String, lCancel As Integer)
' Check if editing can proceed for column nCol, if not set lCancel to True.
' The default action is to start editing.
' This event can be used for example to activate a pop-up window with a
' limited number of choices, instead of allowing the user to type in the
data.
' The cField argument contains the value that will be edited, you can
change
' this value as required - for example to a default value if the field is
empty

End Sub

Sub Brw1_EditValid(nCol As Integer, cField As String, lOk As Integer)
' Validation routine for column nCol, set lOk to False if the data is
invalid.

' The cField argument contains the current data as entered by the user;
' you can change this value as required.
' The default action is to change the data (the DataChanged property of the
' control will be set to True) and write it to the database as soon as the
' position in the database is changing.
' You should use this event to check for empty/duplicate index keys, etc.
If nCol = 2 Then ' we must check that the key field is not empty
If Trim$(cField) = "" Then
MsgBox "The ISBN cannot be blank!"
lOk = False

End If
End If

End Sub

Other features of the Browse control

Some other important properties and events are listed below:

Ability to lock one or more columns at the left edge of the control window: by setting the
LeftFrozen property to a number between 1 and Cols, you tell the browse control to 'freeze' the
respective number of columns - that means that they will be visible no matter how the user scrolls the
other columns. You can change the LeftFrozen property dynamically, at run-time - or let the user do it.
This can be very handy if you would like to keep one / more column(s) always in view. Frozen columns
can be edited, sized, etc. like any other normal column.

Highlighting columns: you can have selected columns displayed in a special color you can set up, all
you have to do is set the ColorSpecial and ColorTSpecial at design or run-time then set the
SpcColor(nColumn) = True and the column will be displayed using the two special colors as
background / foreground. Useful for underlining some special column - as totals of some sort, or the
editable columns if you choose.

Run time adjustable column widths: the user can change the column width by dragging the column
separator with the mouse. For this, move the mouse on the column headers, between two columns:
the cursor shape will change; press the right mouse button and keep it pressed, the column will
appear delimited with a focus rectangle, size it to the right or left, release the mouse button when done.
You can also set the column width from code using the ColWidthPix property (the width of each column
in pixels). This can be useful to save and restore settings of a query the user has defined: when the
control is unloaded (for example in the Form_Unload() save the column width in pixels to some
variable(s), then upon exiting the program to a INI file. In the Form_Load() procedure (after setting the
ColWidth - data width in characters) set the ColWidthPix to the saved values, eventually the location of
the window on screen.

Design-time / run-time adjustable colors: you can set the colors for the header, normal, highlighted
cell, frozen columns and special columns. You can offer the user the chance of setting them to his/her
preferences (use for example the common dialog box control - Colors), and then you can save and
restore them.

Find out when the user tries to move outside the current scope (past EOF or before BOF): the
events HitTop and HitBottom are fired every time when the user tries to move outside the current limits.
Also the HitTop and HitBottom properties are set to True when the user tries to move past EOF of
above BOF. You can use these events / properties to ask if he wants to add a record, or just simply
beep at him.

Reposition the record pointer / refresh the browse display from code: the Action property allows
you to send requests to the browse control, like: RefreshLine, RefreshAll, GoTop, GoBottom, Up, Down,
Left or Right. You can look at the Action property as a method, because no custom methods can be
implemented in the actual version of the CDK.
You can also force the user to enter Edit mode from code, just set the Action property to
BRW_ACT_EDIT, and the current column from the current record will be edited.

Browse Properties
The standard Visual Basic properties supported are:
NAME, INDEX, BORDERSTYLE, DATASOURCE, DATACHANGED, DRAGMODE, DRAGICON,
ENABLED, FONTBOLD, FONTITALIC, FONTNAME, FONTSIZE, FONTSTRIKE, FONTUNDER,
HEIGHT, HELPCONTEXTID, HWND, LEFT, MOUSEPOINTER, PARENT, TABINDEX, TABSTOP, TAG,
TOP, VISIBLE, WIDTH. Please see your VB manual for details about any of these properties.

