
Contents
Overview

Constants and Types declaration
All Functions and Subs
Returned Errors

Revision History
New Features

Installation
Technical Support
Registering 'TIME TO WIN'
License Agreement
Distribution Note

Acknowledgement

@Blank
Purpose :

Declare Syntax :

Call Syntax :

Where :

Comments :

Examples :

See also :

AddD
Purpose :

AddD adds a constant value to all of the elements of a Double array.

Declare Syntax :

Declare Function cAddD Lib "time2win.dll" (array() As Double, ByVal nValue As Double) As Integer

Call Syntax :

status = cAddD(array(), nValue)

Where :

array() is the Double array.
nValue is the value to add (if positive) or to substract (if negative) to all of the elements of the Double array.

Comments :

See Also : cAddD, cAddI, cAddL, cAddS, Array routines

AddI
Purpose :

AddI adds a constant value to all of the elements of an Integer array.

Declare Syntax :

Declare Function cAddI Lib "time2win.dll" (array() As Integer, ByVal nValue As Integer) As Integer

Call Syntax :

status = cAddI(array(), value)

Where :

array() is the Integer array.
nValue is the value to add (if positive) or to substract (if negative) to all of the elements of the Integer array.

Comments :

See Also : cAddD, cAddI, cAddL, cAddS, Array routines

AddL
Purpose :

AddL adds a constant value to all of the elements of a Long array.

Declare Syntax :

Declare Function cAddL Lib "time2win.dll" (array() As Long, ByVal nValue As Long) As Integer

Call Syntax :

status = cAddL(array(), value)

Where :

array() is the Long array.
nValue is the value to add (if positive) or to substract (if negative) to all of the elements of the Long array.

Comments :

See Also : cAddD, cAddI, cAddL, cAddS, Array routines

AddS
Purpose :

AddS adds a constant value to all of the elements of a Single array.

Declare Syntax :

Declare Function cAddS Lib "time2win.dll" (array() As Single, ByVal nValue As Single) As Integer

Call Syntax :

status = cAddS(array(), value)

Where :

array() is the Single array.
nValue is the value to add (if positive) or to substract (if negative) to all of the elements of the Single array.

Comments :

See Also : cAddD, cAddI, cAddL, cAddS, Array routines

AddTime
Purpose :

AddTime retrieves only the part for hours on one day.

Declare Syntax :

Declare Function cAddTime Lib "time2win.dll" (ByVal Hr As Integer) As Integer

Call Syntax :

test = cAddTime(Hr)

Where :

Hr is the total minutes
test is the result value.

Comments :

Examples :

test = cAddTime(1439+2)
-> test = 1

test = cAddTime(2-4)
-> test = 1438

See also : Date, Hour and Time routines

AllSubDirectories
Purpose :

AllSubDirectories retrieves all sub-directories from a specified directory (root or sub-directory)

Declare Syntax :

Declare Function CallSubDirectories Lib "time2win.dll" (ByVal lpBaseDirectory As String, nDir As Integer) As String

Call Syntax :

test$ = AllSubDirectories(lpBaseDirectory, nDir)

Where :

lpBaseDirectory$ is the specified directory
nDir% < 0 if an error has occured,

> 0 the number of directories founded
test$ return the directories in one string. Each directory is separated by a CR.

Comments :

Don't forget that this function can handle a maximum of 700 directories of 70 chars long each.
The returned string is always automatically sorted in ascending order.

The returned value in 'nDir' can be negative and have the following value :

-32760 allocation error for memory buffer 1.
-32761 allocation error for memory buffer 2.

Examples :

test = CallSubDirectories("C:",nDir)

See also : cSubDirectory

ArabicToRoman
Purpose :

ArabicToRoman converts an integer or a long integer into Roman representation

Declare Syntax :

Declare Function cArabicToRoman Lib "time2win.dll" (Var As Variant) As String

Call Syntax :

test = cArabicToRoman(var)

Where :

var is the integer or long integer value
test returns the Roman representation of var

Comments :

The string returned by this function is always in lowercase

Examples :

test = cArabicToRoman(1994)
test -> MCMXCIV

test = cArabicToRoman(1995)
test -> MCMXCV

test = cArabicToRoman(1993)
test -> MCMXCIII

ArrayPrm
Purpose :

ArrayPrm retrieves the definition of a gived array (only one dimension and for numeric array)

Declare Syntax :

Declare Function cArrayPrm Lib "time2win.dll" (array() As Any, nArray As Any) As Integer

Call Syntax :

status% = cArrayPrm(array(), nArray)

Where :

array() the array to proceed
nArray a type variable 'ArrayType' for receiving the definition
status% always TRUE

Comments :

The definition of an array is gived by the following parameters :
Bounds is the far address of the array in memory.
LBound is the smallest available subscript for the first dimension of the array.
UBound is the highest available subscript for the first dimension of the array.
ElemSize is the size of the element of the array
IndexCount is the number of dimension of the array.
TotalElem is the number of element in the array (UBound - LBound + 1) in the first dimension.

Examples :

Dim array(1 To 16) As Integer
Dim arrayDef as ArrayType
status% = cArrayPrm(array(), arrayDef)

array1.Bounds is 1048577
array1.LBound is 1
array1.UBound is 16
array1.ElemSize is 2 (INTEGER)
array1.IndexCount is 1
array1.TotalElem is 16

Dim array(-7 To 25) As Double
Dim arrayDef as ArrayType
status% = cArrayPrm(array(), arrayDef)

array1.Bounds is 1703929
array1.LBound is -7
array1.UBound is 25
array1.ElemSize is 8 (DOUBLE)
array1.IndexCount is 1
array1.TotalElem is 33

Dim array(-10 To 10, 1 TO 7) As Long
Dim arrayDef as ArrayType
status% = cArrayPrm(array(), arrayDef)

array1.Bounds is 458753
array1.LBound is 1
array1.UBound is 7
array1.ElemSize is 4 (SINGLE)
array1.IndexCount is 2
array1.TotalElem is 7

See also : Constants and Types declaration

Between
Purpose :

Between checks to see if a value is between two other values.

Declare Syntax :

Declare Function cBetween Lib "time2win.dll" (Var As Variant, Var1 As Variant, Var2 As Variant) As Integer

Call Syntax :

test = cBetween(var, var1, var2)

Where :

var value to test
var1 first value
var2 second value
test TRUE if var is between var1 and var2

FALSE if var is not between var1 and var2

Comments :

var, var1, var2 are Variant value. In this routine, only Integer, Long, Single, Double are supported.

Examples :

var = 5
var1 = 1
var2 = 10
test = cBetween(var, var1, var2)

-> test = TRUE

var = 10
test = cBetween(var, var1, var2)

-> test = TRUE

See Also : cTrueBetween

BlockCharFromLeft
Purpose :

BlockCharFromLeft reads n chars from the left of a string.

Declare Syntax :

Declare Function cBlockCharFromLeft Lib "time2win.dll" (Txt As String, ByVal Position As Integer) As String

Call Syntax :

Test = cBlockCharFromLeft(Txt, Position)

Where :

Txt the string to extract some left chars
Position the number of chars to read
Test the result

Comments :

This fonction is the same that Left$(Txt, Position) but doesn't generate an Error if a problem occurs.

Examples :

Txt = "ABCDEF"
Position = 3
Test = cBlockCharFromLeft(Txt, Position)

Test = "ABC"

See also : cBlockCharFromLeft, cBlockCharFromRight, cOneCharFromLeft, cOneCharFromRight

BlockCharFromRight
Purpose :

BlockCharFromRight reads n chars from the right of a string.

Declare Syntax :

Declare Function cBlockCharFromRight Lib "time2win.dll" (Txt As String, ByVal Position As Integer) As String

Call Syntax :

Test = cBlockCharFromRight(Txt, Position)

Where :

Txt the string to extract some right chars
Position the number of chars to read
Test the result

Comments :

This fonction is the same that Right$(Txt, Position) but doesn't generate an Error if a problem occurs.

Examples :

Txt = "ABCDEF"
Position = 3
Test = cBlockCharFromRight(Txt, Position)

Test = "DEF"

See also : cBlockCharFromLeft, cBlockCharFromRight, cOneCharFromLeft, cOneCharFromRight

ChDir
Purpose :

ChDir changes the directory.

Declare Syntax :

Declare Function cChDir Lib "time2win.dll" (ByVal lpDir As String) As Integer

Call Syntax :

status = cChDir(lpDir)

Where :

lpDir is the new directory
status TRUE is all is OK

<> TRUE is an error occurs

Comments :

This fonction is the same that ChDir but doesn't generate an VB Error if a problem occurs.

See also : cChDrive

ChDrive
Purpose :

ChDir changes the drive.

Declare Syntax :

Declare Function cChDrive Lib "time2win.dll" (ByVal lpDrive As String) As Integer

Call Syntax :

status = cChDrive(lpDrive)

Where :

lpDrive is the new drive
status TRUE is all is OK

<> TRUE is an error occurs

Comments :

This fonction is the same that ChDrive but doesn't generate an Error if a problem occurs.

See also : cChDir

CheckChars
Purpose :

CheckChars verifies that all chars specifien are present in a string.

Declare Syntax :

Declare Function cCheckChars Lib "time2win.dll" (Txt As String, charSet As String) As Integer

Call Syntax :

status = cCheckChars(Txt, charSet)

Where :

Txt the string to proceed
charSet the chars to be verified
status TRUE if all chars specifien in charSet are present in Txt

FALSE if all chars specifien in charSet are not present in Txt

Comments :

Examples :

Txt = "ABCDEFG"
charSet = "CAD"
status = cCheckChars(Txt, charSet)

status = TRUE

Txt = "ABCDEFG"
charSet = "CADZ"
status = cCheckChars(Txt, charSet)

status = FALSE

FilterX
Purpose :

FilterBlocks removes one or more sub-string separated by two delimitors in a gived string.
FilterChars removes some chars specifien in a gived string.
FilterFirstChars removes some chars beginning at first position of a gived string.
FilterNotChars removes all chars except speficien chars in a gived string.

Declare Syntax :

Declare Function cFilterBlocks Lib "time2win.dll" (Txt As String, Delimitor As String) As String
Declare Function cFilterChars Lib "time2win.dll" (Txt As String, charSet As String) As String
Declare Function cFilterFirstChars Lib "time2win.dll" (Txt As String, charSet As String) As String
Declare Function cFilterNotChars Lib "time2win.dll" (Txt As String, charSet As String) As String

Call Syntax :

test = cFilterBlocks(Txt, Delimitor)
test = cFilterChars(Txt, charSet)
test = cFilterFirstChars(Txt, charSet)
test = cFilterNotChars(Txt, charSet)

Where :

Txt the string to proceed
Delimitortwo chars for filter the string
charSet the chars for filter the string
test the result

Comments :

Examples :

Txt = "A/BC/DEF/GHIJ" Txt = "A/BC/DEF/GHIJ"
Delimitor = "//" Delimitor = "BI"
test = cFilterBlocks(Txt, Delimitor) test = cFilterBlocks(Txt, Delimitor)

test = "ADEF" test = "A/J"

Txt = "A/BC/DEF/GHIJ" Txt = "A/BC/DEF/GHIJ"
charSet = "B/" charSet = "AF/"
test = cFilterChars(Txt, charSet) test = cFilterChars(Txt, charSet)

test = "ACDEFGHIJ" test = "BCDEGHIJ"

Txt = "A/BC/DEF/GHIJ" Txt = "A/BC/DEF/GHIJ"
charSet = A/" charSet = "A/BC/"
test = cFilterFirstChars(Txt, charSet) test = cFilterFirstChars(Txt, charSet)

test = "BC/DEF/GHIJ" test = "DEF/GHIJ"

Txt = "A/BC/DEF/GHIJ" Txt = "A/BC/DEF/GHIJ"
charSet = "B/" charSet = "AF/"
test = cFilterNotChars(Txt, charSet) test = cFilterNotChars(Txt, charSet)

test = "/B//" test = "A//F/"

SaveCtlLanguage, ReadCtlLanguage
Purpose :

SaveCtlLanguage creates or updates a file which contains the text for supporting a language.
ReadCtlLanguage reads a file which contains the text for supporting a language.

Declare Syntax :

Declare Function cSaveCtlLanguage Lib "time2win.dll" (Ctl As Control, ByVal Property As Integer, ByVal
FileLanguage As String) As Integer
Declare Function cReadCtlLanguage Lib "time2win.dll" (Ctl As Control, ByVal Property As Integer, ByVal
FileLanguage As String) As Integer

Call Syntax :

test% = cSaveCtlLanguage(Ctl, Property, FileLanguage)
test% = cReadCtlLanguage(Ctl, Property, FileLanguage)

Where :

Ctl is any control on the form to use the text language.
Property is an association of constants (RS_CAPTION, RS_TEXT, RS_DATAFIELD,
RS_DATASOURCE)
FileLangue is the file name to perform the language management.
test% TRUE if all is ok

FALSE is an error has occured

Comments :

These functions are very, VERY simple to use and your application can support multi-language very fast.

If a problem occurs when accessing the controls or if the filename is an EMPTY string, the returned value is FALSE.
These fonctions doesn't test the validity of the file name.

Ctl can be any control on the form (also Label1).

Property can be RS_CAPTION to use only controls did have a .Caption property.
can be RS_TEXT to use only controls did have a .Text property.
can be RS_DATAFIELD to use only controls did have a .DataField property.
can be RS_DATASOURCE to use only controls did have a .DataSource property.
can be any 'OR' association of the four following constants (RS_CAPTION or RS_TEXT or RS_DATAFIELD

or RS_DATASOURCE)

If you use of RS_DATAFIELD and/or RS_DATASOURCE, you don't need to set the .DataField and/or .DataSource in
the Properties Window is design mode. This is can be useful and is not memory hungry, and the EXE size of your
application is minder.

FileLanguage is the name of the file to use to store or retrieve the Property. After the first saving, you translate the file
(with NOTEPAD, b.e.) into an another language and save it to an other name. You can use the extension als
follows .T?? with ?? is FR (for FRench), UK (for United Kingdom, GE (for GErmany), IT (for ITaly), SP (for SPain),

Examples :

test% = cSaveCtlLanguage(Command1, RS_CAPTION or RS_TEXT, "D:\TIME2WIN\DEMO\TIME2WIN.TUK")
translate it to French and save it in the file "D:\TIME2WIN\DEMO\TIME2WIN.TFR"

test% = cReadCtlLanguage(Command1, RS_CAPTION or RS_TEXT, "D:\TIME2WIN\DEMO\TIME2WIN.TFR")

See also : Constants and Types declaration

CheckNumericity
See cIsDigit

FileCompressTab, FileExpandTab
Purpose :

FileCompressTab compress a number of spaces specified into a TAB char (horizontal tab).
FileExpandTab expands a TAB char (horizontal tab) into a number of spaces.

Declare Syntax :

Declare Function cFileCompressTab Lib "time2win.dll" (ByVal file1 As String, ByVal file2 As String, ByVal nTab As
Integer) As Long
Declare Function cFileExpandTab Lib "time2win.dll" (ByVal file1 As String, ByVal file2 As String, ByVal nTab As
Integer) As Long

Call Syntax :

test& = cFileCompressTab(file1, file2, nTab)
test& = cFileExpandTab(file1, file2, nTab)

Where :

file1$ is the source file.
file2$ is the destination file.
nTab% is the number of spaces corresponding to a TAB char (horizontal tab).
test& > 0 if all is OK (the returned value is the total bytes copied),

< 0 if an error has occured.

Comments :

The number of spaces to compress/expand a TAB must be 2 minimum.

Beware of the fact, that if the original file you want to compress spaces contains embedded TAB char, the expanded
file is bigger than the original file.

The returned value can be negative and have the following value :

-1 number of spaces is below 2.
-2 overflow error in the expanding buffer for FileExpandTab.
-32720 the number of chars in a block for writing differs from the number of chars for reading.
-32730 reading error for file 1.
-32740 writing error for file 2.
-32750 opening error for file 1.
-32751 opening error for file 2.
-32760 allocation error for memory buffer 1.
-32761 allocation error for memory buffer 2.

Examples :

test& = cFileCompressTab("c:\autoexec.bat", "c:\autoexec.tb1", 3)
test& = cFileExpandTab("c:\autoexec.tb1", "c:\autoexec.tb2", 3)

See also :

CheckTime
Purpose :

CheckTime verifies if an hour (in minutes) is between two others hours (in minutes)

Declare Syntax :

Declare Function cCheckTime Lib "time2win.dll" (ByVal Hr As Integer, ByVal Hr1 As Integer, ByVal Hr2 As Integer) As
Integer

Call Syntax :

test = cCheckTime(Hr, Hr1, Hr2)

Where :

Hr the hour (in minutes) to test
Hr1 the first hour
Hr2 the second value
test TRUE if Hr is between Hr1 and Hr2

Comments :

Examples :

Hr = 1439 (23:59)
Hr1 = 1400 (23:20)
Hr2 = 10 (00:10)
test = cCheckTime(Hr, Hr1, Hr2)

-> test = TRUE

Hr = 120 (02:00)
test = cCheckTime(Hr, Hr1, Hr2)

-> test = FALSE

See also : cBetween, cTrueBetween, Date, Hour and Time routines

FileLastX
Purpose :

These routines read the date/time for a specified file.

Declare Syntax :

Declare Function cFileDateCreated Lib "time2win.dll" (ByVal lpFilename As String) As String
Declare Function cFileLastDateAccess Lib "time2win.dll" (ByVal lpFilename As String) As String
Declare Function cFileLastDateModified Lib "time2win.dll" (ByVal lpFilename As String) As String
Declare Function cFileTimeCreated Lib "time2win.dll" (ByVal lpFilename As String) As String
Declare Function cFileLastTimeAccess Lib "time2win.dll" (ByVal lpFilename As String) As String
Declare Function cFileLastTimeModified Lib "time2win.dll" (ByVal lpFilename As String) As String

Call Syntax :

test = cFileDateCreated(lpFilename)
test = cFileLastDateAccess(lpFilename)
test = cFileLastDateModified(lpFilename)
test = cFileTimeCreated(lpFilename)
test = cFileLastTimeAccess(lpFilename)
test = cFileLastTimeModifed(lpFilename)

Where :

lpFileName the file to read date and/or time
test HH:MM for time

DD/MM/YYYY for date

Comments :

The created, access, modified time/date are the same. The different routines are present for future version of
Windows.

Compact
Purpose :

Compact compacts a string composed of numeric chars.

Declare Syntax :

Declare Function cCompact Lib "time2win.dll" (Txt As String) As String

Call Syntax :

test = cCompact(Txt)

Where :

Txt is the string (only numeric chars) to compact
test returns the string compacted

Comments :

If the size of the string is not a multiple of 2, the size used is the nearest below multiple of 2.

Examples :

Txt = "39383736353433323130"
test = cCompact(Txt)

test = "9876543210"

See also : cUncompact

Compress
Purpose :

Compress removes all chr$(0):ASCII NULL, chr$(9):TAB, chr$(32):SPACE from a string

Declare Syntax :

Declare Function cCompress Lib "time2win.dll" (Txt As String) As String

Call Syntax :

test = cCompress(Txt)

Where :

Txt the string to proceed
test the string returned without any chr$(0), chr$(9), chr$(32)

Comments :

See also : cCompressTab, cExpandTab

CompressTab
Purpose :

CompressTab packs all n space chars into a tab char.

Declare Syntax :

Declare Function cCompressTab Lib "time2win.dll" (Txt As String, ByVal nTab As Integer) As String

Call Syntax :

test = cCompressTab(Txt, nTab)

Where :

Txt the string to proceed
nTab the number of space chars to replace by a tab char
test the result

Comments :

Examples :

Txt = "A" + space$(2) + "B" + space$(3) + "C" + space$(4) + "D"
nTab = 2
test = cCompressTab(Txt, nTab)

test = "A" + chr$(9) + "B" + chr$(9) + space$(1) + "C" + char$(9) + chr$(9) + "D"

See also : cCompress, cExpandTab

Count
Purpose :

Count counts the number of a specified char in a string.

Declare Syntax :

Declare Function cCount Lib "time2win.dll" (Txt As String, Separator As String) As Integer

Call Syntax :

test = cCount(Txt, Separator)

Where :

Txt the string to proceed
Separator the char to be counted
test the total number of Separator in the string

Comments :

Examples :

Txt = "A/BC/DEF/G"
Separator = "/"
test = cCount(Txt, Separator)

test = 3

CountDirectories
Purpose :

CountDirectories counts the total directory in a specified directory.

Declare Syntax :

Declare Function cCountDirectories Lib "time2win.dll" (ByVal lpFilename As String) As Integer

Call Syntax :

test = cCountDirectories(lpFilename)

Where :

lpFilename the directory (root or sub-dir)
test the number of sub-dir founded in the specified directory

Comments :

See also : cCountFiles

CountFiles
Purpose :

CountFiles counts the total files founded in a specified directory.

Declare Syntax :

Declare Function cCountFiles Lib "time2win.dll" (ByVal lpFilename As String) As Integer

Call Syntax :

test = cCountFiles(lpFilename)

Where :

lpFilename the directory (root or sub-dir)
test the number of files in the specified directory

Comments :

See also : cCountDirectories

CreateAndFill
Purpose :

CreateAndFill creates a string with the specified size and fill it with some chars.

Declare Syntax :

Declare Function cCreateAndFill Lib "time2win.dll" (ByVal Length As Integer, Txt As String) As String

Call Syntax :

test = cCreateAndFill(Length, Txt)

Where :

Length the length of the result string
Txt the chars to fill in the result string
test the result

Comments :

Examples :

Length = 14
Txt = "aBc"
test = cCreateAndFill(Length, Txt)

test = "aBcaBcaBcaBcaB"

See also : cFill

CreateBits
Purpose :

CreateBits creates a string which containes how many bits specified by a number.

Declare Syntax :

Declare Function cCreateBits Lib "time2win.dll" (ByVal nBits As Integer) As String

Call Syntax :

test = cCreateBits(nBits)

Where :

nBits number of bits wished
test the result

Comments :

Examples :

nBits = 10
test = cCreateBits(nBits)

test will be a size of 2 chars

See also : Bit String Manipulation routines

CurrentTime
Purpose :

CurrentTime returns the minutes elapsed since midnight.

Declare Syntax :

Declare Function cCurrentTime Lib "time2win.dll" () As Integer

Call Syntax :

test% = cCurrentTime()

Where :

test% the minutes

Comments :

Examples :

test% = cCurrentTime() -> 1234

MKx
Purpose :

MKB, MKC, MKD, MKI, MKL, and MKS return a string containing the IEEE representation of a number. Six separate
functions are provided, with one each intended for BYTE, CURRENCY, DOUBLE, INTEGER, LONG, SINGLE.

MKN return a string containing the IEEE representation of a big double number. The big double is not a part of the
standard variable type of VB.

Declare Syntax :

Declare Function cMKB Lib "time2win.dll" (ByVal Value As Integer) As String
Declare Function cMKC Lib "time2win.dll" (ByVal Value As Currency) As String
Declare Function cMKD Lib "time2win.dll" (ByVal Value As Double) As String
Declare Function cMKI Lib "time2win.dll" (ByVal Value As Integer) As String
Declare Function cMKL Lib "time2win.dll" (ByVal Value As Long) As String
Declare Function cMKS Lib "time2win.dll" (ByVal Value As Single) As String

Declare Function cMKN Lib "time2win.dll" (ByVal Value As String) As String

Call Syntax :

Nm$ = cMKB(Value%)
Nm$ = cMKC(Value@)
Nm$ = cMKD(Value#)
Nm$ = cMKI(ValueM)
Nm$ = cMKL(Value&)
Nm$ = cMKS(Value!)

Nm$ = cMKN(Value$)

Where :

Nm$ receives the IEEE representation of Value?.

Comments :

For cMKN :

Arithmetics operations on big double value must be use the function defined in cBig.x.
To convert a standard value to a big double value, you must pass the string representation of the value.
The string representation of the value must be founded by using STR$ not FORMAT$. In fact, the FORMAT$
convert the decimal separator into the separator defined in the Control Panel (Number format). The STR$ doesn't
change the decimal separator.
The length of the string representation of a big double is always 10 chars.

See also : cCVB, cCVC, cCVD, cCVI, cCVL, cCVS, cBig.x.

DaysInMonth
Purpose :

DaysInMonth returns the total days in a month.

Declare Syntax :

Declare Function cDaysInMonth Lib "time2win.dll" (ByVal nYear As Integer, ByVal nMonth As Integer) As Integer

Call Syntax :

test = cDaysInMonth(nYear, nMonth)

Where :

nYear is the year with the century
nMonth is the month

Comments :

Examples :

nYear = 1994
nMonth = 12
test = cDaysInMonth(nYear, nMonth)

test = 31

nYear = 1995
nMonth = 2
test = cDaysInMonth(nYear, nMonth)

test = 28

Decrypt
Purpose :

Decrypt decodes a string encoded with Encrypt function.

Declare Syntax :

Declare Function cDecrypt Lib "time2win.dll" (Txt As String, password As String, ByVal level As Integer) As String

Call Syntax :

test = cDecrypt(Txt, password, level)

Where :

Txt is the string to decrypt
password is the key to use for decryption
level level of the encryption
test is the string decrypted

Comments :

The password/key is case sensitive.
The level is a number between 0 and 3 (Constants and Types declaration).
You must use the same level for encrypt/decrypt a gived string.

Examples :

Txt = "Under the blue sky, the sun is yellow"
password = "a new encryption"
level = ENCRYPT_LEVEL_3
test = cEncrypt(Txt, password, level)

txt = cDecrypt(test, password, level)

See also : cEncrypt

DeviationD
Purpose :

DeviationD will calculate the standard deviation from all elements in a Double array.

Declare Syntax :

Declare Function cDeviationD Lib "time2win.dll" (array() As Double) As Double

Call Syntax :

deviation = cDeviationD(array())

Where :

array() is the Double array.
deviation is the standard deviation calculated. This value is always a Double value.

Comments :

See Also : cDeviationD, cDeviationI, cDeviationL, cDeviationS, Array routines

DeviationI
Purpose :

DeviationI will calculate the standard deviation from all elements in an Integer array.

Declare Syntax :

Declare Function cDeviationI Lib "time2win.dll" (array() As Integer) As Double

Call Syntax :

deviation = cDeviationI(array())

Where :

array() is the Integer array.
deviation is the standard deviation calculated. This value is always a Double value.

Comments :

See Also : cDeviationD, cDeviationI, cDeviationL, cDeviationS, Array routines

DeviationL
Purpose :

DeviationL will calculare the standard deviation from all elements in a Long array.

Declare Syntax :

Declare Function cDeviationL Lib "time2win.dll" (array() As Long) As Double

Call Syntax :

deviation = cDeviationL(array())

Where :

array() is the Long array.
deviation is the standard deviation calculated. This value is always a Double value.

Comments :

See Also : cDeviationD, cDeviationI, cDeviationL, cDeviationS, Array routines

DeviationS
Purpose :

DeviationS will calculare the standard deviation from all elements in a Single array.

Declare Syntax :

Declare Function cDeviationS Lib "time2win.dll" (array() As Single) As Double

Call Syntax :

deviation = cDeviationS(array())

Where :

array() is the Single array.
deviation is the standard deviation calculated. This value is always a Double value.

Comments :

See Also : cDeviationD, cDeviationI, cDeviationL, cDeviationS, Array routines

Encrypt
Purpose :

Encrypt encodes a string with a password/key.

Declare Syntax :

Declare Function cEncrypt Lib "time2win.dll" (Txt As String, password As String, ByVal level As Integer) As String

Call Syntax :

test = cEncrypt(Txt, password, level)

Where :

Txt is the string to encrypt
password is the key to use for encryption
level level of the encryption
test is the string decrypted

Comments :

The password/key is case sensitive.
The level is a number between 0 and 3 (Constants and Types declaration).
Higher is the level, better is the encryption
You must use the same level for encrypt/decrypt a gived string.

Examples :

Txt = "Under the blue sky, the sun is yellow"
password = "a new encryption"
level = ENCRYPT_LEVEL_3
test = cEncrypt(Txt, password, level)

txt = cDecrypt(test, password, level)

See also : cDecrypt

ExitWindowsAndExecute, RebootSystem,
RestartWindows
Purpose :

ExitWindowsAndExecute terminates Windows, runs a specified MS-DOS application, and then restarts Windows.
RebootSystem reboots your system.
RestartWindows restarts your Windows.

Declare Syntax :

Declare Function cExitWindowsAndExecute Lib "time2win.dll" (ByVal lpszExe As String, ByVal lpszParams As String)
As Integer
Declare Function cRebootSystem Lib "time2win.dll" () As Integer
Declare Function cRestartWindows Lib "time2win.dll" () As Integer

Call Syntax :

test% = cExitWindowsAndExecute(lpszExe, lpszParams)
test% = cRebootSystem()
test% = cRestartWindows()

Where :

lpszExe is the program to launch after exiting Windows.
lpszParams are the associated parameter to pass to the program.
test% = 0 if one or more applications refuse to terminate.

Comments :

The ExitWindowsAndExecute function is typiCally used by installation programs to replace components of Windows
which are active when Windows is running.

Examples :

test% = cExitWindowsAndExecute("MENU.EXE", "/Z/V/C")
test% = cRebootSystem()
test% = cRestartWindows()

ExpandTab
Purpose :

ExpandTab unpacks all tab chars into n space chars.

Declare Syntax :

Declare Function cExpandTab Lib "time2win.dll" (Txt As String, ByVal nTab As Integer) As String

Call Syntax :

test = cExpandTab(Txt, nTab)

Where :

Txt the string to proceed
nTab the number of space chars which replace a tab char
test the result

Comments :

Examples :

Txt = test = "A" + chr$(9) + "B" + chr$(9) + space$(1) + "C" + char$(9) + chr$(9) + "D"
nTab = 2
test = cExpandTab(Txt, nTab)

test = "A" + space$(2) + "B" + space$(3) + "C" + space$(4) + "D"

See also : cCompress, cCompressTab

FileCRC32
Purpose :

FileCRC32 calculates a 32 bits CRC for a gived file.

Declare Syntax :

Declare Function cFileCRC32 Lib "time2win.dll" (ByVal lpFilename As String, ByVal mode As Integer) As Long

Call Syntax :

test = cFileCRC32(lpFilename, mode)

Where :

lpFilename the file to proceed
mode OPEN_MODE_BINARY (calculates the CRC on the full length of the file)

OPEN_MODE_TEXT (calculates the CRC until a EOF is encountered)
test the calculated CRC 32 bits in a LONG.

Comments :

The returned value can be negative and have only a value :

-1 If the filename is not a good filename or if the filename not exist or if an error occurs when
accessing the filename.

Examples :

test = cFileCRC32("C:\COMMAND.COM") &h1131ADD3 (MS-DOS 6.22)

See also : cStringCRC32, Constants and Types declaration

FileDrive
Purpose :

FileDrive extracts the drive on which the file is present.

Declare Syntax :

Declare Function cFileDrive Lib "time2win.dll" (ByVal lpFilename As String) As String

Call Syntax :

test$ = cFileDrive(lpFilename)

Where :

lpFilename the file to proceed
test$ EMPTY is the file not exist or an error occurs when accessing the file

DRIVE LETTER for the file

Comments :

FileLineCount
Purpose :

FileLineCount counts the total number of lines in an ASCII file.

Declare Syntax :

Declare Function cFileLineCount Lib "time2win.dll" (ByVal lpFilename As String) As Long

Call Syntax :

test& = cFileLineCount(lpFilename$)

Where :

lpFilename$ is the name of the file.
test& is the total number of lines.

Comments :

Each line is determined only if a CR is ending the line.

The returned value can be negative and have the following value :

-1 error opening file (not exist, not a valid filename).
-2 error reading file.
-3 error when allocating memory buffer.

Examples :

test& = cFileLineCount("c:\autoexec.bat")

On my system :

test& =

See also :

FilePathExists
Purpose :

FilePathExists verifies if the specified file is present.

Declare Syntax :

Declare Function cFilePathExists Lib "time2win.dll" (ByVal lpFilename As String) As Integer

Call Syntax :

test% = cFilePathExists(lpFilename)

Where :

lpFilename the file to proceed
test% TRUE is the file exists

<> TRUE if the file not exists or if an error occurs when accessing the file.

Comments :

CVx
Purpose :

CVB, CVC, CVD, CVI, CVL and CVS returns number in a certain precision given a string containing the IEEE
representation of the number. Six separate functions are provided, with one each intended for BYTE, CURRENCY,
DOUBLE, INTEGER, LONG and SINGLE.

Declare Syntax :

Declare Function cCVB Lib "time2win.dll" (Value As String) As Integer
Declare Function cCVC Lib "time2win.dll" (Value As String) As Currency
Declare Function cCVD Lib "time2win.dll" (Value As String) As Double
Declare Function cCVI Lib "time2win.dll" (Value As String) As Integer
Declare Function cCVL Lib "time2win.dll" (Value As String) As Long
Declare Function cCVS Lib "time2win.dll" (Value As String) As Single

Call Syntax :

test% = cCVB(Value$)
test@ = cCVC(Value$)
test# = cCVD(Value$)
test% = cCVI(Value$)
test& = cCVL(Value$)
test! = cCVS(Value$)

Where :

test? receives the value represented by the IEEE string held in Value$

Comments :

See also : cMKB, cMKC, cMKD, cMKI, cMKL, cMKS

GetDiskFree, GetDiskSpace, GetDiskUsed,
GetDiskClusterSize
Purpose :

GetDiskFree, GetDiskSpace, GetDiskUsed and GetDiskClusterSize retrieves respectively the free disk space, the
size of the disk, the part of the disk used and the size of a cluster on a specified disk (hard disk or floppy disk).

Declare Syntax :

Declare Function cGetDiskFree Lib "time2win.dll" (ByVal lpDrive As String) As Long
Declare Function cGetDiskSpace Lib "time2win.dll" (ByVal lpDrive As String) As Long
Declare Function cGetDiskUsed Lib "time2win.dll" (ByVal lpDrive As String) As Long
Declare Function cGetDiskClusterSize Lib "time2win.dll" (ByVal lpDrive As String) As Long

Call Syntax :

test& = cGetDiskFree(lpDrive)
test& = cGetDiskSpace(lpDrive)
test& = cGetDiskUsed(lpDrive)
test& = cGetDiskClusterSize(lpDrive)

Where :

lpDrive is the letter for the disk
test& is the result.

Comments :

If the disk is not present or if the disk is not available or if an error occurs when accessing the disk, the returned value
is always -1.
This function works with local disk (hard, floppy or cd-rom) als well on remote disk (network).

Examples :

test& = cGetDiskFree("C") -> 268197888
test& = cGetDiskSpace("C") -> 527654912
test& = cGetDiskUsed("C")-> 259457024
test& = cGetDiskClusterSize("C") -> 8192

See also : cFileSize, cFilesSize, cFilesSizeOnDisk, cFilesSlack

FilesInDirectory
Purpose :

FilesInDirectory retrieves each file in the specified directory.

Declare Syntax :

Declare Function cFilesInDirectory Lib "time2win.dll" (ByVal nFilename As String, ByVal firstnext As Integer) As String

Call Syntax :

test$ = cFilesInDirectory(nFilename, firstnext)

Where :

nFilename the directoty to proceed with the file mask (*.* for all)
firstnext TRUE for the first file

FALSE for each next file
test$ the returned file

Comments :

Examples :

 Dim i As Integer
 Dim Tmp As String

 i = 0
 Tmp = cFilesInDirectory("c:*.*", True)

 Debug.Print "The first 7 files in C:\ are : "

 Do While (Len(Tmp) > 0)
 Debug.Print Tmp
 Tmp = cFilesInDirectory("c:*.*", False)
 i = i + 1
 If (i >= 7) Then Exit Do
 Loop

On my system:

The first 7 files in C:\ are :

863DATA
WINA20.386
AUTOEXEC.BAT
COMMAND.COM
IMAGE.DAT
BOOTSECT.DOS
ACD.IDX

See also : CallSubDirectories, cSubDirectory

FileSize
Purpose :

FileSize returns the size of the specified file.

