
Visual Basic String Object Library
A string buffer and huge string array library.

I know, you're probably thinking "What?! Yet another string library? And I suppose I
need another left foot!" Well, no. You probably don't need another left foot. At least I
sincerely hope not. However, I have not tried to re-invent the square wheel. What I
have done is to fill a particularly specialized need that arose from the smoky depths
of the Visual Basic Out of String Space dungeon.

There are several realities we all, as VB programmers, have to face. The fact that VB
provides a limited amount of string space is one. While developing several
specialized applications to access a massively parallel database computer (the
ATT3600/Teradata DBC1012), and to overcome the inherent limitations in MS
Access®, I found myself bashing my head against the proverbial brick wall.
Although I won't get into the issue of ODBC stack problems when synchronously
executing multiple queries right now (although I have written a library that solves
that problem), I will get into the issue of buffering medium to huge amounts of text
data. Writing truly professional ODBC compliant applications requires more than
Visual Basic's Snapshots, Dynasets, bound Data controls and limited string space.
Fortunately many of these problems can be addressed using DLLs written specifically
for Visual Basic.

Problem #1: Visual Basic String Limitations

A textbox is limited to ~64k of text. That can be too small as it is, but it's made even
smaller by Visual Basic's imposition of the 32k barrier. Clever programmers know
that you can buffer the text and 'switch pages' by allocating new textboxes or by re-
using the visible one. We also know that filling a textbox a line-at-a-time (even when
the textbox is hidden) takes a very much longer time than just assigning the whole
thing at once. Buffering the text prior to filling the textbox is an obvious answer.
However, buffering the text using normal VB means can have two side effects: the
dreaded out-of-string-space demon, or the moderately slow string concatenation
demon.

Out-of-string-space is caused when code is written that results in more than 64k of
string space being used in the same form (as well as other situations.) When using
Mid$, Left$, Right$ and the "&" concatenation (or pipe) character, string space is
usually allocated in the same segment. That means that the sum of the characters in
all arguments may not exceed 64k. However, an external library may assign as
much space as it likes and handle strings more effectively. Still, a string is never
larger than 64k. And, using some esoteric methods, you can overcome the 32k
barrier. Not a very comfortable thought.

Concatenation of strings is another issue. VB is written in C/C++. C/C++ uses a
number of string functions to handle the concatenation of strings. If, as a C/C++

programmer, you are presented with the problem of concatenating one string to
another, you will likely use the strcat() function to do so. The strlen() function is
often used to determine the length of the string. This function starts at the beginning
of the string and counts characters until the terminating null (0) is located. Viola, the
string length is found. Now if you need to concatenate strings to another string
often, then each time the string's length is calculated to locate it's end. Now you can
concatenate the other string. If you are lucky enough to know that you will be
concatenating a particular string a number of times, then you can maintain a pointer
to the end of the string and just add characters to the end. The strecopy() function
can be used in some cases. VB does not give you this luxury.

So, what is my point, anyway? Well, as a program receives data from some source it
will either use a method such as:

Form1!TextBox1.Visible = False
...
...
TextBuffer$ = ... some data source ...
Form1!TextBox1 = Form1.TextBox1 & TextBuffer$ & Chr(13) & Chr(10)
...
...
Form1!TextBox1.Visible = True

or:

TextBuffer$ = TextBuffer$ & ... some data source ... & Chr(13) & Chr(10)
... all data received ...
Form1!TextBox1 = TextBuffer$

The first method is tremendously slow; even on a Pentium. At least I think so. The
second method is better, although after each "=" and "&" VB is going to do it's
'concatenation' thing. Faster, but still fairly slow. If you have ever tried reading a
text file using Open and Line Input to fill a TextBox, then you know how slow that
can be. Opening a file as BINARY and using Get to read the file is light speed in
comparison. So would it not be nice if we could just blast the text into a buffer in the
most efficient way possible, and then just copy the text in one flash into the TextBox?
Well, yes ... it would.

