
Copyright

 Contents
Getting Started

What is Designer Widgets?
Installing Designer Widgets
Using Designer Widgets
Using Help

Guided Tours
Using the Dockable Toolbar
Using the Index Tab
Using FormFX

Control Descriptions
The Dockable Toolbar
The Index Tab Control
The FormFX Control

Control Reference
Properties Reference
Events Reference

Appendixes
Technical Specifications
Error Messages

Copyright Notice Credits

Designer WidgetsTM

Version 1.00a
Copyright © 1994, Sheridan Software Systems, Inc.    All Rights Reserved.

Designer Widgets is a trademark of Sheridan Software Systems, Inc.

This help file was produced using Doc-To-Help®, by WexTech Systems, Inc.
Microsoft, MS, MS-DOS and Microsoft Access are registered trademarks and Visual Basic and
Windows are trademarks of Microsoft Corporation.

Information in this document is subject to change without notice.    Companies, names, and data used in examples
herein are fictitious unless otherwise noted. No part of this document may be reproduced or transmitted in any form
or by any means, electronic or mechanical, for any purpose, without express written permission of Sheridan
Software Systems, Inc.    The software and/or databases described in this document are furnished under a license
agreement or nondisclosure agreement. The software and/or databases may be used or copied only in accordance
with the terms of the agreement.    It is against the law to copy the software except as specifically allowed in the
license or nondisclosure agreement.    No part of this document may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or information storage and retrieval
systems, for any purpose other than the purchaser's personal use, without the express written permission of
Sheridan Software Systems, Inc.

Sheridan Software Systems, Inc.
35 Pinelawn Road
Melville, NY    11747
Voice (516) 753-0985
Fax (516) 753-3661
BBS (516) 753-5452

Dedicated to all the hard working people on the Designer Widgets team.

Designed, Developed and Tested By:
Jim Tyminski
Joe Modica
Joe Dour
Bill Batik
Debbie Kufner

Special thanks to: Anne, Rosanne, Patty, Jason, Melissa, Michael, Ashley, Jenna & Nicole

What is Designer Widgets?
Designer Widgets is a set of custom controls that lets you easily add 'state of the art' functionality along
with a customizable look to you forms. Each control has all the power and ease of use you have come to
expect from Visual Basic controls.

There are 3 controls that make up Designer Widgets. They are:

Related Topics:
Dockable Toolbar
Index Tab
FormFX

Dockable Toolbar
The Dockable Toolbar allows you to easily create and maintain toolbars on your forms. The following is a
list of some of its features:

· There can be multiple groups of buttons on each toolbar.

· There can be multiple toolbars on each form.

· Spacing between buttons and groups of buttons is adjustable.

· Toolbars can have a 3-D look.

· Specify separate colors for bevel shadow, highlight and face.

· To minimize system overhead, toolbar buttons are "graphical". In addition, there is a
single bitmap that contains all of the button images.

· A mnemonic (accelerator) character can be specified for each button.

· The Toolbar Designer lets you create and maintain toolbars at design time.

· Balloon help is automatically displayed when the mouse pauses over a button for a
preset period. (This behavior is optional).

The following features apply to toolbars on MDI forms only:

· Toolbars to be docked to the top, left, right or bottom of the MDI form. They can also
be dragged off a docking area and become free floating toolbars.

· Floating toolbars are not restricted to the MDI frame area.

· Floating toolbars can be resized by the user in button increments (the position of
each button is adjusted automatically).

· Double clicking on a toolbar toggles its state between floating and docked.

Index Tab
The Index Tab control lets you provide the same 'state of the art' interface that many of today's
commercial applications provide. This interface is based on a metaphor that is familiar to all users, that of
a series of index cards. The following is a list of some of its features:

· Each index card acts as a separate container allowing you to visually place controls
on a tab in design mode as they will appear at runtime.

· There can be multiple rows of index tabs.

· Configurable tab shapes and sizes.

· Each tab can have a caption and/or picture.

· Each tab can be individually enabled/disabled.

· Each tab can be individually made visible/invisible.

· Index tabs can have either a 3D or 2D appearance.

· Specify the font for the active tab.

· Specify a separate picture for the active tab.

· Specify separate foreground and background colors for each tab.

· Specify separate foreground and background colors for the active tab.

· Specify separate colors for bevel shadow, highlight and face.

· Tabs can be activated with the keyboard using mnemonic characters.

FormFX
The FormFX control allows customizing of the caption and client areas of a non MDI form. In addition,
FormFX allows you to control the behavior of the form at runtime by restricting size and movement. The
following is a list features:

· Adds a 3D look to the caption, border and/or client area.

· Specify separate colors for bevel shadow, highlight and face.

· Add a bitmap, icon or metafile to the caption area.

· Supports multi-line text in captions.

· Includes compete picture and text alignment options for the caption area.

· Allows custom fonts and font sizes for the caption.

· Caption height is modifiable.

· Can automatically adjust size of caption area based on font size.

· Customize the control box, minimize and maximize buttons.

· "InstantClose" feature allows you to close a form with a single click on the control
box.

· Lock movement and/or size of form.

· Forms can be kept on top so they never go behind other windows.

· Custom colors for active and inactive windows.

Installing Designer Widgets
This chapter explains how to install Designer Widgets on your computer using the program SETUP.EXE.

Related Topics:
Before You Run Setup
Running Setup
What was installed?

Before You Run Setup
Please take a few minutes before you install Designer Widgets to do the following:

Read the README.TXT File
If there are corrections or additions to this book, they will be listed in a file called README.TXT. This file
can be displayed directly from the installation diskette using the Windows™ Notepad utility. After the
installation this file can be read by double-clicking the Designer Widgets ReadMe icon in the Program
Manager.

Running Setup
When you run the Setup program (SETUP.EXE) to install Designer Widgets on your computer, you'll
specify a path for Designer Widgets.

You can start Setup from Windows, or from DOS.

To start Setup from Windows:
1. Insert the Designer Widgets distribution diskette in drive A (or B).

2. In the File Manager, choose Run from the File menu.

3. Type a:setup (or b:setup).

4. Follow the Setup instructions on the screen.

To start Setup from DOS:
1. Insert the Designer Widgets distribution diskette in drive A (or B).

2. Switch to that drive by typing a: (or b:)
3. Type win setup
4. Follow the Setup instructions on the screen.

What was installed?
The install program will copy all the VBX files into your \WINDOWS\SYSTEM directory (optional). All
other files will be located in the directory that was specified during setup. For a description of these files
refer to the 'Included Files' section of Appendix A.

If the file VBRUN300.DLL is not already in your Windows System directory, the install program will copy it
there. This file is needed by the Toolbar Designer.

Using Designer Widgets
This chapter explains how to use the Designer Widgets custom controls in the Visual Basic environment.

Related Topics:
Including Designer Widgets in Your Project

Including Designer Widgets in Your Project
In Visual Basic, custom controls are installed on a project basis. However, once you have included a
custom control in a project and saved the project, the control will appear in the Toolbox whenever you
subsequently open the project.

To get the Designer Widgets icons to appear in your Visual Basic Toolbox, first open the project in which
you want to use the Designer Widgets. Then use the 'Add File' option on the 'File' menu to add the VBX
file to your project. Depending upon which custom control you want to use in your project, you will need
to load a different VBX file as follows:

SSDOCKTB.VBX SSToolbar

SSIDXTAB.VBX SSIndexTab

SSFORMFX.VBX SSFormFX

The icons for the Designer Widgets custom controls you selected will then appear in your Toolbox.

Refer to the 'Understanding Projects' and 'Editing the AUTOLOAD.MAK File' section in Chapter 5 of the
Visual Basic Programmer's Guide for a detailed explanation of the above process.

Once the controls are loaded in the Toolbox, you can use them just like any standard VB control. Also,
there are no separate design time and runtime versions of the controls. The same VBX files you develop
with can be shipped with your application.

Using Help
Online Help is a comprehensive reference for nearly all aspects of Designer Widgets. Most of the
information contained in this manual is also contained in the online Help.

Related Topics:
4 Ways to Get Help

4 Ways to Get Help
Online Help for Designer Widgets can be invoked by any of the following methods:

1. Double-click the Designer Widgets Help icon in the Program Manager. This will
bring you into the main index for help on Designer Widgets.

2. Select a control on the Visual Basic toolbox and press F1. This will bring you into
help for the currently selected control. You can then go to the index or search for
help on other topics.

3. Clicking of F1 from the property window will give you help on the selected property.

4. When the Procedure box in the VB Code window has the focus, pressing F1 will
bring you into help for the highlighted event.

Using the Dockable Toolbar
This chapter guides you through the creation of some sample programs using a Designer Widgets control
called the Dockable Toolbar. For a complete description of this control refer to Chapter 8 - 'The Dockable
Toolbar'.

Related Topics:
Exercise 1: Creating a Toolbar on an MDI Form
Exercise 2: Creating a Second Toolbar
Exercise 3: Providing Status Bar Help
Exercise 4: Putting Code Behind the Buttons
Exercise 5: Creating a Stationary Toolbar

Exercise 1: Creating a Toolbar on an MDI Form
In this exercise we will add a single toolbar to an MDI form.

1. First, run Visual Basic, start a new project and add the SSDOCKTB.VBX file (see Chapter 3 -
'Using Designer Widgets').

2. Next create an MDI form (using the 'File', 'New MDI Form' menu option).

3. Place an SSToolbar control directly on the MDI form by double clicking on the tool in the
Visual Basic toolbox.

4. In the Visual Basic properties window set the following properties:
FloatingCaption = 'Standard'

Name = 'Tb1'

5. Double click on the (ToolbarDesigner) property. This will invoke the Toolbar Designer. For a
complete explanation of the Toolbar Designer refer to the Chapter 8 - 'The Dockable Toolbar'
under the section heading 'Using the Toolbar Designer'.

6. Next press the 'Select Toolset...' button. This will bring up a file open dialog. Select the file named
TSBASIC.BMP in the TOOLSETS sub directory provided with Designer Widgets.

7. Now drag each tool (one at a time) from the 'Available Tools' box into the rectangle labeled
'Toolbar' or press the button labeled 'Add All Tools'.

The Toolbar Designer should now look like this:

8. Now you can press the 'OK' button.

9. Bring up the Visual Basic 'Project Options' dialog (via the 'Options', 'Project...' menu) and set this
MDI form as the 'Start Up Form'.

10. At this point you should save the project.

11. Now we can run the project by pressing the F5 key. The toolbar should be in the top docking
area.

12. Click on an area of the toolbar where there is no button and drag the toolbar off the top docking
area. The toolbar should now be on a floating window with a small caption of 'Standard'.

13. Try resizing the floating toolbar with the mouse. It should resize itself in button increments and
adjust the location of the buttons automatically.

14. Now drag it over to the left docking area. As you move over this area the outline should change to
a vertical orientation. When it does, release the mouse. Try dragging and dropping the toolbar
onto the bottom and right docking areas as well.

15. Now double click on the toolbar (not on one of its buttons). The toolbar should leave the docking
area and become floating. Double click on it again and it will return to its previous docking
location.

Exercise 2: Creating a Second Toolbar
Creating a second toolbar is easy. Just place another SSToolbar control on the same MDI form that we
created in exercise 1.

1. In the Visual Basic properties window set the following properties:

FloatingCaption = 'Format'

Name = 'Tb2'

2. Double click on the (ToolbarDesigner) property.

3. Press the 'Select Toolset...' button but this time select the file named TSFORMAT.BMP in
TOOLSETS.

4. Again, drag each tool from 'Available Tools' onto the toolbar.

5. Press the 'OK' button.

6. At this point you should save the project.

7. Run the project. Notice that the two toolbars can share docking areas or float independently.

Note Both toolsets used in examples 1 and 2 contain button images that are the same size (24 pixels
wide by 22 pixels high) and none of the buttons contain any text. However, you can make the button
images larger or smaller as long as all images within a single toolset are of equal size.

If you want to include text in the buttons you will need to make a bitmap with larger buttons and place the
text in the bitmap. This can be done with a bitmap editor like the standard Paint Brush application
(PBRUSH.EXE). Refer to 'Terms and Concepts' in Chapter 8 - 'The Dockable Toolbar' for a complete
discussion of toolset bitmaps.

You can even specify an accelerator character for each tool via the ToolsetToolMnemonic() property.
However, you should be aware that accelerator characters only work within the current active form.
Therefore, if a MDI child form is active, the accelerator characters for toolbars that are on the MDI parent
will not operate.

Also note that if you have more than one toolbar on an MDI form and the sizes of the buttons in one
toolbar are not the same size as the buttons in another toolbar then the docking area sizes will be
computed based on the largest button on any toolbar on the form. This includes toolbars that are not
visible.

Exercise 3: Providing Status Bar Help
This exercise assumes you have the THREED.VBX supplied with the Visual Basic Professional Edition. If
not, you can create a 2D status bar by substituting a picturebox and a label for the 2 Panel controls.

1. Add THREED.VBX to the project that you have saved in exercises 1 and 2.

2. On the MDI form place a panel control using the tool.
3. Set its properties as follows:

Align = '2 - Align Bottom'
Caption = ''
BevelOuter = '2 - Raised'
BevelInner = '0 - None'
BevelWidth = 1

4. Now carefully draw another panel on top of the first so that it is a few pixels shorter than the first
panel.

5. Set its properties as follows:

Align = '0 - None'

Caption = ''

Name = 'PnStatus'

BevelOuter = '1 - Inset'

BevelInner = '0 - None'

BevelWidth = 1

6. Now position this child panel so that it looks like a section of a status bar.

7. In the MouseEnter event of both SSToolbar controls place the following code (where Tbx is the
name of the toolbar):

Sub Tbx_MouseEnter(ToolID As String, ToolNum As Integer, Btn As Integer)
pnStatus.Caption = TBx.ToolsetToolDesc(ToolNum)
End Sub

8. In the MouseExit event of both SSToolbar controls place the following code:

Sub Tbx_MouseExit(ToolID As String, ToolNum As Integer, Btn As Integer)
pnStatus.Caption = ""
End Sub

9. At this point you should save the project.

10. Run the project and move the cursor over each button. As you do you should see the status bar
display a description of each button's function.

You may have already noticed that when you pause the cursor over a button in one of the toolbars,
balloon help is displayed. The help text for each tool is accessed via the ToolsetToolHelp() property. This
behavior can be controlled with the BalloonHelp and BalloonHelpDelay properties. Also, if you wanted
to delay the display of the status bar help to coincide with balloon help (after the delay interval has
expired) then in step 7 above instead of placing the code in the MouseEnter event move it to the Help
event.

Note All the properties that relate to toolsets including ToolsetToolHelp() and ToolsetToolDesc() can
be set at design time using the Toolbar Designer (see 'Using the Toolbar Designer' in Chapter 8 - 'The
Dockable Toolbar'). However, all the toolset properties are also settable from code (see 'Creating a
Toolbar at Runtime' in Chapter 8 - 'The Dockable Toolbar').

Exercise 4: Putting Code Behind the Buttons
Now we need to put some code behind the buttons on the toolbars. Although the following code doesn't
do anything useful it demonstrates where the actual code should go.

1. In the Click event of the toolbar that we created in exercise 1 place the following code:

Sub Tb1_Click (ToolID As String, ToolNum As Integer, Btn As Integer, Value As
Integer)

 Select Case ToolID
 Case "ID_NEW"
 MsgBox "This invokes the New File function"
 Case "ID_OPEN"
 MsgBox "This invokes the Open File function"
 Case "ID_SAVE"
 MsgBox "This invokes the Save File function"
 Case "ID_PRINT"
 MsgBox "This invokes the Print function"
 Case "ID_PREVIEW"
 MsgBox "This invokes the Print Preview function"
 Case "ID_CUT"
 MsgBox "This invokes the Cut function"
 Case "ID_COPY"
 MsgBox "This invokes the Copy function"
 Case "ID_PASTE"
 MsgBox "This invokes the Paste function"
 Case "ID_UNDO"
 MsgBox "This invokes the Undo function"
 Case "ID_REDO"
 MsgBox "This invokes the Redo function"
 Case "ID_HELP1"
 MsgBox "This invokes the Item Help function"
 Case "ID_HELP2"
 MsgBox "This invokes the General Help function"
 End Select

End Sub
2. At this point you should save the project.

3. Run the project and click on any of the buttons in the toolbar. The appropriate message should be
displayed.

4. If you want to put code behind the toolbar created in exercise 2, the ToolsetToolID() property
settings are "ID_BOLD", "ID_ITALIC", "ID_UNDERLINE", "ID_LEFT", "ID_CENTER", "ID_RIGHT"
and "ID_JUSTIFY" respectively.

Exercise 5: Creating a Stationary Toolbar
In this exercise we will add a stationary toolbar to an MDI form. The toolbar will behave as it would on a
standard Visual Basic non-MDI form.

This exercise also assumes you have the THREED.VBX supplied with the Visual Basic Professional
Edition. If not, you can substitute a picturebox for the Panel control.

1. Create a new project and add the SSDOCKTB.VBX and THREED.VBX files.

2. Next create an MDI form (using the 'File', 'New MDI Form' menu option).

3. Place a Panel control directly on the MDI form by double clicking on the tool in the Visual
Basic toolbox.

4. In the Visual Basic properties window set the following properties:
AutoSize = '3 - AutoSize Child to Panel'
Caption = ''
BevelOuter = '0 - None

BevelInner = '0 - None

BevelWidth = 0

BorderWidth = 0

5.

Select the tool in the Visual Basic Toolbox and draw the toolbar on top of the panel. Do not
double click on the tool to create the control since this will create the toolbar as a child of the form
instead of a child of the panel.

6. Now, set the Outline property on the toolbar control to False.
7. Repeat steps 1 through 7 from exercise 1.

8. Run the project. Now the toolbar is fixed and you won't be able to drag it as you did in exercise 1.

Note These exercises were intended to give you a feel for the power and flexibility of this control. For a
greater understanding of the properties and events associated with the Dockable Toolbar, see Chapter 8 -
'The Dockable Toolbar', Chapter 11 - 'Properties Reference' and Chapter 12 - 'Events Reference'.

Using the Index Tab
This chapter guides you through the creation of a sample program using a Designer Widgets control
called the Index Tab. The Index Tab is a custom control that you can use in your projects to provide the
same 'state of the art' interface used by many of today's commercial applications.

The Index Tab control provides an easy way of presenting several dialogs or screens of information on a
single form. And since it uses a common metaphor, index tabs, users will feel comfortable with it
immediately. When the user clicks on an index tab, the controls associated with that tab will appear and
the user can then view or modify the information.

First start a new project and add the SSIDXTAB.VBX file (see Chapter 3 - 'Using Designer Widgets').

Using the tool, draw an Index Tab control on the form so that it occupies most of the form.

Related Topics:
Exercise 1: Setting the Number of Tabs and Rows
Exercise 2: Further Defining the Look of the Tabs
Exercise 3: Adding Captions and Pictures to Tabs
Exercise 4: Changing the Look of the Active Index Tab
Exercise 5: Adding Controls to the Index Tabs at Design time

Exercise 1: Setting the Number of Tabs and Rows
The first step you need to do when using the Index Tab is to setup the basic look of the control. This is
usually determined based on the number of tabs you will be using and how wide you need each tab to be
to accommodate caption text and/or a picture.

There are three properties that you need to set to get the look you want. These properties are Tabs,
TabsPerRow, and TabMaxWidth. When you first create the control on the form, you will notice that the
control defaults to a single row of three tabs. Let's use these three properties to change that. Do the
following:

1. Set the Tabs property to 8. You will notice that 8 tabs will appear and the number of rows has
changed to 3.

2. Set the TabsPerRow property to 4. You now will see that the number of tabs is still 8, but the
number of rows has changed to 2.

3. Notice how the tab widths are all the same and that they are automatically sized to fit exactly on
the Index Tab control. To see this better, adjust the width of the control with the mouse.

4. We can override this behavior so that the tab widths can never go over a specific size. This is
done with the TabMaxWidth property. Setting this to 0 (default) will cause the control to
automatically size the tabs. Try setting this to different values to see its effects. These values are
in the scale mode of the form or container, which in this case is twips.

These three properties (Tabs, TabsPerRow, and TabMaxWidth) determine the basic look of the Index
Tab control. There are several other properties that change other aspects of the look of the control such
as TabRowOffset, TabHeight, TabCutSize, and more.

Exercise 2: Further Defining the Look of the Tabs
Using the form we created in the previous exercise, we will now walk through the setting of other
properties that further define the look of the control.

1. By default, the control sets the height of the tabs to a height that should accommodate a single
line of text. However, you may want to specify a larger font or place a picture on each tab. To
adjust the height of each tab on the control, set the TabHeight property. Try setting this property
to different values to see its effects. Remember these values are in the scale mode of the form.

2. The control displays all tabs with angled or cut corners. By default, the size of the cuts are 3
pixels. If you want, you can adjust this size by setting the TabCutSize property (in pixels).
Experiment with different values to get the angle you want.

3. Notice that the top row of tabs has been indented to the right of the bottom row. If there were
three rows of tabs, each row would be indented by the same amount. To adjust the amount of this
indent, set the TabRowOffset property. This property's value is in the scale mode of its form or
container, which in this case is twips.

4. The TabOrientation property determines where the tabs are placed. This property defaults to
displaying the tabs along the top of the control. However, they can also be shown on the bottom,
left or right. Experiment with different settings get the look you want.

Exercise 3: Adding Captions and Pictures to Tabs
The Index Tab control allows you to specify a different caption and/or picture for each tab in the control.
Since the TabCaption() and TabPicture() properties are only available at runtime, the Index Control has
provided the Caption and Picture properties for design time support.