Declare Syntax :

Declare Function cFileSize Lib "time2win.dll" (ByVal lpFilename As String) As Long

Call Syntax :

test& = cFileSize(lpFilename)

Where :

lpFilename the file to proceed
test& the size of the file

Comments :

If the file is not present or if an error occurs when accessing the file, the return value is 0

See also : cFilesSize, cFilesSizeOnDisk, cFilesSlack

FilesSize
Purpose :

FilesSize returns the logical size of all files specified by file mask.
FilesSizeOnDisk returns the physical size of all files specified by file mask.
FilesSlack returns in one call, the slack from all files specified by file mask, the logical size and the physical size..

Declare Syntax :

Declare Function cFilesSize Lib "time2win.dll" (ByVal lpFilename As String) As Long
Declare Function cFilesSizeOnDisk Lib "time2win.dll" (ByVal nFileName As String) As Long
Declare Function cFilesSlack Lib "time2win.dll" (ByVal nFileName As String, Size1 As Long, Size2 As Long) As
Integer

Call Syntax :

test& = cFilesSize(nFilename)
test& = cFilesSizeOnDisk(nFilename)
test% = cFilesSlack(nFilename, Size1, Size2)

Where :

nFilename is the mask file to proceed.
test& is the size of all files founden with the file mask.
test% is the slack for all files fouden with the file mask.
Size1 is the logical size of all files fouden with the file mask.
Size2 is the physical size of all files fouden with the file mask.

Comments :

If the mask is invalid or if the file not exists or if an error occurs when accessing the file, the return value is 0
The slack of a file or files by file mask is the % of all spaces not used on all last clusters.

Examples :

test& = cFilesSize("*.*") on my system, 5607689 bytes
test& = cFilesSizeOnDisk("*.*") on my system, 5890048 bytes
test% = cFilesSlack("*.*", 0, 0) on my system, 4 %

See also : cFileSize, cGetDiskClusterSize

IsFileX
Purpose :

The routines checks if a specified file has or not the specified attribute.
IsFilenameValid checks if the filename follows the DOS syntax for a file.
FileGetAttrib retrieves in a Call, all attributes of a gived file.

Declare Syntax :

Declare Function cIsFileArchive Lib "time2win.dll" (ByVal nFilename As String) As Integer
Declare Function cIsFileHidden Lib "time2win.dll" (ByVal nFilename As String) As Integer
Declare Function cIsFilenameValid Lib "time2win.dll" (ByVal nFilename As String) As Integer
Declare Function cIsFileNormal Lib "time2win.dll" (ByVal nFilename As String) As Integer
Declare Function cIsFileReadOnly Lib "time2win.dll" (ByVal nFilename As String) As Integer
Declare Function cIsFileSubDir Lib "time2win.dll" (ByVal nFilename As String) As Integer
Declare Function cIsFileSystem Lib "time2win.dll" (ByVal nFilename As String) As Integer
Declare Function cIsFileVolId Lib "time2win.dll" (ByVal nFilename As String) As Integer
Declare Function cIsFileFlag Lib "time2win.dll" (ByVal nFilename As String, ByVal nStatus As Integer) As Integer

Declare Function cFileGetAttrib Lib "time2win.dll" (ByVal nFilename As String, nFileAttribute As Any) As Integer

Call Syntax :

test% = cIsFileArchive(nFilename)
test% = cIsFileHidden(nFilename)
test% = cIsFilenameValid(nFilename)
test% = cIsFileNormal(nFilename)
test% = cIsFileReadOnly(nFilename)
test% =cIsFileSubDir(nFilename)
test% = cIsFileSystem(nFilename)
test% = cIsFileVolId(nFilename)
test% = cIsFileFlag(nFilename, nStatus)

test% = cFileGetAttrib(nFilename, nFileAttribute)

Where :

nFilename the filename to check
nStatus the status to check (only for cIsFileFlag)

combine A_NORMAL, A_RDONLY, A_HIDDEN, A_SYSTEM, A_VOLID, A_SUBDIR,
A_ARCH with logical OR.
nFileAttribute the type variable 'FileAttributeType' (only for cFileGetAttrib)
test TRUE if the specified flag is present

FALSE if the specified flag is not present

Comments :

IsFilenameValid checks only the validity of a file (normal file or network file) not the presence on a disk, the returned
code can be :

IFV_ERROR bad char in the filename
IFV_NAME_TOO_LONG the length of the file part is too long (> 8)
IFV_EXT_TOO_LONG the length of the extension part is too long (> 3)
IFV_TOO_MANY_BACKSLASH too many successing backslash (> 2)
IFV_BAD_DRIVE_LETTER bad drive letter before the colon ':'
IFV_BAD_COLON_POS bad colon ':' position (<>2)
IFV_EXT_WITHOUT_NAME extension without a name

If the filename is not a good filename or if the filename not exist or if an error occurs when accessing the filename,
the return value is always FALSE.

See also : IsX Family Test routines, Constants and Types declaration

FillD
Purpose :

FillD fills, with an automatic incremented value, all of the elements of a Double array.

Declare Syntax :

Declare Function cFillD Lib "time2win.dll" (array() As Double, ByVal nValue As Double) As Integer

Call Syntax :

status = cFillD(array(), nValue)

Where :

array() is the Double array.
nValue is the Double value automatiCally incremented by one.
status is always TRUE.

Comments :

See Also : cFillD, cFillI, cFillL, cFillS, Array routines

FillI
Purpose :

FillI fills, with an automatic incremented value, all of the elements of an Integer array.

Declare Syntax :

Declare Function cFillI Lib "time2win.dll" (array() As Integer, ByVal nValue As Integer) As Integer

Call Syntax :

status = cFillI(array(), nValue)

Where :

array() is the Integer array.
nValue is the Integer value automatiCally incremented by one.
status is always TRUE.

Comments :

See Also : cFillD, cFillI, cFillL, cFillS, Array routines

FillL
Purpose :

FillL fills, with an automatic incremented value, all of the elements of a Long array.

Declare Syntax :

Declare Function cFillL Lib "time2win.dll" (array() As Long, ByVal nValue As Long) As Integer

Call Syntax :

status = cFillL(array(), nValue)

Where :

array() is the Long array.
nValue is the Long value automatiCally incremented by one.
status is always TRUE.

Comments :

See Also : cFillD, cFillI, cFillL, cFillS, Array routines

FillS
Purpose :

FillS fills, with an automatic incremented value, all of the elements of a Single array.

Declare Syntax :

Declare Function cFillS Lib "time2win.dll" (array() As Single, ByVal nValue As Single) As Integer

Call Syntax :

status = cFillS(array(), nValue)

Where :

array() is the Single array.
nValue is the Single value automatiCally incremented by one.
status is always TRUE.

Comments :

See Also : cFillD, cFillI, cFillL, cFillS, Array routines

Conversion table for Hundreds
The table below show the international table conversion between minutes and hundreds.
Don't forget that some hundreds are rounded.

Minutes Hundreds true value Minutes Hundreds true value

0 00 0 | 30 50 50
1 02 1,666667 | 31 52 51,666667
2 03 3,333333 | 32 53 53,333333
3 05 5 | 33 55 55
4 07 6,666667 | 34 57 56,666667
5 08 8,333333 | 35 58 58,333333
6 10 10 | 36 60 60
7 12 11,66667 | 37 62 61,66667
8 13 13,33333 | 38 63 63,33333
9 15 15 | 39 65 65
10 17 16,66667 | 40 67 66,66667
11 18 18,33333 | 41 68 68,33333
12 20 20 | 42 70 70
13 22 21,66667 | 43 72 71,66667
14 23 23,33333 | 44 73 73,33333
15 25 25 | 45 75 75
16 27 26,66667 | 46 77 76,66667
17 28 28,33333 | 47 78 78,33333
18 30 30 | 48 80 80
19 32 31,66667 | 49 82 81,66667
20 33 33,33333 | 50 83 83,33333
21 35 35 | 51 85 85
22 37 36,66667 | 52 87 86,66667
23 38 38,33333 | 53 88 88,33333
24 40 40 | 54 90 90
25 42 41,66667 | 55 92 91,66667
26 43 43,33333 | 56 93 93,33333
27 45 45 | 57 95 95
28 47 46,66667 | 58 97 96,66667
29 48 48,33333 | 59 98 98,33333

Note : you can see if you've a good look in this table that some difference between two minutes are "better" than
others if converted in hundreds. This is due to the rounding value.

if I works from 12 to 16 minutes (4 minutes), I've worked (27 - 20) = 7 hundreds
if I works from 16 to 20 minutes (4 minutes), I've worked (33 - 27) = 6 hundreds

In the two cases, I've worked 4 minutes but in the first case, I receive 7 hundreds and in the second case, I receive
only 6 hundreds.

TypeX
Purpose :

TypesCompare compares two Types variable.
CompareTypeString compares a Type to a String.
CompareStringType compares a String to a Type.

TypeClear clears a Type variable.
TypeMid extracts information from a Type variable.

TypesCopy copies a Type variable into a variable.
TypeTransfert transfers a Type variable into a String.

StringToType copies a String to a Type variable.
TypeToString copies a Type variable to a String.

Declare Syntax :

Declare Function cTypesCompare Lib "time2win.dll" (Type1 As Any, Type2 As Any, ByVal lenType1 As Integer) As
Integer
Declare Function cCompareTypeString Lib "time2win.dll" Alias "cTypesCompare" (TypeSrc As Any, ByVal Dst As
String, ByVal lenTypeSrc As Integer) As Integer
Declare Function cCompareStringType Lib "time2win.dll" Alias "cTypesCompare" (ByVal Src As String, TypeDst As
Any, ByVal lenTypeSrc As Integer) As Integer

Declare Sub cTypeClear Lib "time2win.dll" (TypeSrc As Any, ByVal lenTypeSrc As Integer)
Declare Function cTypeMid Lib "time2win.dll" (TypeSrc As Any, ByVal Offset As Integer, ByVal Length As Integer) As
String

Declare Sub cTypesCopy Lib "time2win.dll" (TypeSrc As Any, TypeDst As Any, ByVal lenTypeSrc As Integer)
Declare Function cTypeTransfert Lib "time2win.dll" (TypeSrc As Any, ByVal lenTypeSrc As Integer) As String

Declare Sub cStringToType Lib "time2win.dll" Alias "cTypesCopy" (ByVal Src As String, TypeDst As Any, ByVal
lenTypeSrc As Integer)
Declare Sub cTypeToString Lib "time2win.dll" Alias "cTypesCopy" (TypeSrc As Any, ByVal Dst As String, ByVal
lenTypeSrc As Integer)

Call Syntax :

test% = cTypesCompare(Type1, Type2, len(Type1))
test% = cCompareTypeString(TypeSrc, Dst, len(TypeSrc))
test% = cCompareStringType(Src, TypeDst, len(TypeDst))

Call cTypeClear(TypeSrc, len(TypeSrc)
test$ = cTypeMid(TypeSrc, Offset, Length)

Call cTypesCopy(TypeSrc, TypeDst, len(TypeSrc))
test$ = cTypeTransfert(TypeSrc, len(TypeSrc)

Call cStringToType(Src, TypeDst, len(TypeDst))
Call cTypeToString(TypeSrc, Dst, len(TypeSrc))

Where :

Type1, Type2, TypeSrc, TypeDst the Type variable
Src, Dst, the String variable
Offset the offset in the Type variable
Length the length in the Type variable
test% TRUE if the variables to compare are the same

FALSE if the variables to compare are not the same
test$ the result

Comments :

Only Type variable mixed with INTEGER, LONG, SINGLE, DOUBLE, CURRENCY and FIXED STRING can be used.

When you compare 2 types variables or 1 type variable and 1 string, the size of each variable must be same.
When you copy 1 Type variable into a string or a string into Type variable, the size of each variable must be same.

Examples :

See also :

LngInpBox
Purpose :

LngInpBox is a fully replacement of the standard function InputBox$. It supports Multi-Language.

Declare Syntax :

Declare Function cLngInpBox Lib "time2win.dll" (ByVal nLanguage As Integer, ByVal Message As String, ByVal Title
As String, ByVal Default As String) As String

Call Syntax :

test$ = cLngInpBox(nLanguage, Message, Title, Default)

Where :

nLanguage is the language number.
Message is the message to display.
Title is the title of the message box.
Default is the default string to display in the input part.
Test$ is the returned data in the input part.

Comments :

nLanguage must be a language number defined in Constants and Types declaration. If the language number is not
correct, the french language is always returned.

The returned data can be an EMPTY string if the 'Cancel' button is pushed. If the 'OK' button is pushed the contents
of the input part is returned.

Examples :

test$ = cLngInpBox(LNG_FRENCH, "This a new InputBox in French", "TIME TO WIN ", " INPUT BOX IN FRENCH")

See also : cLngBoxMsg, cLngMsgBox

FindBitReset
Purpose :

FindBitReset finds the first bit Reset starting at the position gived for a a gived string.

Declare Syntax :

Declare Function cFindBitReset Lib "time2win.dll" (Txt As String, ByVal Position As Integer) As Integer

Call Syntax :

test = cFindBitReset(Txt, Position)

Where :

Txt the string to proceed
Position the starting position
test TRUE if no bit founded

<> TRUE if a bit founded

Comments :

This function is useful to find or scan a string for the bit Reset. The first bit in the string to start the test is -1.

See also : Bit String Manipulation routines

FindBitSet
Purpose :

FindBitSet finds the first bit Set starting at the position gived for a a gived string.

Declare Syntax :

Declare Function cFindBitSet Lib "time2win.dll" (Txt As String, ByVal Position As Integer) As Integer

Call Syntax :

test = cFindBitSet(Txt, Position)

Where :

Txt the string to proceed
Position the starting position
test TRUE if no bit founded

<> TRUE if a bit founded

Comments :

This function is useful to find or scan a string for the bit Set. The first bit in the string to start the test is -1.

See also : Bit String Manipulation routines

FindFileInEnv
Purpose :

FindFileInEnv searches if a specified file is present is the specified environment variable.

Declare Syntax :

Declare Function cFindFileInEnv Lib "time2win.dll" (ByVal lpFilename As String, ByVal lpEnv As String) As Integer

Call Syntax :

test% = cFindFileInEnv(lpFilename, lpEnv)

Where :

lpFilename name of file to search for
lpEnv environment to search
test% TRUE if founded

FALSE if not founded

Comments :

This function searches for the target file in the specified domain. The lpEnv variable can be any environment variable
that specifies a list of directory paths, such as PATH, LIB, INCLUDE, or other user-defined variables. This function
function is case-sensitive, so the lpEnv variable should match the case of the environment variable.
The routine first searches for the file in the current working directory. If it doesn't find the file, it next looks through the
directories specified by the environment variable.

Examples :

test% = cFileFileInEnv("win.com", "windir") -> TRUE

See also : cFindFileInPath

FindFileInPath
Purpose :

FindFileInPath searches if a specified file is present is the path.

Declare Syntax :

Declare Function cFindFileInPath Lib "time2win.dll" (ByVal lpFilename As String) As Integer

Call Syntax :

test% = cFindFileInPath(lpFilename)

Where :

lpFilename name of file to search for
test% TRUE if founded

FALSE if not founded

Comments :

This function searches for the target file in the PATH environment variable that specifies a list of directory paths.
The routine first searches for the file in the current working directory. If it doesn't find the file, it next looks through the
all directories specified in the PATH environment variable.
This function is a subset of cFindFileInEnv : cFileFileInEnv(lpFilename, "PATH")

Examples :

test% = cFileFileInPath("xcopy.exe"") -> TRUE

See also : cFindFileInEnv

FromBinary, FromBinary2, ToBinary, ToBinary2
Purpose :

FromBinary converts a binary string (0, 1) to a string
FromBinary2 converts a binary string (custom letters) to a string

ToBinary converts a string to a binary representation with 0, 1
ToBinary2 converts a string to a binary representation with two custom letters for 0, 1representation

Declare Syntax :

Declare Function cFromBinary Lib "time2win.dll" (Text As String) As String
Declare Function cFromBinary2 Lib "time2win.dll" (Text As String, Bin As String) As String

Declare Function cToBinary Lib "time2win.dll" (Text As String) As String
Declare Function cToBinary2 Lib "time2win.dll" (Text As String, Bin As String) As String

Call Syntax :

test$ = cFromBinary(Text)
test$ = cFromBinary2(Text, Bin)

test$ = cToBinary(Text)
test$ = cToBinary2(Text, Bin)

Where :

Text the string to proceed
Bin the two custom letters for 0, 1 representation
test$ the result

Comments :

Examples :

test$ = cToBinary("MC") -> "0100110101000011"
test$ = cToBinary2("MC","mc") -> "cmccmmcmcmccccmm"

test$ = cFromBinary("0100110101000011") -> "MC"
test$ = cFromBinary2("cmccmmcmcmccccmm","mc") -> "MC"

See also : cFromHexa, cToHexa

FromHexa, ToHexa
Purpose :

ToHexa converts a ascii string to hexa string.
FromHexa converts a hexa string to an ascii string.

Declare Syntax :

Declare Function cFromHexa Lib "time2win.dll" (Text As String) As String
Declare Function cToHexa Lib "time2win.dll" (Text As String) As String

Call Syntax :

test$ = cFromHexa(Text)
test$ = cToHexa(Text)

Where :

Text the string to proceed
test$ the result

Comments :

The returned string from ToHexa is always a multiple of 2
If the size of the string passed to FromHexa is not a multiple of 2, only n-1 chars are used

Examples :

test$ = cToHexa("ABCDEFG") -> "41424344454647"
test$ = cFromHexa("47464544434241") -> "GFEDCBA"

See also : cFromBinary, cToBinary

Get, GetBlock, GetIn
Purpose :

Get reads a sub-string delimited by '|' in a gived string.
GetBlock reads a block of n chars starting at a gived block in a gived string.
GetIn reads a sub-string delimited by a separator in a gived string.

Declare Syntax :

Declare Function cGet Lib "time2win.dll" (Txt As String, ByVal Position As Integer) As String
Declare Function cGetBlock Lib "time2win.dll" (Txt As String, ByVal Position As Integer, ByVal Length As Integer) As
String
Declare Function cGetIn Lib "time2win.dll" (Txt As String, Separator As String, ByVal Position As Integer) As String

Call Syntax :

test$ = cGet(Txt, Position)
test$ = cGetBlock(Txt, Position, Length)
test$ = cGetIn(Txt, Separator, Position)

Where :

Txt the string to proceed
Position the position of the sub-string or the block
Length the length of each block
Separator the delimitor for each sub-string
test$ the result

Comments :

•If the size of the string is 0 or if the position is < 1 or greater than the maximum block is the string or if the length is 0.
The returned string is an empty string.
•The function cGet is a subset of the cGetIn function.
•The function cGetBlock is similar to MID$(Txt, 1+ ((n-1) * m), m)

Examples :

test$ = cGet("A|BC|DEF|G", 1) -> "A"
test$ = cGet("A|BC|DEF|G", 3) -> "DEF"

test$ = cGetIn("A/BC/DEF/G", "/", 4) -> "G"
test$ = cGetIn("A/BC/DEF/G","D", 2) -> "EF/G"

test$ = cGetBlock("A/BC/DEF/G",1,2) -> "A/"
test$ = cGetBlock("A/BC/DEF/G",4,2) -> "EF"

See also : cSetDefaultSeparator, cInsertBlocks, cInsertBlockBy, cInsertByMask, cInsertChars

GetBit
Purpose :

GetBit returns if a gived bit in a gived string if Set or Reset.

Declare Syntax :

Declare Function cGetBit Lib "time2win.dll" (Txt As String, ByVal Position As Integer) As Integer

Call Syntax :

test = cGetBit(Txt, Position)

Where :

Txt the string to proceed
Position the bit position
test TRUE if the bit is Set

FALSE if the bit is Reset

Comments :

The first bit in the string is the bit 0.

See also : Bit String Manipulation routines

IsFormEnabled
Purpose :

IsFormEnabled checks if the specified form is enabled or not.

Declare Syntax :

Declare Function cIsFormEnabled Lib "time2win.dll" (ByVal hWnd As Integer) As Integer

Call Syntax :

test% = cIsFormEnabled(hWnd)

Where :

hWnd is the .hWnd of the specified form.
test% TRUE if the form is enabled.

FALSE is the form is disabled.

Comments :

If you disable a form with the cDisableForm or cDisableFI and if you display a MODAL form, you must take care that
Windows reenables the disabled form.

Examples :

test% = cIsFormEnabled(Me.hWnd)

See also : cDisableForm, cEnableForm, cDisableFI, cEnableFI

GetChangeTaskName
Purpose :

GetChangeTaskName gets and changes the name of the task. You see change in the Task Manager by pressing the
CTRL + ESC keys.

Declare Syntax :

Declare Function cGetChangeTaskName Lib "time2win.dll" (ByVal hWnd As Integer, ByVal Text As String) As String

Call Syntax :

test$ = cGetChangeTaskName(Form.hWnd, Text)

Where :

Form.hWnd is the hWnd of your application
Text is the new task name to given at your application
test$ is the old task name of the application

Comments :

This is useful to set a particular task name at your application and backups the old task name.
This function is a mix of cGetTaskName and cChangeTaskName.

Examples :

 Dim OldTaskName As String

 OldTaskName = cGetChangeTaskName(Me.hWnd, "Hello world")
 MsgBox OldTaskName

-> press the CTRL + ESC keys to see the change in the Task Manager
OldTaskName is "Microsoft Visual Basic"

if you repeat the test
OldTaskName is "Hello world"

See also : cChangeTaskName, cGetTaskName

FullPath
Purpose :

FullPath converts a partial path stored in path to a fully qualified path.

Declare Syntax :

Declare Function cFullPath Lib "time2win.dll" (ByVal nFilename As String) As String

Call Syntax :

test$ = cFullPath(nFilename)

Where :

nFilename is the partial path.
test$ is the returned full qualified path.

Comments :

If the file is not available or if an error occurs when accessing the file, the returned path is always an EMPTY string.

Examples :

tmp$ = cFilesInDirectory(cGetDefaultCurrentDir() + "*.*", True) 'retrieves the first file in the default current directory
test$ = cFullPath(tmp$)

On my system :

tmp$ = "AWARE.BAS"
test$ = "M:\VB\AWARE.BAS"

See also : cSplitPath, cMakePath

LngBoxMsg, LngMsgBox
Purpose :

LngBoxMsg is a fully replacement of the standard sub MsgBox. It supports Multi-Language and add some new
parameters.
LngMsgBox is a fully replacement of the standard function MsgBox. It supports Multi-Language and add some new
parameters.

Declare Syntax :

Declare Sub cLngBoxMsg Lib "time2win.dll" Alias "cLngMsgBox" (ByVal nLanguage As Integer, ByVal Message As
String, ByVal Button As Long, ByVal Title As String)
Declare Function cLngMsgBox Lib "time2win.dll" (ByVal nLanguage As Integer, ByVal Message As String, ByVal
Button As Long, ByVal Title As String) As Integer

Call Syntax :

Call cLngBoxMsg(nLanguage, Message, Button, Title)
test% = cLngMsgBox(nLanguage, Message, Button, Title)

Where :

nLanguage is the language number.
Message is the message to display.
Button specifies the contents and behavior of the message box.

This parameter is a combination of the standard MsgBox parameters
Title is the title of the message box.
test% is the button Id pushed (see VB MsgBox).

Comments :

nLanguage must be a language number defined in Constants and Types declaration. If the language number is not
correct, the french language is always returned.

Button adds two new parameters : MB_MESSAGE_CENTER (centering the message), MB_MESSAGE_RIGHT
(right-justify the message).
Button adds four mixing timeout : 2, 4, 8, 16 seconds (The timeout can be : 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24,
26, 28, 30 seconds).
If a timeout occurs after no actions from the operator, cLngMsgBox returns the default button.
A timeout occurs even if the system menu of the message box is activated.
The default justification is MB_MESSAGE_LEFT.
The icons used a little different from the standard message box.

Beware when using TimeOut functionnality in the new message box, use only to display some low warning
messages.

Examples :

Call cLngBoxMsg(LNG_FRENCH, "This is new.", MB_ICONSTOP or MB_MESSAGE_CENTER or
MB_YESNOCANCEL or MB_TIMEOUT_8, "TIME TO WIN")
test% = cLngMsgBox(LNG_FRENCH, "This is new.", MB_ICONSTOP or MB_MESSAGE_CENTER or
MB_YESNOCANCEL or MB_TIMEOUT_12 or MB_DISPLAY_TIMEOUT, "TIME TO WIN")

See also : cLngInpBox

SetCtlX
Purpose :

The functions below applies to a custom control.

SetCtlCaption sets the .Caption property of the control.
SetCtlDataField sets the .DataField property of the control.
SetCtlFocus gives the Focus to a control.
SetCtlPropString sets the specified property (founded with cGetCtlPropString function) of the control.
SetCtlTag sets the .Tag property of the control.
SetCtlText sets the .Text property of the control.

Declare Syntax :

Declare Sub cSetCtlCaption Lib "time2win.dll" (Ctl As Control, ByVal Text As String)
Declare Sub cSetCtlDataField Lib "time2win.dll" (Ctl As Control, ByVal Text As String)
Declare Sub cSetCtlFocus Lib "time2win.dll" (Ctl As Control)
Declare Sub cSetCtlPropString Lib "time2win.dll" (Ctl As Control, ByVal PropIndex As Integer, ByVal Text As String)
Declare Sub cSetCtlTag Lib "time2win.dll" (Ctl As Control, ByVal Text As String)
Declare Sub cSetCtlText Lib "time2win.dll" (Ctl As Control, ByVal Text As String)

Call Syntax :

The purpose and the declare syntax are very explicite.

Where :

Ctl the name of the control to proceed

Comments :

•The advantage to use these routines is that these routines doesn't generates an error if the property not exists.

Examples :

See also : cSetX, cGetX, cGetCtlX

Morse
Purpose :

Morse converts a string to a morse string.

Declare Syntax :

Declare Function cMorse Lib "time2win.dll" (ByVal morse As String) As String

Call Syntax :

test$ = cMorse(morse$)

Where :

morse$ is the string to proceed
test$ is the returned string in morse

Comments :

Only the following chars are valid :

space
, - . / 0 1 2 3 4 5 6 7 8 9 ? A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

All other chars are filtered.

Each morse char is separated by a letter space (' ').
Each block of char is separated by a word space('~').

These 2 chars (' ', '~') are not part of the morse coding. It will be used to facilitate the reading of the morse coding.

Examples :

test$ = cMorse("SOS") is '--- ... ---'
test$ = cMorse("TIME TO WIN") is '. -- .. - ~. ... ~-.. -- .- '

See also :

GetCurrentDrive
Purpose :

GetCurrentDrive returns the current default drive.

Declare Syntax :

Declare Function cGetCurrentDrive Lib "time2win.dll" () As String

Call Syntax :

test$ = cGetCurrentDrive()

Where :

test$ the drive in a letter

Comments :

Examples :

See also : cGetDefaultCurrentDir

GetAscTime
Purpose :

GetAscTime retrieves the current date and time in a 26 chars string from a language number.

Declare Syntax :

Declare Function cGetAscTime Lib "time2win.dll" (ByVal nLanguage As Integer) As String

Call Syntax :

test$ = cGetAscTime(nLanguage)

Where :

nLanguage is the language number

Comments :

nLanguage must be a language number defined in Constants and Types declaration. If the language number is not
correct, the french language is always returned.

A 24-hour clock is used. All fields have a constant width.

Examples :

test$ = cGetAscTime(LNG_FRENCH) -> "Mer Déc 14 22:31:51 1994"
test$ = cGetAscTime(LNG_DUTCH) -> "Woe Dec 14 22:32:11 1994"
test$ = cGetAscTime(LNG_ENGLISH) -> "Wed Dec 14 22:32:29 1994"

See also : Get.x.Day, Get.x.Month

GetDefaultCurrentDir
Purpose :

GetDefaultCurrentDir retrieves the current dir on the current drive.

Declare Syntax :

Declare Function cGetDefaultCurrentDir Lib "time2win.dll" () As String

Call Syntax :

test$ = cGetDefaultCurrentDir()

Where :

test$ the dir

Comments :

The GetDefaultCurrentDir function gets the full path of the current working directory for the default drive . The integer
The GetDefaultCurrentDir function returns a string that represents the path of the current working directory. If the
current working directory is set to the root, the string will end with a backslash (\). If the current working directory is
set to a directory other than the root, the string will end with the name of the directory and not with a backslash.

Examples :

See also : cGetDriveCurrentDir, cGetCurrentDrive

GetDefaultPrinter
Purpose :

GetDefaultPrinter returns the default printer in the [windows] section of Win.INI

Declare Syntax :

Declare Function cGetDefaultPrinter Lib "time2win.dll" () As String

Call Syntax :

test$ = cGetDefaultPrinter()

Where :

test$ is the default printer

Comments :

Examples :

test$ = cGetDefaultPrinter() -> "HP LASERJET III,HPPCL5MS,LPT1:"

See also : cGetPrinterPorts

GetDevices
Purpose :

GetDevices returns all devices founden in the [devices] section in the Win.INI

Declare Syntax :

Declare Function cGetDevices Lib "time2win.dll" () As String

Call Syntax :

test$ = cGetDevices()

Where :

test$ all devices separated by a chr$(13).

Comments :

Use the cGetIn function to extract each device.

Examples :

test$ = cGetDevices() -> "HP LaserJet III=HPPCL5MS,LPT1:"

See also : cGetDefaultPrinter

GetDriveCurrentDir
Purpose :

GetDriveCurrentDir retrieves the current dir on the specified drive.

Declare Syntax :

Declare Function cGetDriveCurrentDir Lib "time2win.dll" (ByVal lpDrive As String) As String

Call Syntax :

test$ = cGetDefaultCurrentDir(lpDrive)

Where :

lpDrive the letter for the drive
test$ the dir

Comments :

The GetDriveCurrentDir function gets the full path of the current working directory on the specified drive
The GetDriveCurrentDir function returns a string that represents the path of the current working directory on the
specified drive. If the current working directory is set to the root, the string will end with a backslash (\). If the current
working directory is set to a directory other than the root, the string will end with the name of the directory and not
with a backslash.
If the disk is not present or if the disk is not available or if an error occurs when accessing the disk, the returned value
is always an EMPTY string.
This function works with local disk (hard, floppy or cd-rom) als well on remote disk (network).

Examples :

See also : cGetDefaultCurrentDir, cGetCurrentDrive

GetDriveType
Purpose :

GetDriveType determines whether a disk drive is removable, fixed, or remote.

Declare Syntax :

Declare Function cGetDriveType Lib "time2win.dll" (ByVal lpDrive As String) As Integer

Call Syntax :

test% = cGetDriveType(lpDrive$)

Where :

lpDrive$ is the letter disk to proceed
test% is the returned drive type

Comments :

The returned value can be :

DRIVE_UNKNOW (drive type can't be founded, drive not present or unknow)
DRIVE_REMOVABLE (disk can be removed from the drive)
DRIVE_FIXED (disk cannot be removed from the drive)
DRIVE_REMOTE (drive is a remote, or network, drive)
DRIVE_CDROM (drive is a cd-rom)

Examples :

On my system :

test% = cGetDriveType("A") -> DRIVE_REMOVABLE
test% = cGetDriveType("C") -> DRIVE_FIXED
test% = cGetDriveType("X") -> DRIVE_CDROM
test% = cGetDriveType("Z") -> DRIVE_REMOTE

See also : Constants and Types declaration

GetFileVersion
Purpose :

GetFileVersion returns a partial information over a specified file.

Declare Syntax :

Declare Function cGetFileVersion Lib "time2win.dll" (ByVal filename As String, ByVal nFonction As Integer) As String

Call Syntax :

test$ = cGetFileVersion(filename, nFonction)

Where :

filename is the file to proceed
nFonction is the partial information to retrieve.
test$ is the returned information

Comments :

The returned information can be an EMPTY string if the partial informations don't exists.

Examples :

 Dim i As Integer
 Dim Tmp As String

 For i = VER_VERSION_PRODUCT To VER_PRODUCT_VERSION
 Tmp = Tmp & i & " = " & cGetFileVersion("k:\windows\progman.exe", i) & Chr$(13)
 Next i

 MsgBox Tmp

On my system :

-1 = 3.10.0.103
0 = 3.10.0.103
1 = Microsoft Corporation
2 = Windows Program Manager application file
3 = 3.10
4 = PROGMAN
5 = Copyright © Microsoft Corp. 1991-1992
6 =
7 =
8 = Microsoft® Windows(TM) Operating System

See also : cGetFileVersionInfo, Constants and Types declaration

GetFileVersionInfo
Purpose :

GetFileVersionInfo returns a full information over a specified file in one Call.

Declare Syntax :

Declare Function cGetFileVersionInfo Lib "time2win.dll" (ByVal filename As String, FILEVERSIONINFO As Any) As
Integer

Call Syntax :

test% = cGetFileVersion(filename, FILEVERSIONINFO)

Where :

filename is the file to proceed
FILEVERSIONINFO is a typed variable 'tagFILEVERSIONINFO" which receives the full information
test% TRUE if all is Ok

FALSE if an error has occured

Comments :

Examples :

 Dim status As Integer
 Dim FILEVERSIONINFO As tagFILEVERSIONINFO

 status = cGetFileVersionInfo("k:\windows\system\krnl386.exe", FILEVERSIONINFO)

 Debug.Print "FILEVERSIONINFO.VersionProduct = " & FILEVERSIONINFO.VersionProduct
 Debug.Print "FILEVERSIONINFO.FileDescription = " & FILEVERSIONINFO.FileDescription
 Debug.Print "FILEVERSIONINFO.FileVersion = " & FILEVERSIONINFO.FileVersion
 Debug.Print "FILEVERSIONINFO.InternalName = " & FILEVERSIONINFO.InternalName
 Debug.Print "FILEVERSIONINFO.LegalCopyright = " & FILEVERSIONINFO.LegalCopyright
 Debug.Print "FILEVERSIONINFO.LegalTrademarks = " & FILEVERSIONINFO.LegalTrademarks
 Debug.Print "FILEVERSIONINFO.Comments = " & FILEVERSIONINFO.Comments
 Debug.Print "FILEVERSIONINFO.ProductName = " & FILEVERSIONINFO.ProductName
 Debug.Print "FILEVERSIONINFO.ProductVersion = " & FILEVERSIONINFO.ProductVersion

On my system :

FILEVERSIONINFO.VersionProduct = 3.11.0.300
FILEVERSIONINFO.FileDescription = Windows Kernel
FILEVERSIONINFO.FileVersion = 3.11
FILEVERSIONINFO.InternalName = KRNL386
FILEVERSIONINFO.LegalCopyright = Copyright © Microsoft Corp. 1991-1993
FILEVERSIONINFO.LegalTrademarks =
FILEVERSIONINFO.Comments =
FILEVERSIONINFO.ProductName = Microsoft® Windows(TM) Operating System
FILEVERSIONINFO.ProductVersion = 3.11

See also : cGetFileVersion, Constants and Types declaration

GetFullNameInEnv
Purpose :

Declare Syntax :

Call Syntax :

Where :

Comments :

GetFullNameInPath
Purpose :

Declare Syntax :

Call Syntax :

Where :

Comments :

SetX
Purpose :

The functions below applies to the .hWnd of a custom control.

SetCaption sets the .Caption property of the control.
SetDataField sets the .DataField property of the control.
SetFocus gives the Focus to a control.
SetTag sets the .Tag property of the control.
SetText sets the .Text property of the control.

