
Data Access Objects Overview
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dahowDataAccessOverviewC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"dahowDataAccessOverviewX":1} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dahowDataAccessOverviewS"}

Data Access Objects (DAO) enables you to use a programming language to access and manipulate
data in local or remote databases, and to manage databases, their objects, and their structure.

Object Models
DAO supports two different database environments, or "workspaces."

· Microsoft Jet workspaces allow you to access data in Microsoft Jet databases, Microsoft Jet-
connected ODBC databases, and installable ISAM data sources in other formats, such as Paradox
or Lotus 1-2-3.

· ODBCDirect workspaces allow you to access database servers through ODBC, without loading the
Microsoft Jet database engine.

Use the Microsoft Jet workspace when you open a Microsoft Jet database (.mdb file) or other desktop
ISAM database, or when you need to take advantage of Microsoft Jet's unique features, such as the
ability to join data from different database formats.

The ODBCDirect workspace provides an alternative when you only need to execute queries or stored
procedures against a back-end server, such as Microsoft SQL Server, or when your client application
needs the specific capabilities of ODBC, such as batch updates or asynchronous query execution.

DAO Objects
There are 17 different DAO object types. You can declare new DAO object variables for any of the
object types.

For example, the following Visual Basic for Applications (VBA) code creates object variables for a
Database object, a dynaset-type Recordset object, and a Field object:
Dim dbsExample As Database
Dim rstExample As Recordset
Dim fldExample As Field

Set dbsExample = OpenDatabase("Biblio.mdb")
Set rstExample = dbsExample.OpenRecordset("Authors", _ dbOpenDynaset)
Set fldExample = rstExample.Fields("Au_ID")

DAO Collections
Each DAO object type other than DBEngine also has a corresponding collection. A collection
includes all the existing objects of that type. For example, the Recordsets collection contains all open
Recordset objects. Each collection is "owned" by another object at the next higher level in the
hierarchy. A Database object "owns" a Recordsets collection. Except for the Connection and Error
objects, every DAO object has a Properties collection.

Most DAO objects have default collections and default properties. For example, the default collection
of a Recordset object is the Fields collection and the default property of a Field object is the Value
property. You can simplify your code by taking advantage of these defaults. For example, the following
code sets the value of the PubID field in the current record:
rstExample!PubID=99

DBEngine and Workspace Objects
All DAO objects are derived from the DBEngine object. You can set the DefaultType property on the
DBEngine object to determine the workspace type (Microsoft Jet or ODBCDirect) to create on

subsequent CreateWorkspace method calls, or you can override this property with the type argument
in the CreateWorkspace method itself. When your application creates a workspace, the appropriate
library — the Microsoft Jet database engine or ODBC — is loaded into memory at that time.

You can open additional Workspace objects as needed. Each Workspace object has a user ID and
password associated with it.

Using the Microsoft Jet Workspace

Opening a Database
To open a database, you simply open an existing Database object, or create a new one. This object
can represent a Microsoft Jet database (.mdb file), an ISAM database (for example, Paradox), or an
ODBC database connected through the Microsoft Jet database engine (also known as a "Microsoft
Jet-connected ODBC database").

Data-Definition Language
You can use object variables and other DDL features to modify your database structure. For example,
you can add a new Field object to an existing table with the following code:
Dim dbs As Database, tdf As TableDef, fld As Field
' Open a database.
Set dbs = OpenDatabase("Biblio.mdb")
' Open a TableDef.
Set tdf = dbs.TableDefs("Authors")
' Create a new field.
Set fld = tdf.CreateField("Address", dbText, 20)
' Append field to the TableDef Fields collection.
tdf.Fields.Append fld
This code creates a new object variable for a Field object and adds it to a TableDef object with the
Append method. Because a TableDef object contains the definition of a table, the table now has a
field named Address for entering data. In much the same way, you can create new tables and new
indexes.

Data Manipulation
DAO provides an excellent set of data manipulation tools. You can create a Recordset object to
conveniently query a database and manipulate the resulting set of records. The OpenRecordset
method accepts an SQL string, or a QueryDef (stored query) name as a data source argument, or it
can be opened from a QueryDef object or a TableDef object, using that object as its data source. The
resulting Recordset object features an extremely rich set of properties and methods with which to
browse and modify data.

The Recordset object is available in four different types — Table, Dynaset, Forward-Only, and
Snapshot.

Transactions
All Database objects opened against a Workspace object share a common transaction scope. That
is, when you use the BeginTrans method on a Workspace object, it applies to all open databases
within that Workspace object. In the same way, when you use the CommitTrans method against the
Workspace, it applies to all open databases in the Workspace object.

Replication
You can use database replication to create and maintain replicas of a master Microsoft Jet database,
using the Synchronize method to periodically update all or part of the replicas, or to copy new data
from one replica to another. You can also restrict the update to only selected records, using the

ReplicaFilter property, and then synchronize those records with the PopulatePartial method.

Security
You can restrict access to one or more .mdb databases or their tables using security settings
established and managed by the Microsoft Jet database engine. In your code, you can establish
Group and User objects to define the scope and level of permissions available to individual users on
an object-by-object basis. For example, you can establish permissions for a specific user to provide
read-only access to one table and full access to another.

Using the ODBCDirect Object Model

Connecting to a Database
A Connection object is similar to a Database object. In fact, a Connection object and a Database
object represent different references to the same object, and properties on each of these two object
types allow you to obtain a reference to the other corresponding object, which simplifies the task of
converting ODBC client applications that use Microsoft Jet to use ODBCDirect instead. Use the
OpenConnection method to connect to an ODBC data source. The resulting Connection object
contains information about the connection, such as the server name, the data source name, and so
on.

Queries
Although DAO does not support stored queres in an ODBCDirect workspace, a compiled query can
be created as a QueryDef object and used to execute action queries, and can also be used to
execute stored procedures on the server. The Prepare property lets you decide whether to create a
private, temporary stored procedure on the server from a QueryDef before actually executing the
query.

Parameter queries can also be passed to the server, using Parameter objects on the QueryDef. The
Direction property lets you specify a Parameter as input, output, or both, or to accept a return value
from a stored procedure.

Data Manipulation
Creating a Recordset object is a convenient way to query a database and manipulate the resulting
set of records. The OpenRecordset method accepts an SQL string, or a QueryDef object (stored
query) as a data source argument. The resulting Recordset object features an extremely rich set of
properties and methods with which to browse and modify data.

The Recordset object is available in four different types — Dynamic, Dynaset, Forward-Only, and
Snapshot — corresponding to ODBC cursor types — Dynamic, Keyset, Forward-only, and Static.

A batch update cursor library is available for client applications that need to work with a cursor without
holding locks on the server or without issuing update requests one record at a time. Instead, the client
stores update information on many records in a local buffer (or "batch"), and then issues a batch
update.

Asynchronous Method Execution
The Execute, MoveLast, OpenConnection, and OpenRecordset methods feature the
dbRunAsync option. This allows your client application to do other tasks (such as loading forms, for
example) while the method is executing. You can check the StillExecuting property to see whether
the task is complete, and terminate an asynchronous task with the Cancel method.

Data Access Methods by Object
{ewc HLP95EN.dll, DYNALINK, "See Also":"daidxMethodsC "} {ewc HLP95EN.dll, DYNALINK,
"Specifics":"daidxMethodsS "}

This reference groups all DAO methods by object. To see whether a particular method is available for
Microsoft Jet or ODBC workspaces, check the Help topic for that method.

Connection
Container — no methods
Database
DBEngine
Document
Error — no methods
Field
Group
Index

Parameter — no methods
Property — no methods
QueryDef
Recordset
Relation
TableDef
User
Workspace

Data Access Methods for Microsoft Jet Workspaces
{ewc HLP95EN.dll, DYNALINK, "See Also":"daidxMethodsReferenceJetC "} {ewc HLP95EN.dll, DYNALINK,
"Specifics":"daidxMethodsReferenceJetS "}

This reference lists alphabetically all DAO methods available for Microsoft Jet workspaces (ISAM
database files).

A-C
AddNew
Append
AppendChunk
BeginTrans
CancelUpdate
Clone
Close
CommitTrans
CompactDatabase
CopyQueryDef

CreateDatabase
CreateField
CreateGroup
CreateIndex
CreateProperty
CreateQueryDef
CreateRelation
CreateTableDef
CreateUser
CreateWorkspace

D-M
Delete
Edit
Execute
FillCache
FindFirst
FindLast
FindNext
FindPrevious
GetChunk

GetRows
Idle
MakeReplica
Move
MoveFirst
MoveLast
MoveNext
MovePrevious

N-Z
NewPassword
OpenDatabase
OpenRecordset
PopulatePartial
Refresh
RefreshLink
RegisterDatabase

RepairDatabase
Requery
Rollback
Seek
SetOption
Synchronize
Update

Data Access Methods for ODBCDirect Workspaces
{ewc HLP95EN.dll, DYNALINK, "See Also":"daidxMethodsReferenceODBCC "} {ewc HLP95EN.dll, DYNALINK,
"Specifics":"daidxMethodsReferenceODBCS "}

This reference alphabetically lists all DAO methods available for ODBCDirect workspaces.

A-C
AddNew
Append
AppendChunk
BeginTrans
Cancel
CancelUpdate

Clone
Close
CommitTrans
CreateQueryDef
CreateWorkspace

D-M
Delete
Edit
Execute
GetChunk
GetRows

Move
MoveFirst
MoveLast
MoveNext
MovePrevious

N-Z
NextRecordset
OpenConnection
OpenDatabase
OpenRecordset
Refresh

RegisterDatabase
Requery
Rollback
Update

Data Access Object Model for Microsoft Jet Workspaces
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daconmsjetdatabaseengine25c"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"daconMSJetDatabaseEngine25S"}

Data Access Object Model for ODBCDirect Workspaces
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daconMSJetDatabaseEngine35C"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"daconMSJetDatabaseEngine35S"}

Data Access Objects and Collections Reference
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daidxObjectsandCollectionsC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"daidxObjectsandCollectionsS"}

DAO objects and collections provide a framework for using code to create and manipulate
components of your database system. Objects and collections have properties that describe the
characteristics of database components and methods that you use to manipulate them. Together
these objects and collections form a hierarchical model of your database structure, which you can
control programmatically.

Objects and collections provide different types of containment relations: Objects contain zero or more
collections, all of different types; and collections contain zero or more objects, all of the same type.
Although objects and collections are similar entities, the distinction differentiates the two types of
relations.

In the following table, the type of collection in the first column contains the type of object in the second
column. The third column describes what each type of object represents.

Collection Object Description
Connections Connection Information about a

connection to an ODBC
data source
(ODBCDirect
workspaces only)

Containers Container Storage for information
about a predefined
object type (Microsoft
Jet workspaces only)

Databases Database An open database
None DBEngine The Microsoft Jet

database engine
Documents Document Information about a

saved, predefined
object (Microsoft Jet
workspaces only)

Errors Error Information about any
errors associated with
this object

Fields Field A column that is part of
a table, query, index,
relation, or recordset

Groups Group A group of user
accounts (Microsoft Jet
workspaces only)

Indexes Index Predefined ordering and
uniqueness of values in
a table (Microsoft Jet
workspaces only)

Parameters Parameter A parameter for a
parameter query

Properties Property A built-in or user-
defined property

QueryDefs QueryDef A saved query definition
Recordsets Recordset The records in a base

table or query
Relations Relation A relationship between

fields in tables and
queries (Microsoft Jet
workspaces only)

TableDefs TableDef A saved table definition
(Microsoft Jet
workspaces only)

Users User A user account
(Microsoft Jet
workspaces only)

Workspaces Workspace A session of the
Microsoft Jet database
engine

Data Access Properties by Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daidxPropertiesC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"daidxPropertiesS"}

This reference groups all DAO properties by object or collection. To determine whether a particular
property is available to Microsoft Jet or ODBC databases, check the Help topic for that property.

Connection
Container
Database
DBEngine
Document
Error
Field
Group
Index

Parameter
Property
QueryDef
Recordset
Relation
TableDef
User
Workspace

Data Access Properties for Microsoft Jet Workspaces
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daidxPropertiesReferenceJetC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"daidxPropertiesReferenceJetS"}

This reference lists alphabetically all DAO properties available to Microsoft Jet workspaces.

A-C
AbsolutePosition
AllowZeroLength
AllPermissions
Attributes
BOF
Bookmark
Bookmarkable
CacheSize

CacheStart
Clustered
CollatingOrder
ConflictTable
Connect
Container
Count

D-H
DataUpdatable
DateCreated
DefaultUser
DefaultPassword
DefaultValue
Description
DesignMasterID
DistinctCount
EditMode

EOF
FieldSize
Filter
Foreign
ForeignName
ForeignTable
HelpContext
HelpFile

I-O
IgnoreNulls
Index
Inherit
Inherited
IniPath
IsolateODBCTrans
KeepLocal
LastModified
LastUpdated
LockEdits

LoginTimeout
LogMessages
MaxRecords
Name
NoMatch
Number
ODBCTimeout
OrdinalPosition
Owner

P-R
PartialReplica
Password
PercentPosition
Permissions
PID

RecordsAffected
Replicable
ReplicableBool
ReplicaFilter
ReplicaID

Primary
QueryTimeout
RecordCount

Required
Restartable
ReturnsRecords

S-Z
Size
Sort
Source
SourceField
SourceTable
SourceTableName
SQL
SystemDB
Table
Transactions

Type
Unique
Updatable
UserName
V1xNullBehavior
ValidateOnSet
ValidationRule
ValidationText
Value
Version

Data Access Properties for ODBCDirect Workspaces
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daidxPropertiesReferenceODBCC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"daidxPropertiesReferenceODBCS"}

This reference lists alphabetically all DAO properties available to ODBCDirect workspaces.

A-D
AbsolutePosition
Attributes
BatchCollisionCount
BatchCollisions
BatchSize
BOF
Bookmark
Bookmarkable
CacheSize

Connect
Connection
Count
Database
DataUpdatable
DefaultCursorDriver
DefaultType
Description
Direction

E-Q
EditMode
EOF
FieldSize
HelpContext
HelpFile
LastModified
LockEdits
LoginTimeout
LogMessages

MaxRecords
Name
Number
ODBCTimeout
OrdinalPosition
OriginalValue
PercentPosition
Prepare
QueryTimeout

R-Z
RecordCount
RecordsAffected
RecordStatus
Restartable
Size
Source
SourceField
SourceTable
SQL

StillExecuting
Transactions
Type
Updatable
UpdateOptions
UserName
Value
Version
VisibleValue

What's New in DAO?
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daidxWhatsNewInDAOC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"daidxWhatsNewInDAOS"}

DAO 3.5 introduces a new client/server connection mode, called "ODBCDirect." ODBCDirect
establishes a connection directly to an ODBC data source, without loading the Microsoft Jet database
engine into memory, and is useful in situations where specific features of ODBC are required.

For Microsoft Jet databases, there are also new interfaces to expose Microsoft Jet's new partial
replication feature.

Note You can send DAO queries to a variety of different database servers with ODBCDirect, and
different servers will recognize slightly different dialects of SQL. Therefore, context-sensitive Help is
no longer provided for Microsoft Jet SQL, although online Help for Microsoft Jet SQL is still included
through the Help menu. Be sure to check the appropriate reference documentation for the SQL dialect
of your database server when using either ODBCDirect connections or pass-through queries in
Microsoft Jet-connected client/server applications.

New DAO 3.5 Interfaces for ODBCDirect
· Connection object — A connection to an ODBC database.
· Cancel method (on Connection, QueryDef, and Recordset objects) — Cancels execution of an

asynchronous operation.
· NextRecordset method (on Recordset objects) — Retrieves the next set of records, if any,

returned by a query that returned multiple sets of records in an OpenRecordset call, and indicates
whether it successfully retrieved another set of records.

· OpenConnection method (on Workspace objects) — Opens a Connection object on an ODBC
data source.

· BatchCollisionCount property (on Recordset objects) — Returns the number of records that did
not complete during the last batch update.

· BatchCollisions property (on Recordset objects) — Returns an array of bookmarks indicating the
rows that generated collisions in the last batch update.

· BatchSize property (on Recordset objects) — Sets or returns the number of statements sent back
to the server in each batch.

· Connection property (on Database and Recordset objects) — Returns the Connection object
that corresponds to the Database, or that owns the Recordset.

· Database property (on Connection objects) — Returns the name of the Database object that
corresponds to the Connection.

· DefaultCursorDriver property (on Workspace objects) — Sets or returns the type of cursor driver
used for ODBCDirect Recordset objects.

· DefaultType property (on DBEngine object) — Indicates what type of workspace (Microsoft Jet or
ODBCDirect) will be created by the next CreateWorkspace method call.

· Direction property (on Parameter objects) — Indicates whether a Parameter object represents an
input parameter, an output parameter, or both, or if the parameter is the return value from a stored
procedure.

· MaxRecords property (on QueryDef objects) — Sets or returns the maximum number of records
to return from a query.

· OriginalValue property (on Field objects) — Returns the value of a Field in the database that
existed when the last batch update began.

· Prepare property (on QueryDef objects) — Returns a value that indicates whether the query
should be prepared on the server as a temporary stored procedure with the ODBC SQLPrepare
function prior to execution, or just executed using the ODBC SQLExecDirect function.

· RecordStatus property (on Recordset objects) — Returns a value that indicates the update status

of the current record if it is part of a batch update.
· StillExecuting property (on Connection, QueryDef, and Recordset objects) — Returns a value

indicating whether or not an asynchronous operation has finished executing.
· UpdateOptions property (on Recordset objects) — Returns a value that indicates how the

WHERE clause is constructed for each record during a batch update, and how the update should
be executed.

· VisibleValue property (on Recordset objects) — Returns a value currently in the database that is
newer than the OriginalValue property as determined by a batch update conflict.

New Capabilities with ODBCDirect

Server Connections
Available only in the ODBCDirect object model, the new Connection object contains information
about a connection to an ODBC data source, such as the server name, the data source name, and so
on. It is similar to a Database object, and will look very familiar if you've ever opened a Database
object on an ODBC data source. In fact, a Connection object and a Database object represent
different references to the same object, and new properties on each of these two object types allow
you to obtain a reference to the other corresponding object, which simplifies the task of converting
existing ODBC client applications that use Microsoft Jet to use ODBCDirect instead.

Batch Updates
A new batch update cursor is available for client applications that need to work with a cursor without
holding locks on the server or issue update requests one record at a time. Instead, the client stores
update information on many records in a local buffer (or "batch"), and then issues a batch update.

Because of the time lag between opening a Recordset and sending a batch of updates from that
Recordset back to the server, other users have an opportunity to change the original data before
your changes are sent to the server, so your changes "collide" with another user's changes. Several
new features are available to help you determine where such collisions have occurred, following a
batch update, and give you some options for resolving them.

Asynchronous Method Execution
The Execute, MoveLast, OpenConnection, and OpenRecordset methods feature the
dbRunAsync option. This allows the client application to do other tasks (such as loading forms, and
so on) while the method is executing. You can also poll to see whether the task is complete, and
terminate an asynchronous task.

Client Support for ODBC Cursors
Four different Recordset types support the following ODBC cursor types:

ODBC Cursor Recordset type
Dynamic dbOpenDynamic (New in DAO 3.5)
Dynaset dbOpenDynaset
Forward-Only dbOpenForwardOnly (New in DAO 3.5)
Static dbOpenSnapshot

New DAO 3.5 Interfaces for the Microsoft Jet Database Engine
· PopulatePartial method (on Database objects) — Synchronizes any changes in a partial replica

with the full replica, clears all records in the partial replica, and then repopulates the partial replica
based on the current replica filters.

· SetOption method (on DBEngine object) — Overrides the registry values for the Microsoft Jet
database engine for the duration of the current instance of DAO.

· FieldSize property (on Field objects) — Replaces the FieldSize method. Syntactically, their usage
is the same, so this will not require changes to your existing code.

· MaxRecords property (on QueryDef objects) — Sets or returns the maximum number of records
to return from a query.

· ReplicaFilter property (on TableDef objects) — Returns a value that indicates which subset of
records is replicated to that table from a full replica.

· PartialReplica property (on Relation objects) — Indicates which Relation object should be
considered when populating a partial replica from a full replica.

New Capabilities with the Microsoft Jet Database Engine

Partial Replication
Version 3.5 of the Microsoft Jet database engine allows users to replicate portions of a table instead
of the whole table (only row restrictions are permitted, not columns). There are two types of filters
used in a partial replica — Boolean and relationship. Boolean filters select only rows that meet a
certain criteria to limit the rows in a table that are replicated. DAO represents this filter with the
ReplicaFilter property on a TableDef. Relationship filters enforce a relationship between partially
replicated tables to limit the rows in a table that are replicated. With DAO, you can set the
PartialReplica property on a Relation which allows that Relation to be used in partial replication.

New Recordset Type
In DAO 3.5, dbOpenForwardOnly is a new type argument for the OpenRecordset method. This new
Recordset type behaves in the same way as a DAO 3.0 snapshot-type Recordset opened with the
dbForwardOnly option.

Run-time Registry Override
The new SetOption method allows you to override Microsoft Jet Registry settings at run time. This
lets you fine tune Microsoft Jet query performance, timeout delays, and so on.

Obsolete Features in DAO
{ewc HLP95EN.dll, DYNALINK, "See Also":"dahowObsoleteFeaturesC"} {ewc HLP95EN.dll, DYNALINK,
"Example":"dahowObsoleteFeaturesX":1} {ewc HLP95EN.dll, DYNALINK, "Specifics":"dahowObsoleteFeaturesS"}

Microsoft Access versions 1.x and 2.0 and Microsoft Visual Basic version 3.0 used earlier versions of
DAO. Several objects, methods, properties, and statements in those earlier versions are considered
"obsolete" but are still supported for backwards compatibility with existing user code.

The following is a list of DAO methods, properties, objects, and statements that have been replaced
by more powerful, flexible, and easy-to-use features. Each obsolete feature in the list has a
corresponding replacement feature.

Obsolete feature Replacement feature
All CreateDynaset methods OpenRecordset method
All CreateSnapshot methods OpenRecordset method
All ListFields methods Fields collection
All ListIndexes methods Indexes collection
CompactDatabase statement DBEngine.CompactDatabase

method
CreateDatabase statement DBEngine.CreateDatabase method
DBEngine.FreeLocks method DBEngine.Idle method
DBEngine.SetDefaultWorkspace
method

DBEngine.DefaultUser and
DBEngine.Password properties

DBEngine.SetDataAccessOption
method

DBEngine.IniPath property

Database.BeginTrans method Workspace.BeginTrans method
Database.CommitTrans method Workspace.CommitTrans method
Database.Rollback method Workspace.Rollback method
Database.DeleteQuerydef method Delete method
Database.ExecuteSQL method Execute method
Database.ListTables method Tabledefs collection
Database.OpenQuerydef method Querydefs collection
Database.OpenTable method OpenRecordset method
FieldSize method FieldSize property
Index.Fields property Index.Fields collection
OpenDatabase statement DBEngine.OpenDatabase method
Querydef.ListParameters method Parameters collection
Snapshot object Recordset object
Dynaset object Recordset object
Table object Recordset object

Container Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daobjContainerC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daobjContainerX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"daobjContainerP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"daobjContainerM"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"daobjContainerS"} {ewc
HLP95EN.DLL,DYNALINK,"Summary":"daobjContainerU":1}

A Container object groups similar types of Document objects together.

Remarks
Each Database object has a Containers collection consisting of built-in Container objects.
Applications can define their own document types and corresponding containers (Microsoft Jet
databases only); however, these objects may not always be supported through DAO.

Some of these Container objects are defined by the Microsoft Jet database engine while others may
be defined by other applications. The following table lists the name of each Container object defined
by the Microsoft Jet database engine and what type of information it contains.

Container name Contains information about
Databases Saved databases
Tables Saved tables and queries
Relations Saved relationships

Note Don't confuse the Container objects listed in the preceding table with the collections of the
same name. The Databases Container object refers to all saved database objects, but the
Databases collection refers only to database objects that are open in a particular workspace.

Each Container object has a Documents collection containing Document objects that describe
instances of built-in objects of the type specified by the Container. You typically use a Container
object as an intermediate link to the information in the Document object. You can also use the
Containers collection to set security for all Document objects of a given type.

With an existing Container object, you can:

· Use the Name property to return the predefined name of the Container object.

· Use the Owner property to set or return the owner of the Container object. To set the Owner
property, you must have write permission for the Container object, and you must set the property
to the name of an existing User or Group object.

· Use the Permissions and UserName properties to set access permissions for the Container
object; any Document object created in the Documents collection of a Container object inherits
these access permission settings.

Because Container objects are built-in, you can't create new Container objects or delete existing
ones.

To refer to a Container object in a collection by its ordinal number or by its Name property setting,
use any of the following syntax forms:

Containers(0)
Containers("name")
Containers![name]

Containers Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dacolContainerC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"dacolContainerX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"dacolContainerP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"dacolContainerM"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dacolContainerS"} {ewc
HLP95EN.DLL,DYNALINK,"Summary":"dacolContainerU":1}

A Containers collection contains all of the Container objects that are defined in a database
(Microsoft Jet databases only).

Remarks
Each Database object has a Containers collection consisting of built-in Container objects. Some of
these Container objects are defined by the Microsoft Jet database engine while others may be
defined by other applications.

Container Object, Containers Collection Summary
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasumContainerC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dasumContainerS"}

Container Object
A Container object contains no methods; it contains these collections and properties.

Collections
Documents (Default)
Properties

Properties
AllPermissions
Inherit
Name
Owner
Permissions
UserName

Containers Collection
A Containers collection appears in each Database object of a Microsoft Jet database, and contains
this method and this property.

Method
Refresh

Property
Count

Database Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daobjDatabaseC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daobjDatabaseX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"daobjDatabaseP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"daobjDatabaseM"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"daobjDatabaseS"} {ewc
HLP95EN.DLL,DYNALINK,"Summary":"daobjDatabaseU":1}

A Database object represents an open database.

Remarks
You use the Database object and its methods and properties to manipulate an open database. In any
type of database, you can:

· Use the Execute method to run an action query.
· Set the Connect property to establish a connection to an ODBC data source.
· Set the QueryTimeout property to limit the length of time to wait for a query to execute against an

ODBC data source.
· Use the RecordsAffected property to determine how many records were changed by an action

query.
· Use the OpenRecordset method to execute a select query and create a Recordset object.
· Use the Version property to determine which version of a database engine created the database.

With a Microsoft Jet database (.mdb file), you can also use other methods, properties, and collections
to manipulate a Database object, as well as create, modify, or get information about its tables,
queries, and relationships. For example, you can:

· Use the CreateTableDef and CreateRelation methods to create tables and relations, respectively.
· Use the CreateProperty method to define new Database properties.
· Use the CreateQueryDef method to create a persistent or temporary query definition.
· Use MakeReplica, Synchronize, and PopulatePartial methods to create and synchronize full or

partial replicas of your database.
· Set the CollatingOrder property to establish the alphabetic sorting order for character-based fields

in different languages.

In an ODBCDirect workspace, you can:

· Use the Connection property to obtain a reference to the Connection object that corresponds to
the Database object.

Note For a complete list of all methods, properties, and collections available on a Database object
in either a Microsoft Jet workspace or ODBCDirect workspace, see the Summary topic.
You use the CreateDatabase method to create a persistent Database object that is automatically
appended to the Databases collection, thereby saving it to disk.

You don't need to specify the DBEngine object when you use the OpenDatabase method.

Opening a database with linked tables doesn't automatically establish links to the specified external
files or Microsoft Jet-connected ODBC data sources. You must either reference the table's TableDef
or Field objects or open a Recordset object. If you can't establish links to these tables, a trappable
error occurs. You may also need permission to access the database, or another user might have the
database opened exclusively. In these cases, trappable errors occur.

You can also use the OpenDatabase method to open an external database (such as FoxPro, dBASE,
and Paradox) directly instead of opening a Microsoft Jet database that has links to its tables.

Note Opening a Database object directly on a Microsoft Jet-connected ODBC data source, such
as Microsoft SQL Server, is not recommended because query performance is much slower than when
using linked tables. However, performance is not a problem with opening a Database object directly
on an external ISAM database file, such as FoxPro, Paradox, and so forth.

When a procedure that declares a Database object has executed, local Database objects are closed
along with any open Recordset objects. Any pending updates are lost and any pending transactions

are rolled back, but no trappable error occurs. You should explicitly complete any pending
transactions or edits and close Recordset objects and Database objects before exiting procedures
that declare these object variables locally.

When you use one of the transaction methods (BeginTrans, CommitTrans, or Rollback) on the
Workspace object, these transactions apply to all databases opened on the Workspace from which
the Database object was opened. If you want to use independent transactions, you must first open an
additional Workspace object, and then open another Database object in that Workspace object.

Note You can open the same data source or database more than once, creating duplicate names in
the Databases collection. You should assign Database objects to object variables and refer to them
by variable name.

Databases Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dacolDatabaseC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"dacolDatabaseX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"dacolDatabaseP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"dacolDatabaseM"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dacolDatabaseS"} {ewc
HLP95EN.DLL,DYNALINK,"Summary":"dacolDatabaseU":1}

A Databases collection contains all open Database objects opened or created in a Workspace
object.

Remarks
When you open an existing Database object or create a new one from a Workspace, it is
automatically appended to the Databases collection. When you close a Database object with the
Close method, it is removed from the Databases collection but not deleted from disk. You should
close all open Recordset objects before closing a Database object.

In a Microsoft Jet workspace, the Name property setting of a database is a string that specifies the
path of the database file. In an ODBCDirect workspace, the Name property is the name of the
corresponding Connection object.

To refer to a Database object in a collection by its ordinal number or by its Name property setting, use
any of the following syntax forms:

Databases(0)
Databases("name")
Databases![name]

Note You can open the same data source or database more than once, creating duplicate names in
the Databases collection. You should assign Database objects to object variables and refer to them
by variable name.

Database Object, Databases Collection Summary
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasumDatabaseC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dasumDatabaseS"}

Database Object
A Database object contains these collections, methods, and properties.

Legend:
Feature available in Microsoft Jet workspaces only.
Feature available in ODBCDirect workspaces only.

Collections
Containers
Properties
QueryDefs
Recordsets (Default for)

Relations

TableDefs (Default for)

Methods
Close

CreateProperty
CreateQueryDef

CreateRelation

CreateTableDef
Execute

MakeReplica

NewPassword
OpenRecordset
PopulatePartial

Synchronize

Properties

CollatingOrder
Connect

Connection

DesignMasterID
Name
QueryTimeout
RecordsAffected

Replicable (user-defined)

ReplicaID
Updatable

V1xNullBehavior
Version

Databases Collection
A Databases collection appears in each Workspace object, and contains this method and this
property.