1. First, select a tab by clicking on it with the left mouse button.

2. Now set the Caption property to the text you want to appear on that tab. Remember that if you
want mnemonic support, include an ampersand ('&') character before the mnemonic character in
the text.

3. If you want to include a picture on that tab, set the Picture property as well.
4. Repeat steps 2 and/or 3 for each index tab.
5. Now that you have defined what will appear on each tab, you may want to specify how the
information will be aligned. This is done via two properties called AlignmentCaption and
AlignmentPicture. Try different settings on each of these properties to see how they work.

Exercise 4: Changing the Look of the Active Index Tab
When a user selects a tab, that tab becomes the "active tab". When a tab becomes active, all controls
associated with that tab will appear. The Index Tab control optionally lets you distinguish the look of the
active tab through several properties. With these properties, you can define different fonts, colors or a
specific picture to set on the active tab apart.

1. By default, the control will use the default font to display text on the active tab but in bold to
distinguish it from the rest. You can adjust the font attributes of the active tab by setting the
ActiveTabFontBold, ActiveTabFontItalic, ActiveTabFontStrikeThru and/or
ActiveTabFontUnderline properties. Experiment with different variations of these properties to
get the look you want.

2. You can also set the color of the text in the active tab. This is done via the ActiveTabForeColor
property.

Note Setting the background color is also possible, but in this exercise we are showing the
Index Tab in 3D which ignores all background color definitions.

3. Now to finish the look of the active tab, let's specify a picture to use. Set the ActiveTabPicture
property to a bitmap that will distinguish the active tab.

Exercise 5: Adding Controls to the Index Tabs at Design time
Now that we have the basic look of the form defined, we can show you the most important aspect of the
Index Tab control, placing other controls on each index tab. At design time, you can select each tab by
clicking on it with the left mouse button. When you select a new tab, the 'client area' (the section of the
Index Tab control on which to place other controls) clears giving you a new area to place child controls
associated with that tab. When you select another tab, these controls will 'disappear' until you re-select
the tab.

1. First, select an index tab by clicking on it with the left mouse button.

2. Draw a frame control on the Index Tab control.

Note Be sure that the frame control is a child control of the Index Tab. This is how the Index
Tab control knows which controls are on which tab. To ensure that the frame is a child of the Index
Tab, first select the Index Tab control that you have on the form by clicking on it once with the left
mouse button. Then select the frame control from the Visual Basic toolbox. Now drag the frame to
the desired size directly on the Index Tab control.

To test whether the frame is a child of the Index Tab control, move the Index Tab control to a different
location on the form. The frame control should follow the Index Tab control. If it does not, try the
above steps again. If you have trouble, refer to the Microsoft Visual Basic Programmer's Guide,
Chapter 3 - 'Grouping Options with Option Buttons'; 'Containers for Controls' on page 46.

3. Place any other controls that you want to appear on this tab when the user selects it.
4. Repeat the above steps for each tab on the Index Tab control.

5. At design time, you will notice that when you select a new index tab, all the controls associated
with the new tab appear and the other controls associated with the previous tab disappear. Click on
the different index tabs to see this effect.

6. Once you placed all the controls on the different tabs, run the program. You will see that when
you click a tab, only those controls that you placed on that tab will appear.

Congratulations! You have just completed the tour of the Index Tab control. Now that we have
illustrated the basic concepts of the Index Tab control, you can use it to enhance your own applications to
provide your users a powerful, state-of-the-art interface that is very easy to use.

For a complete description of the Index Tab control and its properties refer to Chapter 9 - 'The Index Tab
Control' and Chapter 11 - 'Properties Reference'

Using FormFX
This chapter will walk you through a sample session creating a customized form using the FormFX
control. FormFX is a custom control that you can use on your forms to change their appearance, give
them a 3D look, adjust the size and contents of their caption areas and/or restrict their size and
movement.

Note At the beginning of most of the following exercises, we will be creating a new project. Each time
you start the new project, be sure to add the SSFORMFX.VBX file to your project.

Related Topics:
Exercise 1: Creating a 3D Dialog Box
Exercise 2: Adding More 3D Effects to a Form
Exercise 3: Creating a Form with a Small Caption
Exercise 4: Changing the Look of the Caption Buttons
Exercise 5: Custom Caption with Multi-line Text and a Picture
Exercise 6: Changing Runtime Behavior

Exercise 1: Creating a 3D Dialog Box
Using the FormFX control, 3D effects can be applied to several parts of the form such as the caption
area, the window border and even the client area. This exercise will show the various properties of the
FormFX control that allow you to create a dialog box similar to those found in the latest versions of many
of today's commercial applications.

1. Start a new project and open a form.

2. Set the Form's BorderStyle property to '3 - Fixed Double', and its BackColor property to light
gray.

3. Place a single FormFX control anywhere on the form.
4. Set FormFX control's StdCaption property and its Border3D property to True. Now run the
program, this is the effect you should have:

Exercise 2: Adding More 3D Effects to a Form
As we stated in the previous exercise, 3D effects can be applied to several parts of the form using the
FormFX. This exercise will show various other properties of the FormFX control that allow you to further
define 3D effects on a form.

1. Using the same form as in the previous exercise, set the StdCaption property of the FormFX
control back to False. This enables us to customize the caption area.

2. Set the Caption3D property to True. This will cause the FormFX control to apply beveling to the
caption area. To specify the type of beveling to use, set the CaptionBevelInner and
CaptionBevelOuter properties. For this example, set the CaptionBevelInner property to 'Inset'
and the CaptionBevelOuter property to 'Raised'.

3. Now we can adjust the caption so that it is large enough to accommodate the 3D bevels. There
are two ways to do this. You can either set the CaptionHeight property or let the control adjust
the caption automatically based on the font.

To see the latter method, first set the CaptionHeight to zero. Now select a font in the FontName
property and adjust its size via the FontSize property. For this exercise, set the FontName to
'MS Sans Serif' and FontSize to 18.

4. Now run the program. This is how it should look:

5. Now let's add one more finishing touch. Notice the control box in the caption. Currently, it is only
2D and doesn't seem to fit with the rest of the form. Let's make it 3D by setting the ControlBox3D
property to True.

Now, that's better:

Exercise 3: Creating a Form with a Small Caption
In this exercise we will change the size of the caption to create a small caption (similar to the caption size
of the Visual Basic toolbox and that of the custom property dialogs in Sheridan Software's VBAssist).

1. Start with a new form.

2. To follow the style of Visual Basic's toolbox, set the Form's BorderStyle property to '1 - Fixed
Single' and set the MinButton and MaxButton properties to False. Also, size the form so that it
has a shape similar to the Visual Basic toolbox

3. Place a FormFX control anywhere on it.

4. Now set FormFX control's FontName property to 'Small Fonts' and the FontSize property to 6.
Be sure that the CaptionHeight property is set to zero so that the FormFX control will
automatically set the height of the caption area to the size of the font.

5. Now run the program, you should see a form similar to this:

6. This looks fine except for the control box, it's too wide. Well, we can even adjust the width of that.
To do this, set the ControlBoxWidth property to 10 (this property is specified in pixels). Notice
that the previous setting of zero automatically sizes the control box to the standard size. Now,
when you run the project the form should look just like the Visual Basic toolbox:

Exercise 4: Changing the Look of the Caption Buttons
So far we have been able to change several characteristics of a form using the FormFX control. In this
exercise we will actually change the buttons that appear in the caption area.

1. Start with a new form and place the FormFX control anywhere on it.

2. On the FormFX control, set the CaptionButtonsPic property to BUTTONS.BMP (this file can be
found in the SAMPLES\CHAPTER7 directory). BUTTONS.BMP is a bitmap file that contains the
images for all of the caption buttons including the control box and the minimize, maximize and
restore buttons. Furthermore, it contains the images for the up and down state of each button.
You can create your own bitmap using any bitmap editor such as the standard PaintBrush
application (PBRUSH.EXE) but you may want to use this bitmap as a guide. This is what it looks
like:

3. Now run the program. As you can see, the caption buttons now look like the ones from the
bitmap.

Exercise 5: Custom Caption with Multi-line Text and a Picture
Normally, a form can only have a single line of text centered in its caption area. There is also no way of
putting a picture in the caption area. The FormFX control gives you the ability to have multi-line captions
as well as pictures.

1. Start with a new form and place the FormFX control anywhere on it.

2. Now in the Caption property of the FormFX control type "This is a FormFX Sample Showing
MultiLine Captions".

3. Set CaptionMultiLine property to True. This will cause the FormFX control to wrap text in the
caption if necessary. If you want to force a line breaks at runtime separate each line in the
FormFX control's Caption with carriage return/line feeds (Chr$(13) + Chr$(10)). For example:
Sub Form_Load ()
 Dim crlf As String
 crlf = Chr$(13) + Chr$(10)
 Fx1.Caption = "Line 1" + crlf + "Line 2" + crlf + "Line 3"
End Sub

4. Set the AlignmentCaption property to '1 - Left Justify - MIDDLE' so that the caption starts at the
left of the caption area.

5. Now let's display an icon at the left of the text. First, select an icon in the CaptionPicture
property (for this exercise, we will use the icon called BULLSEYE.ICO found in the \VB\ICONS\
MISC directory).

6. To get the icon to appear left of the text, set the AlignmentPicture property to '9 - Left of Text'.

7. Now we just need to make the caption area large enough to show multi-line text and the icon.
Set the CaptionHeight property to 1000.

8. Run the program. Adjust the width of the form and watch how the caption automatically 'wraps' to
fit within the caption area.

Exercise 6: Changing Runtime Behavior
This exercise will show you how to use FormFX to change the behavior of a form such as minimizing and
maximizing the size of the form, locking the form's size entirely and preventing the form for moving. Also,
we will show you an example of a form with no caption that can still be moved with the mouse!

1. Start with a new form and place the FormFX control anywhere on it.

2. First we will set the FormFX control's properties that control the minimum size of a form. Set the
both SizeMinWidth and SizeMinHeight properties to 2500. Now run the program and adjust the
size of the form to its smallest size. Notice that the FormFX control has restricted you from sizing
the form less than 2500 by 2500.

Setting a maximum width and height is just as easy. Set the SizeMaxWidth and SizeMaxHeight
properties to 3500. Then run the program and see how large you can size the form.

3. Now let's prevent the form from being resized at all by setting the LockSize property to True.
When you run the program, you will see that you can no longer size the form at all. In addition to
the LockSize property, the LockMove property disables movement of the form. Set the
LockMove property to True, run the program and try to move the form.

4. Now even though we set the LockSize and LockMove properties to True in the previous step,
you can hold down the Ctrl key to override the lock and resize or move the form. Give it a try. If
you want, you can disallow the Ctrl key override by setting the LockCtlKeyOverride property to
False.

5. Now, we will change the form so that it has no caption area but can still be moved. First, set the
Form's ControlBox, MinButton, and MaxButton properties all to False. Then, set the Caption
property on both the Form and FormFX control to blank. This will eliminate the caption area
altogether.

6. Now if you run the program you will see that, by default, there is no way to move this form. Stop
the program via the Visual Basic 'Run' menu. Now, set the FormFX's ClientMove property to
True. Run the program again. You can now move the window by clicking anywhere on the client
area of the form and dragging the mouse.

Well, that concludes our tour of the FormFX control. We showed you several different effects that the
control can give you when customizing your forms. However, there is still much more. See Chapter 10 -
'The FormFX Control' for a complete list of properties and refer to Chapter 11 - 'Properties Reference' for
a description of each one.

 The Dockable Toolbar

Properties Events Methods

Description
The Dockable Toolbar is a custom control that lets a developer easily add toolbar functionality to an
application while using a minimum of system resources. In addition, on MDI forms, the toolbars can be
allowed to float freely or to be docked to the top, bottom, left or right of the form. This is the same
interface used by many of today's 'state of the art' commercial applications.

File Name
SSDOCKTB.VBX

ObjectType
SSToolbar

Related Topics:
Properties Quick Reference
Terms and Concepts
Using the Toolbar Designer
Creating a Toolbar at Runtime

Properties that apply only to this control are marked with an asterisk (*). For all other standard properties, see the Microsoft Visual
Basic Language Reference.
* (About) * BtnToolNum Index
* (ToolbarDesigner) * BtnValue Left
Align * BtnVisible MousePointer
* AllowToolbarDockBottom * BtnWidth Name
* AllowToolbarDockLeft * DockRank * Outline
* AllowToolbarDockRight * DockRankSeq Tag
* AllowToolbarDockTop * DockStatus * Toolbar3D
* AllowToolbarFloat DragIcon * ToolsetName
* AllowToolbarMove DragMode * ToolsetNumBtnStates
BackColor Enabled * ToolsetNumTools
* BackColorDock * FloatingCaption * ToolsetPicture
* BackColorHelp * FloatingCaptionType * ToolsetToolAllowAllUp
* BalloonHelp * FloatingControlBox * ToolsetToolDesc
* BalloonHelpDelay * FloatingHeight * ToolsetToolExclusive
* BevelColorFace * FloatingLeft * ToolsetToolGroup
* BevelColorHighlight * FloatingSizable * ToolsetToolHelp
* BevelColorShadow * FloatingTop * ToolsetToolID
* BevelInner * FloatingWidth * ToolsetToolMnemonic
* BevelOuter * FloatingWidthInBtns * ToolsetToolPicDnDis
* BevelWidth FontBold * ToolsetToolPicDn
* BorderWidth FontItalic * ToolsetToolPicUp
* BtnEnabled FontName * ToolsetToolPicUpDis
* BtnGroupSpacing FontSize * ToolsetToolType
* BtnHeight FontStrikeThru Top
* BtnMarginX FontUnderline Visible
* BtnMarginY * ForeColorHelp Width
* Btns Height
* BtnSpacing HelpContextID

Events that apply only to this control are marked with an asterisk (*). For all other standard events, see
the Microsoft Visual Basic Language Reference.

* Click * Help MouseUp

DblClick MouseDown * ToolbarClosed

* DockStatusChanged * MouseEnter * ToolbarResized

DragDrop * MouseExit

DragOver MouseMove

Drag Move Refresh

Terms and Concepts
Before continuing with the discussion of the Dockable Toolbar we need to explain the following terms and
concepts:

· Toolbars and Buttons

· Toolset Objects

· Docked and Floating Toolbars

Related Topics:
Toolbars and Buttons
Toolset Objects
Docked and Floating Toolbars

Toolbars and Buttons
A toolbar is a single control that contains one or more tools. Each tool performs a specific function and is
represented by a button.

There are two types of buttons:

· Push buttons - perform a specific function and then always return to their up state.
An example of this type would be a button that invokes a print function.

· Toggle buttons - remain either in their up or down state.

These buttons can also be logically grouped together. A toolbar can contain multiple groups each
consisting of one or more buttons. However, since the toolbar is actually a single control utilizing a single
bitmap, the impact on system resources is greatly minimized.

In addition, toggle buttons in a group can operate independently or exclusively (with only one button in the
group down at a time). For example, a group of three buttons might set an alignment option (left, center or
right). Only one of these buttons could be selected (in the down state) at a time. If the 'left' button was
down, pressing the 'center' button would cause the 'left' button to come up.

Every toolbar is linked to a toolset (via the ToolsetPicture property). Buttons for the toolbar are selected
from the available tools in its toolset.

Both toolsets and toolbars are created and maintained using the Toolbar Designer (described later in this
chapter).

Toolset Objects
Toolsets are collections of related tools. Each tool represents a specific user function. Toolsets are
defined and maintained in the Toolbar Designer. To define a toolset, you first supply a bitmap that
contains an image for each state of every tool in the toolset. This bitmap is available at runtime via the
ToolsetPicture property.

The possible states are:

1. Up (required)

2. Down (required)

3. Up disabled (optional. But required if 'Down disabled' is present.)

4. Down disabled (optional)

Note The bitmap can be created or modified with any bitmap editor including the standard PaintBrush
application (PBRUSH.EXE).

The following bitmap contains images for all four states of 8 tools:

When creating the bitmap you need to be aware of the following:

· The size of the image for each state of every tool in the toolset must be the same.

· You must supply at least the 'up' and 'down states' (the 'up disabled' and 'down
disabled' states are optional).

· The ToolsetNumBtnStates property lets you specify which button states are
supplied. A value of two means that only the 'up' and 'down' states are included.
Three means that the 'up disabled' state is also included while a value of four means
that all four states are included (as in the sample bitmap above).

· The ToolsetNumTools property specifies how many tools are in the set. This would
be set to 8 for the above sample bitmap.

· BtnWidth and BtnHeight properties are automatically calculated by the control
based on the size of the bitmap and the ToolsetNumBtnStates and
ToolsetNumTools property settings.

At design time, the Toolbar Designer lets you to specify ToolsetName, ToolsetNumBtnStates,
ToolsetNumTools and several additional properties for each tool in the toolset.
At runtime, you can access these additional properties via the following property arrays (See Chapter 11
'Properties Reference' for more information about these properties):

· ToolsetToolID() - a unique ID (maximum 16 characters) that the developer can use
internally to identify the tool.

· ToolsetToolHelp() - balloon help text.

· ToolsetToolDesc() - an expanded description of the tool which might be used in a
status bar.

· ToolsetToolType() - tool type, push ('0') or toggle ('1').

· ToolsetToolGroup() - affects both visual and functional aspects of the tools.
Adjacent tools with the same group number are separated from each other based on
the BtnSpacing property while adjacent tools with different group numbers are
separated based on the BtnGroupSpacing property. For toggle type tools, the group
number can also determine how they operate based on their ToolsetToolExclusive()
and ToolsetToolAllowAllUp() property settings.

· ToolsetToolExclusive() - True or False. If set to True then all tools with the same
ToolsetToolGroup() number as this tool will operate exclusively (with only one tool in
the group down at a time). This applies only to tools with ToolsetToolType() set to
toggle.

· ToolsetToolAllowAllUp() - True or False. If set to True allows all tools in an
exclusive group to be toggled up. This applies only to tools with ToolsetToolType()
set to toggle and ToolsetToolExclusive() set to True.

· ToolsetToolMnemonic() - an accelerator character (optional).

The indexes for these property arrays are zero based and correspond to each tool in the toolset. For

example, in the sample bitmap above 0 represents the tool, 1 represents the

 tool and so on.
Note All of these settings are actually stored in a bitmap information file that has the same name as the
bitmap but with a BM$ extension. For example, if the bitmap was named TOOLSET1.BMP the above
settings would be saved in the same directory in a file named TOOLSET1.BM$.

The advantage to storing these settings in a parallel file with the bitmap is that you don't need to redefine
these parameters for every form and/or project that uses the same toolset. In effect, they can be viewed
as reusable objects.

Once you have created a toolset and assigned it to a toolbar, the Toolbar Designer provides an easy drag
and drop method for arranging tools on the toolbar. Simply drag a tool from the toolset and drop it on the
toolbar at the appropriate spot. An instance of a tool on the toolbar is referred to as a button.

For each button, the Toolbar Designer lets you specify whether at runtime the button is initially enabled,
visible, up or down. These settings can also be controlled via the following runtime property arrays (See
Chapter 11 - 'Properties Reference' for more information about these properties):

· BtnToolNum() - this identifies which tool this button represents. It is the zero based
index of the tool in the toolset (described above).

· BtnVisible() - True or False
· BtnEnabled() - True or False
· BtnValue() - True or False, determines the state (up is False, down is True)

The indexes for these button property arrays are zero based and correspond to each button's relative
position on the toolbar. The leftmost button is zero.

Docked and Floating Toolbars
When placed on a standard Visual Basic form (not an MDI form) or on a container control (e.g. a
picturebox) the toolbar control is stationary. It has the standard Align property so that it can resize itself
automatically when its container is resized.

However, when placed directly on an MDI form (not on a container) the toolbar can either float
independently or be docked to the top, bottom, left or right docking area of the MDI form. In addition,
multiple toolbars can share the same docking area.

Note The four docking areas (top, bottom, left and right) are outside the MDI form's client area so they
will not affect MDI Child forms.

The following properties control docking and floating behavior and apply only to toolbars on MDI forms
(See Chapter 11 'Properties Reference' for more information about these properties):

· AllowToolbarDockTop - True or False
· AllowToolbarDockBottom - True or False
· AllowToolbarDockLeft - True or False
· AllowToolbarDockRight - True or False
· AllowToolbarFloat - True or False
· AllowToolbarMove - True or False, if set to False the user can't move the toolbar at

runtime.

· DockStatus - top, left, bottom, right or not docked (floating).

· DockRank and DockRankSeq - these properties determine the relative position of
toolbar rows as well as the relative position of a toolbar with respect to other toolbars
that are docked in the same docking area. For example, in the top docking area there
may be 3 toolbars in 2 ranks.

Using the Toolbar Designer
The Toolbar Designer is a design time tool for creating and maintaining toolsets and assigning tools to a
toolbar. In this section we make the assumption that you understand these and other concepts.

Therefore, if you haven't read the previous section in this chapter ('Terms and Concepts') we recommend
that you do so before continuing.

First, if you have not already done so, add the SSDOCKTB.VBX file to your project (see chapter 3 -
Using Designer Widgets).

Next place a toolbar control on a form using the tool in the Visual Basic toolbox.

In the Visual Basic property window double click on the (Toolbar Designer) property. This will bring up
the following dialog:

Press the button labeled 'Select Toolset...' (if there was already a toolset attached to the toolbar this
button would be labeled 'Change Toolset...'). This will bring up a file open dialog requesting the name of
the bitmap file. If you haven't created your own bitmap you can use TOOLSET1.BMP in the SAMPLES\
CHAPTER8 directory provided with Designer Widgets.