Custom Properties
Available at design time:
ColorNormal Long Background color of the normal data cells
ColorHeader Long Background color of the column headers
ColorHighlight Long Background color of the highlighted data cell
ColorFrozen Long Background color of the frozen columns
ColorSpecial Long Background color of the special colored columns
ColorTNormal Long Text color of the normal data cells
ColorTHeader Long Text color of the column headers
ColorTHighlight Long Text color of the highlighted data cell
ColorTFrozen Long Text color of the frozen columns
ColorTSpecial Long Text color of the special colored columns

Available at run-time only, read only at run-time
Rows Integer Total no of rows visible in the window
RowHg Integer Row height, in pixels
LineLenPix Integer Total browse line length, in pixels
LineLenChar Integer Total browse data line length, in characters
LeftCol Integer Left-most visible column no (from 0 to Cols-1)
RightCol Integer Right-most visible column
CurrCell String Highlighted cell text
LastLine Integer Last row of data in display
EmptyFile Integer TRUE if the database has no records, or no record matches the scope /
filter
HitTop Integer TRUE if the user has tried to move above BOF
HitBottom Integer TRUE if the user has tried to move past EOF
HBarDim Integer Height of the horizontal scroll bar in pixels, 0 if no bar is required
VBarDim Integer Width of the vertical scroll bar in pixels, 0 if no bar is required

Available at run time only, read-write at run time
Header() String Columns header
Cols Integer Total number of columns in browse
ColWidth() Integer Array of column data width, array index starts at 0 to Cols-1
ColWidthPix() nteger Array of column pixel widths, array index starts at 0 to Cols-1
ColAlign() Integer Columns alignment (left, right or center)
SpcColor() Integer True if you want the column highlighted in the special color
ColEdit() Integer True if you want edit enabled for the column
ColField() Integer Valid field name for the column
Col Integer Current display column
Row Integer Current display row
LeftFrozen Integer No of columns to freeze to the left edge of the control window
Action Integer Tell the Browse control what to do

Browse Colors [Long]

[Var] = [Form!]Brw.ColorHeader [= LongExp] ' header BackColor
[Var] = [Form!]Brw.ColorTHeader [= LongExp] ' header ForeColor
[Var] = [Form!]Brw.ColorNormal [= LongExp] ' normal cell BackColor
[Var] = [Form!]Brw.ColorTNormal [= LongExp] ' normal cell ForeColor
[Var] = [Form!]Brw.ColorHighlight [= LongExp] ' highlighted cell
BackColor
[Var] = [Form!]Brw.ColorTHighlight[= LongExp] ' highlighted cell
ForeColor
[Var] = [Form!]Brw.ColorFrozen [= LongExp] ' frozen columns BackColor
[Var] = [Form!]Brw.ColorTFrozen [= LongExp] ' frozen columns ForeColor
[Var] = [Form!]Brw.ColorSpecial [= LongExp] ' special columns BackColor
[Var] = [Form!]Brw.ColorTSpecial [= LongExp] ' special columns ForeColor

The colors can be changed at design time by either typing in a hex value, or by selecting the color
from the standard VB color box (click on the '...' button or double-click on the property name to activate
it).

You can also change colors at run time as a response to some user selection - for example selecting
another color from the CommDlg Colors Selection dialog.

NOTE:
if a color is set both to special and frozen status, the frozen color is used.

Example:
' set a flashing background for the current cell in browse
' we create a timer Timer1 and set the interval to 0.3 seconds
' It is nor recommendable to use the timer like this,
' it is just an example for using the colors
Sub Timer1_Timer()
Static lRed
If lRed Then

lRed = False: Brw.ColorHighlight = &HFF0000& ' Blue
Else

lRed = True: Brw.ColorHighlight = &HFF& ' Red
End If

End Sub

Rows [Integer]

[Var] = [Form!]Brw.Rows

The Rows property is read-only at run time, and represents the no of rows visible currently, including
the blank rows (if any). The header line is not included.

Example:
' adjust the height of the browse to fit 20 rows of data
Sub Form_Resize()
' if iconic don't bother
If Me.WindowState = MINIMIZED Then Exit Sub
' some form resizing code here, make sure there is room enough
If Brw.Rows <> 20 Then

nOldScaleMode = Me.ScaleMode ' save old scale mode
Me.ScaleMode = PIXELS ' defined in CONSTANT.TXT = 3
' recalc height: 20 rows+1 header line + Horz Bar height
Brw.Height = (20 + 1) * Brw.RowHg + Brw.HBarDim
Me.ScaleMode = nOldScaleMode ' and restore scale mode

End If
End Sub

RowHg [Integer]

[Var] = [Form!]Brw.RowHg

The RowHg property is read-only at run time, and represents the height (in pixels) of one data row, it
will change when the font name/style changes