Declare Syntax :

Declare Sub cSetCaption Lib "time2win.dll" (ByVal hWnd As Integer, ByVal Text As String)
Declare Sub cSetDataField Lib "time2win.dll" (ByVal hWnd As Integer, ByVal Text As String)
Declare Sub cSetFocus Lib "time2win.dll" (ByVal hWnd As Integer)
Declare Sub cSetTag Lib "time2win.dll" (ByVal hWnd As Integer, ByVal Text As String)
Declare Sub cSetText Lib "time2win.dll" (ByVal hWnd As Integer, ByVal Text As String)

Call Syntax :

The purpose and the declare syntax are very explicite.

Where :

hWnd the hWnd of the custom control.

Comments :

•The advantage to use these routines is that these routines doesn't generates an error if the property not exists.
•If the custom control doesn't have a .hWnd (Label control b.e.), you must use the cSetCtlX function.

Examples :

See also : cSetCtlX, cGetX, cGetCtlX

GetIni
Purpose :

see Comments

Declare Syntax :

Declare Function cGetIni Lib "time2win.dll" (ByVal AppName As String, ByVal szItem As String, ByVal szDefault As
String, ByVal InitFile As String) As String

Call Syntax :

test$ = cGetIni(AppName, szItem, szDefault, InitFile)

Where :

AppName a string that specifies the section containing the entry.
szItem a string containing the entry whose associated string is to be retrieved.
szDefault a string that specifies the default value for the given entry if the entry cannot be found in the
initialization file.
InitFile a filename. If this parameter does not contain a full path, Windows searches for the file in the
Windows directory.

Comments :

The function searches the file for an entry that matches the name specified by the szItem parameter under the
section heading specified by the AppName parameter. If the entry is found, its corresponding string is returned. If the
entry does not exist, the default character string specified by the szDefault parameter is copied. A string entry in the
initialization file must have the following form:

[section]
entry=string

Examples :

test$ = cGetIni("Desktop","IconTitleFaceName","MS Sans Serif","WIN.INI")

See also : cPutIni

GetNetConnection
Purpose :

The GetNetConnection function returns the name of the network resource associated with the specified redirected
local device.

Declare Syntax :

Declare Function cGetNetConnection Lib "time2win.dll" (ByVal lpDrive As String, ErrCode As Integer) As String

Call Syntax :

test$ = cGetNetConnection(lpDrive, ErrCode)

Where :

lpDrive a string specifying the name of the redirected local device.
ErrCode TRUE is all is ok

<> TRUE if an error has occured
test$ the returned name of the remote network resource.

Comments :

FileReset
Purpose :

FileResetAllAttrib, FileResetArchive, FileResetHidden, FileResetReadOnly, FileResetSystem, FileResetFlag resets
respectively all attributes, archive attribute, hidden attribute, read-only attribute, system attribute, specified attribute
for the gived file.

Declare Syntax :

Declare Function cFileResetAllAttrib Lib "time2win.dll" (ByVal nFilename As String) As Integer
Declare Function cFileResetArchive Lib "time2win.dll" (ByVal nFilename As String) As Integer
Declare Function cFileResetHidden Lib "time2win.dll" (ByVal nFilename As String) As Integer
Declare Function cFileResetReadOnly Lib "time2win.dll" (ByVal nFilename As String) As Integer
Declare Function cFileResetSystem Lib "time2win.dll" (ByVal nFilename As String) As Integer
Declare Function cFileResetFlag Lib "time2win.dll" (ByVal nFilename As String, ByVal nStatus As Integer) As Integer

Call Syntax :

status = cFileResetAllAttrib(nFilename)
status = cFileResetArchive(nFilename)
status = cFileResetHidden(nFilename)
status = cFileResetReadOnly(nFilename)
status = cFileResetSystem(nFilename)
status = cFileResetFlag(nFilename, nStatus)

Where :

nFilename is the filename to change the attributes
nStatus is a combination of A_NORMAL, A_RDONLY, A_HIDDEN, A_SYSTEM, A_ARCH
status TRUE if all is OK.

FALSE if an error has been detected.

Comments :

Examples :

nFilename = "tmp.tmp"
nStatus = A_RDONLY or A_SYSTEM or A_HIDDEN

status = cFileResetAllAttrib(nFilename)
status = cFileResetFlag(nFilename, nStatus)

See also : FileSet

GetPid
Purpose :

cGetPid returns the process ID, an integer that uniquely identifies the Calling process.

Declare Syntax :

Declare Function cGetPid Lib "time2win.dll" () As Integer

Call Syntax :

test% = cGetPid()

Where :

test% the return process ID

Comments :

In the MS-DOS environment, the process ID is usually considered to be the address of the program segment prefix,
or PSP. However, in environments with multiple MS-DOS sessions, such as Windows, this value is often not unique.
Therefore, the value returned by cGetPid in the MS-DOS libraries is a value based on a combination of the program
segment prefix and the system time at the moment when cGetPid is Called for the first time.

GetPrinterPorts
Purpose :

GetPrinterPorts returns all printers set in the [printerports] section in the Win.INI

Declare Syntax :

Declare Function cGetPrinterPorts Lib "time2win.dll" () As String

Call Syntax :

test$ = cGetPrinterPorts()

Where :

test$ all printer founded separated by a chr$(13).

Comments :

Use the cGetIn function to extract each printer

See also : cGetDefaultPrinter

GetSectionItems
Purpose :

GetSectionItems retrieves all items founden in a section of a specified INI file.

Declare Syntax :

Declare Function cGetSectionItems Lib "time2win.dll" (ByVal Section As String, ByVal InitFile As String, nItems As
Integer) As String

Call Syntax :

test$ = cGetSectionItems(Section, InitFile, nItems)

Where :

Section the section to proceed
InitFile the INI file to proceed.
nItems the total items founden in the section
test$ the items in the specified section

Comments :

If the section don't exists, the returned file is an EMPTY string and nItems is 0.
The InitFile is any file which have a INI structure.
Each item is the section is separated by a chr$(13).

Examples :

 Dim n As Integer

 Debug.Print cGetSectionItems("desktop", "win.ini", n)

 Debug.Print "Total Items founded in this section is " & n

On my system :

Pattern=(None)
GridGranularity=0
IconSpacing=77
TileWallPaper=1
IconTitleFaceName=MS Sans Serif
IconTitleSize=-11
IconTitleStyle=0
IconVerticalSpacing=72
wallpaper=(None)

Total Items founded in this section is = 9

 Debug.Print cGetSectionItems("intl", "win.ini", n)

 Debug.Print "Total Items founded in this section is " & n

sLanguage=fra
sCountry=Belgium (French)
iCountry=32
iDate=1
iTime=1
iTLZero=0
iCurrency=3
iCurrDigits=2

iNegCurr=8
iLzero=0
iDigits=2
iMeasure=0
s1159=
s2359=
sCurrency=FB
sThousand=.
sDecimal=,
sDate=/
sTime=:
sList=;
sShortDate=d/MM/yy
sLongDate=dddd d MMMM yyyy
sFrameNum=#mmjk`sdnm

Total Items founded in this section is = 23

GetSystemDirectory
Purpose :

GetSystemDirectory retrieves the full path of the System directory for Windows.

Declare Syntax :

Declare Function cGetSystemDirectory Lib "time2win.dll" () As String

Call Syntax :

test$ = cGetSystemDirectory()

Where :

test$ the full path of the System directory

Comments :

Examples :

test$ = cGetSystemDirectory() -> "K:\WINDOWS\SYSTEM"

See also : cGetWindowsDirectory

GetTaskName
Purpose :

GetTaskName reads the name of the task. You see the name in the Task Manager by pressing the CTRL + ESC
keys.

Declare Syntax :

Declare Function cGetTaskName Lib "time2win.dll" (ByVal hWnd As Integer) As String

Call Syntax :

test$ = cGetTaskName(Form.hWnd)

Where :

Form.hWnd is the hWnd of your application
test$ is the old task name of the application

Comments :

This is useful to retrieve the task name.

Examples :

 Dim TaskName As String

 TaskName = cGetTaskName(Me.hWnd)
 MsgBox TaskName

TaskName is "Microsoft Visual Basic"

See also : cChangeTaskName, cGetChangeTaskName

SetCapture, ResetCapture
Purpose :

SetCapture and ResetCapture captures or liberates the mouse and keyboard inputs to a hWnd of a control. Only this
control can receive the inputs.

Declare Syntax :

Declare Sub cSetCapture Lib "time2win.dll" (ByVal hWnd As Integer)
Declare Sub cResetCapture Lib "time2win.dll" ()

Call Syntax :

Call cSetCapture(hWnd)
Call cResetCapture

Where :

hWnd the hWnd of a control

Comments :

Use this with caution.
If your program crashes, the inputs are limited to the window specified by the control.
Only a control at a gived time can be use these functions.

GetWindowsDirectory
Purpose :

GetWindowsDirectory retrieves the full path for the Windows directory

Declare Syntax :

Declare Function cGetWindowsDirectory Lib "time2win.dll" () As String

Call Syntax :

test$ = cGetWindowsDirectory()

Where :

test$ is the full path

Comments :

Examples :

test$ = cGetWindowsDirectory() -> "K:\WINDOWS"

See also : cGetSystemDirectory

Distribution Note
When you create and distribute applications that use 'TIME TO WIN', you should install the file TIME2WIN.DLL in the
customer's Microsoft Windows \SYSTEM subdirectory. The setup kit included with Visual Basic provides tools that
help you write setup programs that install your applications correctly.

You are not allowed to distribute 'TIME2WIN.LIC' file with any application that you distribute.

GetWinSection
Purpose :

GetWinSection retrieves all items founden in a section of the Win.INI.

Declare Syntax :

Declare Function cGetWinSection Lib "time2win.dll" (ByVal Section As String) As String

Call Syntax :

test$ = cGetWinSection(Section)

Where :

Section is the section to proceed
test$ is the contents of the specified section

Comments :

Each item in the section is separated by a chr$(13).

Examples :

 Dim n As Integer

 Debug.Print cGetWinSection("desktop")

On my system :

Pattern=(None)
GridGranularity=0
IconSpacing=77
TileWallPaper=1
IconTitleFaceName=MS Sans Serif
IconTitleSize=-11
IconTitleStyle=0
IconVerticalSpacing=72
wallpaper=(None)

See also : cGetSectionItems

GiveBitPalindrome
Purpose :

GiveBitPalindrome returns all chars on which bit 0 is bit 7, bit 1 is bit 6, bit 2 is bit 5, bit 3 is bit 4.

Declare Syntax :

Declare Function cGiveBitPalindrome Lib "time2win.dll" () As String

Call Syntax :

test = cGiveBitPalindrome

Where :

test the result

Comments :

See also : Bit String Manipulation routines

HourTo
Purpose :

HourTo converts a time string to a VARIANT value in minutes (INTEGER or LONG)

Declare Syntax :

Declare Function cHourTo Lib "time2win.dll" (Txt As String) As Variant

Call Syntax :

test = cHourTo(Txt)

Where :

Txt the time to convert
test the time in minutes

Comments :

The maximum format is for positive time "HHHHHHH:MM" and for negative time "-HHHHHH:MM"
The returned value is a VARIANT (INTEGER or LONG).

Examples :

The time "123:45" is 7425 minutes
The time "23:58" is 1438 minutes
The time "7:36" is 456 minutes
The time ":24" is 24 minutes
The time ":4" is 4 minutes
The time ":" is 0 minutes

The time "-123:45" is -7425 minutes
The time "-23:58" is -1438 minutes
The time "-7:36" is -456 minutes
The time "-:24" is -24 minutes
The time "-:4" is -4 minutes
The time "-:" is 0 minutes

See also : Date, Hour and Time routines

MixChars
Purpose :

MixChars will mix all chars in a gived string in a random position.

Declare Syntax :

Declare Function cMixChars Lib "time2win.dll" (Txt As String) As String

Call Syntax :

test$ = cMixChars(Txt)

Where :

Txt is the string to mix all chars.
test$ is the returned mixed string.

Comments :

MixChars use a random number generator to perform the mix of the chars. The starting random number is depending
of the actual date and time.

If the passed string is an EMPTY string, the returned string is an EMPTY string.

Examples :

test1$ = cMixChars("TIME TO WIN")
test2$ = cMixChars("Nothing can beat the fox")

On my system :

test1$ = "ON EI WMTIT"
test2$ = "Nt honn ia ttechx baefog"

See also :

IntoBalance, IntoBalanceFill
Purpose :

IntoBalance converts a VARIANT value (INTEGER or LONG) in a time string.
IntoBalance converts a VARIANT value (INTEGER or LONG) in a time string with leading zero.

Declare Syntax :

Declare Function cIntoBalance Lib "time2win.dll" (Var As Variant) As String
Declare Function cIntoBalanceFill Lib "time2win.dll" (Var As Variant) As String

Call Syntax :

test$ = cIntoBalance(Var)
test$ = cIntoBalanceFill(Var)

Where :

Var the value to convert
test$ the time string

Comments :

For a positive value :
The format returned for the time string is "HHHHHH:MM"

For a negative value :
The maximum format and the minimum formart returned for the time string is "-HHHHH:MM"

Examples :

IntoBalanceFill IntoBalance

1234 is "00020:34" " 20:34"
1235 is "00020:35" " 20:35"
1236 is "00020:36" " 20:36"
1237 is "00020:37" " 20:37"
1238 is "00020:38" " 20:38"
1239 is "00020:39" " 20:39"
1240 is "00020:40" " 20:40"
1241 is "00020:41" " 20:41"
1242 is "00020:42" " 20:42"
1243 is "00020:43" " 20:43"
1244 is "00020:44" " 20:44"
1245 is "00020:45" " 20:45"

See also : Date, Hour and Time routines

IntoDate, IntoDateFill, IntoDateNull
Purpose :

IntoDate converts a date value into a date string specified the short date format order in the Control Panel.
IntoDateFill converts a date value into a date string specified the short date format order in the Control Panel. But if
the date is 0, the returned string is 10 spaces according to the maximum chars in the short date format ("dd/mm/yyyy"
or "mm/dd/yyyy" or "yyyy/mm/dd").
IntoDateNull converts a date value into a date string specified the short date format order in the Control Panel. But if
the date is 0, the returned string is an EMPTY string.

Declare Syntax :

Declare Function cIntoDate Lib "time2win.dll" (ByVal nDate As Long) As String
Declare Function cIntoDateFill Lib "time2win.dll" (ByVal nDate As Long) As String
Declare Function cIntoDateNull Lib "time2win.dll" (ByVal nDate As Long) As String

Call Syntax :

test$ = cIntoDate(nDate)
test$ = cIntoDateFill(nDate)
test$ = cIntoDateNull(nDate)

Where :

nDate the date to proceed
test$ the date string returned

Comments :

The date to be proceed is always a LONG.
This fonction take care of the date separator specified in the Control Panel.

Examples :

test$ = cIntoDate(Int(Now)) -> "09/12/1994"
test$ = cIntoDateFill(Int(Now)) -> "09/12/1994"
test$ = cIntoDateNull(Int(Now)) -> "09/12/1994"

test$ = cIntoDate(-1) -> "29/12/1899"
test$ = cIntoDateFill(-1) -> "29/12/1899"
test$ = cIntoDateNull(-1) -> "29/12/1899"

test$ = cIntoDate(0) -> "30/12/1899"
test$ = cIntoDateFill(0) -> " "
test$ = cIntoDateNull(0) -> ""

test$ = cIntoDate(1) -> "31/12/1899"
test$ = cIntoDateFill(1) -> "31/12/1899"
test$ = cIntoDateNul(1) -> "31/12/1899"

See also : Date, Hour and Time routines

IntoFixHour, IntoHour, IntoVarHour
Purpose :

IntoFixHour is super-set for converting a VARIANT (INTEGER or LONG) into a fixed time string.
IntoHour concerts a VARIANT (INTEGER or LONG) into a hour string.
IntoVarHour concerts a VARIANT (INTEGER or LONG) into a hour string (variable length following the value).

Declare Syntax :

Declare Function cIntoFixHour Lib "time2win.dll" (Var As Variant, ByVal Length As Integer, ByVal fillZero As Integer,
ByVal Hundreds As Integer) As String
Declare Function cIntoHour Lib "time2win.dll" (Var As Variant) As String
Declare Function cIntoVarHour Lib "time2win.dll" (Var As Variant) As String

Call Syntax :

test$ = cIntoFixHour(Var, Length, fillZero, Hundreds)
test$ = cIntoHour(Var)
test$ = cIntoVarHour(Var)

Where :

Var the VARIANT value (LONG or INTEGER) to proceed
Length the length of the returned time string
fillZero TRUE if the time string must be filled with zero 0, FALSE if it not
Hundreds TRUE if the minutes must be converted in Hundreds, FALSE if it not. (This is useful for making
calculation)
test$ the returned time string

Comments :

For the cIntoFixHour function, if the value can be fitted in the length specified, the return string is filled with '?'
The maximum format for the returned time string is HHHHHHHH:MM

Examples :

Convert 12345 minutes into fixed hour :

Length fillZero = TRUE fillZero = FALSE

0 "" ""
1 "?" "?"
2 "??" "??"
3 "???" "???"
4 "????" "????"
5 "?????" "?????"
6 "205:45" "205:45"
7 "0205:45" " 205:45"
8 "00205:45" " 205:45"
9 "000205:45" " 205:45"
10 "0000205:45" " 205:45"
11 "00000205:45" " 205:45"

See also : Date, Hour and Time routines, Conversion table for Hundreds

LngSysMenu
Purpose :

LngSysMenu changes all text items in a system menu to one of six available language.

Declare Syntax :

Declare Sub cLngSysMenu Lib "time2win.dll" (ByVal nLanguage As Integer, ByVal hWnd As Integer)

Call Syntax :

Call cLngSysMenu(nLanguage%, hWnd%)

Where :

nLanguage% is the language number.
hWnd% is the .hWnd of the form.

Comments :

This sub only changes the item text not the fonctionnality.
This sub take care of the menu 'grayed'.

nLanguage must be a language number defined in Constants and Types declaration. If the language number is not
correct, the french language is always returned.

Examples :

Call cLngSysMenu(LNG_FRENCH, Me.hWnd)

See also : cSysMenuChange

IsBitPalindrome
Purpose :

IsBitPalindrome checks if a string is Bit palindrome

Declare Syntax :

Declare Function cIsBitPalindrome Lib "time2win.dll" (Txt As String) As Integer

Call Syntax :

test = cIsBitPalindrome(Txt)

Where :

Txt the string to proceed
test TRUE if the string is Bit palindrome

FALSE if the string is not Bit Palindrome

Comments :

See also : Bit String Manipulation routines

FileToLower, FileToUpper
Purpose :

FileToLower converts a file to a file with lower case.
FileToLower converts a file to a file with upper case.

Declare Syntax :

Declare Function cFileToLower Lib "time2win.dll" (ByVal file1 As String, ByVal file2 As String) As Long
Declare Function cFileToUpper Lib "time2win.dll" (ByVal file1 As String, ByVal file2 As String) As Long

Call Syntax :

test& = cFileToLower(file1, file2)
test& = cFileToUpper(file1, file2)

Where :

file1$ is the source file.
file2$ is the destination file.
test& > 0 if all is OK (the returned value is the total bytes copied),

< 0 if an error has occured.

Comments :

The returned value can be negative and have the following value :

-32720 the number of chars in a block for writing differs from the number of chars for reading.
-32730 reading error for file 1.
-32740 writing error for file 2.
-32750 opening error for file 1.
-32751 opening error for file 2.
-32760 allocation error for memory buffer 1.
-32761 allocation error for memory buffer 2.

Examples :

test& = cFileToLower("c:\autoexec.bat","c:\autoexec.lwr")
test& = cFileToUpper("c:\autoexec.bat","c:\autoexec.upr")

See also :

IsX
Purpose :

These routines checks if the specified string is :

IsAlnum Alphanumeric ('A'-'Z', 'a'-'z', or '0'-'9')
IsAlpha Letter ('A'-'Z' or 'a'-'z')
IsAscii ASCII character (0x00 - 0x7F)
IsCsym Letter, underscore, or digit
IsCsymf Letter or underscore
IsDigit Digit ('0'-'9')
IsISBN International Standard Book Numbers (ISBNs)
IsLower Lowercase letter ('a'-'z')
IsPalindrome the string and the reverse string are the same
IsPunct Punctuation character
IsSpace White-space character (0x09 - 0x0D or 0x20)
IsUpper Uppercase letter ('A'-'Z')
IsXdigit Hexadecimal digit ('A'-'F','a'-'f', or '0'-'9')

IsBalance test if the specified balance is a valid balance
IsDate test if the specified date is a valid date
IsHour test if the specified hour is a valid hour
IsLeapYear test if the specified year is a leap year

Declare Syntax :

Declare Function cIsAlnum Lib "time2win.dll" (Txt As String) As Integer
Declare Function cIsAlpha Lib "time2win.dll" (Txt As String) As Integer
Declare Function cIsAscii Lib "time2win.dll" (Txt As String) As Integer
Declare Function cIsCsym Lib "time2win.dll" (Txt As String) As Integer
Declare Function cIsCsymf Lib "time2win.dll" (Txt As String) As Integer
Declare Function cIsDigit Lib "time2win.dll" (Txt As String) As Integer
Declare Function cIsISBN Lib "time2win.dll" (Txt As String) As Integer
Declare Function cIsLower Lib "time2win.dll" (Txt As String) As Integer
Declare Function cIsPalindrome Lib "time2win.dll" (Txt As String) As Integer
Declare Function cIsPunct Lib "time2win.dll" (Txt As String) As Integer
Declare Function cIsSpace Lib "time2win.dll" (Txt As String) As Integer
Declare Function cIsUpper Lib "time2win.dll" (Txt As String) As Integer
Declare Function cIsXDigit Lib "time2win.dll" (Txt As String) As Integer

Declare Function cIsBalance Lib "time2win.dll" (ByVal nHour As Long, ByVal nMinute As Integer, ByVal nSecond As
Integer) As Integer
Declare Function cIsDate Lib "time2win.dll" (ByVal nYear As Integer, ByVal nMonth As Integer, ByVal nDay As
Integer) As Integer
Declare Function cIsHour Lib "time2win.dll" (ByVal nHour As Integer, ByVal nMinute As Integer, ByVal nSecond As
Integer) As Integer
Declare Function cIsLeapYear Lib "time2win.dll" (ByVal nYear As Integer) As Integer

Call Syntax :

test = cIsAlnum(Txt)
test = cIsAlpha(Txt)
test = cIsAscii(Txt)
test = cIsCsym(Txt)
test = cIsCsymf(Txt)
test = cIsDigit(Txt)
test = cIsLower(Txt)
test = cIsPalindrome(Txt)
test = cIsPunct(Txt)
test = cIsSpace(Txt)

test = cIsUpper(Txt)
test = cIsXdigit(Txt)

test = cIsBalance(nHour, nMinute, nSecond)
test = cIsDate(nYear, nMonth, nDay)
test = cIsHour(nHour, nMinute, nSecond)
test = cIsLeapYear(nYear)

Where :

Txt the string to proceed
nHour the hour to test (can be negative and/or greater than 1439 for cIsBalance)
nMinute the minute to test
nSecondthe second to test
nYear the year to test
nMonth the month to test
nDay the dat to test
test TRUE if test is OK

FALSE if the test fails

Comments :

Examples :

Txt = "ABCDEFG"

test = cIsAlnum(Txt) TRUE
test = cIsAlpha(Txt) TRUE
test = cIsAscii(Txt) TRUE
test = cIsCsym(Txt) TRUE
test = cIsCsymf(Txt) TRUE
test = cIsDigit(Txt) FALSE
test = cIsLower(Txt) FALSE
test = cIsPalindrome(Txt) FALSE
test = cIsPunct(Txt) FALSE
test = cIsSpace(Txt) FALSE
test = cIsUpper(Txt) TRUE
test = cIsXdigit(Txt) FALSE

test = cIsBalance(-1200, 58, 34) TRUE
test = cIsDate(1995, 2, 29) FALSE
test = cIsHour(23, 60, 10) FALSE
test = cIsLeapYear(1996) TRUE

See also : IsX Family Test routines

FileMerge
Purpose :

FileMerge merges two files in one.

Declare Syntax :

Declare Function cFileMerge Lib "time2win.dll" (ByVal file1 As String, ByVal file2 As String, ByVal fileTo As String) As
Long

Call Syntax :

test& = cFileMerge(file1, file2, fileTo)

Where :

file1$ is the first file.
file2$ is the second file.
fileTo$ is the destination file.
test& > 0 if all is OK (the returned value is the total bytes copied),

< 0 if an error has occured.

Comments :

The returned value can be negative and have the following value :

-32720 the number of chars in a block for writing differs from the number of chars for reading file 1.
-32721 the number of chars in a block for writing differs from the number of chars for reading file 2.
-32730 reading error for file 1.
-32731 reading error for file 2.
-32740 writing error for file To.
-32750 opening error for file 1.
-32751 opening error for file 2.
-32752 opening error for file To.
-32760 allocation error for memory buffer.

Examples :

test& = cFileMerge("c:\autoexec.bat", "c:\config.sys", "c:\merge.byt")

See also : cFileCopy

BigAdd, BigDiv, BigMul, BigSub, BigFmt
Purpose :

BigAdd, BigDiv, BigMul, BigSub performs Addition, Substraction, Multiplication, Division of big double value.
BigFmt displays a big double value into a string to display or print it.

Declare Syntax :

Declare Function cBigAdd Lib "time2win.dll" (Num1 As String, Num2 As String) As String
Declare Function cBigDiv Lib "time2win.dll" (Num1 As String, Num2 As String) As String
Declare Function cBigMul Lib "time2win.dll" (Num1 As String, Num2 As String) As String
Declare Function cBigSub Lib "time2win.dll" (Num1 As String, Num2 As String) As String

Declare Function cBigFmt Lib "time2win.dll" (Num As String, ByVal Fmt As Integer) As String

Call Syntax :

test$ = cBigAdd(num1$, num2$)
test$ = cBigDiv(num1$, num2$)
test$ = cBigMul(num1$, num2$)
test$ = cBigSub(num1$, num2$)

test$ = cBigFmt(num$, fmt%)

Where :

num1$ is the first big double value (string representation) (left operand).
num2$ is the second big double value (string representation) (right operand).
num$ is a big double value to format it (string representation).
fmt% is the significant number of formatting.
test$ is the returned value.

Comments :

A big double value (string representation) is always a string with 10 chars.
The cBigFmt can process from 1 TO 19 significant numbers (not included the exponent). If the significant number is
below or equal to 0 then 19 is used.

Examples :

 Dim m1 As Double
 Dim m2 As Double

 m1 = 123456789012345#
 m2 = 987654321098765#

For the double test : m1 + m2
 m1 / m2
 m1 * m2
 m1 - m2

For the big double test : cBigAdd(cMKN(str$(m1)),cMKN(str$(m2)))
 cBigDiv(cMKN(str$(m1)),cMKN(str$(m2)))
 cBigMul(cMKN(str$(m1)),cMKN(str$(m2)))
 cBigSub(cMKN(str$(m1)),cMKN(str$(m2)))

Double : Add '123456789012345' and '987654321098765' is '1,11111111011111E+15'
Big Double : Add '123456789012345' and '987654321098765' is '1111111110111110'

Double : Sub '123456789012345' and '987654321098765' is '-864197532086420'

Big Double : Sub '123456789012345' and '987654321098765' is '-864197532086420'

Double : Mul '123456789012345' and '987654321098765' is '1,21932631137021E+29'
Big Double : Mul '123456789012345' and '987654321098765' is '1.219326311370210714e+029'

Double : Div '123456789012345' and '987654321098765' is ',124999998860937'
Big Double : Div '123456789012345' and '987654321098765' is '0.1249999988609368673'

See also : cMKN

Big Numbers
cBigAdd
cBigDiv
cBigMul
cBigSub

cMKN

cBigNum

GetClassName
Purpose :

GetClassName retrieves the full class name of a control.

Declare Syntax :

Declare Function cGetClassName Lib "time2win.dll" (ByVal hWnd As Integer) As String

Call Syntax :

test$ = cGetClassName(hWnd)

Where :

hWnd is the .hWnd of a control.
test$ is the returned class name.

Comments :

if the .hWnd is not exist, the returned string is an EMPTY string.

Examples :

test$ = cGetClassName(Me.hWnd) -> "ThunderForm"
test$ = cGetClassName(Command1.hWnd) -> "ThunderCommandButton"
test$ = cGetClassName(List1.hWnd) -> "ThunderListBox"
test$ = cGetClassName(Text1.hWnd) -> "ThunderTextBox"

See also : cGetClass, cGetCtlClass

BigNum
Purpose :

BigNum make some operations on two big numbers. BigNum can handle big numbers (without decimal part) greater
than the limit of a long integer.

Declare Syntax :

Declare Function cBigNum Lib "time2win.dll" (ByVal n1 As String, ByVal op As Integer, ByVal n2 As String) As String

Call Syntax :

test$ = cBigNum(n1$, op%, n2$)

Where :

n1$ is the first big number (left operand).
op% is the operation to perform. (see Constants and Types declaration)
n2$ is the second big number (right operand).

Comments :

A big number is a string which have a representation of a number but on a string form. The big number can't have
decimal part.
A big number can have a sign : '+' or '' for positive value, '-' for negative value. The sign must be the first char.
A big number can't have any other chars that the following chars : "+-0123456789", others chars are filtered and dus
not processed.
The leading's 0 are automatically removed for the calculation.

Examples :

Dim X As String
Dim Y As String
Dim Z As String

X = "123456789012345678901"
Y = "987654321098765432100"

Z = cBigNum(X, BIG_ADD, Y)

'(X) + (Y)' is '1111111110111111111001'
'(X) + (-Y)' is '-864197532086419753199'
'(-X) + (Y)' is '864197532086419753199'
'(-X) + (-Y)' is '-1111111110111111111001'

Z = cBigNum(X, BIG_SUB, Y)

'(X) - (Y)' is '-864197532086419753199'
'(X) - (-Y)' is '1111111110111111111001'
'(-X) - (Y)' is '-1111111110111111111001'
'(-X) - (-Y)' is '864197532086419753199'

Z = cBigNum(X, BIG_MUL, Y)

'(X) * (Y)' is '121932631137021795224734034432225118122100'
'(X) * (-Y)' is '-121932631137021795224734034432225118122100'
'(-X) * (Y)' is '-121932631137021795224734034432225118122100'
'(-X) * (-Y)' is '121932631137021795224734034432225118122100'

See also : cBig.x.

Returned Errors
-32720

The number of chars in a block for writing differs from the number of chars for reading.
-32730

An error has occured when reading the file (bad CRC, bad cluster, ...).
-32740

An error has occured when writing a file (bad CRC, bad cluster, not a valid drive, not enough space on
drive).
-32759 to -32750

An error has occured when opening a file.
-32767 to -32761

An error has occured when allocating memory buffer

KillDir
Purpose :

KillDir deletes the specified empty directory.
KillDirs deletes the specified direcory and its associated directories.

Declare Syntax :

Declare Function cKillDir Lib "time2win.dll" (ByVal lpDir As String) As Integer
Declare Function cKillDirs Lib "time2win.dll" (ByVal lpDir As String, ByVal HeaderDirectory As Integer) As Integer

Call Syntax :

test% = cKillDir(lpDir$)
test% = cKillDirs(lpDir$)

Where :

lpDir$ is the directory to proceed
HeaderDirectory% specify if lpDir$ must be delete also
test% see below

Comments :

For cKillDir :

The directory must be empty, and it must not be the current working directory or the root directory.
The returned value is TRUE if all is OK, <> TRUE if an error has occured.

For cKillDirs :

Don't forget that this function can handle a maximum of 700 directories of 70 chars long each.

The returned value can be negative :
-32760 allocation error for memory buffer.

This function doesn't generates an VB Error if the speficied dir not exists.

See also : cKillFile, cKillFiles, cKillDirFilesAll

KillFile, KillFileAll
Purpose :

KillFile deletes the specified filename.
KillFileAll deletes the specified filename with any attribute.

Declare Syntax :

Declare Function cKillFile Lib "time2win.dll" (ByVal lpFilename As String) As Integer
Declare Function cKillFileAll Lib "time2win.dll" (ByVal lpFilename As String) As Integer

Call Syntax :

test% = cKillFile(lpFilename)
test% = cKillFileAll(lpFilename)

Where :

lpFileName the filename to proceed
test% TRUE if all is OK

<> TRUE if an error has occured

Comments :

If the file is a combination of READ-ONLY or SYSTEM or HIDDEN attribute, you must use cKillFileAll to remove it.
If the file is an opened file, the returned value is always <> TRUE.
If the file not exist, the returned value is always = TRUE.
This function doesn't generates an VB Error if the speficied file not exists.

See also : cKillFiles, cKillFilesAll, cKillDir, cKillDirs, cKillDirFilesAll

KillFilesAll
Purpose :

KillFiles deletes all files specified by a file mask.
KillFilesAll deletes all files specified by a file mask even if some files are READ-ONLY files.

Declare Syntax :

Declare Function cKillFiles Lib "time2win.dll" (ByVal lpFilename As String) As Integer
Declare Function cKillFilesAll Lib "time2win.dll" (ByVal lpFilename As String) As Integer

Call Syntax :

test% = cKillFiles(lpFilename)
test% = cKillFilesAll(lpFilename)

Where :

lpFilename the mask file to proceed
test% > 0 if all is OK. The returned value specified the total files deleted.

= 0 if an error has occured

Comments :

If some files are a combination of READ-ONLY or SYSTEM or HIDDEN attributes, you must use cKillFilesAll to
remove it.
If the mask is invalid or if the file not exists or if an error occurs when accessing the files, the return value is 0.
This function doesn't generates an VB Error if the speficied files not exists.

See also : cKillFile, cKillFileAll, cKillDir, cKillDirs

Lrc
Purpose :

Lrc calculates the LRC of a gived string.

Declare Syntax :

Declare Function cLrc Lib "time2win.dll" (Txt As String) As String

Call Syntax :

test$ = cLrc(Txt)

Where :

Txt the string to proceed
test$ the LRC calculated

Comments :

The LRC is always an Hexa string of two chars.
This function is used for communication between a program and a clocking terminal

Examples :

test$ = cLrc(chr$(2) & "0a12721536") -> "54"

See also : cStringCRC32, cFileCRC32

MakeDir
Purpose :

MakeDir creates the specified directory.

Declare Syntax :

Declare Function cMakeDir Lib "time2win.dll" (ByVal lpFilename As String) As Integer

Call Syntax :

test% = cMakeDir(lpFilename)

Where :

lpFilename the path for the new directory
test% TRUE if all is OK

<> TRUE if an error has occured

Comments :

The MakeDir function creates a new directory with the specified dirname. Only one directory can be created at a time,
so only the last
component of dirname can name a new directory.
The MakeDir function does not do any translation of path delimiters. All operating systems accept either " or "/ "
internally as valid delimiters within paths.
This fonction is the same that MkDir but doesn't generate an VB Error if a problem occurs.

Examples :

test% = cMakeDir("C:\") -> 13 (<> TRUE => an error has occured)
test% = cMakeDir("C:\~~TEST~~") -> TRUE (no error, the directory has been created)

See also : cChDir, cKillDir

Max
Purpose :

Max returns the highest value of the two VARIANT value (INTEGER or LONG)

Declare Syntax :

Declare Function cMax Lib "time2win.dll" (Var1 As Variant, Var2 As Variant) As Variant

Call Syntax :

test = cMax(Var1, Var2)

Where :

Var1 the first value
Var2 the second value
test the highest value of the two

Comments :

Examples :

test = cMax(1234, 4321) -> 4321

See also : cMin

MaxD
Purpose :

MaxD will return the largest value in a Double array.