After selecting a BMP file, if there is no parallel BM$ file (see explanation of the bitmap information file in
the previous section under the heading 'Toolset Objects') the 'Set Bitmap Information' dialog will be
displayed:

Setting Bitmap Information

This dialog displays the bitmap along with its width and height in pixels.
From here you must supply the following information:

· Rows - corresponds to the ToolsetNumBtnStates property.

· Columns - corresponds to the ToolsetNumTools property.

It is important that these numbers correspond exactly to the number of rows and columns in the bitmap.
Otherwise, you will end up with some very strange looking tools (See Chapter 11 - 'Properties Reference'
for more information about these properties).

Pressing the 'OK' button will bring you back to the Toolbar Designer main window. Now press the 'Edit
Toolset' button.

The 'Toolset Editor' should look like this:

Setting Toolset Information

From here you specify the name of the toolset (this corresponds to the ToolsetName property).
You can also set several properties for each tool in the toolset.
Select a tool by clicking on it in the toolset box. The selected tool will be shown with a rectangular outline
around it.
For the selected tool you can specify the following (see Chapter 11 - 'Properties Reference' for more
information about these properties):

· Description - corresponds to the ToolsetToolDesc() property. This can be used to
display an expanded description of the button in a status bar when the cursor is over
the tool (see the Help, MouseEnter and MouseExit events in chapter 12).

· Balloon Help Text - corresponds to the ToolsetToolHelp() property. This text is
displayed in a balloon help window when the cursor pauses over the tool at runtime
(see the BalloonHelp and BalloonHelpDelay properties in chapter 11 and the Help
event in chapter 12).

· ID - corresponds to the ToolsetToolID() property. This ID can be a maximum of 16
characters. It uniquely identifies the tool and is passed as the first parameter in the
Click, Help, MouseEnter and MouseExit events.

· Accelerator Key - corresponds to the ToolsetToolMnemonic() property. If the form
(that the toolbar is on) is the active window, holding the ALT key down and pressing
this character will push or toggle this tool. Remember, that if an MDI Child form is the
active form, accelerator keys for toolbars on the main MDI form will NOT be active.

· Group # - corresponds to the ToolsetToolGroup() property. This property allows you
to logically group tools. Adjacent tools on a toolbar with the same group # will be
separated based on the BtnSpacing property while adjacent tools with different
group #'s will be separated based on the BtnGroupSpacing property. Also toggle

type tools within the same group can behave differently based on the 'Allow All Up'
and 'Exclusive' settings.

· Type - corresponds to the ToolsetToolType() property (either push or toggle).

· Exclusive - corresponds to the ToolsetToolExclusive() property. If checked will
cause all of the toggle type tools with the same group # as this tool to operate as a
mutually exclusive group. In other words only one tool in the group can be toggled
down at any time.

· Allow All Up - corresponds to the ToolsetToolAllowAllUp() property. If checked will
allow all toggle type tools with the same group # as this tool to be toggled up at the
same time. This setting only has meaning if Exclusive is also checked.

Note Changing the 'Exclusive' or 'Allow All Up' settings for one tool in a group will automatically cause
these settings on all the other tools in the same group to be changed as well.

The 'Bitmap Info...' button will display the 'Set Bitmap Information' dialog (explained previously in this
section).

Press 'OK' to save any changes or press 'Cancel' to exit without saving them.

The Toolbar Designer main window should now be shown with the tools from the selected toolset
displayed in a box labeled 'Available Tools'.

To add a tool to the toolbar simply drag it from the 'Available Tools' box and drop it on the toolbar.

To insert a tool between 2 other tools drop it between them on the toolbar.

To remove a tool click on it in the toolbar (not in the 'Available Tools' box) and press the DELETE key. A
dialog will appear asking you to confirm the deletion.

Press 'Add All Tools" to add all of the tools in the toolset to the toolbar. This will overlay any tools that
were already on the toolbar.

In addition, there are 3 check boxes labeled 'Initial Property Settings'. They apply to the currently selected
button. You select the currently selected button by clicking on it in the toolbar.

In the above example the underline tool is selected and the 'Initial Property Settings' are set so that
when the toolbar is first displayed the underline tool will be enabled, visible and will be in its up state (not
selected).
These check boxes correspond the BtnEnabled(), BtnVisible() and BtnValue() properties respectively.

Note Although the BtnToolNum() property is not explicitly shown here it is automatically set based on
the index of the tool that was dragged from the 'Available Tools' box.

Press 'OK' to save any changes or press 'Cancel' to exit without saving them.

Creating a Toolbar at Runtime
Creating toolsets and toolbars at design time using the Toolbar Designer requires no coding on your part.

However, there are situations where it might be necessary to dynamically create a toolbar and its
underlying toolset. For example, suppose you wanted to give the user the flexibility of building a custom
toolbar at runtime. You might want to offer the user a choice of tools from a number of toolsets. This is
possible since all of the properties that relate to toolsets and toolbars are modifiable from code.

In this section will we describe how to dynamically create a toolbar and its toolset at runtime.

There are 2 ways of creating the toolset picture at runtime:

· set the individual pictures for each state of every tool via the ToolsetToolPicUp(),
ToolsetToolPicDn(), ToolsetToolPicUpDis() and ToolsetToolPicDnDis()
properties.

· set ToolsetPicture() to a bitmap containing all the states for every tool.

Note that either method requires that ToolsetNumTools and ToolsetNumBtnStates also be set.

The following code template shows how create a tooolset from individual pictures. It would normally be
placed in the Load event of the form but could also be executed at any time. In this example the Name of
the SSToolbar control is 'Tb1'. The variables that you need to supply are enclosed in brackets [].

Dim I As Integer
'first clear any previous toolset picture
Tb1.ToolsetPicture = LoadPicture("")
'set the name for toolset (optional)
Tb1.ToolsetName = [descriptive name]
'then create the toolset using individual pictures
Tb1.ToolsetNumBtnStates = [# of states(2, 3 or 4)]
Tb1.ToolsetNumTools = [# of tools in toolset]
For i = 0 to Tb1.ToolsetNumTools - 1

Tb1.ToolsetToolID(i) = [unique 16 char ID]
Tb1.ToolsetToolType(i) = [0 = push, 1 = toggle]
Tb1.ToolsetToolDesc(i) = [status bar desc]
Tb1.ToolsetToolHelp(i) = [balloon help text]
Tb1.ToolsetToolMnemonic(i)= [accelerator char]
Tb1.ToolsetToolGroup(i) = [group #]
Tb1.ToolsetToolExclusive(i) = [True/False]
Tb1.ToolsetToolAllowAllUp(i) = [True/False]

' Individual tool pictures
' see note below about
' picture properties

Tb1.ToolsetToolPicUp(i) = [up bitmap]
Tb1.ToolsetToolPicDn(i) = [down bitmap]

'if ToolsetNumBtnStates>2
Tb1.ToolsetToolPicUpDis(i) = [up disabled bitmap]

'if ToolsetNumBtnStates>3
Tb1.ToolsetToolPicDnDis(i) = [down disabled bitmap]

Next i
'attach the tools to buttons
Tb1.Btns = [# of buttons in toolbar] 'does not have to be

'the same as the #
'of tools in the toolset

For i = 0 to Tb1.Btns - 1
Tb1.BtnToolNum(i) = [index of tool in toolset array]
Tb1.BtnVisible(i) = [True/False]
Tb1.BtnEnabled(i) = [True/False]
Tb1.BtnValue(i) = [False is up, True is down]

Next I

Note After setting ToolsetNumBtnStates and ToolsetNumTools properties, the first individual tool
picture you set will cause BtnWidth and BtnHeight to be automatically calculated by the control based
on the picture's size (to subsequently change BtnWidth and BtnHeight, you must first reset the
ToolsetPicture property via LoadPicture("")).

Remember that instead of setting the individual pictures for each state of every button, as in the above
example, you can alternatively set the ToolsetPicture property to a single bitmap that contains all of
these images.

Actually, the individual picture properties ToolsetToolPicUp(), ToolsetToolPicDn(),
ToolsetToolPicUpDis() and ToolsetToolPicDnDis() are not kept as separate bitmaps by the toolbar.
They are used just like the GraphicCell() property in the Picture Clip control (included in the Visual Basic
Professional Edition) except that they are not read-only.

Keep in mind that when you set any of these individual picture properties you are in fact updating an area
of the larger (all inclusive) ToolsetPicture bitmap. By taking this segmented approach we minimize the
impact on system resources.

Here is another example of how you might use these properties. Suppose you had a toolbar ('Tb1') on
one form ('F1') and you wanted to let the user add a tool to it from another toolbar ('Tb2') on another
form ('F2') and the tool that you wanted to add was the fourth button from the left on Tb2.

Here is how you would do it:

Dim ExistingTool as Integer
Dim NewTool as Integer
Dim NewButton as Integer
ExistingTool = F2!Tb2.BtnToolNum(3) 'get tool index of

'4th button in Tb2
'add a button to the toolbar on Form 1
NewTool = F1!Tb1.ToolsetNumTools 'total tools in Tb1
F1!Tb1.ToolsetNumTools = NewTool + 1 'add a tool to Tb1

'set up and down tool images
F1!Tb1.ToolsetToolPicUp(NewTool) = F2!Tb2.ToolsetToolPicUp(ExistingTool)
F1!Tb1.ToolsetToolPicDn(NewTool) = F2!Tb2.ToolsetToolPicDn(ExistingTool)
'if ToolsetNumBtnStates > 2 set up disabled tool image
If (F1!Tb1.ToolsetNumTools > 2) and (F2!Tb2.ToolsetNumTools > 2) then

F1!Tb1.ToolsetToolPicUpDis(NewTool) = F2!Tb2.ToolsetToolPicUpDis(ExistingTool)
End If
'if ToolsetNumBtnStates > 3 set down disabled tool image
If (F1!Tb1.ToolsetNumTools > 3) and (F2!Tb2.ToolsetNumTools > 3) then

F1!Tb1.ToolsetToolPicDnDis(NewTool) = F2!Tb2.ToolsetToolPicDnDis(ExistingTool)
End If
'set remaining properties
F1!Tb1.ToolsetToolID(NewTool) = F2!Tb2.ToolsetToolID(ExistingTool)
F1!Tb1.ToolsetToolType(NewTool) = F2!Tb2.ToolsetToolType(ExistingTool)
F1!Tb1.ToolsetToolDesc(NewTool) = F2!Tb2.ToolsetToolDesc(ExistingTool)
F1!Tb1.ToolsetToolHelp(NewTool) = F2!Tb2.ToolsetToolHelp(ExistingTool)
F1!Tb1.ToolsetToolMnemonic(NewTool) = F2!Tb2.ToolsetToolMnemonic(ExistingTool)
F1!Tb1.ToolsetToolGroup(NewTool) = F2!Tb2.ToolsetToolGroup(ExistingTool)
F1!Tb1.ToolsetToolExclusive(NewTool) = F2!Tb2.ToolsetToolExclusive(ExistingTool)
F1!Tb1.ToolsetToolAllowAllUp(NewTool) = F2!Tb2.ToolsetToolAllowAllUp(ExistingTool)
'add a button to the toolbar on Form 1
NewButton = F1!Tb1.Btns 'total Btns in Tb1
F1!Tb1.Btns = NewButton + 1 'add a Btn to Tb1
F1!Tb1.BtnToolNum(NewButton) = NewTool
F1!Tb1.BtnVisible(NewButton) = True
F1!Tb1.BtnEnabled(NewButton) = True
F1!Tb1.BtnValue = False

Note The above example assumes that the dimensions of each of the tools (BtnWidth and BtnHeight)
in both toolsets are the same. If they aren't, the new tool might not look right. Therefore, if you plan on
providing this type of facility in your applications (moving or copying tools between toolbars) you will need
to standardize on a single size for your buttons.

If you would like to see some more sample code look at the projects that are prefixed with TBAR in the
SAMPLES directory.

Properties Quick Reference
This section will give you a quick reference to all properties grouped into functional categories. For a
complete reference of all properties, see Chapter 11. If the letter 'r' appears next to a property, the
property is only available at runtime.

Related Topics:
Docking Properties (MDI forms only)
Floating Properties (MDI forms only)
Button Properties
Toolbar Properties
Toolset Properties
3D Properties
Font Properties
Sizing/Location Properties
Other Properties

Docking Properties (MDI forms only)
AllowToolbarDockBottom Allows the toolbar to be docked in the bottom docking area.

AllowToolbarDockLeft Allows the toolbar to be docked in the left docking area.

AllowToolbarDockRight Allows the toolbar to be docked in the right docking area.

AllowToolbarDockTop Allows the toolbar to be docked in the top docking area.

AllowToolbarFloat Allows the toolbar to float.

AllowToolbarMove Allows the toolbar to be moved by the user at runtime.

BackColorDock Specifies the color of the docking areas.

DockRank Determines which rank (i.e. 'row' for top and bottom docking
areas or 'column' for left and right docking areas) of a docking
area that the toolbar is docked in.

DockRankSeq Determines the relative position of a toolbar with respect to
other toolbars that are docked in the same rank in a docking
area.

DockStatus Determines if the toolbar is docked to the top, bottom, right or
left docking area or is not docked at all (floating).

Floating Properties (MDI forms only)
FloatingCaption Sets the caption for the floating toolbar.

FloatingCaptionType Specifies the type of caption (none, small, normal or use font).

FloatingControlBox Determines if a control box will appear in the caption area of the
floating toolbar.

FloatingWidth Determines the width of the floating toolbar in units based on
the scalemode of the MDI form and relative to the left of the
MDI client area.

FloatingLeft Determines the X-coordinate of the floating toolbar in units
based on the scalemode of the MDI form and relative to the left
of the MDI client area.

FloatingSizable Determines whether the user can resize a floating toolbar.

FloatingTop Determines the Y-coordinate of the floating toolbar in units
based on the scalemode of the MDI form and relative to the top
of the MDI client area.

FloatingHeight Determines the height of the floating toolbar in units based on
the scalemode of the MDI form and relative to the left of the
MDI client area.

FloatingWidthInBtns Specifies the width of the floating toolbar in number of buttons.

Button Properties
BtnEnabled() - [r] Determines if this button is enabled.

BtnHeight - [r] The height (in pixels) of all buttons on the toolbar. This property
is automatically calculated based on the size of the bitmap and
ToolsetNumBtnStates.

Btns - [r] Determines the # of buttons on the toolbar.

BtnToolNum() - [r] Determines which tool in the toolset this button represents (valid
values are from -1 to ToolsetNumTools - 1). It is passed as a
parameter in the Click, Help, MouseEnter and MouseExit
events.

BtnValue() - [r] Determines which state the button is in (True = down, False =
up).

BtnVisible() - [r] Determines if this button is visible.

BtnWidth - [r] The width (in pixels) of all buttons on the toolbar. This property
is automatically calculated based on the size of the bitmap and
ToolsetNumTools.

Toolbar Properties
Align Standard Visual Basic align property.

BackColor Determines the color of the toolbar. It has meaning only if
Toolbar3D is set to False. Otherwise, BevelColorFace is used.

BackColorHelp Determines the background color used in balloon help.

BalloonHelp Determines if balloon help is on. If set to True then pausing
over a button at runtime will cause the Help event to be fired
and its ToolsetToolHelp() text to be displayed.

BalloonHelpDelay Determines the amount of time (in milliseconds) the user can
pause over a button before the Help event is fired and balloon
help is displayed.

BtnGroupSpacing Determines the number of pixels that separate adjacent buttons
that have different ToolsetToolGroup() numbers.

BtnMarginX Determines the number of pixels that separate the buttons from
the left edge of the toolbar or from the inside bevels (if
Toolbar3D is True).

BtnMarginY Determines the number of pixels that separate the buttons from
the top edge of the toolbar or from the inside bevels, if
(Toolbar3D is True).

BtnSpacing Determines the number of pixels that separate adjacent buttons
that have the same ToolsetToolGroup() number.

ForeColorHelp Determines the forecolor (color of the text) used in balloon help.

Outline Draws an outline (single border) around the toolbar when
docked or stationary.

Toolset Properties
ToolsetName - [r] A descriptive name for the toolset. This might be used for

presenting the user with a choice of possible toolsets.

ToolsetNumBtnStates - [r] Determines how many button states (rows) are in the bitmap.
This can range from 2 to 4.

ToolsetNumTools - [r] Determines how many tools (columns) are in the bitmap.

ToolsetPicture - [r] Gets or sets the toolset bitmap.

ToolsetToolAllowAllUp() - [r] Allows all toggle type tools, with the same ToolsetToolGroup #
as this tool, to be toggled up at the same time.

ToolsetToolDesc() - [r] Specifies an expanded description of the tool.

ToolsetToolExclusive() - [r] Determines if all toggle type tools, with the same
ToolsetToolGroup # as this tool, will operate exclusively (only
one down at a time).

ToolsetToolGroup() - [r] Determines which group the tool belongs to.

ToolsetToolHelp() - [r] Specifies a short description of the tool (used by balloon help).

ToolsetToolID() - [r] Specifies an identifier (maximum of 16 characters) which can be
referenced in VB code to uniquely identify the tool.

ToolsetToolMnemonic() - [r] Specifies an accelerator character that can be pressed by the
user to select this tool.

ToolsetToolPicDnDis() - [r] Sets or gets a bitmap containing the down disabled state of the
tool (applies only if ToolsetNumBtnStates > 3).

ToolsetToolPicDn() - [r] Sets or gets a bitmap containing the down state of the tool.

ToolsetToolPicUp() - [r] Sets or gets a bitmap containing the up state of the tool.

ToolsetToolPicUpDis() - [r] Sets or gets a bitmap containing the up disabled state of the
tool (applies only if ToolsetNumBtnStates > 2).

ToolsetToolType() - [r] Specifies the type of the tool (0 = push, 1 = toggle).

3D Properties
BevelColorFace Sets the color for the toolbar surface. Applies only if Toolbar3D

is True.
BevelColorHighlight Sets the highlight color of the toolbar bevel. Applies only if

Toolbar3D is True.
BevelColorShadow Sets the shadow color of the toolbar bevel. Applies only if

Toolbar3D is True.
BevelInner Specifies the type of inside bevel for the toolbar. Applies only if

Toolbar3D is True.
BevelOuter Specifies the type of outside bevel for the toolbar. Applies only if

Toolbar3D is True.
BevelWidth Sets the width of the bevel of the toolbar. Applies only if

Toolbar3D is True.
BorderWidth Sets the amount of space in pixels between the inner and outer

bevels. Applies only if Toolbar3D is True.
Toolbar3D If set to True ignores BackColor and uses to above properties

to give a 3D look to the toolbar.

Font Properties
FontBold Display text bold.

FontItalic Display text italic.

FontName Specifies the font name.

FontSize The size of the font.

FontStrikeThru Display text with strike through.

FontUnderline Display text with underlines.

Sizing/Location Properties
Height The height of the control.

Left X coordinate of the left of control.

Top Y coordinate of the top of control.

Width The width of the control.

Other Properties
(About) Displays version information about the control at design time.

(ToolbarDesigner) Invokes the Toolbar Designer at design time.

DragIcon Standard Visual Basic DragIcon property.

DragMode Standard Visual Basic DragMode property.

Enabled Determines if the control is enabled.

HelpContextID Standard Visual Basic HelpContextID property.

Index The index of the control if it is in a control array.

MousePointer Standard Visual Basic MousePointer property.

Name The name of the control.

Tag The tag for the control.

Visible Determines if the control is visible.

 The Index Tab Control
Properties Events Methods

Description

The Index Tab is a custom control that you can use to provide the same 'state of the art' interface adopted
by many of today's commercial Windows applications. This interface is based on an index card metaphor.
This allows the presentation of several dialogs or screens of information from a single form. In addition,
since this is a metaphor that everyone is familiar with, users feel comfortable with it immediately.

Tabs are selected (in design and run modes) by clicking on the tab with the left mouse button. When a tab
is selected at runtime, the controls associated with it appear and the user can then view or modify the
information. Since the tabs are also active at design time, creating and arranging each tab's controls is a
snap.

File Name

SSIDXTAB.VBX

ObjectType

SSIndexTab

Related Topics:
Properties Quick Reference
Placing Controls on the Index Tab
Setting Index Tab Captions and Pictures at Design Time
How to Setup the Number of Tabs
Sharing Controls Across Different Tabs
Control Limitations

Properties that apply only to this control are marked with an asterisk (*). For all other standard properties, see the Microsoft Visual
Basic Language Reference.
* (About) * Font3D * TabForeColor
* ActiveTabBackColor FontBold * TabHeight
* ActiveTabFontBold FontItalic * TabHwnd
* ActiveTabFontItalic FontName TabIndex
* ActiveTabFontStrikeThru FontSize * TabMaxWidth
* ActiveTabFontUnderline FontStrikeThru * TabOrientation
* ActiveTabForeColor FontUnderline * TabPicture
* ActiveTabPicture ForeColor * TabPictureMetaHeight
Align Height * TabPictureMetaWidth
* AlignmentCaption HelpContextID * TabRowOffset
* AlignmentPicture Index * Tabs
BackColor Left * Tabs3D
* BevelColorFace MousePointer * TabSelectType
* BevelColorHighlight Name * TabsPerRow
* BevelColorShadow * Picture * TabStart
* Caption * Redraw TabStop
* ClientLeft * Rows * TabVisible
* ClientHeight * ShowFocusRect Tag
* ClientTop * Tab Top
* ClientWidth * TabBackColor Visible
DragIcon * TabCaption Width
DragMode * TabCutSize
Enabled * TabEnabled

Events that apply only to this control are marked with an asterisk (*). For all other standard events, see
the Microsoft Visual Basic Language Reference.
* Click GotFocus LostFocus

DblClick KeyDown MouseDown

DragDrop KeyPress MouseMove

DragOver KeyUp MouseUp

Drag Refresh SetFocus

Move

Placing Controls on the Index Tab
The Index Tab control allows you to visually setup the controls that will appear on each tab within the
Visual Basic design time environment. This is done simply by selecting each tab (using the left mouse
button) one at a time and placing the desired controls directly onto the Index Tab control.