Example:
' adjust the height of the browse to fit 20 rows of data
Sub Form_Resize()
' if iconic don't bother
If Me.WindowState = MINIMIZED Then Exit Sub
' some form resizing code here, make sure there is room enough
If Brw.Rows <> 20 Then

nOldScaleMode = Me.ScaleMode ' save old scale mode
Me.ScaleMode = PIXELS ' defined in CONSTANT.TXT = 3
' recalc height: 20 rows+1 header line + Horz Bar height
Brw.Height = (20 + 1) * Brw.RowHg + Brw.HBarDim
Me.ScaleMode = nOldScaleMode ' and restore scale mode

End If
End Sub

LineLenPix [Integer]

[Var] = [Form!]Brw.LineLenPix

The LineLenPix property is read-only at run time, and represents the length of one full line of data (if all
columns would be visible). It will change when the font name or style, no of columns, data width of a
column or column width in pixels are changing.

Example:
' adjust the width of the browse to fit all columns in display
Sub Form_Resize()
' if iconic don't bother
If Me.WindowState = MINIMIZED Then Exit Sub
nOldScaleMode = Me.ScaleMode ' save old scale mode
Me.ScaleMode = PIXELS ' defined in CONSTANT.TXT = 3
If Brw.LineLenPix + Brw.VBarDim <= Me.ScaleWidth Then

Brw.Width = Brw.LineLenPix + Brw.VBarDim ' reset the width
End If
Me.ScaleMode = nOldScaleMode ' and restore scale mode

End Sub

LineLenChar [Integer]

[Var] = [Form!]Brw.LineLenChar

The LineLenChar property is read-only at run time, and represents the length, in characters, of one
line of data. It is the sum of all column widths and it will change when the no of columns or data width
of a column are changing.

LeftCol, RightCol [Integer]

[Var] = [Form!]Brw.LeftCol
[Var] = [Form!]Brw.RightCol

The LeftCol and RightCol properties are read-only at run time, and represent the left-most and
respectively the right-most visible columns in the browse. They change as the user moves using the
left / right arrow keys or the horizontal scroll bar. Useful when you need to know whether a column is
visible or not, for edit purposes for example.

The LeftCol represents the left-most NOT FROZEN column (the frozen columns start with 0 to
LeftFrozen - 1).

Example:
' we want to count all the empty EXPIRES date fields in a database,
' in a fancy way
' For this we set up a disabled browse Brw and write the function:
Function CountBlanks() As Integer
Dim nCnt As Integer
' select the file and go top, we assume the browse is already setup
' and the EXPIRES field is in column 3, we have 2 columns frozen
Brw.Action = BRW_ACT_GOTOP ' go top
Do While Brw.LeftCol < 3 ' put the EXPIRES column near the frozen
cols

Brw.Action = BRW_ACT_RIGHT ' move one to the right
Loop

Do While Not Brw.HitBottom
If Len(Brw.CurrCell) = 0 Then nCnt = nCnt + 1
Brw.Action = BRW_ACT_DOWN ' the user can see the cursor moving down
fast

Loop
End Sub

CurrCell [String]

[Var] = [Form!]Brw.CurrCell

The CurrCell property is read-only at run time, and represents the text in the current cell (that is the
active cell - the one in the highlighted color). It changes every time the user moves in the browse, you
can use the Change event to find out when it changed, for example in order to update a Label control
caption. The character string returned by the CurrCell property is what the user gets to edit, if edit is
enabled for the specified column, it will be passed in the EditWhen event to you for pre-validation.

Example:
' we want to show the contents of the current cell in the Label1 control
Sub Brw_Change(nRowCol As Integer)
Label1.Caption = "Current Cell: " & Brw.CurrCell

End Sub

LastLine [Integer]

[Var] = [Form!]Brw.LastLine

The LastLine property is read-only at run time, and represents the last line of data in the browse
control window. If there is enough data (records) in the database to fill all the rows, LastLine = Rows
and a vertical scroll bar is present (VBarDim > 0), otherwise LastLine is smaller and no vertical bar is
displayed (also VBarDim will be set to 0). It can be smaller, although there are enough records to be
displayed, if you use the vertical scroll bar by dragging the thumb near the end of the file. In this case
the control will position the file on the new record, and will place it on the first line in the browse; if
there are less records to EOF than lines visible, then LastLine will be smaller than Rows.

If the file is empty (no records), then LastLine is 0, and EmptyFile will be set to True. It is
recommendable to use EmptyFile to test for the empty file condition.