Declare Syntax :

Declare Function cMaxD Lib "time2win.dll" (array() As Double) As Double

Call Syntax :

largest = cMaxD(array())

Where :

array() is the Double array.
largest is the largest value from all of the elements of the Double array.

Comments :

See Also : cMaxI, cMaxL, cMaxS, Array routines

MaxI
Purpose :

MaxI will return the largest value in an Integer array.

Declare Syntax :

Declare Function cMaxI Lib "time2win.dll" (array() As Integer) As Integer

Call Syntax :

largest = cMaxI(array())

Where :

array() is the Integer array.
largest is the largest value from all of the elements of the Integer array.

Comments :

See Also : cMaxD, cMaxL, cMaxS, Array routines

MaxL
Purpose :

MaxL will return the largest value in a Long array.

Declare Syntax :

Declare Function cMaxL Lib "time2win.dll" (array() As Long) As Long

Call Syntax :

largest = cMaxL(array())

Where :

array() is the Long array.
largest is the largest value from all of the elements of the Long array.

Comments :

See Also : cMaxD, cMaxI, cMaxS, Array routines

MaxS
Purpose :

MaxS will return the largest value in a Single array.

Declare Syntax :

Declare Function cMaxS Lib "time2win.dll" (array() As Single) As Single

Call Syntax :

largest = cMaxS(array())

Where :

array() is the Single array.
largest is the largest value from all of the elements of the Single array.

Comments :

See Also : cMaxD, cMaxI, cMaxL, Array routines

MeanD
Purpose :

MeanD will calculate the mean from all elements in a Double array.

Declare Syntax :

Declare Function cMeanD Lib "time2win.dll" (array() As Double) As Double

Call Syntax :

mean = cMeanD(array())

Where :

array() is the Double array.
mean is the mean calculated. This value is always a Double value.

Comments :

See Also : cMeanD, cMeanI, cMeanL, cMeanS, Array routines

MeanI
Purpose :

MeanI will calculate the mean from all elements in an Integer array.

Declare Syntax :

Declare Function cMeanI Lib "time2win.dll" (array() As Integer) As Double

Call Syntax :

mean = cMeanI(array())

Where :

array() is the Integer array.
mean is the mean calculated. This value is always a Double value.

Comments :

See Also : cMeanD, cMeanI, cMeanL, cMeanS, Array routines

MeanL
Purpose :

MeanL will calculate the mean from all elements in a Long array.

Declare Syntax :

Declare Function cMeanL Lib "time2win.dll" (array() As Long) As Double

Call Syntax :

mean = cMeanL(array())

Where :

array() is the Long array.
mean is the mean calculated. This value is always a Double value.

Comments :

See Also : cMeanD, cMeanI, cMeanL, cMeanS, Array routines

MeanS
Purpose :

MeanS will calculate the mean from all elements in a Single array.

Declare Syntax :

Declare Function cMeanS Lib "time2win.dll" (array() As Single) As Double

Call Syntax :

mean = cMeanS(array())

Where :

array() is the Single array.
mean is the mean calculated. This value is always a Double value.

Comments :

See Also : cMeanD, cMeanI, cMeanL, cMeanS, Array routines

Min
Purpose :

Max returns the smallest value of the two VARIANT value (INTEGER or LONG)

Declare Syntax :

Declare Function cMin Lib "time2win.dll" (Var1 As Variant, Var2 As Variant) As Variant

Call Syntax :

test = cMin(Var1, Var2)

Where :

Var1 the first value
Var2 the second value
test the smallest value of the two

Comments :

Examples :

test = cMin(1234, 4321) -> 1234

See also : cMax

MinD
Purpose :

MinD will return the smallest value in a Double array.

Declare Syntax :

Declare Function cMinD Lib "time2win.dll" (array() As Double) As Double

Call Syntax :

smallest = cMinD(array())

Where :

array() is the Double array.
smallest is the smallest value from all of the elements of the Double array.

Comments :

See Also : cMinI, cMinL, cMinS, Array routines

MinI
Purpose :

MinI will return the smallest value in an Integer array.

Declare Syntax :

Declare Function cMinI Lib "time2win.dll" (array() As Integer) As Integer

Call Syntax :

smallest = cMinI(array())

Where :

array() is the Integer array.
smallest is the smallest value from all of the elements of the Integer array.

Comments :

See Also : cMinD, cMinL, cMinS, Array routines

MinL
Purpose :

MinL will return the smallest value in a Long array.

Declare Syntax :

Declare Function cMinL Lib "time2win.dll" (array() As Long) As Long

Call Syntax :

smallest = cMinL(array())

Where :

array() is the Long array.
smallest is the smallest value from all of the elements of the Long array.

Comments :

See Also : cMinD, cMinI, cMinS, Array routines

MinS
Purpose :

MinS will return the smallest value in a Single array.

Declare Syntax :

Declare Function cMinS Lib "time2win.dll" (array() As Single) As Single

Call Syntax :

smallest = cMinS(array())

Where :

array() is the Single array.
smallest is the smallest value from all of the elements of the Single array.

Comments :

See Also : cMinD, cMinI, cMinL, Array routines

ModuleFind
Purpose :

ModuleFind retrieves some parameters for a specified loaded module.

Declare Syntax :

Declare Function cModuleFind Lib "time2win.dll" (MODULEENTRY As Any, ByVal ModuleName As String) As Integer

Call Syntax :

test% = cModuleFind(MODULEENTRY, ModuleName)

Where :

ModuleName is the module to proceed
MODULEENTRY is the typed variable which receives the parameters (tagMODULEENTRY)
test% TRUE if all is Ok

FALSE if an error has occured

Comments :

dwSize Specifies the size of the MODULEENTRY structure, in bytes.
szModule Specifies the null-terminated string that contains the module name.
hModule Identifies the module handle.
wcUsage Specifies the reference count of the module. This is the same number returned by the
GetModuleUsage function.
szExePath Specifies the null-terminated string that contains the fully-qualified executable path for the module.
wNext Specifies the next module in the module list. This member is reserved for internal use by Windows.

Examples :

 Dim status As Integer
 Dim MODULEENTRY As tagMODULEENTRY

 status = cModuleFind(MODULEENTRY, "KERNEL")

 Debug.Print "MODULEENTRY.dwSize = " & MODULEENTRY.dwSize
 Debug.Print "MODULEENTRY.szModule = " & MODULEENTRY.szModule
 Debug.Print "MODULEENTRY.hModule = " & MODULEENTRY.hModule
 Debug.Print "MODULEENTRY.wcUsage = " & MODULEENTRY.wcUsage
 Debug.Print "MODULEENTRY.szExePath = " & MODULEENTRY.szExePath
 Debug.Print "MODULEENTRY.wNext = " & MODULEENTRY.wNext

On my system :

MODULEENTRY.dwSize = 276
MODULEENTRY.szModule = KERNEL
MODULEENTRY.hModule = 295
MODULEENTRY.wcUsage = 44
MODULEENTRY.szExePath = K:\WINDOWS\SYSTEM\KRNL386.EXE
MODULEENTRY.wNext = 279

See also : cModules, cTaskFind, cTasks, Constants and Types declaration

Modules
Purpose :

Modules retrieves each loaded module one by one.

Declare Syntax :

Declare Function cModules Lib "time2win.dll" (MODULEENTRY As Any, ByVal firstnext As Integer) As Integer

Call Syntax :

test% = cModules(MODULEENTRY, firstnext)

Where :

MODULEENTRY is the typed variable which receives the parameters (tagMODULEENTRY)
firstnext TRUE for the first module

FALSE for each next module
test% TRUE if all is Ok

FALSE if an error has occured or if no more modules.

Comments :

dwSize Specifies the size of the MODULEENTRY structure, in bytes.
szModule Specifies the null-terminated string that contains the module name.
hModule Identifies the module handle.
wcUsage Specifies the reference count of the module. This is the same number returned by the
GetModuleUsage function.
szExePath Specifies the null-terminated string that contains the fully-qualified executable path for the module.
wNext Specifies the next module in the module list. This member is reserved for internal use by Windows.

Examples :

 Dim i As Integer
 Dim status As Integer
 Dim MODULEENTRY As tagMODULEENTRY

 i = 0

 Close #1
 Open "c:\tmp.tmp" For Output Shared As #1

 Print #1, "dwSize"; Chr$(9);
 Print #1, "szModule"; Chr$(9);
 Print #1, "hModule"; Chr$(9);
 Print #1, "wcUsage"; Chr$(9);
 Print #1, "szExePath"; Chr$(9);
 Print #1, "wNext"; Chr$(13)

 status = cModules(MODULEENTRY, True)
 Do While (status = True)

 Print #1, MODULEENTRY.dwSize; Chr$(9);
 Print #1, MODULEENTRY.szModule; Chr$(9);
 Print #1, MODULEENTRY.hModule; Chr$(9);
 Print #1, MODULEENTRY.wcUsage; Chr$(9);
 Print #1, MODULEENTRY.szExePath; Chr$(9);
 Print #1, MODULEENTRY.wNext

 status = cModules(MODULEENTRY, False)

 i = i + 1
 If (i >= 7) Then Exit Do

 Loop

 Close #1

On my system, the first 7 modules are :

dwSize szModule hModule wcUsage szExePath wNext
 276 KERNEL 295 41 K:\WINDOWS\SYSTEM\KRNL386.EXE 279
 276 SYSTEM 279 32 K:\WINDOWS\SYSTEM\SYSTEM.DRV 343
 276 KEYBOARD 343 31 K:\WINDOWS\SYSTEM\KEYBOARD.DRV 367
 276 MOUSE 367 31 K:\WINDOWS\SYSTEM\MOUSE.DRV RV 463
 276 DISPLAY 463 32 K:\WINDOWS\SYSTEM\SVGA256.DRV 487
 276 SOUND 487 31 K:\WINDOWS\SYSTEM\MMSOUND.DRV 583
 276 COMM 583 31 K:\WINDOWS\SYSTEM\COMM.DRV RV 1271

See also : cModuleFind, cTaskFind, cTasks, Constants and Types declaration

NextHwnd
Purpose :

Declare Syntax :

Call Syntax :

Where :

Comments :

OneCharFromLeft
Purpose :

OneCharFromLeft reads 1 char at a position starting from the left of a string.

Declare Syntax :

Declare Function cOneCharFromLeft Lib "time2win.dll" (Txt As String, ByVal Position As Integer) As String

Call Syntax :

test = cOneCharFromLeft(txt, position)

Where :

Txt the string to extract one char
Position the position of the char
Test the result

Comments :

This function is the same that MID$(Txt, Position, 1)

Examples :

Txt = "ABCDEF"
Position = 3
Test = cOneCharFromLeft(Txt, Position)

Test = "C"

See also : cBlockCharFromLeft, cBlockCharFromRight, cOneCharFromLeft, cOneCharFromRight

OneCharFromRight
Purpose :

OneCharFromRight reads 1 char at a position starting from the right of a string.

Declare Syntax :

Declare Function cOneCharFromRight Lib "time2win.dll" (Txt As String, ByVal Position As Integer) As String

Call Syntax :

Test = cOneCharFromRight(Txt, Position)

Where :

Txt the string to extract one char
Position the position of the char
Test the result

Comments :

This function is the same that MID$(Txt, Len(Txt) - Position + 1, 1)

Examples :

Txt = "ABCDEF"
Position = 3
Test = cOneCharFromRight(Txt, Position)

Test = "D"

See also : cBlockCharFromLeft, cBlockCharFromRight, cOneCharFromLeft, cOneCharFromRight

PatternMatch
Purpose :

PatternMatch searches if a gived pattern can be found is a gived string.

Declare Syntax :

Declare Function cPatternMatch Lib "time2win.dll" (ByVal Txt As String, ByVal Pattern As String) As Integer

Call Syntax :

test% = cPatternMatch(Txt, Pattern)

Where :

Txt the string to proceed
Pattern the pattern to match
test% TRUE if the pattern match

FALSE if the pattern not match

Comments :

The char '?' is used to match a single char.
The char '*' is used to match a block of char.
The matching of all chars (not '?', '*') is case-sensitive.

Examples :

test% = cPatternMatch("Under the blue sky, the sun lights","*") is TRUE
test% = cPatternMatch("Under the blue sky, the sun lights","*??*???*?") is TRUE
test% = cPatternMatch("Under the blue sky, the sun lights","*Under*") is TRUE
test% = cPatternMatch("Under the blue sky, the sun lights","*sky*") is TRUE
test% = cPatternMatch("Under the blue sky, the sun lights","*lights") is TRUE
test% = cPatternMatch("Under the blue sky, the sun lights","Under*") is TRUE
test% = cPatternMatch("Under the blue sky, the sun lights","??der*sky*ligh??") is TRUE
test% = cPatternMatch("Under the blue sky, the sun lights","Under?the * s?? *") is TRUE

test% = cPatternMatch("Under the blue sky, the sun lights","*under*") is FALSE
test% = cPatternMatch("Under the blue sky, the sun lights","Under*sun") is FALSE
test% = cPatternMatch("Under the blue sky, the sun lights","Under t??e*") is FALSE

See also : cPatternExtMatch

RebootSystem
Purpose :

Declare Syntax :

Call Syntax :

Where :

Comments :

RemoveBlockChar
Purpose :

Declare Syntax :

Call Syntax :

Where :

Comments :

RemoveOneChar
Purpose :

Declare Syntax :

Call Syntax :

Where :

Comments :

RenameFile
Purpose :

RenameFile renames a file or moves a file from one path to an other path.

Declare Syntax :

Declare Function cRenameFile Lib "time2win.dll" (ByVal lpFilename1 As String, ByVal lpFilename2 As String) As
Integer

Call Syntax :

test% = cRenameFile(lpFilename1, lpFilename2)

Where :

lpFileName1 the old filename to rename
lpFileName2 the new filename to be used
test% TRUE if all is OK

<> TRUE if an error has occured

Comments :

The rename function renames the file or directory specified by lpFilename1 to the name given by lpFilename2. The
lpFilename1 must be the
path of an existing file or directory. The lpFilename1 must not be the name of an existing file or directory.
The rename function can be used to move a file from one directory to another by giving a different path in the
lpFilename2 argument.
However, files cannot be moved from one device to another (for example, from drive A to drive B). Directories can
only be renamed, not
moved.
This function doesn't generates an VB Error if the speficied old filename not exists.

ResizeString
Purpose :

Declare Syntax :

Call Syntax :

Where :

Comments :

ResizeStringAndFill
Purpose :

Declare Syntax :

Call Syntax :

Where :

Comments :

RestartWindows
Purpose :

Declare Syntax :

Call Syntax :

Where :

Comments :

Reverse
Purpose :

Declare Syntax :

Call Syntax :

Where :

Comments :

ReverseSortD
Purpose :

ReverseSortD will sort, in descending order, all elements in a Double array.

Declare Syntax :

Declare Function cReverseSortD Lib "time2win.dll" (array() As Double) As Integer

Call Syntax :

status = cReverseSortD(array())

Where :

array() is the Double array.
status is always TRUE.

Comments :

See Also : cReverseSortD, cReverseSortI, cReverseSortL, cReverseSortS, cReverseSortStr, Array routines

ReverseSortI
Purpose :

ReverseSortD will sort, in descending order, all elements in an Integer array.

Declare Syntax :

Declare Function cReverseSortI Lib "time2win.dll" (array() As Integer) As Integer

Call Syntax :

status = cReverseSortI(array())

Where :

array() is the Integer array.
status is always TRUE.

Comments :

See Also : cReverseSortD, cReverseSortI, cReverseSortL, cReverseSortS, cReverseSortStr, Array routines

ReverseSortL
Purpose :

ReverseSortL will sort in descending order all elements in a Long array.

Declare Syntax :

Declare Function cReverseSortL Lib "time2win.dll" (array() As Long) As Integer

Call Syntax :

status = cReverseSortL(array())

Where :

array() is the Long array.
status is always TRUE.

Comments :

See Also : cReverseSortD, cReverseSortI, cReverseSortL, cReverseSortS, cReverseSortStr, Array routines

ReverseSortS
Purpose :

ReverseSortS will sort in descending order all elements in a Single array.

Declare Syntax :

Declare Function cReverseSortS Lib "time2win.dll" (array() As Single) As Integer

Call Syntax :

status = cReverseSortS(array())

Where :

array() is the Single array.
status is always TRUE.

Comments :

See Also : cReverseSortD, cReverseSortI, cReverseSortL, cReverseSortS, cReverseSortStr, Array routines

ReverseSortStr
Purpose :

ReverseSortD will sort, in descending order, a string divided in basis elements of a fixed length.

Declare Syntax :

Declare Function cReverseSortStr Lib "time2win.dll" (Txt As String, ByVal nItem As Integer, ByVal ItemLength As
Integer) As Integer

Call Syntax :

status = cReverseSortStr(txt, nItem, ItemLength)

Where :

txt is the string to sort.
nItem is the total element is the string.
ItemLength is the length for one element.
status is FALSE if the length of the string is not the 'nItem * ItemLength', or if length of the string is 0.

is TRUE if all is OK.

Comments :

See Also : cReverseSortD, cReverseSortI, cReverseSortL, cReverseSortS, cReverseSortStr, Array routines

RomanToArabic
Purpose :

RomanToArabic converts a Roman string into an integer or a long integer.

Declare Syntax :

Declare Function cRomanToArabic Lib "time2win.dll" (Txt As String) As Variant

Call Syntax :

test = cRomanToArabic(txt)

Where :

txt is a Roman string.
test returns the Arabic representation of txt.

Comments :

The value returned by this function is an integer or a long integer.

Examples :

test = cArabicToRoman(1994)
test -> MCMXCIV

test = cArabicToRoman(1995)
test -> MCMXCV

test = cArabicToRoman(1993)
test -> MCMXCIII

See Also : cArabicToRoman

SetD
Purpose :

SetD fills, with the same value, all of the elements of a Double array.

Declare Syntax :

Declare Function cSetD Lib "time2win.dll" (array() As Double, ByVal nValue As Double) As Integer

Call Syntax :

status = cSetD(array(), nValue)

Where :

array() is the Double array.
nValue is the Double value to initialize the array.
status is always TRUE.

Comments :

See Also : cSetD, cSetI, cSetL, cSetS, Array routines

SetHandleCount
Purpose :

SetHandleCount specifies the number of file handles the application requires.

Declare Syntax :

Declare Function cSetHandleCount Lib "time2win.dll" (ByVal nHandle As Integer) As Integer

Call Syntax :

test% = cSetHandleCount(nHandle)

Where :

nHandle to number of handles that you want.
test% > 0 if all is OK

= 0 if a problem has occured.

Comments :

The return value is the number of file handles available to the application, if the function is successful. This number
may be less than the number of handles specified.

By default, the maximum number of file handles available to a task is 20.

If the specified number of handle is below or equal to 0, or greater than 255, the returned value is 0

Examples :

test% = cSetHandleCount(0) -> 0
test% = cSetHandleCount(70) -> 70

SetI
Purpose :

SetI fills, with the same value, all of the elements of an Integer array.

Declare Syntax :

Declare Function cSetI Lib "time2win.dll" (array() As Integer, ByVal nValue As Integer) As Integer

Call Syntax :

status = cSetI(array(), nValue)

Where :

array() is the Integer array.
nValue is the Integer value to initialize the array.
status is always TRUE.

Comments :

See Also : cSetD, cSetI, cSetL, cSetS, Array routines

SetL
Purpose :

SetL fills, with the same value, all of the elements of a Long array.

Declare Syntax :

Declare Function cSetL Lib "time2win.dll" (array() As Long, ByVal nValue As Long) As Integer

Call Syntax :

status = cSetL(array(), nValue)

Where :

array() is the Long array.
nValue is the Long value to initialize the array.
status is always TRUE.

Comments :

See Also : cSetD, cSetI, cSetL, cSetS, Array routines

SetS
Purpose :

SetS fills, with the same value, all of the elements of a Single array.

Declare Syntax :

Declare Function cSetS Lib "time2win.dll" (array() As Single, ByVal nValue As Single) As Integer

Call Syntax :

status = cSetS(array(), nValue)

Where :

array() is the Single array.
nValue is the Single value to initialize the array.
status is always TRUE.

Comments :

See Also : cSetD, cSetI, cSetL, cSetS, Array routines

Sleep
Purpose :

Sleep suspends the current execution of a routine for a gived delay.

Declare Syntax :

Declare Function cSleep Lib "time2win.dll" (ByVal Delay As Long) As Integer

Call Syntax :

status% = cSleep(Delay)

Where :

Delay is the time to sleep the current execution of a routine in milliseconds.
status% TRUE if all is OK

FALSE if the delay is below 0.

Comments :

Use this function with care.
Don't set a delay to bigger.
Don't forget that the delay is in milliseconds.

Examples :

status% = cSleep(-10) -> Don't sleep, the delay is negative value.
status% = cSleep(0) -> A very short sleeping.
status% = cSleep(7000) -> Sleep for 7 seconds

 Dim status As Integer

 Call cStartBasisTimer
 status = cSleep(7000)
 MsgBox "Time elapsed for the current sleeping is " & cReadBasisTimer() & " milliseconds"

On my system : "Time elapsed for the current sleeping is 7031 milliseconds"

SortD
Purpose :

SortD will sort, in ascending order, all elements in a Double array.

Declare Syntax :

Declare Function cSortD Lib "time2win.dll" (array() As Double) As Integer

Call Syntax :

status = cSortD(array())

Where :

array() is the Double array.
status is always TRUE.

Comments :

See Also : cSortD, cSortI, cSortL, cSortS, cSortStr, Array routines

SortI
Purpose :

SortI will sort, in ascending order, all elements in an Integer array.

Declare Syntax :

Declare Function cSortD Lib "time2win.dll" (array() As Integer) As Integer

Call Syntax :

status = cSortI(array())

Where :

array() is the Integer array.
status is always TRUE.

Comments :

See Also : cSortD, cSortI, cSortL, cSortS, cSortStr, Array routines

SortL
Purpose :

SortL will sort, in ascending order, all elements in a Long array.

Declare Syntax :

Declare Function cSortL Lib "time2win.dll" (array() As Long) As Integer

Call Syntax :

status = cSortL(array())

Where :

array() is the Long array.
status is always TRUE.

Comments :

See Also : cSortD, cSortI, cSortL, cSortS, cSortStr, Array routines

SortS
Purpose :

SortS will sort, in ascending order, all elements in a Single array.

Declare Syntax :

Declare Function cSortS Lib "time2win.dll" (array() As Single) As Integer

Call Syntax :

status = cSortS(array())

Where :

array() is the Single array.
status is always TRUE.

Comments :

See Also : cSortD, cSortI, cSortL, cSortS, cSortStr, Array routines

SortStr
Purpose :

SortD will sort, in ascending order, a string divided in basis elements of a fixed length.

Declare Syntax :

Declare Function cSortStr Lib "time2win.dll" (Txt As String, ByVal nItem As Integer, ByVal ItemLength As Integer) As
Integer

Call Syntax :

status = cSortStr(txt, nItem, ItemLength)

Where :

txt is the string to sort.
nItem is the total element is the string.
ItemLength is the length for one element.
status is FALSE if the length of the string is not the 'nItem * ItemLength', or if length of the string is 0.

is TRUE if all is OK.

Comments :

See Also : cSortD, cSortI, cSortL, cSortS, cSortStr, Array routines

StringCRC32
Purpose :

StringCRC32 calculates a 32 bits CRC for a gived string.

Declare Syntax :

Declare Function cStringCRC32 Lib "time2win.dll" (Txt As String) As Long

Call Syntax :

test = cStringCRC32(Txt)

Where :

Txt the string to proceed
test the calculated CRC 32 bits in a LONG.

Comments :

if the string if empty, the return value is always -1 (&hFFFFFFFF).

Examples :

test = cStringCRC32("ABCDEFG") &hE6F94BC
test = cStringCRC32("GFEDCBA") &hF0EC0AB3

See also : cFileCRC32, Constants and Types declaration

SubDirectory
Purpose :

SubDirectory retrieves all sub-directories from the specified mask.

Declare Syntax :

Declare Function cSubDirectory Lib "time2win.dll" (ByVal nFilename As String, ByVal firstnext As Integer) As String

Call Syntax :

test$ = cSubDirectory(nFilename, firstnext)

Where :

nFilename the specified mask
firstnext TRUE to retrieve the first directory

FALSE to retrieve the next directory
test$ the retrieved directory

Comments :

To retrieve all sub-directory is a directory, you must Call first this function with the firstnext argument on TRUE and set
it to FALSE for all next directory

Examples :

 Dim Test As String

 Test = cSubDirectory("c:*.*", True)
 Do Until (Len(Test) = 0)
 Debug.Print Test
 Test = cSubDirectory("c:*.*", False)
 Loop

Directories with "c:*.*" argument are :

DOS
TEMP
TMP
BAD.DIR

See also : CallSubDirectories, cFilesInDirectory

SumD
Purpose :

SumD will calculate the sum from all elements in a Double array.

Declare Syntax :

Declare Function cSumD Lib "time2win.dll" (array() As Double) As Double

Call Syntax :

sum = cSumD(array())

Where :

array() is the Double array.
sum is the sum calculated. This value is always a Double value.

Comments :

See Also : cSumD, cSumI, cSumL, cSumS, Array routines

SumI
Purpose :

SumI will calculate the sum from all elements in an Integer array.

Declare Syntax :

Declare Function cSumI Lib "time2win.dll" (array() As Integer) As Double

Call Syntax :

sum = cSumI(array())

Where :

array() is the Integer array.
sum is the sum calculated. This value is always a Double value.

Comments :

See Also : cSumD, cSumI, cSumL, cSumS, Array routines

SumL
Purpose :

SumL will calculate the sum from all elements in a Long array.

Declare Syntax :

Declare Function cSumL Lib "time2win.dll" (array() As Long) As Double

Call Syntax :

sum = cSumL(array())

Where :

array() is the Long array.
sum is the sum calculated. This value is always a Double value.

Comments :

See Also : cSumD, cSumI, cSumL, cSumS, Array routines

SumS
Purpose :

SumS will calculate the sum from all elements in a Single array.

Declare Syntax :

Declare Function cSumS Lib "time2win.dll" (array() As Single) As Double

Call Syntax :

sum = cSumS(array())

Where :

array() is the Single array.
sum is the sum calculated. This value is always a Double value.

Comments :

See Also : cSumD, cSumI, cSumL, cSumS, Array routines

TaskFind
Purpose :

TaskFind retrieves some parameters for a specified loaded task.

Declare Syntax :

Declare Function cTaskFind Lib "time2win.dll" (TASKENTRY As Any, ByVal hTask As Integer) As Integer

Call Syntax :

test% = cTaskFind(TASKENTRY, hTask)

Where :

hTask is the task number
TASKENTRY is the typed variable which receives the parameters 'tagTASKENTRY'
test% TRUE if all is Ok

FALSE if an error has occured

Comments :

The hTask parameter is the task number founded by the cModuleFind or cModules functions.

dwSize Specifies the size of the TASKENTRY structure, in bytes.
hTask Identifies the task handle for the stack.
hTaskParent Identifies the parent of the task.
hInst Identifies the instance handle of the task. This value is equivalent to the task's DGROUP segment
selector.
hModule Identifies the module that contains the currently executing function.
wSS Contains the value in the SS register.
wSP Contains the value in the SP register.
wStackTop Specifies the offset to the top of the stack (lowest address on the stack).
wStackMinimum Specifies the lowest segment number of the stack during execution of the task.
wStackBottom Specifies the offset to the bottom of the stack (highest address on the stack).
wcEvents Specifies the number of pending events.
hQueue Identifies the task queue.
szModule Specifies the name of the module that contains the currently executing function.
wPSPOffset Specifies the offset from the program segment prefix (PSP) to the beginning of the executable code
segment.
hNext Identifies the next entry in the task list. This member is reserved for internal use by Windows.

Examples :

 Dim status As Integer
 Dim MODULEENTRY As tagMODULEENTRY

 status = cModuleFind(MODULEENTRY, "KERNEL")

 Debug.Print "MODULEENTRY.dwSize = " & MODULEENTRY.dwSize
 Debug.Print "MODULEENTRY.szModule = " & MODULEENTRY.szModule
 Debug.Print "MODULEENTRY.hModule = " & MODULEENTRY.hModule
 Debug.Print "MODULEENTRY.wcUsage = " & MODULEENTRY.wcUsage
 Debug.Print "MODULEENTRY.szExePath = " & MODULEENTRY.szExePath
 Debug.Print "MODULEENTRY.wNext = " & MODULEENTRY.wNext

On my system :

MODULEENTRY.dwSize = 276
MODULEENTRY.szModule = KERNEL

MODULEENTRY.hModule = 295
MODULEENTRY.wcUsage = 44
MODULEENTRY.szExePath = K:\WINDOWS\SYSTEM\KRNL386.EXE
MODULEENTRY.wNext = 279

See also : cModules, cModuleFind, cTasks, Constants and Types declaration

Tasks
Purpose :

Tasks retrieves all tasks currently in memory.

Declare Syntax :

Declare Function cTasks Lib "time2win.dll" (TASKENTRY As Any, ByVal firstnext As Integer) As Integer

Call Syntax :

test% = cTasks(TASKENTRY, firstnext)

Where :

TASKENTRY is the typed variable which receives the parameters 'tagTASKENTRY'
firstnext TRUE for the first module

FALSE for each next module
test% TRUE if all is Ok

FALSE if an error has occured or if no more tasks

Comments :

The hTask parameter is the task number founded by the cModuleFind or cModules functions.

dwSize Specifies the size of the TASKENTRY structure, in bytes.
hTask Identifies the task handle for the stack.
hTaskParent Identifies the parent of the task.
hInst Identifies the instance handle of the task. This value is equivalent to the task's DGROUP segment
selector.
hModule Identifies the module that contains the currently executing function.
wSS Contains the value in the SS register.
wSP Contains the value in the SP register.
wStackTop Specifies the offset to the top of the stack (lowest address on the stack).
wStackMinimum Specifies the lowest segment number of the stack during execution of the task.
wStackBottom Specifies the offset to the bottom of the stack (highest address on the stack).
wcEvents Specifies the number of pending events.
hQueue Identifies the task queue.
szModule Specifies the name of the module that contains the currently executing function.
wPSPOffset Specifies the offset from the program segment prefix (PSP) to the beginning of the executable code
segment.
hNext Identifies the next entry in the task list. This member is reserved for internal use by Windows.

Examples :

 Dim status As Integer
 Dim TASKENTRY As tagTASKENTRY

 Close #1
 Open "c:\tmp.tmp" For Output Shared As #1

 Print #1, "dwSize"; Chr$(9);
 Print #1, "hTask"; Chr$(9);
 Print #1, "hTaskParent"; Chr$(9);
 Print #1, "hInst"; Chr$(9);
 Print #1, "hModule"; Chr$(9);
 Print #1, "wSS"; Chr$(9);
 Print #1, "wSP"; Chr$(9);
 Print #1, "wStackTop"; Chr$(9);
 Print #1, "wStackMinimum"; Chr$(9);

 Print #1, "wStackBottom"; Chr$(9);
 Print #1, "wcEvents"; Chr$(9);
 Print #1, "hQueue"; Chr$(9);
 Print #1, "szModule"; Chr$(9);
 Print #1, "wPSPOffset"; Chr$(9);
 Print #1, "hNext"; Chr$(13)

 status = cTasks(TASKENTRY, True)
 Do While (status = True)

 Print #1, TASKENTRY.dwSize; Chr$(9);
 Print #1, TASKENTRY.hTask; Chr$(9);
 Print #1, TASKENTRY.hTaskParent; Chr$(9);
 Print #1, TASKENTRY.hInst; Chr$(9);
 Print #1, TASKENTRY.hModule; Chr$(9);
 Print #1, TASKENTRY.wSS; Chr$(9);
 Print #1, TASKENTRY.wSP; Chr$(9);
 Print #1, TASKENTRY.wStackTop; Chr$(9);
 Print #1, TASKENTRY.wStackMinimum; Chr$(9);
 Print #1, TASKENTRY.wStackBottom; Chr$(9);
 Print #1, TASKENTRY.wcEvents; Chr$(9);
 Print #1, TASKENTRY.hQueue; Chr$(9);
 Print #1, TASKENTRY.szModule; Chr$(9);
 Print #1, TASKENTRY.wPSPOffset; Chr$(9);
 Print #1, TASKENTRY.hNext

 status = cTasks(TASKENTRY, False)

 Loop

 Close #1

On my system :

dwSize hTask hTaskParent hInst hModule wSS wSP wStackTop wStackMinimum
wStackBottom wcEvents hQueue szModule wPSPOffset hNext

 40 4231 1783 8246 4367 8247 -27238 30418 -28190
27076 0 8263 ICONBAR 8279 4439

 40 4439 1783 4398 4463 4399 5850 1022 5992
5992 0 4471 WINEXIT 4447 16279

 40 16279 4231 15878 16295 15879 -4188 -23384 - 10032
-4054 0 16255 MSVC 16271 2087

 40 2087 1783 8030 2095 8031 29198 9004 29334
29334 0 8047 FASTLOAD 8063 1783

 40 1783 335 5846 1799 5847 8202 2358 5950
8304 0 2079 PROGMAN 791 7007

 40 7007 4231 9926 6767 9927 -23760 13124 23498
-23562 1 6879 FOREHELP 6903 4431

 40 4431 1783 4278 4455 4279 7654 2844 6998
7814 1 4359 FREEMEM 4375 12127

 40 12127 1783 9022 12143 9023 -29164 16534 -31948
28672 0 9039 VB 9231 0

See also : cModules, cModuleFind, cTaskFind, Constants and Types declaration

TimeBetween
Purpose :

TimeBetween calculates the time (in minutes) between two hours (in minutes).

Declare Syntax :

Declare Function cTimeBetween Lib "time2win.dll" (ByVal Hr1 As Integer, ByVal Hr2 As Integer) As Integer

Call Syntax :

test% = cTimeBetween(Hr1, Hr2)

Where :

Hr1 the first time (0 to 1439)
Hr2 the second time (0 to 1439)

Comments :

Examples :

test% = cTimeBetween(600, 721) -> 121
test% = cTimeBetween(1438, 62) -> 64

See also : Date, Hour and Time routines

InsertBlocks, InsertBlocksBy, InsertByMask, InsertChars
Purpose :

InsertBlocks inserts different block of char in a gived string separated by '~'.
InsertBlocks inserts different block of char in a gived string separated by a gived separator.
InsertByMask replaces the specified char by a string in a gived string.
InsertChars insert a string starting at a gived position in a gived string.