Method
Refresh

Property
Count

DBEngine Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daobjDBEngineC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daobjDBEngineX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"daobjDBEngineP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"daobjDBEngineM"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"daobjDBEngineS"} {ewc
HLP95EN.DLL,DYNALINK,"Summary":"daobjDBEngineU":1}

The DBEngine object is the top level object in the DAO object model.

Remarks
The DBEngine object contains and controls all other objects in the hierarchy of DAO objects. You
can't create additional DBEngine objects, and the DBEngine object isn't an element of any
collection.

Note When you reference an ODBC data source directly through DAO, it is called an "ODBCDirect
workspace." This is to distinguish it from an ODBC data source that you reference indirectly through
the Microsoft Jet database engine, using a "Microsoft Jet workspace." Each method of accessing
ODBC data requires one of two types of Workspace object; you can set the DefaultType property to
choose the default type of Workspace object that you will create from the DBEngine object. The
Workspace type and associated data source determines which DAO objects, methods, and
properties you can use.

With any type of database or connection, you can:

· Use the Version property to obtain the DAO version number.
· Use the LoginTimeout property to obtain or set the ODBC login timeout, and the

RegisterDatabase method to provide ODBC information to the Microsoft Jet database engine. You
can use these features the same way, regardless of whether you connect to the ODBC data source
through Microsoft Jet or through an ODBCDirect workspace.

· Use the DefaultType property to set the default type of database connection that subsequently
created Workspace objects will use — either Microsoft Jet or ODBCDirect.

· Use the DefaultPassword and DefaultUser properties to set the user identification and password
for the default Workspace object.

· Use the CreateWorkspace method to create a new Workspace object. You can use optional
arguments to override the settings of the DefaultType, DefaultPassword, and DefaultUser
properties.

· Use the OpenDatabase method to open a database in the default Workspace, and use the
BeginTrans, Commit, and Rollback methods to control transactions on the default Workspace.

· Use the Workspaces collection to reference specific Workspace objects.
· Use the Errors collection to examine data access error details.

Other properties and methods are only available when you use DAO with the Microsoft Jet database
engine. You can use them to control the Microsoft Jet database engine, manipulate its properties, and

perform tasks on temporary objects that aren't elements of collections. For example, you can:

· Use the CreateDatabase method to create a new Microsoft Jet Database object.
· Use the Idle method to enable the Microsoft Jet database engine to complete any pending tasks.
· Use the CompactDatabase and RepairDatabase methods to maintain database files.
· Use the IniPath and SystemDB properties to specify the location of Microsoft Jet Windows

Registry information and the Microsoft Jet workgroup information file, respectively. The
SetOption method allows you override windows registry settings for the Microsoft Jet database
engine.

After you change the DefaultType and IniPath property settings, only subsequent Workspace
objects will reflect these changes.

Note For a complete list of all methods, properties, and collections available on the DBEngine
object, see the Summary topic.

To refer to a collection that belongs to the DBEngine object, or to refer to a method or property that
applies to this object, use this syntax:

[DBEngine.][collection | method | property]

DBEngine Object Summary
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasumDBEngineC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dasumDBEngineS"}

The DBEngine object contains these collections, methods, and properties.

Legend:

Feature available in Microsoft Jet workspaces only.

Feature available in ODBCDirect workspaces only.
Collections
Errors
Properties
Workspaces (Default)

Methods
BeginTrans
CommitTrans

CompactDatabase

CreateDatabase
CreateWorkspace

Idle

OpenConnection
OpenDatabase
RegisterDatabase

RepairDatabase
Rollback

SetOption

Properties
DefaultPassword
DefaultType
DefaultUser

IniPath
LoginTimeout

SystemDB
Version

Document Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daobjDocumentC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daobjDocumentX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"daobjDocumentP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"daobjDocumentM"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"daobjDocumentS"} {ewc
HLP95EN.DLL,DYNALINK,"Summary":"daobjDocumentU":1}

A Document object includes information about one instance of an object. The object can be a
database, saved table, query, or relationship (Microsoft Jet databases only).

Remarks
Each Container object has a Documents collection containing Document objects that describe
instances of built-in objects of the type specified by the Container. The following table lists the type of
object each Document describes, the name of its Container object, and what type of information
Document contains.

Document Container Contains information about
Database Databases Saved database
Table or query Tables Saved table or query
Relationship Relations Saved relationship

Note Don't confuse the Container objects listed in the preceding table with the collections of the
same name. The Databases Container object refers to all saved database objects, but the
Databases collection refers only to database objects that are open in a particular workspace.

With a Document object, you can:

· Use the Name property to return the name that a user or the Microsoft Jet database engine gave to
the object when it was created.

· Use the Container property to return the name of the Container object that contains the
Document object.

· Use the Owner property to set or return the owner of the object. To set the Owner property, you
must have write permission for the Document object, and you must set the property to the name of
an existing User or Group object.

· Use the UserName or Permissions properties to set or return the access permissions of a user or
group for the object. To set these properties, you must have write permission for the Document
object, and you must set the UserName property to the name of an existing User or Group object.

· Use the DateCreated and LastUpdated properties to return the date and time when the
Document object was created and last modified.

Because a Document object corresponds to an existing object, you can't create new Document
objects or delete existing ones. To refer to a Document object in a collection by its ordinal number or

by its Name property setting, use any of the following syntax forms:

Documents(0)
Documents("name")
Documents![name]

Documents Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dacolDocumentC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"dacolDocumentX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"dacolDocumentP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"dacolDocumentM"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dacolDocumentS"} {ewc
HLP95EN.DLL,DYNALINK,"Summary":"dacolDocumentU":1}

A Documents collection contains all of the Document objects for a specific type of object (Microsoft
Jet databases only).

Remarks
Each Container object has a Documents collection containing Document objects that describe
instances of built-in objects of the type specified by the Container.
To refer to a Document object in a collection by its ordinal number or by its Name property setting,
use any of the following syntax forms:

Documents(0)
Documents("name")
Documents![name]

Document Object, Documents Collection Summary
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasumDocumentC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dasumDocumentS"}

Document Object
A Document object contains this collection, this method, and these properties.

Collection
Properties

Method
CreateProperty

Properties
AllPermissions
Container
DateCreated
KeepLocal (user-defined)
LastUpdated
Name
Owner
Permissions
Replicable (user-defined)
UserName

Documents Collection
A Documents collection appears in each Container object, and contains this method and this
property.

Method
Refresh

Property
Count

Dynaset-Type Recordset Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daobjDynasetTypeRecordsetC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daobjDynasetTypeRecordsetX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"daobjDynasetTypeRecordsetP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"daobjDynasetTypeRecordsetM"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"daobjDynasetTypeRecordsetS"} {ewc
HLP95EN.DLL,DYNALINK,"Summary":"daobjDynasetTypeRecordsetU":1}

A dynaset-type Recordset object is a dynamic set of records that can contain fields from one or more
tables or queries in a database and may be updatable. In an ODBCDirect database, a dynaset-type
Recordset object corresponds to an ODBC keyset cursor.

Remarks
A dynaset-type Recordset object is a type of Recordset object you can use to manipulate data in an
underlying database table or tables.

It differs from a snapshot-type Recordset object because the dynaset stores only the primary key for
each record, instead of actual data. As a result, a dynaset is updated with changes made to the
source data, while the snapshot is not. Like the table-type Recordset object, a dynaset retrieves the
full record only when it's needed for editing or display purposes.

To create a dynaset-type Recordset object, use the OpenRecordset method on an open database,
against another dynaset- or snapshot-type Recordset object, on a QueryDef object, or on a
TableDef object. (Opening Recordset objects on other Recordset objects or TableDef objects is
available only in Microsoft Jet workspaces.)

If you request a dynaset-type Recordset object and the Microsoft Jet database engine can't gain
read/write access to the records, the Microsoft Jet database engine may create a read-only, dynaset-
type Recordset object.

As users update data, the base tables reflects these changes. Therefore, current data is available to
your application when you reposition the current record. In a multiuser database, more than one user
can open a dynaset-type Recordset object referring to the same records. Because a dynaset-type
Recordset object is dynamic, when one user changes a record, other users have immediate access
to the changed data. However, if one user adds a record, other users won’t see the new record until
they use the Requery method on the Recordset object. If a user deletes a record, other users are
notified when they try to access it.

Records added to the database don't become a part of your dynaset-type Recordset object unless
you add them by using the AddNew and Update methods. For example, if you use an action query
containing an INSERT INTO SQL statement to add records, the new records aren't included in your
dynaset-type Recordset object until you either use the Requery method or you rebuild your
Recordset object using the OpenRecordset method.

To maintain data integrity, the Microsoft Jet database engine can lock dynaset- and table-type
Recordset objects during Edit (pessimistic locking) or Update operations (optimistic locking) so that
only one user can update a particular record at a time. When the Microsoft Jet database engine locks
a record, it locks the entire 2K page containing the record.

You can also use optimistic and pessimistic locking with non-ODBC tables. When you access external
tables using ODBC through a Microsoft Jet workspace, you should always use optimistic locking. The
LockEdits property and the lockedits parameter of the OpenRecordset method determine the
locking conditions during editing.

Not all fields can be updated in all dynaset-type Recordset objects. To determine whether you can
update a particular field, check the DataUpdatable property setting of the Field object.

A dynaset-type Recordset object may not be updatable if:

· There isn't a unique index on the ODBC or Paradox table or tables.

· The data page is locked by another user.
· The record has changed since you last read it.
· The user doesn't have permission.
· One or more of the tables or fields are read-only.
· The database is opened as read-only.
· The Recordset object was either created from multiple tables without a JOIN statement or the

query was too complex.

The order of a dynaset-type Recordset object or Recordset data doesn't necessarily follow any
specific sequence. If you need to order your data, use an SQL statement with an ORDER BY clause
to create the Recordset object. You can also use a WHERE clause to filter the records so that only
certain records are added to the Recordset object. Using SQL statements in this way to select a
subset of records and order them usually results in faster access to your data than using the Filter
and Sort properties.

Error Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daobjErrorC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daobjErrorX":1} {ewc HLP95EN.DLL,DYNALINK,"Properties":"daobjErrorP"}
{ewc HLP95EN.DLL,DYNALINK,"Methods":"daobjErrorM"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daobjErrorS"}
{ewc HLP95EN.DLL,DYNALINK,"Summary":"daobjErrorU":1}

An Error object contains details about data access errors, each of which pertains to a single
operation involving DAO.

Remarks
Any operation involving DAO can generate one or more errors. For example, a call to an ODBC
server might result in an error from the database server, an error from ODBC, and a DAO error. As
each such error occurs, an Error object is placed in the Errors collection of the DBEngine object. A
single event can therefore result in several Error objects appearing in the Errors collection.

When a subsequent DAO operation generates an error, the Errors collection is cleared, and one or
more new Error objects are placed in the Errors collection. DAO operations that don't generate an
error have no effect on the Errors collection.

The set of Error objects in the Errors collection describes one error. The first Error object is the
lowest level error (the originating error), the second the next higher level error, and so forth. For
example, if an ODBC error occurs while trying to open a Recordset object, the first Error object —
Errors(0) — contains the lowest level ODBC error; subsequent errors contain the ODBC errors
returned by the various layers of ODBC. In this case, the ODBC driver manager, and possibly the
driver itself, return separate Error objects. The last Error object — Errors.Count-1 — contains the
DAO error indicating that the object couldn't be opened.

Enumerating the specific errors in the Errors collection enables your error-handling routines to more
precisely determine the cause and origin of an error, and take appropriate steps to recover. On both
Microsoft Jet and ODBCDirect workspaces, you can read the Error object’s properties to obtain
specific details about each error, including:

· The Description property, which contains the text of the error alert that will be displayed on the
screen if the error is not trapped.

· The Number property, which contains the Long integer value of the error constant.
· The Source property, which identifies the object that raised the error. This is particularly useful

when you have several Error objects in the Errors collection following a request to an ODBC data
source.

· The HelpFile and HelpContext properties, which indicate the appropriate Microsoft Windows Help
file and Help topic, respectively, (if any exist) for the error.

Note When programming in Microsoft Visual Basic for Applications (VBA), if you use the New
keyword to create an object that subsequently causes an error before that object has been appended
to a collection, the DBEngine object's Errors collection won't contain an entry for that object's error,

because the new object is not associated with the DBEngine object. However, the error information is
available in the VBA Err object.
Your VBA error-handling code should examine the Errors collection whenever you anticipate a data
access error. If you are writing a centralized error handler, test the VBA Err object to determine if the
error information in the Errors collection is valid. If the Number property of the last element of the
Errors collection (DBEngine.Errors.Count - 1) and the value of the Err object match, you can
then use a series of Select Case statements to identify the particular DAO error or errors that
occurred. If they do not match, use the Refresh method on the Errors collection.

Errors Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dacolErrorC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"dacolErrorX":1} {ewc HLP95EN.DLL,DYNALINK,"Properties":"dacolErrorP"}
{ewc HLP95EN.DLL,DYNALINK,"Methods":"dacolErrorM"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"dacolErrorS"}
{ewc HLP95EN.DLL,DYNALINK,"Summary":"dacolErrorU":1}

An Errors collection contains all stored Error objects, each of which pertains to a single operation
involving DAO.

Remarks
Any operation involving DAO objects can generate one or more errors. As each error occurs, one or
more Error objects are placed in the Errors collection of the DBEngine object. When another DAO
operation generates an error, the Errors collection is cleared, and the new set of Error objects is
placed in the Errors collection. The highest-numbered object in the Errors collection
(DBEngine.Errors.Count - 1) corresponds to the error reported by the Microsoft Visual Basic
for Applications (VBA) Err object.

DAO operations that don't generate an error have no effect on the Errors collection.

Elements of the Errors collection aren't appended as they typically are with other collections, so the
Errors collection doesn't support the Append and Delete methods.

The set of Error objects in the Errors collection describes one error. The first Error object is the
lowest level error, the second the next higher level, and so forth. For example, if an ODBC error
occurs while trying to open a Recordset object, the first error object contains the lowest level ODBC
error; subsequent errors contain the ODBC errors returned by the various layers of ODBC. In this
case, the ODBC driver manager, and possibly the driver itself, return separate Error objects. The last
Error object contains the DAO error indicating that the object couldn't be opened.

Enumerating the specific errors in the Errors collection enables your error-handling routines to more
precisely determine the cause and origin of an error, and take appropriate steps to recover.

Note If you use the New keyword to create an object that causes an error either before or while
being placed into the Errors collection, the collection doesn't contain error information about that
object, because the new object is not associated with the DBEngine object. However, the error
information is available in the VBA Err object.

Error Object, Errors Collection Summary
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasumErrorC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dasumErrorS"}

Error Object
An Error object contains no methods;no collections, and these properties:

Properties
Description
HelpContext
HelpFile
Number
Source

Errors Collection
An Errors collection appears in the DBEngine object, and contains this method and this property:

Method
Refresh

Property
Count

Field Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daobjFieldC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daobjFieldX":1} {ewc HLP95EN.DLL,DYNALINK,"Properties":"daobjFieldP"}
{ewc HLP95EN.DLL,DYNALINK,"Methods":"daobjFieldM"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daobjFieldS"}
{ewc HLP95EN.DLL,DYNALINK,"Summary":"daobjFieldU":1}

A Field object represents a column of data with a common data type and a common set of properties.

Remarks
The Fields collections of Index, QueryDef, Relation, and TableDef objects contain the specifications
for the fields those objects represent. The Fields collection of a Recordset object represents the
Field objects in a row of data, or in a record. You use the Field objects in a Recordset object to read
and set values for the fields in the current record of the Recordset object.

In both Microsoft Jet and ODBCDirect workspaces, you manipulate a field using a Field object and its
methods and properties. For example, you can:

· Use the OrdinalPosition property to set or return the presentation order of the Field object in a
Fields collection. (This property is read-only for ODBCDirect databases.)

· Use the Value property of a field in a Recordset object to set or return stored data.
· Use the AppendChunk and GetChunk methods and the FieldSize property to get or set a value

in an OLE Object or Memo field of a Recordset object.
· Use the Type, Size, and Attributes properties to determine the type of data that can be stored in

the field.
· Use the SourceField and SourceTable properties to determine the original source of the data.

In Microsoft Jet workspaces, you can:

· Use the ForeignName property to set or return information about a foreign field in a Relation
object.

· Use the AllowZeroLength, DefaultValue, Required, ValidateOnSet, ValidationRule, or
ValidationText properties to set or return validation conditions.

· Use the DefaultValue property of a field on a TableDef object to set the default value for this field
when new records are added.

In ODBCDirect workspaces, you can:

· Use the Value, VisibleValue, and OriginalValue properties to verify successful completion of a
batch update.

Note For a complete list of all methods, properties, and collections available on a Field object in
any database or connection, see the Summary topic.

To create a new Field object in an Index, TableDef, or Relation object, use the CreateField method.

When you access a Field object as part of a Recordset object, data from the current record is visible
in the Field object's Value property. To manipulate data in the Recordset object, you don't usually
reference the Fields collection directly; instead, you indirectly reference the Value property of the
Field object in the Fields collection of the Recordset object.

To refer to a Field object in a collection by its ordinal number or by its Name property setting, use any
of the following syntax forms:

Fields(0)
Fields("name")
Fields![name]

With the same syntax forms, you can also refer to the Value property of a Field object that you create
and append to a Fields collection. The context of the field reference will determine whether you are
referring to the Field object or the Value property of the Field object.

Fields Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dacolFieldC"} {ewc HLP95EN.DLL,DYNALINK,"Example":"dacolFieldX":1}
{ewc HLP95EN.DLL,DYNALINK,"Properties":"dacolFieldP"} {ewc HLP95EN.DLL,DYNALINK,"Methods":"dacolFieldM"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"dacolFieldS"} {ewc
HLP95EN.DLL,DYNALINK,"Summary":"dacolFieldU":1}

A Fields collection contains all stored Field objects of an Index, QueryDef, Recordset, Relation, or
TableDef object.

Remarks
The Fields collections of the Index, QueryDef, Relation, and TableDef objects contain the
specifications for the fields those objects represent. The Fields collection of a Recordset object
represents the Field objects in a row of data, or in a record. You use the Field objects in a Recordset
object to read and to set values for the fields in the current record of the Recordset object.

To refer to a Field object in a collection by its ordinal number or by its Name property setting, use any
of the following syntax forms:

Fields(0)
Fields("name")
Fields![name]

With the same syntax forms, you can also refer to the Value property of a Field object that you create
and append to a Fields collection. The context of the field reference will determine whether you are
referring to the Field object or the Value property of the Field object.

Field Object, Fields Collection Summary
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasumFieldC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dasumFieldS"}

Field Object
A Field object contains this collection, these methods, and these properties.

Legend:

Feature available in Microsoft Jet workspaces only.

Feature available in ODBCDirect workspaces only.
Collection
Properties

Methods
The following table lists all of the Field object methods. The type of object whose Fields collection
contains the Field object determines which methods are available.

Method Index QueryDef Recordse
t

Relation TableDef

AppendChun
k
CreatePropert
y
GetChunk

Properties
The following table lists all of the Field object properties. The type of object whose Fields collection
contains the Field object determines which properties are available. All properties are read-only for
Field objects appended to Fields collections of Index, Relation, and TableDef objects.

Read-only
Read/write

Property Index QueryDef Recordset Relation TableDef
AllowZeroLe
ngth

Attributes
CollatingOrd
er

DataUpdatab
le

DefaultValue

FieldSize

ForeignNam
e
Name

OrdinalPositi
on

OriginalValu
e

*
Required

Size

SourceField

SourceTable

Type

ValidateOnS
et

ValidationRu
le

ValidationTe
xt

Value

VisibleValue

*
* These properties are only available in an ODBCDirect workspace whose DefaultCursorDriver property is set to

dbUseClientBatchCursor.

Fields Collection
A Fields collection appears in each of the TableDef, QueryDef, Recordset, Relation, and Index
objects, and contains these methods and this property.

Method Index QueryDef Recordset Relation TableDef
Append

Delete

Refresh

Property Index QueryDef Recordset Relation TableDef
Count

Group Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daobjGroupC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daobjGroupX":1} {ewc HLP95EN.DLL,DYNALINK,"Properties":"daobjGroupP"}
{ewc HLP95EN.DLL,DYNALINK,"Methods":"daobjGroupM"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"daobjGroupS"} {ewc HLP95EN.DLL,DYNALINK,"Summary":"daobjGroupU":1}

A Group object represents a group of user accounts that have common access permissions when a
Workspace object operates as a secure workgroup. (Microsoft Jet workspaces only).

Remarks
You create Group objects and then use their names to establish and enforce access permissions for
your databases, tables, and queries using the Document objects that represent the Database,
TableDef, and QueryDef objects with which you're working.

With the properties of a Group object, you can:

· Use the Name property of an existing Group object to return its name. You can't return the PID
property setting of an existing Group object.

· Use the Name and PID properties of a newly created, unappended Group object to set the identity
of that Group object.

You can append an existing Group object to the Groups collection in a User object to establish
membership of a user account in that Group object. Alternatively, you can append a User object to
the Users collection in a Group object to give a user account the global permissions of that group. If
you use a Groups or Users collection other than the one to which you just appended an object, you
may need to use the Refresh method to refresh the collection with current information from the

database.

The Microsoft Jet database engine predefines three Group objects named Admins, Users, and
Guests. To create a new Group object, use the CreateGroup method on a User or Workspace
object.

To refer to a Group object in a collection by its ordinal number or by its Name property setting, use
any of the following syntax forms:

Groups(0)
Groups("name")
Groups![name]

Groups Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dacolGroupC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"dacolGroupX":1} {ewc HLP95EN.DLL,DYNALINK,"Properties":"dacolGroupP"}
{ewc HLP95EN.DLL,DYNALINK,"Methods":"dacolGroupM"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dacolGroupS"} {ewc HLP95EN.DLL,DYNALINK,"Summary":"dacolGroupU":1}

A Groups collection contains all stored Group objects of a Workspace or user account (Microsoft Jet
workspaces only).

Remarks
You can append an existing Group object to the Groups collection in a User object to establish
membership of a user account in that Group object. Alternatively, you can append a User object to
the Users collection in a Group object to give a user account the global permissions of that group. In
either case, the existing Group object must already be a member of the Groups collection of the
current Workspace object. If you use a Groups or Users collection other than the one to which you
just appended an object, you may need to use the Refresh method to refresh the collection with
current information from the database.

To refer to a Group object in a collection by its ordinal number or by its Name property setting, use
any of the following syntax forms:

Groups(0)
Groups("name")
Groups![name]

Group Object, Groups Collection Summary
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasumGroupC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dasumGroupS"}

Group Object
A Group object contains these collections, this method, and these properties.

Collections
Properties
Users (default)

Method
CreateUser

Properties
Name
PID

Groups Collection
A Groups collection appears in each User and Microsoft Jet Workspace object, and contains these
methods and this property.

Methods
Append
Delete
Refresh

Property
Count

Index Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daobjIndexC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daobjIndexX":1} {ewc HLP95EN.DLL,DYNALINK,"Properties":"daobjIndexP"}
{ewc HLP95EN.DLL,DYNALINK,"Methods":"daobjIndexM"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daobjIndexS"}
{ewc HLP95EN.DLL,DYNALINK,"Summary":"daobjIndexU":1}

Index objects specify the order of records accessed from database tables and whether or not
duplicate records are accepted, providing efficient access to data. For external databases, Index
objects describe the indexes established for external tables (Microsoft Jet workspaces only).

Remarks
The Microsoft Jet database engine uses indexes when it joins tables and creates Recordset objects.
Indexes determine the order in which table-type Recordset objects return records, but they don't
determine the order in which the Microsoft Jet database engine stores records in the base table or the
order in which any other type of Recordset object returns records.

With an Index object, you can:

· Use the Required property to determine whether the Field objects in the index require values that
are not Null, and then use the IgnoreNulls property to determine whether the Null values have
index entries.

· Use the Primary and Unique properties to determine the ordering and uniqueness of the Index
object.

The Microsoft Jet database engine maintains all base table indexes automatically. It updates indexes
whenever you add, change, or delete records from the base table. Once you create the database, use
the CompactDatabase method periodically to bring index statistics up-to-date.

When accessing a table-type Recordset object, you specify the order of records using the object's
Index property. Set this property to the Name property setting of an existing Index object in the
Indexes collection. This collection is contained by the TableDef object underlying the Recordset
object that you're populating.

Note You don't have to create indexes for a table, but for large, unindexed tables, accessing a
specific record or processing joins can take a long time. Conversely, having too many indexes can
slow down updates to the database as each of the table indexes is amended.

The Attributes property of each Field object in the index determines the order of records returned
and consequently determines which access techniques to use for that index.

Each Field object in the Fields collection of an Index object is a component of the index. To define a
new Index object, set its properties before you append it to a collection, making the Index object
available for subsequent use.

Note You can modify the Name property setting of an existing Index object only if the Updatable
property setting of the containing TableDef object is True.

When you set a primary key for a table, the Microsoft Jet database engine automatically defines it as
the primary index. A primary index consists of one or more fields that uniquely identify all records in a
table in a predefined order. Because the primary index field must be unique, the Microsoft Jet
database engine automatically sets the Unique property of the primary Index object to True. If the
primary index consists of more than one field, each field can contain duplicate values, but the
combination of values from all the indexed fields must be unique. A primary index consists of a key for
the table and is always made up of the same fields as the primary key.

Important Make sure your data complies with the attributes of your new index. If your index
requires unique values, make sure that there are no duplicates in existing data records. If duplicates
exist, the Microsoft Jet database engine can't create the index; a trappable error results when you
attempt to use the Append method on the new index.

When you create a relationship that enforces referential integrity, the Microsoft Jet database engine
automatically creates an index with the Foreign property, set as the foreign key in the referencing
table. After you've established a table relationship, the Microsoft Jet database engine prevents
additions or changes to the database that violate that relationship. If you set the Attributes property
of the Relation object to allow cascading updates and cascading deletes, the Microsoft Jet database
engine updates or deletes records in related tables automatically.

To create a new Index object
1. Use the CreateIndex method on a TableDef object.
2. Use the CreateField method on the Index object to create a Field object for each field (column) to

be included in the Index object.
3. Set Index properties as needed.
4. Append the Field object to the Fields collection.
5. Append the Index object to the Indexes collection.

Note The Clustered property is ignored for databases that use the Microsoft Jet database engine,
which doesn't support clustered indexes.

Indexes Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dacolIndexC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"dacolIndexX":1} {ewc HLP95EN.DLL,DYNALINK,"Properties":"dacolIndexP"}
{ewc HLP95EN.DLL,DYNALINK,"Methods":"dacolIndexM"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"dacolIndexS"}
{ewc HLP95EN.DLL,DYNALINK,"Summary":"dacolIndexU":1}

An Indexes collection contains all the stored Index objects of a TableDef object (Microsoft Jet
workspaces only).

Remarks
When you access a table-type Recordset object, use the object's Index property to specify the order
of records. Set this property to the Name property setting of an existing Index object in the Indexes
collection of the the TableDef object underlying the Recordset object.

Note You can use the Append or Delete method on an Indexes collection only if the Updatable
property setting of the containing TableDef object is True.

After you create a new Index object, you should use the Append method to add it to the TableDef
object's Indexes collection.

Important Make sure your data complies with the attributes of your new index. If your index
requires unique values, make sure that there are no duplicates in existing data records. If duplicates
exist, the Microsoft Jet database engine can't create the index; a trappable error results when you
attempt to use the Append method on the new index.

Index Object, Indexes Collection Summary
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasumIndexC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dasumIndexS"}

Index Object
An Index object contains these collections, methods, and properties.

Collections
Fields (default)
Properties

Methods
CreateField
CreateProperty

Properties
Clustered
DistinctCount
Foreign
IgnoreNulls
Name
Primary
Required
Unique

Indexes Collection
An Indexes collection appears in each TableDef object, and contains these methods and this
property.

Methods
Append
Delete
Refresh

Property
Count

Parameter Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daobjParameterC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daobjParameterX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"daobjParameterP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"daobjParameterM"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"daobjParameterS"} {ewc
HLP95EN.DLL,DYNALINK,"Summary":"daobjParameterU":1}

A Parameter object represents a value supplied to a query. The parameter is associated with a
QueryDef object created from a parameter query.

Remarks
Parameter objects allow you to change the arguments in a frequently run QueryDef object without
having to recompile the query.

Using the properties of a Parameter object, you can set a query parameter that can be changed
before the query is run. You can:

· Use the Name property to return the name of a parameter.
· Use the Value property to set or return the parameter values to be used in the query.
· Use the Type property to return the data type of the Parameter object.
· Use the Direction property to set or return whether the parameter is an input parameter, an output

parameter, or both.

In an ODBCDirect workspace, you can also:

· Change the setting of the Type property. Doing so will also clear the Value property.
· Use the Direction property to set or return whether the parameter is an input parameter, an output

parameter, or both.

Parameters Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dacolParameterC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"dacolParameterX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"dacolParameterP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"dacolParameterM"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dacolParameterS"} {ewc
HLP95EN.DLL,DYNALINK,"Summary":"dacolParameterU":1}

A Parameters collection contains all the Parameter objects of a QueryDef object.

Remarks
The Parameters collection provides information only about existing parameters. You can't append
objects to or delete objects from the Parameters collection.

Parameter Object, Parameters Collection Summary
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasumParameterC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dasumParameterS"}

Parameter Object
A Parameter object contains no methods; it contains this collection and these properties.

Legend:

Feature available in ODBCDirect workspaces only.
Collection
Properties

Properties

Direction
Name
Type
Value (Default)

Parameters Collection
A Parameters collection appears in each QueryDef object and contains this method and this
property.

Method
Refresh

Property
Count

Property Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daobjPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daobjPropertyX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"daobjPropertyP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"daobjPropertyM"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"daobjPropertyS"} {ewc
HLP95EN.DLL,DYNALINK,"Summary":"daobjPropertyU":1}

A Property object represents a built-in or user-defined characteristic of a DAO object.

Remarks
Every DAO object except the Connection and Error objects contains a Properties collection which
has Property objects corresponding to built-in properties of that DAO object. The user can also define
Property objects and append them to the Properties collection of some DAO objects. These
Property objects (which are often just called properties) uniquely characterize that instance of the
object.

You can create user-defined properties for the following objects:

· Database, Index, QueryDef, and TableDef objects
· Field objects in Fields collections of QueryDef and TableDef objects

To add a user-defined property, use the CreateProperty method to create a Property object with a
unique Name property setting. Set the Type and Value properties of the new Property object, and
then append it to the Properties collection of the appropriate object. The object to which you are
adding the user-defined property must already be appended to a collection. Referencing a user-
defined Property object that has not yet been appended to a Properties collection will cause an
error, as will appending a user-defined Property object to a Properties collection containing a
Property object of the same name.

You can delete user-defined properties from the Properties collection, but you can't delete built-in
properties.

Note A user-defined Property object is associated only with the specific instance of an object. The
property isn't defined for all instances of objects of the selected type.