Example:
' shrink the browse if less records than no of lines visible in browse,
' so that we do not display blank lines
Sub Form_Load()
' Initialize the browse
If Brw.LastLine < Brw.Rows Then

' Set the new browse Height
Brw.Height = Brw.LastLine * Brw.RowHg + Brw.HBarDim + 1

End If
End Sub

EmptyFile [Integer]

[Var] = [Form!]Brw.EmptyFile

The EmpyFile property is read-only at run time, and is set to True if the database file is empty - has no
records or if there are no records meeting the criteria you used to set the RecordSource. If the
EmptyFile is set to True, the LastLine is set to 0 and the data lines are cleared, no vertical bar is
displayed, the current cell is set to "" (an empty string) and cursor (active cell) will not be allowed to
move except on row 0 (the first row).

Example:
' save a set of values entered by the user, if the file is empty add a
record
Function MyRecSave() As Integer
Dim lOk As Integer

If Brw.EmptyFile Then
lOk = AppendOneRecord() ' add a blank record

End If

If Not lOk Then
MsgBox "Cannot append record!" ' append failed
MyRecSave = lOk ' return FALSE
Exit Function

End If

' replace data...
'
MyRecSave = True

End Function

HitTop, HitBottom [Integer]

[Var] = [Form!]Brw.HitTop
[Var] = [Form!]Brw.HitBottom

The HitTop, HitBottom properties are read-only at run time, and they are set to True if the user has
tried to move up before the beginning of file or before the first record in scope and, respectively past
end of file or down past the last record in scope. In both cases first the HitTop / HitBottom events are
fired, and then the two properties are set.
The two properties are useful if you use the BRW_ACT_DOWN / BRW_ACT_UP actions from code to
move the record pointer, for example if you want to print all records - as in the example below.

Example:
' print all the records in the file
Function PrintMyQuery() As Integer
If Brw.EmptyFile Then
MsgBox "Nothing to print"
PrintMyQuery = False
Exit Function

End If

Brw.Action = BRW_ACT_GOTOP
' print some headers
Do While Not Brw.HitBottom
PrintOneLine ' print one data line
Brw.Action = BRW_ACT_DOWN ' skip one record and refresh the display

Loop
Printer.EndDoc
PrintMyQuery = True

End Function

HBarDim, VBarDim [Integer]

[Var] = [Form!]Brw.HBarDim
[Var] = [Form!]Brw.VBarDim

The HBarDim, VBarDim properties are read-only at run time, and they represent the height of the
horizontal scroll bar and the width of the vertical scroll bar of the browse control, respectively. They
are 0 if the respective scroll bar is not required.
NOTE: the two properties are always in pixels, no matter what the ScaleMode of the container of the
browse control is. If you use a different ScaleMode, and you plan to use them, you should transform
the coordinates from pixels to your mapping mode.

The two properties can be used as an indicator of the presence of the scroll bars, and also they are
useful for run-time resizing of the browse.

Example:
' adjust the height of the browse to fit 20 rows of data
Sub Form_Resize()
' if iconic don't bother
If Me.WindowState = MINIMIZED Then Exit Sub
' some form resizing code here, make sure there is enough room
If Brw.Rows <> 20 Then

nOldScaleMode = Me.ScaleMode ' save old scale mode
Me.ScaleMode = PIXELS ' defined in CONSTANT.TXT = 3
' recalc height: 20 rows+1 header line + Horz Bar height
Brw.Height = (20 + 1) * Brw.RowHg + Brw.HBarDim
Me.ScaleMode = nOldScaleMode ' and restore scale mode

End If
End Sub

Header [Array of Strings]

[Var] = [Form!]Brw.Header(nColumn%) [= StringExp]

The Header property is an array of strings representing the column headers for each data column
(field). By default the header is set to the name of the field (the ColField(nColumn%)).

If the column contents changes, you should re-assign the Header.

NOTES:
The Header string can be wider than the data width of the column, but it will be clipped to fit the
size of the header cell in which is displayed.

Example:
' see the Introduction example

Cols [Integer]

[Var] = [Form!]Brw.Cols [= IntegerExp]

The Cols property is an integer, available only at run-time, which sets the number of data columns
displayed by the browse. It must be a positive number and no bigger then
BRW_MAX_NO_OF_COLS (see Constants).

Assigning the Cols of the control is the first logical step of initialization, although is not preemptive.
But when you change the Cols everything is resized / changed so it is a good practice to set the Cols
first, and when you change it, change the others related properties as well. The next step would be to
assign the columns data width (ColWidth) and then the columns Header.