Note Be sure that all controls placed on the tab are, in fact, child controls of the Index Tab. This is how
the Index Tab control knows which controls are on which tab. To ensure that a control is a child of the
Index Tab, first select the Index Tab control by clicking on it once with the left mouse button. Then select
the desired tool from the Visual Basic toolbox. Now drag the control to the proper size directly on the
Index Tab control.

To test whether the controls are children of the Index Tab control, move the Index Tab control to a
different location on the form. The controls should follow the Index Tab control. If they do not, refer to
the Microsoft Visual Basic Programmer's Guide, Chapter 3 - 'Grouping Options with Option Buttons';
'Containers for Controls' on page 46 for more information on parent-child relationships with controls.

When finished with one tab, select the next tab. You will notice that all the controls that you placed on the
previous tab have disappeared. The Index Tab control remembers where these controls were placed so
that the next time you select the tab, the controls will reappear.

Setting Index Tab Captions and Pictures at Design Time
Two properties are used to set the captions and pictures of each index tab, they are the TabPicture() and
TabCaption() properties. However, since these properties are property arrays, they are not available at
design time. Therefore, we have provided a way to set these properties at design time with the Caption
and Picture properties.

To set the caption and/or picture for a specific tab, first select the tab you want to set. Then set the
Caption property. The Index Tab control will automatically set the selected tab's TabCaption() property
for you. To set a picture for the selected tab, set the Picture property and the control will automatically
set the TabPicture() property for the selected tab. Repeat this process for all the tabs.

When you save the form, all of these property settings will be written to disk. The next time you load the
project, the captions and pictures will be retrieved and set to the appropriate tabs.

How to Setup the Number of Tabs
The Index Tab control allows you to specify the number of tabs to display on the control as well as define
the number of rows of tabs. This involves the settings of two properties called Tabs and TabsPerRow.
To set the overall number of tabs on the control, use the Tabs property. To determine how many rows of
tabs to display, you need to specify a value for the TabsPerRow property. The Index Tab control will
divide the number of tabs by the number of tabs per row to get the number of rows (Tabs / TabsPerRow).
By default, the TabsPerRow property is set to 3. So if you set the Tabs property to 9, you will see 3
rows of tabs (9 / 3 = 3).

Furthermore, when the control calculates the number of rows of tabs, it applies the remainder of tabs to a
new row. Therefore if the Tabs property is set to 8 and you set the TabsPerRow property to 3, the
number of rows would still be 3. The first two rows would contain 3 tabs but the last row would only
contain 2.

Sharing Controls Across Different Tabs
Using an Index Tab control with many tabs and many controls on each tab may sometimes use up scarce
resources in Windows. However, with the Index Tab control you can share common controls across
several different tabs very easily.

The TabHwnd() property is provided for this purpose. This property array consists of a window handle for
each of the tabs you define in the Index Tab control. To use the same control on several different tabs,
you simply need to set the control's parent to the TabHwnd() property associated with the new tab. The
sample code below shows how to use the same OK and Cancel buttons (see figure below) on all the tabs
for an Index Tab control. It responds to the Click event by changing the parent window of the buttons to
the newly selected tab.

Declare Function SetParent Lib "USER.EXE" (ByVal hWndChild As Integer, ByVal hWndParent As
Integer) As Integer

Sub SSIndexTab_Click (PreviousTab As Integer)
 Dim NewTab As Integer
 Dim rc As Integer
 NewTab = SSIndexTab.Tab
 rc = SetParent(cmdOK.Hwnd, SSIndexTab.TabHwnd(NewTab))
 rc = SetParent(cmdCancel.Hwnd, SSIndexTab.TabHwnd(NewTab))
End Sub

Control Limitations
Due to the nature of graphical controls they cannot be placed directly onto the Index Tab control.
Graphical controls are controls in Visual Basic that do not have a window handle associated with them.
You can normally determine if a control is graphical if it does not have an Hwnd property. The Label,
Line, Shape and Image controls are graphical.

If you need to use a graphical control on an index tab, you must place it inside a container control on the
tab. A container control is a control in Visual Basic that can have child controls. The Picture, Frame and
3D Panel controls are containers. If you do not place graphical controls inside containers before placing
them on a tab, the graphical controls will not disappear when a new tab is selected.

Properties Quick Reference
This section will give you a quick reference to all properties grouped into functional categories. For a
complete reference of all properties, see Chapter 11. If the letter 'r' appears next to a property, the
property is only available at runtime.

Related Topics:
Caption Properties
3D Effects Properties
Color Properties
Font Properties
Tab Properties
Sizing/Location Properties
Picture Properties
Other Properties

Caption Properties
AlignmentCaption Determines how the caption will be aligned on the index tab.

Caption Sets the text for the selected index tab at design time.

TabCaption() - [r] Sets the caption for each tab.

3D Effects Properties
BevelColorFace Sets the color of the face of the bevel.

BevelColorHighlight Sets the color of the bevel highlight.

BevelColorShadow Sets the color of the bevel shadow.

Tabs3D Displays the index tabs in 3D.

Font3D Displays the text in 3-D.

Color Properties
ActiveTabBackColor Sets the background color of the active index tab.

ActiveTabForeColor Sets the foreground color of the active index tab.

BackColor Sets the background color of area not occupied by the control.

TabBackColor() - [r] Sets the background color of each tab.

TabForeColor() - [r] Sets the foreground color of each tab.

Font Properties
ActiveTabFontBold Display bold text on the active tab.

ActiveTabFontItalic Display italic text on the active tab.

ActiveTabFontStrikeThru Displays the text with strikethrough on the active tab.

ActiveTabFontUnderline Display the text with underlines on the active tab.

FontBold Display bold text on non-active tabs.

FontItalic Display italic text on non-active tabs.

FontName Specifies the font name for the text for all tabs.

FontSize The size of the text for all tabs.

FontStrikeThru Displays the text with strikethrough on non-active tabs.

FontUnderline Display the text with underlines on non-active tabs.

Tab Properties
Rows - [r] Returns the number of rows of tabs.

Tab Sets the active tab.

TabCutSize Sets the size of the cut corners of each tab.

TabEnabled() - [r] Determines whether the tab is enabled or not.

TabHwnd() - [r] Returns the window handle of each tab.

TabOrientation Sets whether the tabs will appear at the top, left, right or bottom
of the control.

Tabs Sets the total number of tabs.

TabRowOffset Sets how much of tab row will be offset from the row in front of
it.

TabsPerRow Sets the number of tabs per row.

TabSelectType Determines how the tabs are rearranged on the control when a
new tab is selected.

TabStart Determines which tab will be the active tab when the control
loads.

TabVisible() - [r] Determines whether the tab is visible or not.

TabHeight Sets the height of all index tabs.

TabMaxWidth Sets the maximum width of all index tabs.

Sizing/Location Properties
Align Standard VB Align property.

Height The height of the control.

Left X coordinate of the left of the control.

Top Y coordinate of the top of the control.

Width The width of the control.

Picture Properties
ActiveTabPicture Specifies the picture to use on the active index tab.

Picture A designtime only property which specifies the picture for the
currently selected index tab.

AlignmentPicture Determines how the picture will be aligned for all tabs.

TabPictureMetaHeight Sets the height of a metafile when placed on an index tab.

TabPictureMetaWidth Sets the width of a metafile when placed on an index tab.

TabPicture() - [r] Specifies the picture to display on a particular tab.

Other Properties
(About) Displays version information about the control at design time.

DragIcon The icon to use in a drag operation.

DragMode The drag mode.

Enabled Determines if the control is enabled.

Index The index of the control if it is in a control array.

MousePointer Determines the type of mouse pointer displayed.

Name The name of the control.

Redraw Disables the control's ability to repaint.

ShowFocusRect Determines whether the focus rectangle is displayed on a tab
when the tab has focus.

TabIndex The standard Visual Basic TabIndex property.

TabStop Determines if the user can get focus on the control by hitting
tab.

Tag The tag for the control.

Visible Determines if the control is visible.

 The FormFX Control
Properties

Description

FormFX is a custom control that allows you to customize the look and behavior your forms.

It gives you the ability to customize the size of the caption area and display multi-line text and pictures in
the caption. In addition, you can add 3D effects to the caption, borders and/or client area.

There are also several properties that can be used to customize the behavior of a form such as restricting
its size and movement.

File Name

SSFORMFX.VBX

ObjectType

SSFormFX

Related Topics:
Properties Quick Reference
Parts of a Form
Customizing the Caption Buttons
Notes on Setting the Caption of a Form
Control Limitations

Properties that apply only to this control are marked with an asterisk (*). For all other standard properties, see the Microsoft Visual
Basic Language Reference.
* (About) * CaptionPictureX Left
* AlignmentCaption * CaptionPictureY * LockCtlKeyOverride
* AlignmentPicture * Client3D * LockMove
* AlwaysOnTop * ClientBevelInner * LockSize
* BackColorActive * ClientBevelOuter * MaximizeHeight
* BackColorInactive * ClientBevelWidth * MaximizeLeft
* BevelColorFace * ClientBorderWidth * MaximizeTop
* BevelColorHighlight * ClientMove * MaximizeWidth
* BevelColorShadow * ControlBox3D Name
* Border3D * ControlBoxWidth * Redraw
* Caption * Font3D * SizeMaxHeight
* Caption3D FontBold * SizeMaxWidth
* CaptionBevelInner FontItalic * SizeMinHeight
* CaptionBevelOuter FontName * SizeMinWidth
* CaptionBevelWidth FontSize * StdButtonHeight
* CaptionBorderWidth FontStrikeThru * StdCaption
* CaptionButtonsPic FontUnderline * StdCaptionHeight
* CaptionHeight * ForeColorActive Tag
* CaptionMultiLine * ForeColorInactive Top
* CaptionPicture Height Width
* CaptionPictureMetaHeight Index
* CaptionPictureMetaWidth * InstantClose

Parts of a Form
The FormFX control can be used to customize different areas of Visual Basic forms. The diagram below
illustrates the parts of a form:

A standard Visual Basic form is divided into 2 basic parts, the client area and the non-client area. The
non-client area includes the borders, the caption area and the caption buttons (the control box,
minimize, maximize and restore buttons). The client area is were controls are placed.

SSFormFX allows you to change the button height, the control box height, the caption height, the
numbers of lines of caption text and the font used for the caption. Pictures can also be added to the
caption area. You can also specify a bitmap to customize the look of the caption buttons. In addition, you
can make the border appear 3D.

In addition, there are also several properties that can be used to customize the behavior of a form such as
restricting its size and movement.

Customizing the Caption Buttons
FormFX lets you customize the buttons that appear in the caption (the control box, minimize, maximize
and restore buttons). If you want to customize these buttons, you need to assign a bitmap to the
CaptionButtonsPic property.

The CaptionButtonsPic property is used to specify a bitmap that contains both the up and down states
for all four caption buttons. The bitmap is a standard Windows bitmap created by any bitmap editor
(such as the standard PaintBrush application). It is broken up into 8 equal segments. Each segment
represents the picture to use for a state (up or down) of one of the buttons. The first segment contains an
image for the control box's up position, the second contains the image for its down position, and so on.
Below is a sample bitmap (supplied with Designer Widgets in the SAMPLES directory) that illustrates the
different segments:

The FormFX control uses this bitmap to display the buttons in the caption area. The control divides the
bitmap evenly into 8 segments, then assigns each segment of the bitmap to each button. The segments
do not have to be a specific width or size, as long as they are equal in size.

If a segment is smaller than a button, the FormFX control will center the image and fill the rest of the area
with the color defined in the BevelColorFace property. If it is larger than the button, the control apply the
center of the image over the button for as large as the button's dimensions.

Notes on Setting the Caption of a Form
Due to the way Visual Basic behaves when setting the Form's Caption property at runtime, unusual
painting problems may occur. If you need to set the Caption property at runtime, set the FormFX's
Caption property instead. The FormFX control will use the text in this property to display in the Form's
caption area. If you leave the FormFX's Caption property blank at design time, the FormFX control will
use the text in the Form's Caption property.

Control Limitations
Although the FormFX provides you with extensive flexibility to customize forms in Visual Basic, there are
some limitations you should be aware of when using the control. The limitations are:

1. The form cannot have scrollbars. If you are using a custom control to provide scroll bars on a
form (such as VBAssist's Form Scroll Control), place a picture box on the form and size it so that
it is the same size as the form's client area. Then place the scroll control and all other control
you want to scroll inside the picture box.

2. The form cannot be an MDI parent form or MDI Child form.

3. The form cannot have a menu.

If the SSFormFX control is used under any of the above circumstances, the properties used to customize
the form will be ignored.

Properties Quick Reference
This section will give you a quick reference to all properties grouped into functional categories. For a
complete reference of all properties, see Chapter 11.

Related Topics:
Caption Properties
3D Effects Properties
Font Properties
Color Properties
Caption Button Properties
Form Size/Movement Properties
Picture Properties
Other Properties

Caption Properties
Caption Sets the text for the caption.

AlignmentCaption Determines where the caption will be aligned in the caption
area.

CaptionHeight Sets the height of the caption area.

CaptionMultiLine Determines whether the caption text can be more than one line.

StdCaption Determines whether the standard caption will be displayed,
ignoring all other properties relating to the caption area.

3D Effects Properties
BevelColorFace Sets the color of the face of the bevel.

BevelColorHighlight Sets the color of the bevel highlight.

BevelColorShadow Sets the color of the bevel shadow.

Border3D Determines whether the border of the form will have a bevel.

Caption3D Determines whether the caption area will be 3D.

CaptionBevelInner Specifies the type of inside bevel for the caption area.

CaptionBevelOuter Specifies the type of outside bevel for the caption area.

CaptionBevelWidth Sets the width of the bevel for the caption area.

CaptionBorderWidth Sets the width of space between the inner and outer bevels.

Client3D Determines whether the client area will have a 3D bevel around
its edge.

ClientBevelInner Specifies the type of inside bevel for the client area.

ClientBevelOuter Specifies the type of outside bevel for the client area.

ClientBevelWidth Sets the width of the bevel for the client area.

ClientBorderWidth Sets the width of space between the inner and outer bevels.

ControlBox3D Determines whether the control box will have beveled edges.

Font3D Displays the text in 3-D.

Font Properties
FontBold Sets the bold attribute for the text.

FontItalic Sets the italic attribute for the text.

FontName Determines what type of font will be used.

FontSize Sets the font size.

FontStrikeThru Sets the strikethru attribute for the text.

FontUnderline Sets the underline attribute for the text.

Color Properties
BackColorActive Sets the background color of the caption area when the form is

active.

BackColorInactive Sets the background color of the caption area when the form is
active.

ForeColorActive Sets the foreground color for the caption area when the form is
active.

ForeColorInactive Sets the foreground color for the caption area when the form is
inactive.

Caption Button Properties
CaptionButtonsPic Specifies a single bitmap that contains an embedded picture for

each button.

ControlBoxWidth Sets the width of the control box.

InstantClose Determines whether a single click on the control box will close
the form.

StdButtonHeight Determines whether the buttons in the caption area will be
standard height.

Form Size/Movement Properties
AlwaysOnTop Specifies if the form will always be the top most window.

ClientMove Determines whether the form can be moved by clicking on the
client area.

LockCtlKeyOverride Allows the CTRL key to override restricted movement or sizing.

LockMove Determines whether the form can be moved.

LockSize Determines whether the size of the form can be changed by the
user.

MaximizeHeight Specifies the height of the form when maximized.

MaximizeLeft Specifies the x-coordinate of the form when maximized.

MaximizeTop Specifies the y-coordinate of the form when maximized.

MaximizeWidth Specifies the width of the form when maximized.

SizeMaxHeight Specifies the maximum height the form can be sized to.

SizeMaxWidth Specifies the maximum width the form can be sized to.

SizeMinHeight Specifies the minimum height the form can be sized to.

SizeMinWidth Specifies the minimum width the form can be sized to.

Picture Properties
AlignmentPicture Determines where the picture will appear in the caption area.

CaptionPicture Specifies the picture for the caption area.

CaptionPictureMetaHeight Sets the height of a metafile when placed in the caption area.

CaptionPictureMetaWidth Sets the width of a metafile when placed caption area.

CaptionPictureX Determines the x-position in the caption area where to draw the
picture.

CaptionPictureY Determines the y-position in the caption area where to draw the
picture.

Other Properties
(About) Displays version information about the control at design time.

Height The height of the control.

Index The index of the control if it is in a control array.

Left The x coordinate of the control.

Name The name of the control.

Redraw Disables the control's ability to repaint.

Tag The tag for the control.

Top The Y coordinate of the control.

Width The width of the control.

Properties Reference
The following is a complete reference of all the custom properties in the Designer Widgets custom
controls. For all other standard properties, see the Microsoft Visual Basic Language Reference.

Related Topics:
(About) Property
(ToolbarDesigner) Property
ActiveTabBackColor, ActiveTabForeColor Properties
ActiveTabFontBold, ActiveTabFontItalic, ActiveTabFontStrikeThru, ActiveTabFontUnderline
Properties
ActiveTabPicture Property
AlignmentCaption Property
AlignmentPicture Property
AllowToolbarDockLeft, AllowToolbarDockRight, AllowToolbarDockTop, AllowToolbarDockBottom
Properties
AllowToolbarFloat Property
AllowToolbarMove Property
AlwaysOnTop Property
BackColorActive, BackColorInactive Properties
BackColorDock Property
BackColorHelp, ForeColorHelp Properties
BalloonHelp Property
BalloonHelpDelay Property
BevelColorFace, BevelColorHighlight, BevelColorShadow Properties
BevelInner Property
BevelOuter Property
BevelWidth Property
Border3D Property
BorderWidth Property
BtnEnabled() Property
BtnGroupSpacing Property
BtnHeight Property
BtnMarginX BtnMarginY Properties
Btns Property
BtnSpacing Property
BtnToolNum()Property
BtnValue() Property
BtnVisible() Property
BtnWidth Property
Caption Property
Caption3D Property
CaptionBevelInner Property
CaptionBevelOuter Property
CaptionBevelWidth Property
CaptionBorderWidth Property
CaptionButtonsPic Property
CaptionHeight Property
CaptionMultiLine Property
CaptionPicture Property
CaptionPictureMetaHeight, CaptionPictureMetaWidth Properties
CaptionPictureX, CaptionPictureY Properties
Client3D Property
ClientBevelInner Property
ClientBevelOuter Property
ClientBevelWidth Property

ClientBorderWidth Property
ClientMove Property
ClientWidth Property
ClientHeight Property
ClientLeft Property
ClientTop Property
ControlBox3D Property
ControlBoxWidth Property
DockRank, DockRankSeq Properties
DockStatus Property
FloatingCaption Property
FloatingCaptionType Property
FloatingControlBox Property
FloatingLeft, FloatingTop Properties
FloatingWidth, FloatingHeight Properties
FloatingSizable Property
FloatingWidthInBtns Property
Font3D Property
ForeColorActive, ForeColorInactive Properties
HwndToolbar Property
InstantClose Property
LockCtlKeyOverride Property
LockMove Property
LockSize Property
MaximizeHeight, MaximizeWidth Properties
MaximizeLeft, MaximizeTop Properties
Outline Property
Picture Property
Redraw Property
Rows Property
ShowFocusRect Property
SizeMaxHeight, SizeMaxWidth Properties
SizeMinHeight, SizeMinWidth Properties
StdButtonHeight Property
StdCaption Property
StdCaptionHeight Property
Tab Property
TabBackColor(), TabForeColor() Properties
TabCaption() Property
TabCutSize Property
TabEnabled() Property
TabHeight Property
TabHwnd() Property
TabMaxWidth Property
TabOrientation Property
TabPicture() Property
TabPictureMetaHeight, TabPictureMetaWidth Properties
TabRowOffset Property
Tabs Property
Tabs3D Property
TabSelectType Property
TabsPerRow Property
TabStart Property
TabVisible() Property
Toolbar3D Property
ToolsetName Property

ToolsetNumBtnStates Property
ToolsetNumTools Property
ToolsetPicture Property
ToolsetToolAllowAllUp() Property
ToolsetToolDesc() Property
ToolsetToolExclusive() Property
ToolsetToolGroup() Property
ToolsetToolHelp() Property
ToolsetToolID() Property
ToolsetToolMnemonic() Property
ToolsetToolPicDn(), ToolsetToolPicUp() Properties
ToolsetToolPicDnDis(), ToolsetToolPicUpDis() Properties
ToolsetToolType() Property

(About) Property

Applies To

SSToolbar, SSFormFX, SSIndexTab

Description

Displays version information about the control.

Usage

Click on the ellipses ('...') button next to the property text to activate the about dialog box.

Remarks

Available only at design time.