You can use the Properties collection of an object to enumerate the object's built-in and user-defined
properties. You don't need to know beforehand exactly which properties exist or what their
characteristics (Name and Type properties) are to manipulate them. However, if you try to read a
write-only property, such as the Password property of a Workspace object, or try to read or write a
property in an inappropriate context, such as the Value property setting of a Field object in the Fields
collection of a TableDef object, an error occurs.

The Property object also has four built-in properties:

· The Name property, a String that uniquely identifies the property.
· The Type property, an Integer that specifies the property data type.
· The Value property, a Variant that contains the property setting.

· The Inherited property, a Boolean that indicates whether the property is inherited from another
object. For example, a Field object in a Fields collection of a Recordset object can inherit
properties from the underlying TableDef or QueryDef object.

To refer to a built-in Property object in a collection by its ordinal number or by its Name property
setting, use any of the following syntax forms:

object.Properties(0)
object.Properties("name")
object.Properties![name]

For a built-in property, you can also use this syntax:

object.name

Note For a user-defined property, you must use the full object.Properties("name") syntax.

With the same syntax forms, you can also refer to the Value property of a Property object. The
context of the reference will determine whether you are referring to the Property object itself or the
Value property of the Property object.

Properties Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dacolPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"dacolPropertyX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"dacolPropertyP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"dacolPropertyM"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dacolPropertyS"} {ewc
HLP95EN.DLL,DYNALINK,"Summary":"dacolPropertyU":1}

A Properties collection contains all the Property objects for a specific instance of an object.

Remarks
Every DAO object except the Connection and Error objects contains a Properties collection, which
has certain built-in Property objects. These Property objects (which are often just called properties)
uniquely characterize that instance of the object.

In addition to the built-in properties, you can also create and add your own user-defined properties. To
add a user-defined property to an existing instance of an object, first define its characteristics with the
CreateProperty method, then add it to the collection with the Append method. Referencing a user-
defined Property object that has not yet been appended to a Properties collection will cause an
error, as will appending a user-defined Property object to a Properties collection containing a
Property object of the same name.

You can use the Delete method to remove user-defined properties from the Properties collection, but
you can't remove built-in properties.

Note A user-defined Property object is associated only with the specific instance of an object. The
property isn't defined for all instances of objects of the selected type.

You can use the Properties collection of an object to enumerate the object's built-in and user-defined
properties. You don't need to know beforehand exactly which properties exist or what their
characteristics (Name and Type properties) are to manipulate them. However, if you try to read a
write-only property, such as the Password property of a Workspace object, or try to read or write a
property in an inappropriate context, such as the Value property setting of a Field object in the Fields
collection of a TableDef object, an error occurs.

To refer to a built-in Property object in a collection by its ordinal number or by its Name property
setting, use any of the following syntax forms:

object.Properties(0)
object.Properties("name")
object.Properties![name]

For a built-in property, you can also use this syntax:

object.name

Note For a user-defined property, you must use the full object.Properties("name") syntax.

With the same syntax forms, you can also refer to the Value property of a Property object. The

context of the reference will determine whether you are referring to the Property object itself or the
Value property of the Property object.

Property Object, Properties Collection Summary
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasumPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dasumPropertyS"}

Property Object
A Property object contains no methods; it contains this collection and these properties.

Collection
Properties

Properties
Inherited (Always False in ODBCDirect databases)
Name
Type
Value

Properties Collection
A Properties collection appears in each of the other DAO objects except the Connection and Error
objects, and contains these methods and this property.

Methods
Append
Delete
Refresh

Property
Count

QueryDef Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daobjQueryDefC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daobjQueryDefX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"daobjQueryDefP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"daobjQueryDefM"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"daobjQueryDefS"} {ewc
HLP95EN.DLL,DYNALINK,"Summary":"daobjQueryDefU":1}

A QueryDef object is a stored definition of a query in a Microsoft Jet database, or a temporary
definition of a query in an ODBCDirect workspace.

Remarks
You can use the QueryDef object to define a query. For example, you can:

· Use the SQL property to set or return the query definition.
· Use the QueryDef object's Parameters collection to set or return query parameters.

· Use the Type property to return a value indicating whether the query selects records from an
existing table, makes a new table, inserts records from one table into another table, deletes
records, or updates records.

· Use the MaxRecords property to limit the number of records returned from a query.
· Use the ODBCTimeout property to indicate how long to wait before the query returns records. The

ODBCTimeout property applies to any query that accesses ODBC data.

In a Microsoft Jet workspace, you can also:

· Use the ReturnsRecords property to indicate that the query returns records. The
ReturnsRecords property is only valid on SQL pass-through queries.

· Use the Connect property to make an SQL pass-through query to an ODC database.

In an ODBCDirect workspace, you can also:

· Use the Prepare property to determine whether to invoke the ODBC SQLPrepare API when the
query is executed.

· Use the CacheSize property to cache records returned from a query.

You can also create temporary QueryDef objects. Unlike permanent QueryDef objects, temporary
QueryDef objects are not saved to disk or appended to the QueryDefs collection. Temporary
QueryDef objects are useful for queries that you must run repeatedly during run time but do not not
need to save to disk, particularly if you create their SQL statements during run time.

You can think of a permanent QueryDef object in a Microsoft Jet workspaces as a compiled SQL
statement. If you execute a query from a permanent QueryDef object, the query will run faster than if
you run the equivalent SQL statement from the OpenRecordset method. This is because the
Microsoft Jet database engine doesn't need to compile the query before executing it.

The preferred way to use the native SQL dialect of an external database engine accessed through the
Microsoft Jet database engine is through QueryDef objects. For example, you can create a Microsoft
SQL Server query and store it in a QueryDef object. When you need to use a non-Microsoft Jet
database engine SQL query, you must provide a Connect property string that points to the external
data source. Queries with valid Connect properties bypass the Microsoft Jet database engine and
pass the query directly to the external database server for processing.

To create a new QueryDef object, use the CreateQueryDef method. In a Microsoft Jet workspace, if
you supply a string for the name argument or if you explicitly set the Name property of the new
QueryDef object to a non–zero-length string, you will create a permanent QueryDef that will
automatically be appended to the QueryDefs collection and saved to disk. Supplying a zero-length
string as the name argument or explicitly setting the Name property to a zero-length string will result
in a temporary QueryDef object.

In an ODBCDirect workspace, a QueryDef is always temporary. The QueryDefs collection contains
all open QueryDef objects. When a QueryDef is closed, it is automatically removed from the
QueryDefs collection.

To refer to a QueryDef object in a collection by its ordinal number or by its Name property setting,
use any of the following syntax forms:

QueryDefs(0)
QueryDefs("name")
QueryDefs![name]

You can refer to temporary QueryDef objects only by the object variables that you have assigned to
them.

QueryDefs Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dacolQueryDefC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"dacolQueryDefX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"dacolQueryDefP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"dacolQueryDefM"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dacolQueryDefS"} {ewc
HLP95EN.DLL,DYNALINK,"Summary":"dacolQueryDefU":1}

A QueryDefs collection contains all QueryDef objects of a Database object in a Microsoft Jet
database, and all QueryDef objects of a Connection object in an ODBCDirect workspace.

Remarks
To create a new QueryDef object, use the CreateQueryDef method. In a Microsoft Jet workspace, if
you supply a string for the name argument or if you explicitly set the Name property of the new
QueryDef object to a non–zero-length string, you will create a permanent QueryDef that will
automatically be appended to the QueryDefs collection and saved to disk. Supplying a zero-length

string as the name argument or explicitly setting the Name property to a zero-length string will result
in a temporary QueryDef object.

In an ODBCDirect workspace, a QueryDef is always temporary. The QueryDefs collection contains
all open QueryDef objects. When a QueryDef is closed, it is automatically removed from the
QueryDefs collection.

To refer to a QueryDef object in a collection by its ordinal number or by its Name property setting,
use any of the following syntax forms:

QueryDefs(0)
QueryDefs("name")
QueryDefs![name]

You can refer to temporary QueryDef objects only by the object variables that you have assigned to
them.

QueryDef Object, QueryDefs Collection Summary
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasumQueryDefC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dasumQueryDefS"}

QueryDef Object
A QueryDef object contains these collections, methods, and properties.

Legend:

Available only in a Microsoft Jet workspace.

Available only in an ODBCDirect workspace.
Collections

Fields
Parameters (default)
Properties

Methods

Cancel
Close

CreateProperty
Execute
OpenRecordset

Properties

CacheSize
Connect

DateCreated

KeepLocal

LastUpdated

LogMessages
MaxRecords
Name
ODBCTimeout

Prepare
RecordsAffected

Replicable

ReturnsRecords
SQL

StillExecuting
Type
Updatable

QueryDefs Collection
A QueryDefs collection appears in each Connection object in an ODBCDirect workspace, and each
Database object, and contains these methods and this property.

Methods
Append
Delete
Refresh

Property
Count

Recordset Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daobjRecordsetC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daobjRecordsetX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"daobjRecordsetP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"daobjRecordsetM"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"daobjRecordsetS"} {ewc
HLP95EN.DLL,DYNALINK,"Summary":"daobjRecordsetU":1}

A Recordset object represents the records in a base table or the records that result from running a
query.

Remarks
You use Recordset objects to manipulate data in a database at the record level. When you use DAO
objects, you manipulate data almost entirely using Recordset objects. All Recordset objects are
constructed using records (rows) and fields (columns). There are five types of Recordset objects:

· Table-type Recordset — representation in code of a base table that you can use to add, change,
or delete records from a single database table (Microsoft Jet workspaces only).

· Dynaset-type Recordset — the result of a query that can have updatable records. A dynaset-type
Recordset object is a dynamic set of records that you can use to add, change, or delete records
from an underlying database table or tables. A dynaset-type Recordset object can contain fields
from one or more tables in a database. This type corresponds to an ODBC keyset cursor.

· Snapshot-type Recordset — a static copy of a set of records that you can use to find data or
generate reports. A snapshot-type Recordset object can contain fields from one or more tables in
a database but can't be updated. This type corresponds to an ODBC static cursor.

· Forward-only-type Recordset — identical to a snapshot except that no cursor is provided. You

can only scroll forward through records. This improves performance in situations where you only
need to make a single pass through a result set. This type corresponds to an ODBC forward-only
cursor.

· Dynamic-type Recordset — a query result set from one or more base tables in which you can
add, change, or delete records from a row-returning query. Further, records other users add,
delete, or edit in the base tables also appear in your Recordset. This type corresponds to an
ODBC dynamic cursor (ODBCDirect workspaces only).

You can choose the type of Recordset object you want to create using the type argument of the
OpenRecordset method.

In a Microsoft Jet workspace, if you don't specify a type, DAO attempts to create the type of
Recordset with the most functionality available, starting with table. If this type isn’t available, DAO
attempts a dynaset, then a snapshot, and finally a forward-only type Recordset object.

In an ODBCDirect workspace, if you don't specify a type, DAO attempts to create the type of
Recordset with the fastest query response, starting with forward-only. If this type isn't available, DAO
attempts a snapshot, then a dynaset, and finally a dynamic- type Recordset object.

When creating a Recordset object using a non-linked TableDef object in a Microsoft Jet workspace,
table-type Recordset objects are created. Only dynaset-type or snapshot-type Recordset objects
can be created with linked tables or tables in Microsoft Jet-connected ODBC databases.

A new Recordset object is automatically added to the Recordsets collection when you open the
object, and is automatically removed when you close it.

Note If you use variables to represent a Recordset object and the Database object that contains
the Recordset, make sure the variables have the same scope, or lifetime. For example, if you declare
a public variable that represents a Recordset object, make sure the variable that represents the
Database containing the Recordset is also public, or is declared in a Sub or Function procedure
using the Static keyword.

You can create as many Recordset object variables as needed. Different Recordset objects can
access the same tables, queries, and fields without conflicting.

Dynaset-, snapshot-, and forward-only–type Recordset objects are stored in local memory. If there
isn't enough space in local memory to store the data, the Microsoft Jet database engine saves the
additional data to TEMP disk space. If this space is exhausted, a trappable error occurs.

The default collection of a Recordset object is the Fields collection, and the default property of a
Field object is the Value property. Use these defaults to simplify your code.

When you create a Recordset object, the current record is positioned to the first record if there are
any records. If there are no records, the RecordCount property setting is 0, and the BOF and EOF
property settings are True.

You can use the MoveNext, MovePrevious, MoveFirst, and MoveLast methods to reposition the
current record. Forward-only–type Recordset objects support only the MoveNext method. When
using the Move methods to visit each record (or "walk" through the Recordset), you can use the BOF
and EOF properties to check for the beginning or end of the Recordset object.

With dynaset- and snapshot-type Recordset objects in a Microsoft Jet workspace, you can also use
the Find methods, such as FindFirst, to locate a specific record based on criteria. If the record isn't
found, the NoMatch property is set to True. For table-type Recordset objects, you can scan records
using the Seek method.

The Type property indicates the type of Recordset object created, and the Updatable property
indicates whether you can change the object's records.

Information about the structure of a base table, such as the names and data types of each Field
object and any Index objects, is stored in a TableDef object.

To refer to a Recordset object in a collection by its ordinal number or by its Name property setting,

use any of the following syntax forms:

Recordsets(0)
Recordsets("name")
Recordsets![name]

Note You can open a Recordset object from the same data source or database more than once,
creating duplicate names in the Recordsets collection. You should assign Recordset objects to
object variables and refer to them by variable name.

Recordsets Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dacolRecordsetC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"dacolRecordsetX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"dacolRecordsetP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"dacolRecordsetM"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dacolRecordsetS"} {ewc
HLP95EN.DLL,DYNALINK,"Summary":"dacolRecordsetU":1}

A Recordsets collection contains all open Recordset objects in a Database object.

Remarks
When you use DAO objects, you manipulate data almost entirely using Recordset objects.

A new Recordset object is automatically added to the Recordsets collection when you open the
Recordset object, and is automatically removed when you close it.

You can create as many Recordset object variables as needed. Different Recordset objects can
access the same tables, queries, and fields without conflicting.

To refer to a Recordset object in a collection by its ordinal number or by its Name property setting,
use any of the following syntax forms:

Recordsets(0)
Recordsets("name")
Recordsets![name]

Note You can open a Recordset object from the same data source or database more than once,
creating duplicate names in the Recordsets collection. You should assign Recordset objects to
object variables and refer to them by variable name.

Recordset Object, Recordsets Collection Summary
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasumRecordsetC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dasumRecordsetS"}

Recordset Object
A Recordset object contains these collections, methods, and properties.

Legend:

Feature available in both Microsoft Jet and ODBCDirect workspaces.

Feature available in Microsoft Jet workspaces only.

Feature available in ODBCDirect workspaces only.
Collections
Fields (default)
Properties

Recordset Methods
The following table lists all of the Recordset methods, and shows which Recordset type supports
each method, and whether the method is available in either a Microsoft Jet or ODBCDirect
workspace, or both.

Method Table Dynaset Snapshot Forward-Only Dynamic
AddNew

*
Cancel

CancelUpd
ate

*
Clone

Close

CopyQuery
Def
Delete

*
Edit

*
FillCache

FindFirst

FindLast

FindNext

FindPrevio
us
GetRows

Move Only with
forward
moves that
don't use a
bookmark
offset

MoveFirst

MoveLast

MoveNext

MovePrevio
us
NextRecord
set
OpenRecor
dset
Requery

Seek

Update

*
* In an ODBCDirect workspace, a snapshot-type Recordset may be updatable, depending on the ODBC driver. The AddNew,

Edit, Delete, Update, and CancelUpdate methods are only available on ODBCDirect snapshot-type Recordset objects if the
ODBC driver supports updatable snapshots.

Recordset Properties
The following table indicates which properties apply to each type of Recordset object and whether
the property setting is read/write, read-only, or always False in either Microsoft Jet or ODBCDirect
databases.

Read-only

Read/write
Property Table Dynaset Snapshot Forward-

Only
Dynamic

AbsolutePo
sition

BatchCollisi
onCount

BatchCollisi
ons

BatchSize

BOF

Bookmark

Bookmarka
ble

CacheSize

for Microsoft Jet
workspaces

for ODBCDirect
workspaces

CacheStart

Connection

DateCreated

EditMode

EOF

Filter

Index

LastModifie
d

*
LastUpdate
d

LockEdits

for Microsoft Jet
workspaces

for Microsoft Jet
workspaces

for ODBCDirect
workspaces

for ODBCDirect
workspaces

Name

NoMatch

PercentPosi
tion

RecordCoun
t

RecordStatu
s

Restartable False

Sort

StillExecutin
g

Transaction
s

Always False Always False
Type

Updatable Always False
in Microsoft
Jet
workspaces

Always False
in Microsoft
Jet
workspaces

in ODBCDirect
workspaces *

in ODBCDirect
workspaces *

UpdateOptio
ns

ValidationR
ule

ValidationTe
xt

*In an ODBCDirect workspace, a snapshot-type Recordset may be updatable, depending on the ODBC driver. The
LastModified property is available, and the Updatable property is True only on ODBCDirect snapshot-type Recordset
objects if the ODBC driver supports updatable snapshots.

Recordsets Collection
A Recordsets collection appears in each Connection and Database object, and contains this
method and this property.

Method
Refresh

Property
Count

Relation Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daobjRelationC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daobjRelationX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"daobjRelationP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"daobjRelationM"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daobjRelationS"}
{ewc HLP95EN.DLL,DYNALINK,"Summary":"daobjRelationU":1}

A Relation object represents a relationship between fields in tables or queries (Microsoft Jet
databases only).

Remarks
You can use the Relation object to create new relationships and examine existing relationships in
your database.

Using a Relation object and its properties, you can:

· Specify an enforced relationship between fields in base tables (but not a relationship that involves
a query or a linked table).

· Establish unenforced relationships between any type of table or query — native or linked.
· Use the Name property to refer to the relationship between the fields in the referenced primary

table and the referencing foreign table.
· Use the Attributes property to determine whether the relationship between fields in the table is

one-to-one or one-to-many and how to enforce referential integrity.
· Use the Attributes property to determine whether the Microsoft Jet database engine can perform

cascading update and cascading delete operations on primary and foreign tables.
· Use the Attributes property to determine whether the relationship between fields in the table is left

join or right join.
· Use the Name property of all Field objects in the Fields collection of a Relation object to set or

return the names of the fields in the primary key of the referenced table, or the ForeignName
property settings of the Field objects to set or return the names of the fields in the foreign key of
the referencing table.

If you make changes that violate the relationships established for the database, a trappable error
occurs. If you request cascading update or cascading delete operations, the Microsoft Jet database
engine also modifies the primary or foreign key tables to enforce the relationships you establish.

For example, the Northwind database contains a relationship between an Orders table and a
Customers table. The CustomerID field of the Customers table is the primary key, and the
CustomerID field of the Orders table is the foreign key. For Microsoft Jet to accept a new record in the
Orders table, it searches the Customers table for a match on the CustomerID field of the Orders table.
If Microsoft Jet doesn't find a match, it doesn't accept the new record, and a trappable error occurs.

When you enforce referential integrity, a unique index must already exist for the key field of the
referenced table. The Microsoft Jet database engine automatically creates an index with the Foreign
property set to act as the foreign key in the referencing table.

To create a new Relation object, use the CreateRelation method. To refer to a Relation object in a
collection by its ordinal number or by its Name property setting, use any of the following syntax forms:

Relations(0)
Relations("name")
Relations![name]

Relations Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dacolRelationC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"dacolRelationX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"dacolRelationP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"dacolRelationM"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"dacolRelationS"}
{ewc HLP95EN.DLL,DYNALINK,"Summary":"dacolRelationU":1}

A Relations collection contains stored Relation objects of a Database object (Microsoft Jet
databases only).

Remarks
You can use the Relation object to create new relationships and examine existing relationships in
your database. To add a Relation object to the Relations collection, first create it with the
CreateRelation method, and then append it to the Relations collection with the Append method.
This will save the Relation object when you close the Database object. To remove a Relation object
from the collection, use the Delete method.

To refer to a Relation object in a collection by its ordinal number or by its Name property setting, use
any of the following syntax forms:

Relations(0)
Relations("name")
Relations![name]

Relation Object, Relations Collection Summary
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasumRelationC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dasumRelationS"}

Relation Object
A Relation object contains these collections, this method, and these properties.

Collections
Fields (Default)
Properties

Method
CreateField

Properties
Attributes
ForeignTable
Name
PartialReplica
Table

Relations Collection
A Relations collection is contained in each Database object of a Microsoft Jet database, and
contains these methods and this property.

Methods
Append
Delete
Refresh

Property
Count

Snapshot-Type Recordset Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daobjSnapshotTypeRecordsetC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daobjSnapshotTypeRecordsetX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"daobjSnapshotTypeRecordsetP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"daobjSnapshotTypeRecordsetM"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"daobjSnapshotTypeRecordsetS"} {ewc
HLP95EN.DLL,DYNALINK,"Summary":"daobjSnapshotTypeRecordsetU":1}

A snapshot-type Recordset object is a static set of records that you can use to examine data in an
underlying table or tables. In an ODBCDirect database, a snapshot-type Recordset object
corresponds to a static cursor.

Remarks
To create a snapshot-type Recordset object, use the OpenRecordset method on an open database,
on another dynaset- or snapshot-type Recordset object, or on a QueryDef object.

A snapshot-type Recordset object can contain fields from one or more tables in a database. In a
Microsoft Jet workspace, a snapshot can't be updated. In an ODBCDirect workspace, a snapshot may
be updatable, depending on the ODBC driver.

When you create a snapshot-type Recordset object, data values for all fields (except Memo and OLE
Object (Long Binary) field data types in .mdb files) are brought into memory. Once loaded, changes
made to base table data aren't reflected in the snapshot-type Recordset object data. To reload the
snapshot-type Recordset object with current data, use the Requery method, or re-execute the
OpenRecordset method.

The order of snapshot-type Recordset object data doesn't necessarily follow any specific sequence.
To order your data, use an SQL statement with an ORDER BY clause to create the Recordset object.
You can also use this technique to filter the records so that only certain records are added to the
Recordset object. Using this technique instead of using the Filter or Sort properties or testing each
record individually generally results in faster access to your data.

Snapshot-type Recordset objects are generally faster to create and access than dynaset-type
Recordset objects because their records are either in memory or stored in TEMP disk space, and the
Microsoft Jet database engine doesn't need to lock pages or handle multiuser issues. However,
snapshot-type Recordset objects use more resources than dynaset-type Recordset objects because
the entire record is downloaded to local memory.

Table-Type Recordset Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daobjTableTypeRecordsetC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daobjTableTypeRecordsetX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"daobjTableTypeRecordsetP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"daobjTableTypeRecordsetM"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"daobjTableTypeRecordsetS"} {ewc
HLP95EN.DLL,DYNALINK,"Summary":"daobjTableTypeRecordsetU":1}

A table-type Recordset object represents a base table you can use to add, change, or delete records
from a table. Only the current record is loaded into memory. A predefined index determines the order
of the records in the Recordset object (Microsoft Jet workspaces only).

Remarks
To create a table-type Recordset object, use the OpenRecordset method on an open Database
object.

You can create a table-type Recordset object from a base table of a Microsoft Jet database, but not
from an ODBC or linked table. You can use the table-type Recordset object with ISAM databases
(like FoxPro, dBASE, or Paradox) when you open them directly.

Unlike dynaset- or snapshot-type Recordset objects, the table-type Recordset object can't refer to
more than one base table, and you can't create it with an SQL statement that filters or sorts the data.
Generally, when you access a table-type Recordset object, you specify one of the predefined indexes
for the table, which orders the data returned to your application. If the table doesn't have an index, the
data won't necessarily be in a particular order. If necessary, your application can create an index that
returns records in a specific order. To choose a specific order for your table-type Recordset object,
set the Index property to a valid index.

Also unlike dynaset- or snapshot-type Recordset objects, you don't need to explicitly populate table-
type Recordset objects to obtain an accurate value for the RecordCount property.

To maintain data integrity, table-type Recordset objects are locked during the Edit and Update
methods operations so that only one user can update a particular record at a time. When the
Microsoft Jet database engine locks a record, it locks the entire 2K page containing the record.

Two kinds of locking are used with non-ODBC tables — pessimistic and optimistic. ODBC-accessed
tables always use optimistic locking. The LockEdits property determines the locking conditions in
effect during editing.

TableDef Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daobjTableDefC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daobjTableDefX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"daobjTableDefP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"daobjTableDefM"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"daobjTableDefS"} {ewc
HLP95EN.DLL,DYNALINK,"Summary":"daobjTableDefU":1}

A TableDef object represents the stored definition of a base table or a linked table (Microsoft Jet
workspaces only).

Remarks
You manipulate a table definition using a TableDef object and its methods and properties. For
example, you can:

· Examine the field and index structure of any local, linked, or external table in a database.
· Use the Connect and SourceTableName properties to set or return information about linked

tables, and use the RefreshLink method to update connections to linked tables.
· Use the ValidationRule and ValidationText properties to set or return validation conditions.
· Use the OpenRecordset method to create a table-, dynaset-, dynamic-, snapshot-, or forward-

only–type Recordset object, based on the table definition.

For base tables, the RecordCount property contains the number of records in the specified database
table. For linked tables, the RecordCount property setting is always -1.

To create a new TableDef object, use the CreateTableDef method.

To add a field to a table

1. Make sure any Recordset objects based on the table are all closed.
2. Use the CreateField method to create a Field object variable and set its properties.
1. Use the Append method to add the Field object to the Fields collection of the TableDef object.

You can delete a Field object from a TableDefs collection if it doesn't have any indexes assigned to it,
but you will lose the field's data.

To create a table that is ready for new records in a database
1. Use the CreateTableDef method to create a TableDef object.
1. Set its properties.
1. For each field in the table, use the CreateField method to create a Field object variable and set its

properties.
2. Use the Append method to add the fields to the Fields collection of the TableDef object.
3. Use the Append method to add the new TableDef object to the TableDefs collection of the

Database object.

A linked table is connected to the database by the SourceTableName and Connect properties of the
TableDef object.

To link a table to a database
1. Use the CreateTableDef method to create a TableDef object.
1. Set its Connect and SourceTableName properties (and optionally, its Attributes property).
2. Use the Append method to add it to the TableDefs collection of a Database.

To refer to a TableDef object in a collection by its ordinal number or by its Name property setting, use
any of the following syntax forms:

TableDefs(0)
TableDefs("name")
TableDefs![name]

TableDefs Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dacolTableDefC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"dacolTableDefX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"dacolTableDefP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"dacolTableDefM"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dacolTableDefS"} {ewc
HLP95EN.DLL,DYNALINK,"Summary":"dacolTableDefU":1}

A TableDefs collection contains all stored TableDef objects in a database (Microsoft Jet workspaces
only).

Remarks
You manipulate a table definition using a TableDef object and its methods and properties.

The default collection of a Database object is the TableDefs collection.

To refer to a TableDef object in a collection by its ordinal number or by its Name property setting, use
any of the following syntax forms:

TableDefs(0)
TableDefs("name")
TableDefs![name]

TableDef Object, TableDefs Collection Summary
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasumTableDefC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dasumTableDefS"}

TableDef Object
A TableDef object contains these collections, methods, and properties.

Collections
Fields (Default)
Indexes
Properties

Methods
CreateField
CreateIndex
CreateProperty
OpenRecordset
RefreshLink

Properties
Attributes
ConflictTable
Connect
DateCreated
KeepLocal (user-defined)
LastUpdated
Name
RecordCount
Replicable (user-defined)
ReplicaFilter
SourceTableName
Updatable
ValidationRule
ValidationText

A TableDef object may also contain application-defined properties. For details on reading and setting
these properties, refer to the application's online Help.

TableDefs Collection
A TableDefs collection is contained in each Database object in a Microsoft Jet database, and
contains these methods and this property.

Methods
Append
Delete
Refresh

Property
Count

User Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daobjUserC"} {ewc HLP95EN.DLL,DYNALINK,"Example":"daobjUserX":1}
{ewc HLP95EN.DLL,DYNALINK,"Properties":"daobjUserP"} {ewc HLP95EN.DLL,DYNALINK,"Methods":"daobjUserM"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"daobjUserS"} {ewc
HLP95EN.DLL,DYNALINK,"Summary":"daobjUserU":1}

A User object represents a user account that has access permissions when a Workspace object
operates as a secure workgroup (Microsoft Jet workspaces only).

Remarks
You use User objects to establish and enforce access permissions for the Document objects that
represent databases, tables, and queries. Also, if you know the properties of a specific User object,
you can create a new Workspace object that has the same access permissions as the User object.

You can append an existing User object to the Users collection of a Group object to give a user
account the access permissions for that Group object. Alternatively, you can append the Group
object to the Groups collection in a User object to establish membership of the user account in that
group. If you use a Users or Groups collection other than the one to which you just appended an
object, you may need to use the Refresh method.

With the properties of a User object, you can:

· Use the Name property to return the name of an existing user. You can't return the PID and
Password properties of an existing User object.

· Use the Name, PID, and Password properties of a newly created, unappended User object to
establish the identity of that User object. If you don't set the Password property, it's set to a zero-

length string ("").

The Microsoft Jet database engine predefines two User objects named Admin and Guest. The user
Admin is a member of both of the Group objects named Admins and Users; the user Guest is a
member only of the Group object named Guests.

To create a new User object, use the CreateUser method.

To refer to a User object in a collection by its ordinal number or by its Name property setting, use any
of the following syntax forms:

[workspace | group].Users(0)
[workspace | group].Users("name")
[workspace | group].Users![name]

Users Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dacolUserC"} {ewc HLP95EN.DLL,DYNALINK,"Example":"dacolUserX":1}
{ewc HLP95EN.DLL,DYNALINK,"Properties":"dacolUserP"} {ewc HLP95EN.DLL,DYNALINK,"Methods":"dacolUserM"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"dacolUserS"} {ewc
HLP95EN.DLL,DYNALINK,"Summary":"dacolUserU":1}

A Users collection contains all stored User objects of a Workspace or Group object (Microsoft Jet
workspaces only).

Remarks
You can append an existing User object to the Users collection of a Group object to give a user
account the access permissions for that Group object. Alternatively, you can append the Group
object to the Groups collection in a User object to establish membership of the user account in that
group. If you use a Users or Groups collection other than the one to which you just appended an
object, you may need to use the Refresh method.

The Microsoft Jet database engine predefines two User objects named Admin and Guest. The user
Admin is a member of both of the Group objects named Admins and Users; the user Guest is a
member only of the Group object named Guests.

To refer to a User object in a collection by its ordinal number or by its Name property setting, use any
of the following syntax forms:

[workspace | group].Users(0)
[workspace | group].Users("name")
[workspace | group].Users![name]

User Object, Users Collection Summary
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasumUserC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dasumUserS"}

User Object
A User object contains these collections, methods, and properties.

