
VB-ASM, Version 1.00
Copyright © 1994 SoftCircuits Programming

Redistributed by Permission.

SoftCircuits Programming
P.O. Box 16262

Irvine, CA 92713
CompuServe: 72134,263

Overview
VB-ASM is a DLL that was written to help Visual Basic programmers accomplish tasks that are either difficult, or
impossible to do in Visual Basic alone. VB-ASM was written entirely in assembly language making it highly
optimized. In addition, VB-ASM is free and you can use and distribute VB-ASM with your own programs as long as
you follow the conditions outlined below.

To use VB-ASM in your Visual Basic program, you should copy the VBASM.TXT file to one of the .BAS modules
in your project. This file contains the declarations for all of the VB-ASM subroutines. You must also place the DLL
itself where Windows can find it (normally in the Windows system directory). You can then call these routines as
you would call any other DLL routine. See the Visual Basic documentation for additional information about calling
DLL routines from Visual Basic.

WARNING: Visual Basic prevents you from making most errors that would adversely affect the system. When you
use this or any other DLL, Visual Basic can no longer prevent these types of errors. Under Windows protected
mode, most errors will result in a General Protection Fault (GPF). However, it is possible, using VB-ASM, to
corrupt Windows, DOS or even the files on your disk. Use caution when working with any DLL and be sure to save
and backup your files often.

This DLL was created to provide help to other Visual Basic programmers. If you find a problem or have a
suggestion for this program or the associated documentation, please share your knowledge and let us know.

Conditions for Distribution
This program may be used and distributed freely on the condition that it is distributed in full and unchanged, and
that no fee is charged for such use and distribution with the exception or reasonable media and shipping charges.

You may also incorporate any or all portions of this program, and/or include the VB-ASM DLL, as part of your own
programs and distribute such programs without payment of royalties on the condition that such program do not
duplicate the overall functionality of VB-ASM and/or any of its demo programs, and that you agree to the following
disclaimer:

WARNING: Accessing the low-level services of Windows, DOS and the ROM-BIOS using VB-ASM is an
extremely powerful technique that, if used incorrectly, can cause possible permanent damage and/or loss of data.
You are responsible for determining appropriate use of any and all files included in this package. SoftCircuits will
not be held liable for any damages resulting from the use of these files.

SOFTCIRCUITS SPECIFICALLY DISCLAIMS ALL WARRANTIES, INCLUDING, WITHOUT
LIMITATION, ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

UNDER NO CIRCUMSTANCES WILL SOFTCIRCUITS BE LIABLE FOR SPECIAL, INCIDENTAL,
CONSEQUENTIAL, INDIRECT, OR ANY OTHER DAMAGES OR CLAIMS ARISING FROM THE USE

VB-ASM DLL for Visual Basic

OF THIS PRODUCT, INCLUDING LOSS OF PROFITS OR ANY OTHER COMMERCIAL DAMAGES,
EVEN IF WE HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Please contact SoftCircuits Programming if you have any questions concerning these conditions.

Subroutine Reference
This section lists and describes all the subroutines contained within the VB-ASM DLL in alphabetical order.

vbGetCtrlModel
Declaration: Declare Function vbGetCtrlModel Lib "VBASM.DLL" (ByVal Ctrl As Long) As Long

Description: This function returns a long pointer to the MODEL structure of the Visual Basic form or control
specified by Ctrl. The MODEL structure is used internally by all Visual Basic controls and is
defined as follows:

Type MODEL
 usVersion As Integer 'VB version used by control
 fl As Long 'Bitfield structure
 pctlproc As Long 'The control proc.
 fsClassStyle As Integer 'Window class style
 flWndStyle As Long 'Default window style
 cbCtlExtra As Integer '# bytes alloc'd for HCTL structure
 idBmpPalette As Integer 'BITMAP id for tool palette
 npszDefCtlName As Integer 'Default control name prefix
 npszClassName As Integer 'Visual Basic class name
 npszParentClassName As Integer 'Parent window class if

'subclassed
 npproplist As Integer 'Property list
 npeventlist As Integer 'Event list
 nDefProp As String * 1 'Index of default property
 nDefEvent As String * 1 'Index of default event
 nValueProp As String * 1 'Index of control value property
 usCtlVersion As Integer 'Identifies the current version of

'the custom control. The values 1
End Type 'and 2 are reserved for custom

'controls created with VB 1.0
'and 2.0

See Also: vbRecreateCtrl

vbGetData
Declaration: Declare Sub vbGetData Lib "VBASM.DLL" (ByVal Pointer As Long, Variable As Any, ByVal

nCount As Integer)

Description: Copies the data from the memory location pointed to by Pointer to Variable. nCount specifies the
number of bytes to be copied. This function is useful when you need access to data not within your
program.