(ToolbarDesigner) Property

Applies To

SSToolbar

Description

This property lets the developer invoke the Toolbar Designer in order to create and maintain toolbars and
toolsets at design time.

Usage

Click on the ellipses ('...') button next to the property text to activate the Toolbar Designer.

Remarks

Refer to Chapter 8 - 'The Dockable Toolbar' under the section heading 'Using the Toolbar Designer' for a
detailed explanation of this tool.

Available only at design time.

ActiveTabBackColor, ActiveTabForeColor Properties

Applies To

SSIndexTab

Description

Sets the background and/or foreground color of the active index tab.

Usage

[form.]control.ActiveTabBackColor[= color]

[form.]control.ActiveTabForeColor[= color]

Remarks

These properties set the color for background and/or foreground on the active index tab. If the Tabs3D
property is set to True, the ActiveTabBackColor property is ignored and BevelColorFace is used.
Otherwise, the ActiveTabBackColor property is used for the active tab and the entire client area of the
tab.

Data Type

Long

See Also

ActiveTabFontBold, ActiveTabFontItalic, ActiveTabFontStrikeThru, ActiveTabFontUnderline,
ActiveTabPicture, Tabs3D, TabBackColor(), TabForeColor()

ActiveTabFontBold, ActiveTabFontItalic, ActiveTabFontStrikeThru,
ActiveTabFontUnderline Properties

Applies To

SSIndexTab

Description

Sets the font attributes for the text on the active index tab.

Usage

[form.]control.ActiveTabFontBold[= {True|False}]

[form.]control.ActiveTabFontItalic[= {True|False}]

[form.]control.ActiveTabFontStrikeThru[= {True|False}]

[form.]control.ActiveTabFontUnderline[= {True|False}]

Remarks

These properties determine the font attributes of the text that appears on the active tab.

The property settings are:
Setting Description
True Enables the font attribute.
False (Default) Disables the font attribute.

Data Type

Integer (Boolean)

See Also

ActiveTabBackColor, ActiveTabForeColor, ActiveTabPicture

ActiveTabPicture Property

Applies To

SSIndexTab

Description

Specifies the picture to use on the active index tab.

Usage

[form.]control.ActiveTabPicture[= picture]

Remarks

This property specifies the picture that will always be displayed on the active index tab. This picture
specified in this property will override the picture set in the TabPicture() property.

Data Type

Integer (Picture)

See Also

ActiveTabBackColor, ActiveTabForeColor

AlignmentCaption Property

Applies To

SSFormFX, SSIndexTab

Description

Determines how the caption will be aligned for tabs or forms.

Usage

[form.]control.AlignmentCaption[= setting]

Remarks

The settings for this property are:
Setting Description
0 Left Justify - Top
1 Left Justify - Middle
2 Left Justify - Bottom
3 Right Justify - Top
4 Right Justify - Middle
5 Right Justify - Bottom
6 Center - Top
7 (Default) Center - Middle
8 Center - Bottom

Data Type

Integer (Enumerated)

See Also

AlignmentPicture

Example

The following sample aligns the text to the left and aligns the picture to the left of the text:

SSFormFX.AlignmentPicture = 9 'Left of Text
SSFormFX.AlignmentCaption = 1 'Left Justify - MIDDLE

AlignmentPicture Property

Applies To

SSFormFX, SSIndexTab

Description

Determines the how the picture will be aligned.

Usage

[form.]control.AlignmentPicture[= setting]

Remarks

The settings for this property are:
Setting Description
0 Left Justify - Top
1 (Default) Left Justify - Middle
2 Left Justify - Right
3 Right Justify - Top
4 Right Justify - Middle
5 Right Justify - Right
6 Center - Top
7 Center - Middle
8 Center - Right
9 Left of Text
10 Right of Text
11 Above Text
12 Below Text
13 Fit to Tab/Caption
The follow options are only available with SSFormFX:
14 Fixed from Left - The picture will be positioned on the caption using the CaptionPictureX

and CaptionPictureY properties relative to the top left of the caption.
15 Fixed from Right - The picture will be positioned on the caption using the

CaptionPictureX and CaptionPictureY properties relative to the top right of the caption.

Data Type

Integer (Enumerated)

See Also

Picture, CaptionPictureX, CaptionPictureY

Example

The following sample aligns the text to the left and aligns a picture to the left of the text:

SSFormFX.AlignmentPicture = 9 'Left of Text
SSFormFX.AlignmentCaption = 1 'Left Justify - MIDDLE

AllowToolbarDockLeft, AllowToolbarDockRight,
AllowToolbarDockTop, AllowToolbarDockBottom Properties

Applies To

SSToolbar

Description

Determines where a toolbar is allowed to dock at runtime.

Usage

[form.]control.AllowToolbarDockLeft[= {True|False}]

[form.]control.AllowToolbarDockRight[= {True|False}]

[form.]control.AllowToolbarDockTop[= {True|False}]

[form.]control.AllowToolbarDockBottom[= {True|False}]

Remarks

The property settings are:
Setting Description
True (Default) The toolbar can dock in this area.
False The toolbar cannot dock in this area.

These properties only have meaning for SSToolbar controls that are placed directly on MDI forms (not on
containers).

The docking areas are outside of the MDI client area so they do not interfere with MDI child forms.

Data Type

Integer (Boolean)

See Also

DockRank, DockRankSeq, DockStatus

Example

This sample code restricts the user from docking the toolbar in the left and right docking areas:

SSToolbar1.AllowToolbarDockLeft = False
SSToolbar1.AllowToolbarDockRight = False

AllowToolbarFloat Property

Applies To

SSToolbar

Description

Determines if a toolbar is allowed to float at runtime.

Usage

[form.]control.AllowToolbarFloat[= {True|False}]

Remarks

The property settings are:
Setting Description
True (Default) The toolbar can be dragged off a docking area.
False The toolbar cannot float.

The AllowToolbarFloat property controls whether the toolbar can be dragged off a docking area and
remain as a floating toolbar.

This property only has meaning for SSToolbar controls that are placed directly on MDI forms (not on
containers).

Data Type

Integer (Boolean)

See Also

AllowToolbarMove

AllowToolbarMove Property

Applies To

SSToolbar

Description

Determines if a toolbar is allowed to move at runtime.

Usage

[form.]control.AllowToolbarMove[= {True|False}]

Remarks

The property settings are:
Setting Description
True (Default) The toolbar can moved.
False The toolbar cannot be moved.

This property, if set to False, is used to create a "fixed" toolbar which cannot be moved off a docking area
at runtime. When a toolbar is fixed, it is initially placed onto the docking area determined by the
DockStatus property setting.

This property only has meaning for SSToolbar controls that are placed directly on MDI forms (not on
containers).

Data Type

Integer (Boolean)

See Also

AllowToolbarFloat

AlwaysOnTop Property

Applies To

SSFormFX

Description

Specifies if the form will always remain as the top most window.

Usage

[form.]control.AlwaysOnTop[= {True|False}]

Remarks

When a form is the top most window, it remains at the top of the Z-order even when it is deactivated.

The property settings are:
Setting Description
True The form will always be the top most window.
False (Default) The form will only be the top most window when it is the active window.

Data Type

Integer (Boolean)

BackColorActive, BackColorInactive Properties

Applies To

SSFormFX

Description

Sets the background color of the caption area of the form when it is the active or inactive window.

Usage

[form.]control.BackColorActive[= color]

[form.]control.BackColorInactive[= color]

Remarks

These properties specify the background color of the caption area when the form is active or inactive. If
the Caption3D property is True, these properties are ignored and the BevelColorFace property is used.
These properties default to the color set in the Windows Control Panel.
The StdCaption property must be set to False for this property to take effect.

Data Type

Long

See Also

ForeColorActive, ForeColorInactive

BackColorDock Property

Applies To

SSToolbar

Description

Sets the background color of all docking areas.

Usage

[form.]control.BackColorDock[= color]

Remarks

The docking areas are only used for SSToolbar controls that are placed directly on MDI forms (not on
containers).

Data Type

Long

See Also

AllowToolbarDockLeft, AllowToolbarDockTop, AllowToolbarDockRight, AllowToolbarDockBottom,
DockStatus

BackColorHelp, ForeColorHelp Properties

Applies To

SSToolbar

Description

Sets the background color and foreground (text) color for balloon help.

Usage

[form.]control.BackColorHelp[= color]

[form.]control.ForeColorHelp[= color]

Remarks

A balloon help window is displayed when the user pauses over a button that has its ToolsetToolHelp()
property set.

Data Type

Long

See Also

BalloonHelp, BalloonHelpDelay, ToolsetToolHelp

BalloonHelp Property

Applies To

SSToolbar

Description

Determines if balloon help will appear when the mouse pointer is paused over a tool on the toolbar.

Usage

[form.]control.BalloonHelp[= {True|False}]

Remarks

When balloon help is activated, a 'balloon help' window will be displayed just below the cursor. This
window will contain the text that was set in the tool's ToolsetToolHelp() property. The balloon help
window is only displayed after the mouse stops moving over the tool for the duration specified in the
BalloonHelpDelay property.

The property settings are:
Setting Description
True (Default) A balloon help window will appear when the mouse pointer is paused long

enough (based on the BalloonHelpDelay property) over a tool that has text in its
ToolsetToolHelp() property.

False A balloon help window will not appear.

Data Type

Integer (Boolean)

See Also

BackColorHelp, BalloonHelpDelay, ForeColorHelp, ToolsetToolHelp()

Example

This sample code sets the toolbar to activate balloon help when the mouse is over a button for over 1
second:

SSToolbar1.BalloonHelpDelay = 1000 'Set delay to 1 second
SSToolbar1.BalloonHelp = True 'Activate balloon help

BalloonHelpDelay Property

Applies To

SSToolbar

Description

Sets or returns the amount of time (in milliseconds) that the mouse has to pause over a tool before
balloon help window appears.

Usage

[form.]control.BalloonHelpDelay[= milliseconds]

Remarks

This property specifies the amount of time in milliseconds to wait before displaying the balloon help
window while the mouse pointer is paused over a tool.

The help window will not appear for the following reasons:

· The mousepointer does not pause over the tool long enough.

· The BalloonHelp property is set to False.
· There is no text in the tool's ToolsetToolHelp() property.

The range of the delay is 0 to 5000 milliseconds (1 second equals 1000 milliseconds). The default is 500
or half a second.

Data Type

Long

See Also

BackColorHelp, BalloonHelp, ForeColorHelp, ToolsetToolHelp()

Example

This sample code sets the toolbar to activate balloon help when the mouse is over a button for over 1
second:

SSToolbar1.BalloonHelpDelay = 1000 'Set delay to 1 second
SSToolbar1.BalloonHelp = True 'Activate balloon help

BevelColorFace, BevelColorHighlight, BevelColorShadow Properties

Applies To

SSFormFX, SSIndexTab, SSToolbar

Description

Sets the colors used to draw 3D bevels.

Usage

[form.]control.BevelColorFace[= color]

[form.]control.BevelColorHighlight[= color]

[form.]control.BevelColorShadow[= color]

Remarks

When the control needs to draw a bevel, it uses the colors specified in these properties. These properties
refer to the different parts of the bevels as shown in the diagram.

Data Type

Long

See Also

Caption3D, Client3D, Tabs3D, Toolbar3D

BevelInner Property

Applies To

SSToolbar

Description

Specifies the type of inside beveling for the toolbar.

Usage

[form.]control.BevelInner[= setting]

Remarks

This property is used to determine the type of inside beveling to draw on the toolbar. This property is
ignored if the Toolbar3D property is False.
The settings for this property are:
Setting Description
0 (Default) None. No inner bevel is drawn.
1 Inset. The inner bevel appears as if it is inset into the screen.
2 Raised. The inner bevel appears as if it is raised from the screen.

Data Type

Integer (Enumerated)

See Also

Toolbar3D, BevelOuter, BevelColorFace, BevelColorHighlight, BevelColorShadow

BevelOuter Property

Applies To

SSToolbar

Description

Specifies the type of outside beveling for the toolbar.

Usage

[form.]control.BevelOuter[= setting]

Remarks

This property is used to determine the type of outside beveling to draw on the toolbar. This property is
ignored if the Toolbar3D property is False.
The settings for this property are:
Setting Description
0 None. No outer bevel is drawn.
1 Inset. The outer bevel appears as if it is inset into the screen.
2 (Default) Raised. The outer bevel appears as if it is raised from the screen.

Data Type

Integer (Enumerated)

See Also

Toolbar3D, BevelInner, BevelColorFace, BevelColorHighlight, BevelColorShadow

BevelWidth Property

Applies To

SSToolbar

Description

Sets or returns the width of both inner and outer bevels of the toolbar, which determines the amount of the
3-D shadow effect.

Usage

[form.]control.BevelWidth[= width]

Remarks

This property determines the number of pixels used to draw the inner and outer bevels which surround
the toolbar. The valid range for this property is 0 to 30. This property is ignored if the Toolbar3D property
is False.

Data Type

Integer

See Also

BevelInner, BevelOuter

Border3D Property

Applies To

SSFormFX

Description

Determines whether the border of the form will be displayed in 3D.

Usage

[form.]control.Border3D[= {True|False}]

Remarks

The property settings are:
Setting Description
True The border of the form will be beveled.
False (Default) The border of the form will not be beveled.

Data Type

Integer (Boolean)

See Also

Caption3D, Client3D

BorderWidth Property

Applies To

SSToolbar

Description

Sets or returns the width of the space between the outer and inner bevels.

Usage

[form.]control.BorderWidth[= width]

Remarks

This property determines the width in pixels between the inner and outer bevels which surround the
toolbar. The valid range for this property is 0 to 30.

Data Type

Integer

See Also

BevelInner, BevelOuter

BtnEnabled() Property

Applies To

SSToolbar

Description

Enables or disables a button.

Usage

[form.]control.BtnEnabled(button)[= {True|False}]

Remarks

When a button is disabled, it is redrawn using the button image supplied in the ToolsetPicture bitmap for
the disabled state and the current value (up or down).

The property settings are:
Setting Description
True (Default) Button will be enabled.
False Button will be disabled.

This property is only available at runtime. However, it can be initially set at design time using the Toolbar
Designer.

Data Type

Integer (Boolean)

See Also

BtnVisible()

Example

This sample code shows a function that toggles a buttons enabled state and returns the new state:

Function DisableButton(BtnNumber As Integer) As Integer

 SSToolbar1.BtnEnabled(BtnNumber) = Not SSToolbar1.BtnEnabled(BtnNumber)
 DisableButton = SSToolbar1.BtnEnabled(BtnNumber)

End Function

BtnGroupSpacing Property

Applies To

SSToolbar

Description

Sets or returns the number of pixels between button groups.

Usage

[form.]control.BtnGroupSpacing[= spacing]

Remarks

This property determines the number of pixels between button groups. This value is applied to all button
groups within a toolbar.

Data Type

Integer

See Also

BtnSpacing, ToolsetToolGroup()

Example

This sample code sets the space between buttons to be -1 pixels (to cause a 1 pixel overlap) and the
group spacing to be 8 pixels:

SSToolbar1.BtnSpacing = -1 'causes a 1 pixel overlap
SSToolbar1.BtnGroupSpacing = 8 'set to 8 pixels

BtnHeight Property

Applies To

SSToolbar

Description

Returns the height (in pixels) of the buttons on the toolbar.

Usage

[form.]control.BtnHeight[= height]

Remarks

The control will calculate this value by dividing the height of the entire bitmap specified in the
ToolsetPicture property by the number of button states specified in the ToolsetNumBtnStates property.

This property is only available at runtime and is read-only.

Data Type

Integer

See Also

BtnWidth

BtnMarginX BtnMarginY Properties

Applies To

SSToolbar

Description

Specifies the distance (in pixels) between the toolbar buttons and the inside bevels of the toolbar. If the
toolbar has no bevels (Toolbar3D = False) then the distance is calculated from the left and top of the
toolbar respectively.

Usage

[form.]control.BtnMarginX[= distance from left]

[form.]control.BtnMarginY[= distance from top]

Remarks

This property is available in both design and run modes.

Data Type

Integer

See Also

BtnGroupSpacing, BtnSpacing

Btns Property

Applies To

SSToolbar

Description

Specifies the number of buttons on the toolbar.

Usage

[form.]control.Btns[= Btns]

Remarks

This property is set automatically when a toolbar is defined using the Toolbar Designer. However, you
may set this property to increase or decrease the number of buttons on the toolbar. If you increase the
number of buttons, you must supply a value for the BtnToolNum() property of each new button. If the
BtnToolNum() property is not set for a button, it will be -1 and the following bitmap is displayed instead:

This property is only available at runtime.

Data Type

Integer

See Also

BtnToolNum()

Example

The following code adds a button to the toolbar and assigns a 'Cut' tool from a predefined toolset:

SSToolbar1.Btns = SSToolbar1.Btns + 1 'create the new button
SSToolbar1.BtnToolNum(SSToolbar1.Btns - 1) = 2 'Assign the
 'Cut tool

BtnSpacing Property

Applies To

SSToolbar

Description

Sets or returns how much space will separate each button with the same group number.

Usage

[form.]control.BtnSpacing[= spacing]

Remarks

This property represents the number of pixels between buttons in the same group. Setting this to -1 will
draw the buttons overlapped by one pixel so that only one border will appear between each button. The
valid range for this property is -1 to 30.

Data Type

Integer

See Also

BtnGroupSpacing, ToolsetToolGroup()

Example

This sample code sets the space between buttons to be -1 pixels (to cause a 1 pixel overlap) and the
group spacing to 8 pixels:

SSToolbar1.BtnSpacing = -1 'causes a 1 pixel overlap
SSToolbar1.BtnGroupSpacing = 8 'set to 8 pixels

BtnToolNum()Property

Applies To

SSToolbar

Description

Sets or returns the tool index (within the toolbar's toolset) that is associated with the button.

Usage

[form.]control.BtnToolNum(button)[= toolnum]

Remarks

This property is set automatically when a toolbar is defined using the Toolbar Designer. However, you
can set this property at runtime to a valid tool number of a tool in the current toolset.

This property is initialized to -1. If this property is not defined for a button, the following bitmap is
displayed instead:

This property is only available at runtime.

Data Type

Integer

See Also

ToolsetToolID()

Example

The following code adds a button to the toolbar and assigns a 'Cut' tool from a predefined toolset:

SSToolbar1.Btns = SSToolbar1.Btns + 1 'create the new button
SSToolbar1.BtnToolNum(SSToolbar1.Btns - 1) = 2 'Assign the
 'Cut tool

BtnValue() Property

Applies To

SSToolbar

Description

Sets or returns the button's value.

Usage

[form.]control.BtnValue(button)[= {True|False}]

Remarks

The property settings are:
Setting Description
True The button is in the down position.
False (Default) The button is in the up position.

This property is only available at runtime. However, it can be initially set at design time using the Toolbar
Designer.

Data Type

Integer (Boolean)

See Also

ToolsetToolType()

Example

This sample checks the BtnValue() property to see if a button is pressed when the mouse is moved over
a button:

Sub SSToolbar1_MouseEnter(ToolID As String, ToolNum As Integer, Btn As Integer)
 If SSToolbar1.BtnValue(Btn) Then
 MsgBox "The Button is Pressed!"
 Else
 MsgBox "The Button is NOT Pressed!"
 End If
End Sub

BtnVisible() Property

Applies To

SSToolbar

Description

Determines whether the button will be visible.

Usage

[form.]control.BtnVisible(button)[= {True|False}]

Remarks

The property settings are:
Setting Description
True (Default) Button will be visible.
False Button will not be visible.

This property is only available at runtime. However, it can be initially set at design time using the Toolbar
Designer.

Data Type

Integer (Boolean)

See Also

BtnEnabled()

Example

This sample code hides a button:

SSToolbar1.BtnVisible(0) = False

BtnWidth Property

Applies To

SSToolbar

Description

Returns the width of all buttons in a toolbar.

Usage

[form.]control.BtnWidth[= width]

Remarks

The control will calculate this value by dividing the width of the entire bitmap specified in the
ToolsetPicture property by the number of tools specified in the ToolsetNumTools property.

This property is only available at runtime and is read-only.

Data Type

Integer

See Also

BtnHeight

Caption Property

Applies To

SSFormFX, SSIndexTab

Description

Specifies the caption for the form, or an individual tab at design time.

Usage

[form.]control.Caption[= text]

Remarks

When used with SSFormFX, this property sets the caption of the form.

Note If you want to set the caption of the form at runtime, use this property and not the form's caption
property. However, if you leave this property blank, it will default to the form's caption.

When used with the SSIndexTab at design time, this property sets the TabCaption() property of the
current tab specified in the Tab property.

Data Type

String

See Also

AlignmentCaption, CaptionMultiLine

Example

This sample code sets the caption height in the SSFormFX control to be 2000 twips to fit a multiline
caption:

SSFormFX1.CaptionHeight = 2000 'Set CaptionHeight=2000 twips
SSFormFX1.CaptionMultiLine = True
SSFormFX1.Caption = "This is a" + Chr$(13) + Chr$(10) + "Multiline Caption"

Caption3D Property

Applies To

SSFormFX

Description

Determines whether the caption area of the form will be 3D.

Usage

[form.]control.Caption3D[= {True|False}]

Remarks

The property settings are:
Setting Description
True The caption area will be displayed in 3D.
False (Default) The caption area will not be 3D.

The StdCaption property must be set to False for this property to take effect.

Data Type

Integer (Boolean)

See Also

CaptionBevelInner, CaptionBevelOuter, CaptionBevelWidth, CaptionBorderWidth

CaptionBevelInner Property

Applies To

SSFormFX

Description

Specifies the type of inside bevel for the caption area of the form.