Collections
Groups (Default)
Properties

Methods
CreateGroup
NewPassword

Properties
Name
Password
PID

Users Collection
A Users collection is contained in each Group and Microsoft Jet Workspace object, and contains
these methods and this property.

Methods
Append
Delete
Refresh

Property
Count

Workspace Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daobjWorkspaceC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daobjWorkspaceX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"daobjWorkspaceP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"daobjWorkspaceM"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"daobjWorkSpaceS"} {ewc
HLP95EN.DLL,DYNALINK,"Summary":"daobjWorkSpaceU":1}

A Workspace object defines a named session for a user. It contains open databases and provides
mechanisms for simultaneous transactions and, in Microsoft Jet workspaces, secure workgroup
support. It also controls whether you are going through the Microsoft Jet database engine or
ODBCDirect to access external data.

Remarks
A Workspace is a non-persistent object that defines how your application interacts with data — either
by using the Microsoft Jet database engine, or ODBCDirect. Use the Workspace object to manage
the current session or to start an additional session. In a session, you can open multiple databases or
connections, and manage transactions. For example, you can:

· Use the Name, UserName, and Type properties to establish a named session. The session
creates a scope in which you can open multiple databases and conduct one instance of nested
transactions.

· Use the Close method to terminate a session.
· Use the OpenDatabase method to open one or more existing databases on a Workspace.
· Use the BeginTrans, CommitTrans, and Rollback methods to manage nested transaction

processing within a Workspace and use several Workspace objects to conduct multiple,
simultaneous, and overlapping transactions.

Further, using a Microsoft Jet database, you can establish security based on user names and
passwords:

· Use the Groups and Users collections to establish group and user access permissions to objects
in the Workspace.

· Use the IsolateODBCTrans property to isolate multiple transactions that involve the same
Microsoft Jet-connected ODBC database.

Note For a complete list of all methods, properties, and collections available on a Workspace
object in either a Microsoft Jet database or an ODBCDirect database, see the Summary topic.
When you first refer to or use a Workspace object, you automatically create the default workspace,
DBEngine.Workspaces(0). The settings of the Name and UserName properties of the default
workspace are "#Default Workspace#" and "Admin," respectively. If security is enabled, the
UserName property setting is the name of the user who logged on.

To establish an ODBCDirect Workspace object, and thereby avoid loading the Microsoft Jet database
engine into memory, set the DBEngine object's DefaultType property to dbUseODBC, or set the
type argument of the CreateWorkspace method to dbUseODBC.

When you use transactions, all databases in the specified Workspace are affected — even if multiple
Database objects are opened in the Workspace. For example, you use a BeginTrans method,
update several records in a database, and then delete records in another database. If you then use
the Rollback method, both the update and delete operations are canceled and rolled back. You can
create additional Workspace objects to manage transactions independently across Database
objects.

You can create Workspace objects with the CreateWorkspace method. After you create a new
Workspace object, you must append it to the Workspaces collection if you need to refer to it from
the Workspaces collection.

You can use a newly created Workspace object without appending it to the Workspaces collection.
However, you must refer to it by the object variable to which you have assigned it.

To refer to a Workspace object in a collection by its ordinal number or by its Name property setting,
use any of the following syntax forms:

DBEngine.Workspaces(0)
DBEngine.Workspaces("name")
DBEngine.Workspaces![name]

Workspaces Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dacolWorkspaceC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"dacolWorkspaceX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"dacolWorkspaceP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"dacolWorkspaceM"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dacolWorkspaceS"} {ewc
HLP95EN.DLL,DYNALINK,"Summary":"dacolWorkspaceU":1}

A Workspaces collection contains all active, unhidden Workspace objects of the DBEngine object.
(Hidden Workspace objects are not appended to the collection and referenced by the variable to
which they are assigned.)

Remarks

Use the Workspace object to manage the current session or to start an additional session.

When you first refer to or use a Workspace object, you automatically create the default workspace,
DBEngine.Workspaces(0). The settings of the Name and UserName properties of the default
workspace are "#Default Workspace#" and "Admin," respectively. If security is enabled, the
UserName property setting is the name of the user who logged on.

You can create new Workspace objects with the CreateWorkspace method. After you create a new
Workspace object, you must append it to the Workspaces collection if you need to refer to it from
the Workspaces collection. You can, however, use a newly created Workspace object without
appending it to the Workspaces collection.

To refer to a Workspace object in a collection by its ordinal number or by its Name property setting,
use any of the following syntax forms:

DBEngine.Workspaces(0)
DBEngine.Workspaces("name")
DBEngine.Workspaces![name]

Workspace Object, Workspaces Collection Summary
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasumWorkspaceC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dasumWorkspaceS"}

Workspace Object
A Workspace object contains these collections, methods, and properties.

Legend:

Feature available in Microsoft Jet workspaces only.

Feature available in ODBCDirect workspaces only.
Collections

Connections
Databases (default)

Groups
Properties

Users

Methods
BeginTrans
Close
CommitTrans

CreateDatabase

CreateGroup

CreateUser

OpenConnection
OpenDatabase
Rollback

Properties

DefaultCursorDriver

IsolateODBCTrans

LoginTimeout
Name
Type
UserName

Workspaces Collection
A Workspaces collection is contained in the DBEngine object, and contains these methods and this

property.

Methods
Append
Delete
Refresh

Property
Count

Connection Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daobjConnectionC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daobjConnectionX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"daobjConnectionP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"daobjConnectionM"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"daobjConnectionS"} {ewc
HLP95EN.DLL,DYNALINK,"Summary":"daobjConnectionU":1}

A Connection object represents a connection to an ODBC database (ODBCDirect workspaces only).

Remarks
A Connection is a non-persistent object that represents a connection to a remote database. The
Connection object is only available in ODBCDirect workspaces (that is, a Workspace object created
with the type option set to dbUseODBC).

Note Code written for earlier versions of DAO can continue to use the Database object for
backward compatibility, but if the new features of a Connection are desired, you should revise code
to use the Connection object. To help with code conversion, you can obtain a Connection object
reference from a Database by reading the Connection property of the Database object. Conversely,
you can obtain a Database object reference from the Connection object’s Database property.

Connections Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dacolConnectionC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"dacolConnectionX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"dacolConnectionP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"dacolConnectionM"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dacolConnectionS"} {ewc
HLP95EN.DLL,DYNALINK,"Summary":"dacolConnectionU":1}

A Connections collection contains the current Connection objects of a Workspace object.
(ODBCDirect workspaces only).

Remarks
When you open a Connection object, it is automatically appended to the Connections collection of
the Workspace. When you close a Connection object with the Close method, it is removed from the
Connections collection. You should close all open Recordset objects within the Connection before
closing it.

At the same time you open a Connection object, a corresponding Database object is created and
appended to the Databases collection in the same Workspace, and vice versa. Similarly, when you
close the Connection, the corresponding Database is deleted from the Databases collection, and so
on.

The Name property setting of a Connection is a string that specifies the path of the database file. To
refer to a Connection object in a collection by its ordinal number or by its Name property setting, use
any of the following syntax forms:

Connections(0)
Connections("name")

Connections![name]

Note You can open the same data source more than once, creating duplicate names in the
Connections collection. You should assign Connection objects to object variables and refer to them
by variable name.

Connection Object, Connections Collection Summary
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasumConnectionC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dasumConnectionS"}

Connection Object
The Connection object contains these collections, methods, and properties.

Collections
QueryDefs (default)
Recordsets

Methods
Cancel
Close
CreateQueryDef
Execute
OpenRecordset

Properties
Connect
Database
Name
QueryTimeout
RecordsAffected
StillExecuting
Transactions
Updatable

Connections Collection
A Connections collection is contained in each ODBCDirect Workspace object, and contains this
method and this property:

Method
Refresh

Property
Count

Forward-Only–Type Recordset Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daobjForwardOnlyTypeRecordsetC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daobjForwardOnlyTypeRecordsetX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"daobjForwardOnlyTypeRecordsetP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"daobjForwardOnlyTypeRecordsetM"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"daobjForwardOnlyTypeRecordsetS"} {ewc
HLP95EN.DLL,DYNALINK,"Summary":"daobjForwardOnlyTypeRecordsetU":1}

This Recordset type is identical to a snapshot except that you can only scroll forward through its
records. This improves performance in situations where you only need to make a single pass through
a result set.

In an ODBCDirect workspace, this type corresponds to an ODBC forward-only cursor.

Forward-Only–Type Recordset Object Summary
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasumForwardOnlyTypeRecordsetC "} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dasumForwardOnlyTypeRecordsetS"}

The forward-only type Recordset object contains these collections, methods, and properties.

Legend:

Feature available in Microsoft Jet workspaces only.

Feature available in ODBCDirect workspaces only.
Collections
Fields (default)
Properties

Methods Restrictions

AddNew

Cancel

CancelUpdate

Close
CopyQueryDef

Delete

Edit

GetRows
Move Only with forward moves that don't

use a bookmark offset.
MoveNext
NextRecordset

Requery
Update

Properties
The following table indicates whether each property setting is read/write, read-only, or always False in
either Microsoft Jet or ODBCDirect workspaces.

Read-only

Read/write
Properties Restrictions
BatchCollisionCount

BatchCollisions

BatchSize

BOF

Connection

EOF

Filter

Name

RecordCount

RecordStatus

Restartable

StillExecuting

Transactions
Always False

Type

Updatable
False

UpdateOptions

ValidationRule

ValidationText

Dynamic-Type Recordset Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daobjDynamicTypeRecordsetC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daobjDynamicTypeRecordsetX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"daobjDynamicTypeRecordsetP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"daobjDynamicTypeRecordsetM"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"daobjDynamicTypeRecordset S"} {ewc
HLP95EN.DLL,DYNALINK,"Summary":"daobjDynamicTypeRecordsetU":1}

This Recordset type represents a query result set from one or more base tables in which you can
add, change, or delete records from a row-returning query. Further, records that other users add,
delete, or edit in the base tables also appear in your Recordset.
This type is only available in ODBCDirect workspaces, and corresponds to an ODBC dynamic cursor.

Dynamic-Type Recordset Object Summary
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasumDynamicTypeRecordsetC "} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dasumDynamicTypeRecordsetS"}

A dynamic-type Recordset object contains these collections, methods, and properties. This type of
Recordset and its methods and properties are available only in an ODBCDirect workspace.

Collections
Fields (default)
Properties

Methods
AddNew
Cancel
CancelUpdate
Close
Delete
Edit
GetRows
Move
MoveFirst
MoveLast
MoveNext
MovePrevious
NextRecordset
Requery
Update

Properties
The following table indicates whether each property setting is read/write, read-only, or always False.

Read-only

Read/write
Properties Restrictions
AbsolutePosition

BatchCollisionCount

BatchCollisions

BatchSize

BOF

Bookmark

Bookmarkable

CacheSize

Connection

EditMode

EOF

LastModified

LockEdits

Name

PercentPosition

RecordCount

RecordStatus

Restartable

StillExecuting

Type

Updatable

UpdateOptions

Dynaset-Type Recordset Object Summary
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasumDynasetTypeRecordsetC "} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dasumDynasetTypeRecordsetS"}

The dynaset-type Recordset object contains these collections, methods, and properties.

Legend:

Feature available in Microsoft Jet workspaces only.

Feature available in ODBCDirect workspaces only.
Collections
Fields (default)
Properties

Methods Restrictions

AddNew
Cancel

CancelUpdate
Clone

Close
CopyQueryDef

Delete
Edit
FillCache

FindFirst

FindLast

FindNext

FindPrevious

GetRows
Move
MoveFirst
MoveLast
MoveNext
MovePrevious
NextRecordset

OpenRecordset

Requery
Update

Properties
The following table indicates whether the property setting is read/write, read-only, or only available in
either Microsoft Jet or ODBCDirect workspaces.

Read-only

Read/write
Properties Restrictions
AbsolutePosition

BatchCollisionCount

BatchCollisions

BatchSize

BOF

Bookmark

Bookmarkable

CacheSize
 Microsoft Jet

 ODBCDirect
CacheStart

Connection

EditMode

EOF

Filter

LastModified

LockEdits

Name

NoMatch

PercentPosition

RecordCount

RecordStatus

Restartable

Sort

StillExecuting

Transactions

Type

Updatable

UpdateOptions

ValidationRule

ValidationText

Snapshot-Type Recordset Object Summary
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasumSnapshotTypeRecordsetC "} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dasumSnapshotTypeRecordsetS"}

The snapshot-type Recordset object contains these collections, methods, and properties.

Legend:

Feature available in Microsoft Jet workspaces only.

Feature available in ODBCDirect workspaces only.
Collections
Fields (default)
Properties

Methods Restrictions

AddNew
 *

Cancel

CancelUpdate
 *

Clone

Close
CopyQueryDef

Delete
 *

Edit
 *

FindFirst

FindLast

FindNext

FindPrevious

GetRows
Move
MoveFirst
MoveLast
MoveNext
MovePrevious
NextRecordset

OpenRecordset

Requery
Update

 *
* In an ODBCDirect workspace, a snapshot-type Recordset may be updatable, depending on the ODBC driver. The AddNew,

Edit, Delete, Update, and CancelUpdate methods are only available on ODBCDirect snapshot-type Recordset objects if the
ODBC driver supports updatable snapshots.

Properties
The following table indicates whether the property setting is read/write, read-only, or always False in
either Microsoft Jet or ODBCDirect workspaces.

Read-only

Read/write
Properties Restrictions
AbsolutePosition

BatchCollisionCount

BatchCollisions

BatchSize

BOF

Bookmark

Bookmarkable

CacheSize

Connection

EditMode

EOF

Filter

LastModified
 *

LockEdits

Name

NoMatch

PercentPosition

RecordCount

RecordStatus

Restartable

Sort

StillExecuting

Transactions
Always False

Type

Updatable Always False in Microsoft Jet

workspaces; in
ODBCDirect workspaces *

UpdateOptions

ValidationRule

ValidationText

* In an ODBCDirect workspace, a snapshot-type Recordset may be updatable, depending on the ODBC driver. The
LastModified property is available, and the Updatable property is True only on ODBCDirect snapshot-type Recordset
objects if the ODBC driver supports updatable snapshots.

Table-Type Recordset Object Summary
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasumTableTypeRecordsetC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dasumTableTypeRecordsetS"}

A table-type Recordset object contains these collections, methods, and properties. This type of
Recordset and its methods and properties are available only in a Microsoft Jet workspace.

Collections
Fields (default)
Properties

Methods
AddNew
CancelUpdate
Clone
Close
Delete
Edit
GetRows
Move
MoveFirst
MoveLast
MoveNext
MovePrevious
OpenRecordset
Seek
Update

Properties
The following table indicates whether each property setting is read/write, read-only, or always False.

Read-only

Read/write
Properties Restrictions
BOF

Bookmark

Bookmarkable

DateCreated

EditMode

EOF

Index

LastModified

LastUpdated

LockEdits

Name

NoMatch

PercentPosition

RecordCount

Restartable Always False
Transactions

Type

Updatable

ValidationRule

ValidationText

AddNew Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthAddNewC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthAddNewX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthAddNewA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthAddNewS"}

Creates a new record for an updatable Recordset object.

Syntax
recordset.AddNew
The recordset placeholder is an object variable that represents an updatable Recordset object to
which you want to add a new record.

Remarks
Use the AddNew method to create and add a new record in the Recordset object named by
recordset. This method sets the fields to default values, and if no default values are specified, it sets
the fields to Null (the default values specified for a table-type Recordset).
After you modify the new record, use the Update method to save the changes and add the record to
the Recordset. No changes occur in the database until you use the Update method.

Caution If you issue an AddNew and then perform any operation that moves to another record, but
without using Update, your changes are lost without warning. In addition, if you close the Recordset
or end the procedure that declares the Recordset or its Database object, the new record is discarded
without warning.

Note When you use AddNew in a Microsoft Jet workspace and the database engine has to create
a new page to hold the current record, page locking is pessimistic. If the new record fits in an existing
page, page locking is optimistic.
If you haven't moved to the last record of your Recordset, records added to base tables by other
processes may be included if they are positioned beyond the current record. If you add a record to
your own Recordset, however, the record is visible in the Recordset and included in the underlying
table where it becomes visible to any new Recordset objects.

The position of the new record depends on the type of Recordset:
· In a dynaset-type Recordset object, records are inserted at the end of the Recordset, regardless

of any sorting or ordering rules that were in effect when the Recordset was opened.
· In a table-type Recordset object whose Index property has been set, records are returned in their

proper place in the sort order. If you haven't set the Index property, new records are returned at the
end of the Recordset.

The record that was current before you used AddNew remains current. If you want to make the new
record current, you can set the Bookmark property to the bookmark identified by the LastModified
property setting.

Note To add, edit, or delete a record, there must be a unique index on the record in the underlying
data source. If not, a "Permission denied" error will occur on the AddNew, Delete, or Edit method
call in a Microsoft Jet workspace, or an "Invalid argument" error will occur on the Update call in an
ODBCDirect workspace.

Append Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthAppendC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthAppendX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthAppendA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthAppendS"}

Adds a new DAO object to a collection.

Syntax
collection.Append object

The Append method syntax has these parts.

Part Description
collection An object variable that represents any collection that

can accept new objects (for limitations, see the table at
the end of this topic).

object An object variable that represents the object being
appended, which must be of the same type as the
elements of collection.

Remarks
You can use the Append method to add a new table to a database, add a field to a table, and add a
field to an index.

The appended object becomes a persistent object, stored on disk, until you delete it by using the
Delete method. If collection is a Workspaces collection (which is stored only in memory), the object
is active until you remove it by using the Close method.

The addition of a new object occurs immediately, but you should use the Refresh method on any
other collections that may be affected by changes to the database structure.

If the object you're appending isn’t complete (such as when you haven’t appended any Field objects
to a Fields collection of an Index object before it’s appended to an Indexes collection) or if the
properties set in one or more subordinate objects are incorrect, using the Append method causes an
error. For example, if you haven’t specified a field type and then try to append the Field object to the
Fields collection in a TableDef object, using the Append method triggers a run-time error.

The following table lists some limitations of the Append method. The object in the first column is an
object containing the collection in the second column. The third column indicates whether you can
append an object to that collection (for example, you can never append a Container object to the
Containers collection of a Database object).

Object Collection
Can you append new
objects?

DBEngine Workspaces Yes
DBEngine Errors No. New Error objects are

automatically appended
when they occur.

Workspace Connections No. Using the
OpenConnection method
automatically appends new
objects.

Workspace Databases No. Using the
OpenDatabase method
automatically appends new

objects.
Workspace Groups Yes
Workspace Users Yes
Connection QueryDefs No. Using the

CreateQueryDef method
automatically appends new
objects.

Connection Recordsets No. Using the
OpenRecordset method
automatically appends new
objects.

Database Containers No
Database QueryDefs Only when the QueryDef

object is a new,
unappended object created
with no name. See the
CreateQueryDef method
for details.

Database Recordsets No. Using the
OpenRecordset method
automatically appends new
objects.

Database Relations Yes
Database TableDefs Yes
Group Users Yes
User Groups Yes
Container Documents No
QueryDef Fields No
QueryDef Parameters No
Recordset Fields No
Relation Fields Yes
TableDef Fields Only when the Updatable

property of the TableDef
object is set to True, or
when the TableDef object
is unappended.

TableDef Indexes Only when the Updatable
property of the TableDef is
set to True, or when the
TableDef object is
unappended.

Index Fields Only when the Index object
is a new, unappended
object.

Database, Field,
Index, QueryDef,
TableDef

Properties Only when the Database,
Field, Index, QueryDef, or
TableDef object is in a
Microsoft Jet workspace.

DBEngine,
Parameter,
Recordset,

Properties No

Workspace

AppendChunk Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthAppendChunkC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthAppendChunkX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthAppendChunkA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthAppendChunkS"}

Appends data from a string expression to a Memo or Long Binary Field object in a Recordset.

Syntax
recordset ! field.AppendChunk source

The AppendChunk method syntax has these parts.

Part Description
recordset An object variable that represents the Recordset object

containing the Fields collection.
field An object variable that represents the name of a Field

object whose Type property is set to dbMemo (Memo),
dbLongBinary (Long Binary), or the equivalent.

source A Variant (String subtype) expression or variable
containing the data you want to append to the Field
object specified by field.

Remarks
You can use the AppendChunk and GetChunk methods to access subsets of data in a Memo or
Long Binary field.

You can also use these methods to conserve string space when you work with Memo and Long
Binary fields. Certain operations (copying, for example) involve temporary strings. If string space is
limited, you may need to work with chunks of a field instead of the entire field.

If there is no current record when you use AppendChunk, an error occurs.

Notes
· The initial AppendChunk operation (after an Edit or AddNew call) will simply place the data in the

field, overwriting any existing data. Subsequent AppendChunk calls within the same Edit or
AddNew session will then add to the existing data.

· In an ODBCDirect workspace, unless you first edit another field in the current record, using
AppendChunk will fail (though no error occurs) while you are in Edit mode.

· In an ODBCDirect workspace, after you use AppendChunk on a field, you cannot read or write
that field in an assignment statement until you move off the current record and then return to it. You
can do this by using the MoveNext and MovePrevious methods.

BeginTrans, CommitTrans, Rollback Methods
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthBeginTransC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthBeginTransX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthBeginTransA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthBeginTransS"}

The transaction methods manage transaction processing during a session defined by a Workspace
object as follows:

· BeginTrans begins a new transaction.
· CommitTrans ends the current transaction and saves the changes.
· Rollback ends the current transaction and restores the databases in the Workspace object to the

state they were in when the current transaction began.

Syntax
workspace.BeginTrans | CommitTrans [dbFlushOSCacheWrites] | Rollback
The workspace placeholder is an object variable that represents the Workspace containing the
databases that will use transactions.

Remarks
You use these methods with a Workspace object when you want to treat a series of changes made to
the databases in a session as one unit.

Typically, you use transactions to maintain the integrity of your data when you must both update
records in two or more tables and ensure changes are completed (committed) in all tables or none at
all (rolled back). For example, if you transfer money from one account to another, you might subtract
an amount from one and add the amount to another. If either update fails, the accounts no longer
balance. Use the BeginTrans method before updating the first record, and then, if any subsequent
update fails, you can use the Rollback method to undo all of the updates. Use the CommitTrans
method after you successfully update the last record.

In a Microsoft Jet workspace, you can include the dbFlushOSCacheWrites constant with
CommitTrans, This forces the database engine to immediately flush all updates to disk, instead of
caching them temporarily. Without using this option, a user could get control back immediately after
the application program calls CommitTrans, turn the computer off, and not have the data written to
disk. While using this option may affect your application’s performance, it is useful in situations where
the computer could be shut off before cached updates are saved to disk.

Caution Within one Workspace object, transactions are always global to the Workspace and
aren't limited to only one Connection or Database object. If you perform operations on more than
one connection or database within a Workspace transaction, resolving the transaction (that is, using
the CommitTrans or Rollback method) affects all operations on all connections and databases within
that workspace.

After you use CommitTrans, you can't undo changes made during that transaction unless the
transaction is nested within another transaction that is itself rolled back. If you nest transactions, you
must resolve the current transaction before you can resolve a transaction at a higher level of nesting.

If you want to have simultaneous transactions with overlapping, non-nested scopes, you can create
additional Workspace objects to contain the concurrent transactions.

If you close a Workspace object without resolving any pending transactions, the transactions are
automatically rolled back.

If you use the CommitTrans or Rollback method without first using the BeginTrans method, an error
occurs.

Some ISAM databases used in a Microsoft Jet workspace may not support transactions, in which

case the Transactions property of the Database object or Recordset object is False. To make sure
the database supports transactions, check the value of the Transactions property of the Database
object before using the BeginTrans method. If you are using a Recordset object based on more than
one database, check the Transactions property of the Recordset object. If a Recordset is based
entirely on Microsoft Jet tables, you can always use transactions. Recordset objects based on tables
created by other database products, however, may not support transactions. For example, you can't
use transactions in a Recordset based on a Paradox table. In this case, the Transactions property is
False. If the Database or Recordset doesn't support transactions, the methods are ignored and no
error occurs.

You can't nest transactions if you are accessing ODBC data sources through the Microsoft Jet
database engine.

Notes
· You can often improve the performance of your application by breaking operations that require disk

access into transaction blocks. This buffers your operations and may significantly reduce the
number of times a disk is accessed.

· In a Microsoft Jet workspace, transactions are logged in a file kept in the directory specified by the
TEMP environment variable on the workstation. If the transaction log file exhausts the available
storage on your TEMP drive, the database engine triggers a run-time error. At this point, if you use
CommitTrans, an indeterminate number of operations are committed, but the remaining
uncompleted operations are lost, and the operation has to be restarted. Using a Rollback method
releases the transaction log and rolls back all operations in the transaction.

CancelUpdate Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthCancelUpdateC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthCancelUpdateX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthCancelUpdateA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthCancelUpdateS"}

Cancels any pending updates for a Recordset object.

Syntax
recordset.CancelUpdate type

The AppendChunk method syntax has these parts.

Part Description
recordset An object variable that represents the Recordset object

for which you are canceling pending updates.
type Optional. A constant indicating the type of update, as

specified in Settings (ODBCDirect workspaces only).

Settings
You can use the following values for the type argument only if batch updating is enabled.

Constant Description

dbUpdateRegular Default. Cancels pending changes that aren’t
cached.

dbUpdateBatch Cancels pending changes in the update
cache.

Remarks
You can use the CancelUpdate method to cancel any pending updates resulting from an Edit or
AddNew operation. For example, if a user invokes the Edit or AddNew method and hasn't yet
invoked the Update method, CancelUpdate cancels any changes made after Edit or AddNew was
invoked.

Check the EditMode property of the Recordset to determine if there is a pending operation that can
be canceled.

Note Using the CancelUpdate method has the same effect as moving to another record without
using the Update method, except that the current record doesn't change, and various properties,
such as BOF and EOF, aren't updated.

Clone Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthCloneC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthCloneX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"damthCloneA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthCloneS"}

Creates a duplicate Recordset object that refers to the original Recordset object.

Syntax
Set duplicate = original.Clone
The Clone method syntax has these parts.

Part Description
duplicate An object variable identifying the duplicate Recordset

object you're creating.
original An object variable identifying the Recordset object you

want to duplicate.

Remarks
Use the Clone method to create multiple, duplicate Recordset objects. Each Recordset can have its
own current record. Using Clone by itself doesn't change the data in the objects or in their underlying
structures. When you use the Clone method, you can share bookmarks between two or more
Recordset objects because their bookmarks are interchangeable.

You can use the Clone method when you want to perform an operation on a Recordset that requires
multiple current records. This is faster and more efficient than opening a second Recordset. When
you create a Recordset with the Clone method, it initially lacks a current record. To make a record
current before you use the Recordset clone, you must set the Bookmark property or use one of the
Move methods, one of the Find methods, or the Seek method.

Using the Close method on either the original or duplicate object doesn't affect the other object. For
example, using Close on the original Recordset doesn't close the clone.

Notes
· Closing a clone Recordset within a pending transaction will cause an implicit Rollback operation.
· When you clone a table-type Recordset object in a Microsoft Jet workspace, the Index property

setting is not cloned on the new copy of the Recordset. You must copy the Index property setting
manually.

· You can use the Clone method with forward-only–type Recordset objects only in an ODBCDirect
workspace.

Close Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthCloseC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthCloseX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"damthCloseA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthCloseS"}

Closes an open DAO object.

Syntax
object.Close
The object placeholder is an object variable that represents an open Connection, Database,
Recordset, or Workspace object.

Remarks
Closing an open object removes it from the collection to which it's appended. Any attempt to close the
default workspace is ignored.

If the Connection, Database, Recordset, or Workspace object named by object is already closed
when you use Close, a run-time error occurs.

Caution If you exit a procedure that declares Connection, Database, or Recordset objects, those
objects are closed, all pending transactions are rolled back, and any pending edits to your data are
lost.

If you try to close a Connection or Database object while it has any open Recordset objects, the
Recordset objects will be closed and any pending updates or edits will be canceled. Similarly, if you
try to close a Workspace object while it has any open Connection or Database objects, those
Connection and Database objects will be closed, which will close their Recordset objects.

Using the Close method on either an original or cloned Recordset object doesn't affect the other
Recordset object.

To remove objects from updatable collections other than the Connections, Databases, Recordsets,
and Workspaces collections, use the Delete method on those collections. You can't add a new
member to the Containers, Documents, and Errors collections.

An alternative to the Close method is to set the value of an object variable to Nothing (Set
dbsTemp = Nothing).

CompactDatabase Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthCompactDatabaseC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthCompactDatabaseX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthCompactDatabaseA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthCompactDatabaseS"}

Copies and compacts a closed database, and gives you the option of changing its version, collating
order, and encryption. (Microsoft Jet workspaces only).

Syntax
DBEngine.CompactDatabase olddb, newdb, locale, options, password

The CompactDatabase method syntax has these parts.

Part Description
olddb A String that identifies an existing, closed database. It

can be a full path and file name, such as "C:\
db1.mdb". If the file name has an extension, you must
specify it. If your network supports it, you can also
specify a network path, such as "\\server1\
share1\dir1\db1.mdb".

newdb A String that is the file name (and path) of the
compacted database that you're creating. You can also
specify a network path. You can't use the newdb
argument to specify the same database file as olddb.

locale Optional. A Variant that is a string expression that
specifies a collating order for creating newdb, as
specified in Settings. If you omit this argument, the
locale of newdb is the same as olddb.
You can also create a password for newdb by
concatenating the password string (starting with
";pwd=") with a constant in the locale argument, like
this:
dbLangSpanish & ";pwd=NewPassword"
If you want to use the same locale as olddb (the default
value), but specify a new password, simply enter a
password string for locale:
";pwd=NewPassword"

options Optional. A constant or combination of constants that
indicates one or more options, as specified in Settings.
You can combine options by summing the
corresponding constants.

password Optional. A Variant that is a string expression
containing a password, if the database is password
protected. The string ";pwd=" must precede the actual
password. If you include a password setting in locale,
this setting is ignored.

Settings
You can use one of the following constants for the locale argument to specify the CollatingOrder
property for string comparisons of text.

Constant Collating order
dbLangGeneral English, German, French, Portuguese,

Italian, and Modern Spanish
dbLangArabic Arabic
dbLangChineseSimplified Simplified Chinese
dbLangChineseTraditional Traditional Chinese
dbLangCyrillic Russian
dbLangCzech Czech
dbLangDutch Dutch
dbLangGreek Greek
dbLangHebrew Hebrew
dbLangHungarian Hungarian
dbLangIcelandic Icelandic
dbLangJapanese Japanese
dbLangKorean Korean
dbLangNordic Nordic languages (Microsoft Jet

database engine version 1.0 only)
dbLangNorwDan Norwegian and Danish
dbLangPolish Polish
dbLangSlovenian Slovenian
dbLangSpanish Traditional Spanish
dbLangSwedFin Swedish and Finnish
dbLangThai Thai
dbLangTurkish Turkish

You can use one of the following constants in the options argument to specify whether to encrypt or to
decrypt the database while it's compacted.