See Also: vbSetData

vbGetLongPtr
2

VB-ASM DLL for Visual Basic

Declaration: Declare Function vbGetLongPtr Lib "VBASM.DLL" (Variable As Any) As Long

Description: Returns a long value that contains the address of Variable. The high-order word contains the
segment portion and the low-order word contains the offset portion.

Note that the address returned for variable-length string variables is the address of Visual Basic's
string header and not the address of the actual string text. To get the address of the actual string
text, use vbSAdd and vbSSeg.

See Also: vbSAdd, vbSSeg, vbVarPtr, vbVarSeg

vbHiByte
Declaration: Declare Function vbHiByte Lib "VBASM.DLL" (ByVal nValue As Integer) As Integer

Description: Returns the high-order byte of the word specified by nValue.

See Also: vbHiWord, vbLoByte

vbHiWord
Declaration: Declare Function vbHiWord Lib "VBASM.DLL" (ByVal nValue As Long) As Integer

Description: Returns the high-order word of the long value specified by nValue.

See Also: vbHiByte, vbLoWord

vbInp
Declaration: Declare Function vbInp Lib "VBASM.DLL" (ByVal nPort As Integer) As Integer

Description: Reads a byte value from the I/O port specified by nPort.

Note that under Windows protected mode, some I/O ports may be in use by Windows and will not
be available to your application.

See Also: vbInptw, vbOut

vbInpw
Declaration: Declare Function vbInpw Lib "VBASM.DLL" (ByVal nPort As Integer) As Integer

Description: Reads a word value from the I/O port specified by nPort.

Note that under Windows protected mode, some I/O ports may be in use by Windows and will not
be available to your application.

See Also: vbInp, vbOutw

vbInterrupt
Declaration: Declare Sub vbInterrupt Lib "VBASM.DLL" (ByVal IntNum As Integer, InRegs As REGS,

OutRegs As REGS)

Description: Calls an interrupt (DS and ES are ignored). IntNum is the interrupt to be called. InRegs contains
the registers to be passed to the interrupt, and OutRegs contains the registers returned by the

3

VB-ASM DLL for Visual Basic

interrupt.

Type REGS
AX As Integer 'General-purpose registers
BX As Integer
CX As Integer
DX As Integer
BP As Integer
SI As Integer
DI As Integer
Flags As Integer 'Flags register
DS As Integer 'Segment registers
ES As Integer

End Type

Using the Flags member, the following flags can be specified (note that on return, Flags contains
all of the flags; however, only the following flags can be specified before the interrupt):

Global Const FLAGS_CARRY = &H1
Global Const FLAGS_PARITY = &H4
Global Const FLAGS_AUX = &H10
Global Const FLAGS_ZERO = &H40
Global Const FLAGS_SIGN = &H80

Note that under Windows protected mode, some DOS and BIOS interrupts that accept addresses
will be expecting real-mode addresses and may behave unexpectedly when called from Windows.

See Also: vbInterruptX, vbRealModeIntX

vbInterruptX
Declaration: Declare Sub vbInterruptX Lib "VBASM.DLL" (ByVal IntNum As Integer, InRegs As REGS,

OutRegs As REGS)

Description: Calls an interrupt (DS and ES are used). IntNum is the interrupt to be called. InRegs contains the
registers to be passed to the interrupt, and OutRegs contains the registers returned by the interrupt.

See the vbInterrupt routine for additional information.

See Also: vbInterrupt, vbRealModeIntX

vbLoByte
Declaration: Declare Function vbLoByte Lib "VBASM.DLL" (ByVal nValue As Integer) As Integer

Description: Returns the low-order byte of the word specified by nValue.