Declare Syntax :

Declare Function cInsertBlocks Lib "time2win.dll" (Txt As String, Insert As String) As String
Declare Function cInsertBlocksBy Lib "time2win.dll" (Txt As String, Insert As String, Delimitor As String) As String
Declare Function cInsertByMask Lib "time2win.dll" (Txt As String, Mask As String, Insert As String) As String
Declare Function cInsertChars Lib "time2win.dll" (Txt As String, ByVal Position As Integer, Insert As String) As String

Call Syntax :

test$ = cInsertBlocks(Txt, Insert)
test$ = cInsertBlocksBy(Txt, Insert, Delimitor)
test$ = cInsertByMask(Txt, Mask, Insert)
test$ = cInsertChars(Txt, Position, Insert)

Where :

Txt the string to proceed
Insert the string to insert
Delimitorthe delimitor to use for the insert string
Mask the mask to use for the insert string
Position the position to use for the insert string

Comments :

•If the size of the string is 0 The returned string is an empty string.
•The function cInsertBlocks is a subset of the cInsertBlocksBy function.
•The number of blocks for cInsertBlocks, cInsertBlocksBy functions in the string to proceed must be greater than one
from the number of block in the insert string.
•The function cInsertChars is similar to LEFT$(Txt, n) + Insert + RIGHT$(Txt, LEN(Txt) - n)

Examples :

test$ = cInsertBlocks("A~BC~DEF", "x~yz") -> "AxBCyzDEF"

test$ = cInsertBlocksBy("U/VW/XYZ", "a/bc", "/") -> "UaVWbcXYZ"

test$ = cInsertByMask("Nr ## Price $###.##", "#", "0705200") -> "Nr 07 Price $052.00"

test$ = cInsertChars("ABCDEFG", 3, "wxyz") -> "ABCwxyzDEFG"
test$ = cInsertChars("ABCDEFG", 90, "wxyz") -> "ABCDEFGwxyz"
test$ = cInsertChars("ABCDEFG", 0, "wxyz") -> "wxyzABCDEFG"

See also : cGet, cGetIn, cGetBlock

AddDigit, CplDigit, NumDigit, CplAlpha
Purpose :

AddDigit sums all numerics chars in a gived string.
CplDigit returns the complementary string from a gived string composed with numerics chars.
NumDigit sums and sums all numerics chars in a gived string to have a maximum value of 9.
CplDigit returns the complementary string from a gived string composed with ascii chars.

Declare Syntax :

Declare Function cAddDigit Lib "time2win.dll" (Txt as string) As Integer
Declare Function cCplDigit Lib "time2win.dll" (Txt as string) As String
Declare Function cNumDigit Lib "time2win.dll" (Txt as string) As Integer
Declare Function cCplAlpha Lib "time2win.dll" (Txt As String) As String

Call Syntax :

test% = cAddDigit(Txt)
test$ = cCplDigit(Txt)
test% = cNumDigit(Txt)
test$ = cCplAlpha(Txt)

Where :

Txt$ the string to proceed
test% the result
test$ the result for CplAlpha

Comments :

For AddDigit, CplDigit, NumDigit if one or more chars are different from digit, the value for each one is 0

Examples :

test% = cAddDigit("1234567890987654321712345678909876543217") -> 194
test% = cNumDigit("1234567890987654321712345678909876543217") -> 5

test$ = cCplDigit("1234567890987654321712345678909876543217") ->
"8765432109012345678287654321090123456782"

test% = cAddDigit("8765432109012345678287654321090123456782") -> 166
test% = cNumDigit("8765432109012345678287654321090123456782") -> 4

test$ = cCplAlpha("ÀÁÂÃÄÅÆ") -> "?>=<;:9"

GetCtlX
Purpose :

The functions below applies to a custom control.

GetCtlCaption returns the .Caption property.
GetCtlClass returns the class name defined in the properties windows in the design-mode of VB.
GetCtlContainer returns the name of the container did contains the control. The container can be the form or an
another control.
GetCtlDataField returns the .DataField property.
GetCtlForm returns the name of the form did contains the control.
GetCtlIndex returns the .Index property. If the control has no index, -1 is returned.
GetCtlName returns the .Name of the control.
GetCtlNameIndex returns the name and the of the control. The format is Name(x), if no index => Name is used.
GetCtlPropCaption returns the position of the .Caption property in the definition table of the control.
GetCtlPropDataField returns the position of the .DataField property in the definition table of the control.
GetCtlPropText returns the position of the .Text property in the definition table of the control.
GetCtlTag returns the .Tag property of the control. The returned string is limited to the first chr$(0) founded.
GetCtlTagSized returns the full .Tag property of the control.
GetCtlText returns the .Text property of the control.
GetHwnd returns the .hWnd of the control. If the control has no .hWnd, the returned value is 0.

Declare Syntax :

Declare Function cGetCtlCaption Lib "time2win.dll" (Ctl As Control) As String
Declare Function cGetCtlClass Lib "time2win.dll" (Ctl As Control) As String
Declare Function cGetCtlContainer Lib "time2win.dll" (Ctl As Control) As String
Declare Function cGetCtlDataField Lib "time2win.dll" (Ctl As Control) As String
Declare Function cGetCtlForm Lib "time2win.dll" (Ctl As Control) As String
Declare Function cGetCtlIndex Lib "time2win.dll" (Ctl As Control) As Integer
Declare Function cGetCtlName Lib "time2win.dll" (Ctl As Control) As String
Declare Function cGetCtlNameIndex Lib "time2win.dll" (Ctl As Control) As String
Declare Function cGetCtlPropCaption Lib "time2win.dll" (Ctl As Control) As Integer
Declare Function cGetCtlPropDataField Lib "time2win.dll" (Ctl As Control) As Integer
Declare Function cGetCtlPropText Lib "time2win.dll" (Ctl As Control) As Integer
Declare Function cGetCtlTag Lib "time2win.dll" (Ctl As Control) As String
Declare Function cGetCtlTagSized Lib "time2win.dll" (Ctl As Control) As String
Declare Function cGetCtlText Lib "time2win.dll" (Ctl As Control) As String
Declare Function cGetHwnd Lib "time2win.dll" (Ctl As Control) As Integer

Call Syntax :

The purpose and the declare syntax are very explicite.

Where :

Ctl the name of the control to proceed

Comments :

•The advantage to use these routines is that these routines doesn't generates an error if the property not exists.

Examples :

See also : cGetX, cSetX, cSetCtlX

TrueBetween
Purpose :

TrueBetween checks to see if a value is fully between two other values.

Declare Syntax :

Declare Function cTrueBetween Lib "time2win.dll" (Var As Variant, Var1 As Variant, Var2 As Variant) As Integer

Call Syntax :

test = cTrueBetween(var, var1, var2)

Where :

var value to test
var1 first value
var2 second value
test TRUE if var is fully between var1 and var2

FALSE if var is not fully between var1 and var2

Comments :

var, var1, var2 are Variant value. In this routine, only Integer, Long, Single, Double are supported.

Examples :

var = 5
var1 = 1
var2 = 10
test = cTrueBetween(var, var1, var2)

-> test = TRUE

var = 10
test = cTrueBetween(var, var1, var2)

-> test = FALSE

See Also : cBetween

GetX
Purpose :

The functions below applies to the .hWnd of a custom control.

GetCaption returns the .Caption property.
GetClass returns the class name defined in the properties windows in the design-mode of VB.
GetContainer returns the name of the container did contains the control. The container can be the form or an another
control.
GetDataField returns the .DataField property.
GetForm returns the name of the form did contains the control.
GetIndex returns the .Index property. If the control has no index, -1 is returned.
GetNameIndex returns the name and the of the control. The format is Name(x), if no index => Name is used.
GetText returns the .Text property of the control.

Declare Syntax :

Declare Function cGetCaption Lib "time2win.dll" (ByVal hWnd As Integer) As String
Declare Function cGetClass Lib "time2win.dll" (ByVal hWnd As Integer) As String
Declare Function cGetContainer Lib "time2win.dll" (ByVal hWnd As Integer) As String
Declare Function cGetDataField Lib "time2win.dll" (ByVal hWnd As Integer) As String
Declare Function cGetForm Lib "time2win.dll" (ByVal hWnd As Integer) As String
Declare Function cGetIndex Lib "time2win.dll" (ByVal hWnd As Integer) As Integer
Declare Function cGetNameIndex Lib "time2win.dll" (ByVal hWnd As Integer) As String
Declare Function cGetText Lib "time2win.dll" (ByVal hWnd As Integer) As String

Call Syntax :

The purpose and the declare syntax are very explicite.

Where :

hWnd the hWnd of the custom control.

Comments :

•The advantage to use these routines is that these routines doesn't generates an error if the property not exists.
•If the custom control doesn't have a .hWnd (Label control b.e.), you must use the cGetCtlX function.

Examples :

See also : cGetCtlX ,cSetX, cSetCtlX

MakePath
Purpose :

MakePath creates a single path, composed of a drive letter, directory path, filename, and filename extension.

Declare Syntax :

Declare Function cMakePath Lib "time2win.dll" (ByVal nDrive As String, ByVal nDir As String, ByVal nFilename As
String, ByVal Ext As String) As String

Call Syntax :

test$ = cMakePath(nDrive, nDir, nFilename, Ext)

Where :

nDrive

The nDrive argument contains a letter (A, B, etc.) corresponding to the desired drive and an optional trailing colon.
MakePath routine will insert the colon automatically in the composite path if it is missing. If drive is a null character or
an empty string, no drive letter and colon will appear in the composite path string.

nDir

The nDir argument contains the path of directories, not including the drive designator or the actual filename. The
trailing slash is optional, and either forward slashes (\) or backslashes (/) or both may be used in a single dir
argument. If a trailing slash (/ or \) is not specified, it will be inserted automatically. If dir is a null character or an
empty string, no slash is inserted in the composite path string.

nFilename

The nFilename argument contains the base filename without any extensions. If nFilename is an EMPTY string, no
filename is inserted in the composite path string.

Ext

The Ext argument contains the actual filename extension, with or without a leading period (.). MakePath routine will
insert the period automatically if it does not appear in ext. If ext is a null character or an empty string, no period is
inserted in the composite path string.

Comments :

Examples :

test1$ = cMakePath("c","tmp","test","dat")
test2$ = cMakePath("c","\tmp","test","dat")
test3$ = cMakePath("c","tmp","test","")
test4$ = cMakePath("c","","test","dat")

On my system :

test1$ = "c:tmp\test.dat"
test2$ = "c:\tmp\test.dat"
test3$ = "c:tmp\test"
test4$ = "c:test.dat"

See also : cSplitPath, cFullPath

Uncompact
Purpose :

Uncompact uncompacts a string composed of numeric chars.

Declare Syntax :

Declare Function cUncompact Lib "time2win.dll" (Txt As String) As String

Call Syntax :

test = cUncompact(Txt)

Where :

Txt is the string (only numeric chars) to uncompact
test returns the string uncompacted

Comments :

The size of the returned string is always a multiple of 2.

Examples :

Txt = "0123456789"
test = cUncompact(Txt)

test = "30313233343536373839"

See also : cCompact

UniqueFileName
Purpose :

UniqueFileName creates a unique filename by modifying the given template argument. The template argument must
be a string with two chars maximum.

Declare Syntax :

Declare Function cUniqueFileName Lib "time2win.dll" (Txt As String) As String

Call Syntax :

test$ = cUniqueFileName(Txt)

Where :

Txt the filename pattern. If the size is greater than 2, the default pattern is used.
test$ the unique filename in the form of the chars specifien in Txt plus one char and five digits.

Comments :

The alphanumeric character is 0 ('0') the first time cUniqueFileName is Called with a given template.
In subsequent Calls from the same process with copies of the same template, cUniqueFileName checks to see if
previously returned names have been used to create files. If no file exists for a given name, cUniqueFileName returns
that name. If files exist for all previously returned names, cUniqueFileName creates a new name by replacing the
alphanumeric character in the name with the next available lowercase letter. For example, if the first name returned is
t012345 and this name is used to create a file, the next name returned will be ta12345. When creating new names,
cUniqueFileName uses, in order, '0' and then the lowercase letters 'a' through 'z'.

Note that the original template is modified by the first Call to cUniqueFileName. If you then Call the cUniqueFileName
function again with the same template (i.e., the original one), you will get an error.

The cUniqueFileName function generates unique filenames but does not create or open files. If the filename returned
is not created, each subsequent Calls returns the same filename.

If the filename pattern is not specified (by passing an EMPTY string), the default pattern '~~' is used.

Examples :

 Dim Tmp As String

 Tmp = cUniqueFileName("MC") -> "MC040201"
 debug.print Tmp
 Close #1
 Open "c:\" + Tmp For Output Shared As #1
 Close #1

 Tmp = cUniqueFileName("MC") -> "MCa40201"
 debug.print Tmp
 Close #1
 Open "c:\" + Tmp For Output Shared As #1
 Close #1

 Tmp = cUniqueFileName("MC") -> "MCb40201"
 debug.print Tmp
 Close #1
 Open "c:\" + Tmp For Output Shared As #1
 Close #1

If you don't create the file, the same filename is returned, see below :

 Tmp = cUniqueFileName("MC") -> "MCc40201"
 Tmp = cUniqueFileName("MC") -> "MCc40201"
 Tmp = cUniqueFileName("MC") -> "MCc40201"

ChangeChars
Purpose :

ChangeChars changes all chars specifien by others chars in a string.

Declare Syntax :

Declare Sub cChangeChars Lib "time2win.dll" (Txt As String, charSet As String, newCharSet As String)

Call Syntax :

Call cChangeChars(Txt, charSet, newCharSet)

Where :

Txt the string to process
charSet the chars in the string to be changed
newCharSet the new chars

Comments :

Normally, the size of the newCharSet and charSet must be the same. If the size are not the same, the smallest size
is used.

Examples :

Txt = "ABCDEF"
charSet = "ACE"
newCharSet = "ace"
Call cChangeChars(Txt, charSet, newCharSet)

Txt = "aBcDeF"

See also : cChangeCharsUntil

ChangeCharsUntil
Purpose :

ChangeCharsUntil changes all chars specifien by others chars in a string until a char is encountered.

Declare Syntax :

Declare Sub cChangeCharsUntil Lib "time2win.dll" (Txt As String, charSet As String, newCharSet As String, nUntil As
String)

Call Syntax :

Call cChangeChars(Txt, charSet, newCharSet, nUntil)

Where :

Txt the string to process
charSet the chars in the string to be changed
newCharSet the new chars
nUntil the char to stop the change

Comments :

Normally, the size of the newCharSet and charSet must be the same. If the size are not the same, the smallest size
is used.
If the size of nUntil is 0 then all chars of the string is proceeded.
If the size of nUntil is >1 only the first char is used.

Examples :

Txt = "ABCDEF"
charSet = "ACE"
newCharSet = "ace"
nUntil = "D"
Call cChangeCharsUntil(Txt, charSet, newCharSet, nUntil)

Txt = "aBcDEF"

See also : cChangeChars

ChangeTaskName
Purpose :

ChangeTaskName changes the name of the task. You see change in the Task Manager by pressing the CTRL + ESC
keys.

Declare Syntax :

Declare Sub cChangeTaskName Lib "time2win.dll" (ByVal hWnd As Integer, ByVal Text As String)

Call Syntax :

Call cChangeTaskName(Form.hWnd, Text)

Where :

Form.hWnd is the hWnd of your application
Text is the new task name to given at your application

Comments :

This is useful to set a particular task name at your application.

Examples :

Call cChangeTaskName(Me.hWnd, "Hello world")
-> press the CTRL + ESC keys to see the change in the Task Manager

See also : cGetTaskName, cGetChangeTaskName

EnableFI, DisableFI
Purpose :

EnableFI and DisableFI enables or disables mouse and keyboard input to the given form by sending a WM_ENABLE
message and displaying an invisible control such a picture or an image. When input is disabled, the form ignores
input such as mouse clicks and key presses. When input is enabled, the form processes all input.

Declare Syntax :

Declare Sub cEnableFI Lib "time2win.dll" (Ctl As Control)
Declare Sub cDisableFI Lib "time2win.dll" (Ctl As Control)

Call Syntax :

Call cEnableFI(Ctl)
Call cDisableFI(Ctl)

Where :

Ctl the invisible control that you want become visible (cDisableFI) or invisible (cEnableFI).

Comments :

I use this function with a picture control which containes a timer BMP.

If the enabled state of the form is changing, a WM_ENABLE message is sent before this function returns. If a form is
already disabled, all its child forms are implicitly disabled, although they are not sent a WM_ENABLE message.

After some experience, I've noted that some custom controls doesn't answers correctly to this function. In fact, all
controls can't receive the input when you Call cDisableFI.

Use this with caution.

See also : cEnableForm, cDisableForm

EnableForm, DisableForm
Purpose :

EnableForm and DisableForm enables or disables mouse and keyboard input to the given form by sending a
WM_ENABLE message. When input is disabled, the form ignores input such as mouse clicks and key presses. When
input is enabled, the form processes all input.

Declare Syntax :

Declare Sub cEnableForm Lib "time2win.dll" (ByVal hWnd As Integer)
Declare Sub cDisableForm Lib "time2win.dll" (ByVal hWnd As Integer)

Call Syntax :

Call cEnableForm(Form.hWnd)
Call cDisableForm(Form.hWnd)

Where :

Form.hWnd the .hWnd of the specified form

Comments :

If the enabled state of the form is changing, a WM_ENABLE message is sent before this function returns. If a form is
already disabled, all its child forms are implicitly disabled, although they are not sent a WM_ENABLE message.

Use this with caution.

See also : cEnableFI, cDisableFI

EnableRedraw, DisableRedraw, EnableCtlRedraw,
DisableCtlRedraw
Purpose :

EnableRedraw and DisableRedraw sends a WM_SETREDRAW message from a hWnd of a control to allow changes
in that window to be redrawn or to prevent changes in that window from being redrawn.

EnableCtlRedraw and DisableCtlRedraw sends a WM_SETREDRAW message to a control to allow changes in that
window to be redrawn or to prevent changes in that window from being redrawn.

Declare Syntax :

Declare Sub cEnableRedraw Lib "time2win.dll" (ByVal hWnd As Integer)
Declare Sub cDisableRedraw Lib "time2win.dll" (ByVal hWnd As Integer)

Declare Sub cEnableCtlRedraw Lib "time2win.dll" (Ctl As Control)
Declare Sub cDisableCtlRedraw Lib "time2win.dll" (Ctl As Control)

Call Syntax :

Call cEnableRedraw(Ctl.hWnd)
Call cDisableRedraw(Ctl.hWnd)

Call cEnableCtlRedraw(Ctl)
Call cDisableCtlRedraw(Ctl)

Where :

Comments :

The WM_SETREDRAW message can be used to set and clear the redraw flag for a window. This message is very
useful for
preventing a list box from being updated when many items are being added to it, and then allowing the list box to be
redrawn when all
of the changes have been made to its contents. Using this technique prevents a list box that is currently visible from
flashing
constantly as its contents are being updated.

This message sets or clears the redraw flag. If the redraw flag is cleared, the contents of the specified window will not
be updated
after each change, and the window will not be repainted until the redraw flag is set. For example, an application that
needs to add
several items to a list box can clear the redraw flag, add the items, and then set the redraw flag. Finally, the
application can Call the
InvalidateRect function to cause the list box to be repainted.

If the custom control doesn't have a .hWnd (Label control b.e.), you must use the XCtlRedraw routine.

Fill
Purpose :

Fill fills a string with some chars.

Declare Syntax :

Declare Sub cFill Lib "time2win.dll" (Txt As String, Fill As String)

Call Syntax :

Call cCreateAndFill(Txt, Fill)

Where :

Txt the string to proceed
Fill the chars to fill in the string

Comments :

This routine is a superset of String$. In fact, STRING$ can only use a char to fill a string.

Examples :

Txt = space$(14)
Fill = "AbC"
Call cFill(Txt, Fill)

test = "AbCAbCAbCAbCAb"

See also : cCreateAndFill

KillFocus
Purpose :

KillFocus kills and recreates the focus of a gived hWnd

Declare Syntax :

Declare Sub cKillFocus Lib "time2win.dll" (ByVal hWnd As Integer)

Call Syntax :

Call cKillFocus(hWnd)

Where :

hWnd the hWnd of the control

Comments :

PutIni
Purpose :

see Comments

Declare Syntax :

Declare Sub cPutIni Lib "time2win.dll" (ByVal AppName As String, ByVal szItem As String, ByVal szDefault As String,
ByVal InitFile As String)

Call Syntax :

Call cPutIni(AppName, szItem, szDefault, InitFile)

Where :

AppName a string that specifies the section to which the string will be copied. If the section does not exist, it is
created.
szItem a string containing the entry to be associated with the string. If the entry does not exist in the
specified section, it is created.

If this parameter is NULL, the entire section, including all entries within the section, is deleted.
szDefault a string to be written to the file. If this parameter is NULL, the entry specified by the szItem
parameter is deleted.
InitFile a filename that names the initialization file.

Comments :

To improve performance, Windows keeps a cached version of the most-recently accessed initialization file. If that
filename is specified and the other three parameters are NULL, Windows flushes the cache.

Sections in the initialization file have the following form:

[section]
entry=string

Examples :

Call cPutIni("Desktop","IconTitleFaceName","MS Sans Serif","WIN.INI")

See also : cGetIni

ResetFocus
Purpose :

ResetFocus kills the focus of a gived hWnd and set the focus to an another hWnd.

Declare Syntax :

Declare Sub cResetFocus Lib "time2win.dll" (ByVal hWnd1 As Integer, ByVal hWnd2 As Integer)

Call Syntax :

Call cResetFocus(hWnd1, hWnd2)

Where :

hWnd1 the hWnd of the control that you want kill the focus.
hWnd2 the hWnd of the control that you want set the focus.

Comments :

ReverseAllBits
Purpose :

ReverseAllBits reverses all bits in a gived string

Declare Syntax :

Declare Sub cReverseAllBits Lib "time2win.dll" (Txt As String)

Call Syntax :

Call cReverseAllBits(Txt)

Where :

Txt the string to proceed

Comments :

See also : Bit String Manipulation routines

ReverseAllBitsByChar
Purpose :

ReverseAllBitsByChar reverses all bits by each char in a gived string

Declare Syntax :

Declare Sub cReverseAllBitsByChar Lib "time2win.dll" (Txt As String)

Call Syntax :

Call cReverseAllBitsByChar(Txt)

Where :

Txt the string to proceed

Comments :

See also : Bit String Manipulation routines

SetAllBits
Purpose :

SetAllBits sets all bits of a gived string to Set state or Reset state.

Declare Syntax :

Declare Sub cSetAllBits Lib "time2win.dll" (Txt As String, ByVal Value As Integer)

Call Syntax :

Call cSetAllBits(Txt, Value)

Where :

Txt the string to proceed
Value TRUE to Set all bits

FALSE to Reset all bits

Comments :

See also : Bit String Manipulation routines

SetBit
Purpose :

SetBit sets a gived bit in a gived string to Set state or Reset state.

Declare Syntax :

Declare Sub cSetBit Lib "time2win.dll" (Txt As String, ByVal Position As Integer, ByVal Value As Integer)

Call Syntax :

Call cSetBit(Txt, Position, Value)

Where :

Txt the string to proceed
Position the bit position
Value TRUE to Set the bit

FALSE to Reset the bit

Comments :

The first bit in the string is the bit 0.

See also : Bit String Manipulation routines

SetBitToFalse
Purpose :

SetBitToFalse sets a gived bit in a gived string to Reset state.

Declare Syntax :

Declare Sub cSetBitToFalse Lib "time2win.dll" (Txt As String, ByVal Position As Integer)

Call Syntax :

Call cSetBitToFalse(Txt, Position)

Where :

Txt the string to proceed
Position the bit position to Reset

Comments :

The first bit in the string is the bit 0. This routine is a short-cut routine from cSetBit(Txt, Position, FALSE)

See also : Bit String Manipulation routines

SetBitToTrue
Purpose :

SetBitToTrue sets a gived bit in a gived string to Set state.

Declare Syntax :

Declare Sub cSetBitToTrue Lib "time2win.dll" (Txt As String, ByVal Position As Integer)

Call Syntax :

Call cSetBitToTrue(Txt, Position)

Where :

Txt the string to proceed
Position the bit position to Set

Comments :

The first bit in the string is the bit 0. This routine is a short-cut routine from cSetBit(Txt, Position, TRUE)

See also : Bit String Manipulation routines

FileFilter, FileFilterNot
Purpose :

FileFilter copies one file to an another file but filters some chars.
FileFilterNot copies one file to an another file but filters chars not present in the filter..

Declare Syntax :

Declare Function cFileFilter Lib "time2win.dll" (ByVal file1 As String, ByVal file2 As String, Filter As String) As Long
Declare Function cFileFilterNot Lib "time2win.dll" (ByVal file1 As String, ByVal file2 As String, Filter As String) As Long

Call Syntax :

test& = cFileFilter(file1, file2, filter)
test& = cFileFilterNot(file1, file2, filternot)

Where :

file1$ is the source file.
file2$ is the destination file.
filter$ is the filter to use to remove chars from the source file.
filternot$ is the filter to use to remove chars not present in the filter from the source file.
test& > 0 if all is OK (the returned value is the total bytes copied),

< 0 if an error has occured.

Comments :

The returned value can be negative and have the following value :

-1 the filter is an EMPTY string.
-32730 reading error for file 1.
-32740 writing error for file 2.
-32750 opening error for file 1.
-32751 opening error for file 2.
-32760 allocation error for memory buffer 1.
-32761 allocation error for memory buffer 2.

Examples :

test& = cFileFilter("c:\autoexec.bat", "c:\autoexec.tab",
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz")
test& = cFileFilterNot("c:\autoexec.bat", "c:\autoexec.tab",
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz")

See also : cFileCopy

SplitPath
Purpose :

SplitPath breaks a full path into its four components.

Declare Syntax :

Declare Function cSplitPath Lib "time2win.dll" (ByVal nFilename As String, SPLITPATH As Any) As Integer

Call Syntax :

test% = cSplitPath(nFilename, SPLITPATH)

Where :

nFilename is the name of a file containing the full path to access it.
SPLITPATH is the type'd variable to receive the four components.
test% TRUE if all is OK,

FALSE if an error occurs.

Comments :

If the file is not available or if an error occurs when accessing the file, the returned value is always 0.

The four components are :

nDrive Contains the drive letter followed by a colon (:) if a drive is specified in path.
nDir Contains the path of subdirectories, if any, including the trailing slash.
nName Contains the base filename without any extensions.
nExt Contains the filename extension, if any, including the leading period (.).

The return parameters in SPLITPATH will contain empty strings for any path components not found in path.

Examples :

Dim SPLITPATH As tagSPLITPATH

Call cSplitPath("C:\AUTOEXEC.BAT", SPLITPATH)

On my system :

SPLITPATH.nDrive is "C"
SPLITPATH.nDir is "\"
SPLITPATH.nName is "AUTOEXEC"
SPLITPATH.nExt is ".BAT"

See also : cFullPath, cMakePath, Constants and Types declaration

Revision History
See also : New Features

Version Comments

1.28 Adds TimeOut functionnality (from 2 to 30 seconds by step of 2 seconds) and display TimeOut to
cLngMsgBox, cLngBoxMsg.

Adds the detection of CD-ROM drive (with MSCDEX driver) in cGetDriveType.
Adds some errors code and network drive validation for cIsFilenameValid.
cKillFile, cKillFileAll, now, returns TRUE if the filename not exists.
Now, all files, from the executable demo, are included. (Be indulgent, no comments are in the demo).

1.22 no revision.

1.21 Removes the need of passing the letter drive in cFilesSizeOnDisk and cFilesSlack by using cSplitPath.
Now, cFilesSize, cFilesSizeOnDisk, cFilesSlack and cFilesInDirectory take care of the file attribute (Read-

Only, System, Hidden).
Now, cAlllSubDirectories can handle 700 directories (in place of 300) of maximum 70 chars long each.
Changes cSplitPath from sub to function to check if the filename is valid.
Improves cFileCopy, cFileFilter, cFileFilterNot, cCmpFileContents speed performance.
Improves cFileEncrypt, cFileDecrypt, cFileCompressTab, cFileExpandTab speed performance.
Improves cFileCRC32 speed performance.
Changes some errors number returned for standardization (see Returned Errors).

Corrects a problem with cIsFilenameValid (some valid filename was not check als valid).
Corrects a problem with cGetFileVersion (sometimes GPF when accessing '\StringFileInfo\04090000').
Corrects a problem with cGetFileVersionInfo (sometimes returns a chr$(0)).

1.14 Modify the encrypt/decrypt algorithm. (cEncrypt, cDecrypt, cFileEncrypt, cFileDecrypt).

1.07 Add a new protection algorithm.
Add modal dialog box for unregistered version in place of message box.

1.00 Initial release of the 'TIME TO WIN' data link library for VB 3.0.

New Features
See also : Revision History

Version Comments

1.28 Merge two files in one
cFileMerge
Search and replace a string in a file (search can be case-sensitive or not)
cFileSearchAndReplace
Search a string in a file (search is case-sensitive or not)
cFileSearch
Count occurence of a string in a file (search can be case-sensitive or not)
cFileSearchCount
Check the specified ISBN (International Standard Book Numbers) cIsISBN
Extend the use of pattern matching with [..], [!..] constructs and hexa
cPatternExtMatch
Convert a string into a morse string cMorse
Kill a group of files even if one or more file are read-only file in the directory and all sub-dirs
cKillDirFilesAll
Kill a sub-directory and its associated directories cKillDirs
Base conversion between two radixs
cBaseConversion
Count lines, words and chars in a file
cFileStatistics
Create a new big sized array on disk or use an existing big sized array on disk.
cDACreate
Close an big sized array and keep it or close a big sized array and destroy it.
cDAClose
Read an element from a big sized array on disk. cDAGet
Save an element to a big sized array on disk. cDAPut
Read a type'd variable from a big sized array on disk.
cDAGetType
Save a type'd variable to a big sized array on disk.
cDAPutType
Clear a big sized array (fill it with chr$(0)).
cDAClear

1.22 Modification of a system menu in one call (6 different languages)
cLngSysMenu

1.21 Multi-Language Message Box (fully replacement of the standard sub MsgBox)
cLngBoxMsg
Multi-Language Message Box (fully replacement of the standard function MsgBox)
cLngMsgBox
Multi-Language InputBox (fully replacement of the standard function InputBox$)
cLngInpBox
Convert a partial path stored in a path to a fully qualified path.
cFullPath
Make a full qualified path composed of a drive letter, directory, filename, extension
cMakePath
Mix all chars in a gived string in random position.
cMixChars
Kill a file even if the file is a read-only file.
cKillFileAll
Kill a group of file even if one or more file are read-only file.
cKillFilesAll
Count the total number of lines in an ASCII file.
cFileLineCount

Convert an ASCII file to a file with lower case char.
cFileToLower
Convert an ASCII file to a file with upper case char.
cFileToUpper
Operation on big numbers (big double) cBig.x.
Convert a value (in the form of a string) into a big double representation (for use with cBig.x.) cMKN
Operation on big numbers (in the form of a string)
cBigNum

1.14 Compare one file to another file (attribute, contents, size, time) cCmpFile.x.
Copy a file to an another file
cFileCopy
Copy a file to an another file but with filtering some chars
cFileFilter
Copy a file to an another file but with filtering chars not present in the filter
cFileFilterNot
Copy a file to an another file but with encryption
cFileEncrypt
Copy a file to an another file but with decryption
cFileDecrypt
Copy a file to an another file but with compressing spaces into tab
cFileCompressTab
Copy a file to an another file but with expanding tab into spaces
cFileExpandTab
Split a full path breaks into its four components.
cSplitPath
Check if the name of a file is valid
cIsFilenameValid

1.07 Implementation for some languages : French, Dutch, German, English, Italian, Spanish
Constants and Types declaration
Full implementation for extracting the day name and the month name in different language.
cGet.x.Day, cGet.x.Month
Date and time in a normalized string in different language from a language number .
cGetAscTime
Cluster size on a specified disk.
cGetDiskClusterSize
Physical size of files by file mask on a disk.
cFilesSizeOnDisk
Slack percent for files by file mask on a disk. cFilesSlack
State (enabled or disabled) of a form.
cIsFormEnabled
Full class name of a specified control.
cGetClassName
Save/Read language information from a form c.x.CtlLanguage

1.00 Initial release of the 'TIME TO WIN' data link library.

FileCopy
Purpose :

FileCopy copies one file to an another file.

Declare Syntax :

Declare Function cFileCopy Lib "time2win.dll" (ByVal file1 As String, ByVal file2 As String) As Long

Call Syntax :

test& = cFileCopy(file1, file2)

Where :

file1$ is the source file.
file2$ is the destination file.
test& > 0 if all is OK (the returned value is the total bytes copied),

< 0 if an error has occured.

Comments :

The returned value can be negative and have the following value :

-32720 the number of chars in a block for writing differs from the number of chars for reading.
-32730 reading error for file 1.
-32740 writing error for file 2.
-32750 opening error for file 1.
-32751 opening error for file 2.
-32760 allocation error for memory buffer.

Examples :

test& = cFileCopy("c:\autoexec.bat", "c:\autoexec.tab")

See also : cFileFilter, cFileFilterNot, cFileMerge

SetDefaultSeparator
Purpose :

SetDefaultSeparator sets the default char for use the cGet function.

Declare Syntax :

Declare Sub cSetDefaultSeparator Lib "time2win.dll" (Separator As String)

Call Syntax :

Call cSetDefaultSeparator(Separator)

Where :

Separator the new separator

Comments :

The default char is '|'.
This char is changed for all applications did use the TIME2WIN.DLL.
If you must initialize the default, change it only at the starting of your program.

GetSeparatorX
Purpose :

All values returned are readed from the Win.INI file.

GetCountry returns the country name.
GetCountryCode returns the country code.
GetCurrency returns the currency.
GetDateFormat returns the format for the date.
GetDateSeparator returns the separator for the date.
GetHourFormat returns the format for the hour.
GetLanguage returns the letters for the language.
GetListSeparator returns the separator for list.
GetTimeSeparator returns the separator for the date.
GetWinINI returns the information for a gived item (see Constants and Types declaration)

Declare Syntax :

Declare Function cGetCountry Lib "time2win.dll" () As String
Declare Function cGetCountryCode Lib "time2win.dll" () As String
Declare Function cGetCurrency Lib "time2win.dll" () As String
Declare Function cGetDateFormat Lib "time2win.dll" () As String
Declare Function cGetDateSeparator Lib "time2win.dll" () As String
Declare Function cGetHourFormat Lib "time2win.dll" () As String
Declare Function cGetLanguage Lib "time2win.dll" () As String
Declare Function cGetListSeparator Lib "time2win.dll" () As String
Declare Function cGetTimeSeparator Lib "time2win.dll" () As String
Declare Function cGetWinINI Lib "time2win.dll" (ByVal Info As Integer) As String

Call Syntax :

The purpose and the declare syntax are very explicite.

Where :

Info the number of the desired item
GET_TIME_SEPARATOR
GET_DATE_SEPARATOR
GET_TIME_FORMAT
GET_DATE_FORMAT
GET_CURRENCY
GET_LANGUAGE
GET_COUNTRY
GET_COUNTRY_CODE
GET_LIST_SEPARATOR
GET_DEFAULT_PRINTER

Comments :

•The advantage to use these routines is that these routines is very fast and doesn't use the WINDOWS API in VB.

Examples :

GetDateSeparator is '/'
GetTimeSeparator is ':'
GetListSeparator is ';'
GetDateFormat is 'dd/mm/yyyy'
GetHourFormat is 'hh:nn'
GetCurrency is 'FB'
GetLanguage is 'fra'
GetCountry is 'Belgium (French)'
GetCountryCode is '32'

See also : cGetIni

Installation
Demonstration version :

The files TIME2WIN.DLL and TIME2WIN.HLP should be copied in your WINDOWS\SYSTEM directory.

Registered version :

The files TIME2WIN.DLL, TIME2WIN.HLP should be copied in your WINDOWS\SYSTEM directory.
The file TIME2WIN.LIC should be copied in your WINDOWS directory.

Distribution note:

When you create and distribute applications that use 'TIME TO WIN' data link library, you should install the file
'TIME2WIN.DLL' in the customer's Microsoft Windows \SYSTEM subdirectory. The Visual Basic Setup Kit included
with the Professional VB product provides tools to help you write setup programs that install you applications
correctly.

You are not allowed to distribute 'TIME2WIN.LIC' file with any application that you distribute.

SetWait, StartWait, CheckWait
Purpose :

SetWait sets the time to wait in a specified timer.
StartWait starts the specified timer.
CheckWait checks if the specified timer has reached the time to wait.