Constant Description
dbEncrypt Encrypt the database while compacting.
dbDecrypt Decrypt the database while compacting.

If you omit an encryption constant or if you include both dbDecrypt and dbEncrypt, newdb will have
the same encryption as olddb.

You can use one of the following constants in the options argument to specify the version of the data
format for the compacted database. This constant affects only the version of the data format of newdb
and doesn't affect the version of any Microsoft Access-defined objects, such as forms and reports.

Constant Description
dbVersion10 Creates a database that uses the Microsoft Jet

database engine version 1.0 file format while
compacting.

dbVersion11 Creates a database that uses the Microsoft Jet
database engine version 1.1 file format while
compacting.

dbVersion20 Creates a database that uses the Microsoft Jet
database engine version 2.0 file format while
compacting.

dbVersion30 Creates a database that uses the Microsoft Jet
database engine version 3.0 file format (compatible with
version 3.5) while compacting.

You can specify only one version constant. If you omit a version constant, newdb will have the same

version as olddb. You can compact newdb only to a version that is the same or later than that of
olddb.

Remarks
As you change data in a database, the database file can become fragmented and use more disk
space than is necessary. Periodically, you can use the CompactDatabase method to compact your
database to defragment the database file. The compacted database is usually smaller and often runs
faster. You can also change the collating order, the encryption, or the version of the data format while
you copy and compact the database.

You must close olddb before you compact it. In a multiuser environment, other users can't have olddb
open while you're compacting it. If olddb isn't closed or isn't available for exclusive use, an error
occurs.

Because CompactDatabase creates a copy of the database, you must have enough disk space for
both the original and the duplicate databases. The compact operation fails if there isn't enough disk
space available. The newdb duplicate database doesn't have to be on the same disk as olddb. After
successfully compacting a database, you can delete the olddb file and rename the compacted newdb
file to the original file name.

The CompactDatabase method copies all the data and the security permission settings from the
database specified by olddb to the database specified by newdb.

If you use CompactDatabase to convert a version 1.x database to version 2.5 or 3.x, only
applications using version Microsoft Jet 2.5 or 3.x can open the converted database.

Note In an ODBCDirect workspace, using the CompactDatabase method doesn't return an error,
but instead loads the Microsoft Jet database engine into memory.

Caution Because the CompactDatabase method doesn't convert Microsoft Access objects, you
shouldn't use CompactDatabase to convert a database containing such objects. To convert a
database containing Microsoft Access objects, on the Tools menu, point to Database Utilities, and
then click Convert Database.

CopyQueryDef Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthCopyQueryDefC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthCopyQueryDefX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthCopyQueryDefA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthCopyQueryDefS"}

Returns a QueryDef object that is a copy of the QueryDef used to create the Recordset object
represented by the recordset placeholder (Microsoft Jet workspaces only).

Syntax
Set querydef = recordset.CopyQueryDef
The CopyQueryDef method syntax has these parts.

Part Description
querydef An object variable that represents the copy of a

QueryDef object you want to create.
recordset An object variable that represents the Recordset object

created with the original QueryDef object.

Remarks
You can use the CopyQueryDef method to create a new QueryDef that is a duplicate of the
QueryDef used to create the Recordset.
If a QueryDef wasn't used to create this Recordset, an error occurs. You must first open a
Recordset with the OpenRecordset method before using the CopyQueryDef method.

This method is useful when you create a Recordset object from a QueryDef, and pass the
Recordset to a function, and the function must re-create the SQL equivalent of the query, for
example, to modify it in some way.

CreateDatabase Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthCreateDatabaseC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthCreateDatabaseX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthCreateDatabaseA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthCreateDatabaseS"}

Creates a new Database object, saves the database to disk, and returns an opened Database object
(Microsoft Jet workspaces only).

Syntax
Set database = workspace.CreateDatabase (name, locale, options)
The CreateDatabase method syntax has these parts.

Part Description
database An object variable that represents the Database object

you want to create.
workspace An object variable that represents the existing

Workspace object that will contain the database. If you
omit workspace, CreateDatabase uses the default
Workspace.

name A String up to 255 characters long that is the name of
the database file that you're creating. It can be the full
path and file name, such as "C:\db1.mdb". If you
don't supply a file name extension, .mdb is appended. If
your network supports it, you can also specify a
network path, such as "\\server1\share1\dir1\
db1". You can only create .mdb database files with this
method.

locale A string expression that specifies a collating order for
creating the database, as specified in Settings. You
must supply this argument or an error occurs.
You can also create a password for the new Database
object by concatenating the password string (starting
with ";pwd=") with a constant in the locale argument,
like this:
dbLangSpanish & ";pwd=NewPassword"
If you want to use the default locale, but specify a
password, simply enter a password string for the locale
argument:
";pwd=NewPassword"

options Optional. A constant or combination of constants that
indicates one or more options, as specified in Settings.
You can combine options by summing the
corresponding constants.

Settings
You can use one of the following constants for the locale argument to specify the CollatingOrder
property of text for string comparisons.

Constant Collating order
dbLangGeneral English, German, French, Portuguese,

Italian, and Modern Spanish
dbLangArabic Arabic

dbLangChineseSimplified Simplified Chinese
dbLangChineseTraditional Traditional Chinese
dbLangCyrillic Russian
dbLangCzech Czech
dbLangDutch Dutch
dbLangGreek Greek
dbLangHebrew Hebrew
dbLangHungarian Hungarian
dbLangIcelandic Icelandic
dbLangJapanese Japanese
dbLangKorean Korean
dbLangNordic Nordic languages (Microsoft Jet database

engine version 1.0 only)
dbLangNorwDan Norwegian and Danish
dbLangPolish Polish
dbLangSlovenian Slovenian
dbLangSpanish Traditional Spanish
dbLangSwedFin Swedish and Finnish
dbLangThai Thai
dbLangTurkish Turkish

You can use one or more of the following constants in the options argument to specify which version
the data format should have and whether or not to encrypt the database.

Constant Description
dbEncrypt Creates an encrypted database.
dbVersion10 Creates a database that uses the Microsoft Jet

database engine version 1.0 file format.
dbVersion11 Creates a database that uses the Microsoft Jet

database engine version 1.1 file format.
dbVersion20 Creates a database that uses the Microsoft Jet

database engine version 2.0 file format.
dbVersion30 (Default) Creates a database that uses the Microsoft Jet

database engine version 3.0 file format (compatible with
version 3.5).

If you omit the encryption constant, CreateDatabase creates an un-encrypted database. You can
specify only one version constant. If you omit a version constant, CreateDatabase creates a
database that uses the Microsoft Jet database engine version 3.0 file format.

Remarks
Use the CreateDatabase method to create and open a new, empty database, and return the
Database object. You must complete its structure and content by using additional DAO objects. If you
want to make a partial or complete copy of an existing database, you can use the CompactDatabase
method to make a copy that you can customize.

CreateField Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthCreateFieldC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthCreateFieldX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthCreateFieldA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthCreateFieldS"}

Creates a new Field object (Microsoft Jet workspaces only).

Syntax
Set field = object.CreateField (name, type, size)
The CreateField method syntax has these parts.

Part Description
field An object variable that represents the Field object you

want to create.
object An object variable that represents the Index, Relation,

or TableDef object for which you want to create the new
Field object.

name Optional. A Variant (String subtype) that uniquely
names the new Field object. See the Name property for
details on valid Field names.

type Optional. A constant that determines the data type of
the new Field object. See the Type property for valid
data types.

size Optional. A Variant (Integer subtype) that indicates the
maximum size, in bytes, of a Field object that contains
text. See the Size property for valid size values. This
argument is ignored for numeric and fixed-width fields.

Remarks
You can use the CreateField method to create a new field, as well as specify the name, data type,
and size of the field. If you omit one or more of the optional parts when you use CreateField, you can
use an appropriate assignment statement to set or reset the corresponding property before you
append the new object to a collection. After you append the new object, you can alter some but not all
of its property settings. See the individual property topics for more details.

The type and size arguments apply only to Field objects in a TableDef object. These arguments are
ignored when a Field object is associated with an Index or Relation object.

If name refers to an object that is already a member of the collection, a run-time error occurs when
you use the Append method.

To remove a Field object from a Fields collection, use the Delete method on the collection. You can't
delete a Field object from a TableDef object's Fields collection after you create an index that
references the field.

CreateGroup Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthCreateGroupC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthCreateGroupX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthCreateGroupA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthCreateGroupS"}

Creates a new Group object (Microsoft Jet workspaces only).

Syntax
Set group = object.CreateGroup (name, pid)
The CreateGroup method syntax has these parts.

Part Description
group An object variable that represents the Group you want

to create.
object An object variable that represents the User or

Workspace object for which you want to create the new
Group object.

name Optional. A Variant (String subtype) that uniquely
names the new Group object. See the Name property
for details on valid Group names.

pid Optional. A Variant (String subtype) containing the PID
of a group account. The identifier must contain from 4 to
20 alphanumeric characters. See the PID property for
more information on valid personal identifiers.

Remarks
You can use the CreateGroup method to create a new Group object for a User or Workspace. If you
omit one or both of the optional parts when you use CreateGroup, you can use an appropriate
assignment statement to set or reset the corresponding property before you append the new object to
a collection. After you append the object, you can alter some but not all of its property settings. See
the individual property topics for more details.

If name refers to an object that is already a member of the collection, a run-time error occurs when
you use the Append method.

To remove a Group object from a collection, use the Delete method on the Groups collection.

CreateIndex Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthCreateIndexC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthCreateIndexX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthCreateIndexA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthCreateIndexS"}

Creates a new Index object (Microsoft Jet workspaces only).

Syntax
Set index = tabledef.CreateIndex (name)
The CreateIndex method syntax has these parts.

Part Description
index An object variable that represents the index you want to

create.
tabledef An object variable that represents the TableDef object

you want to use to create the new Index object.
name Optional. A Variant (String subtype) that uniquely

names the new Index object. See the Name property
for details on valid Index names.

Remarks
You can use the CreateIndex method to create a new Index object for a TableDef object. If you omit
the optional name part when you use CreateIndex, you can use an appropriate assignment
statement to set or reset the Name property before you append the new object to a collection. After
you append the object, you may or may not be able to set its Name property, depending on the type
of object that contains the Indexes collection. See the Name property topic for more details.

If name refers to an object that is already a member of the collection, a run-time error occurs when
you use the Append method.

To remove an Index object from a collection, use the Delete method on the collection.

CreateProperty Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthCreatePropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthCreatePropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthCreatePropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthCreatePropertyS"}

Creates a new user-defined Property object (Microsoft Jet workspaces only).

Syntax
Set property = object.CreateProperty (name, type, value, DDL)
The CreateProperty method syntax has these parts.

Part Description
property An object variable that represents the Property object you

want to create.
object An object variable that represents the Database, Field,

Index, QueryDef, Document, or TableDef object you want
to use to create the new Property object.

name Optional. A Variant (String subtype) that uniquely names
the new Property object. See the Name property for details
on valid Property names.

type Optional. A constant that defines the data type of the new
Property object. See the Type property for valid data
types.

value Optional. A Variant containing the initial property value.
See the Value property for details.

DDL Optional. A Variant (Boolean subtype) that indicates
whether or not the Property is a DDL object. The default is
False. If DDL is True, users can't change or delete this
Property object unless they have dbSecWriteDef
permission.

Remarks
You can create a user-defined Property object only in the Properties collection of an object that is
persistent.

If you omit one or more of the optional parts when you use CreateProperty, you can use an
appropriate assignment statement to set or reset the corresponding property before you append the
new object to a collection. After you append the object, you can alter some but not all of its property
settings. See the Name, Type, and Value property topics for more details.

If name refers to an object that is already a member of the collection, a run-time error occurs when
you use the Append method.

To remove a user-defined Property object from the collection, use the Delete method on the
Properties collection. You can't delete built-in properties.

Note If you omit the DDL argument, it defaults to False (non-DDL). Because no corresponding DDL
property is exposed, you must delete and re-create a Property object you want to change from DDL
to non-DDL.

CreateQueryDef Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthCreateQueryDefC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthCreateQueryDefX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthCreateQueryDefA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthCreateQueryDefS"}

Creates a new QueryDef object in a specified Connection or Database object.

Syntax
Set querydef = object.CreateQueryDef (name, sqltext)
The CreateQueryDef method syntax has these parts.

Part Description
querydef An object variable that represents the QueryDef object you

want to create.
object An object variable that represents an open Connection or

Database object that will contain the new QueryDef.
name Optional. A Variant (String subtype) that uniquely names

the new QueryDef.
sqltext Optional. A Variant (String subtype) that is an SQL

statement defining the QueryDef. If you omit this argument,
you can define the QueryDef by setting its SQL property
before or after you append it to a collection.

Remarks
In a Microsoft Jet workspace, if you provide anything other than a zero-length string for the name
when you create a QueryDef, the resulting QueryDef object is automatically appended to the
QueryDefs collection. In an ODBCDirect workspace, QueryDef objects are always temporary.

In an ODBCDirect workspace, the sqltext argument can specify an SQL statement or a Microsoft SQL
Server stored procedure and its parameters.

If the object specified by name is already a member of the QueryDefs collection, a run-time error
occurs. You can create a temporary QueryDef by using a zero-length string for the name argument
when you execute the CreateQueryDef method. You can also accomplish this by setting the Name
property of a newly created QueryDef to a zero-length string (""). Temporary QueryDef objects are
useful if you want to repeatedly use dynamic SQL statements without having to create any new
permanent objects in the QueryDefs collection. You can't append a temporary QueryDef to any
collection because a zero-length string isn't a valid name for a permanent QueryDef object. You can
always set the Name and SQL properties of the newly created QueryDef object and subsequently
append the QueryDef to the QueryDefs collection.

To run the SQL statement in a QueryDef object, use the Execute or OpenRecordset method.

Using a QueryDef object is the preferred way to perform SQL pass-through queries with ODBC
databases.

To remove a QueryDef object from a QueryDefs collection in a Microsoft Jet database, use the
Delete method on the collection. For an ODBCDirect database, use the Close method on the
QueryDef object.

CreateRelation Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthCreateRelationC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthCreateRelationX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthCreateRelationA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthCreateRelationS"}

Creates a new Relation object (Microsoft Jet workspaces only).

Syntax
Set relation = database.CreateRelation (name, table, foreigntable, attributes)
The CreateRelation method syntax uses these parts.

Part Description
relation An object variable that represents the Relation object you

want to create.
database An object variable that represents the Database object for

which you want to create the new Relation object.
name Optional. A Variant (String subtype) that uniquely names the

new Relation object. See the Name property for details on
valid Relation names.

table Optional. A Variant (String subtype) that names the primary
table in the relation. If the table doesn't exist before you
append the Relation object, a run-time error occurs.

foreigntable Optional. A Variant (String subtype) that names the foreign
table in the relation. If the table doesn't exist before you
append the Relation object, a run-time error occurs.

 attributes Optional. A constant or combination of constants that contains
information about the relationship type. See the Attributes
property for details.

Remarks
The Relation object provides information to the Microsoft Jet database engine about the relationship
between fields in two TableDef or QueryDef objects. You can implement referential integrity by using
the Attributes property.

If you omit one or more of the optional parts when you use the CreateRelation method, you can use
an appropriate assignment statement to set or reset the corresponding property before you append
the new object to a collection. After you append the object, you can't alter any of its property settings.
See the individual property topics for more details.

Before you can use the Append method on a Relation object, you must append the appropriate
Field objects to define the primary and foreign key relationship tables.

If name refers to an object that is already a member of the collection or if the Field object names
provided in the subordinate Fields collection are invalid, a run-time error occurs when you use the
Append method.

You can't establish or maintain a relationship between a replicated table and a local table.

To remove a Relation object from the Relations collection, use the Delete method on the collection.

CreateTableDef Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthCreateTableDefC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthCreateTableDefX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthCreateTableDefA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthCreateTableDefS"}

Creates a new TableDef object (Microsoft Jet workspaces only).

Syntax
Set tabledef = database.CreateTableDef (name, attributes, source, connect)
The CreateTableDef method syntax has these parts.

Part Description
tabledef An object variable that represents the TableDef object you

want to create.
database An object variable that represents the Database object

you want to use to create the new TableDef object.
name Optional. A Variant (String subtype) that uniquely names

the new TableDef object. See the Name property for
details on valid TableDef names.

attributes Optional. A constant or combination of constants that
indicates one or more characteristics of the new TableDef
object. See the Attributes property for more information.

source Optional. A Variant (String subtype) containing the name
of a table in an external database that is the original
source of the data. The source string becomes the
SourceTableName property setting of the new TableDef
object.

connect Optional. A Variant (String subtype) containing
information about the source of an open database, a
database used in a pass-through query, or a linked table.
See the Connect property for more information about
valid connection strings.

Remarks
If you omit one or more of the optional parts when you use the CreateTableDef method, you can use
an appropriate assignment statement to set or reset the corresponding property before you append
the new object to a collection. After you append the object, you can alter some but not all of its
properties. See the individual property topics for more details.

If name refers to an object that is already a member of the collection, or you specify an invalid
property in the TableDef or Field object you're appending, a run-time error occurs when you use the
Append method. Also, you can't append a TableDef object to the TableDefs collection until you
define at least one Field for the TableDef object.

To remove a TableDef object from the TableDefs collection, use the Delete method on the collection.

CreateUser Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthCreateUserC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthCreateUserX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthCreateUserA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthCreateUserS"}

Creates a new User object (Microsoft Jet workspaces only).

Syntax
Set user = object.CreateUser (name, pid, password)
The CreateUser method syntax has these parts.

Part Description
user An object variable that represents the User object you want to

create.
object An object variable that represents the Group or Workspace

object for which you want to create the new User object.
name Optional. A Variant (String subtype) that uniquely names the

new User object. See the Name property for details on valid
User names.

pid Optional. A Variant (String subtype) containing the PID of a
user account. The identifier must contain from 4 to 20
alphanumeric characters. See the PID property for more
information on valid personal identifiers.

password Optional. A Variant (String subtype) containing the password
for the new User object. The password can be up to 14
characters long and can include any characters except the
ASCII character 0 (null). See the Password property for more
information on valid passwords.

Remarks
If you omit one or more of the optional parts when you use the CreateUser method, you can use an
appropriate assignment statement to set or reset the corresponding property before you append the
new object to a collection. After you append the object, you can alter some but not all of its property
settings. See the PID, Name, and Password property topics for more details.

If name refers to an object that is already a member of the collection, a run-time error occurs when
you use the Append method.

To remove a User object from the Users collection, use the Delete method on the collection.

CreateWorkspace Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthCreateWorkspaceC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthCreateWorkspaceX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthCreateWorkspaceA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthCreateWorkspaceS"}

Creates a new Workspace object.

Syntax
Set workspace = CreateWorkspace(name, user, password, type)
The CreateWorkspace method syntax has these parts.

Part Description
workspace An object variable that represents the Workspace

object you want to create.
name A String that uniquely names the new Workspace

object. See the Name property for details on valid
Workspace names.

user A String that identifies the owner of the new
Workspace object. See the UserName property for
more information.

password A String containing the password for the new
Workspace object. The password can be up to 14
characters long and can include any characters
except ASCII character 0 (null). See the Password
property for more information on valid passwords.

type Optional. A constant that indicates the type of
workspace, as described in Settings.

Settings
You can use the following constants for type.

Constant Description

dbUseJet Creates a Microsoft Jet workspace.
dbUseODBC Creates an ODBCDirect workspace.

Remarks
Once you use the CreateWorkspace method to create a new Workspace object, a Workspace
session is started, and you can refer to the Workspace object in your application.

Workspace objects aren't permanent, and you can't save them to disk. Once you create a
Workspace object, you can't alter any of its property settings, except for the Name property, which
you can modify before appending the Workspace object to the Workspaces collection.

You don't have to append the new Workspace object to a collection before you can use it. You
append a newly created Workspace object only if you need to refer to it through the Workspaces
collection.

The type option determines whether the new Workspace is a Microsoft Jet or ODBCDirect
workspace. If you set type to dbUseODBC and you haven't already created any Microsoft Jet
workspaces, then the Microsoft Jet database engine will not be loaded into memory, and all activity
will occur with the ODBC data source subsequently identified in a Connection object. If you omit
type, the DefaultType property of DBEngine will determine which type of data source the
Workspace is connected to. You can have both Microsoft Jet and ODBCDirect workspaces open at
the same time.

To remove a Workspace object from the Workspaces collection, close all open databases and
connections and then use the Close method on the Workspace object.

Delete Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthdeleteC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthDeleteX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthDeleteA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthDeleteS"}

· Recordset objects — deletes the current record in an updatable Recordset object. For
ODBCDirect workspaces, the type of driver determines whether Recordset objects are updatable
and therefore support the Delete method.

· Collections — deletes a persistent object from a collection.

Syntax
recordset.Delete
collection.Delete objectname

The Delete method syntax has these parts.

Part Description
recordset An object variable that represents an updatable

Recordset object containing the record you want to
delete.

collection An object variable that represents a collection from
which you are deleting objectname.

objectname A String that is the Name property setting of an object
in collection.

Remarks
You can use the Delete method to delete a current record from a Recordset or a member from a
collection, such as a stored table from a database, a stored field from a table, or a stored index from a
table.

Recordsets
A Recordset must contain a current record before you use Delete; otherwise, a run-time error occurs.

In an updatable Recordset object, Delete removes the current record and makes it inaccessible.
Although you can't edit or use the deleted record, it remains current. Once you move to another
record, however, you can't make the deleted record current again. Subsequent references to a
deleted record in a Recordset are invalid and produce an error.

You can undo a record deletion if you use transactions and the Rollback method.

If the base table is the primary table in a cascading delete relationship, deleting the current record
may also delete one or more records in a foreign table.

Note To add, edit, or delete a record, there must be a unique index on the record in the underlying
data source. If not, a "Permission denied" error will occur on the AddNew, Delete, or Edit method call
in a Microsoft Jet workspace, or an "Invalid argument" error will occur on the Update method call in
an ODBCDirect workspace.

Collections
You can use the Delete method to delete a persistent object. However, if the collection is a
Databases, Recordsets, or Workspaces collection (each of which is stored only in memory), you
can remove an open or active object only by closing that object with the Close method.

The deletion of a stored object occurs immediately, but you should use the Refresh method on any
other collections that may be affected by changes to the database structure.

When you delete a TableDef object from the TableDefs collection, you delete the table definition and
the data in the table.

The following table lists some limitations of the Delete method. The object in the first column contains
the collection in the second column. The third column indicates if you can delete an object from that
collection (for example, you can never delete a Container object from the Containers collection of a
Database object).

Object Collection
Can you use the
Delete method?

DBEngine Workspaces No. Closing the
objects deletes them.

DBEngine Errors No
Workspace Connections No. Closing the

objects deletes them.
Workspace Databases No. Closing the

objects deletes them.
Workspace Groups Yes
Workspace Users Yes
Connection QueryDefs No
Connection Recordsets No. Closing the

objects deletes them.
Database Containers No
Database QueryDefs Yes
Database Recordsets No. Closing the

objects deletes them.
Database Relations Yes
Database TableDefs Yes
Group Users Yes
User Groups Yes
Container Documents No
QueryDef Fields No
QueryDef Parameters No
Recordset Fields No
Relation Fields Only when the

Relation object is a
new, unappended
object.

TableDef Fields Only when the
TableDef object is
new and hasn’t been
appended to the
database, or when
the Updatable
property of the
TableDef is set to
True.

TableDef Indexes Only when the
TableDef object is
new and hasn’t been
appended to the

database, or when
the Updatable
property of the
TableDef is set to
True.

Index Fields Only when the Index
object is new and
hasn’t been
appended to the
database.

Database, Field,
Index,
QueryDef,
TableDef

Properties Only when the
property is user-
defined.

DBEngine,
Parameter,
Recordset,
Workspace

Properties No

Edit Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthEditC"} {ewc HLP95EN.DLL,DYNALINK,"Example":"damthEditX":1}
{ewc HLP95EN.DLL,DYNALINK,"Applies To":"damthEditA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthEditS"}

Copies the current record from an updatable Recordset object to the copy buffer for subsequent
editing.

Syntax
recordset.Edit
The recordset placeholder represents an open, updatable Recordset object that contains the record
you want to edit.

Remarks
Once you use the Edit method, changes made to the current record's fields are copied to the copy
buffer. After you make the desired changes to the record, use the Update method to save your
changes.

The current record remains current after you use Edit.

Caution If you edit a record and then perform any operation that moves to another record, but
without first using Update, your changes are lost without warning. In addition, if you close recordset
or end the procedure which declares the Recordset or the parent Database or Connection object,
your edited record is discarded without warning.

Using Edit produces an error if:

· There is no current record.
· The Connection, Database, or Recordset object was opened as read-only.
· No fields in the record are updatable.
· The Database or Recordset was opened for exclusive use by another user (Microsoft Jet

workspace).
· Another user has locked the page containing your record (Microsoft Jet workspace).

In a Microsoft Jet workspace, when the Recordset object's LockEdits property setting is True
(pessimistically locked) in a multiuser environment, the record remains locked from the time Edit is
used until the update is complete. If the LockEdits property setting is False (optimistically locked),
the record is locked and compared with the pre-edited record just before it's updated in the database.
If the record has changed since you used the Edit method, the Update operation fails with a run-time
error if you use OpenRecordset without specifying dbSeeChanges. By default, Microsoft Jet-
connected ODBC and installable ISAM databases always use optimistic locking.

In an ODBCDirect workspace, once you edit (and use Update to update) a record’s primary key field,
you can no longer edit fields in that record until you close the Recordset, and then retrieve the record
again in a subsequent query.

Note To add, edit, or delete a record, there must be a unique index on the record in the underlying
data source. If not, a "Permission denied" error will occur on the AddNew, Delete, or Edit method call
in a Microsoft Jet workspace, or an "Invalid argument" error will occur on the Update call in an
ODBCDirect workspace.

Execute Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthExecuteC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthExecuteX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthExecuteA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthExecuteS"}

Runs an action query or executes an SQL statement on a specified Connection or Database object.

Syntax
object.Execute source, options
querydef.Execute options

The Execute method syntax has these parts.

Part Description
object A Connection or Database object variable on which

the query will run.
querydef An object variable that represents the QueryDef object

whose SQL property setting specifies the SQL
statement to execute.

source A String that is an SQL statement or the Name
property value of a QueryDef object.

options Optional. A constant or combination of constants that
determines the data integrity characteristics of the
query, as specified in Settings.

Settings
You can use the following constants for options.

Constant Description
dbDenyWrite Denies write permission to other users

(Microsoft Jet workspaces only).
dbInconsistent (Default) Executes inconsistent updates

(Microsoft Jet workspaces only).
dbConsistent Executes consistent updates (Microsoft Jet

workspaces only).
dbSQLPassThrough Executes an SQL pass-through query. Setting

this option passes the SQL statement to an
ODBC database for processing (Microsoft Jet
workspaces only).

dbFailOnError Rolls back updates if an error occurs (Microsoft
Jet workspaces only).

dbSeeChanges Generates a run-time error if another user is
changing data you are editing (Microsoft Jet
workspaces only).

dbRunAsync Executes the query asynchronously
(ODBCDirect Connection and QueryDef
objects only).

dbExecDirect Executes the statement without first calling
SQLPrepare ODBC API function (ODBCDirect
Connection and QueryDef objects only).

Note The constants dbConsistent and dbInconsistent are mutually exclusive. You can use one or
the other, but not both in a given instance of OpenRecordset. Using both dbConsistent and

dbInconsistent causes an error.

Remarks
The Execute method is valid only for action queries. If you use Execute with another type of query,
an error occurs. Because an action query doesn't return any records, Execute doesn't return a
Recordset. (Executing an SQL pass-through query in an ODBCDirect workspace will not return an
error if a Recordset isn't returned.)

Use the RecordsAffected property of the Connection, Database, or QueryDef object to determine
the number of records affected by the most recent Execute method. For example, RecordsAffected
contains the number of records deleted, updated, or inserted when executing an action query. When
you use the Execute method to run a query, the RecordsAffected property of the QueryDef object is
set to the number of records affected.

In a Microsoft Jet workspace, if you provide a syntactically correct SQL statement and have the
appropriate permissions, the Execute method won't fail — even if not a single row can be modified or
deleted. Therefore, always use the dbFailOnError option when using the Execute method to run an
update or delete query. This option generates a run-time error and rolls back all successful changes if
any of the records affected are locked and can't be updated or deleted.

For best performance in a Microsoft Jet workspace, especially in a multiuser environment, nest the
Execute method inside a transaction. Use the BeginTrans method on the current Workspace object,
then use the Execute method, and complete the transaction by using the CommitTrans method on
the Workspace. This saves changes on disk and frees any locks placed while the query is running.

In an ODBCDirect workspace, if you include the optional dbRunAsync constant, the query runs
asynchronously. To determine whether an asynchronous query is still executing, check the value of
the StillExecuting property on the object from which the Execute method was called. To terminate
execution of an asynchronous Execute method call, use the Cancel method.

FillCache Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthFillCacheC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthFillCacheX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthFillCacheA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthFillCacheS"}

Fills all or a part of a local cache for a Recordset object that contains data from a Microsoft Jet-
connected ODBC data source (Microsoft Jet-connected ODBC databases only).

Syntax
recordset.FillCache rows, startbookmark

The FillCache method syntax has these parts.

Part Description
recordset An object variable that represents a Recordset object

created from an ODBC data source, such as a
TableDef representing a linked table or a QueryDef
object derived from such a TableDef.

rows Optional. A Variant (Integer subtype) that specifies the
number of rows to store in the cache. If you omit this
argument, the value is determined by the CacheSize
property setting.

startbookmark Optional. A Variant (String subtype) that specifies a
bookmark. The cache is filled starting from the record
indicated by this bookmark. If you omit this argument,
the cache is filled starting from the record indicated by
the CacheStart property.

Remarks
Caching improves the performance of an application that retrieves data from a remote server. A cache
is space in local memory that holds the data most recently retrieved from the server; this assumes
that the data will probably be requested again while the application is running. When a user requests
data, the Microsoft Jet database engine checks the cache for the data first rather than retrieving it
from the server, which takes more time. The cache doesn't save data that doesn't come from an
ODBC data source.

Rather than waiting for the cache to be filled with records as they are retrieved, you can use the
FillCache method to explicitly fill the cache at any time. This is a faster way to fill the cache because
FillCache retrieves several records at once instead of one at a time. For example, while you view
each screenful of records, your application uses FillCache to retrieve the next screenful of records for
viewing.