See Also: vbHiByte, vbLoWord

vbLoWord
Declaration: Declare Function vbLoWord Lib "VBASM.DLL" (ByVal nValue As Long) As Integer

Description: Returns the low-order word of the long value specified by nValue.

4

VB-ASM DLL for Visual Basic

See Also: vbHiWord, vbLoByte

vbMakeLong
Declaration: Declare Function vbMakeLong Lib "VBASM.DLL" (ByVal nLoWord As Integer, ByVal nHiWord

As Integer) As Long

Description: Combines two word values into a long integer value.

See Also: vbMakeWord

vbMakeWord
Declaration: Declare Function vbMakeWord Lib "VBASM.DLL" (ByVal nLoByte As Integer, ByVal nHiByte

As Integer) As Integer

Description: Combines two byte values into a word value.

See Also: vbMakeLong

vbOut
Declaration: Declare Sub vbOut Lib "VBASM.DLL" (ByVal nPort As Integer, ByVal nData As Integer)

Description: Sends a byte value to the I/O port specified by nData.

Note that under Windows protected mode, some I/O ports may be in use by Windows and will not
be available to your application.

See Also: vbInp, vbOutw

vbOutw
Declaration: Declare Sub vbOutw Lib "VBASM.DLL" (ByVal nPort As Integer, ByVal nData As Integer)

Description: Sends a word value to the I/O port specified by nData.

Note that under Windows protected mode, some I/O ports may be in use by Windows and will not
be available to your application.

See Also: vbInpw, vbOut

vbPeek
Declaration: Declare Function vbPeek Lib "VBASM.DLL" (ByVal nSegment As Integer, ByVal nOffset As

Integer) As Integer

Description: Returns the byte value at the memory location specified by nSegment and nOffset.

Due to the nature of Windows protected mode, nSegment must be &H0000, &H0040, &HA000,
&HB000, &HC000, &HD000, &HE000 or &HF000 or the call is ignored.

See Also: vbPeekw, vbPoke

5

VB-ASM DLL for Visual Basic

vbPeekw
Declaration: Declare Function vbPeekw Lib "VBASM.DLL" (ByVal nSegment As Integer, ByVal nOffset As

Integer) As Integer

Description: Returns the word value at the memory location specified by nSegment and nOffset.

Due to the nature of Windows protected mode, nSegment must be &H0000, &H0040, &HA000,
&HB000, &HC000, &HD000, &HE000 or &HF000 or the call is ignored.

See Also: vbPeek, vbPokew

vbPoke
Declaration: Declare Sub vbPoke Lib "VBASM.DLL" (ByVal nSegment As Integer, ByVal nOffset As Integer,

ByVal nValue As Integer)

Description: Writes the byte value specified by nValue to the memory location specified by nSegment and
nOffset.

Due to the nature of Windows protected mode, nSegment must be &H0000, &H0040, &HA000,
&HB000, &HC000, &HD000, &HE000 or &HF000 or the call is ignored.

See Also: vbPeek, vbPokew

vbPokew
Declaration: Declare Sub vbPokew Lib "VBASM.DLL" (ByVal nSegment As Integer, ByVal nOffset As

Integer, ByVal nValue As Integer)

Description: Writes the word value specified by nValue to the memory location specified by nSegment and
nOffset.

Due to the nature of Windows protected mode, nSegment must be &H0000, &H0040, &HA000,
&HB000, &HC000, &HD000, &HE000 or &HF000 or the call is ignored.

See Also: vbPeekw, vbPoke

vbRealModeIntX
Declaration: Declare Function vbRealModeIntX Lib "VBASM.DLL" (ByVal IntNum As Integer, InRegs As

REGS, OutRegs As REGS) As Integer

Description: Calls an interrupt (DS and ES are used). IntNum is the interrupt to be called. InRegs contains the
registers to be passed to the interrupt, and OutRegs contains the registers returned by the interrupt.
vbRealModeIntX returns True if successful, False otherwise. Note that a return value of True
indicates that this function was successful and not that the interrupt service being invoked was
successful.