Declare Syntax :

Declare Sub cSetWait Lib "time2win.dll" (ByVal nTimer As Integer, ByVal nValue As Long)
Declare Sub cStartWait Lib "time2win.dll" (ByVal nTimer As Integer)
Declare Function cCheckWait Lib "time2win.dll" (ByVal nTimer As Integer) As Integer

Call Syntax :

Call cSetWait(nTimer, nValue)
Call cStartWait(nTimer)
test% = cCheckWait(nTimer)

Where :

nTimer is the timer counter between 1 TO 32.
nValue is the value to wait in milliseconds.
test% TRUE if the time to wait is reached.

FALSE is the time to wait is not reached.

Comments :

The value of timers is in milliseconds.
The accuracy of timers is 55 millisecond (1/18.2 second).

Examples :

 Dim i As Long
 Dim n As Long

 i = 0
 Call cStartTimer(32)
 Call cSetWait(7, 1000)
 Call cStartWait(7)
 Do Until (cCheckWait(7) = True)
 i = i + 1
 n = i * 2
 Loop
 MsgBox "Total iterations in 1 second (1000 milliseconds) is " & i & ", waiting time is " & cReadTimer(32) & "
milliseconds"

On my system : "Total iterations in 1 second (1000 milliseconds) is 54929, waiting time is 1043 milliseconds"

See also : cReadTimer, cStartTimer, cStopTimer, Timer functions

StartBasisTimer, ReadBasisTimer, StopBasisTimer
Purpose :

StartBasisTimer starts the default timer.
ReadBasisTimer reads the value of the default timer.
StopBasisTimer stops the value of the default timer.

Declare Syntax :

Declare Sub cStartBasisTimer Lib "time2win.dll" ()
Declare Function cReadBasisTimer Lib "time2win.dll" () As Long
Declare Sub cStopBasisTimer Lib "time2win.dll" ()

Call Syntax :

Call cStartBasisTimer
test& = cReadBasisTimer()
Call cReadBasisTimer

Where :

test& the current value of the default timer.

Comments :

The value of the timer is in milliseconds.
The accuracy of the timer is 55 milliseconds (1/18.2 second).

Examples :

 Dim i as Long
 Dim n as Long

 Call cStartBasisTimer
 For i = 1 To 123456
 n = i * 2
 Next i
 MsgBox "Time (in milliseconds) to perform the test is " & cReadBasisTimer() & " milliseconds"

On my system : "Time (in milliseconds) to perform the test is 769"

See also : cReadTimer, cStartTimer, cStopTimer, Timer functions

StartTimer, ReadTimer, StopTimer
Purpose :

StartBasisTimer starts the specified timer.
ReadBasisTimer reads the value of the specified timer.
StopBasisTimer stops the value of the specified timer.

Declare Syntax :

Declare Sub cStartTimer Lib "time2win.dll" (ByVal nTimer As Integer)
Declare Function cReadTimer Lib "time2win.dll" (ByVal nTimer As Integer) As Long
Declare Function cStopTimer Lib "time2win.dll" (ByVal nTimer As Integer) As Long

Call Syntax :

Call cStartTimer(nTimer)
test& = cReadTimer(nTimer)
test& = cStopTimer(nTimer)

Where :

nTimer is the timer counter between 1 TO 32.
test& is the current value of the specified timer.

Comments :

The value of timers is in milliseconds.
The accuracy of timers is 55 milliseconds (1/18.2 second).

Examples :

 Dim i as Long
 Dim n as Long

 Call cStartTimer(7)
 For i = 1 To 54321
 n = i * 2
 Next i
 MsgBox "Time (in milliseconds) to perform the test is " & cReadTimer(7) & " milliseconds"

On my system : "Time (in milliseconds) to perform the test is 330"

See also : cReadBasisTimer, cStartBasisTimer, cStopBasisTimer, Timer functions

SysMenuChange
Purpose :

SysMenuChange changes the name of an item in the system menu of an application.

Declare Syntax :

Declare Sub cSysMenuChange Lib "time2win.dll" (ByVal hWnd As Integer, ByVal Position As Integer, ByVal
NewMessage As String)

Call Syntax :

Call cSysMenuChange(hWnd, Position, NewMessage)

Where :

hWnd% is the .hWnd of the form.
Position% is the position of the item in the system menu.
NewMessage$ is the new message to set for the specified item.

Comments :

The position starts at offset 0.
Don't forget that some items in the menu are only separators.
This function only changes the message not the fonctionnality.
This function take care of the menu 'grayed'.

Examples :

Change the system menu of a form in French

Call cSysMenuChange(Me.hWnd, 0, "&Restaure") Restore
becomes Restaure

Call cSysMenuChange(Me.hWnd, 1, "&Positionne") Move
becomes Positionne

Call cSysMenuChange(Me.hWnd, 2, "&Taille") Size
becomes Taille

Call cSysMenuChange(Me.hWnd, 3, "&Icône") Minimize becomes Icône
Call cSysMenuChange(Me.hWnd, 4, "&Plein écran") Maximize

becomes Plein écran
Call cSysMenuChange(Me.hWnd, 6, "&Fermer" + Chr$(9) + "Alt+F4") Close Alt+F4

becomes Fermer Alt+F4
Call cSysMenuChange(Me.hWnd, 8, "&Tâche..." + Chr$(9) + "Ctrl+Esc")Switch To... Ctrl+Esc becomes Tâche...
Ctrl+Esc

See also : cLngSysMenu

FileEncrypt, FileDecrypt
Purpose :

FileEncrypt copies one file to an another file but with encryption.
FileDecrypt copies one file to an another file but with decryption.

Declare Syntax :

Declare Function cFileEncrypt Lib "time2win.dll" (ByVal file1 As String, ByVal file2 As String, Password As String,
ByVal Level As Integer) As Long
Declare Function cFileDecrypt Lib "time2win.dll" (ByVal file1 As String, ByVal file2 As String, Password As String,
ByVal Level As Integer) As Long

Call Syntax :

test& = cFileEncrypt(file1, file2, password, level)
test& = cFileDecrypt(file1, file2, password, level)

Where :

file1$ is the source file.
file2$ is the destination file.
password is the key to use for encryption/decryption.
level level of the encryption/decryption.
test& > 0 if all is OK (the returned value is the total bytes copied),

< 0 if an error has occured.

Comments :

The password/key is case sensitive.
The level is a number between 0 and 3 (Constants and Types declaration).
Higher is the level, better is the encryption.
You must use the same level for encrypt/decrypt a gived string.

The returned value can be negative and have the following value :

-1 the filter is an EMPTY string.
-32720 the number of chars in a block for writing differs from the number of chars for reading.
-32730 reading error for file 1.
-32740 writing error for file 2.
-32750 opening error for file 1.
-32751 opening error for file 2.
-32760 allocation error for memory buffer 1.
-32761 allocation error for memory buffer 2.

Examples :

test& = cFileEncrypt("c:\autoexec.bat", "c:\autoexec.tb1", "Time To Win", ENCRYPT_LEVEL_3)
test& = cFileDecrypt("c:\autoexec.tb1", "c:\autoexec.tb2", "Time To Win", ENCRYPT_LEVEL_3)

See also :

ToggleAllBits
Purpose :

ToggleAllBits toggles all bits in a gived string. If a bit is in Set state, it comes in Reset state. If a bit is in Reset state, it
comes is Set state.

Declare Syntax :

Declare Sub cToggleAllBits Lib "time2win.dll" (Txt As String)

Call Syntax :

Call cToggleAllBits(Txt)

Where :

Txt the string to proceed

Comments :

See also : Bit String Manipulation routines

ToggleBit
Purpose :

ToggleBit toggles a gived bit in a gived string. If a bit is in Set state, it comes in Reset state. If a bit is in Reset state, it
comes is Set state.

Declare Syntax :

Declare Sub cToggleBit Lib "time2win.dll" (Txt As String, ByVal Position As Integer)

Call Syntax :

Call cToggleBit(Txt, Position)

Where :

Txt the string to proceed
Position the bit position

Comments :

The first bit in the string is the bit 0.

See also : Bit String Manipulation routines

Multi-Language support
cLngBoxMsg
cLngInpBox
cLngMsgBox
cReadCtlLanguage
cSaveCtlLanguage

UnloadDLL
Purpose :

UnloadDLL unloads a DLL from the memory.

Declare Syntax :

Declare Sub cUnloadDLL Lib "time2win.dll" (ByVal hMod As Integer)

Call Syntax :

Call cUnloadDLL(hMod)

Where :

hModule is the module handle of the DLL.

Comments :

Use this with care.

Examples :

 Dim MODULEENTRY As tagMODULEENTRY
 Dim Tmp As String

 Tmp = "LZEXPAND"

 If (cModuleFind(MODULEENTRY, "LZEXPAND") = True) Then

 Call cUnloadDLL(MODULEENTRY.hModule)

 If (cModuleFind(MODULEENTRY, Tmp) = False) Then
 MsgBox Tmp + " has been UnLoaded."
 Else
 MsgBox Tmp + " can't be UnLoaded."
 End If

 Else

 MsgBox Tmp + " not found in memory."

 End If

On my system : after running one time : LZEXPAND has been Unloaded."
after running a second time : LZEXPAND not found in memory."

CmpFileAttribute, CmpFileContents, CmpFileSize,
CmpFileTime
Purpose :

CmpFileAttribute compares the attribute of two files.
CmpFileContents compares the contents of two files.
CmpFileSize compares the size of two files.
CmpFileTime compares the date and time of two files.

Declare Syntax :

Declare Function cCmpFileAttribute Lib "time2win.dll" (ByVal file1 As String, ByVal file2 As String) As Integer
Declare Function cCmpFileContents Lib "time2win.dll" (ByVal file1 As String, ByVal file2 As String, ByVal sensitivity
As Integer) As Integer
Declare Function cCmpFileSize Lib "time2win.dll" (ByVal file1 As String, ByVal file2 As String) As Integer
Declare Function cCmpFileTime Lib "time2win.dll" (ByVal file1 As String, ByVal file2 As String) As Integer

Call Syntax :

test% = cCmpFileAttribute(file1, file2)
test% = cCmpFileContents(file1, file2, sensitivity)
test% = cCmpFileSize(file1, file2)
test% = cCmpFileTime(file1, file2)

Where :

file1$ is the first file.
file2$ is the second file.
sensitivity% TRUE for case sensitive,

FALSE for no case sensitive.
test% -1 if file1 < file2 for the specified function,

0 if file1 = file2 for the specified function,
1 if file1 > file2 for the specified function.

Comments :

When using cCmpFileAttribute, only -1 (attribute are the same) or 0 (attribute are different) or -2 (error) is returned.
When using cCmpFileContents

 -1 files are the same
 0 files are not the same, or file size differs
-32740 reading error for files.
-32750 opening error for file 1.
-32751 opening error for file 2.
-32760 allocation error for memory buffer 1.
-32761 allocation error for memory buffer 2.

Examples :

test% = cCmpFileAttribute("c:\command.com", "c:\dos\command.com")
test% = cCmpFileContents("c:\command.com", "c:\dos\command.com", True)
test% = cCmpFileContents("c:\command.com", "c:\dos\command.com", False)
test% = cCmpFileSize("c:\command.com", "c:\dos\command.com")
test% = cCmpFileTime("c:\command.com", "c:\dos\command.com")

See also :

All Functions and Subs
Declare Function cAddD Lib "time2win.dll" (array() As Double, ByVal nValue As Double) As Integer
Declare Function cAddDigit Lib "time2win.dll" (Txt as string) As integer
Declare Function cAddI Lib "time2win.dll" (array() As Integer, ByVal nValue As Integer) As Integer
Declare Function cAddL Lib "time2win.dll" (array() As Long, ByVal nValue As Long) As Integer
Declare Function cAddS Lib "time2win.dll" (array() As Single, ByVal nValue As Single) As Integer
Declare Function cAddTime Lib "time2win.dll" (ByVal Hr As Integer) As Integer
Declare Function cAllSubDirectories Lib "time2win.dll" (ByVal lpBaseDirectory As String, nDir As Integer) As String
Declare Function cArabicToRoman Lib "time2win.dll" (Var As Variant) As String
Declare Function cArrayPrm Lib "time2win.dll" (array() As Any, nArray As Any) As Integer
Declare Function cBaseConversion Lib "time2win.dll" (ByVal Num As String, ByVal RadixIn As Integer, ByVal
RadixOut As Integer) As String
Declare Function cBetween Lib "time2win.dll" (Var As Variant, Var1 As Variant, Var2 As Variant) As Integer
Declare Function cBigAdd Lib "time2win.dll" (Num1 As String, Num2 As String) As String
Declare Function cBigDiv Lib "time2win.dll" (Num1 As String, Num2 As String) As String
Declare Function cBigMul Lib "time2win.dll" (Num1 As String, Num2 As String) As String
Declare Function cBigNum Lib "time2win.dll" (ByVal n1 As String, ByVal op As Integer, ByVal n2 As String) As String
Declare Function cBigSub Lib "time2win.dll" (Num1 As String, Num2 As String) As String
Declare Function cBigFmt Lib "time2win.dll" (Num As String, ByVal Fmt As Integer) As String
Declare Function cBlockCharFromLeft Lib "time2win.dll" (Txt As String, ByVal Position As Integer) As String
Declare Function cBlockCharFromRight Lib "time2win.dll" (Txt As String, ByVal Position As Integer) As String
Declare Sub cChangeChars Lib "time2win.dll" (Txt As String, charSet As String, newCharSet As String)
Declare Sub cChangeCharsUntil Lib "time2win.dll" (Txt As String, charSet As String, newCharSet As String, nUntil As
String)
Declare Sub cChangeTaskName Lib "time2win.dll" (ByVal hWnd As Integer, ByVal Text As String)
Declare Function cChDir Lib "time2win.dll" (ByVal lpDir As String) As Integer
Declare Function cChDrive Lib "time2win.dll" (ByVal lpDrive As String) As Integer
Declare Function cCheckChars Lib "time2win.dll" (Txt As String, charSet As String) As Integer
Declare Function cCheckNumericity Lib "time2win.dll" (Txt As String) As Integer
Declare Function cCheckTime Lib "time2win.dll" (ByVal Hr As Integer, ByVal Hr1 As Integer, ByVal Hr2 As Integer) As
Integer
Declare Function cCheckWait Lib "time2win.dll" (ByVal nTimer As Integer) As Integer
Declare Function cCmpFileAttribute Lib "time2win.dll" (ByVal file1 As String, ByVal file2 As String) As Integer
Declare Function cCmpFileContents Lib "time2win.dll" (ByVal file1 As String, ByVal file2 As String, ByVal sensitivity
As Integer) As Integer
Declare Function cCmpFileSize Lib "time2win.dll" (ByVal file1 As String, ByVal file2 As String) As Integer
Declare Function cCmpFileTime Lib "time2win.dll" (ByVal file1 As String, ByVal file2 As String) As Integer
Declare Function cCompact Lib "time2win.dll" (Txt As String) As String
Declare Function cCompareTypeString Lib "time2win.dll" Alias "cTypesCompare" (TypeSrc As Any, ByVal Dst As
String, ByVal lenTypeSrc As Integer) As Integer
Declare Function cCompareStringType Lib "time2win.dll" Alias "cTypesCompare" (ByVal Src As String, TypeDst As
Any, ByVal lenTypeSrc As Integer) As Integer
Declare Function cCompress Lib "time2win.dll" (Txt As String) As String
Declare Function cCompressTab Lib "time2win.dll" (Txt As String, ByVal nTab As Integer) As String
Declare Function cCount Lib "time2win.dll" (Txt As String, Separator As String) As Integer
Declare Function cCountDirectories Lib "time2win.dll" (ByVal lpFilename As String) As Integer
Declare Function cCountFiles Lib "time2win.dll" (ByVal lpFilename As String) As Integer
Declare Function cCplAlpha Lib "time2win.dll" (Txt As String) As String
Declare Function cCplDigit Lib "time2win.dll" (Txt As String) As String
Declare Function cCreateAndFill Lib "time2win.dll" (ByVal Length As Integer, Txt As String) As String
Declare Function cCreateBits Lib "time2win.dll" (ByVal nBits As Integer) As String
Declare Function cCurrentTime Lib "time2win.dll" () As Integer
Declare Function cCVB Lib "time2win.dll" (Value As String) As Integer
Declare Function cCVC Lib "time2win.dll" (Value As String) As Currency
Declare Function cCVD Lib "time2win.dll" (Value As String) As Double
Declare Function cCVI Lib "time2win.dll" (Value As String) As Integer
Declare Function cCVL Lib "time2win.dll" (Value As String) As Long
Declare Function cCVS Lib "time2win.dll" (Value As String) As Single
Declare Function cDAClear Lib "time2win.dll" (DISKARRAY As tagDISKARRAY) As Integer
Declare Sub cDAClose Lib "time2win.dll" (DISKARRAY As tagDISKARRAY, ByVal DeleteFile As Integer)

Declare Function cDACreate Lib "time2win.dll" (DISKARRAY As tagDISKARRAY, ByVal CreateOrUse As Integer) As
Integer
Declare Function cDAGet Lib "time2win.dll" (DISKARRAY As tagDISKARRAY, ByVal Row As Long, ByVal Col As
Long, ByVal Sheet As Long) As Variant
Declare Sub cDAGetType Lib "time2win.dll" (DISKARRAY As tagDISKARRAY, ByVal Row As Long, ByVal Col As
Long, ByVal Sheet As Long, nType As Any)
Declare Sub cDAPut Lib "time2win.dll" (DISKARRAY As tagDISKARRAY, ByVal Row As Long, ByVal Col As Long,
ByVal Sheet As Long, Var As Variant)
Declare Sub cDAPutType Lib "time2win.dll" (DISKARRAY As tagDISKARRAY, ByVal Row As Long, ByVal Col As
Long, ByVal Sheet As Long, nType As Any)
Declare Function cDaysInMonth Lib "time2win.dll" (ByVal nYear As Integer, ByVal nMonth As Integer) As Integer
Declare Function cDecrypt Lib "time2win.dll" (Txt As String, password As String, ByVal level As Integer) As String
Declare Function cDeviationD Lib "time2win.dll" (array() As Double) As Double
Declare Function cDeviationI Lib "time2win.dll" (array() As Integer) As Double
Declare Function cDeviationL Lib "time2win.dll" (array() As Long) As Double
Declare Function cDeviationS Lib "time2win.dll" (array() As Single) As Double
Declare Sub cDisableCtlRedraw Lib "time2win.dll" (Ctl As Control)
Declare Sub cDisableFI Lib "time2win.dll" (Ctl As Control)
Declare Sub cDisableForm Lib "time2win.dll" (ByVal hWnd As Integer)
Declare Sub cDisableRedraw Lib "time2win.dll" (ByVal hWnd As Integer)
Declare Sub cEnableCtlRedraw Lib "time2win.dll" (Ctl As Control)
Declare Sub cEnableFI Lib "time2win.dll" (Ctl As Control)
Declare Sub cEnableForm Lib "time2win.dll" (ByVal hWnd As Integer)
Declare Sub cEnableRedraw Lib "time2win.dll" (ByVal hWnd As Integer)
Declare Function cEncrypt Lib "time2win.dll" (Txt As String, password As String, ByVal level As Integer) As String
Declare Function cEXEnameActiveWindow Lib "time2win.dll" () As String
Declare Function cEXEnameTask Lib "time2win.dll" (ByVal nFileName As String) As String
Declare Function cEXEnameWindow Lib "time2win.dll" (ByVal hModule As Integer) As String
Declare Function cExitWindowsAndExecute Lib "time2win.dll" (ByVal lpszExe As String, ByVal lpszParams As String)
As Integer
Declare Function cExpandTab Lib "time2win.dll" (Txt As String, ByVal nTab As Integer) As String
Declare Function cFileCompressTab Lib "time2win.dll" (ByVal file1 As String, ByVal file2 As String, ByVal nTab As
Integer) As Long
Declare Function cFileCopy Lib "time2win.dll" (ByVal file1 As String, ByVal file2 As String) As Long
Declare Function cFileCRC32 Lib "time2win.dll" (ByVal lpFilename As String, ByVal mode As Integer) As Long
Declare Function cFileDateCreated Lib "time2win.dll" (ByVal lpFilename As String) As String
Declare Function cFileDecrypt Lib "time2win.dll" (ByVal file1 As String, ByVal file2 As String, ByVal password As
String, ByVal level As Integer) As Long
Declare Function cFileDrive Lib "time2win.dll" (ByVal lpFilename As String) As String
Declare Function cFileEncrypt Lib "time2win.dll" (ByVal file1 As String, ByVal file2 As String, ByVal password As
String, ByVal level As Integer) As Long
Declare Function cFileExpandTab Lib "time2win.dll" (ByVal file1 As String, ByVal file2 As String, ByVal nTab As
Integer) As Long
Declare Function cFileFilter Lib "time2win.dll" (ByVal file1 As String, ByVal file2 As String, ByVal Filter As String) As
Long
Declare Function cFileFilterNot Lib "time2win.dll" (ByVal file1 As String, ByVal file2 As String, ByVal Filter As String)
As Long
Declare Function cFileGetAttrib Lib "time2win.dll" (ByVal nFilename As String, nFileAttribute As Any) As Integer
Declare Function cFileLastDateAccess Lib "time2win.dll" (ByVal lpFilename As String) As String
Declare Function cFileLastDateModified Lib "time2win.dll" (ByVal lpFilename As String) As String
Declare Function cFileLastTimeAccess Lib "time2win.dll" (ByVal lpFilename As String) As String
Declare Function cFileLastTimeModified Lib "time2win.dll" (ByVal lpFilename As String) As String
Declare Function cFileLineCount Lib "time2win.dll" (ByVal lpFilename As String) As Integer
Declare Function cFileMerge Lib "time2win.dll" (ByVal file1 As String, ByVal file2 As String, ByVal fileTo As String) As
Long
Declare Function cFilePathExists Lib "time2win.dll" (ByVal lpFilename As String) As Integer
Declare Function cFileResetAllAttrib Lib "time2win.dll" (ByVal nFilename As String) As Integer
Declare Function cFileResetArchive Lib "time2win.dll" (ByVal nFilename As String) As Integer
Declare Function cFileResetFlag Lib "time2win.dll" (ByVal nFilename As String, ByVal nStatus As Integer) As Integer
Declare Function cFileResetHidden Lib "time2win.dll" (ByVal nFilename As String) As Integer
Declare Function cFileResetReadOnly Lib "time2win.dll" (ByVal nFilename As String) As Integer
Declare Function cFileResetSystem Lib "time2win.dll" (ByVal nFilename As String) As Integer

Declare Function cFileSearch Lib "time2win.dll" (ByVal nFileName As String, ByVal Search As String, ByVal
sensitivity As Integer) As Long
Declare Function cFileSearchAndReplace Lib "time2win.dll" (ByVal nFileName As String, ByVal Search As String,
ByVal Replace As String, ByVal nFileTemp As String, ByVal sensitivity As Integer) As Integer
Declare Function cFileSearchCount Lib "time2win.dll" (ByVal nFileName As String, ByVal Search As String, ByVal
sensitivity As Integer) As Long
Declare Function cFileSetAllAttrib Lib "time2win.dll" (ByVal nFilename As String) As Integer
Declare Function cFileSetArchive Lib "time2win.dll" (ByVal nFilename As String) As Integer
Declare Function cFileSetAttrib Lib "time2win.dll" (ByVal nFilename As String, nFileAttribute As Any) As Integer
Declare Function cFileSetFlag Lib "time2win.dll" (ByVal nFilename As String, ByVal nStatus As Integer) As Integer
Declare Function cFileSetHidden Lib "time2win.dll" (ByVal nFilename As String) As Integer
Declare Function cFileSetReadOnly Lib "time2win.dll" (ByVal nFilename As String) As Integer
Declare Function cFileSetSystem Lib "time2win.dll" (ByVal nFilename As String) As Integer
Declare Function cFilesInDirectory Lib "time2win.dll" (ByVal nFilename As String, ByVal firstnext As Integer) As String
Declare Function cFileSize Lib "time2win.dll" (ByVal lpFilename As String) As Long
Declare Function cFilesSize Lib "time2win.dll" (ByVal nFilename As String) As Long
Declare Function cFilesSizeOnDisk Lib "time2win.dll" (ByVal nDrive As String, ByVal nFileName As String) As Long
Declare Function cFilesSlack Lib "time2win.dll" (ByVal nDrive As String, ByVal nFileName As String, Size1 As Long,
Size2 As Long) As Integer
Declare Function cFileStatistics Lib "time2win.dll" (ByVal nFilename As String, nLines As Long, nWords As Long,
nChars As Long) As Long
Declare Function cFileTimeCreated Lib "time2win.dll" (ByVal lpFilename As String) As String
Declare Function cFileToLower Lib "time2win.dll" (ByVal file1 As String, ByVal file2 As String) As Long
Declare Function cFileToUpper Lib "time2win.dll" (ByVal file1 As String, ByVal file2 As String) As Long
Declare Sub cFill Lib "time2win.dll" (Txt As String, Fill As String)
Declare Function cFillD Lib "time2win.dll" (array() As Double, ByVal nValue As Double) As Integer
Declare Function cFillI Lib "time2win.dll" (array() As Integer, ByVal nValue As Integer) As Integer
Declare Function cFillL Lib "time2win.dll" (array() As Long, ByVal nValue As Long) As Integer
Declare Function cFillS Lib "time2win.dll" (array() As Single, ByVal nValue As Single) As Integer
Declare Function cFilterBlocks Lib "time2win.dll" (Txt As String, Delimitor As String) As String
Declare Function cFilterChars Lib "time2win.dll" (Txt As String, charSet As String) As String
Declare Function cFilterFirstChars Lib "time2win.dll" (Txt As String, charSet As String) As String
Declare Function cFilterNotChars Lib "time2win.dll" (Txt As String, charSet As String) As String
Declare Function cFindBitReset Lib "time2win.dll" (Txt As String, ByVal Position As Integer) As Integer
Declare Function cFindBitSet Lib "time2win.dll" (Txt As String, ByVal Position As Integer) As Integer
Declare Function cFindFileInEnv Lib "time2win.dll" (ByVal lpFilename As String, ByVal lpEnv As String) As Integer
Declare Function cFindFileInPath Lib "time2win.dll" (ByVal lpFilename As String) As Integer
Declare Function cFromBinary Lib "time2win.dll" (Text As String) As String
Declare Function cFromBinary2 Lib "time2win.dll" (Text As String, Bin As String) As String
Declare Function cFromHexa Lib "time2win.dll" (Text As String) As String
Declare Function cFullPath Lib "time2win.dll" (ByVal nFilename As String) As String
Declare Function cGet Lib "time2win.dll" (Txt As String, ByVal Position As Integer) As String
Declare Function cGetAscTime Lib "time2win.dll" (ByVal nLanguage As Integer) As String
Declare Function cGetBit Lib "time2win.dll" (Txt As String, ByVal Position As Integer) As Integer
Declare Function cGetBlock Lib "time2win.dll" (Txt As String, ByVal Position As Integer, ByVal Length As Integer) As
String
Declare Function cGetCaption Lib "time2win.dll" (ByVal hWnd As Integer) As String
Declare Function cGetChangeTaskName Lib "time2win.dll" (ByVal hWnd As Integer, ByVal Text As String) As String
Declare Function cGetClass Lib "time2win.dll" (ByVal hWnd As Integer) As String
Declare Function cGetClassName Lib "time2win.dll" (ByVal hWnd As Integer) As String
Declare Function cGetContainer Lib "time2win.dll" (ByVal hWnd As Integer) As String
Declare Function cGetCountry Lib "time2win.dll" () As String
Declare Function cGetCountryCode Lib "time2win.dll" () As String
Declare Function cGetCtlCaption Lib "time2win.dll" (Ctl As Control) As String
Declare Function cGetCtlClass Lib "time2win.dll" (Ctl As Control) As String
Declare Function cGetCtlContainer Lib "time2win.dll" (Ctl As Control) As String
Declare Function cGetCtlDataField Lib "time2win.dll" (Ctl As Control) As String
Declare Function cGetCtlForm Lib "time2win.dll" (Ctl As Control) As String
Declare Function cGetCtlIndex Lib "time2win.dll" (Ctl As Control) As Integer
Declare Function cGetCtlName Lib "time2win.dll" (Ctl As Control) As String
Declare Function cGetCtlNameIndex Lib "time2win.dll" (Ctl As Control) As String
Declare Function cGetCtlPropCaption Lib "time2win.dll" (Ctl As Control) As Integer

Declare Function cGetCtlPropDataField Lib "time2win.dll" (Ctl As Control) As Integer
Declare Function cGetCtlPropText Lib "time2win.dll" (Ctl As Control) As Integer
Declare Function cGetCtlTag Lib "time2win.dll" (Ctl As Control) As String
Declare Function cGetCtlTagSized Lib "time2win.dll" (Ctl As Control) As String
Declare Function cGetCtlText Lib "time2win.dll" (Ctl As Control) As String
Declare Function cGetCurrency Lib "time2win.dll" () As String
Declare Function cGetCurrentDrive Lib "time2win.dll" () As String
Declare Function cGetDataField Lib "time2win.dll" (ByVal hWnd As Integer) As String
Declare Function cGetDateFormat Lib "time2win.dll" () As String
Declare Function cGetDateSeparator Lib "time2win.dll" () As String
Declare Function cGetDefaultCurrentDir Lib "time2win.dll" () As String
Declare Function cGetDefaultPrinter Lib "time2win.dll" () As String
Declare Function cGetDevices Lib "time2win.dll" () As String
Declare Function cGetDiskClusterSize Lib "time2win.dll" (ByVal lpDrive As String) As Long
Declare Function cGetDiskFree Lib "time2win.dll" (ByVal lpDrive As String) As Long
Declare Function cGetDiskSpace Lib "time2win.dll" (ByVal lpDrive As String) As Long
Declare Function cGetDiskUsed Lib "time2win.dll" (ByVal lpDrive As String) As Long
Declare Function cGetDriveCurrentDir Lib "time2win.dll" (ByVal lpDrive As String) As String
Declare Function cGetDriveType Lib "time2win.dll" (ByVal lpDrive As String) As Integer
Declare Function cGetFileVersion Lib "time2win.dll" (ByVal filename As String, ByVal nFonction As Integer) As String
Declare Function cGetFileVersionInfo Lib "time2win.dll" (ByVal filename As String, FILEVERSIONINFO As Any) As
Integer
Declare Function cGetForm Lib "time2win.dll" (ByVal hWnd As Integer) As String
Declare Function cGetFullNameInEnv Lib "time2win.dll" (ByVal lpFilename As String, ByVal lpEnv As String) As String
Declare Function cGetFullNameInPath Lib "time2win.dll" (ByVal lpFilename As String) As String
Declare Function cGetHourFormat Lib "time2win.dll" () As String
Declare Function cGetHwnd Lib "time2win.dll" (Ctl As Control) As Integer
Declare Function cGetIn Lib "time2win.dll" (Txt As String, Separator As String, ByVal Position As Integer) As String
Declare Function cGetIndex Lib "time2win.dll" (ByVal hWnd As Integer) As Integer
Declare Function cGetIni Lib "time2win.dll" (ByVal AppName As String, ByVal szItem As String, ByVal szDefault As
String, ByVal InitFile As String) As String
Declare Function cGetLanguage Lib "time2win.dll" () As String
Declare Function cGetListSeparator Lib "time2win.dll" () As String
Declare Function cGetLongDay Lib "time2win.dll" (ByVal nLanguage As Integer, ByVal nDay As Integer) As String
Declare Function cGetLongMonth Lib "time2win.dll" (ByVal nLanguage As Integer, ByVal nMonth As Integer) As
String
Declare Function cGetName Lib "time2win.dll" (ByVal hWnd As Integer) As String
Declare Function cGetNameIndex Lib "time2win.dll" (ByVal hWnd As Integer) As String
Declare Function cGetNetConnection Lib "time2win.dll" (ByVal lpDrive As String, ErrCode As Integer) As String
Declare Function cGetPid Lib "time2win.dll" () As Integer
Declare Function cGetPrinterPorts Lib "time2win.dll" () As String
Declare Function cGetSectionItems Lib "time2win.dll" (ByVal Section As String, ByVal InitFile As String, nItems As
Integer) As String
Declare Function cGetSmallDay Lib "time2win.dll" (ByVal nLanguage As Integer, ByVal nDay As Integer) As String
Declare Function cGetShortDay Lib "time2win.dll" (ByVal nLanguage As Integer, ByVal nDay As Integer) As String
Declare Function cGetShortMonth Lib "time2win.dll" (ByVal nLanguage As Integer, ByVal nMonth As Integer) As
String
Declare Function cGetSystemDirectory Lib "time2win.dll" () As String
Declare Function cGetTaskName Lib "time2win.dll" (ByVal hWnd As Integer) As String
Declare Function cGetText Lib "time2win.dll" (ByVal hWnd As Integer) As String
Declare Function cGetTimeSeparator Lib "time2win.dll" () As String
Declare Function cGetTinyDay Lib "time2win.dll" (ByVal nLanguage As Integer, ByVal nDay As Integer) As String
Declare Function cGetTinyMonth Lib "time2win.dll" (ByVal nLanguage As Integer, ByVal nMonth As Integer) As String
Declare Function cGetWindowsDirectory Lib "time2win.dll" () As String
Declare Function cGetWinINI Lib "time2win.dll" (ByVal Info As Integer) As String
Declare Function cGetWinSection Lib "time2win.dll" (ByVal Section As String) As String
Declare Function cGiveBitPalindrome Lib "time2win.dll" () As String
Declare Function cHourTo Lib "time2win.dll" (Txt As String) As Variant
Declare Function cInsertBlocks Lib "time2win.dll" (Txt As String, Insert As String) As String
Declare Function cInsertBlocksBy Lib "time2win.dll" (Txt As String, Insert As String, Delimitor As String) As String
Declare Function cInsertByMask Lib "time2win.dll" (Txt As String, Mask As String, Insert As String) As String
Declare Function cInsertChars Lib "time2win.dll" (Txt As String, ByVal Position As Integer, Insert As String) As String