VBstrAPI exports an object called CatStr (Concatenation String). This object can
create a large number of 64k concatenation string buffers. Each buffer is designed to
know where the end of itself is, and is lightning fast at concatenating strings. Since
in many cases a CR/LF is required at the end of a line, the object is designed to
handle that bit automatically as well. Since you may wish to buffer fixed-length fields
of text, the object is designed to handle concatenating and returning fixed-length
blocks too. The CatStr object is a 1 to 65535 character object. You can define it to
whatever size within that range.

Since the CatStr Object Server within VBstrAPI can handle a large number of strings
and can be used by any number of applications, CatStr objects are referenced by a
'handle'. I mention this now so I can give you an example of how CatStr can be used.
(See VBstrAPI.HLP for a tutorial on object servers)

CHandle% = CreateNewCatString(32768) ' string size + 1

rc% = CatStrAddLine(CHandle%, ... data source ...)

... repeat until all data received or rc% indicates that the string is full ...

Form1!TextBox1 = CatStrCopy(CHandle%)

DestroyCatString CHandle%

In this example, a CatStr Object is created, used and destroyed. No VB string space
or data space is used. And, as a bonus, the string concatenation method used is
very efficient. What is not so obvious is that the CatStrAddLine method added the
CR/LF automatically to the line of text and returns a status code to let your program
know if the Add was successful. If the data source is greater than 32k in length, my
program can detect this and switch pages ... or something. Anything but fail or cause
an out-of-string-space error.

If the data source were feeding you with fixed-length strings that you wanted to
buffer, then the program would be only slightly more involved. For example:

Dim FieldBuffer As String * 40 ' say, a 40 character field

CHandle% = CreateNewCatString(65536) ' maximum size
While ... there is data ...

FieldBuffer = ... data source ...
rc% = CatStrAdd(CHandle%, FieldBuffer)

Wend

CatStrResetCLP CHandle% ' this resets the Current Line/Field Pointer
 ' so CatStr can begin at the beginning of the
 ' buffer

Status% = 0
While Status% = 0

... some data sink ... = CatStrNext(CHandle%, 40, Status%)
' Status% will contain -1 if no more fields

Wend

DestroyCatString CHandle%

In this more detailed example, CatStr is handling fixed-length strings. Maybe you
have noticed something in all of this? Yup, CatStr is treated like a serial file. You
append strings to it using the CatStrAdd method (for fields) and the CatStrAddLine
method (for text lines). You can also use CatStrAdd to add variable-length lines
where you do not want or need CR/LFs. CatStrAdd will simply concatenate unaltered
any string to the CatStr object's buffer. CatStrNext and CatStrNextLine are used to
retrieve the next n-characters or the next logical line from the buffer. (See
VBstrAPI.HLP for a more detailed description of all 10 CatStr Object
methods.)

So, the CatStr Object is a serial (or concatenation) object much like a serial file. It
has it's uses. I depend upon it, and so do my applications.

Problem #2: Buffering very large sets of strings

With all of it's advantages, CatStr is just not enough in some cases. In my work I
often need to collect large datasets and either analyze, graph, pattern-match or copy
them. I am sure all of us have used temporary disk files and databases to handle
large amounts of data. This, however, is seldom the fastest method available. I have

tried using humungous ram disks to solve some problems, and that often works for
me. Not so, however, for my customers and work mates.

Not everyone has the luxury of lots of RAM, either; but if you do, then how to use it
with VB, eh? As I mentioned earlier, I deal mostly with large datasets of fixed field
and row (record) sizes. Buffering this data using Snapshots and DynaSets has
proven, at best, inefficient and, at worst, impossible. So I created the ArrayStr Huge
String Array Object. Although the name infers that this is an array much like any that
VB creates, well, it is not.