For a detailed explanation about the browse initialization see Introduction and the example there.

ColWidth [Array of Integers]

[Var] = [Form!]Brw.ColWidth(nColumn%) [= IntegerExp]

The ColWidth property is an array of integers, available only at run-time, which sets the width of the
data displayed in each column, from 0 to Cols - 1, in characters. It must be positive and less than
BRW_MAX_COL_WIDTH for each column (see Constants).

After assigning the Cols (number of columns) of the control, the next logical step of initialization is to
assign the columns data width for each column and then the columns Header.

The value assigned for each column tells the control how much space to allocate for each column's
data. Data retrieved by the browse will be assigned to each column using the values in the ColWidth
array.

The ColWidth property can be dynamically changed, this will resize the internal buffer maintained by
the control, and will also resize the LineLenChar property for the respective column. Please note that
changing the ColWidthPix() or resizing the columns with the mouse will NOT affect the ColWidth!

For a detailed explanation about the browse initialization see Introduction and the example there.

ColWidthPix [Array of Integers]

[Var] = [Form!]Brw.ColWidthPix(nColumn%) [= IntegerExp]

The ColWidthPix property is an array of integers, available only at run-time, which sets the width of
each column (the displayed width in pixels not the data width in characters as ColWidth does), valid
indexes are from 0 to Cols - 1. This property changes when the ColWidth changes and also when the
user resizes the column with the mouse, or when the font changes. Changing this property will not
affect how many characters are stored in the internal buffer for each column.

The default value is the column width in characters multiplied by the average character width for the
selected font.

You would have no reason to set this property from code, except one case: you want to restore a
previous state of a user defined query window, see the example below.

Example:
The following example stores the last position and other settings of a user defined query into a user
type, which is in turn saved to a disk file or INI file when the user exits the application. We will just
show the code to save the last status of the window and restore it from the sStatus variable. Saving
and restoring to/from file are not shown, you can use either a random file or some WinAPI calls like
Get/SetProfileString.
DefType MYSTATUS
left As Integer
top As Integer
width As Integer
height As Integer
ColWdt(0 to BRW_MAX_NO_OF_COLS) As Integer
' other data as DBF name, index name, scope, ...

End Type
Global sStatus As MYSTATUS

Sub Form_Unload(Cancel As Integer)
' save form position and browse column widths
sStatus.left = Me.Left
sStatus.top = Me.Top
sStatus.width = Me.Width
sStatus.height = Me.Height
For k = 0 to Brw.Cols - 1

sStatus.ColWdt(k) = Brw.ColWidthPix(k)
Next k
' save other data to sStatus

End Sub

Sub Form_Load()
' initialize the browse, ...
' then restore status, or start with default values if no status saved
If sStatus.height = 0 Then Exit Sub ' no previously saved status, exit
Me.Left = sStatus.left
Me.Top = sStatus.top
Me.Width = sStatus.width
Me.Height = sStatus.height
For k = 0 to Brw.Cols - 1

Brw.ColWidthPix(k) = sStatus.ColWdt(k)
Next k

End Sub

ColAlign [Array of Integers]

[Var] = [Form!]Brw.ColAlign(nColumn%) [= IntegerExp]

The ColAlign property is an array of integers, available only at run-time, which sets the way the column
headers and data are aligned (justified) within the display rectangle. The headers and data can have
different alignments (header left justified, data right justified for example). By default both the headers
and the data are left aligned.

Available alignments are left (default), center and right.

You can set the column alignments to a combination of data + header alignment constants, for
example BRW_ALIGN_LEFT + BRW_ALIGNH_RIGHT (see Constants for the values).

After assigning the number of columns (Cols) of the control and the column widths (ColWidth), you can
set the column alignment for each column, as required.

Example:
Sub Form_Load()
' initialization code comes here

Brw.ColAlign(0) = BRW_ALIGN_CENTER + BRW_ALIGNH_CENTER ' both centered
Brw.ColAlign(1) = BRW_ALIGN_LEFT + BRW_ALIGNH_CENTER ' left, header
right
Brw.ColAlign(2) = BRW_ALIGN_RIGHT + BRW_ALIGNH_RIGHT ' both right

End Sub

SpcColor [Array of Integers]

[Var] = [Form!]Brw.SpcColor(nColumn%) [= IntegerExp]

The SpcColor property is an array of integers (valid values are True and False). This property, in
conjunction with ColorSpecial and ColorTSpecial, is used to display the selected column(s) in a
different color. You can set the background and foreground color of the special colored columns at
design time or run time, then after initializing the browse, set the SpcColor to True for all the columns
you want displayed in the special color. By default no column is specially colored and the two special
color are the same as the normal colors.