This function is similar to the vbInterruptX procedure except that vbRealModeIntX switches the
processor to real-mode before invoking the interrupt. Normally, you will want to use vbInterrupt
or vbInterruptX. These two functions invoke interrupts under Windows protected mode.
Depending on the interrupt service being invoked, Windows may automatically perform the
equivalent of vbRealModeIntX by switching to real mode and re-issuing the interrupt. In other

6

VB-ASM DLL for Visual Basic

cases, Windows will even service the interrupt itself.

So, you might ask, if Windows either services the interrupt or passes it along to the real mode
interrupt handler, why would it ever be necessary to use vbRealModeIntX to invoke a real mode
handler directly? Let's say you want to invoke a DOS service that fills a buffer with information.
Many such services require you to pass the address of the buffer in registers. The problem is that
the address of a buffer within your Windows program will be a protected mode address. Moreover,
the physical location of that buffer will most likely be outside of the 1MB memory area available
to code running in real mode (i.e., a real mode interrupt handler). Clearly, if Windows passes such
an interrupt request to the real mode handler, there is very little chance that the data provided by
the interrupt would ever make it to your program's buffer.

Now in some cases, Windows will automatically allocate memory in real mode, copy your buffer
to this location, change the registers to point to the new buffer, invoke the real mode handler and,
finally, copy the results back to your buffer. Unfortunately, there are many services for which
Windows does not do this. For example, let's invoke the DOS TrueName service (interrupt &H21,
function &H60) which takes a partial path or filename and returns a normalized, fully qualified
filename. This is an undocumented service and so, not surprisingly, Windows provides no behind-
the-scenes translation for us. We must allocate real mode memory for the buffers and pass real
mode addresses in the registers. Fortunately, the Windows API functions GlobalDOSAlloc and
GlobalDOSFree allow us to do just that. But now that we are passing real mode addresses, we
must ensure that the service is never handled by a protected mode handler. Since a Windows driver
could be installed to service this interrupt, or maybe future versions of Windows will support it,
we need to use vbRealModeIntX so that we know it will always be sent to the real mode interrupt
handler.

The following code shows how we could implement a TrueName function. Note that this code is
provided as an example only. Since the service is not documented, it may very well not be
supported in future versions. Also note that statements that are too long to fit on a single line are
joined on separate lines by an underscore (_). In VB version 3.0 and earlier, you must delete the
underscore and combine the two lines.

Function TrueName (PartialPath As String) As String
 Dim FileNamePtr As Long, FullPathPtr As Long
 Dim i As Long, buffer As String, myRegs As REGS

 'Allocate input and output buffers in real-mode memory
 FileNamePtr = GlobalDOSAlloc(128)
 If FileNamePtr = 0 Then Exit Function
 FullPathPtr = GlobalDOSAlloc(128)
 If FullPathPtr = 0 Then
 i = GlobalDOSFree(vbLoWord(FileNamePtr))
 Exit Function
 End If

 'Copy Chr$(0)-terminated partial path to real-mode buffer
 Call vbSetData(vbMakeLong(0, vbLoWord(FileNamePtr)), _
 ByVal PartialPath, Len(PartialPath) + 1)

 'Set up interrupt registers
 myRegs.AX = &H6000
 myRegs.DS = vbHiWord(FileNamePtr)

7

VB-ASM DLL for Visual Basic

 myRegs.SI = 0
 myRegs.ES = vbHiWord(FullPathPtr)
 myRegs.DI = 0

 'Call DOS using DPMI real-mode interrupt
 If vbRealModeIntX(&H21, myRegs, myRegs) <> 0 Then
 If myRegs.Flags And FLAGS_CARRY Then
 TrueName = "" 'Bad input filename
 Else
 'Allocate room for the result
 buffer = Space$(128)
 'Copy result to buffer
 Call vbGetData(vbMakeLong(0, vbLoWord(FullPathPtr)), _
 ByVal buffer, Len(buffer))
 'Set return value
 TrueName = Left$(buffer, InStr(buffer, Chr$(0)) - 1)
 End If
 End If

 'Free allocated memory
 i = GlobalDOSFree(vbLoWord(FileNamePtr))
 i = GlobalDOSFree(vbLoWord(FullPathPtr))

End Function

See the vbInterrupt routine for additional information.