Usage

[form.]control.CaptionBevelInner[= setting]

Remarks

This property is used to determine the type of inside beveling to draw in the caption area of the form.
This property is ignored if the Caption3D property is False.
The settings for this property are:
Setting Description
0 (Default) None. No inner bevel is drawn.
1 Inset. The inner bevel appears as if it is inset into the screen.
2 Raised. The inner bevel appears as if it is raised from the screen.

The StdCaption property must be set to False for this property to take effect.

Data Type

Integer (Enumerated)

See Also

Caption3D, BevelColorFace, BevelColorHighlight, BevelColorShadow, CaptionBevelWidth

CaptionBevelOuter Property

Applies To

SSFormFX

Description

Specifies the type of outside bevel for the caption area of the form.

Usage

[form.]control.CaptionBevelOuter[= setting]

Remarks

This property is used to determine the type of outside beveling to draw in the caption area of the form.
This property is ignored if the Caption3D property is False.
The property settings are:
Setting Description
0 None. No outer bevel is drawn.
1 Inset. The outer bevel appears as if it is inset into the screen.
2 (Default) Raised. The outer bevel appears as if it is raised from the screen.

The StdCaption property must be set to False for this property to take effect.

Data Type

Integer (Enumerated)

See Also

Caption3D, BevelColorFace, BevelColorHighlight, BevelColorShadow, CaptionBevelWidth

CaptionBevelWidth Property

Applies To

SSFormFX

Description

Sets or returns the width of the bevel (outer or inner) of the caption area of the form, which determines the
amount of the 3-D shadow effect.

Usage

[form.]control.CaptionBevelWidth[= width]

Remarks

This property determines the number of pixels used to draw the inner and outer bevels which surround
the caption area of the form. The valid range for this property is 0 to 30. This property is ignored if the
Caption3D property is False.

The StdCaption property must be set to False for this property to take effect.

Data Type

Integer

See Also

Caption3D, CaptionBevelInner, CaptionBevelOuter

CaptionBorderWidth Property

Applies To

SSFormFX

Description

Sets or returns the width of the space between the outer and inner bevels in the caption area of the form.

Usage

[form.]control.CaptionBorderWidth[= width]

Remarks

This property determines the width in pixels between the inner and outer bevels which surround the
caption area of the form. The valid range for this property is 0 to 30. This property is ignored if the
Caption3D property is False.

The StdCaption property must be set to False for this property to take effect.

Data Type

Integer

See Also

Caption3D, CaptionBevelInner, CaptionBevelOuter

CaptionButtonsPic Property

Applies To

SSFormFX

Description

Specifies a bitmap containing the pictures to use for each button in the caption.

Usage

[form.]control.CaptionButtonsPic[= picture]

Remarks

This property contains a single bitmap that contains 8 equal segments. Each segment contains the
picture (excluding any bevels) for each of the buttons on a form, and for its up and down state. The first
two segments of the bitmap represent the control box up and down, respectively, followed by an up and
down picture for the minimize button, the maximize button and the restore button. A sample bitmap is
included with the control in the SAMPLES directory and it is called BUTTONS.BMP.

Sample CaptionButtonsPic - BUTTONS.BMP

Data Type

Integer (Picture)

See Also

StdButtonHeight

Example

This sample codes sets the CaptionButtonsPic property to a bitmap:

SSFormFX1.CaptionButtonsPic = LoadPicture("BUTTONS.BMP")

CaptionHeight Property

Applies To

SSFormFX

Description

Sets or returns the height of the caption area of a form.

Usage

[form.]control.CaptionHeight[= height]

Remarks

This property specifies the height of the caption area in the scale mode of the form. If you set this
property to zero (0), the control will calculate the height of the caption based on the FontSize property.

If the StdCaptionHeight property is set to True, this property is ignored.

The StdCaption property must be set to False for this property to take effect.

Data Type

Single

See Also

StdCaptionHeight, StdButtonHeight

Example

This sample code sets the caption height to be 2000 twips to fit a multiline caption:

SSFormFX1.CaptionHeight = 2000 'Set CaptionHeight=2000 twips
SSFormFX1.CaptionMultiLine = True
SSFormFX1.Caption = "This is a" + Chr$(13) + Chr$(10) + "Multiline Caption"

CaptionMultiLine Property

Applies To

SSFormFX

Description

Determines whether the caption text on a form can be more than one line.

Usage

[form.]control.CaptionMultiLine[= {True|False}]

Remarks

Setting this property to True will cause a long caption to wrap to the next line. You can also break up a
line into multiple lines by separating the caption text with a carriage return/line feed sequence (Chr$(13) +
Chr$(10)).

The property settings are:
Setting Description
True The caption can be more than one line.
False (Default) The caption can only be a single line.

The StdCaption property must be set to False for this property to take effect.

Data Type

Integer (Boolean)

See Also

Caption, CaptionHeight

Example

This sample code sets the caption height to be 2000 twips to fit a multiline caption:

SSFormFX1.CaptionHeight = 2000 'Set CaptionHeight=2000 twips
SSFormFX1.CaptionMultiLine = True
SSFormFX1.Caption = "This is a" + Chr$(13) + Chr$(10) + "Multiline Caption"

CaptionPicture Property

Applies To

SSFormFX

Description

Sets the picture to be drawn in the caption area on the form.

Usage

[form.]control.CaptionPicture[= picture]

Remarks

This property specifies the picture to be displayed in the caption area. Valid pictures are bitmaps, icons
and Windows metafiles. If you specify a Windows metafile, you must also set the height and width to
display the picture via the CaptionPictureMetaHeight and CaptionPictureMetaWidth properties.

Data Type

Integer (Picture)

See Also

AlignmentPicture, CaptionPictureMetaHeight, CaptionPictureMetaWidth

Example

This sample code puts an icon left justified in the caption area:

SSFormFX1.CaptionHeight = 2000 'Make the caption big enough
SSFormFX1.CaptionPicture = LoadPicture("GOGGLES.ICO")
SSFormFX1.AlignmentPicture = 1 'left justify

CaptionPictureMetaHeight, CaptionPictureMetaWidth Properties

Applies To

SSFormFX

Description

Sets the height and/or width of the metafile if specified in the CaptionPicture property.

Usage

[form.]control.CaptionPictureMetaHeight[= height]

[form.]control.CaptionPictureMetaWidth[= width]

Remarks

These properties represent the height and/or width of the metafile when drawn in the caption area.

The units specified are based on the scale mode of the form.

Data Type

Single

See Also

CaptionPicture

CaptionPictureX, CaptionPictureY Properties

Applies To

SSFormFX

Description

Determines the caption picture's x/y-position relative to the left or right (depending upon the setting of the
AlignmentPicture property) and top of the caption area.

Usage

[form.]control.CaptionPictureX [= x-coordinate]

[form.]control.CaptionPictureY [= y-coordinate]

Remarks

These properties are used in conjunction with the AlignmentPicture property to determine the fixed
positions of the picture in the caption area. These properties are only used when AlignmentPicture is
set to 'Fixed from Right' or 'Fixed from Left'.

The CaptionPictureY property specifies the distance from the top of the caption area.

The CaptionPictureX property specifies the distance from either the left or right of the caption area. The
X-coordinate is relative to the left of the caption area if the AlignmentPicture property is set to 'Fixed
from Left' and relative to the right if 'Fixed from Right'.

The units specified are based on the scale mode of the form.

Data Type

Single

See Also

AlignmentPicture

Example

This sample code displays a picture 1000 twips from the right side of the caption:

SSFormFX1.CaptionHeight = 2000 'Make the caption big enough
SSFormFX1.CaptionPicture = LoadPicture("GOGGLES.ICO")
SSFormFX1.AlignmentPicture = 15 'Fixed from right
SSFormFX1.CaptionPictureX = 1000 '1000 twips from the right

Client3D Property

Applies To

SSFormFX

Description

Determines whether the client area of the form will have a 3D bevel around its edge.

Usage

[form.]control.Client3D[= {True|False}]

Remarks

The property settings are:
Setting Description
True The client area will be beveled.
False (Default) The client area will not have a bevel.

Note If you use this property to draw a 3D bevel around the client area of a form, be sure to set the
BackColor property of the form to the same color as the BevelColorFace property to complete the 3D
look.

Data Type

Integer (Boolean)

See Also

ClientBevelWidth, ClientBevelInner, ClientBevelOuter, ClientBorderWidth

ClientBevelInner Property

Applies To

SSFormFX

Description

Specifies the type of inside bevel for the client area of the form.

Usage

[form.]control.ClientBevelInner[= setting]

Remarks

This property is used to determine the type of inside beveling to draw around the client area of the form.
This property is ignored if the Client3D property is False.
The settings for this property are:
Setting Description
0 (Default) None. No inner bevel is drawn.
1 Inset. The inner bevel appears as if it is inset into the screen.
2 Raised. The inner bevel appears as if it is raised from the screen.

Data Type

Integer (Enumerated)

See Also

Client3D, BevelColorFace, BevelColorHighlight, BevelColorShadow, ClientBevelWidth

ClientBevelOuter Property

Applies To

SSFormFX

Description

Specifies the type of outside bevel for the client area of the form.

Usage

[form.]control.ClientBevelOuter[= setting]

Remarks

This property is used to determine the type of outside beveling to draw in the client area of the form.
This property is ignored if the Client3D property is False.
The property settings are:
Setting Description
0 None. No outer bevel is drawn.
1 Inset. The outer bevel appears as if it is inset into the screen.
2 (Default) Raised. The outer bevel appears as if it is raised from the screen.

Data Type

Integer (Enumerated)

See Also

Client3D, BevelColorFace, BevelColorHighlight, BevelColorShadow, ClientBevelWidth

ClientBevelWidth Property

Applies To

SSFormFX

Description

Sets or returns the width of the bevel (outer or inner) of the client area of the form, which determines the
amount of the 3-D effect.

Usage

 [form.]control.ClientBevelWidth[= width]

Remarks

This property determines the number of pixels used to draw the inner and outer bevels which surround
the client area of the form. The valid range for this property is 0 to 30. This property is ignored if the
Client3D property is False.

Data Type

Integer

See Also

Client3D, ClientBevelInner, ClientBevelOuter

ClientBorderWidth Property

Applies To

SSFormFX

Description

Sets or returns the width of the space between the outer and inner bevels in the client area of the form.

Usage

[form.]control.ClientBorderWidth[= width]

Remarks

This property determines the width in pixels between the inner and outer bevels drawn around the client
area of the form. The valid range for this property is 0 to 30. This property is ignored if the Client3D
property is False.

Data Type

Integer

See Also

Client3D, ClientBevelInner, ClientBevelOuter

ClientLeft, ClientTop Properties

Applies To

SSIndexTab

Description

Returns the X and/or Y coordinate of the left and/or top of the client area of the Index Tab control.

Usage

[form.]control.ClientLeft
[form.]control.ClientTop

Remarks

The client area of an Index Tab control is the area on which you can place other controls for each tab.
The value returned by these properties is in the scale mode of the Index Tab controls container.

These properties can be useful to size controls on a tab based on the size of the client are of the Index
Tab control.

Data Type

Integer (Boolean)

See Also

ClientWidth, ClientHeight

ClientWidth, ClientHeight Properties

Applies To

SSIndexTab

Description

Returns the width and/or height of the client area of the Index Tab control.

Usage

[form.]control.ClientWidth
[form.]control.ClientHeight

Remarks

The client area of an Index Tab control is the area on which you can place other controls for each tab.
The value returned by these properties is in the scale mode of the Index Tab controls container.

These properties can be useful to size controls on a tab based on the size of the client are of the Index
Tab control.

Data Type

Integer (Boolean)

See Also

ClientLeft, ClientTop

ClientMove Property

Applies To

SSFormFX

Description

Determines whether the form can be moved by clicking on the client area.

Usage

[form.]control.ClientMove[= {True|False}]

Remarks

The property settings are:
Setting Description
True The form can be moved by clicking on the client area and dragging the mouse.
False (Default) The form can only be moved only by clicking in the caption area.

Data Type

Integer (Boolean)

See Also

LockMove

ControlBox3D Property

Applies To

SSFormFX

Description

Determines whether the control box on the form will be 3D.

Usage

[form.]control.ControlBox3D[= {True|False}]

Remarks

The property settings are:
Setting Description
True The control box will be 3D.
False (Default) The control box will not be 3D.

The StdCaption property must be set to False for this property to take effect.

Data Type

Integer (Boolean)

See Also

Caption3D, CaptionButtonsPic

ControlBoxWidth Property

Applies To

SSFormFX

Description

Sets the width of the control box.

Usage

[form.]control.ControlBoxWidth[= width]

Remarks

This property sets the width in pixels of the control box in the caption area of the form. By setting this
property, the width of the control box can be different than that of a normal control box. If this property is
set to 0, then the control will use the standard control box width.

The StdCaption property must be set to False for this property to take effect.

Data Type

Integer

See Also

ControlBox3D, CaptionButtonsPic, StdButtonHeight

Example

The following sample shows how to get a caption to appear like the standard Visual Basic toolbox
window:

SSFormFX1.FontName = "Small Fonts"
SSFormFX1.FontSize = 6
SSFormFX1.CaptionHeight = 0 'sizes caption based on font size
SSFormFX1.ControlBoxWidth = 10 '10 pixels

DockRank, DockRankSeq Properties

Applies To

SSToolbar

Description

Sets or returns the position of the toolbar relative to other toolbars when initially positioned in the same
docking area.

Usage

[form.]control.DockRank[= rank]

[form.]control.DockRankSeq[= rankseq]

Remarks

Use these properties to initially position multiple toolbars in a docking area.

When a toolbar is initially docked, the control will search for other toolbars that will also be docked in the
same area. The control will then compare the DockRank property to that of the other toolbars and place
it before or after the others. If two or more toolbars have the same setting for the DockRank property,
the toolbar will use the DockRankSeq property to determine the order with the same rank.

These properties are very useful when saving the docked positions of the toolbars in an application after
the user has exited. The next time the application is run, you can set these properties to their previous
settings to restore the toolbar to its previous docked position. Refer to the FloatingLeft, FloatingTop and
FloatingWidthInBtns properties to save and restore floating toolbars between program executions.

Data Type

Integer

See Also

DockStatus, BackColorDock

DockStatus Property

Applies To

SSToolbar

Description

Determines the docked status of the toolbar.

Usage

[form.]control.DockStatus[= setting]

Remarks

This property can be set programmatically to dock a toolbar or cause it to float.

If you set this property to 'None (Floating)', the toolbar will float and be positioned to the coordinates
where the toolbar was last floating during the current execution of the application. To specify where a
toolbar will initially float, use the FloatingLeft and FloatingTop properties.

Setting this property to any other setting will cause the toolbar to dock in one of the docking areas. The
toolbar will then be positioned based on the DockRank and DockRankSeq properties.

You can set this property at design time to specify where the toolbar will be positioned initially at runtime.

The settings for this property are:
Setting Description
0 (Default) Top - the toolbar will be docked along the top.
1 Left - the toolbar will be docked along the left side.
2 Bottom - the toolbar will be docked along the bottom.
3 Right - the toolbar will be docked along the right side.
4 None (Floating) - the toolbar will not be docked.

Data Type

Integer (Enumerated)

See Also

DockRank, DockRankSeq, FloatingLeft, FloatingTop

FloatingCaption Property

Applies To

SSToolbar

Description

Specifies the caption of a toolbar when it is floating.

Usage

[form.]control.FloatingCaption[= text]

Remarks

This property sets the caption text for the toolbar when it is floating.

Data Type

String

See Also

FloatingCaptionType

FloatingCaptionType Property

Applies To

SSToolbar

Description

Determines the look of the floating toolbar's caption area.

Usage

[form.]control.FloatingCaptionType[= setting]

Remarks

The settings for this property are:
Setting Description
0 None. No caption will be displayed when the toolbar is floating. The user can still move

the palette by clicking on any area not occupied by a button.
1 (Default) Small Caption. A small caption is used. The font name and size for the text on

this type of caption is selected by the control.
2 Normal Caption. A normal caption is used.
3 Use Font. The caption will be sized based on the size of the font provided in the

FontName property.

Data Type

Integer (Enumerated)

See Also

FloatingCaption, FloatingControlBox

FloatingControlBox Property

Applies To

SSToolbar

Description

Determines whether a control box will be displayed on a floating toolbar, allowing the user to close it.

Usage

[form.]control.FloatingControlBox[= {True|False}]

Remarks

The property settings are:
Setting Description
True (Default) A control box is displayed in the caption area of the floating toolbar.
False User cannot close the floating toolbar.

Note When a floating toolbar is closed via a single click on the control box, the Visible property is set
to False. A toolbar can only be re-opened programmatically by setting the Visible property back to True.

Data Type

Integer (Boolean)

See Also

FloatingCaptionType

FloatingLeft, FloatingTop Properties

Applies To

SSToolbar

Description

Determines the X-coordinate/Y-coordinate of the floating toolbar relative to the left/top of the MDI client
area.

Usage

[form.]control.FloatingLeft [= x-coordinate

[form.]control.FloatingTop [= y-coordinate]

Remarks

These properties will set the X-coordinate and/or Y-coordinate for the toolbar when floating. Changing
these properties at runtime while the toolbar is floating will cause the toolbar to move to that location.
You can also use these properties to initially set the coordinates of the floating toolbar.

The units specified are based on the scale mode of the MDI form on which the toolbar is placed.

These properties are very useful when saving the floating positions of the toolbars in an application after
the user has exited. The next time the application is run, you can set these properties to their previous
settings to restore the toolbar to its previous floating position.

Data Type

Single

See Also

FloatingWidthInBtns, DockStatus

FloatingSizable Property

Applies To

SSToolbar

Description

Determines whether the size of the floating toolbar can be changed by the user.

Usage

[form.]control.FloatingSizable[= {True|False}]

Remarks

The property settings are:
Setting Description
True (Default) The floating toolbar can be resized. The control will display the floating toolbar

with sizable borders.
False The floating toolbar cannot be resized. The control will display a single line border

around the floating toolbar.

Data Type

Integer (Boolean)

See Also

FloatingWidthInBtns

FloatingWidth, FloatingHeight Properties

Applies To

SSToolbar

Description

Returns the width/height of the floating toolbar relative to the left/top of the MDI client area.

Usage

[form.]control.FloatingWidth
[form.]control.FloatingHeight

Remarks

These properties return the width and height repectively of the toolbar when it is floating. If the toolbar is
docked, these properties will return the width and height of the toolbar according to its last floating size.

The units specified are based on the scale mode of the MDI form on which the toolbar is placed.

Data Type

Single

See Also

FloatingWidthInBtns

FloatingWidthInBtns Property

Applies To

SSToolbar

Description

Determines the width of the toolbar in number of buttons when the toolbar is floating.

Usage

[form.]control.FloatingWidthInBtns[= buttons]

Remarks

The floating toolbar will automatically size itself to the number of buttons specified in this property.

This property is very useful when saving the floating size of the toolbars in an application after the user
has exited. The next time the application is run, you can set this property to its previous setting to
restore the toolbar to its previous floating size.

Data Type

Integer

See Also

FloatingLeft, FloatingTop, FloatingSizable

Font3D Property

Applies To

SSFormFX, SSIndexTab

Description

Sets or returns the 3D style of the caption text.

Usage

[form.]control.Font3D[= setting]

Remarks

The settings for this property are:
Setting Description
0 (Default) None. Caption is displayed flat (not 3 dimensional).
1 Raised w/light shading. Caption appears as if it is raised slightly off the screen.
2 Raised w/heavy shading. Caption appears even more raised.
3 Inset w/light shading. Caption appears as if it is inset slightly into the screen.
4 Inset w/heavy shading. Caption appears even more inset.

The Font3D property works in conjunction with all the other Font Properties. Settings 2 and 4 (heavy
shading) look best with larger, bolder fonts. Dramatic effects can be created by combining the different
Font3D setting with the other font properties.

Data Type

Integer (Enumerated)

See Also

Caption, TabCaption()

ForeColorActive, ForeColorInactive Properties

Applies To

SSFormFX

Description

Sets the foreground color of the caption area of the form when it is the active or inactive window.

Usage

[form.]control.ForeColorActive[= color]

[form.]control.ForeColorInactive[= color]

Remarks

These properties specify the color for the text in the caption area when the form is active or inactive.
These properties default to the colors set in the Windows Control Panel.
The StdCaption property must be set to False for these properties to take effect.

Data Type

Long

See Also

BackColorActive, BackColorInactive

HwndToolbar Property

Applies To

SSToolbar

Description

Specifies the window handle of the toolbar.

Usage

[form.]control.HwndToolbar[= hwnd]

Remarks

This property represents the window handle of the visible toolbar. This property may be different than
the standard Hwnd property of the control, so use this when you need the handle of the actual toolbar
displayed on the screen.

Note The value of this property can change at any time during execution.

This property is only available at runtime and is read-only.

Data Type

Integer

InstantClose Property

Applies To

SSFormFX

Description

Determines whether a single click on the control box will close the form.

Usage

[form.]control.InstantClose[= {True|False}]

Remarks

The property settings are:
Setting Description
True The control box will close the form with a single click. The form's system menu is

disabled.
False (Default) The control box will function as normal.

The StdCaption property must be set to False for this property to take effect.

Data Type

Integer (Boolean)

See Also

ControlBoxWidth, CaptionButtonsPic

LockCtlKeyOverride Property

Applies To

SSFormFX

Description

Allows the user to override the LockMove and/or LockSize properties at runtime by holding down the
CTRL key.