You can use this property to display the editable columns in a different color, or to highlight a
calculated column, for example.

If editing is enabled for the special columns, the color of the edit window is the same as the columns
color.

Example:
Sub Form_Load()
' initialize the browse

' set color combination for the special columns
Brw.ColorSpecial = QBColor(12) ' intense red background
Brw.ColorTSpecial = QBColor(10) ' intense blue text
Brw.SpcColor(0) = True ' Display the first column in the special col.

End Sub

ColEdit [Array of Integers]

[Var] = [Form!]Brw.ColEdit(nColumn%) [= IntegerExp]

The ColEdit property is an array of integers (valid values are True and False). This property, when
set to True, will enable editing for the specified column. By default editing is disabled for all columns.

At run-time the EditWhen event will be fired prior to enter Edit mode, then an EditValid event is fired
when the user leaves the Edit mode with intention to save.

You can prevent the user to enter Edit mode by setting the lCancel argument of the EditWhen
event to True, if for any reason you do not want edit for current record.
You can force data saved to be valid by setting the lOk argument of the EditValid event to False,
you can even return a suggested value in the cField string argument.
See Editing for more details.

NOTES:
Do not issue a BRW_ACT_REFRESHLINE in the EditValid, refreshing is done for you. Do not
change the record pointer while in the events.
The number of characters allowed in Edit mode is equal to the ColWidth() - the data width for the
respective column.

Example:
See the example at Editing.

ColField [Array of Strings]

[Var] = [Form!]Brw.ColField(nColumn%) [= StringExp]

The ColField property is an array of strings (valid field names from the current work area). You have
to assign this property in order to display anything but blanks. Assigning a wrong field name will
trigger a run-time error.

Example:
See the example at Introduction

Col, Row [Integer]

[Var] = [Form!]Brw.Col [= IntegerExp]
[Var] = [Form!]Brw.Row [= IntegerExp]

The Col and Row properties represent the current column and row in the browse (where the
highlighted cell is). The user can change any of them by moving with the arrows, clicking with the
mouse, etc.

If you assign them, Col must be between 0 and Cols - 1, Row must be between 0 and LastLine - 1,
otherwise a run-time error is generated.

By assigning Row and / or Col you force the control to move the highlighted cell there.

Example:
' this example shows a way to keep the user out of the frozen columns
Sub Brw_Change(nRowCol As Integer)
If Brw.Col < Brw.LeftFrozen Then Brw.Col = Brw.LeftFrozen

End Sub

LeftFrozen [Integer]

[Var] = [Form!]Brw.LeftFrozen [= IntegerExp]

The LeftFrozen property sets the no of columns to be visible all the time, these columns start with
column 0 to LeftFrozen - 1. The frozen columns will be excluded from the horizontal scroll, when the
user moves to the right or left, either with the mouse or using the keyboard.

The LeftFrozen columns will be displayed in the ColorFrozen / ColorTFrozen combination, by default
these colors are the same with the normal colors. Increasing / decreasing the LeftFrozen will
dynamically add / remove fixed columns to the left edge. If a column is both Special color and Frozen
the Frozen colors will take precedence.

If the combined width of all the frozen columns exceeds the control width, then the control cannot be
scrolled horizontally. The LeftCol is the number of the left-most visible column excluding the frozen
columns.

Example:
' freeze 2 columns to the left
Brw.LeftFrozen = 2

Action [Integer]

[Var] = [Form!]Brw.Action [= IntegerExp]

The Action property is the way you can send messages to the control, requiring it to perform some
action. It does not hold any meaningful value - it is always 0.

Normally you do not require to refresh the Browse control, the Data control will take care of that every
time you make a change to the data or reposition the database.

To request the control to perform a refresh line action - that is for example to move up, set the Action
property to BRW_ACT_UP. All the BRW_ACT_* constants are defined in the include file BRW_INC.TXT
and shown in the Constants section. You can merge this file with one of your modules, it is
recommendable to use the constants, not the numeric values.

Available actions:
BRW_ACT_REFRESHLINE: Refresh the current line of data. Not required normally.

BRW_ACT_REFRESHALL: Refresh all the lines visible in the control. Not required normally.

BRW_ACT_REFRESHBAR: Refresh the data of the vertical scroll bar. Not required normally.