See Also: vbInterrupt, vbInterruptX

vbRecreateCtrl
Declaration: Declare Function vbRecreateCtrl Lib "VBASM.DLL" (ByVal Ctrl As Long) As Integer

Description: This function destroys the Visual Basic control specified by Ctrl and then recreates it. This is
useful when you need to specify attributes, for the window associated with a control, that cannot
normally be modified once the window has been created.

If successful, this function returns True. False is returned if the control could not be destroyed and
recreated. Note: This function should not be used for container controls.

In the process of destroying and recreating the control, this function saves and restores both font
information and standard properties stored only in the window and which would otherwise be
erased when the window is destroyed (this includes the Enabled, TabIndex, TabStop, and Visible
properties).

One use for this function is to set window style bits. Windows stores a number of style bits that
specify the appearance and behavior of the window associated with each form and control. You
should use the SetWindowWord() API function to change those style bits that cannot be modified
through properties. However, there are several bits that are ignored if they are set after the window
has been created. These bits must instead be specified when the window is created. Visual Basic
handles creating all windows automatically and does not allow you to specify style bits used to
create the window. The vbRecreateCtrl function allows you to change the style bits associated
with a form or control and then destroy the window and recreate it.

8

VB-ASM DLL for Visual Basic

See Also: vbGetCtrlModel

vbSAdd
Declaration: Declare Function vbSAdd Lib "VBASM.DLL" (Variable As String) As Integer

Description: Returns the offset address of the string text of a variable-length string variable.

See Also: vbSSeg, vbVarPtr, vbGetLongPtr

vbSetData
Declaration: Declare Sub vbSetData Lib "VBASM.DLL" (ByVal Pointer As Long, Variable As Any, ByVal

nCount As Integer)

Description: Copies data from Variable to the memory location pointed to by Pointer. nCount specifies the
number of bytes to be copied. This function is useful if you need access to data not within your
program.

See Also: vbGetData

vbShiftLeft
Declaration: Declare Function vbShiftLeft Lib "VBASM.DLL" (ByVal nValue As Integer, ByVal nBits As

Integer) As Integer

Description: Shifts the bits of nValue to the right. nBits specifies how many bit positions each bit is shifted. For
example, vbShiftLeft(&H1,1) returns &H2, vbShiftLeft(&H1,4) returns &H10, etc.

See Also: vbShiftLeft

vbShiftRight
Declaration: Declare Function vbShiftRight Lib "VBASM.DLL" (ByVal nValue As Integer, ByVal nBits As

Integer) As Integer

Description: Shifts the bits of nValue to the right. nBits specifies how many bit positions each bit is shifted. For
example, vbShiftRight(&H10,1) returns &H8, vbShiftRight(&H10,4) returns &H1, etc.

See Also: vbShiftLeft

vbSSeg
Declaration: Declare Function vbSSeg Lib "VBASM.DLL" (Variable As String) As Integer

Description: Returns the segment address of the string text of a variable-length string variable.

See Also: vbSAdd, vbVarSeg, vbGetLongPtr

vbVarPtr
Declaration: Declare Function vbVarPtr Lib "VBASM.DLL" (Variable As Any) As Integer

Description: Returns the offset portion of Variable's address.

9

VB-ASM DLL for Visual Basic

Note that the address returned for variable-length string variables is the address of Visual Basic's
string header and not the address of the actual string text. To get the address of the actual string
text, use vbSAdd and vbSSeg.

See Also: vbSAdd, vbVarSeg, vbGetLongPtr

vbVarSeg
Declaration: Declare Function vbVarSeg Lib "VBASM.DLL" (Variable As Any) As Integer

Description: Returns the segment portion of Variable's address.

Note that the address returned for variable-length string variables is the address of Visual Basic's
string header and not the address of the actual string text. To get the address of the actual string
text, use vbSAdd and vbSSeg.

See Also: vbSSeg, vbVarPtr, vbGetLongPtr

Revision History:
This section documents the changes and additions made to VB-ASM. Revisions are listed with the most recent
version first.

Version: Modification(s):
1.00 Original version.

10