Declare Function cIntoBalance Lib "time2win.dll" (Var As Variant) As String
Declare Function cIntoBalanceFill Lib "time2win.dll" (Var As Variant) As String
Declare Function cIntoDate Lib "time2win.dll" (ByVal nDate As Long) As String
Declare Function cIntoDateFill Lib "time2win.dll" (ByVal nDate As Long) As String
Declare Function cIntoDateNull Lib "time2win.dll" (ByVal nDate As Long) As String
Declare Function cIntoFixHour Lib "time2win.dll" (Var As Variant, ByVal Length As Integer, ByVal fillZero As Integer,
ByVal Hundreds As Integer) As String
Declare Function cIntoHour Lib "time2win.dll" (Var As Variant) As String
Declare Function cIntoVarHour Lib "time2win.dll" (Var As Variant) As String
Declare Function cIsAlnum Lib "time2win.dll" (Txt As String) As Integer
Declare Function cIsAlpha Lib "time2win.dll" (Txt As String) As Integer
Declare Function cIsAscii Lib "time2win.dll" (Txt As String) As Integer
Declare Function cIsBalance Lib "time2win.dll" (ByVal nHour As Long, ByVal nMinute As Integer, ByVal nSecond As
Integer) As Integer
Declare Function cIsBitPalindrome Lib "time2win.dll" (Txt As String) As Integer
Declare Function cIsCsym Lib "time2win.dll" (Txt As String) As Integer
Declare Function cIsCsymf Lib "time2win.dll" (Txt As String) As Integer
Declare Function cIsDate Lib "time2win.dll" (ByVal nYear As Integer, ByVal nMonth As Integer, ByVal nDay As
Integer) As Integer
Declare Function cIsDigit Lib "time2win.dll" (Txt As String) As Integer
Declare Function cIsFileArchive Lib "time2win.dll" (ByVal nFilename As String) As Integer
Declare Function cIsFileFlag Lib "time2win.dll" (ByVal nFilename As String, ByVal nStatus As Integer) As Integer
Declare Function cIsFileHidden Lib "time2win.dll" (ByVal nFilename As String) As Integer
Declare Function cIsFileNormal Lib "time2win.dll" (ByVal nFilename As String) As Integer
Declare Function cIsFilenameValid Lib "time2win.dll" (ByVal nFilename As String) As Integer
Declare Function cIsFileReadOnly Lib "time2win.dll" (ByVal nFilename As String) As Integer
Declare Function cIsFileSubDir Lib "time2win.dll" (ByVal nFilename As String) As Integer
Declare Function cIsFileSystem Lib "time2win.dll" (ByVal nFilename As String) As Integer
Declare Function cIsFileVolId Lib "time2win.dll" (ByVal nFilename As String) As Integer
Declare Function cIsFormEnabled Lib "time2win.dll" (ByVal hWnd As Integer) As Integer
Declare Function cIsHour Lib "time2win.dll" (ByVal nHour As Integer, ByVal nMinute As Integer, ByVal nSecond As
Integer) As Integer
Declare Function cIsISBN Lib "time2win.dll" (Txt As String) As Integer
Declare Function cIsLeapYear Lib "time2win.dll" (ByVal nYear As Integer) As Integer
Declare Function cIsLower Lib "time2win.dll" (Txt As String) As Integer
Declare Function cIsPalindrome Lib "time2win.dll" (Txt As String) As Integer
Declare Function cIsPunct Lib "time2win.dll" (Txt As String) As Integer
Declare Function cIsSpace Lib "time2win.dll" (Txt As String) As Integer
Declare Function cIsUpper Lib "time2win.dll" (Txt As String) As Integer
Declare Function cIsXdigit Lib "time2win.dll" (Txt As String) As Integer
Declare Function cKillDir Lib "time2win.dll" (ByVal lpFilename As String) As Integer
Declare Function cKillDirFilesAll Lib "time2win.dll" (ByVal lpDir As String, ByVal lpMask As String) As Integer
Declare Function cKillDirs Lib "time2win.dll" (ByVal lpDir As String, ByVal HeaderDirectory As Integer) As Integer
Declare Function cKillFile Lib "time2win.dll" (ByVal lpFilename As String) As Integer
Declare Function cKillFileAll Lib "time2win.dll" (ByVal lpFilename As String) As Integer
Declare Function cKillFiles Lib "time2win.dll" (ByVal lpFilename As String) As Integer
Declare Function cKillFilesAll Lib "time2win.dll" (ByVal lpFilename As String) As Integer
Declare Sub cKillFocus Lib "time2win.dll" (ByVal hWnd As Integer)
Declare Sub cLngBoxMsg Lib "time2win.dll" Alias "cLngMsgBox" (ByVal nLanguage As Integer, ByVal Message As
String, ByVal Button As Long, ByVal Title As String)
Declare Function cLngInpBox Lib "time2win.dll" (ByVal nLanguage As Integer, ByVal Message As String, ByVal Title
As String, ByVal Default As String) As String
Declare Function cLngMsgBox Lib "time2win.dll" (ByVal nLanguage As Integer, ByVal Message As String, ByVal
Button As Long, ByVal Title As String) As Integer
Declare Function cLrc Lib "time2win.dll" (Txt As String) As String
Declare Function cMakeDir Lib "time2win.dll" (ByVal lpFilename As String) As Integer
Declare Function cMakePath Lib "time2win.dll" (ByVal nDrive As String, ByVal nDir As String, ByVal nFilename As
String, ByVal Ext As String) As String
Declare Function cMax Lib "time2win.dll" (Var1 As Variant, Var2 As Variant) As Variant
Declare Function cMaxD Lib "time2win.dll" (array() As Double) As Double
Declare Function cMaxI Lib "time2win.dll" (array() As Integer) As Integer
Declare Function cMaxL Lib "time2win.dll" (array() As Long) As Long

Declare Function cMaxS Lib "time2win.dll" (array() As Single) As Single
Declare Function cMeanD Lib "time2win.dll" (array() As Double) As Double
Declare Function cMeanI Lib "time2win.dll" (array() As Integer) As Double
Declare Function cMeanL Lib "time2win.dll" (array() As Long) As Double
Declare Function cMeanS Lib "time2win.dll" (array() As Single) As Double
Declare Function cMin Lib "time2win.dll" (Var1 As Variant, Var2 As Variant) As Variant
Declare Function cMinD Lib "time2win.dll" (array() As Double) As Double
Declare Function cMinI Lib "time2win.dll" (array() As Integer) As Integer
Declare Function cMinL Lib "time2win.dll" (array() As Long) As Long
Declare Function cMinS Lib "time2win.dll" (array() As Single) As Single
Declare Function cMixChars Lib "time2win.dll" (Txt As String) As String
Declare Function cMKB Lib "time2win.dll" (ByVal Value As Integer) As String
Declare Function cMKC Lib "time2win.dll" (ByVal Value As Currency) As String
Declare Function cMKD Lib "time2win.dll" (ByVal Value As Double) As String
Declare Function cMKI Lib "time2win.dll" (ByVal Value As Integer) As String
Declare Function cMKL Lib "time2win.dll" (ByVal Value As Long) As String
Declare Function cMKN Lib "time2win.dll" (ByVal Value As Double) As String
Declare Function cMKS Lib "time2win.dll" (ByVal Value As Single) As String
Declare Function cModuleFind Lib "time2win.dll" (MODULEENTRY As Any, ByVal ModuleName As String) As Integer
Declare Function cModules Lib "time2win.dll" (MODULEENTRY As Any, ByVal firstnext As Integer) As Integer
Declare Function cMorse Lib "time2win.dll" (ByVal morse As String) As String
Declare Function cNextHwnd Lib "time2win.dll" (ByVal hWnd As Integer) As Integer
Declare Function cNumDigit Lib "time2win.dll" (Txt as string) As integer
Declare Function cOneCharFromLeft Lib "time2win.dll" (Txt As String, ByVal Position As Integer) As String
Declare Function cOneCharFromRight Lib "time2win.dll" (Txt As String, ByVal Position As Integer) As String
Declare Function cPatternExtMatch Lib "time2win.dll" (ByVal Txt As String, ByVal Pattern As String) As Integer
Declare Function cPatternMatch Lib "time2win.dll" (ByVal Txt As String, ByVal Pattern As String) As Integer
Declare Sub cPutIni Lib "time2win.dll" (ByVal AppName As String, ByVal szItem As String, ByVal szDefault As String,
ByVal InitFile As String)
Declare Function cReadBasisTimer Lib "time2win.dll" () As Long
Declare Function cReadCtlLanguage Lib "time2win.dll" (Ctl As Control, ByVal Property As Integer, ByVal
FileLanguage As String) As Integer
Declare Function cReadTimer Lib "time2win.dll" (ByVal nTimer As Integer) As Long
Declare Function cRebootSystem Lib "time2win.dll" () As Integer
Declare Function cRemoveBlockChar Lib "time2win.dll" (Txt As String, ByVal Position As Integer, ByVal Length As
Integer) As String
Declare Function cRemoveOneChar Lib "time2win.dll" (Txt As String, ByVal Position As Integer) As String
Declare Function cRenameFile Lib "time2win.dll" (ByVal lpFilename1 As String, ByVal lpFilename2 As String) As
Integer
Declare Sub cResetCapture Lib "time2win.dll" ()
Declare Sub cResetFocus Lib "time2win.dll" (ByVal hWnd1 As Integer, ByVal hWnd2 As Integer)
Declare Function cResizeString Lib "time2win.dll" (Txt As String, ByVal newLength As Integer) As String
Declare Function cResizeStringAndFill Lib "time2win.dll" (Txt As String, ByVal newLength As Integer, Fill As String)
As String
Declare Function cRestartWindows Lib "time2win.dll" () As Integer
Declare Function cReverse Lib "time2win.dll" (Txt As String) As String
Declare Sub cReverseAllBits Lib "time2win.dll" (Txt As String)
Declare Sub cReverseAllBitsByChar Lib "time2win.dll" (Txt As String)
Declare Function cReverseSortD Lib "time2win.dll" (array() As Double) As Integer
Declare Function cReverseSortI Lib "time2win.dll" (array() As Integer) As Integer
Declare Function cReverseSortL Lib "time2win.dll" (array() As Long) As Integer
Declare Function cReverseSortS Lib "time2win.dll" (array() As Single) As Integer
Declare Function cReverseSortStr Lib "time2win.dll" (Txt As String, ByVal nItem As Integer, ByVal ItemLength As
Integer) As Integer
Declare Function cRomanToArabic Lib "time2win.dll" (Txt As String) As Variant
Declare Function cSaveCtlLanguage Lib "time2win.dll" (Ctl As Control, ByVal Property As Integer, ByVal
FileLanguage As String) As Integer
Declare Sub cSetAllBits Lib "time2win.dll" (Txt As String, ByVal Value As Integer)
Declare Sub cSetBit Lib "time2win.dll" (Txt As String, ByVal Position As Integer, ByVal Value As Integer)
Declare Sub cSetBitToFalse Lib "time2win.dll" (Txt As String, ByVal Position As Integer)
Declare Sub cSetBitToTrue Lib "time2win.dll" (Txt As String, ByVal Position As Integer)
Declare Sub cSetCaption Lib "time2win.dll" (ByVal hWnd As Integer, ByVal Text As String)

Declare Sub cSetCapture Lib "time2win.dll" (ByVal hWnd As Integer)
Declare Sub cSetCtlCaption Lib "time2win.dll" (Ctl As Control, ByVal Text As String)
Declare Sub cSetCtlDataField Lib "time2win.dll" (Ctl As Control, ByVal Text As String)
Declare Sub cSetCtlFocus Lib "time2win.dll" (Ctl As Control)
Declare Sub cSetCtlPropString Lib "time2win.dll" (Ctl As Control, ByVal PropIndex As Integer, ByVal Text As String)
Declare Sub cSetCtlTag Lib "time2win.dll" (Ctl As Control, ByVal Text As String)
Declare Sub cSetCtlText Lib "time2win.dll" (Ctl As Control, ByVal Text As String)
Declare Function cSetD Lib "time2win.dll" (array() As Double, ByVal nValue As Double) As Integer
Declare Sub cSetDataField Lib "time2win.dll" (ByVal hWnd As Integer, ByVal Text As String)
Declare Sub cSetDefaultSeparator Lib "time2win.dll" (Separator As String)
Declare Sub cSetFocus Lib "time2win.dll" (ByVal hWnd As Integer)
Declare Function cSetHandleCount Lib "time2win.dll" (ByVal nHandle As Integer) As Integer
Declare Function cSetI Lib "time2win.dll" (array() As Integer, ByVal nValue As Integer) As Integer
Declare Function cSetL Lib "time2win.dll" (array() As Long, ByVal nValue As Long) As Integer
Declare Function cSetS Lib "time2win.dll" (array() As Single, ByVal nValue As Single) As Integer
Declare Sub cSetTag Lib "time2win.dll" (ByVal hWnd As Integer, ByVal Text As String)
Declare Sub cSetText Lib "time2win.dll" (ByVal hWnd As Integer, ByVal Text As String)
Declare Sub cSetWait Lib "time2win.dll" (ByVal nTimer As Integer, ByVal nValue As Long)
Declare Function cSleep Lib "time2win.dll" (ByVal Delay As Long) As Integer
Declare Function cSortD Lib "time2win.dll" (array() As Double) As Integer
Declare Function cSortI Lib "time2win.dll" (array() As Integer) As Integer
Declare Function cSortL Lib "time2win.dll" (array() As Long) As Integer
Declare Function cSortS Lib "time2win.dll" (array() As Single) As Integer
Declare Function cSortStr Lib "time2win.dll" (Txt As String, ByVal nItem As Integer, ByVal ItemLength As Integer) As
Integer
Declare Sub cSplitPath Lib "time2win.dll" (ByVal nFilename As String, SPLITPATH As Any)
Declare Sub cStartBasisTimer Lib "time2win.dll" ()
Declare Sub cStartTimer Lib "time2win.dll" (ByVal nTimer As Integer)
Declare Sub cStartWait Lib "time2win.dll" (ByVal nTimer As Integer)
Declare Sub cStopBasisTimer Lib "time2win.dll" ()
Declare Function cStopTimer Lib "time2win.dll" (ByVal nTimer As Integer) As Long
Declare Function cStringCRC32 Lib "time2win.dll" (Txt As String) As Long
Declare Sub cStringToType Lib "time2win.dll" Alias "cTypesCopy" (ByVal Src As String, TypeDst As Any, ByVal
lenTypeSrc As Integer)
Declare Function cSubDirectory Lib "time2win.dll" (ByVal nFilename As String, ByVal firstnext As Integer) As String
Declare Function cSumD Lib "time2win.dll" (array() As Double) As Double
Declare Function cSumI Lib "time2win.dll" (array() As Integer) As Double
Declare Function cSumL Lib "time2win.dll" (array() As Long) As Double
Declare Function cSumS Lib "time2win.dll" (array() As Single) As Double
Declare Sub cSwapD Lib "time2win.dll" (swap1 As Double, swap2 As Double)
Declare Sub cSwapI Lib "time2win.dll" (swap1 As Integer, swap2 As Integer)
Declare Sub cSwapL Lib "time2win.dll" (swap1 As Long, swap2 As Long)
Declare Sub cSwapS Lib "time2win.dll" (swap1 As Single, swap2 As Single)
Declare Sub cSwapStr Lib "time2win.dll" (swap1 As String, swap2 As String)
Declare Sub cSysMenuChange Lib "time2win.dll" (ByVal hWnd As Integer, ByVal Position As Integer, ByVal
NewMessage As String)
Declare Function cTaskFind Lib "time2win.dll" (TASKENTRY As Any, ByVal hTask As Integer) As Integer
Declare Function cTasks Lib "time2win.dll" (TASKENTRY As Any, ByVal firstnext As Integer) As Integer
Declare Function cTimeBetween Lib "time2win.dll" (ByVal Hr1 As Integer, ByVal Hr2 As Integer) As Integer
Declare Function cToBinary Lib "time2win.dll" (Text As String) As String
Declare Function cToBinary2 Lib "time2win.dll" (Text As String, Bin As String) As String
Declare Sub cToggleAllBits Lib "time2win.dll" (Txt As String)
Declare Sub cToggleBit Lib "time2win.dll" (Txt As String, ByVal Position As Integer)
Declare Function cToHexa Lib "time2win.dll" (Text As String) As String
Declare Function cTrueBetween Lib "time2win.dll" (Var As Variant, Var1 As Variant, Var2 As Variant) As Integer
Declare Sub cTypeClear Lib "time2win.dll" (TypeSrc As Any, ByVal lenTypeSrc As Integer)
Declare Function cTypeMid Lib "time2win.dll" (TypeSrc As Any, ByVal Offset As Integer, ByVal Length As Integer) As
String
Declare Function cTypesCompare Lib "time2win.dll" (Type1 As Any, Type2 As Any, ByVal lenType1 As Integer) As
Integer
Declare Sub cTypesCopy Lib "time2win.dll" (TypeSrc As Any, TypeDst As Any, ByVal lenTypeSrc As Integer)
Declare Function cTypeTransfert Lib "time2win.dll" (TypeSrc As Any, ByVal lenTypeSrc As Integer) As String

Declare Sub cTypeToString Lib "time2win.dll" Alias "cTypesCopy" (TypeSrc As Any, ByVal Dst As String, ByVal
lenTypeSrc As Integer)
Declare Function cUncompact Lib "time2win.dll" (Txt As String) As String
Declare Function cUniqueFileName Lib "time2win.dll" (Txt As String) As String
Declare Sub cUnloadDLL Lib "time2win.dll" (ByVal hMod As Integer)

Get.x.Day, Get.x.Month
Purpose :

GetTinyDay returns the specified day into one letter.
GetSmallDay returns the specified day into two letters.
GetShortDay returns the specified day into three letters.
GetLongDay returns the specified day into full day name.
GetTinyMonth returns the specified month into one letter.
GetShortMonth returns the specified month into three letters.
GetLongMonth returns the specified month into full month name.

Declare Syntax :

Declare Function cGetTinyDay Lib "time2win.dll" (ByVal nLanguage As Integer, ByVal nDay As Integer) As String
Declare Function cGetSmallDay Lib "time2win.dll" (ByVal nLanguage As Integer, ByVal nDay As Integer) As String
Declare Function cGetShortDay Lib "time2win.dll" (ByVal nLanguage As Integer, ByVal nDay As Integer) As String
Declare Function cGetLongDay Lib "time2win.dll" (ByVal nLanguage As Integer, ByVal nDay As Integer) As String
Declare Function cGetTinyMonth Lib "time2win.dll" (ByVal nLanguage As Integer, ByVal nMonth As Integer) As String
Declare Function cGetShortMonth Lib "time2win.dll" (ByVal nLanguage As Integer, ByVal nMonth As Integer) As
String
Declare Function cGetLongMonth Lib "time2win.dll" (ByVal nLanguage As Integer, ByVal nMonth As Integer) As
String

Call Syntax :

test$ = GetTinyDay(nLanguage, nDay)
test$ = GetSmallDay(nLanguage, nDay)
test$ = GetShortDay(nLanguage, nDay)
test$ = GetLongDay(nLanguage, nDay)
test$ = GetTinyMonth(nLanguage, nMonth)
test$ = GetShortMonth(nLanguage, nMonth)
test$ = GetLongMonth(nLanguage, nMonth)

Where :

nLanguage is the language number
nDay is the day number
nMonth is the month number

Comments :

nLanguage must be a language number defined in Constants and Types declaration. If the language number is not
correct, the french language is always returned.

nDay is the day of the week between 0 and 6. You can use the VB WeekDay() fonction to retrieve it from a date.

nMonth is a month between 1 and 12. You can use the VB Month() fonction to retrieve it from a date.

Examples :

test$ = cGetShortDay(LNG_FRENCH, 0) "Dim"
test$ = cGetLongDay(LNG_FRENCH, 0) "Dimanche"
test$ = cGetShortDay(LNG_FRENCH, 6) "Sam"
test$ = cGetLongDay(LNG_FRENCH, 6) "Samedi"

test$ = cGetShortDay(LNG_DUTCH, 0) "Zon"
test$ = cGetLongDay(LNG_DUTCH, 0) "Zondag"
test$ = cGetShortDay(LNG_DUTCH, 6) "Zat"
test$ = cGetLongDay(LNG_DUTCH, 6) "Zaterdag"

test$ = cGetShortMonth(LNG_FRENCH, 3) "Mar"

test$ = cGetLongMonth(LNG_FRENCH, 3) "Mars"
test$ = cGetShortMonth(LNG_FRENCH, 12) "Déc"
test$ = cGetLongMonth(LNG_FRENCH, 12) "Decembre"

test$ = cGetShortMonth(LNG_DUTCH, 3) "Maa"
test$ = cGetLongMonth(LNG_DUTCH, 3) "Maart"
test$ = cGetShortMonth(LNG_DUTCH, 12) "Dec"
test$ = cGetLongMonth(LNG_DUTCH, 12) "December"

See also : cGetAscTime

Array routines
Adding a value to all elements in a single array

cAddD cAddI cAddL cAddS

Read the configuration of a single array

cArrayPrm

Calculating the standard deviation from all elements in a single array

cDeviationD cDeviationI cDeviationL cDeviationS

Filling on all elements on a single array with a value incremented by one for any element

cFillD cFillI cFillL cFillS

Finding the maximum value in a single array

cMaxD cMaxI cMaxL cMaxS

Calculating the mean from all elements in a single array

cMeanD cMeanI cMeanL cMeanS

Finding the minimum value in a single array

cMinD cMinI cMinL cMinS

Sort a single array in descending order

cReverseSortD cReverseSortI cReverseSortL cReverseSortS cReverseSortStr

Setting all elements in a single array with the same value

cSetD cSetI cSetL cSetS

Sort a single array in ascending order

cSortD cSortI cSortL cSortS cSortStr

Add all elements from a single array

cSumD cSumI cSumL cSumS

Bit String Manipulation routines
All strings used in these functions can be have embedded chr$(0) (if needed). These functions use the full description
of a VB string.

cCreateBits
cFindBitReset
cFindBitSet
cGetBit
cGiveBitPalindrome
cIsBitPalindrome
cReverseAllBits
cReverseAllBitsByChar
cSetAllBits
cSetBit
cSetBitToFalse
cSetBitToTrue
cToggleAllBits
cToggleBit

DOS routines
cAlllSubDirectories
cChDir
cChDrive
cCmpFileAttribute
cCmpFileContents
cCmpFileSize
cCmpFileTime
cCountDirectories
cCountFiles
cFileCompressTab
cFileCopy
cFileCRC32
cFileDecrypt
cFileEncrypt
cFileExpandTab
cFileFilter
cFileFilterNot
cFileDateCreated
cFileDrive
cFileGetAttrib
cFileLastDateAccess
cFileLastDateModified
cFileLastTimeAccess
cFileLastTimeModified
cFileLineCount
cFileMerge
cFilePathExists
cFileResetAllAttrib
cFileResetArchive
cFileResetFlag
cFileResetHidden
cFileResetReadOnly
cFileResetSystem
cFileSearch
cFileSearchAndReplace
cFileSearchCount
cFileSetAllAttrib
cFileSetArchive
cFileSetAttrib
cFileSetFlag
cFileSetHidden
cFileSetReadOnly
cFileSetSystem
cFilesInDirectory
cFileSize
cFilesSize
cFilesSizeOnDisk
cFilesSlack
cFileStatistics
cFileTimeCreated
cFileToLower
cFileToUpper
cFindFileInEnv
cFindFileInPath
cFullPath
cGetCurrentDrive
cGetDefaultCurrentDir
cGetDiskClusterSize
cGetDiskFree

cGetDiskSpace
cGetDiskUsed
cGetDriveCurrentDir
cGetDriveType
cGetFullNameInEnv
cGetFullNameInPath
cGetNetConnection
cIsFileArchive
cIsFileFlag
cIsFileHidden
cIsFileNormal
cIsFileReadOnly
cIsFileSubDir
cIsFileSystem
cIsFileVolId
cKillDir
cKillDirFilesAll
cKillDirs
cKillFile
cKillFileAll
cKillFiles
cKillFilesAll
cMakeDir
cMakePath
cRenameFile
cSplitPath
cSubDirectory
cUniqueFileName

IsX Family Test routines
cIsAlnum
cIsAlpha
cIsAscii
cIsBalance
cIsBitPalindrome
cIsCsym
cIsCsymf
cIsDate
cIsDigit
cIsFileArchive
cIsFileFlag
cIsFileHidden
cIsFilenameValid
cIsFileNormal
cIsFileReadOnly
cIsFileSubDir
cIsFileSystem
cIsFileVolId
cIsFormEnabled
cIsHour
cIsISBN
cIsLeapYear
cIsLower
cIsPalindrome
cIsPunct
cIsSpace
cIsUpper
cIsXdigit

String Manipulation routines
All strings used in these functions can be have embedded chr$(0) (if needed). These functions use the full description
of a VB string.

cArabicToRoman
cBlockCharFromLeft
cBlockCharFromRight
cChangeChars
cChangeCharsUntil
cCheckChars
cCheckNumericity
cCompact
cCompress
cCompressTab
cCount
cCreateAndFill
cDecrypt
cEncrypt
cExpandTab
cFilterBlocks
cFilterChars
cFilterFirstChars
cFilterNotChars
cFromBinary
cFromBinary2
cFromHexa
cGet
cGetBlock
cGetIn
cInsertBlocks
cInsertBlocksBy
cInsertByMask
cInsertChars
cMixChars
cOneCharFromLeft
cOneCharFromRight
cPatternExtMatch
cPatternMatch
cRemoveBlockChar
cRemoveOneChar
cResizeString
cResizeStringAndFill
cReverse
cRomanToArabic
cToBinary
cToBinary2
cToHexa
cUncompact

Timer functions
cCheckWait
cReadBasisTimer
cReadTimer
cSetWait
cSleep
cStartBasisTimer
cStartTimer
cStartWait
cStopBasisTimer
cStopTimer

Type functions
cCompareStringType
cCompareTypeString
cStringToType
cTypeClear
cTypeMid
cTypesCompare
cTypesCopy
cTypeToString
cTypeTransfert

VB Control Specific routines
cDisableCtlRedraw
cDisableFI
cDisableForm
cDisableRedraw
cEnableCtlRedraw
cEnableFI
cEnableForm
cEnableRedraw
cGetCaption
cGetClass
cGetContainer
cGetCtlCaption
cGetCtlClass
cGetCtlContainer
cGetCtlDataField
cGetCtlForm
cGetCtlIndex
cGetCtlName
cGetCtlNameIndex
cGetCtlPropCaption
cGetCtlPropDataField
cGetCtlPropText
cGetCtlTag
cGetCtlTagSized
cGetCtlText
cGetDataField
cGetForm
cGetHwnd
cGetIndex
cGetName
cGetNameIndex
cGetText
cKillFocus
cResetCapture
cResetFocus
cSetCaption
cSetCapture
cSetCtlCaption
cSetCtlDataField
cSetCtlFocus
cSetCtlPropString
cSetCtlTag
cSetCtlText
cSetDataField
cSetFocus
cSetTag
cSetText

Windows Specific routines
cChangeTaskName
cEXEnameActiveWindow
cEXEnameTask
cEXEnameWindow
cExitWindowsAndExecute
cGetChangeTaskName
cGetClassName
cGetCountry
cGetCountryCode
cGetCurrency
cGetDateFormat
cGetDateSeparator
cGetDefaultCurrentDir
cGetDefaultPrinter
cGetDevices
cGetFileVersion
cGetFileVersionInfo
cGetHourFormat
cGetIni
cGetLanguage
cGetListSeparator
cGetPrinterPorts
cGetSectionItems
cGetSystemDirectory
cGetTaskName
cGetTimeSeparator
cGetWindowsDirectory
cGetWinINI
cGetWinSection
cModuleFind
cModules
cPutIni
cRebootSystem
cRestartWindows
cTaskFind
cTasks
cUnloadDLL

Constants and Types declaration
Global Const GET_TIME_SEPARATOR = 1
Global Const GET_DATE_SEPARATOR = 2
Global Const GET_TIME_FORMAT = 3
Global Const GET_DATE_FORMAT = 4
Global Const GET_CURRENCY = 5
Global Const GET_LANGUAGE = 6
Global Const GET_COUNTRY = 7
Global Const GET_COUNTRY_CODE = 8
Global Const GET_LIST_SEPARATOR = 9
Global Const GET_DEFAULT_PRINTER = 10

Global Const DRIVE_UNKNOW = 0
Global Const DRIVE_REMOVABLE = 2
Global Const DRIVE_FIXED = 3
Global Const DRIVE_REMOTE = 4
Global Const DRIVE_CDROM = 20

Global Const A_NORMAL = &H0 'Normal file - No read/write restrictions
Global Const A_RDONLY = &H1 'Read only file
Global Const A_HIDDEN = &H2 'Hidden file
Global Const A_SYSTEM = &H4 'System file
Global Const A_VOLID = &H8 'Volume ID file
Global Const A_SUBDIR = &H10 'Subdirectory
Global Const A_ARCH = &H20 'Archive file

Global Const ENCRYPT_LEVEL_0 = 0
Global Const ENCRYPT_LEVEL_1 = 1
Global Const ENCRYPT_LEVEL_2 = 2
Global Const ENCRYPT_LEVEL_3 = 3

Global Const OPEN_MODE_BINARY = 0
Global Const OPEN_MODE_TEXT = 1

Global Const BIG_ADD = 0
Global Const BIG_SUB = 1
Global Const BIG_MUL = 2

Global Const VER_VERSION_PRODUCT = -1
Global Const VER_VERSION_FILE = 0
Global Const VER_COMPANY_NAME = 1
Global Const VER_FILE_DESCRIPTION = 2
Global Const VER_FILE_VERSION = 3
Global Const VER_INTERNAL_NAME = 4
Global Const VER_LEGAL_COPYRIGHT = 5
Global Const VER_LEGAL_TRADEMARKS = 6
Global Const VER_PRODUCT_NAME = 7
Global Const VER_PRODUCT_VERSION = 8

Global Const LNG_FRENCH = 1
Global Const LNG_DUTCH = 2
Global Const LNG_GERMAN = 3
Global Const LNG_ENGLISH = 4
Global Const LNG_ITALIAN = 5
Global Const LNG_SPANISH = 6

Global Const MB_MESSAGE_LEFT = 0
Global Const MB_MESSAGE_CENTER = 8192
Global Const MB_MESSAGE_RIGHT = 16384

Global Const MB_TIMEOUT_2 = 32768
Global Const MB_TIMEOUT_4 = 2 * MB_TIMEOUT_2
Global Const MB_TIMEOUT_8 = 2 * MB_TIMEOUT_4
Global Const MB_TIMEOUT_16 = 2 * MB_TIMEOUT_8

Global Const MB_TIMEOUT_6 = MB_TIMEOUT_2 Or MB_TIMEOUT_4
Global Const MB_TIMEOUT_10 = MB_TIMEOUT_2 Or MB_TIMEOUT_8
Global Const MB_TIMEOUT_12 = MB_TIMEOUT_4 Or MB_TIMEOUT_8
Global Const MB_TIMEOUT_14 = MB_TIMEOUT_2 Or MB_TIMEOUT_4 Or MB_TIMEOUT_8
Global Const MB_TIMEOUT_18 = MB_TIMEOUT_2 Or MB_TIMEOUT_16
Global Const MB_TIMEOUT_20 = MB_TIMEOUT_4 Or MB_TIMEOUT_16
Global Const MB_TIMEOUT_22 = MB_TIMEOUT_2 Or MB_TIMEOUT_4 Or MB_TIMEOUT_16
Global Const MB_TIMEOUT_24 = MB_TIMEOUT_8 Or MB_TIMEOUT_16
Global Const MB_TIMEOUT_26 = MB_TIMEOUT_2 Or MB_TIMEOUT_8 Or MB_TIMEOUT_16
Global Const MB_TIMEOUT_28 = MB_TIMEOUT_4 Or MB_TIMEOUT_8 Or MB_TIMEOUT_16
Global Const MB_TIMEOUT_30 = MB_TIMEOUT_2 Or MB_TIMEOUT_4 Or MB_TIMEOUT_8 Or MB_TIMEOUT_16

Global Const MB_DISPLAY_TIMEOUT = 524288

Global Const RS_CAPTION = 1
Global Const RS_TEXT = 2
Global Const RS_DATAFIELD = 4
Global Const RS_DATASOURCE = 8

Global Const MATCH_HEXA = 17
Global Const MATCH_INTERNAL_ERROR = 16
Global Const MATCH_PATTERN = 15
Global Const MATCH_LITERAL = 14
Global Const MATCH_RANGE = 13
Global Const MATCH_ABORT = 12
Global Const MATCH_END = 11
Global Const MATCH_VALID = -1

Global Const PATTERN_VALID = 0
Global Const PATTERN_INVALID = 1
Global Const PATTERN_ESC = 2
Global Const PATTERN_RANGE = 3
Global Const PATTERN_CLOSE = 4
Global Const PATTERN_EMPTY = 5
Global Const PATTERN_INTERNAL_ERROR = 6
Global Const PATTERN_HEXA = 7

Global Const IFV_ERROR = 0
Global Const IFV_NAME_TOO_LONG = 1
Global Const IFV_EXT_TOO_LONG = 2
Global Const IFV_TOO_MANY_BACKSLASH = 3
Global Const IFV_BAD_DRIVE_LETTER = 4
Global Const IFV_BAD_COLON_POS = 5
Global Const IFV_EXT_WITHOUT_NAME = 6

Global Const DA_BYTE = 1
Global Const DA_INTEGER = -2
Global Const DA_LONG = -3
Global Const DA_SINGLE = -4
Global Const DA_DOUBLE = -5
Global Const DA_CURRENCY = -6

Global Const DA_NO_ERROR = True
Global Const DA_EMPTY_FILENAME = 1
Global Const DA_BAD_FILENAME = 2
Global Const DA_CAN_KILL_FILE = 3
Global Const DA_CAN_NOT_OPEN_FILE = 4

Global Const DA_FILE_NOT_FOUND = 5
Global Const DA_BAD_TYPE = 6
Global Const DA_BAD_ROWS = 7
Global Const DA_BAD_COLS = 8
Global Const DA_BAD_SHEETS = 9
Global Const DA_CAN_NOT_WRITE_HEADER = 10
Global Const DA_CAN_NOT_WRITE_PART = 11
Global Const DA_CAN_NOT_WRITE_REMAIN = 12
Global Const DA_CAN_NOT_READ_HEADER = 13
Global Const DA_HEADER_SIZE = 14
Global Const DA_BAD_SIGNATURE = 15
Global Const DA_FILE_SIZE_MISMATCH = 16

Type tagSPLITPATH
nDrive As String
nDir As String
nName As String
nExt As String

End Type

Type tagFILEVERSIONINFO
VersionProduct As String
VersionFile As String
CompanyName As String
FileDescription As String
FileVersion As String
InternalName As String
LegalCopyright As String
LegalTrademarks As String
Comments As String
ProductName As String
ProductVersion As String

End Type

Type FileAttributeType
ErrNo As Integer
Archive As Integer
Hidden As Integer
Normal As Integer
ReadOnly As Integer
SubDir As Integer
System As Integer
VolId As Integer

End Type

Type ArrayType
Bounds As Long
LBound As Integer
UBound As Integer
ElemSize As Integer
IndexCount As Integer
TotalElem As Integer

End Type

Type tagMODULEENTRY
dwSize As Long
szModule As String * 10
hModule As Integer
wcUsage As Integer
szExePath As String * 256
wNext As Integer

End Type

Type tagTASKENTRY
dwSize As Long
hTask As Integer
hTaskParent As Integer
hInst As Integer
hModule As Integer
wSS As Integer
wSP As Integer
wStackTop As Integer
wStackMinimum As Integer
wStackBottom As Integer
wcEvents As Integer
hQueue As Integer
szModule As String * 10
wPSPOffset As Integer
hNext As Integer

End Type

Type tagDISKARRAY
daSize As Integer 'size of the type'd
Signature As String * 7 'signature
nFilename As String * 64 'name of the file
nType As Integer 'variable type
nRows As Long 'number of rows
nCols As Long 'number of cols
nSheets As Long 'number of sheets
rHandle As Integer 'returned handle for use with other functions
rElementSize As Integer 'returned size of a element
rFileSize As Long 'returned size of the file
rParts As Long 'returned total part
rRemain As Long 'returned size of the remain part
rSheetSize As Long 'size of a sheet
rOffset1 As Long 'returned offset 1
rOffset2 As Long 'returned offset 2
rTime As Long 'time take for the last correct transaction
dummy As String * 9 'reserved for future use

End Type

EXEnameActiveWindow
Purpose :

EXEnameActiveWindow retrieves the full filename (path and file) of the active window.

Declare Syntax :

Declare Function cEXEnameActiveWindow Lib "time2win.dll" () As String

Call Syntax :

test$ = cEXEnameActiveWindow()

Where :

test$ is the name of the active window

Comments :

Examples :

test$ = cEXEnameActiveWindow()

On my system : test$ = "K:\WINDOWS\VB\VB.EXE"

See also : cEXEnameTask, cEXEnameWindow

EXEnameWindow
Purpose :

EXEnameActiveWindow retrieves the full filename (path and file) of the specified window.