BRW_ACT_GOTOP: Move to the first record in the database and refresh all visible records.

BRW_ACT_GOBOTTOM: Move to the last record in the database and refresh all visible records.

BRW_ACT_UP: Move one record up (if posible).

BRW_ACT_DOWN: Move one record down (towards the end of file, if posible).

BRW_ACT_LEFT: Move one column to the left, if posible.

BRW_ACT_RIGHT: Move one column to the right, if posible.

BRW_ACT_EDIT: Enter edit mode for the current cell (Row and Col), if editing is enabled for the
column. You should postion the cursor using the Row and Col properties before entering edit
mode.

Browse Events
The standard Visual Basic events supported are:
DRAGDROP, DRAGOVER, GOTFOCUS, KEYDOWN, KEYPRESS, KEYUP and LOSTFOCUS. Please
see your VB manual for details about any of these events.

Custom Events
Change(nRowCol as Integer) - row, col or record no has
changed
HitBottom() - the user hits the end of file
HitTop() - the user hits the beginning of
file
EditWhen(nCol As Integer, cField As String, lCancel As Integer) - data edit pre-validation
EditValid(nCol As Integer, cField As String, lOk As Integer) - data edit post-validation

Change(nRowCol As Integer)

Sub Brw_Change([Index As Integer,] nRowCol As Integer)

This event is fired whenever the user changes the position of the highlighted cell, using the mouse or
the keyboard (for example moving up, down, left, right, page up, page down, top of file, bottom of file,
etc.).

The Index argument uniquely identifies the browse control from an array of browse controls; the
nRowCol argument holds information about what has changed and can be one of the constants below
(see Constants for values):

The record no has changed, the Row and Col are the same BRW_CHANGE_REC
The record no and the Row have changed BRW_CHANGE_ROW
The column no has changed, the same record no BRW_CHANGE_COL
Both the row and column no have changed BRW_CHANGE_BOTH

Write code to update the current cell in this event procedure, for example.

HitTop(), HitBottom()

Sub Brw_HitTop ([Index As Integer])
Sub Brw_HitBottom([Index As Integer])

This events are fired when the user has tried to move before BOF or past EOF, either using the mouse
or the keyboard. Both events can be ignored, you can set a Beep statement in the event procedure,
or ask the user if he/she wants to add a new record (in HitBottom) to emulate the standard xBase
BROWSE command.

The Index argument uniquely identifies the browse control from an array of browse controls.

Example:
Sub Brw_HitBottom()
If MsgBox("Add new record?", MB_ICONQUESTION + MB_YESNO) = IDYES Then

' add a blank record and reposition the browse
AppendOneBlank()

End If
End Sub

Sub Brw_HitTop()
Beep

End Sub

EditWhen(nCol As Integer, cField As String, lCancel As Integer)

Sub Brw_EditWhen(nCol As Integer, cField As String, lCancel As Integer)

This event is fired whenever the user tries to edit a field from column nCol, where nCol is a column
enabled for editing. The cField argument is the current value of the field - the one that will be edited.
The lCancel argument is a boolean flag (set to False by default), which tells the control if edit should
be allowed; setting lCancel to True will not allow the user to enter in edit mode.

The Index argument uniquely identifies an element of a control array.

This event allows you to make a data pre-validation, before the user enters edit mode, and cancel the
edit if you decide so, even if the column is enabled for edit.
See also Editing for details.

Example:
The following example will allow editing of the date field DUEDATE, in column 3, enabled for editing,
only if the field DUEAMOUNT is greater than 0.
Sub Brw_EditWhen(nCol As Integer, cField As String, lCancel As Integer)
If nCol <> 3 Then Exit Sub ' check only column 3, DUEDATE
If Data1.RecordSet.Fields("DUEAMOUNT").Value <= 0 Then

' no edit allowed
Beep: MsgBox "The DUEAMOUNT must be positive!"
lCancel = True

End If
End Sub

EditValid(nCol As Integer, cField As String, lCancel As Integer)

Sub Brw_EditValid(nCol As Integer, cField As String, lOk As Integer)

This event is fired whenever the user tries to save an edited value for column nCol, where nCol is a
column enabled for editing, and in this respect is much like a VALID clause in a standard xBase GET
command. The cField argument is the value entered by the user - the one that will be eventually
replaced. The lOk argument is a boolean flag (set to True by default), which tells the control if the
value is Ok; setting lOk to False will prevent the control to exit edit mode, until a valid value is
entered or the edit is cancelled.