Any Microsoft Jet-connected ODBC data source that you access with Recordset objects can have a
local cache. To create the cache, open a Recordset object from the remote data source, and then set
the CacheSize and CacheStart properties of the Recordset.
If rows and startbookmark create a range of records that is partially or entirely outside the range of
records specified by the CacheSize and CacheStart properties, the portion of the recordset outside
this range is ignored and will not be loaded into the cache.

If FillCache requests more records than the number remaining in the remote data source, Microsoft
Jet retrieves only the remaining records, and no error occurs.

Notes
· Records retrieved from the cache don't reflect concurrent changes that other users made to the

source data.

· FillCache only retrieves records not already cached. To force an update of all the cached data, set
the CacheSize property of the Recordset to 0, reset it to the size of the cache you originally
requested, and then use FillCache.

FindFirst, FindLast, FindNext, FindPrevious Methods
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthFindFirstC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthFindFirstX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthFindFirstA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthFindFirstS"}

Locates the first, last, next, or previous record in a dynaset- or snapshot-type Recordset object that
satisfies the specified criteria and makes that record the current record (Microsoft Jet workspaces
only).

Syntax
recordset.{FindFirst | FindLast | FindNext | FindPrevious} criteria

The Find methods have these parts.

Part Description
recordset An object variable that represents an existing dynaset-

or snapshot-type Recordset object.
criteria A String used to locate the record. It is like the WHERE

clause in an SQL statement, but without the word
WHERE.

Remarks
If you want to include all the records in your search — not just those that meet a specific condition —
use the Move methods to move from record to record. To locate a record in a table-type Recordset,
use the Seek method.

If a record matching the criteria isn't located, the current record pointer is unknown, and the NoMatch
property is set to True. If recordset contains more than one record that satisfies the criteria, FindFirst
locates the first occurrence, FindNext locates the next occurrence, and so on.

Each of the Find methods begins its search from the location and in the direction specified in the
following table.

Find method Begins searching at Search direction
FindFirst Beginning of recordset End of recordset
FindLast End of recordset Beginning of recordset
FindNext Current record End of recordset
FindPrevious Current record Beginning of recordset

When you use the FindLast method, the Microsoft Jet database engine fully populates your
Recordset before beginning the search, if this hasn't already happened.

Using one of the Find methods isn't the same as using a Move method, however, which simply
makes the first, last, next, or previous record current without specifying a condition. You can follow a
Find operation with a Move operation.

Always check the value of the NoMatch property to determine whether the Find operation has
succeeded. If the search succeeds, NoMatch is False. If it fails, NoMatch is True and the current
record isn't defined. In this case, you must position the current record pointer back to a valid record.

Using the Find methods with Microsoft Jet-connected ODBC-accessed recordsets can be inefficient.
You may find that rephrasing your criteria to locate a specific record is faster, especially when working
with large recordsets.

In an ODBCDirect workspace, the Find and Seek methods are not available on any type of
Recordset object, because executing a Find or Seek through an ODBC connection is not very
efficient over the network. Instead, you should design the query (that is, using the source argument to

the OpenRecordset method) with an appropriate WHERE clause that restricts the returned records
to only those that meet the criteria you would otherwise use in a Find or Seek method.

When working with Microsoft Jet-connected ODBC databases and large dynaset-type Recordset
objects, you might discover that using the Find methods or using the Sort or Filter property is slow.
To improve performance, use SQL queries with customized ORDER BY or WHERE clauses,
parameter queries, or QueryDef objects that retrieve specific indexed records.

You should use the U.S. date format (month-day-year) when you search for fields containing dates,
even if you're not using the U.S. version of the Microsoft Jet database engine; otherwise, the data
may not be found. Use the Visual Basic Format function to convert the date. For example:
rstEmployees.FindFirst "HireDate > #" _

& Format(mydate, 'm-d-yy') & "#"
If criteria is composed of a string concatenated with a non-integer value, and the system parameters
specify a non-U.S. decimal character such as a comma (for example, strSQL = "PRICE > " &
lngPrice, and lngPrice = 125,50), an error occurs when you try to call the method. This is
because during concatenation, the number will be converted to a string using your system's default
decimal character, and Microsoft Jet SQL only accepts U.S. decimal characters.

Notes
· For best performance, the criteria should be in either the form "field = value" where field is an

indexed field in the underlying base table, or "field LIKE prefix" where field is an indexed field in the
underlying base table and prefix is a prefix search string (for example, "ART*").

· In general, for equivalent types of searches, the Seek method provides better performance than
the Find methods. This assumes that table-type Recordset objects alone can satisfy your needs.

GetChunk Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthGetChunkC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthGetChunkX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthGetChunkA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthGetChunkS"}

Returns all or a portion of the contents of a Memo or Long Binary Field object in the Fields collection
of a Recordset object.

Syntax
Set variable = recordset ! field.GetChunk (offset, numbytes)
The GetChunk method syntax has these parts.

Part Description
variable A Variant (String subtype) that receives the data from

the Field object named by field.
recordset An object variable that represents the Recordset object

containing the Fields collection.
field An object variable that represents a Field object whose

Type property is set to dbMemo (Memo) or
dbLongBinary (Long Binary).

offset A Long value equal to the number of bytes to skip
before copying begins.

numbytes A Long value equal to the number of bytes you want to
return.

Remarks
The bytes returned by GetChunk are assigned to variable. Use GetChunk to return a portion of the
total data value at a time. You can use the AppendChunk method to reassemble the pieces.

If offset is 0, GetChunk begins copying from the first byte of the field.

If numbytes is greater than the number of bytes in the field, GetChunk returns the actual number of
remaining bytes in the field.

Caution Use a Memo field for text, and put binary data only in Long Binary fields. Doing otherwise
will cause undesirable results.

GetRows Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthGetRowsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthGetRowsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthGetRowsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthGetRowsS"}

Retrieves multiple rows from a Recordset object.

Syntax
Set varArray = recordset.GetRows (numrows)
The GetRows method syntax has the following parts.

Part Description
varArray A Variant that stores the returned data.
recordset An object variable that represents a Recordset object.
numrows A Variant that is equal to the number of rows to

retrieve.

Remarks
Use the GetRows method to copy records from a Recordset. GetRows returns a two-dimensional
array. The first subscript identifies the field and the second identifies the row number. For example,
intField represents the field, and intRecord identifies the row number:

avarRecords(intField, intRecord)
To get the first field value in the second row returned, use code like the following:
field1 = avarRecords(0,1)
To get the second field value in the first row, use code like the following:
field2 = avarRecords(1,0)
The avarRecords variable automatically becomes a two-dimensional array when GetRows returns
data.

If you request more rows than are available, then GetRows returns only the number of available
rows. You can use the Visual Basic for Applications UBound function to determine how many rows
GetRows actually retrieved, because the array is sized to fit the number of returned rows. For
example, if you returned the results into a Variant called varA, you could use the following code to
determine how many rows were actually returned:
numReturned = UBound(varA,2) + 1
You need to use "+ 1" because the first row returned is in the 0 element of the array. The number of
rows that you can retrieve is constrained by the amount of available memory. You shouldn't use
GetRows to retrieve an entire table into an array if it is large.

Because GetRows returns all fields of the Recordset into the array, including Memo and Long Binary
fields, you might want to use a query that restricts the fields returned.

After you call GetRows, the current record is positioned at the next unread row. That is, GetRows
has the same effect on the current record as Move numrows.

If you are trying to retrieve all the rows by using multiple GetRows calls, use the EOF property to be
sure that you're at the end of the Recordset. GetRows returns less than the number requested if it's
at the end of the Recordset, or if it can't retrieve a row in the range requested. For example, if you're
trying to retrieve 10 records, but you can't retrieve the fifth record, GetRows returns four records and
makes the fifth record the current record. This will not generate a run-time error. This might occur if
another user deletes a record in a dynaset-type Recordset. See the example for a demonstration of

how to handle this.

Idle Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthIdleC"} {ewc HLP95EN.DLL,DYNALINK,"Example":"damthIdleX":1}
{ewc HLP95EN.DLL,DYNALINK,"Applies To":"damthIdleA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthIdleS"}

Suspends data processing, enabling the Microsoft Jet database engine to complete any pending
tasks, such as memory optimization or page timeouts (Microsoft Jet workspaces only).

Syntax
DBEngine.Idle [dbRefreshCache]

Remarks
The Idle method allows the Microsoft Jet database engine to perform background tasks that may not
be up-to-date because of intense data processing. This is often true in multiuser, multitasking
environments that don't have enough background processing time to keep all records in a Recordset
current.

Usually, read locks are removed and data in local dynaset-type Recordset objects are updated only
when no other actions (including mouse movements) occur. If you periodically use the Idle method,
Microsoft Jet can catch up on background processing tasks by releasing unneeded read locks.

Specifying the optional dbRefreshCache argument forces any pending writes to .mdb files, and
refreshes memory with the most current data from the .mdb file.

You don't need to use this method in single-user environments unless multiple instances of an
application are running. The Idle method may increase performance in a multiuser environment
because it forces the database engine to write data to disk, releasing locks on memory.

Note You can also release read locks by making operations part of a transaction.

MakeReplica Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthMakeReplicaC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthMakeReplicaX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthMakeReplicaA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthMakeReplicaS"}

Makes a new replica from another database replica (Microsoft Jet workspaces only).

Syntax
database.MakeReplica replica, description, options

The MakeReplica method syntax has the following parts.

Part Description
database An object variable that represents an existing Database

that is a replica.
replica A String that is the path and file name of the new

replica. If replica is an existing file name, then an error
occurs.

description A String that describes the replica that you are
creating.

options Optional. A constant or combination of constants that
specifies characteristics of the replica you are creating,
as specified in Settings.

Settings
You can use one or more of the following constants in the options argument.

Constant Description

dbRepMakePartial Creates a partial replica.
dbRepMakeReadOnly Prevents users from modifying the replicable

objects of the new replica; however, when you
synchronize the new replica with another
member of the replica set, design and data
changes will be propagated to the new replica.

Remarks
A newly created partial replica will have all ReplicaFilter properties set to False, meaning that no
data will be in the tables.

Move Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthMoveC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthMoveX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"damthMoveA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthMoveS"}

Moves the position of the current record in a Recordset object.

Syntax
recordset.Move rows, start

The Move method syntax has these parts.

Part Description
recordset An object variable that represents the Recordset object

whose current record position is being moved.
rows A signed Long value specifying the number of rows the

position will move. If rows is greater than 0, the position
is moved forward (toward the end of the file). If rows is
less than 0, the position is moved backward (toward the
beginning of the file).

startbookmark Optional. A Variant (String subtype) value identifying a
bookmark. If you specify startbookmark, the move
begins relative to this bookmark. Otherwise, Move
begins from the current record.

Remarks
If you use Move to position the current record pointer before the first record, the current record
pointer moves to the beginning of the file. If the Recordset contains no records and its BOF property
is True, using this method to move backward causes an error.

If you use Move to position the current record pointer after the last record, the current record pointer
position moves to the end of the file. If the Recordset contains no records and its EOF property is
True, then using this method to move forward causes an error.

If either the BOF or EOF property is True and you attempt to use the Move method without a valid
bookmark, a run-time error occurs.

Notes
· When you use Move on a forward-only-type Recordset object, the rows argument must be a

positive integer and bookmarks aren't allowed. This means you can only move forward.
· To make the first, last, next, or previous record in a Recordset the current record, use either the

MoveFirst, MoveLast, MoveNext, or MovePrevious method.
· Using Move with rows equal to 0 is an easy way to retrieve the underlying data for the current

record. This is useful if you want to make sure that the current record has the most recent data
from the base tables. It will also cancel any pending Edit or AddNew calls.

MoveFirst, MoveLast, MoveNext, MovePrevious Methods
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthMoveFirstC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthMoveFirstX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthMoveFirstA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthMoveFirstS"}

Move to the first, last, next, or previous record in a specified Recordset object and make that record
the current record.

Syntax
recordset.{MoveFirst | MoveLast [dbRunAsync] | MoveNext | MovePrevious}

The recordset placeholder is an object variable that represents an open Recordset object.

Remarks
Use the Move methods to move from record to record without applying a condition.

Caution If you edit the current record, be sure you use the Update method to save the changes
before you move to another record. If you move to another record without updating, your changes are
lost without warning.

When you open a Recordset, the first record is current and the BOF property is False. If the
Recordset contains no records, the BOF property is True, and there is no current record.

If the first or last record is already current when you use MoveFirst or MoveLast, the current record
doesn't change.

If you use MovePrevious when the first record is current, the BOF property is True, and there is no
current record. If you use MovePrevious again, an error occurs, and BOF remains True.

If you use MoveNext when the last record is current, the EOF property is True, and there is no
current record. If you use MoveNext again, an error occurs, and EOF remains True.

If recordset refers to a table-type Recordset (Microsoft Jet workspaces only), movement follows the
current index. You can set the current index by using the Index property. If you don't set the current
index, the order of returned records is undefined.

Important You can use the MoveLast method to fully populate a dynaset- or snapshot-type
Recordset to provide the current number of records in the Recordset. However, if you use
MoveLast in this way, you can slow down your application's performance. You should only use
MoveLast to get a record count if it is absolutely necessary to obtain an accurate record count on a
newly opened Recordset. If you use the dbRunAsync constant with MoveLast, the method call is
asynchronous. You can use the StillExecuting property to determine when the Recordset is fully
populated, and you can use the Cancel method to terminate execution of the asynchronous
MoveLast method call.

You can't use the MoveFirst, MoveLast, and MovePrevious methods on a forward-only–type
Recordset object.

To move the position of the current record in a Recordset object a specific number of records forward
or backward, use the Move method.

NewPassword Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthNewPasswordC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthNewPasswordX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthNewPasswordA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthNewPasswordS"}

Changes the password of an existing user account or Microsoft Jet database (Microsoft Jet
workspaces only).

Syntax
object.NewPassword oldpassword, newpassword

The NewPassword method syntax has these parts.

Part Description
object An object variable that represents the User object or a

Microsoft Jet 3.x Database object whose Password
property you want to change.

oldpassword A String that is the current setting of the Password
property of the User or Jet 3.x Database object.

newpassword A String that is the new setting of the Password
property of the User or Jet 3.x Database object.

Remarks
The oldpassword and newpassword strings can be up to 14 characters long and can include any
characters except the ASCII character 0 (null). To clear the password, use a zero-length string ("") for
newpassword.

Passwords are case-sensitive.

If object refers to a User object that is not yet appended to a Users collection, an error occurs. To set
a new password, you must either log on as the user whose account you're changing, or you must be
a member of the Admins group. The Password property of a User object is write-only — users can't
read the current value.

If object refers to a Microsoft Jet version 3.0 or later Database object, this method offers some
security by means of password protection. When you create or open a Microsoft Jet 3.x .mdb file, part
of the Connect connection string can describe the password.

If a database has no password, Microsoft Jet will automatically create one by passing a zero-length
string ("") for the old password.

Caution If you lose your password, you can never open the database again.

OpenDatabase Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthOpenDatabaseC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthOpenDatabaseX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthOpenDatabaseA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthOpenDatabaseS"}

Opens a specified database in a Workspace object and returns a reference to the Database object
that represents it.

Syntax
Set database = workspace.OpenDatabase (dbname, options, read-only, connect)
The OpenDatabase method syntax has these parts.

Part Description
database An object variable that represents the Database object

that you want to open.
workspace Optional. An object variable that represents the existing

Workspace object that will contain the database. If you
don't include a value for workspace, OpenDatabase
uses the default workspace.

dbname A String that is the name of an existing Microsoft Jet
database file, or the data source name (DSN) of an
ODBC data source. See the Name property for more
information about setting this value.

options Optional. A Variant that sets various options for the
database, as specified in Settings.

read-only Optional. A Variant (Boolean subtype) value that is
True if you want to open the database with read-only
access, or False (default) if you want to open the
database with read/write access.

connect Optional. A Variant (String subtype) that specifies
various connection information, including passwords.

Settings
For Microsoft Jet workspaces, you can use the following values for the options argument.

Setting Description
True Opens the database in exclusive mode.
False (Default) Opens the database in shared mode.

For ODBCDirect workspaces, the options argument determines if and when to prompt the user to
establish the connection. You can use one of the following constants.

Constant Description

dbDriverNoPrompt The ODBC Driver Manager uses the
connection string provided in dbname
and connect. If you don't provide
sufficient information, a run-time error
occurs.

dbDriverPrompt The ODBC Driver Manager displays
the ODBC Data Sources dialog box,
which displays any relevant information
supplied in dbname or connect. The
connection string is made up of the

DSN that the user selects via the dialog
boxes, or, if the user doesn't specify a
DSN, the default DSN is used.

dbDriverComplete (Default) If the connect and dbname
arguments include all the necessary
information to complete a connection,
the ODBC Driver Manager uses the
string in connect. Otherwise it behaves
as it does when you specify
dbDriverPrompt.

dbDriverCompleteRequired This option behaves like
dbDriverComplete except the ODBC
driver disables the prompts for any
information not required to complete
the connection.

Remarks
When you open a database, it is automatically added to the Databases collection. Further, in an
ODBCDirect workspace, the Connection object corresponding to the new Database object is also
created and appended to the Connections collection of the same Workspace object.

Some considerations apply when you use dbname:

· If it refers to a database that is already open for exclusive access by another user, an error occurs.
· If it doesn't refer to an existing database or valid ODBC data source name, an error occurs.
· If it's a zero-length string ("") and connect is "ODBC;", a dialog box listing all registered ODBC

data source names is displayed so the user can select a database.
· If you're opening a database through an ODBCDirect workspace and you provide the DSN in

connect, you can set dbname to a string of your choice that you can use to reference this database
in subsequent code.

The connect argument is expressed in two parts: the database type, followed by a semicolon (;) and
the optional arguments. You must first provide the database type, such as "ODBC;" or "FoxPro
2.5;". The optional arguments follow in no particular order, separated by semicolons. One of the
parameters may be the password (if one is assigned). For example:
"FoxPro 2.5; pwd=mypassword"
Using the NewPassword method on a Database object other than an ODBCDirect database
changes the password parameter that appears in the ";pwd=..." part of this argument. You must
supply the options and read-only arguments to supply a source string. See the Connect property for
syntax.

To close a database, and thus remove the Database object from the Databases collection, use the
Close method on the object.

Note When you access a Microsoft Jet-connected ODBC data source, you can improve your
application's performance by opening a Database object connected to the ODBC data source, rather
than by linking individual TableDef objects to specific tables in the ODBC data source.

OpenRecordset Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthOpenRecordsetC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthOpenRecordsetX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthOpenRecordsetA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthOpenRecordsetS"}

Creates a new Recordset object and appends it to the Recordsets collection.

Syntax
For Connection and Database objects:

Set recordset = object.OpenRecordset (source, type, options, lockedits)
For QueryDef, Recordset, and TableDef objects:

Set recordset = object.OpenRecordset (type, options, lockedits)
The OpenRecordset method syntax has these parts.

Part Description
recordset An object variable that represents the Recordset object

you want to open.
object An object variable that represents an existing object

from which you want to create the new Recordset.
source A String specifying the source of the records for the

new Recordset. The source can be a table name, a
query name, or an SQL statement that returns records.
For table-type Recordset objects in Microsoft Jet
databases, the source can only be a table name.

type Optional. A constant that indicates the type of
Recordset to open, as specified in Settings.

options Optional. A combination of constants that specify
characteristics of the new Recordset, as listed in
Settings.

lockedits Optional. A constant that determines the locking for the
Recordset, as specified in Settings.

Settings

You can use one of the following constants for the type argument.

Constant Description

dbOpenTable Opens a table-type Recordset object
(Microsoft Jet workspaces only).

dbOpenDynamic Opens a dynamic-type Recordset object,
which is similar to an ODBC dynamic
cursor. (ODBCDirect workspaces only)

dbOpenDynaset Opens a dynaset-type Recordset object,
which is similar to an ODBC keyset
cursor.

dbOpenSnapshot Opens a snapshot-type Recordset
object, which is similar to an ODBC static
cursor.

dbOpenForwardOnly Opens a forward-only-type Recordset
object.

Note If you open a Recordset in a Microsoft Jet workspace and you don't specify a type,

OpenRecordset creates a table-type Recordset, if possible. If you specify a linked table or query,
OpenRecordset creates a dynaset-type Recordset. In an ODBCDirect workspace, the default
setting is dbOpenForwardOnly.

You can use a combination of the following constants for the options argument.

Constant Description
dbAppendOnly Allows users to append new records to the

Recordset, but prevents them from editing
or deleting existing records (Microsoft Jet
dynaset-type Recordset only).

dbSQLPassThrough Passes an SQL statement to a Microsoft
Jet-connected ODBC data source for
processing (Microsoft Jet snapshot-type
Recordset only).

dbSeeChanges Generates a run-time error if one user is
changing data that another user is editing
(Microsoft Jet dynaset-type Recordset
only). This is useful in applications where
multiple users have simultaneous
read/write access to the same data.

dbDenyWrite Prevents other users from modifying or
adding records (Microsoft Jet Recordset
objects only).

dbDenyRead Prevents other users from reading data in
a table (Microsoft Jet table-type
Recordset only).

dbForwardOnly Creates a forward-only Recordset
(Microsoft Jet snapshot-type Recordset
only). It is provided only for backward
compatibility, and you should use the
dbOpenForwardOnly constant in the type
argument instead of using this option.

dbReadOnly Prevents users from making changes to
the Recordset (Microsoft Jet only). The
dbReadOnly constant in the lockedits
argument replaces this option, which is
provided only for backward compatibility.

dbRunAsync Runs an asynchronous query
(ODBCDirect workspaces only).

dbExecDirect Runs a query by skipping SQLPrepare
and directly calling SQLExecDirect
(ODBCDirect workspaces only). Use this
option only when you’re not opening a
Recordset based on a parameter query.
For more information, see the "Microsoft
ODBC 3.0 Programmer’s Reference."

dbInconsistent Allows inconsistent updates (Microsoft Jet
dynaset-type and snapshot-type
Recordset objects only).

dbConsistent Allows only consistent updates (Microsoft
Jet dynaset-type and snapshot-type
Recordset objects only).

Note The constants dbConsistent and dbInconsistent are mutually exclusive, and using both
causes an error. Supplying a lockedits argument when options uses the dbReadOnly constant also
causes an error.

You can use the following constants for the lockedits argument.

Constant Description
dbReadOnly Prevents users from making changes to

the Recordset (default for ODBCDirect
workspaces). You can use dbReadOnly
in either the options argument or the
lockedits argument, but not both. If you
use it for both arguments, a run-time error
occurs.

dbPessimistic Uses pessimistic locking to determine
how changes are made to the Recordset
in a multiuser environment. The page
containing the record you're editing is
locked as soon as you use the Edit
method (default for Microsoft Jet
workspaces).

dbOptimistic Uses optimistic locking to determine how
changes are made to the Recordset in a
multiuser environment. The page
containing the record is not locked until
the Update method is executed.

dbOptimisticValue Uses optimistic concurrency based on
row values (ODBCDirect workspaces
only).

dbOptimisticBatch Enables batch optimistic updating
(ODBCDirect workspaces only).

Remarks
In a Microsoft Jet workspace, if object refers to a QueryDef object, or a dynaset- or snapshot-type
Recordset, or if source refers to an SQL statement or a TableDef that represents a linked table, you
can't use dbOpenTable for the type argument; if you do, a run-time error occurs. If you want to use
an SQL pass-through query on a linked table in a Microsoft Jet-connected ODBC data source, you
must first set the Connect property of the linked table's database to a valid ODBC connection string.
If you only need to make a single pass through a Recordset opened from a Microsoft Jet-connected
ODBC data source, you can improve performance by using dbOpenForwardOnly for the type
argument.

If object refers to a dynaset- or snapshot-type Recordset, the new Recordset is of the same type
object. If object refers to a table-type Recordset object, the type of the new object is a dynaset-type
Recordset. You can't open new Recordset objects from forward-only–type or ODBCDirect
Recordset objects.

In an ODBCDirect workspace, you can open a Recordset containing more than one select query in
the source argument, such as
"SELECT LastName, FirstName FROM Authors
WHERE LastName = 'Smith';
SELECT Title, ISBN FROM Titles
WHERE ISBN Like '1-55615-*'"
The returned Recordset will open with the results of the first query. To obtain the result sets of
records from subsequent queries, use the NextRecordset method.

Note You can send DAO queries to a variety of different database servers with ODBCDirect, and
different servers will recognize slightly different dialects of SQL. Therefore, context-sensitive Help is
no longer provided for Microsoft Jet SQL, although online Help for Microsoft Jet SQL is still included
through the Help menu. Be sure to check the appropriate reference documentation for the SQL dialect
of your database server when using either ODBCDirect connections or pass-through queries in
Microsoft Jet-connected client/server applications.

Use the dbSeeChanges constant in a Microsoft Jet workspace if you want to trap changes while two
or more users are editing or deleting the same record. For example, if two users start editing the
same record, the first user to execute the Update method succeeds. When the second user invokes
the Update method, a run-time error occurs. Similarly, if the second user tries to use the Delete
method to delete the record, and the first user has already changed it, a run-time error occurs.

Typically, if the user gets this error while updating a record, your code should refresh the contents of
the fields and retrieve the newly modified values. If the error occurs while deleting a record, your code
could display the new record data to the user and a message indicating that the data has recently
changed. At this point, your code can request a confirmation that the user still wants to delete the
record.

You should also use the dbSeeChanges constant if you open a Recordset in a Microsoft Jet-
connected ODBC workspace against a Microsoft SQL Server 6.0 (or later) table that has an
IDENTITY column, otherwise an error may result.

In an ODBCDirect workspace, you can execute asynchronous queries by setting the dbRunAsync
constant in the options argument. This allows your application to continue processing other
statements while the query runs in the background. But, you cannot access the Recordset data until
the query has completed. To determine whether the query has finished executing, check the
StillExecuting property of the new Recordset. If the query takes longer to complete than you
anticipated, you can terminate execution of the query with the Cancel method.

Opening more than one Recordset on an ODBC data source may fail because the connection is
busy with a prior OpenRecordset call. One way around this is to use a server-side cursor and
ODBCDirect, if the server supports this. Another solution is to fully populate the Recordset by using
the MoveLast method as soon as the Recordset is opened.

If you open a Connection object with DefaultCursorDriver set to dbUseClientBatchCursor, you
can open a Recordset to cache changes to the data (known as batch updating) in an ODBCDirect
workspace. Include dbOptimisticBatch in the lockedits argument to enable update caching. See the
Update method topic for details about how to write changes to disk immediately, or to cache changes
and write them to disk as a batch.

Closing a Recordset with the Close method automatically deletes it from the Recordsets collection.

Note If source refers to an SQL statement composed of a string concatenated with a non-integer
value, and the system parameters specify a non-U.S. decimal character such as a comma (for
example, strSQL = "PRICE > " & lngPrice, and lngPrice = 125,50), an error occurs
when you try to open the Recordset. This is because during concatenation, the number will be
converted to a string using your system's default decimal character, and SQL only accepts U.S.
decimal characters.

Refresh Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthRefreshC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthRefreshX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthRefreshA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthRefreshS"}

Updates the objects in a collection to reflect the current database's schema.

Syntax
collection.Refresh
The collection placeholder is an object variable that represents a persistent collection.

Remarks
You can't use the Refresh method with collections that aren't persistent, such as Connections,
Databases, Recordsets, Workspaces, or the QueryDefs collection of a Connection object.

To determine the position that the Microsoft Jet database engine uses for Field objects in the Fields
collection of a QueryDef, Recordset, or TableDef object, use the OrdinalPosition property of each
Field object. Changing the OrdinalPosition property of a Field object may not change the order of
the Field objects in the collection until you use the Refresh method.

Use the Refresh method in multiuser environments in which other users may change the database.
You may also need to use it on any collections that are indirectly affected by changes to the database.
For example, if you change a Users collection, you may need to refresh a Groups collection before
using the Groups collection.

A collection is filled with objects the first time it's referred to and won't automatically reflect
subsequent changes other users make. If it's likely that another user has changed a collection, use
the Refresh method on the collection immediately before carrying out any task in your application that
assumes the presence or absence of a particular object in the collection. This will ensure that the
collection is as up-to-date as possible. On the other hand, using Refresh can unnecessarily slow
performance.

RefreshLink Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthRefreshLinkC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthRefreshLinkX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthRefreshLinkA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthRefreshLinkS"}

Updates the connection information for a linked table (Microsoft Jet workspaces only).

Syntax
tabledef.RefreshLink
The tabledef placeholder specifies the TableDef object representing the linked table whose
connection information you want to update.

Remarks
To change the connection information for a linked table, reset the Connect property of the
corresponding TableDef object and then use the RefreshLink method to update the information.
Using RefreshLink method doesn't change the linked table's properties and Relation objects.

For this connection information to exist in all collections associated with the TableDef object that
represents the linked table, you must use the Refresh method on each collection.

RegisterDatabase Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthRegisterDatabaseC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthRegisterDatabaseX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthRegisterDatabaseA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthRegisterDatabaseS"}

Enters connection information for an ODBC data source in the Windows Registry. The ODBC driver
needs connection information when the ODBC data source is opened during a session.

Syntax
DBEngine.RegisterDatabase dbname, driver, silent, attributes

The RegisterDatabase method syntax has these parts.

Part Description
dbname A String that is the name used in the OpenDatabase

method. It refers to a block of descriptive information
about the data source. For example, if the data source
is an ODBC remote database, it could be the name of
the server.

driver A String that is the name of the ODBC driver. This isn't
the name of the ODBC driver DLL file. For example,
SQL Server is a driver name, but SQLSRVR.dll is the
name of a DLL file. You must have ODBC and the
appropriate driver already installed.

silent A Boolean that is True if you don't want to display the
ODBC driver dialog boxes that prompt for driver-
specific information; or False if you want to display the
ODBC driver dialog boxes. If silent is True, attributes
must contain all the necessary driver-specific
information or the dialog boxes are displayed anyway.

attributes A String that is a list of keywords to be added to the
Windows Registry. The keywords are in a carriage-
return–delimited string.

Remarks
If the database is already registered (connection information is already entered) in the Windows
Registry when you use the RegisterDatabase method, the connection information is updated.

If the RegisterDatabase method fails for any reason, no changes are made to the Windows Registry,
and an error occurs.

For more information about ODBC drivers such as SQL Server, see the Help file provided with the
driver.

You should use the ODBC Data Sources dialog box in the Control Panel to add new data sources, or
to make changes to existing entries. However, if you use the RegisterDatabase method, you should
set the silent option to True.

RepairDatabase Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthRepairDatabaseC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthRepairDatabaseX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthRepairDatabaseA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthRepairDatabaseS"}

Attempts to repair a corrupted Microsoft Jet database (Microsoft Jet databases only).

Syntax
DBEngine.RepairDatabase dbname

The dbname argument is a String that is the path and file name for an existing Microsoft Jet
database file. If you omit the path, only the current directory is searched. If your system supports the
uniform naming convention (UNC), you can also specify a network path, such as "\\server1\
share1\dir1\db1.mdb".