Declare Syntax :

Declare Function cEXEnameWindow Lib "time2win.dll" (ByVal hModule As Integer) As String

Call Syntax :

test$ = cEXEnameWindow(Form.Hwnd)

Where :

hModule is the hWnd of the window
test$ is the name of the specified window

Comments :

Examples :

test$ = cEXEnameWindow(Me.hWnd)

On my system : test$ = "K:\WINDOWS\VB\VB.EXE"

See also : cEXEnameTask, cEXEnameActiveWindow

EXEnameTask
Purpose :

The EXEnameTask function retrieves the full path and filename of the executable file from which the specified module
was loaded.

Declare Syntax :

Declare Function cEXEnameTask Lib "time2win.dll" (ByVal nFileName As String) As String

Call Syntax :

test$ = cEXEnameTask(nFileName)

Where :

nFileName is the task name as you fin when pressing CTRL + ESC keys
test$ is the returned full path and filename

Comments :

Examples :

test$ = cEXEnameTask("PROGMAN")

On my system : test$ = "K:\WINDOWS\PROGMAN.EXE"

See also : cEXEnameWindow, cEXEnameActiveWindow

Date, Hour and Time routines
cAddTime
cCheckTime
cDaysInMonth
cGetDateFormat
cGetDateSeparator
cGetHourFormat
cGetTimeSeparator
cHourTo
cIntoBalance
cIntoBalanceFill
cIntoDate
cIntoDateFill
cIntoDateNull
cIntoFixHour
cIntoHour
cIntoVarHour
cIsBalance
cIsDate
cIsHour
cIsLeapYear
cTimeBetween

Conversion table for Hundreds

IEEE Conversion routines
cCVB
cCVC
cCVD
cCVI
cCVL
cCVS

cMKB
cMKC
cMKD
cMKI
cMKL
cMKN
cMKS

Miscellaneous routines
cAddDigit
cBaseConversion
cBetween
cCplAlpha
cCplDigit
cCurrentTime
cFileCRC32
cGetPid
cLrc
cMax
cMin
cMorse
cNumDigit
cSetHandleCount
cStringCRC32
cSwapD
cSwapI
cSwapL
cSwapS
cSwapStr
cSysMenuChange
cTrueBetween

Technical Support
Only registered users can receive support and update.

To receive support, you must specify your registration ID.

The following information may be of help to you in streamlining your efforts to resolve any technical problems you
may have with 'TIME TO WIN' data link library for Visual Basic® 3.0 for Windows®.

GPF?

If you are getting a GPF (General Protection Fault), write down the information that is displayed when the error
occurs. Also, make a note of what your code was doing (in general terms.)

ISOLATE IT

Try to isolate the cause of the error. If at all possible, step through your code with F8 and F9. Try to find the one
line of code that is causing the error.

SCALE IT DOWN

If at all possible, try to reproduce the problem in a small test program that you can send in. Send your test on
CompuServe.

CompuServe Mail:

Name : Michaël RENARD
CIS : 100042,3646

I'm on CompuServe one time a day (after 19 o'clock European Time).

Days and Months in different language
cGetAscTime
cGetTinyDay
cGetSmallDay
cGetShortDay
cGetLongDay
cGetTinyMonth
cGetShortMonth
cGetLongMonth

License Agreement
The 'TIME TO WIN' data link library is not public domain software or free software.

The 'TIME TO WIN' data link library is copyrighted, and all rights are reserved by its author: Michaël Renard.

You are licensed to use this software on a restricted number of computers. You may copy the software to facilitate
your use of it on as many computers as there are licensed users specified in the 'TIME TO WIN' license file
'TIME2WIN.LIC'. Making copies for any other purpose violates international copyright laws.

You are not allowed to distribute 'TIME2WIN.LIC' file with any application that you distribute.

Disclaimer:

This software is sold AS IS without warranty of any kind, either expressed or implied, including but not limited to the
implied warranties of merchantability and fitness for a particular purpose. The authors assume no liability for any
alleged or actual damages arising from the use of this software. (Some states do not allow the exclusion of implied
warranties, so the exclusion may not apply to you.)

Your use of this product indicates that you have read and agreed to these terms.

Acknowledgement
Thanks to Andreas Thoele for some translations in German.
Thanks to Silvio Sorrentino for some translations in Italian.

Special thanks to J. Kercheval, Michael M. Dodd.

This help has been writed by using ForeHelp v1.04 from ForeFront, Inc.

Overview
'TIME TO WIN' is a DLL (Data Link Library) only for use with Visual Basic® 3.0 for Windows®.

I'm a Visual Basic® Developper's specialized in Time Attendance, Access Control and Job Control. In this
specialization, you must manipulate data on date, hour, bit and string; you must support multi-language and you must
make the better and faster program. For all this reasons, I've writed this DLL (fully in C/C++) because I've not founded
some functions or subroutines in the Visual Basic® or in other third party.

I hope that 'TIME TO WIN' will be a great advantage for you and for your application.

'TIME TO WIN' contains more over 390 functions or subroutines. You can find functions or routines over the following
sections :

• Array routines
• Big Numbers
• Bit String Manipulation routines
• Date, Hour and Time routines
• Days and Months in different language
• Disk Array routines
• DOS, Disk and Files routines
• IEEE Conversion routines
• IsX Family Test routines
• Miscellaneous routines
• Multi-Language support
• String Manipulation routines
• Timer functions
• Type functions
• VB Control Specific routines
• Windows Specific routines

Registering 'TIME TO WIN'
The easiest way to Register 'TIME TO WIN' is through CompuServe's SWREG forum.

1) GO SWREG
2) Choose Register Shareware.
3) 'TIME TO WIN' SWREG ID is : #4045.

As soon as I receive notification of your registration (usually 1 - 3 days) I will send you out via e-Mail the latest version
and documentation.
You also qualify to receive new versions of 'TIME TO WIN' during one year.

The price for 'TIME TO WIN' is fixed at $61.00

This price is much a contribution to my works that a payment. When you register 'TIME TO WIN', you help me to
develop better products and others products.

'TIME TO WIN' is written in C and has been compiled using Visual C++ 1.51.
The code has been optimized for 80386 use with the 'maximize speed' option.

'TIME TO WIN' can only be used with Visual Basic 3.0.

If the version 4.0 of VB will be in 32 Bits, I will make 'TIME TO WIN' also in 32 Bits.

Others products :

In the future, I will place on CompuServe (MSBASIC forum), two new products :

1) Adding/Removing error handling to your application (by reading all files included in a .MAK file).

2) Adding multi-language support to your application.by creating external language files (by reading all .FRM included
in a .MAK file).

These products will be use 'TIME TO WIN' data link library.

SwapD
Purpose :

SwapD swaps two Double values.

Declare Syntax :

Declare Sub cSwapD Lib "time2win.dll" (swap1 As Double, swap2 As Double)

Call Syntax :

Call cSwapD(swap1, swap2)

Where :

swap1 first Double value
swap2 second Double value

Comments :

Examples :

swap1 = 2345.12
swap2 = 5432.21
Call cSwapD(swap1, swap2

-> swap1 = 5432.21
-> swap2 = 2345.12

See Also : cSwapD, cSwapI, cSwapL, cSwapS, cSwapStr

SwapL
Purpose :

SwapL swaps two Long values.

Declare Syntax :

Declare Sub cSwapL Lib "time2win.dll" (swap1 As Long, swap2 As Long)

Call Syntax :

Call cSwapL(swap1, swap2)

Where :

swap1 first Long value
swap2 second Long value

Comments :

Examples :

swap1 = 234512
swap2 = 543221
Call cSwapL(swap1, swap2

-> swap1 = 543221
-> swap2 = 234512

See Also : cSwapD, cSwapI, cSwapL, cSwapS, cSwapStr

SwapI
Purpose :

SwapI swaps two Integer values.

Declare Syntax :

Declare Sub cSwapI Lib "time2win.dll" (swap1 As Integer, swap2 As Integer)

Call Syntax :

Call cSwapI(swap1, swap2)

Where :

swap1 first Integer value
swap2 second Integer value

Comments :

Examples :

swap1 = 2345
swap2 = 5432
Call cSwapI(swap1, swap2

-> swap1 = 5432
-> swap2 = 2345

See Also : cSwapD, cSwapI, cSwapL, cSwapS, cSwapStr

SwapS
Purpose :

SwapS swaps two Single values.

Declare Syntax :

Declare Sub cSwapS Lib "time2win.dll" (swap1 As Single, swap2 As Single)

Call Syntax :

Call cSwapS(swap1, swap2)

Where :

swap1 first Single value
swap2 second Single value

Comments :

Examples :

swap1 = 2345.1
swap2 = 5432.2
Call cSwapS(swap1, swap2

-> swap1 = 5432.2
-> swap2 = 2345.1

See Also : cSwapD, cSwapI, cSwapL, cSwapS, cSwapStr

SwapStr
Purpose :

SwapStr swaps two Strings.

Declare Syntax :

Declare Sub cSwapStr Lib "time2win.dll" (swap1 As String, swap2 As String)

Call Syntax :

Call cSwapStr(swap1, swap2)

Where :

swap1 first String
swap2 second String

Comments :

Examples :

swap1 = "Hello"
swap2 = "World"
Call cSwapStr(swap1, swap2

-> swap1 = "World"
-> swap2 = "Hello"

See Also : cSwapD, cSwapI, cSwapL, cSwapS, cSwapStr

FileSearchAndReplace
Purpose :

FileSearchAndReplace searchs and replaces a string by an another in the specified TEXT file.

Declare Syntax :

Declare Function cFileSearchAndReplace Lib "time2win.dll" (ByVal nFileName As String, ByVal Search As String,
ByVal Replace As String, ByVal nFileTemp As String, ByVal Sensitivity As Integer) As Long

Call Syntax :

test& = cFileSearchAndReplace(nFilename$, Search$, Replace$, nFileTemp$, Sensitivity%)

Where :

nFilename$ the ASCII file.
Search$ the string to be searched.
Replace$ the replacement string.
nFileTemp$ a temporary file.
Sensitivity% TRUE if the search must be case-sensitive,

FALSE if the search is case-insensitive.
test& > 0 if all is OK (the returned value is the total bytes copied),

< 0 if an error has occured.

Comments :

cFileSearchAndReplace can handle lines with a maximum of 2304 chars.

If the nFilename string is an EMPTY string, the returned value is FALSE.
If the search string is an EMPTY string, the returned value is FALSE.

The length of the replace string can be > or < of the search string.
The replace string can be an EMPTY string. In this case, the search string is removed from the file.

If the nFileTemp is an EMPTY string, a default temporary file is used.

The returned value can be negative and have the following value :

-32730 reading error for file 1.
-32740 writing error for file 2.
-32750 opening error for file 1.
-32751 opening error for file 2.

Examples :

test& = cFileCopy("c:\autoexec.bat","c:autoexec.tab")

test& = cFileSearchAndReplace("c:\autoexec.tab", "path", " PATH ", "", False)

See also : cFileSearch, cFileSearchCount

FileSet
Purpose :

FileSetAllAttrib, FileSetArchive, FileSetHidden, FileSetReadOnly, FileSetSystem, FileSetFlag sets respectively all
attributes, archive attribute, hidden attribute, read-only attribute, system attribute, specified attribute for the gived file.
FileSetAttrib sets in a Call, all attributes of a gived file.

Declare Syntax :

Declare Function cFileSetAllAttrib Lib "time2win.dll" (ByVal nFilename As String) As Integer
Declare Function cFileSetArchive Lib "time2win.dll" (ByVal nFilename As String) As Integer
Declare Function cFileSetHidden Lib "time2win.dll" (ByVal nFilename As String) As Integer
Declare Function cFileSetReadOnly Lib "time2win.dll" (ByVal nFilename As String) As Integer
Declare Function cFileSetSystem Lib "time2win.dll" (ByVal nFilename As String) As Integer
Declare Function cFileSetFlag Lib "time2win.dll" (ByVal nFilename As String, ByVal nStatus As Integer) As Integer

Declare Function cFileSetAttrib Lib "time2win.dll" (ByVal nFilename As String, nFileAttribute As Any) As Integer

Call Syntax :

status = cFileSetAllAttrib(nFilename)
status = cFileSetArchive(nFilename)
status = cFileSetHidden(nFilename)
status = cFileSetReadOnly(nFilename)
status = cFileSetSystem(nFilename)
status = cFileSetFlag(nFilename, nStatus)

test% = cFileSetAttrib(nFilename, nFileAttribute)

Where :

nFilename is the filename to change the attributes
nStatus is a combination of A_NORMAL, A_RDONLY, A_HIDDEN, A_SYSTEM, A_ARCH
nFileAttribute the type variable 'FileAttributeType' (only for cFileSetAttrib)
status TRUE if all is OK.

FALSE if an error has been detected.

Comments :

Examples :

nFilename = "tmp.tmp"
nStatus = A_RDONLY or A_SYSTEM or A_HIDDEN

status = cFileSetAllAttrib(nFilename)
status = cFileSetFlag(nFilename, nStatus)

See also : FileReset, Constants and Types declaration

FileSearch, FileSearchCount
Purpose :

FileSearch searchs a string in a gived TEXT file.
FileSearchCount counts.occurence of a string in a gived TEXT file.

Declare Syntax :

Declare Function cFileSearch Lib "time2win.dll" (ByVal nFileName As String, ByVal Search As String, ByVal
sensitivity As Integer) As Long
Declare Function cFileSearchCount Lib "time2win.dll" (ByVal nFileName As String, ByVal Search As String, ByVal
sensitivity As Integer) As Long

Call Syntax :

test& = cFileSearch(nFilename$, Search$, Sensitivity%)
test& = cFileSearchCount(nFilename$, Search$, Sensitivity%)

Where :

nFilename$ the ASCII file.
Search$ the string to be searched.
Sensitivity% TRUE if the search must be case-sensitive,

FALSE if the search is case-insensitive.
test& > 0 if all is OK (the returned value is the total bytes copied),

< 0 if an error has occured.

Comments :

cFileSearch and cFileSearchCount can handle lines with a maximum of 2304 chars.

For cFileSearch, the returned value is TRUE if the string is found and FALSE if not.
For cFileSearchCount, the returned value is the number of occurence of the specified string.

If the nFilename string is an EMPTY string, the returned value is FALSE.
If the search string is an EMPTY string, the returned value is FALSE.

The returned value can be negative and have the following value :

-32730 reading error for file 1.
-32750 opening error for file 1.

Examples :

test1& = cFileSearch("c:\autoexec.bat", "rEm", False)
test2& = cFileSearchCount("c:\autoexec.bat", "ReM", False)

On my system :

test1& =
test2& =

See also : cFileSearchAndReplace

PatternExtMatch
Purpose :

PatternExtMatch searches if a gived pattern can be found is a gived string.

Declare Syntax :

Declare Function cPatternExtMatch Lib "time2win.dll" (ByVal Txt As String, ByVal Pattern As String) As Integer

Call Syntax :

test% = cPatternExtMatch(Txt, Pattern)

Where :

Txt the string to proceed
Pattern the pattern to match
test% TRUE if the pattern match,

<> TRUE if the pattern not match or if an error has occurs

Comments :

PatternExtMatch is a superset of PatternMatch and is a little bit faster.

The char '?' is used to match a single char.
The char '*' is used to match a block of char.
The construct [x-y] is used to match a single char in range of chars (b.e. : [a-m], [n-z], [abcABC], [abgx-y]).
The construct [!x-y] or [^x-y] is used to match a single char not in range of chars (b.e. : [!A-Z], [^ - Z], [!abcABC],
[^abgx-y]).
The hexa '~xy' is used to match a hexa char (b.e. : ~FF, ~A0, ~78, ~4, ~0A, ~0D).
The matching of all others chars is case-sensitive.

If you want to suppress the special syntactic significance of any of `[]*?!^-\~', and match the character exactly,
precede it with a `\'.

The returned value can be the following :

MATCH_HEXA match failure on hexa char &xy
MATCH_INTERNAL_ERROR internal error
MATCH_PATTERN bad pattern
MATCH_LITERAL match failure on literal match
MATCH_RANGE match failure on [..] construct
MATCH_ABORT premature end of text string
MATCH_END premature end of pattern string
MATCH_VALID valid match

PATTERN_VALID valid pattern
PATTERN_INVALID invalid pattern
PATTERN_ESC literal escape at end of pattern
PATTERN_RANGE malformed range in [..] construct
PATTERN_CLOSE no end bracket in [..] construct
PATTERN_EMPTY [..] contstruct is empty
PATTERN_INTERNAL_ERROR internal error
PATTERN_MATCH bad hexa in ~xy

Examples :

Dim Txt As String

Txt = "Under the blue sky, the sun lights"

test% = cPatternExtMatch(Txt, "*") is TRUE
test% = cPatternExtMatch(Txt, "*??*???*?") is TRUE
test% = cPatternExtMatch(Txt, "*Under*") is TRUE
test% = cPatternExtMatch(Txt, "*sky*") is TRUE
test% = cPatternExtMatch(Txt, "*lights") is TRUE
test% = cPatternExtMatch(Txt, "Under*") is TRUE
test% = cPatternExtMatch(Txt, "??der*sky*ligh??") is TRUE
test% = cPatternExtMatch(Txt, "Under?the * s?? *") is TRUE
test% = cPatternExtMatch(Txt, "[U-U][a-z][a-z][a-z][a-z]?the *") is TRUE
test% = cPatternExtMatch(Txt, "[U-U][!A-Z][^A-Z][^A-Z][!A-Z]?the *[s-s]") is TRUE
test% = cPatternExtMatch(Txt, "~55~6E*~73") is TRUE
test% = cPatternExtMatch(Txt, "[Uu][Nn][dD][eE][opqrst]?the *[rstu]") is TRUE
test% = cPatternExtMatch(Txt, "Under?the *[~72~73~74~75]") is TRUE

test% = cPatternExtMatch(Txt, "*under*") is MATCH_ABORT
test% = cPatternExtMatch(Txt, "Under*sun") is MATCH_ABORT
test% = cPatternExtMatch(Txt, "Under t??e*") is MATCH_LITERAL
test% = cPatternExtMatch(Txt, "[U-U][!a-z][^A-Z][^A-Z][!A-Z]?the *[!s-s]") is MATCH_RANGE
test% = cPatternExtMatch(Txt, "~55~6G*~73") is MATCH_HEXA
test% = cPatternExtMatch(Txt, "[Uu][Nn][dD][eE][opqrst]?the *[rStu]") is MATCH_ABORT
test% = cPatternExtMatch(Txt, "Under?the *[~72~53~74~75]") is MATCH_ABORT

See also : cPatternMatch, Constants and Types declaration

KillDirFilesAll
Purpose :

KillDirFilesAll deletes all files specified by a mask in the specified directory and its associated sub-dir.

Declare Syntax :

Declare Function cKillDirFilesAll Lib "time2win.dll" (ByVal lpDir As String, ByVal lpMask As String) As Integer

Call Syntax :

test% = cKillDirFilesAll(lpDir$, lpMask$)

Where :

lpDi$r is the starting directory
lpMask$ is the file mask to use
test% >= 0 if all is OK. The returned value specified the total files deleted,

< 0 if an error has occured

Comments :

Don't forget that this function can handle a maximum of 700 directories of 70 chars long each.

This function doesn't generates an VB Error if the speficied dir not exists.

The returned value can be negative :
-32760 allocation error for memory buffer.

See also : cKillFile, cKillFiles, cKillDir, cKillDirs

BaseConversion
Purpose :

BaseConversion converts a number string (long integer) from a radix to another radix.

Declare Syntax :

Declare Function cBaseConversion Lib "time2win.dll" (ByVal Num As String, ByVal RadixIn As Integer, ByVal
RadixOut As Integer) As String

Call Syntax :

test$ = cBaseConversion(Num$, RadixIn%, RadixOut%)

Where :

Num$ is the number string to convert
RadixIn% is the base of the radix
RadixOut% is the new base of the radix
test$ is the result

Comments :

If the number string can be converted, the returned string is an EMPTY string.

Examples :

Convert '1234567' base 10 to base 2 is 100101101011010000111
Convert '1234567' base 10 to base 3 is 2022201111201
Convert '1234567' base 10 to base 4 is 10231122013
Convert '1234567' base 10 to base 5 is 304001232
Convert '1234567' base 10 to base 6 is 42243331
Convert '1234567' base 10 to base 7 is 13331215
Convert '1234567' base 10 to base 8 is 4553207
Convert '1234567' base 10 to base 9 is 2281451
Convert '1234567' base 10 to base 10 is 1234567
Convert '1234567' base 10 to base 11 is 773604
Convert '1234567' base 10 to base 12 is 4b6547
Convert '1234567' base 10 to base 13 is 342c19
Convert '1234567' base 10 to base 14 is 241cb5
Convert '1234567' base 10 to base 15 is 195be7
Convert '1234567' base 10 to base 16 is 12d687
Convert '1234567' base 10 to base 17 is ed4ea
Convert '1234567' base 10 to base 18 is bdc71
Convert '1234567' base 10 to base 19 is 98ig4
Convert '1234567' base 10 to base 20 is 7e687

See also :

FileStatistics
Purpose :

FileStatictics counts the lines, words and chars in a specified file.

Declare Syntax :

Declare Function cFileStatistics Lib "time2win.dll" (ByVal nFilename As String, nLines As Long, nWords As Long,
nChars As Long) As Long

Call Syntax :

test& = cFileStatictics(nFilename$, nLines, nWords, nChars)

Where :

nFilename$ is the file to proceed
nLines& is the returned number of lines
nWords& is the returned number of words
nChars& is the returned number of chars
test& > 0 if all is OK (the returned value is the total bytes in the file),

< 0 if an error has occured.

Comments :

If all is ok, the returned value must be equal to nChars.

The returned value can be negative and have the following value :

-32730 reading error for file.
-32750 opening error for file.
-32760 allocation error for memory buffer.

Examples :

test& = cFileStatistics("c:\autoexec.bat", nLines&, nWords&, nChars&)

On my system :

nLines& is 90
nWords& is 282
nChars&is 2212
test& is 2212

test& = cFileStatistics("c:\config.sys", nLines&, nWords&, nChars&)

On my system :

nLines& is 15
nWords& is 44
nChars&is 506
test& is 506

See also :

Disk Array routines
The functions/subs usen in the Disk Array routines handle big sized arrays on disk.

Each array must give/have a file to handle the information.

The concept of big sized arrays on disk is to use the mass storage (hard disk) in place of memory. This concept
minimize the use of the memory for big array but decrease the speed to accessing data.

A fixed string array of 500 rows by 500 cols, 2 Sheets and a string size of 50 take 25.000.000 bytes. I think that this is
better to place this array on the disk.

The following functions/subs are used to handle big sized arrays on disk :

cDAClear clear a big sized array (fill it with chr$(0)).
cDAClose close a big sized array and keep it or close a big sized array and destroy it.
cDACreate create a new big sized array on disk or use an existing big sized array on disk.
cDAGet read an element from a big sized array on disk.
cDAGetType read a type'd variable from a big sized array on disk.
cDAPut save an element to a big sized array on disk.
cDAPutType save a type'd variable to a big sized array on disk.

To minimize the use of too many functions for the different variable type in VB, cDAGet and cDAPut uses variant
value (integer, long, single, double, currency, string). This can be slow down (a little bit) the speed for accessing the
data.

When you create a new array on disk, a header (128 chars) is writed to begin of the associated file. This header is
readed when you re-use an existing array to verify that this is a good big sized disk array.

DACreate
Purpose :

DACreate creates a new big sized array on disk or use an existing big sized array on disk.

Declare Syntax :

Declare Function cDACreate Lib "time2win.dll" (DISKARRAY As tagDISKARRAY, ByVal CreateOrUse As Integer) As
Integer

Call Syntax :

ErrCode% = cDACreate(DA, CreateOrUse%)

Where :

DISKARRAY is a type'd variable (tagDISKARRAY).
CreateOrUse% TRUE : if you want to create a new big sized array on disk,

FALSE : if you want to re-use an existing big sized array on disk.
ErrCode% is the returned error code, see Constants and Types declaration. (DA_x)

Comments :

In theory :

The maxium number of Rows is 2147483647
The maxium number of Cols is 2147483647
The maxium number of Sheets is 2147483647

You are only limited by the size of the disk on which the big sized array are defined.

The length of the filename can be 64 chars maximum.

If you create a new big sized array on disk and if the file is already exists, the file is deleted before used.
If you re-use an existing big sized array on disk, some checkings are made to verify the validity of the big sized array
on disk.

Bigger are nRows, nCols or nSheets, bigger is the time to initialize.

When you create a new big sized array on disk, the only parameters that you must initialize are :

DA.nFilename = "c:\t2w_tmp\dastring.tmp" 'name of the file (you must have enough space on the
drive).

DA.nType = 50 'the type of the variable to use, see Constants and
Types declaration. (DA_x)

DA.nRows = 500 'the number of rows to use.
DA.nCols = 500 'the number of cols to use.
DA.nSheets = 2 'the number of sheets to use.

YOU CAN'T CHANGE THESE PARAMETERS AFTER THE CREATION OF THE BIG SIZED ARRAY.
YOU CAN'T CHANGE THE OTHER VALUES IN THE TYPE'D VARIABLE.

If you use big size array of type'd variable, the type'd variable must be composed only of fixed variable (variable string
length can't be used).

Examples :

Dim ErrCode As Integer
Dim DA As tagDISKARRAY
Dim Var(1 To 8) As Variant

DA.nFilename = "c:\t2w_tmp\dastring.tmp" '
DA.nType = 50 'positive value for a string
DA.nRows = 500 '500 rows
DA.nCols = 500 '500 cols
DA.nSheets = 2 '2 sheets

ErrCode = cDACreate(DA, True) 'create a new big sized array on disk

Call cDAPut(DA, 1, 1, 1, "D:1, ABCDEFGHIJ") 'save the string in Row 1, Col 1, Sheet 1
Call cDAPut(DA, 1, DA.nCols, 1, "D:1, abcdefghij") 'save the string in Row 1, Col 500, Sheet 1
Call cDAPut(DA, DA.nRows, 1, 1, "D:1, OPQRSTUVWXYZ") 'save the string in Row 500, Col 1, Sheet 1
Call cDAPut(DA, DA.nRows, DA.nCols, 1, "D:1, oprqstuvwxyz") 'save the string in Row 500, Col
500, Sheet 1

Call cDAPut(DA, 1, 1, 2, "D:2, 1234567890") 'save the string in Row 1, Col 1, Sheet 2
Call cDAPut(DA, 1, DA.nCols, 2, "D:2, 0987654321") 'save the string in Row 1, Col 500, Sheet 2
Call cDAPut(DA, DA.nRows, 1, 2, "D:2, 12345ABCDE") 'save the string in Row 500, Col 1, Sheet 2
Call cDAPut(DA, DA.nRows, DA.nCols, 2, "D:2, VWXYZ54321") 'save the string in Row 500, Col 500, Sheet 2

Var(1) = cDAGet(DA, 1, 1, 1) 'read the string in Row 1, Col 1, Sheet 1
Var(2) = cDAGet(DA, 1, DA.nCols, 1") 'read the string in Row 1, Col 500, Sheet 1
Var(3) = cDAGet(DA, DA.nRows, 1, 1) 'read the string in Row 500, Col 1, Sheet 1
Var(4) = cDAGet(DA, DA.nRows, DA.nCols, 1) 'read the string in Row 500, Col 500, Sheet 1

Var(5) = cDAGet(DA, 1, 1, 2) 'read the string in Row 1, Col 1, Sheet 2
Var(6) = cDAGet(DA, 1, DA.nCols, 2) 'read the string in Row 1, Col 500, Sheet 2
Var(7) = cDAGet(DA, DA.nRows, 1, 2) 'read the string in Row 500, Col 1, Sheet 2
Var(8) = cDAGet(DA, DA.nRows, DA.nCols, 2) 'read the string in Row 500, Col 500, Sheet 2

Call cDAClose(DA, False) 'close the file without delete it.

On my system :

ErrCode = -1 'no error

DA.daSize = 128 'internal header size
DA.Signature = "MCR_347" 'internal signature
DA.nFilename = "c:\t2w_tmp\dastring.tmp" 'name fo the file
DA.nType = 50 'fixed string of 50 chars
DA.nRows = 500 '500 rows
DA.nCols = 500 '500 cols
DA.nSheets = 2 '2 sheets
DA.rHandle = 0 'internal handle
DA.rElementSize = 50 'internal size of a element
DA.rFileSize = 25000128 'internal size of the file
DA.rParts = 762 'internal number of parts (block of 32768
chars)
DA.rRemain = 30784 'internal remain chars
DA.rSheetSize = 250000 'internal size of one sheet
DA.rTime = 26639 'internal time to perform the operation

Var(1) = "D:1, ABCDEFGHIJ"
Var(2) = "D:1, abcdefghij"
Var(3) = "D:1, OPQRSTUVWXYZ"
Var(4) = "D:1, oprqstuvwxyz"

Var(5) = "D:2, 1234567890"
Var(6) = "D:2, 0987654321"
Var(7) = "D:2, 12345ABCDE"
Var(8) = "D:2, VWXYZ54321"

See also : Disk Array routines, cDAClose

DAClose
Purpose :

Close a big sized array and keep it or close a big sized array and destroy it.

Declare Syntax :

Declare Sub cDAClose Lib "time2win.dll" (DISKARRAY As tagDISKARRAY, ByVal DeleteFile As Integer)

Call Syntax :

Call cDAClose(DISKARRAY, DeleteFile%)

Where :

DISKARRAY is a type'd variable (tagDISKARRAY).
DeleteFile% TRUE : delete the file

FALSE : don't delete the file (the file can be re-used by cDACreate)

Comments :

If you want to re-use the big sized array on disk with the same parameters and whitout a new initialization, don't
delete it.

Examples :

see cDACreate

See also : Disk Array routines, cDACreate

DAGet
Purpose :

DAGet reads an element from a big sized array on disk.

Declare Syntax :

Declare Function cDAGet Lib "time2win.dll" (DISKARRAY As tagDISKARRAY, ByVal Row As Long, ByVal Col As
Long, ByVal Sheet As Long) As Variant

Call Syntax :

Var = cDAGet(DISKARRAY, Row&, Col&, Sheet&)

Where :

DISKARRAY is a type'd variable (tagDISKARRAY).
Row& is the row.
Col& is the col.
Sheet& is the sheet.
Var is the readed variant value depending of the variable type used in the creation.

Comments :

If the Row is below 1, the Row 1 is used.
If the Col is below 1, the Col 1 is used.
If the Sheet is below, the Sheet 1 is used.

If the Row is greater than DISKARRAY.nRows, the Row DISKARRAY.nRows is used.
If the Col is greater than DISKARRAY.nCols, the Col DISKARRAY.nCols is used.
If the Sheet is greater than DISKARRAY.nSheets, the Sheet DISKARRAY.nSheets is used.

Examples :

see cDACreate

See also : Disk Array routines, cDAPut

DAPut
Purpose :

DAPut saves an element to a big sized array on disk.

Declare Syntax :

Declare Sub cDAPut Lib "time2win.dll" (DISKARRAY As tagDISKARRAY, ByVal Row As Long, ByVal Col As Long,
ByVal Sheet As Long, Var As Variant)

Call Syntax :

Call cDAPut(DISKARRAY, Row&, Col&, Sheet&, Var)

Where :

DISKARRAY is a type'd variable (tagDISKARRAY).
Row& is the row.
Col& is the col.
Sheet& is the sheet.
Var is the variant value to save depending of the variable type used in the creation.

Comments :

If the Row is below 1, the Row 1 is used.
If the Col is below 1, the Col 1 is used.
If the Sheet is below, the Sheet 1 is used.

If the Row is greater than DISKARRAY.nRows, the Row DISKARRAY.nRows is used.
If the Col is greater than DISKARRAY.nCols, the Col DISKARRAY.nCols is used.
If the Sheet is greater than DISKARRAY.nSheets, the Sheet DISKARRAY.nSheets is used.

Examples :

see cDACreate

See also : Disk Array routines, cDAGet

DAPutType
Purpose :

DAPutType saves a type'd variable from a big sized array on disk.

Declare Syntax :

Declare Sub cDAPutType Lib "time2win.dll" (DISKARRAY As tagDISKARRAY, ByVal Row As Long, ByVal Col As
Long, ByVal Sheet As Long, nType As Any)

Call Syntax :

Call cDAPut(DISKARRAY, Row&, Col&, Sheet&, nType)

Where :

DISKARRAY is a type'd variable (tagDISKARRAY).
Row& is the row.
Col& is the col.
Sheet& is the sheet.
nType is the type'd variable to save depending of the variable type used in the creation.

Comments :

If the Row is below 1, the Row 1 is used.
If the Col is below 1, the Col 1 is used.
If the Sheet is below, the Sheet 1 is used.

If the Row is greater than DISKARRAY.nRows, the Row DISKARRAY.nRows is used.
If the Col is greater than DISKARRAY.nCols, the Col DISKARRAY.nCols is used.
If the Sheet is greater than DISKARRAY.nSheets, the Sheet DISKARRAY.nSheets is used.

Examples :

See also : Disk Array routines, cDAGetType

DAGetType
Purpose :

DAGetType reads a type'd variable from a big sized array on disk.

Declare Syntax :

Declare Sub cDAGetType Lib "time2win.dll" (DISKARRAY As tagDISKARRAY, ByVal Row As Long, ByVal Col As
Long, ByVal Sheet As Long, nType As Any)

Call Syntax :

Call cDAGet(DISKARRAY, Row&, Col&, Sheet&, nType)

Where :

DISKARRAY is a type'd variable (tagDISKARRAY).
Row& is the row.
Col& is the col.
Sheet& is the sheet.
nType is the readed type'd variable depending of the variable type used in the creation.

Comments :

If the Row is below 1, the Row 1 is used.
If the Col is below 1, the Col 1 is used.
If the Sheet is below, the Sheet 1 is used.

If the Row is greater than DISKARRAY.nRows, the Row DISKARRAY.nRows is used.
If the Col is greater than DISKARRAY.nCols, the Col DISKARRAY.nCols is used.
If the Sheet is greater than DISKARRAY.nSheets, the Sheet DISKARRAY.nSheets is used.

Examples :

See also : Disk Array routines, cDAPutType

DAClear
Purpose :

DAClear clears a big sized array (fill it whith chr$(0)).

Declare Syntax :

Declare Function cDAClear Lib "time2win.dll" (DISKARRAY As tagDISKARRAY) As Integer

Call Syntax :

ErrCode% = cDAClear(DISKARRAY)

Where :

DISKARRAY is a type'd variable (tagDISKARRAY).
ErrCode% is the returned error code, see Constants and Types declaration. (DA_x)

Comments :

This function must be used only after you've created a big sized array on disk OR after the using of an existing big
sized array on disk.

If you've created a big sized array on disk, the array is already cleared.

Examples :

Dim ErrCode As Integer
Dim DA As tagDISKARRAY

DA.nFilename = "c:\t2w_tmp\dastring.tmp" '
DA.nType = 50 'positive value for a string
DA.nRows = 500 '500 rows
DA.nCols = 500 '500 cols
DA.nSheets = 2 '2 sheets

ErrCode = cDACreate(DA, True) 'create a new big sized array on disk

Call cDAPut(DA, 1, 1, 1, "D:1, ABCDEFGHIJ") 'save the string in Row 1, Col 1, Sheet 1
Call cDAPut(DA, 1, DA.nCols, 1, "D:1, abcdefghij") 'save the string in Row 1, Col 500, Sheet 1
Call cDAPut(DA, DA.nRows, 1, 1, "D:1, OPQRSTUVWXYZ") 'save the string in Row 500, Col 1, Sheet 1
Call cDAPut(DA, DA.nRows, DA.nCols, 1, "D:1, oprqstuvwxyz") 'save the string in Row 500, Col
500, Sheet 1

'.......... some codes

ErrCode = cDAClear(DA) 'clear the big sized array on disk

See also : Disk Array routines, cDACreate