You can set the cField to a string expression, for example as a default value, if the user has entered a
wrong value in edit mode.

The Index argument uniquely identifies an element of a control array.
See also Editing for details.

Example:
In the following example we have two columns enabled for editing, DUEAMOUNT - column 2 and
DUEDATE - column 3.
Sub Brw_EditValid(nCol As Integer, cField As String, lOk As Integer)

If nCol = 2 Then ' edit DUEAMOUNT
If Val(cField) < 0 Then ' no negative numbers allowed

MsgBox "Please enter a positive value!"
lOk = False

End If
ElseIf nCol = 2 Then ' edit DUEDATE

If IsDate((cField)) Then Exit Sub ' Ok, replace data
MsgBox cField & " is not a valid date!"
lOk = False

End If
End Sub

Browse Constants

All the constants listed bellow are available as text in the include file BRW_INC.TXT provided.
IMPORTANT NOTE: do not change the values for these constants, you can and will get run-time errors.
(For example increasing the maximum number of columns from 64 to 128 will generate a run-time error
when you will set the columns to 100). The control was compiled using these values, changing them
here will have no effect on the behaviour of the VBX.

Limitative Constants
Maximum number of columns in the browse BRW_MAX_NO_OF_COLS 64
Maximum column width (in characters) BRW_MAX_COL_WIDTH 256

Error Codes
Invalid index referrence to one of the array properties BRW_ERR_BADINDX 81
Invalid number of columns BRW_ERR_NO_OF_COLS 2700
Invalid column no BRW_ERR_COL_NO 32702
Invalid row number BRW_ERR_ROW_NO 32703
Invalid data column width (characters) BRW_ERR_COL_WIDTH 32704
Invalid column width (pixels) BRW_ERR_COL_WIDTHX 32705

Available actions (for the Action property)
Refresh current line BRW_ACT_REFRESHLINE 1
Refresh all visible lines / records (impl. RefreshBar) BRW_ACT_REFRESHALL 2
Refresh the vertical scroll bar (not needed normally) BRW_ACT_REFRESHBAR 3
Go to the last record in file / scope and refresh all BRW_ACT_GOBOTTOM 4
Go to the first record in file / scope and refresh all BRW_ACT_GOTOP 5
Skip one record up, if not posible a HitTop is fired BRW_ACT_UP 6
Skip one record down, if not pos. a HitBottom is fired BRW_ACT_DOWN 7
Move to the next column to the right (if any) BRW_ACT_RIGHT 8
Move to the next column to the left (if any) BRW_ACT_LEFT 9
Edit current cell, if editing is enabled BRW_ACT_EDIT 10

Possible values of the nRowCol argument of the Change event:
The record no has changed BRW_CHANGE_REC 0
The record no and the Row have changed BRW_CHANGE_ROW 1
The column no has changed BRW_CHANGE_COL 2
Both the row and column no have changed BRW_CHANGE_BOTH 3

Column text display alignment for the ColAlign propriety
The column text is left justified (default): BRW_ALIGN_LEFT 0
The column text is centered BRW_ALIGN_CENTER 1
The column text is right justified BRW_ALIGN_RIGHT 2
The column header text is left justified (default): BRW_ALIGNH_LEFT 4
The column header text is centered BRW_ALIGNH_CENTER 8
The column header text is right justified BRW_ALIGNH_RIGHT 16

Keyboard Summary

Vertical movement:
UP UP
DOWN DOWN
CTRL-UP FIRST LINE IN WINDOW
CTRL-DOWN LAST LINE ON WINDOW
PAGEUP PAGE UP
PAGEDOWN PAGE DOWN
CTRL-PAGEUP TOP OF FILE
CTRL-PAGEDOWN BOTTOM OF FILE

Horizontal movement:
LEFT ARROW LEFT
RIGHT ARROW RIGHT
HOME LEFT-MOST VISIBLE COLUMN
END RIGHT-MOST VISIBLE COLUMN
CTRL-LEFT PAGE LEFT
CTRL-RIGHT PAGE RIGHT
CTRL-HOME LEFT-MOST COLUMN
CTRL-END RIGHT-MOST COLUMN

Edit keys:
ENTER Enter edit mode, if edit for current column enabled
Any alphanumeric key Same as Enter + replace field contents with the entered

character
ESC Cancel edit
PAGEUP / PAGEDOWN,
ENTER Exit edit mode with saving, stay on the same row
UP / DOWN ARROW Save field and move to previous / next row (record) - same

column