Remarks
You must close the database specified by dbname before you repair it. In a multiuser environment,
other users can't have dbname open while you're repairing it. If dbname isn't closed or isn't available
for exclusive use, an error occurs.

This method attempts to repair a database that was marked as possibly corrupt by an incomplete
write operation. This can occur if an application using the Microsoft Jet database engine is closed
unexpectedly because of a power outage or computer hardware problem. The database won't be
marked as possibly corrupt if you use the Close method or if you quit your application in a usual way.

The RepairDatabase method also attempts to validate all system tables and all indexes. Any data
that can't be repaired is discarded. If the database can't be repaired, a run-time error occurs.

When you attempt to open or compact a corrupted database, a run-time error usually occurs. In some
situations, however, a corrupted database may not be detected, and no error occurs. It's a good idea
to provide your users with a way to use the RepairDatabase method in your application if their
database behaves unpredictably.

Some types of databases can become corrupted if a user ends an application without closing
Database or Recordset objects and the Microsoft Jet database engine; Microsoft Windows doesn't
have a chance to write data caches to disk. To avoid corrupt databases, establish procedures for
closing applications and shutting down systems that ensure that all cached pages are saved to the
database. In some cases, power supplies that can't be interrupted may be necessary to prevent
accidental data loss during power fluctuations.

Note After repairing a database, it's also a good idea to compact it using the CompactDatabase
method to defragment the file and to recover disk space.

Requery Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthRequeryC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthRequeryX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthRequeryA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthRequeryS"}

Updates the data in a Recordset object by re-executing the query on which the object is based.

Syntax
recordset.Requery newquerydef

The Requery method syntax has the following parts.

Part Description
recordset An object variable that represents an existing Microsoft

Jet dynaset-, snapshot-, or forward-only–type
Recordset object, or an ODBCDirect Recordset
object.

newquerydef Optional. A Variant that represents the Name property
value of a QueryDef object (Microsoft Jet workspaces
only).

Remarks
Use this method to make sure that a Recordset contains the most recent data. This method re-
populates the current Recordset by using either the current query parameters or (in a Microsoft Jet
workspace) the new ones supplied by the newquerydef argument.

In an ODBCDirect workspace, if the original query was asynchronous, then Requery will also execute
an asynchronous query.

If you don't specify a newquerydef argument, the Recordset is re-populated based on the same
query definition and parameters used to originally populate the Recordset. Any changes to the
underlying data will be reflected during this re-population. If you didn't use a QueryDef to create the
Recordset, the Recordset is re-created from scratch.

If you specify the original QueryDef in the newquerydef argument, then the Recordset is requeried
using the parameters specified by the QueryDef. Any changes to the underlying data will be reflected
during this re-population. To reflect any changes to the query parameter values in the Recordset, you
must supply the newquerydef argument.

If you specify a different QueryDef than what was originally used to create the Recordset, the
Recordset is re-created from scratch.

When you use Requery, the first record in the Recordset becomes the current record.

You can't use the Requery method on dynaset- or snapshot-type Recordset objects whose
Restartable property is set to False. However, if you supply the optional newquerydef argument, the
Restartable property is ignored.

If both the BOF and EOF property settings of the Recordset object are True after you use the
Requery method, the query didn't return any records and the Recordset contains no data.

Seek Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthSeekC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthSeekX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"damthSeekA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthSeekS"}

Locates the record in an indexed table-type Recordset object that satisfies the specified criteria for
the current index and makes that record the current record (Microsoft Jet workspaces only).

Syntax
recordset.Seek comparison, key1, key2...key13

The Seek method syntax has the following parts.

Part Description
recordset An object variable that represents an existing table-type

Recordset object that has a defined index as specified
by the Recordset object's Index property.

comparison One of the following string expressions: <, <=, =, >=, or
>.

key1,
key2...key13

One or more values corresponding to fields in the
Recordset object's current index, as specified by its
Index property setting. You can use up to 13 key
arguments.

Remarks
You must set the current index with the Index property before you use Seek. If the index identifies a
nonunique key field, Seek locates the first record that satisfies the criteria.

The Seek method searches through the specified key fields and locates the first record that satisfies
the criteria specified by comparison and key1. Once found, it makes that record current and sets the
NoMatch property to False. If the Seek method fails to locate a match, the NoMatch property is set
to True, and the current record is undefined.

If comparison is equal (=), greater than or equal (>=), or greater than (>), Seek starts at the beginning
of the index and searches forward.

If comparison is less than (<) or less than or equal (<=), Seek starts at the end of the index and
searches backward. However, if there are duplicate index entries at the end of the index, Seek starts
at an arbitrary entry among the duplicates and then searches backward.

You must specify values for all fields defined in the index. If you use Seek with a multiple-column
index, and you don't specify a comparison value for every field in the index, then you cannot use the
equal (=) operator in the comparison. That's because some of the criteria fields (key2, key3, and so
on) will default to Null, which will probably not match. Therefore, the equal operator will work correctly
only if you have a record which is all Null except the key you're looking for. It's recommended that you
use the greater than or equal (>=) operator instead.

The key1 argument must be of the same field data type as the corresponding field in the current
index. For example, if the current index refers to a number field (such as Employee ID), key1 must be
numeric. Similarly, if the current index refers to a Text field (such as Last Name), key1 must be a
string.

There doesn't have to be a current record when you use Seek.

You can use the Indexes collection to enumerate the existing indexes.

To locate a record in a dynaset- or snapshot-type Recordset that satisfies a specific condition that is
not covered by existing indexes, use the Find methods. To include all records, not just those that
satisfy a specific condition, use the Move methods to move from record to record.

You can't use the Seek method on a linked table because you can't open linked tables as table-type
Recordset objects. However, if you use the OpenDatabase method to directly open an installable
ISAM (non-ODBC) database, you can use Seek on tables in that database.

In an ODBCDirect workspace, the Find and Seek methods are not available on any type of
Recordset object, because executing a Find or Seek through an ODBC connection is not very
efficient over the network. Instead, you should design the query (that is, using the source argument to
the OpenRecordset method) with an appropriate WHERE clause that restricts the returned records
to only those that meet the criteria you would otherwise use in a Find or Seek.

Synchronize Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthSynchronizeC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthSynchronizeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthSynchronizeA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthSynchronizeS"}

Synchronizes two replicas. (Microsoft Jet databases only).

Syntax
database.Synchronize pathname, exchange

The Synchronize method syntax has the following parts.

Part Description

 database An object variable that represents a Database object
that is a replica.

pathname A String that contains the path to the target replica with
which database will be synchronized. The .mdb file
name extension is optional.

exchange Optional. A constant indicating which direction to
synchronize changes between the two databases, as
specified in Settings.

Settings
You can use the following constants in the exchange argument. You can use one of the first three
constants with or without the fourth constant.

Constant Description

dbRepExportChanges Sends changes from database to pathname.
dbRepImportChanges Sends changes from pathname to database.
dbRepImpExpChanges (Default) Sends changes from database to

pathname, and vice-versa, also known as
bidirectional exchange.

dbRepSyncInternet Exchanges data between files connected by an
Internet pathway.

Remarks
You use Synchronize to exchange data and design changes between two databases. Design
changes always happen first. Both databases must be at the same design level before they can
exchange data. For example, an exchange of type dbRepExportChanges might cause design
changes at a replica even though data changes flow only from the database to pathname.

The replica identified in pathname must be part of the same replica set. If both replicas have the
same ReplicaID property setting or are Design Masters for two different replica sets, the
synchronization fails.

When you synchronize two replicas over the Internet, you must use the dbRepSyncInternet
constant. In this case, you specify a Uniform Resource Locator (URL) address for the pathname
argument instead of specifying a local area network path.

Note You can't synchronize partial replicas with other partial replicas. See the PopulatePartial
method for more information.
Synchronization over the Internet requires the Replication Manager, which is only available in the
Microsoft Office 97, Developer Edition.

Update Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthUpdateC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthUpdateX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthUpdateA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthUpdateS"}

Saves the contents of the copy buffer to an updatable Recordset object.

Syntax
recordset.Update (type, force)
The Update method syntax has the following parts.

Part Description
recordset An object variable that represents an open, updatable

Recordset object.
type Optional. A constant indicating the type of update, as

specified in Settings (ODBCDirect workspaces only).
force Optional. A Boolean value indicating whether or not to

force the changes into the database, regardless of
whether the underlying data has been changed by
another user since the AddNew, Delete, or Edit call. If
True, the changes are forced and changes made by
other users are simply overwritten. If False (default),
changes made by another user while the update is
pending will cause the update to fail for those changes
that are in conflict. No error occurs, but the
BatchCollisionCount and BatchCollisions properties
will indicate the number of conflicts and the rows
affected by conflicts, respectively (ODBCDirect
workspaces only).

Settings
You can use the following values for the type argument. You can use the non-default values only if
batch updating is enabled.

Constant Description

dbUpdateRegular Default. Pending changes aren’t cached and
are written to disk immediately.

dbUpdateBatch All pending changes in the update cache are
written to disk.

dbUpdateCurrentRecord Only the current record’s pending changes
are written to disk.

Remarks
Use Update to save the current record and any changes you've made to it.

Caution Changes to the current record are lost if:
· You use the Edit or AddNew method, and then move to another record without first using Update.
· You use Edit or AddNew, and then use Edit or AddNew again without first using Update.
· You set the Bookmark property to another record.
· You close recordset without first using Update.
· You cancel the Edit operation by using CancelUpdate.

To edit a record, use the Edit method to copy the contents of the current record to the copy buffer. If

you don't use Edit first, an error occurs when you use Update or attempt to change a field's value.

In an ODBCDirect workspace, you can do batch updates, provided the cursor library supports batch
updates, and the Recordset was opened with the optimistic batch locking option.

In a Microsoft Jet workspace, when the Recordset object's LockEdits property setting is True
(pessimistically locked) in a multiuser environment, the record remains locked from the time Edit is
used until the Update method is executed or the edit is canceled. If the LockEdits property setting is
False (optimistically locked), the record is locked and compared with the pre-edited record just before
it is updated in the database. If the record has changed since you used the Edit method, the Update
operation fails. Microsoft Jet-connected ODBC and installable ISAM databases always use optimistic
locking. To continue the Update operation with your changes, use the Update method again. To
revert to the record as the other user changed it, refresh the current record by using Move 0.

Note To add, edit, or delete a record, there must be a unique index on the record in the underlying
data source. If not, a “Permission denied” error will occur on the AddNew, Delete, or Edit method call
in a Microsoft Jet workspace, or an “Invalid argument” error will occur on the Update call in an
ODBCDirect workspace.

Cancel Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthCancelC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthCancelX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthCancelA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthCancelS"}

Cancels execution of a pending asynchronous method call (ODBCDirect workspaces only).

Syntax
object.Cancel
The Cancel method syntax has these parts.

Part Description
object A string expression that evaluates to

one of the objects in the "Applies To"
list.

Remarks
Use the Cancel method to terminate execution of an asynchronous Execute, MoveLast,
OpenConnection, or OpenRecordset method call (that is, the method was invoked with the
dbRunAsync option). Cancel will return a run-time error if dbRunAsync was not used in the method
you're trying to terminate.

The following table shows what task is terminated when you use the Cancel method on a particular
type of object.

If object is a This asynchronous method is
terminated

Connection Execute or OpenConnection
QueryDef Execute
Recordset MoveLast or OpenRecordset

An error will occur if, following a Cancel method call, you try to reference the object that would have
been created by an asynchronous OpenConnection or OpenRecordset call (that is, the
Connection or Recordset object from which you called the Cancel method).

NextRecordset Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthNextRecordsetC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthNextRecordsetX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthNextRecordsetA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthNextRecordsetS"}

Gets the next set of records, if any, returned by a multi-part select query in an OpenRecordset call,
and returns a Boolean value indicating whether one or more additional records are pending
(ODBCDirect workspaces only).

Syntax
Set boolean = recordset.NextRecordset
The NextRecordset method syntax has these parts:

Part Description
boolean A Boolean variable. True indicates

the next set of records is available in
recordset; False indicates that no
more records are pending and
recordset is now empty.

recordset An existing Recordset variable to
which you want to return pending
records.

Remarks
In an ODBCDirect workspace, you can open a Recordset containing more than one select query in
the source argument of OpenRecordset, or the SQL property of a select query QueryDef object, as
in the following example.
SELECT LastName, FirstName FROM Authors
WHERE LastName = 'Smith';
SELECT Title, ISBN FROM Titles
WHERE Pub_ID = 9999
The returned Recordset will open with the results of the first query. To obtain the result sets of
records from subsequent queries, use the NextRecordset method.

If more records are available (that is, there was another select query in the OpenRecordset call or in
the SQL property), the records returned from the next query will be loaded into the Recordset, and
NextRecordset will return True, indicating that the records are available. When no more records are
available (that is, results of the last select query have been loaded into the Recordset), then
NextRecordset will return False, and the Recordset will be empty.

You can also use the Cancel method to flush the contents of a Recordset. However, Cancel also
flushes any additional records not yet loaded.

OpenConnection Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthOpenConnectionC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthOpenConnectionX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthOpenConnectionA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthOpenConnectionS"}

Opens a Connection object on an ODBC data source (ODBCDirect workspaces only).

Syntax
Set connection = workspace.OpenConnection (name, options, readonly, connect)
The OpenConnection method syntax has these parts.

Part Description
connection A Connection object variable to

which the new connection will be
assigned.

workspace Optional. A variable of a Workspace
object data type that references the
existing Workspace object that will
contain the new connection.

name A string expression. See the
discussion under Remarks.

options Optional. A Variant that sets various
options for the connection, as
specified in Settings. Based on this
value, the ODBC driver manager
prompts the user for connection
information such as data source
name (DSN), user name, and
password.

readonly Optional. A Boolean value that is
True if the connection is to be opened
for read-only access and False if the
connection is to be opened for
read/write access (default).

connect Optional. An ODBC connect string.
See the Connect property for the
specific elements and syntax of this
string. A prepended "ODBC;" is
required. If connect is omitted, the
UID and/or PWD will be taken from
the UserName and Password
properties of the Workspace.

Settings
The options argument determines if and when to prompt the user to establish the connection, and
whether or not to open the connection asynchronously. You can use one of the following constants.

Constant Description

dbDriverNoPrompt The ODBC Driver Manager uses the
connection string provided in dbname
and connect. If you don't provide
sufficient information, a run-time error
occurs.

dbDriverPrompt The ODBC Driver Manager displays
the ODBC Data Sources dialog box,
which displays any relevant information
supplied in dbname or connect. The
connection string is made up of the
DSN that the user selects via the dialog
boxes, or, if the user doesn't specify a
DSN, the default DSN is used.

dbDriverComplete Default. If the connect argument
includes all the necessary information
to complete a connection, the ODBC
Driver Manager uses the string in
connect. Otherwise it behaves as it
does when you specify
dbDriverPrompt.

dbDriverCompleteRequired This option behaves like
dbDriverComplete except the ODBC
driver disables the prompts for any
information not required to complete
the connection.

dbRunAsync Execute the method asynchronously.
This constant may be used with any of
the other options constants.

Remarks
Use the OpenConnection method to establish a connection to an ODBC data source from an
ODBCDirect workspace. The OpenConnection method is similar but not equivalent to
OpenDatabase. The main difference is that OpenConnection is available only in an ODBCDirect
workspace.

If you specify a registered ODBC data source name (DSN) in the connect argument, then the name
argument can be any valid string, and will also provide the Name property for the Connection object.
If a valid DSN is not included in the connect argument, then name must refer to a valid ODBC DSN,
which will also be the Name property. If neither name nor connect contains a valid DSN, the ODBC
driver manager can be set (via the options argument) to prompt the user for the required connection
information. The DSN supplied through the prompt then provides the Name property.

OpenConnection returns a Connection object which contains information about the connection. The
Connection object is similar to a Database object. The principal difference is that a Database object
usually represents a database, although it can be used to represent a connection to an ODBC data
source from a Microsoft Jet workspace.

SetOption Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthSetOptionC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthSetOptionX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthSetOptionA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthSetOptionS"}

Temporarily overrides values for the Microsoft Jet database engine keys in the Windows Registry
(Microsoft Jet workspaces only).

Syntax
DBEngine.SetOption parameter, newvalue

The SetOption method syntax has these parts.

Part Description
parameter A Long constant as described in Settings.
newvalue A Variant value that you want to set parameter to.

Settings
Each constant refers to the corresponding registry key in the path Jet\3.5\Engines\Jet 3.5\ (that is,
dbSharedAsyncDelay corresponds to the key Jet\3.5\Engines\Jet 3.5\SharedAsyncDelay, and so
on.).

Constant Description

dbPageTimeout The PageTimeout key
dbSharedAsyncDelay The SharedAsyncDelay key
dbExclusiveAsyncDelay The ExclusiveAsyncDelay key
dbLockRetry The LockRetry key
dbUserCommitSync The UserCommitSync key
dbImplicitCommitSync The ImplicitCommitSync key
dbMaxBufferSize The MaxBufferSize key
dbMaxLocksPerFile The MaxLocksPerFile key
dbLockDelay The LockDelay key
dbRecycleLVs The RecycleLVs key
dbFlushTransactionTimeout The FlushTransactionTimeout key

Remarks
Use the SetOption method to override registry values at run-time. New values established with the
SetOption method remain in effect until changed again by another SetOption call, or until the
DBEngine object is closed.

For further details on what the registry keys do, and appropriate values to set them to, see Initializing
the Microsoft Jet 3.5 Database Engine.

PopulatePartial Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthPopulatePartialC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthPopulatePartialX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthPopulatePartialA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthPopulatePartialS"}

Synchronizes any changes in a partial replica with the full replica, clears all records in the partial
replica, and then repopulates the partial replica based on the current replica filters. (Microsoft Jet
databases only.)

Syntax
database.PopulatePartial dbname

The PopulatePartial method syntax has the following parts.

Part Description
database An object variable that references the

partial replica Database object that
you want to populate.

dbname A string specifying the path and
name of the full replica from which to
populate records.

Remarks
When you synchronize a partial replica with a full replica, it is possible to create "orphaned" records in
the partial replica. For example, suppose you have a Customers table with its ReplicaFilter set to
"Region = 'CA'". If a user changes a customer's region from CA to NY in the partial replica, and
then a synchronization occurs via the Synchronize method, the change is propagated to the full
replica but the record containing NY in the partial replica is orphaned because it now doesn't meet the
replica filter criteria.

To solve the problem of orphaned records, you can use the PopulatePartial method. The
PopulatePartial method is similar to the Synchronize method, but it synchronizes any changes with
the full replica, removes all records in the partial replica, and then repopulates the partial replica
based on the current replica filters. Even if your replica filters have not changed, PopulatePartial will
always clear all records in the partial replica and repopulate it based on the current filters.

Generally, you should use the PopulatePartial method when you create a partial replica and
whenever you change your replica filters. If your application changes replica filters, you should follow
these steps:

1 Synchronize your full replica with the partial replica in which the filters are being changed.
2 Use the ReplicaFilter and PartialReplica properties to make the desired changes to the replica

filter.
3 Call the PopulatePartial method to remove all records from the partial replica and transfer all

records from the full replica that meet the new replica filter criteria.

If a replica filter has changed, and the Synchronize method is invoked without first invoking
PopulatePartial, a trappable error occurs.

The PopulatePartial method can only be invoked on a partial replica that has been opened for
exclusive access. Furthermore, you can't call the PopulatePartial method from code running within
the partial replica itself. Instead, open the partial replica exclusively from the full replica or another
database, then call PopulatePartial.
Note Although PopulatePartial performs a one-way synchronization before clearing and
repopulating the partial replica, it is still a good idea to call Synchronize before calling
PopulatePartial. This is because if the call to Synchronize fails, a trappable error occurs. You can

use this error to decide whether or not to proceed with the PopulatePartial method (which removes
all records in the partial replica). If PopulatePartial is called by itself and an error occurs while
records are being synchronized, records in the partial replica will still be cleared, which may not be
the desired result.

AbsolutePosition Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproAbsolutePositionC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproAbsolutePositionX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproAbsolutePositionA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproAbsolutePositionS"}

Sets or returns the relative record number of a Recordset object's current record.

Settings and Return Values
The setting or return value is a Long integer from 0 to one less than the number of records in the
Recordset object. It corresponds to the ordinal position of the current record in the Recordset object
specified by the object.

Remarks
You can use the AbsolutePosition property to position the current record pointer to a specific record
based on its ordinal position in a dynaset- or snapshot-type Recordset object. You can also
determine the current record number by checking the AbsolutePosition property setting.

Because the AbsolutePosition property value is zero-based (that is, a setting of 0 refers to the first
record in the Recordset object), you cannot set it to a value greater than or equal to the number of
populated records; doing so causes a trappable error. You can determine the number of populated
records in the Recordset object by checking the RecordCount property setting. The maximum
allowable setting for the AbsolutePosition property is the value of the RecordCount property minus
1.

If there is no current record, as when there are no records in the Recordset object,
AbsolutePosition returns –1. If the current record is deleted, the AbsolutePosition property value
isn't defined, and a trappable error occurs if it's referenced. New records are added to the end of the
sequence.

You shouldn't use this property as a surrogate record number. Bookmarks are still the recommended
way of retaining and returning to a given position and are the only way to position the current record
across all types of Recordset objects. In particular, the position of a record changes when one or
more records preceding it are deleted. There is also no assurance that a record will have the same
absolute position if the Recordset object is re-created again because the order of individual records
within a Recordset object isn't guaranteed unless it's created with an SQL statement by using an
ORDER BY clause.

Notes
· Setting the AbsolutePosition property to a value greater than zero on a newly opened but

unpopulated Recordset object causes a trappable error. Populate the Recordset object first with
the MoveLast method.

· The AbsolutePosition property isn't available on forward-only–type Recordset objects, or on
Recordset objects opened from pass-through queries against Microsoft Jet-connected ODBC
databases.

AllowZeroLength Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproAllowZeroLengthC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproAllowZeroLengthX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproAllowZeroLengthA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproAllowZeroLengthS"}

Sets or returns a value that indicates whether a zero-length string ("") is a valid setting for the Value
property of the Field object with a Text or Memo data type.

Settings and Return Values
The setting or return value is a Boolean data type that indicates if a value is valid. The value is True if
the Field object accepts a zero-length string as its Value property; the default value is False.

Remarks
For an object not yet appended to the Fields collection, this property is read/write.

Once appended to a Fields collection, the availability of the AllowZeroLength property depends on
the object that contains the Fields collection, as shown in the following table.

If the Fields collection belongs to an Then AllowZeroLength is
Index object Not supported
QueryDef object Read-only
Recordset object Read-only
Relation object Not supported
TableDef object Read/write

You can use this property along with the Required, ValidateOnSet, or ValidationRule property to
validate a value in a field.

AllPermissions Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproAllPermissionsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproAllPermissionsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproAllPermissionsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproAllPermissionsS"}

Returns all the permissions that apply to the current UserName property of the Container or
Document object, including permissions that are specific to the user as well as the permissions a
user inherits from memberships in groups (Microsoft Jet workspaces only).

Return Values
For any Container or Document object, the return value is a Long value or constant(s) that may
include the following.

Constant Description
dbSecReadDef The user can read the table definition,

including column and index information.
dbSecWriteDef The user can modify or delete the table

definition, including column and index
information.

dbSecRetrieveData The user can retrieve data from the
Document object.

dbSecInsertData The user can add records.
dbSecReplaceData The user can modify records.
dbSecDeleteData The user can delete records.

In addition, the Databases container or any Document object in a Documents collection may include
the following.

Constant Description
dbSecDeleteData The user can delete records.
dbSecDBAdmin The user can replicate the database and

change the database password.
dbSecDBCreate The user can create new databases. This

setting is valid only on the Databases
container in the workgroup information file
(System.mdw).

dbSecDBExclusive The user has exclusive access to the
database.

dbSecDBOpen The user can open the database.

Remarks
This property contrasts with the Permissions property, which returns only the permissions that are
specific to the user and doesn't include any permissions that the user may also have as a member of
groups. If the current value of the UserName property is a group, then the AllPermissions property
returns the same values as the Permissions property.

Attributes Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproAttributesC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproAttributesX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproAttributesA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproAttributesS"}

Sets or returns a value that indicates one or more characteristics of a Field, Relation, or TableDef
object.

Settings and Return Values
The setting or return value is Long data type, and the default value is 0.

For a Field object, the value specifies characteristics of the field represented by the Field object and
can be a combination of these constants.

Constant Description
dbAutoIncrField The field value for new records is

automatically incremented to a unique
Long integer that can't be changed
(in a Microsoft Jet workspace,
supported only for Microsoft Jet
database(.mdb) tables).

dbDescending The field is sorted in descending (Z to
A or 100 to 0) order; this option
applies only to a Field object in a
Fields collection of an Index object. If
you omit this constant, the field is
sorted in ascending (A to Z or 0 to
100) order. This is the default value
for Index and TableDef fields
(Microsoft Jet workspaces only).

dbFixedField The field size is fixed (default for
Numeric fields).

dbHyperlinkField The field contains hyperlink
information (Memo fields only).

dbSystemField The field stores replication information
for replicas; you can't delete this type
of field (Microsoft Jet workspaces
only).

dbUpdatableField The field value can be changed.
dbVariableField The field size is variable (Text fields

only).

For a Relation object, the value specifies characteristics of the relationship represented by the
Relation object and can be a combination of these constants.

Constant Description
dbRelationUnique The relationship is one-to-one.
dbRelationDontEnforce The relationship isn't enforced (no

referential integrity).
dbRelationInherited The relationship exists in a non-

current database that contains the
two linked tables.

dbRelationUpdateCascade Updates will cascade.
dbRelationDeleteCascade Deletions will cascade.

Note If you set the Relation object's Attributes property to activate cascading operations, the
Microsoft Jet database engine automatically updates or deletes records in one or more other tables
when changes occur in related primary tables.
For example, suppose you establish a cascading delete relationship between a Customers table and
an Orders table. When you delete records from the Customers table, records in the Orders table
related to that customer are also deleted. In addition, if you establish cascading delete relationships
between the Orders table and other tables, records from those tables are automatically deleted when
you delete records from the Customers table.

For a TableDef object, the value specifies characteristics of the table represented by the TableDef
object and can be a combination of these Long constants.

Constant Description
dbAttachExclusive For databases that use the Microsoft

Jet database engine, the table is a
linked table opened for exclusive use.
You can set this constant on an
appended TableDef object for a local
table, but not on a remote table.

dbAttachSavePWD For databases that use the Microsoft
Jet database engine, the user ID and
password for the remotely linked
table are saved with the connection
information. You can set this constant
on an appended TableDef object for
a remote table, but not on a local
table.

dbSystemObject The table is a system table provided
by the Microsoft Jet database engine.
You can set this constant on an
appended TableDef object.

dbHiddenObject The table is a hidden table provided
by the Microsoft Jet database engine.
You can set this constant on an
appended TableDef object.

dbAttachedTable The table is a linked table from a non-
ODBC data source such as a
Microsoft Jet or Paradox database
(read-only).

dbAttachedODBC The table is a linked table from an
ODBC data source, such as Microsoft
SQL Server (read-only).

Remarks
For an object not yet appended to a collection, this property is read/write.

For an appended Field object, the availability of the Attributes property depends on the object that
contains the Fields collection.

If the Field object belongs to an Then Attributes is
Index object Read/write until the TableDef object

that the Index object is appended to
is appended to a Database object;
then the property is read-only.

QueryDef object Read-only
Recordset object Read-only
Relation object Not supported
TableDef object Read/write

For an appended Relation object, the Attributes property setting is read-only.

For an appended TableDef object, the property is read/write, although you can't set all of the
constants if the object is appended, as noted in Settings and Return Values.

When you set multiple attributes, you can combine them by summing the appropriate constants. Any
invalid values are ignored without producing an error.

BOF, EOF Properties
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproBOFC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproBOFX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"daproBOFA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproBOFS"}

· BOF ¾ returns a value that indicates whether the current record position is before the first record in
a Recordset object.

· EOF ¾ returns a value that indicates whether the current record position is after the last record in a
Recordset object.

Return Values
The return values for the BOF and EOF properties are Boolean values.

The BOF property returns True if the current record position is before the first record, and False if the
current record position is on or after the first record.

The EOF property returns True if the current record position is after the last record, and False if the
current record position is on or before the last record.

Remarks
You can use the BOF and EOF properties to determine whether a Recordset object contains records
or whether you've gone beyond the limits of a Recordset object when you move from record to
record.

The location of the current record pointer determines the BOF and EOF return values.

If either the BOF or EOF property is True, there is no current record.

If you open a Recordset object containing no records, the BOF and EOF properties are set to True,
and the Recordset object's RecordCount property setting is 0. When you open a Recordset object
that contains at least one record, the first record is the current record and the BOF and EOF
properties are False; they remain False until you move beyond the beginning or end of the
Recordset object by using the MovePrevious or MoveNext method, respectively. When you move
beyond the beginning or end of the Recordset, there is no current record or no record exists.

If you delete the last remaining record in the Recordset object, the BOF and EOF properties may
remain False until you attempt to reposition the current record.

If you use the MoveLast method on a Recordset object containing records, the last record becomes
the current record; if you then use the MoveNext method, the current record becomes invalid and the
EOF property is set to True. Conversely, if you use the MoveFirst method on a Recordset object
containing records, the first record becomes the current record; if you then use the MovePrevious
method, there is no current record and the BOF property is set to True.

Typically, when you work with all the records in a Recordset object, your code will loop through the
records by using the MoveNext method until the EOF property is set to True.

If you use the MoveNext method while the EOF property is set to True or the MovePrevious method
while the BOF property is set to True, an error occurs.

This table shows which Move methods are allowed with different combinations of the BOF and EOF
properties.

MoveFirst,
MoveLast

MovePrevious,
Move < 0 Move 0

MoveNext,
Move > 0

BOF=True,
EOF=False

Allowed Error Error Allowed

BOF=False,
EOF=True

Allowed Allowed Error Error

Both True Error Error Error Error
Both False Allowed Allowed Allowed Allowed

Allowing a Move method doesn't mean that the method will successfully locate a record. It merely
indicates that an attempt to perform the specified Move method is allowed and won't generate an
error. The state of the BOF and EOF properties may change as a result of the attempted Move.

An OpenRecordset method internally invokes a MoveFirst method. Therefore, using an
OpenRecordset method on an empty set of records sets the BOF and EOF properties to True. (See
the following table for the behavior of a failed MoveFirst method.)

All Move methods that successfully locate a record will set both BOF and EOF to False.

In a Microsoft Jet workspace, if you add a record to an empty Recordset, BOF will become False,
but EOF will remain True, indicating that the current position is at the end of Recordset. In an
ODBCDirect workspace, both BOF and EOF will become False, indicating that the current position is
on the new record.