The ArrayStr Object is designed to buffer as much data in memory as is possible.
This buffer needs to be serial in nature, much like CatStr is, but also must be like any
array: randomly accessible. So the ArrayStr Object has two personalities: Serial and
Random access.

For example:

SHandle% = CreateNewStringArray(10000, 1024) ' 10,000 rows of
 ' 1,023 characters

While .. there is data ..

RowBuffer$ = ... some data source ...
rc& = PutArrayNext(SHandle%, RowBuffer$)
DoEvents ' allow windows and other programs to enjoy the weather

WEnd

'
' now, we can do whatever with the buffered rows
'

' serial example:

ArrayStrSetCLP SHandle%, 0 ' reset the Current Line Pointer

For ii& = 0 to 9999

Print GetArrayNext(SHandle%)

Next

' Random access example:

Print GetArrayStr(SHandle%, 4321) ' the entry 4322 (zero-based array)

' insert a row
status% = InsertArrayStr(SHandle%, 5000, "Insert this in the middle.")

' delete a row
status% = DeleteArrayStr(SHandle%, 2145)

DestroyStringArray SHandle%

In the above example, you can see that the Huge ArrayStr object can handle very
large buffers and insert and delete rows in memory. I use this object often to buffer
a large number of rows and pipe them 32k at a time to TextBoxes or Grids. With a
little programming, you can give the impression to your application's user that almost

instant access is available to anywhere in the table or file.

I also use CatStr objects to buffer a block of ArrayStr lines so the user is offered a
number of rows to view while the ArrayStr object is still receiving rows.

(See VBstrAPI.HLP for more complete information on all 13 ArrayStr
methods.)

Summary

The point of this document is to give you an idea of what VBstrAPI.DLL can do for
you. Even if you decide that you don't need or want the library, perhaps the
discussion has given you a few ideas. Programming is not a particularly easy job,
and we need to help each other whenever we can.

Obviously, I hope you think the library is valuable. Please give it a try. The
Shareware distribution archive and library can be evaluated for 30 days with no
obligation. If you decide to buy, then you will receive a registered, royalty free
version of the library. No special keywords for the registered version are necessary.
By using a unique registration keyword, however, you will be able to self-register
updates and maintenance releases until a major version change.

And for a limited time, the library is only US$15.00. Not bad, when you think of it.
The library will be ready for distribution on or before February 20, 1995.

Other Visual Basic Libraries from the Author

VBossAPI.DLL

Have you ever needed to create a programming or script language to include in
your application? Maybe you wanted to parse text files or program files.
Perhaps you want to include numerical expressions and variables in a special
calculator or application.

Well, VBossAPI.DLL provides the tools you need to develop text parsers and
script languages. It's Token/Keyword parsing engine makes it easy to customize
your script or parser for other languages: French, German, English, Spanish ...
you name it.

It supports variables, data types, tokens and keywords, an expression evaluator
and comes with an example language application that shows you what the
parser is doing each step of the way.

Look for VBOS11.ZIP in the MS Basic forum on CompuServe. Use SWREG to
register.

Only US$19.95

VBdbcAPI.DLL

ODBC compliant applications written in Visual Basic (and other languages too)
that need to support multiple-parallel multi-tasking query execution have a
problem: ODBC needs a lot of stack space. Also, many ODBC calls require the

Visual Basic programmer to jump through C/C++ hoops to decode returned data.
And, there is no way to implement SQLBind() using Visual Basic without using a
library.

Well, here it is. This library is not just a wrapper for ODBC calls. Who needs 'just
another wrapper' any way? This library supplies it's own stack and variable
memory (where applicable) for VB. An almost unlimited number of query
activities can be running in parallel, thanks to VBdbcAPI.DLL's special stack
handling features.

Now many ODBC calls will return native Visual Basic strings to simplify your code
and improve debugging.

This library will not be released until March, 1995. As soon as the help
file and documentation are complete the distribution package will be
available on CompuServe first.

Expected price is: US$24.95