Usage

[form.]control. LockCtlKeyOverride[= {True|False}]

Remarks

The property settings are:
Setting Description
True (Default) The form can be resized or moved when the CTRL key is held down even if

LockMove and/or LockSize are set to True.
False LockMove and/or LockSize property cannot be overridden.

Data Type

Integer (Boolean)

See Also

LockMove, LockSize

LockMove Property

Applies To

SSFormFX

Description

Determines whether the form can be moved by the user at runtime.

Usage

[form.]control.LockMove[= {True|False}]

Remarks

The property settings are:
Setting Description
True The form cannot be moved by the user at runtime.
False (Default) The form can be moved.

Note: By default, the user can override this lock by holding down the CTRL key. If you do not want the
user to be allowed to do this, set the LockCtlKeyOverride property to False.

Data Type

Integer (Boolean)

See Also

LockCtlKeyOverride, LockSize

LockSize Property

Applies To

SSFormFX

Description

Determines whether the size of the form can be changed by the user at runtime.

Usage

[form.]control.LockSize[= {True|False}]

Remarks

The property settings are:
Setting Description
True The form cannot be resized.
False (Default) The form can be resized.

Note: By default, the user can override this lock by holding down the CTRL key. If you do not want the
user to be allowed to do this, set the LockCtlKeyOverride property to False.

Data Type
Integer (Boolean)

See Also

LockCtlKeyOverride, LockMove

MaximizeHeight, MaximizeWidth Properties

Applies To

SSFormFX

Description

Specifies the height and/or width of the form when the form is maximized.

Usage

[form.]control.MaximizeHeight[= Height]

[form.]control.MaximizeWidth[= Width]

Remarks

These properties specify the height and/or width of the form when maximized. Set these properties to
zero for the Windows default size. The value is specified based on the scale mode of the form.

Data Type

Single

See Also

MaximizeLeft, MaximizeTop

Example

This sample code sets the size of the form to 3000 X 5000 twips and positioned in the center of the
screen when the form is maximized:

SSFormFX1.MaximizeWidth = 3000
SSFormFX1.MaximizeHeight = 5000

SSFormFX1.MaximizeTop = (Screen.Width / 2) - (SSFormFX1.MaximizeHeight / 2)
SSFormFX1.MaximizeLeft = (Screen.Width / 2) - (SSFormFX1.MaximizeWidth / 2)

MaximizeLeft, MaximizeTop Properties

Applies To

SSFormFX

Description

Specifies the X-coordinate and/or Y-coordinate of the form when the form is maximized.

Usage

[form.]control.MaximizeLeft[= x-coordinate]

[form.]control.MaximizeTop[= y-coordinate]

Remarks

These properties specify the X-coordinate and/or Y-coordinate of the form when the form is maximized.
Set these properties to zero for the Windows default position. The value is specified based on the scale
mode of the form.

Data Type

Single

See Also

MaximizeHeight, MaximizeWidth

Example

This sample code sets the size of the form to 3000 X 5000 twips and positioned in the center of the
screen when the form is maximized:

SSFormFX1.MaximizeWidth = 3000
SSFormFX1.MaximizeHeight = 5000

SSFormFX1.MaximizeTop = (Screen.Width / 2) - (SSFormFX1.MaximizeHeight / 2)
SSFormFX1.MaximizeLeft = (Screen.Width / 2) - (SSFormFX1.MaximizeWidth / 2)

Outline Property

Applies To

SSToolbar

Description

Sets or returns whether the toolbar is displayed with a 1-pixel black border around its outer edge.

Usage

[form.]control.Outline[= {True|False}]

Remarks

This property does not apply to a floating toolbar.

The property settings are:
Setting Description
True A 1-pixel black border will be drawn around the toolbar.
False (Default) No border is drawn.

Data Type
Integer (Boolean)

Picture Property

Applies To

SSIndexTab

Description

Specifies the picture for the current tab at design time.

Usage

[form.]control.Picture[= picture]

Remarks

This property sets the TabPicture() property of the current tab specified in the Tab property at design
time. Although the TabPicture() property can support any type of picture, the Picture property only
supports bitmaps.

This property is available only at design time.

Data Type

String

See Also

TabPicture(), Tab

Redraw Property

Applies To

SSFormFX, SSIndexTab

Description

Temporarily defers repainting of the control.

Usage

[form.]control.Redraw[= {True|False}]

Remarks

This property is used to defer painting when changing multiple properties so that flickering does not occur.

The property settings are:
Setting Description
True (Default) Will redraw the control when changes are made to the control's properties.
False Will not redraw the control when changes are made. You must set this back to True so

the control can redraw itself.

Data Type

Integer (Boolean)

Rows Property

Applies To

SSIndexTab

Description

Returns the total number of rows of index tabs.

Usage

[form.]control.Rows

Remarks

This property is only available at runtime and is read-only.

Data Type

Integer

See Also

Tabs, TabsPerRow

ShowFocusRect Property

Applies To

SSIndexTab

Description

Determines if the focus rectangle will be displayed on a tab when the control gets focus.

Usage

[form.]control.ShowFocusRect[= {True|False}]

Remarks

The property settings are:
Setting Description
True (Default) Shows the focus rectangle when a tab has focus.
False Does not show the focus rectangle when a tab has focus.

Data Type

Integer (Boolean)

SizeMaxHeight, SizeMaxWidth Properties

Applies To

SSFormFX

Description

Specifies the maximum height/width the form can be sized to at runtime.

Usage

[form.]control.SizeMaxHeight[= Height]

[form.]control.SizeMaxWidth[= Width]

Remarks

These properties determine the maximum height/width that the form can be resized to at runtime. Set this
to zero for no size restrictions. The value specified is based on the scale mode of the form.

Data Type

Single

See Also

LockSize, SizeMinHeight, SizeMinWidth

SizeMinHeight, SizeMinWidth Properties

Applies To

SSFormFX

Description

Specifies the minimum height/width the form can be sized to.

Usage

[form.]control.SizeMinHeight[= Height]

[form.]control.SizeMinWidth[= Width]

Remarks

These properties will set the minimum height/width the form can be resized to. Set this to zero for no size
restrictions. The value specified is based on the scale mode of the form.

Data Type

Single

See Also

LockSize, SizeMaxHeight, SizeMaxWidth

StdButtonHeight Property

Applies To

SSFormFX

Description

Determines whether the buttons in the caption area will be the standard height.

Usage

[form.]control.StdButtonHeight[= {True|False}]

Remarks

The property settings are:
Setting Description
True The buttons in the caption area will be the standard height. This includes the Maximize,

Minimized, and Control box buttons. This property will not make the buttons greater than
the CaptionHeight. However, if the CaptionHeight is less than the standard button
height, the control will shrink the buttons to fit.

False (Default) The buttons in the caption area will be sized using the CaptionHeight.
The StdCaption property must be set to False for this property to take effect.

Data Type

Integer (Boolean)

See Also

CaptionHeight

StdCaption Property

Applies To

SSFormFX

Description

Determines if the control should display a standard caption, ignoring all custom caption related properties.

Usage

[form.]control.StdCaption[= {True|False}]

Remarks

The property settings are:
Setting Description
True Standard Windows caption area will be used.
False (Default) The control will alter the caption area based on caption related property settings.

If this setting is True, the following properties are ignored:
· AlignmentCaption
· AlignmentPicture
· BackColorActive
· BackColorInactive
· Caption
· Caption3D
· CaptionButtonsPic
· CaptionHeight
· CaptionMultiLine
· CaptionPicture
· ControlBox3D
· ControlBoxWidth
· Font3D
· ForeColorActive
· ForeColorInactive
· InstantClose
· StdButtonHeight
· StdCaptionHeight

Data Type

Integer (Boolean)

StdCaptionHeight Property

Applies To

SSFormFX

Description

Determines if the FormFX control should use the Windows standard height for the caption area of the
form.

Usage

[form.]control.StdCaptionHeight[= {True|False}]

Remarks

The property settings are:
Setting Description
True The caption height will be the Windows standard height. The CaptionHeight property is

ignored when this property is set to True.
False (Default) The control will base the caption height on the setting of the CaptionHeight

property.

Data Type

Integer (Boolean)

Tab Property

Applies To

SSIndexTab

Description

Returns or sets the current tab.

Usage

[form.]control.Tab[= tabnumber]

Remarks

This property returns the active tab in the control. If you set this property, the control will change to the tab
specified by tabnumber. This value is zero based.

Data Type

Integer

See Also

Caption, Picture, Tabs, TabPos, TabStart

TabBackColor(), TabForeColor() Properties

Applies To

SSIndexTab

Description

Sets the background and/or foreground color of each tab.

Usage

[form.]control.TabBackColor(tab)[= color]

[form.]control.TabForeColor(tab)[= color]

Remarks

This property will set the color for background and/or foreground on each tab. If the Tabs3D property is
set to True, the TabBackColor() property is ignored and the BevelColorFace property is used. To set
the background color of the area not occupied by any tabs, use the standard BackColor property.

Data Type

Long

See Also

ActiveTabBackColor, ActiveTabForeColor

TabCaption() Property

Applies To

SSIndexTab

Description

Specifies the caption for each index tab.

Usage

[form.]control.TabCaption(tab)[= text]

Remarks

This property will set the caption for the specified tab.

This property is only available at runtime. To set this property at design time, select the tab by setting the
Tab property or by clicking on the tab with the left mouse button then set the Caption property. This
property will be saved when the form is saved.

Data Type

String

See Also

Caption, AlignmentCaption, Picture, AlignmentPicture

TabCutSize Property

Applies To

SSIndexTab

Description

Sets or returns the size of the cut corners of each index tab.

Usage

[form.]control.TabCutSize[= size]

Remarks

The TabCutSize property is set in pixels. It determines the shape of the corner of the tabs. The valid
range for this setting is 0 - 10 pixels.

Data Type

Integer

TabEnabled() Property

Applies To

SSIndexTab

Description

Determines whether the index tab will be enabled or disabled.

Usage

[form.]control.TabEnabled(tab)[= {True|False}]

Remarks

When a tab is disabled, the text on the index tab gets grayed out and the user can no longer select that
tab.

The property settings are:
Setting Description
True (Default) Tab will be enabled.
False Tab will be disabled.

Data Type

Integer (Boolean)

See Also

TabVisible()

TabHeight Property

Applies To

SSIndexTab

Description

Sets or returns the height of each index tab.

Usage

[form.]control.TabHeight[= height]

Remarks

This property represents the height of the index tabs based on the scale mode of its container.

Data Type

Single

See Also

TabMaxWidth

TabHwnd() Property

Applies To

SSIndexTab

Description

Specifies a window handle for each index tab.

Usage

[form.]control.TabHwnd(tab)[= hwnd]

Remarks

This property represents the Windows handle of each index tab at runtime. You can use this property to
move controls between tabs using the SetParent Windows API call.

This property is only available at runtime and is read only.

Data Type

Integer

Example

This sample code shows how to use the same command buttons on each tab using the Windows API
function SetParent:

[declarations section]
Declare Function SetParent Lib "USER.EXE" (ByVal hWndChild As Integer, ByVal
hWndParent As Integer) As Integer

Sub SSIndexTab_Click (PreviousTab As Integer)

 Dim NewTab As Integer
 Dim rc As Integer

 NewTab = SSIndexTab.Tab
 rc = SetParent(cmdOK.Hwnd, SSIndexTab.TabHwnd(NewTab))
 rc = SetParent(cmdCancel.Hwnd, SSIndexTab.TabHwnd(NewTab))

End Sub

TabMaxWidth Property

Applies To

SSIndexTab

Description

Sets or returns the maximum width of each index tab.

Usage

[form.]control.TabMaxWidth[= width]

Remarks

This property represents the maximum width of each tab in the scale mode of its container. If this property
is set to zero, the control will automatically size the tabs to evenly fit across the control.

Data Type

Single

See Also

Tabs, TabsPerRow, TabHeight

TabOrientation Property

Applies To

SSIndexTab

Description

Sets or returns where the tabs will appear on the control.

Usage

[form.]control.TabOrientation[= setting]

Remarks

The settings for this property are:
Setting Description
0 (Default) Tabs on Top - Tabs will be at the top of the control.
1 Tabs on Bottom - Tabs will be at the bottom of the control.
2 Tabs on Left - Tabs will be at the left of the control
3 Tabs on Right - Tabs will be at the right of the control.

Data Type

Integer (Enumerated)

TabPicture() Property

Applies To

SSIndexTab

Description

Specifies the picture to display on each tab.

Usage

[form.]control.TabPicture(tab)[= picture]

Remarks

This property will set the picture for the specified tab. Valid pictures are bitmaps, icons and Windows
metafiles. If you specify a Windows metafile, you must also set the height and width to display the picture
via the TabPictureMetaHeight and TabPictureMetaWidth properties.

This property is only available at runtime. To set this property at design time, select the tab by setting the
Tab property or by clicking on the tab with the left mouse button then set the Picture property. This
property will be saved when the form is saved.

Data Type

Integer (Picture)

See Also

Picture, AlignmentPicture

TabPictureMetaHeight, TabPictureMetaWidth Properties

Applies To

SSIndexTab

Description

Sets the height and/or width of a metafile selected in the TabPicture() property.

Usage

[form.]control.TabPictureMetaHeight(tab) [= height]

[form.]control.TabPictureMetaWidth(tab) [= width]

Remarks

These properties represent the height and/or width of the metafile specified in the TabPicture property.

The units specified are based on the scale mode of the form.

Data Type

Single

See Also

TabPicture

TabRowOffset Property

Applies To

SSIndexTab

Description

Sets or returns the offset in pixels that each row of tabs will be indented.

Usage

[form.]control.TabRowOffset[= size]

Remarks

If the control is displaying two or more rows of tabs, this property will determine the offset from one row to
the next. The first row of tabs is always displayed even with the left of the front index card. The next
row will start at this offset, and all remaining rows will continue to be indented increasingly by this value.

Data Type

Integer

See Also

Rows, Tabs, TabsPerRow

Tabs Property

Applies To

SSIndexTab

Description

Sets or returns the total number of tabs for the control.

Usage

[form.]control.Tabs[= tabnumber]

Remarks

This property determines how many tabs will be in the control. Use this property in conjunction with the
TabsPerRow property to determine the number of rows to display.

Data Type

Integer

See Also

Rows, TabsPerRow

Example

The following code sets up an Index Tab control to have 12 tabs occupying 3 rows of tabs:

SSIndexTab1.Tabs = 12
SSIndexTab1.TabsPerRow = 4

Tabs3D Property

Applies To

SSIndexTab

Description

Determines if the Index Tab control will have a 3D look.

Usage

[form.]control.Tabs3D[= {True|False}]

Remarks

The property settings are:
Setting Description
True (Default) The control will be displayed in 3D.
False The control will not be displayed in 3D.

If this property is set to True, the TabBackColor and ActiveTabBackColor properties are ignored and
BevelColorFace is used.

Data Type

Integer (Boolean)

TabSelectType Property

Applies To

SSIndexTab

Description

Determines how tabs are rearranged when a new tab is selected.

Usage

[form.]control.TabSelectType[= setting]

Remarks

Regardless of the setting below, when a tab becomes active, all associated controls placed on that tab
will still appear.

The settings for this property are:
Setting Description
0 Keep Tabs in Place - The tab remains in its place when it becomes the active tab.
1 (Default) Move Selected Tab To Front Row - This setting moves the selected tab and all

other tabs on its row to the front row, cycling all tab rows so that their relative order
remains the same.

Data Type

Integer (Enumerated)

TabsPerRow Property

Applies To

SSIndexTab

Description

Sets or returns the number of tabs for each row.

Usage

[form.]control.TabsPerRow[= tabnumber]

Remarks

This property determines how many tabs will be on each row. Use this property in conjunction with the
Tabs property to determine the number of rows the control will display.

Data Type

Integer

See Also

Rows, Tabs

Example

The following code sets up an Index Tab control to have 12 tabs occupying 3 rows of tabs:

SSIndexTab1.Tabs = 12
SSIndexTab1.TabsPerRow = 4

TabStart Property

Applies To

SSIndexTab

Description

Determines which tab will be the active index tab when the control loads.

Usage

[form.]control.TabStart[= tabnumber]

Remarks

This property determines the initial active tab when the control loads. If set to -1, then the tab that is
selected when the form is saved at designtime will be the initial active tab. If set to any other number, then
the tab with that number will be the initial active tab. Tab numbers are zero based and can range from 0 to
(Tabs - 1).

This property is only available at designtime.

Data Type

Integer

Example

This sample code ensures that the first active tab will be the last one:

SSIndexTab1.TabStart = SSIndexTab1.Tabs - 1 'TabStart is
 'zero based

TabVisible() Property

Applies To

SSIndexTab

Description

Determines whether the tab will be visible.

Usage

[form.]control.TabVisible(tab)[= {True|False}]

Remarks

The property settings are:
Setting Description
True (Default) Tab will be visible.
False Tab will not be visible.

Data Type

Integer (Boolean)

See Also

TabEnabled()

Toolbar3D Property

Applies To

SSToolbar

Description

Determines whether the toolbar will be 3D.

Usage

[form.]control.Toolbar3D[= {True|False}]

Remarks

The property settings are:
Setting Description
True The toolbar will be displayed in 3D.
False (Default) The toolbar will not be 3D.

Data Type

Integer (Boolean)

See Also

BevelColorFace, BevelColorHighlight, BevelColorShadow, BevelInner, BevelOuter, BevelWidth,
BorderWidth

ToolsetName Property

Applies To

SSToolbar

Description

Contains a descriptive name for the tool.

Usage

[form.]control.ToolsetName[= NameString]

Remarks

This property might be useful when presenting the user with a choice of toolsets to enable customization
at runtime.

This property is only available at runtime (it is indirectly settable at designtime via the Toolbar Designer).

Data Type

String

ToolsetNumBtnStates Property

Applies To

SSToolbar

Description

Sets or returns the number of button states included in the ToolsetPicture property.

Usage

[form.]control.ToolsetNumBtnStates[= numstates]

Remarks

This property determines the number of states of buttons that are included in the ToolsetPicture property.
A value of two means that only the 'up' and 'down' states are included. Three means that the 'up disabled'
state is also included while a value of four means that all four states are included (as in the sample bitmap
below).

This property is only available at runtime (it is indirectly settable at designtime via the Toolbar Designer).

Data Type

Integer

See Also

ToolsetPicture, ToolsetNumTools

ToolsetNumTools Property

Applies To

SSToolbar

Description

Sets or returns the number of tools in the ToolsetPicture property.

Usage

[form.]control.ToolsetNumTools[= tools]

Remarks

This property determines the number of tools (columns of button images) defined in the ToolsetPicture
property.

This property is only available at runtime (it is indirectly settable at designtime via the Toolbar Designer).

Data Type

Integer

See Also

ToolsetPicture, ToolsetNumBtnStates

Example

This sample code dynamically adds a new tool to the current toolset at runtime and assigns it to button
number 1:

Dim NumTools As Integer

SSToolbar1.ToolsetPicture = LoadPicture("")

NumTools = SSToolbar1.ToolsetNumTools + 1

SSToolbar1.ToolsetNumTools = NumTools
SSToolbar1.ToolsetPicUp(NumTools - 1) = LoadPicture("TOOL_UP.BMP")
SSToolbar1.ToolsetPicDn(NumTools - 1) = LoadPicture("TOOL_DN.BMP")
SSToolbar1.ToolsetPicUp(NumTools - 1) = LoadPicture("TOOL_UP.BMP")

SSToolbar1.BtnToolNum(1) = NumTools - 1

ToolsetPicture Property

Applies To

SSToolbar

Description

Specifies the bitmap to use for the toolset.

Usage

[form.]control.ToolsetPicture[= picture]

Remarks

This property contains a bitmap to use as the current toolset. Toolsets are collections of related tools.
Each tool represents a specific user function. The bitmap must contain an image for at least the up and
down state of every tool in the toolset. The possible states are:

1. Up (required)

2. Down (required)

3. Up disabled (optional)

4. Down disabled (optional)

Note The bitmap can be created or modified with any bitmap editor including the standard PaintBrush
application (PBRUSH.EXE).

When creating the bitmap you need to be aware of the following:

· The size of the image for each state of each tool in the toolset must be the same.

· You must supply at least the 'up' and 'down states' (the 'up disabled' and 'down disabled' states
are optional).

· The ToolsetNumBtnStates property lets you specify which button states are supplied. A value of
two means that only the 'up' and 'down' states are included. Three means that the 'up disabled'
state is also included while a value of four means that all four states are included (as in the
sample bitmap above).

· The ToolsetNumTools property specifies how many tools are in the set. This would be set to 8
for the above sample bitmap.

· BtnWidth and BtnHeight properties are automatically calculated based on the
ToolsetNumBtnStates and ToolsetNumTools property settings and the size of the bitmap.

This property is only available at runtime.

Data Type

Integer (Picture)

See Also

ToolsetNumTools, ToolsetToolID(), ToolsetToolHelp(), ToolsetToolDesc(),
ToolsetToolType(),ToolsetToolGroup(), ToolsetToolExclusive(), ToolsetToolAllowAllUp(),
ToolsetToolMnemonic()

Example

This sample code assigns a bitmap to the ToolsetPicture property and configures it to have 8 tools and 2
states (up and down only), and set the type of the tools to be 'Push Button':

Dim I As Integer

Tb1.ToolsetNumBtnStates = 2
Tb1.ToolsetNumTools = 8
Tb1.ToolsetPicture = LoadPicture("MYTOOLS.BMP")

For i = 0 to Tb1.ToolsetNumTools - 1
Tb1.ToolsetToolType(i) = 0 'Push Button

Next i

ToolsetToolAllowAllUp() Property

Applies To

SSToolbar

Description

Determines whether all buttons in a group can be in the 'up' position.

Usage

[form.]control.ToolsetToolAllowAllUp(tool)[= {True|False}]

Remarks

The property settings are:
Setting Description
True All buttons in the current picture group may be in the 'up' position.
False (Default) At least one button in the current picture group must be depressed.

Note When this property is set for a button in a group, then the property is automatically set to the
same value for all the other buttons in the group.

If the ToolsetToolAllowAllUp() property is set to False, no check will be made by the button to insure
that at least one button is depressed when the toolbar on which the button resides is loaded. It is up to
you to set the initial state of the Value property for one of the buttons in the group to True.

This property is ignored if the ToolsetToolExclusive() property for the same group is set to False or the
ToolsetToolType() property for this tool is set to 'Push'.

This property is only available at runtime. However, it can be initially set at design time using the Toolbar
Designer.

Data Type

Integer (Boolean)

See Also

ToolsetToolGroup()

ToolsetToolDesc() Property

Applies To

SSToolbar

Description

Contains a description of the tool.

Usage

[form.]control.ToolsetToolDesc(tool)[= string]

Remarks

This property is used to store a description of a tool.

This property is only available at runtime. However, it can be initially set at design time using the Toolbar
Designer.

Data Type

String

See Also

ToolsetToolHelp()

Example

This sample code shows how to display the tool's description in a status bar when the mouse moves over
a button:

Sub SSToolbar1_MouseEnter(ToolID As String, ToolNum As Integer, Btn As Integer)

 pnlStatus.Caption = SSToolbar1.ToolsetToolDesc(ToolNum)

End Sub

ToolsetToolExclusive() Property

Applies To

SSToolbar

Description

Determines if only one button in the same group should be toggled down at any time.

Usage

[form.]control.ToolsetToolExclusive(tool)[= {True|False}]

Remarks

The property settings are:
Setting Description
True Only one button in the same group can be toggled down (BtnValue = True) at any time.
False (Default) Buttons within the same group toggle independently.

Note When this property is set for a button in a group, then the property is automatically set to the
same value for all the other buttons in the group.

When a button is pressed and this property is set to True, the control will toggle all other 'toggle' buttons
in the same logical group (based on the ToolsetToolGroup() property) to their 'up' positions. If this
property is set to False then the ToolsetToolAllowAllUp() property is ignored.

This property is only available at runtime. However, it can be initially set at design time using the Toolbar
Designer.

Data Type

Integer (Boolean)

See Also

ToolsetToolExclusive(), ToolsetToolAllowAllUp()

ToolsetToolGroup() Property

Applies To

SSToolbar

Description

Sets or returns the group the tool belongs to.

Usage

[form.]control.ToolsetToolGroup(tool)[= groupnumber]

Remarks

The amount of space between buttons in a group is defined by the BtnGroupSpacing property. Certain
properties apply to buttons in groups (refer to the property definitions in this chapter for a full description):

· ToolsetToolExclusive()
· ToolsetToolAllowAllUp()
· BtnGroupSpacing
This property is only available at runtime. However, it can be initially set at design time using the Toolbar
Designer.

Data Type

Integer

See Also

ToolsetToolExclusive(), ToolsetToolAllowAllUp(), BtnGroupSpacing

ToolsetToolHelp() Property

Applies To

SSToolbar

Description

Sets or returns the help text for the tool (which is used to display balloon help).

Usage

[form.]control.ToolsetToolHelp(tool)[= string]

Remarks

This property specifies what help message is associated with the specified tool. When the BalloonHelp
property is set to True, the string in ToolsetToolHelp() property will appear when the mousepointer
pauses over a button. If this property is not defined for a tool, no balloon help will appear.

This property is only available at runtime or can be set at design time using the Toolbar Designer.

Data Type

String

See Also

BalloonHelp, BalloonHelpDelay, ToolsetToolDesc()

ToolsetToolID() Property

Applies To

SSToolbar

Description

Sets or returns a unique ID for a tool.

Usage

[form.]control.ToolsetToolID(tool)[= String]

Remarks

The string in this property represents a unique ID used to identify a tool from code at runtime. It can be a
maximum of 16 characters. This string is passed to you in the Click, Help, MouseEnter and MouseExit
events.

This property is only available at runtime or can be set at design time using the Toolbar Designer.

Data Type

String

ToolsetToolMnemonic() Property

Applies To

SSToolbar

Description

Sets or returns the mnemonic character associated with a tool.

Usage

[form.]control.ToolsetToolMnemonic(tool)[= character]

Remarks

This property will set or return the mnemonic character for the tool specified. By setting a mnemonic for a
tool, the user can click a button by hitting ALT and the character specified in ToolsetToolMnemonic().
This will cause the Click event of the button to fire. This property is generally used when a caption is
included in the picture to allow the user to 'hotkey' the button.

Note You should be aware that mnemonic characters only work within the current active form.
Therefore, if a MDI child form is active, the mnemonic characters for toolbars that are on the MDI parent
will not operate.

This property is only available at runtime or can be set at design time using the Toolbar Designer.

Data Type

String (Single Character Only)

ToolsetToolPicDn(), ToolsetToolPicUp() Properties

Applies To

SSToolbar

Description

Sets or returns the image of the tool for the button's up or down state.

Usage

[form.]control.ToolsetToolPicDn(tool)[= picture]

[form.]control.ToolsetToolPicUp(tool)[= picture]

Remarks

These properties can be used to extract or set the bitmap images used on a button in the up and/or down
positions.

Note These properties are not kept as separate bitmaps by the toolbar and therefore do not consume
excessive system resources. They are used just like the GraphicCell() property in the Picture Clip control
(included in the Visual Basic Professional Edition) except that they are not read-only.

Keep in mind that when you set any of these individual picture properties you are in fact updating an area
of the larger (all inclusive) ToolsetPicture bitmap.

This property is only available at runtime.

Data Type

Integer (Picture)

See Also

ToolsetPicture, ToolsetToolPicDnDis(), ToolsetToolPicUpDis()

Example

The following code is a routine that gets passed two arrays of bitmap filenames each for the up and down
image to use to create a toolset dynamically at runtime:

Sub CreateToolset(BmpUp() As String, BmpDn() As String)

 Dim I As Integer

 Tb1.ToolsetPicture = LoadPicture("")

 Tb1.ToolsetNumBtnStates = 2
 Tb1.ToolsetNumTools = UBound(BmpUp)

 For i = 0 to Tb1.ToolsetNumTools - 1
Tb1.ToolsetToolPicUp(i%) = LoadPicture(BmpUp(i))
Tb1.ToolsetToolPicDn(i%) = LoadPicture(BmpDn(i))

 Next I

End Sub
Note The first bitmap applied determines the width and height of all tools in the toolset, so all the
bitmaps should be the same size or else buttons will not display the desired images.

ToolsetToolPicDnDis(), ToolsetToolPicUpDis() Properties

Applies To

SSToolbar

Description

Sets or returns the picture for the tool for its disabled-up and disabled-down states.

Usage

[form.]control.ToolsetToolPicDnDis (tool)[= picture]

[form.]control.ToolsetToolPicUpDis (tool)[= picture]

Remarks

These properties can be used to extract or set the bitmap images used on a button in the disabled-up
and/or disabled-down positions. Since these two states are optional (based on the
ToolsetNumBtnStates property) and may not exist in the bitmap specified in the ToolsetPicture
property, these properties may not have a value.

Note These properties are not kept as separate bitmaps by the toolbar. They are used just like the
GraphicCell() property in the Picture Clip control (included in the Visual Basic Professional Edition)
except that they are not read-only.

Keep in mind that when you set any of these individual picture properties you are in fact updating an area
of the larger (all inclusive) ToolsetPicture bitmap.

These properties are only available at runtime and are read-only.

Data Type

Integer (Enumerated)

See Also

ToolsetNumBtnStates, ToolsetPicture, ToolsetToolPicDn(), ToolsetToolPicUp()

ToolsetToolType() Property

Applies To

SSToolbar

Description

Determines the type of each tool to be either a push button or a toggle button.

Usage

[form.]control.ToolsetToolType(tool)[= setting]

Remarks

The settings for this property are:
Setting Description
0 (Default) Push. A button associated with this tool will depress and automatically return to

the up position when clicked.
1 Toggle. A button associated with this tool will toggle between up and down states when

clicked.

This property is only available at runtime or can be set at design time using the Toolbar Designer.

Data Type

Integer (Enumerated)

See Also

ToolsetToolGroup()

Events Reference
The following is a complete reference of all the custom events in the Designer Widgets custom controls.
For all other standard events, see the Microsoft Visual Basic Language Reference.

Related Topics:
Click Event (SSToolbar)
Click Event (SSIndexTab)
DockStatusChanged Event
Help Event
MouseEnter Event
MouseExit Event
ToolbarClosed Event
ToolbarResized Event

Click Event (SSToolbar)

Applies To

SSToolbar

Description

Occurs when the user presses a button on the toolbar or a button tool's associated mnemonic character
(see ToolsetToolMnemonic() in chapter 11) is entered via the keyboard.

Syntax

Sub control_Click ([Index As Integer] ToolID As String, ToolNum As Integer, Btn As Integer, Value As
Integer)

Remarks

The event parameters are:
Parameter Description
Index Uniquely identifies a control if it is in a control array.
ToolID The ToolID of the tool that is associated with the button that was clicked. This is the ID

specified in the ToolsetToolID() property of the tool.
ToolNum The zero based index of the button's tool in the toolset.
Btn The button's index # (0 is the leftmost button on toolbar).
Value Reflects the button's state after the click. This parameter is True if the button is down,

False if up.

Example

This sample shows how to identify a button based on the ToolID parameter as defined in the toolset.
This sample uses the toolset TSBASIC.BMP:

Sub SSToolbar1_Click (ToolID As String, ToolNum As Integer,
 Btn As Integer, Value As Integer)

Select Case ToolID
 Case "ID_NEW"

 MsgBox "This invokes the New File function"
 Case "ID_OPEN"

 MsgBox "This invokes the Open File function"
 Case "ID_SAVE"

 MsgBox "This invokes the Save File function"
 Case "ID_PRINT"

 MsgBox "This invokes the Print function"
 Case "ID_PREVW"

 MsgBox "This invokes Print Preview"
 Case "ID_CUT"

 MsgBox "This invokes the Cut function"
 Case "ID_COPY"

 MsgBox "This invokes the Copy function"
 Case "ID_PASTE"

 MsgBox "This invokes the Paste function"
 Case "ID_UNDO"

 MsgBox "This invokes the Undo function"
 Case "ID_REDO"

 MsgBox "This invokes the Redo function"
 Case "ID_HELP1"

 MsgBox "This invokes the Item Help function"
 Case "ID_HELP2"

 MsgBox "This invokes General Help"
End Select

End Sub

Click Event (SSIndexTab)

Applies To

SSIndexTab

Description

Occurs when the user selects an index tab.

Syntax

Sub control_Click ([Index As Integer] PreviousTab As Integer)

Remarks

The event parameters are:
Parameter Description
Index Uniquely identifies a control if it is in a control array.
PreviousTab Identifies the tab that was previously active.

When the user clicks on a tab, that tab becomes the active tab and all controls placed on that tab at
design time become visible. The Click event notifies you when the user clicks on a tab to make it the
active tab.

Example

This sample code shows how to use the same command buttons on each tab using the Windows API
function SetParent:

[declarations section]
Declare Function SetParent Lib "USER.EXE" (ByVal hWndChild

As Integer, ByVal hWndParent As Integer) As Integer

Sub SSIndexTab_Click (PreviousTab As Integer)

 Dim NewTab As Integer
 Dim rc As Integer

 NewTab = SSIndexTab.Tab
 rc = SetParent(cmdOK.Hwnd, SSIndexTab.TabHwnd(NewTab))
 rc = SetParent(cmdCancel.Hwnd, SSIndexTab.TabHwnd(NewTab))

End Sub

DockStatusChanged Event

Applies To

SSToolbar

Description

Occurs after the toolbar has changed its docked position.

Syntax

Sub control_DockStatusChanged ([Index As Integer] PreviousDock As Integer)

Remarks

This event will occur after the toolbar has changed docked positions and will also occur when the toolbar
becomes a floating toolbar. To get the new dock status, use the DockStatus property.

The event parameters are:
Parameter Description
Index Uniquely identifies a control if it is in a control array.

PreviousDock Identifies the previous dock status of the toolbar.
Setting Description

0 Top - The toolbar was previously docked in the top docking area.

1 Left - The toolbar was previously docked in the left docking area.

2 Bottom - The toolbar was previously docked in the bottom docking area.

3 Right - The toolbar was previously docked in the right docking area.

4 None (Floating) - The toolbar was previously floating.

Help Event

Applies To

SSToolbar

Description

This event is triggered when the balloon help is activated.

Syntax

Sub control_Help ([Index As Integer], ToolID As String, ToolNum As Integer, Btn As Integer, X As Long,
Y As Long, RtnCancelDisplay As Integer)

Remarks

This event gets triggered when the balloon help is about to be displayed. You can bypass the display by
setting the RtnCancelDisplay parameter to True. This event only gets fired if the BalloonHelp property is
set to True.

The balloon help text will disappear when a key is pressed or the user moves the mouse off the button.

Parameter Description
Index Uniquely identifies a control if it is in a control array.
ToolID The ToolID of the tool that is associated with this button. This is the 8-character ID

specified in the ToolsetToolID() property of the tool.
ToolNum The zero based index of the tool in the toolset.
Btn The button's index # (0 is the leftmost button on toolbar).
X The X-coordinate of the window that will display the balloon help. Use this coordinate to

display your own balloon help window. The coordinate is specified in pixels relative the
entire screen.

Y The Y-coordinate of the window that will display the balloon help. Use this coordinate to
display your own balloon help window. The coordinate is specified in pixels relative the
entire screen.

RtnCancelDisplayThis parameter is used to bypass the display of the balloon help text. If you want to
bypass the display, set this parameter to True.

Example

This sample code shows how to display the tool's description in a status bar when the balloon help is
activated. To clear the text from the status bar, respond to the MouseExit event:

Sub SSToolbar1_Help(ToolID As String, ToolNum As Integer,
Btn As Integer, X As Long, Y As Long,
RtnCancelDisplay As Integer)

 pnlStatus.Caption = SSToolbar1.ToolsetToolDesc(ToolNum)

End Sub

MouseEnter Event

Applies To

SSToolbar

Description

Occurs when the mouse pointer enters a button.

Syntax

Sub control_MouseEnter ([Index As Integer] ToolID As String, ToolNum As Integer, Btn As Integer)

Remarks

This event will occur when the mousepointer moves over a button on the toolbar.

The event parameters are:
Parameter Description
Index Uniquely identifies a control if it is in a control array.
ToolID The ToolID of the tool that is associated with this button. This is the ID specified in the

ToolsetToolID() property of the tool.
ToolNum The zero based index of the tool in the toolset.
Btn The button's index # (0 is the leftmost button on toolbar).

See Also

MouseExit

Example

This sample code shows how to display the tool's description in a status bar when the mouse is moved
over a button:

Sub SSToolbar1_MouseEnter(ToolID As String,
ToolNum As Integer, Btn As Integer)

 pnlStatus.Caption = SSToolbar1.ToolsetToolDesc(ToolNum)

End Sub

MouseExit Event

Applies To

SSToolbar

Description

Occurs when the mouse pointer exits a button.

Syntax

Sub control_MouseExit ([Index As Integer] ToolID As String, ToolNum As Integer, Btn As Integer)

Remarks

This event will occur when the mouse pointer leaves a button on the toolbar.

The event parameters are:
Parameter Description
Index Uniquely identifies a control if it is in a control array.
ToolID The ToolID of the tool that is associated with this button. This is the ID specified in the

ToolsetToolID() property of the tool.
ToolNum The zero based index of the tool in the toolset.
Btn The button's index # (0 is the leftmost button on toolbar).

See Also

MouseEnter

Example

This sample code shows how to clear the tool's description in a status bar (assuming it was displayed in
either the Help or MouseEnter event) when the mouse is moved off a button:

Sub SSToolbar1_MouseExit(ToolID As String,
ToolNum As Integer, Btn As Integer)

 pnlStatus.Caption = ""

End Sub

ToolbarClosed Event

Applies To

SSToolbar

Description

Occurs when the user closes the floating toolbar by clicking on the control box.

Syntax

Sub control_ToolbarClosed ([Index As Integer])

Remarks

The Index parameter uniquely identifies the control if it is in a control array.

When the user closes a floating toolbar, the Visible property of the toolbar is set to False. This event will
occur after the user closes the toolbar.

Example

The following sample code maintains a list of "closed" toolbars in a global Type array variable so that later
in the program, the user can select from a list of toolbars to re-open:

Sub SSToolbar1_ToolbarClosed(Index As Integer)

 gToolbarInfo(Index).Closed = True

End Sub

ToolbarResized Event

Applies To

SSToolbar

Description

Occurs when the floating toolbar has been resized at runtime by the user.

Syntax

Sub control_ToolbarResized ([Index As Integer])

Remarks

The Index parameter uniquely identifies the control if it is in a control array.

This event will occur after the floating toolbar has been resized. A toolbar can only be resized at runtime
if the FloatingSizable property is set to True.

Technical Specifications
All of the following information is subject to change. Please check the README.TXT file for any
updates.

System Requirements
· Microsoft Windows version 3.1 or higher.

· Microsoft Visual Basic version 3.0 or higher. (See hardware and system requirements for
installing Visual Basic in the Setup chapter of the Microsoft Visual Basic Programmer's Guide).

· At least 2 megabytes of available space on your hard disk.

Included Files
The following table page gives a brief description of the files that are installed on your hard disk during the
Setup process (see Chapter 2).

Files installed in the \WINDOWS\SYSTEM directory (optional):
Filename(s) Description

SSDOCKTB.VBX Contains the Dockable Toolbar control.

SSIDXTAB.VBX Contains the Index Tab control.

SSFORMFX.VBX Contains the FormFX control.

Files installed in the \WINDOWS directory:
Filename(s) Description

SSDESWDG.LIC The Designer Widgets design time license file.

SSDESWDG.INI The Designer Widgets INI file.

Files installed in the \SSDESWDG directory (or whatever directory you specified during installation):
Filename(s) Description

README.TXT Contains updated information not found in this
manual.

SSDESWDG.BAS The declarations for the Designer Widgets API
functions and the constant declarations for various
Designer Widgets settings.

SSDESWDG.HLP The Designer Widgets online help file.

SSDOCKTB.VBX Contains the Dockable Toolbar control.

SSIDXTAB.VBX Contains the Index Tab control.

SSFORMFX.VBX Contains the FormFX control.

Sample projects directories installed under the \SSDESWDG\SAMPLES directory:
Filename(s) Description

CHAPTER**.* Contains the chapter examples.

TOOLSETS*.* Contains sample toolsets.

Error Messages
This appendix shows a list of trappable errors that could occur at runtime when using the Designer
Widgets custom controls. The constant declarations for these values can be found in the
SSDESWDG.BAS file that comes with Designer Widgets.

Error
Number Description

30002 SS_ERR_BEVELWIDTH1

Bevel Width must be from 0 to 30
You tried setting one of these properties with a value
outside its valid range.

30003 SS_ERR_BORDERWIDTH

Border Width must be from 0 to 30
You tried setting one of these properties with a value
outside its valid range.

30004 SS_ERR_BADEXTENT1

The property value must be between 0 and n
You tried setting this property with a value outside its valid
range.

30005 SS_ERR_BADEXTENT2

The property value must be greater than or equal to 0
You tried setting this property with a value outside its valid
range.

30006 SS_ERR_BADEXTENT3

The property value must be greater than 0
You tried setting this property with a value outside its valid
range.

30007 SS_ERR_NUMSTATES

ToolsetNumBtnStates property can only be set to 2, 3
or 4
The ToolsetNumBtnStates property can only be set to 2,
3 or 4. Try specifying one of these values.

30008 SS_ERR_NOVISIBLE

Must have at least 1 visible index tab
You tried to set the last visible tab's TabVisible() property
to False. There must be at least one visible tab at all
times. Try setting another tab's TabVisible() property to
True then set this one to False.

30009 SS_ERR_DELAYVALUE

BalloonHelpDelay must be from 0 to 5000
You tried setting one of these properties with a value
outside its valid range.

30010 SS_ERR_FORMAT1

Only Picture Formats '.BMP' & '.ICO' supported.
You specified an invalid picture format for the property.
Try setting this property to a picture with a valid format.

30011 SS_ERR_FORMAT2

Only Picture Format '.BMP' supported.
You specified an invalid picture format for the property.
Try setting this property to a picture with a valid format.

30012 SS_ERR_FORMAT3

Only Picture Format '.BMP' supported at design time,
use the TabPicture() property at runtime instead
You can only set the Picture property to a bitmap at
design time. To specify a picture with this format to appear
on this tab, use the TabPicture() property at runtime
instead.

30013 SS_ERR_TABSEXIST

Invalid property value - controls exist on tab n and
must first be removed before decreasing the Tabs
property to this value
This error occurs if controls exist on a tab number that is
greater than the value you specified. For example, you
placed controls on tab number 10 and tried to set the Tabs
property to 7. The control will not delete the child controls
for you. It is up to you to remove all controls first.