Any Delete method, even if it removes the only remaining record from a Recordset, won't change the
setting of the BOF or EOF property.

The following table shows how Move methods that don't locate a record affect the BOF and EOF
property settings.

BOF EOF
MoveFirst, MoveLast True True
Move 0 No change No change
MovePrevious, Move <
0

True No change

MoveNext, Move > 0 No change True

Bookmark Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproBookmarkC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproBookmarkX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproBookmarkA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproBookmarkS"}

Sets or returns a bookmark that uniquely identifies the current record in a Recordset object.

Settings and Return Values
The setting or return value is a string expression or variant expression that evaluates to a valid
bookmark. The data type is a Variant array of Byte data.

Remarks
For a Recordset object based entirely on Microsoft Jet tables, the value of the Bookmarkable
property is True, and you can use the Bookmark property with that Recordset. Other database
products may not support bookmarks, however. For example, you can't use bookmarks in any
Recordset object based on a linked Paradox table that has no primary key.

When you create or open a Recordset object, each of its records already has a unique bookmark.
You can save the bookmark for the current record by assigning the value of the Bookmark property
to a variable. To quickly return to that record at any time after moving to a different record, set the
Recordset object's Bookmark property to the value of that variable.

There is no limit to the number of bookmarks you can establish. To create a bookmark for a record
other than the current record, move to the desired record and assign the value of the Bookmark

property to a String variable that identifies the record.

To make sure the Recordset object supports bookmarks, check the value of its Bookmarkable
property before you use the Bookmark property. If the Bookmarkable property is False, the
Recordset object doesn't support bookmarks, and using the Bookmark property results in a
trappable error.

If you use the Clone method to create a copy of a Recordset object, the Bookmark property settings
for the original and the duplicate Recordset objects are identical and can be used interchangeably.
However, you can't use bookmarks from different Recordset objects interchangeably, even if they
were created by using the same object or the same SQL statement.

If you set the Bookmark property to a value that represents a deleted record, a trappable error
occurs.

The value of the Bookmark property isn't the same as a record number.

Bookmarkable Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproBookmarkableC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproBookmarkableX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproBookmarkableA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproBookmarkableS"}

Returns a value that indicates whether a Recordset object supports bookmarks, which you can set
by using the Bookmark property.

Return Values
The return value is a Boolean data type that returns True if the object supports bookmarks.

Remarks
Check the Bookmarkable property setting of a Recordset object before you attempt to set or check
the Bookmark property.

For Recordset objects based entirely on Microsoft Jet tables, the value of the Bookmarkable
property is True, and you can use bookmarks. Other database products may not support bookmarks,
however. For example, you can't use bookmarks in any Recordset object based on a linked Paradox
table that has no primary key.

CacheSize Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproCacheSizeC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproCacheSizeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproCacheSizeA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproCacheSizeS"}

Sets or returns the number of records retrieved from an ODBC data source that will be cached locally.

Settings and Return Values
The setting or return value is a Long value and must be between 5 and 1200, but not greater than
available memory will allow. A typical value is 100. A setting of 0 turns off caching.

Remarks
Data caching improves performance if you use Recordset objects to retrieve data from a remote
server. A cache is a space in local memory that holds the data most recently retrieved from the server;
this is useful if users request the data again while the application is running. When users request
data, the Microsoft Jet database engine checks the cache for the requested data first rather than
retrieving it from the server, which takes more time. The cache only saves data that comes from an
ODBC data source.

Any Microsoft Jet-connected ODBC data source, such as a linked table, can have a local cache. To
create the cache, open a Recordset object from the remote data source, set the CacheSize and
CacheStart properties, and then use the FillCache method, or step through the records by using the
Move methods.

An ODBCDirect workspace can use a local cache. To create the cache, set the CacheSize property
on a QueryDef object. On a Relation object, CacheSize is read-only and depends on the value of
the QueryDef object's CacheSize property. You can't use the CacheStart property on FillCache
method in an ODBCDirect workspace.

You can base the CacheSize property setting on the number of records your application can handle
at one time. For example, if you're using a Recordset object as the source of the data to be displayed
on screen, you could set its CacheSize property to 20 to display 20 records at one time.

The Microsoft Jet database engine requests records within the cache range from the cache, and it
requests records outside the cache range from the server.

Records retrieved from the cache don't reflect concurrent changes that other users made to the
source data.

To force an update of all the cached data, set the CacheSize property of the Recordset object to 0,
re-set it to the size of the cache you originally requested, and then use the FillCache method.

Clustered Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproClusteredC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproClusteredX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproClusteredA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproClusteredS"}

Sets or returns a value that indicates whether an Index object represents a clustered index for a table
(Microsoft Jet workspaces only).

Settings and Return Values
The setting or return value is a Boolean data type that is True if the Index object represents a
clustered index.

Remarks
Some IISAM desktop database formats use clustered indexes. A clustered index consists of one or
more nonkey fields that, taken together, arrange all records in a table in a predefined order. A
clustered index provides efficient access to records in a table in which the index values may not be
unique.

The Clustered property is read/write for a new Index object not yet appended to a collection and
read-only for an existing Index object in an Indexes collection.

Notes
· Microsoft Jet databases ignore the Clustered property because the Microsoft Jet database engine

doesn't support clustered indexes.
· For ODBC data sources the Clustered property always returns False; it does not detect whether

or not the ODBC data source has a clustered index.

CollatingOrder Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproCollatingOrderC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproCollatingOrderX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproCollatingOrderA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproCollatingOrderS"}

Returns a value that specifies the sequence of the sort order in text for string comparison or sorting
(Microsoft Jet workspaces only).

Return Values
The return value is a Long value or constant that can be one of the following values.

Constant Sort order
dbSortGeneral General (English, French, German,

Portuguese, Italian, and Modern
Spanish)

dbSortArabic Arabic
dbSortChineseSimplified Simplified Chinese
dbSortChineseTraditional Traditional Chinese
dbSortCyrillic Russian
dbSortCzech Czech
dbSortDutch Dutch
dbSortGreek Greek
dbSortHebrew Hebrew
dbSortHungarian Hungarian
dbSortIcelandic Icelandic
dbSortJapanese Japanese
dbSortKorean Korean
dbSortNeutral Neutral
dbSortNorwDan Norwegian or Danish
dbSortPDXIntl Paradox International
dbSortPDXNor Paradox Norwegian or Danish
dbSortPDXSwe Paradox Swedish or Finnish
dbSortPolish Polish
dbSortSlovenian Slovenian
dbSortSpanish Spanish
dbSortSwedFin Swedish or Finnish
dbSortThai Thai
dbSortTurkish Turkish
dbSortUndefined Undefined or unknown

Remarks
The availability of the CollatingOrder property depends on the object that contains the Fields
collection, as shown in the following table.

If the Fields collection belongs to an Then CollatingOrder is
Index object Not supported
QueryDef object Read-only
Recordset object Read-only

Relation object Not supported
TableDef object Read-only

The CollatingOrder property setting corresponds to the locale argument of the CreateDatabase
method when the database was created or the CompactDatabase method when the database was
most recently compacted.

Check the CollatingOrder property setting of a Database or Field object to determine the string
comparison method for the database or field. You can set the CollatingOrder property of a new,
unappended Field object if you want the setting of the Field object to differ from that of the Database
object that contains it.

The CollatingOrder and Attributes property settings of a Field object in a Fields collection of an
Index object together determine the sequence and direction of the sort order in an index. However,
you can't set a collating order for an individual index—you can only set it for an entire table.

ConflictTable Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproConflictTableC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproConflictTableX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproConflictTableA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproConflictTableS"}

Returns the name of a conflict table containing the database records that conflicted during the
synchronization of two replicas (Microsoft Jet workspaces only).

Return Values
The return value is a String data type that is a zero-length string if there is no conflict table or the
database isn't a replica.

Remarks
If two users at two separate replicas each make a change to the same record in the database, the
changes made by one user will fail to be applied to the other replica. Consequently, the user with the
failed change must resolve the conflicts.

Conflicts occur at the record level, not between fields. For example, if one user changes the Address
field and another updates the Phone field in the same record, then one change is rejected. Because
conflicts occur at the record level, the rejection occurs even though the successful change and the
rejected change are unlikely to result in a true conflict of information.

The synchronization mechanism handles the record conflicts by creating conflict tables, which contain
the information that would have been placed in the table, if the change had been successful. You can
examine these conflict tables and work through them row by row, fixing whatever is appropriate.

All conflict tables are named table_conflict, where table is the original name of the table, truncated to
the maximum table name length.

Connect Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproConnectC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproConnectX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproConnectA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproConnectS"}

Sets or returns a value that provides information about the source of an open connection, an open
database, a database used in a pass-through query, or a linked table. For Database objects, new
Connection objects, linked tables, and TableDef objects not yet appended to a collection, this
property setting is read/write. For QueryDef objects and base tables, this property is read-only.

Syntax
object.Connect = databasetype;parameters;

The Connect property syntax has these parts.

Part Description
object An object expression that evaluates to an object in

the Applies To list.
databasetype Optional. A String that specifies a database type.

For Microsoft Jet databases, exclude this
argument; if you specify parameters, use a
semicolon (;) as a placeholder.

parameters Optional. A String that specifies additional
parameters to pass to ODBC or installable ISAM
drivers. Use semicolons to separate parameters.

Settings
The Connect property setting is a String composed of a database type specifier and zero or more
parameters separated by semicolons. The Connect property passes additional information to ODBC
and certain ISAM drivers as needed.

To perform an SQL pass-through query on a table linked to your Microsoft Jet database (.mdb) file,
you must first set the Connect property of the linked table's database to a valid ODBC connection
string.

For a TableDef object that represents a linked table, the Connect property setting consists of one or
two parts (a database type specifier and a path to the database), each of which ends with a
semicolon.

The path as shown in the following table is the full path for the directory containing the database files
and must be preceded by the identifier DATABASE=. In some cases (as with Microsoft Excel and
Microsoft Jet databases), you should include a specific file name in the database path argument.

The following table shows possible database types and their corresponding database specifiers and
paths for the Connect property setting. You can also specify “FTP://path/etc.” or “HTTP://path/etc.”
For the path. In an ODBCDirect workspace, only the "ODBC" specifier can be used.

Database type Specifier Example
Microsoft Jet
Database

[database]; drive:\path\filename.mdb

dBASE III dBASE III; drive:\path
dBASE IV dBASE IV; drive:\path
dBASE 5 dBASE 5.0; drive:\path
Paradox 3.x Paradox 3.x; drive:\path
Paradox 4.x Paradox 4.x; drive:\path

Paradox 5.x Paradox 5.x; drive:\path
FoxPro 2.0 FoxPro 2.0; drive:\path
FoxPro 2.5 FoxPro 2.5; drive:\path
FoxPro 2.6 FoxPro 2.6; drive:\path
Excel 3.0 Excel 3.0; drive:\path\filename.xls
Excel 4.0 Excel 4.0; drive:\path\filename.xls
Excel 5.0 or Excel
95

Excel 5.0; drive:\path\filename.xls

Excel 97 Excel 97; drive:\path\filename.xls
HTML Import HTML Import; drive:\path\filename
HTML Export HTML Export; drive:\path
Text Text; drive:\path
ODBC ODBC;

DATABASE=database;
UID=user;
PWD=password;
DSN= datasourcename;
[LOGINTIMEOUT=second
s;]

None

Exchange Exchange;
MAPILEVEL=folderpath;
[TABLETYPE={ 0 | 1 }];
[PROFILE=profile;]
[PWD=password;]
[DATABASE=database;]

drive:\path\filename.mdb

Remarks
If the specifier is only "ODBC;", the ODBC driver displays a dialog box listing all registered ODBC
data source names so that the user can select a database.

If a password is required but not provided in the Connect property setting, a login dialog box is
displayed the first time a table is accessed by the ODBC driver and again if the connection is closed
and reopened.

For data in Microsoft Exchange, the required MAPILEVEL key should be set to a fully-resolved folder
path (for example, "Mailbox - Pat SmithIAlpha/Today"). The path does not include the name of the
folder that will be opened as a table; that folder’s name should instead be specified as the name
argument to the CreateTable method. The TABLETYPE key should be set to "0" to open a folder
(default) or "1" to open an address book. The PROFILE key defaults to the profile currently in use.

For base tables in a Micorosoft Jet database (.mdb), the Connect property setting is a zero-length
string ("").

You can set the Connect property for a Database object by providing a source argument to the
OpenDatabase method. You can check the setting to determine the type, path, user ID, password, or
ODBC data source of the database.

On a QueryDef object in a Microsoft Jet workspace, you can use the Connect property with the
ReturnsRecords property to create an ODBC SQL pass-through query. The databasetype of the
connection string is "ODBC;", and the remainder of the string contains information specific to the
ODBC driver used to access the remote data. For more information, see the documentation for the
specific driver.

Notes
· You must set the Connect property before you set the ReturnsRecords property.

· You must have access permissions to the computer that contains the database server you're trying
to access.

Container Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproContainerC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproContainerX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproContainerA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproContainerS"}

Returns the name of the Container object to which a Document object belongs (Microsoft Jet
workspaces only).

Return Values
The return value is a String data type.

Count Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproCountC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproCountX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"daproCountA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproCountS"}

Returns the number of objects in a collection.

Return Value
The return value is an Integer data type.

Remarks
Because members of a collection begin with 0, you should always code loops starting with the 0
member and ending with the value of the Count property minus 1. If you want to loop through the
members of a collection without checking the Count property, you can use a For Each...Next
command.

The Count property setting is never Null. If its value is 0, there are no objects in the collection.

DataUpdatable Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproDataUpdatableC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproDataUpdatableX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproDataUpdatableA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproDataUpdatableS"}

Returns a value that indicates whether the data in the field represented by a Field object is updatable.

Return Values
The return value is a Boolean data type that returns True if the data in the field is updatable.

Remarks
Use this property to determine whether you can change the Value property setting of a Field object.
This property is always False on a Field object whose Attributes property is dbAutoIncrField.

You can use the DataUpdatable property on Field objects that are appended to the Fields collection
of QueryDef, Recordset, and Relation objects, but not the Fields collection of Index or TableDef
objects.

DateCreated, LastUpdated Properties
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproDateCreatedC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproDateCreatedX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproDateCreatedA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproDateCreatedS"}

· DateCreated ¾ returns the date and time that an object was created, or the date and time a base
table was created if the object is a table-type Recordset object (Microsoft Jet workspaces only).

· LastUpdated ¾ returns the date and time of the most recent change made to an object, or to a
base table if the object is a table-type Recordset object (Microsoft Jet workspaces only).

Return Values
The return value is a Variant (Date/Time subtype).

Remarks
For table-type Recordset objects, the date and time settings are derived from the computer on which
the base table was created or last updated. For other objects, DateCreated and LastUpdated return
the date and time that the object was created or last updated. In a multiuser environment, users
should get these settings directly from the file server to avoid discrepancies in the DateCreated and
LastUpdated property settings.

DefaultUser, DefaultPassword Properties
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproDefaultUserC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproDefaultUserX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproDefaultUserA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproDefaultUserS"}

· DefaultUser ¾ sets the user name used to create the default Workspace when it is initialized.
· DefaultPassword ¾ sets the password used to create the default Workspace when it is initialized.

Settings
The setting for DefaultUser is a String data type. It can be 1–20 characters long in Microsoft Jet
workspaces and any length in ODBCDirect workspaces, and it can include alphabetic characters,
accented characters, numbers, spaces, and symbols except for: " (quotation marks), / (forward slash),
\ (backslash), [] (brackets), : (colon), | (pipe), < (less-than sign), > (greater-than sign), + (plus sign), =
(equal sign), ; (semicolon), , (comma), ? (question mark), * (asterisk), leading spaces, and control
characters (ASCII 00 to ASCII 31).

The setting for DefaultPassword is a String data type that can be up to 14 characters long in
Microsoft Jet databases and any length in ODBCDirect connections. It can contain any character
except ASCII 0.

By default, the DefaultUser property is set to "admin" and the DefaultPassword property is set to a
zero-length string ("").

Remarks
User names aren't usually case-sensitive; however, if you're re-creating a user account that was
deleted or created in a different workgroup, the user name must be an exact case-sensitive match of
the original name. Passwords are case-sensitive.

Typically, you use the CreateWorkspace method to create a Workspace object with a given user
name and password. However, for backward compatibility with earlier versions and for convenience
when you don't implement a secured database, the Microsoft Jet database engine automatically
creates a default Workspace object when needed if one isn't already open. In this case, the
DefaultUser and DefaultPassword property values define the user and password for the default
Workspace object.

For this property to take effect, you should set it before calling any DAO methods.

DefaultValue Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproDefaultValueC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproDefaultValueX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproDefaultValueA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproDefaultValueS"}

Sets or returns the default value of a Field object. For a Field object not yet appended to the Fields
collection, this property is read/write (Microsoft Jet workspaces only).

Settings and Return Values
The setting or return value is a String data type that can contain a maximum of 255 characters. It can
be either text or an expression. If the property setting is an expression, it can't contain user-defined
functions, Microsoft Jet database engine SQL aggregate functions, or references to queries, forms, or
other Field objects.

Note You can also set the DefaultValue property of a Field object on a TableDef object to a
special value called "GenUniqueID()". This causes a random number to be assigned to this field
whenever a new record is added or created, thereby giving each record a unique identifier. The field's
Type property must be Long.

Remarks
The availability of the DefaultValue property depends on the object that contains the Fields
collection, as shown in the following table.

If the Fields collection belongs to an Then DefaultValue is
Index object Not supported
QueryDef object Read-only
Recordset object Read-only
Relation object Not supported
TableDef object Read/write

When a new record is created, the DefaultValue property setting is automatically entered as the
value for the field. You can change the field value by setting its Value property.

The DefaultValue property doesn't apply to AutoNumber and Long Binary fields.

Description Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproDescriptionC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproDescriptionX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproDescriptionA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproDescriptionS"}

Returns a descriptive string associated with an error.

Return Values
The return value is a String data type that describes the error.

Remarks
The Description property comprises a short description of the error. Use this property to alert the
user about an error that you cannot or do not want to handle.

DistinctCount Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproDistinctCountC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproDistinctCountX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproDistinctCountA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproDistinctCountS"}

Returns a value that indicates the number of unique values for the Index object that are included in
the associated table (Microsoft Jet workspaces only).

Return Values
The return value is a Long data type.

Remarks
Check the DistinctCount property to determine the number of unique values, or keys, in an index.
Any key is counted only once, even though there may be multiple occurrences of that value if the
index permits duplicate values. This information is useful in applications that attempt to optimize data
access by evaluating index information. The number of unique values is also known as the cardinality
of an Index object.

The DistinctCount property won't always reflect the actual number of keys at a particular time. For
example, a change caused by a rolled back transaction won't be reflected immediately in the
DistinctCount property. The DistinctCount property value also may not reflect the deletion of
records with unique keys. The number will be accurate immediately after you use the CreateIndex
method.

EditMode Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproEditModeC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproEditModeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproEditModeA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproEditModeS"}

Returns a value that indicates the state of editing for the current record.

Return Values
The return value is a Long that indicates the state of editing, as listed in the following table.

Constant Description
dbEditNone No editing operation is in progress.
DbEditInProgress The Edit method has been invoked, and the

current record is in the copy buffer.
dbEditAdd The AddNew method has been invoked, and

the current record in the copy buffer is a new
record that hasn't been saved in the
database.

Remarks
The EditMode property is useful when an editing process is interrupted, for example, by an error
during validation. You can use the value of the EditMode property to determine whether you should
use the Update or CancelUpdate method.

You can also check to see if the LockEdits property setting is True and the EditMode property
setting is dbEditInProgress to determine whether the current page is locked.

Filter Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproFilterC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproFilterX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"daproFilterA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproFilterS"}

Sets or returns a value that determines the records included in a subsequently opened Recordset
object (Microsoft Jet workspaces only).

Settings and Return Values
The setting or return value is a String data type that contains the WHERE clause of an SQL
statement without the reserved word WHERE.

Remarks
Use the Filter property to apply a filter to a dynaset-, snapshot-, or forward-only–type Recordset
object.

You can use the Filter property to restrict the records returned from an existing object when a new
Recordset object is opened based on an existing Recordset object.

In many cases, it's faster to open a new Recordset object by using an SQL statement that includes a
WHERE clause.

Use the U.S. date format (month-day-year) when you filter fields containing dates, even if you're not
using the U.S. version of the Microsoft Jet database engine (in which case you must assemble any
dates by concatenating strings, for example, strMonth & "-" & strDay & "-" & strYear).
Otherwise, the data may not be filtered as you expect.

If you set the property to a string concatenated with a non-integer value, and the system parameters
specify a non-U.S. decimal character such as a comma (for example, strFilter = "PRICE > "
& lngPrice, and lngPrice = 125,50), an error occurs when you try to open the next
Recordset. This is because during concatenation, the number will be converted to a string using your
system's default decimal character, and Microsoft Jet SQL only accepts U.S. decimal characters.

Foreign Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproForeignC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproForeignX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproForeignA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproForeignS"}

Returns a value that indicates whether an Index object represents a foreign key in a table (Microsoft
Jet workspaces only).

Return Values
The return value is a Boolean data type that returns True if the Index object represents a foreign key.

Remarks
A foreign key consists of one or more fields in a foreign table that uniquely identify all rows in a
primary table.

The Microsoft Jet database engine creates an Index object for the foreign table and sets the Foreign
property when you create a relationship that enforces referential integrity.

ForeignName Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproForeignNameC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproForeignNameX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproForeignNameA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproForeignNameS"}

Sets or returns a value that specifies the name of the Field object in a foreign table that corresponds
to a field in a primary table for a relationship (Microsoft Jet workspaces only).

Settings and Return Values
The setting or return value is a String data type that evaluates to the name of a Field in the
associated TableDef object's Fields collection.

If the Relation object isn't appended to the Database, but the Field is appended to the Relation
object, the ForeignName property is read/write. Once the Relation object is appended to the
database, the ForeignName property is read-only.

Remarks
Only a Field object that belongs to the Fields collection of a Relation object can support the
ForeignName property.

The Name and ForeignName property settings for a Field object specify the names of the
corresponding fields in the primary and foreign tables of a relationship. The Table and ForeignTable
property settings for a Relation object determine the primary and foreign tables of a relationship.

For example, if you had a list of valid part codes (in a field named PartNo) stored in a ValidParts table,
you could establish a relationship with an OrderItem table such that if a part code were entered into
the OrderItem table, it would have to already exist in the ValidParts table. If the part code didn't exist
in the ValidParts table and you had not set the Attributes property of the Relation object to
dbRelationDontEnforce, a trappable error would occur.

In this case, the ValidParts table is the foreign table, so the ForeignTable property of the Relation
object would be set to ValidParts and the Table property of the Relation object would be set to
OrderItem. The Name and ForeignName properties of the Field object in the Relation object's
Fields collection would be set to PartNo.

The following illustration depicts the relation described above.

ForeignTable Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproForeignTableC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproForeignTableX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproForeignTableA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproForeignTableS"}

Sets or returns the name of the foreign table in a relationship (Microsoft Jet workspaces only).

Settings and Return Values
The setting or return value is a String data type that evaluates to the name of a table in the Database
object's TableDefs collection. This property is read/write for a new Relation object not yet appended
to a collection and read-only for an existing Relation object in the Relations collection.

Remarks
The ForeignTable property setting of a Relation object is the Name property setting of the TableDef
or QueryDef object that represents the foreign table or query; the Table property setting is the Name
property setting of the TableDef or QueryDef object that represents the primary table or query.

For example, if you had a list of valid part codes (in a field named PartNo) stored in a ValidParts table,
you could establish a relationship with an OrderItem table such that if a part code were entered into
the OrderItem table, it would have to already be in the ValidParts table. If the part code didn't exist in
the ValidParts table and you had not set the Attributes property of the Relation object to
dbRelationDontEnforce, a trappable error would occur.

In this case, the ValidParts table is the primary table, so the Table property of the Relation object
would be set to ValidParts and the ForeignTable property of the Relation object would be set to
OrderItem. The Name and ForeignName properties of the Field object in the Relation object's
Fields collection would be set to PartNo.

The following illustration depicts the relation described above.

HelpContext, HelpFile Properties
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproHelpContextC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproHelpContextX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproHelpContextA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproHelpContextS"}

· HelpContext—returns a context ID, as a Long variable, for a topic in a Microsoft Windows Help
file.

· HelpFile—returns a String that is a fully qualified path to the Help file.

Remarks
If you specify a Microsoft Windows Help file in HelpFile, you can use the HelpContext property to
automatically display the Help topic it identifies.

Note You should write procedures in your application to handle typical errors. When programming
with an object, you can use the Help supplied by the object's Help file to improve the quality of your
error handling, or to display a meaningful message to your user if the error is not recoverable.

IgnoreNulls Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproIgnoreNullsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproIgnoreNullsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproIgnoreNullsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproIgnoreNullsS"}

Sets or returns a value that indicates whether records that have Null values in their index fields have
index entries (Microsoft Jet workspaces only).

Settings and Return Values
The setting or return value is a Boolean that is True if the fields with Null values don't have an index
entry. This property is read/write for a new Index object not yet appended to a collection and read-
only for an existing Index object in an Indexes collection.

Remarks
To speed up the process of searching for records, you can define an index for a field. If you allow Null
entries in an indexed field and expect many of the entries to be Null, you can set the IgnoreNulls
property for the Index object to True to reduce the amount of storage space that the index uses.

The IgnoreNulls property setting and the Required property setting together determine whether a
record with a Null index value has an index entry.

If IgnoreNulls is And Required is Then
True False A Null value is allowed

in the index field; no
index entry added.

False False A Null value is allowed
in the index field; index
entry added.

True or False True A Null value isn't
allowed in the index
field; no index entry
added.

Index Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproIndexC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproIndexX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"daproIndexA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproIndexS"}

Sets or returns a value that indicates the name of the current Index object in a table-type Recordset
object (Microsoft Jet workspaces only).

Settings and Return Values
The setting or return value is a String data type that evaluates to the name of an Index object in the
Indexes collection of the Tabledef or table-type Recordset object's TableDef object.

Remarks
Records in base tables aren't stored in any particular order. Setting the Index property changes the
order of records returned from the database; it doesn't affect the order in which the records are
stored.

The specified Index object must already be defined. If you set the Index property to an Index object
that doesn't exist or if the Index property isn't set when you use the Seek method, a trappable error
occurs.

Examine the Indexes collection of a TableDef object to determine what Index objects are available to
table-type Recordset objects created from that TableDef object.

You can create a new index for the table by creating a new Index object, setting its properties,
appending it to the Indexes collection of the underlying TableDef object, and then reopening the
Recordset object.

Records returned from a table-type Recordset object can be ordered only by the indexes defined for
the underlying TableDef object. To sort records in some other order, you can open a dynaset-,
snapshot-, or forward-only–type Recordset object by using an SQL statement with an ORDER BY
clause.

Notes
· You don't have to create indexes for tables. With large, unindexed tables, accessing a specific

record or creating a Recordset object can take a long time. On the other hand, creating too many
indexes slows down update, append, and delete operations because all indexes are automatically
updated.

· Records read from tables without indexes are returned in no particular sequence.
· The Attributes property of each Field object in the Index object determines the order of records

and consequently determines the access techniques to use for that index.
· A unique index helps optimize finding records.
· Indexes don't affect the physical order of a base table ¾ indexes affect only how the records are

accessed by the table-type Recordset object when a particular index is chosen or when
Recordset is opened.

Inherit Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproInheritC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproInheritX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"daproInheritA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproInheritS"}

Sets or returns a value that indicates whether new Document objects will inherit a default
Permissions property setting (Microsoft Jet workspaces only).

Settings and Return Values
The setting or return value is a Boolean data type. If you set the property to True, Document objects
inherit a default Permissions property setting.

Remarks
Use the Inherit property in conjunction with the Permissions property to define what permissions
new documents will automatically have when they're created. If you set the Inherit property to True,
and then set a permission on a container, then whenever a new document is created in that container,
that permission will be set on the new document. This is a very convenient way of presetting
permissions on an object.

Setting the Inherit property will not affect existing documents in the container ¾ you can't modify all
the permissions on all existing documents in a container by setting the Inherit property and a new
permission. It will affect only new documents that are created after the Inherit property is set.

Inherited Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproInheritedC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproInheritedX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproInheritedA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproInheritedS"}

Returns a value that indicates whether a Property object is inherited from an underlying object.

Return Values
The return value is a Boolean data type that is True if the Property object is inherited. For built-in
Property objects that represent predefined properties, the only possible return value is False. This
property is always False in an ODBCDirect workspace.

Remarks
You can use the Inherited property to determine whether a user-defined Property was created for
the object it applies to, or whether the Property was inherited from another object. For example,
suppose you create a new Property for a QueryDef object and then open a Recordset object from
the QueryDef object. This new Property will be part of the Recordset object's Properties collection,
and its Inherited property will be set to True because the property was created for the QueryDef
object, not the Recordset object.

IniPath Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproIniPathC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproIniPathX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproIniPathA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproIniPathS"}

Sets or returns information about the Windows Registry key that contains values for the Microsoft Jet
database engine (Microsoft Jet workspaces only).

Settings and Return Values
The setting or return value is a String data type that points to a user-supplied portion of the Windows
Registry key containing Microsoft Jet database engine settings or parameters needed for installable
ISAM databases.

Remarks
You can configure the Microsoft Jet engine with the Windows Registry. You can use the Registry to
set options, such as installable ISAM DLLs.

For this option to have any effect, you must set the IniPath property before your application invokes
any other DAO code. The scope of this setting is limited to your application and can't be changed
without restarting your application.

You also use the Registry to provide initialization parameters for some installable ISAM database
drivers. For example, to use Paradox version 4.0, set the IniPath property to a part of the Registry
containing the appropriate parameters.

This property recognizes either HKEY_LOCAL_MACHINE or HKEY_LOCAL_USER. If no root key is
supplied, the default is HKEY_LOCAL_MACHINE.

Microsoft Jet versions 2.5 or earlier kept initialization information in .ini files.

IsolateODBCTrans Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproIsolateODBCTransC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproIsolateODBCTransX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproIsolateODBCTransA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproIsolateODBCTransS"}

Sets or returns a value that indicates whether multiple transactions that involve the same Microsoft
Jet-connected ODBC data source are isolated (Microsoft Jet workspaces only).

Settings and Return Values
The setting or return value is a Boolean data type that is True if you want to isolate transactions
involving the same ODBC (Open Database Connectivity) connection. False (the default) will allow
multiple transactions involving the same ODBC connection.

Remarks
In some situations, you need to have multiple simultaneous transactions pending on the same ODBC
connection. To do this, you need to open a separate Workspace for each transaction. Although each
Workspace can have its own ODBC connection to the database, this slows system performance.
Because transaction isolation isn't usually required, ODBC connections from multiple Workspace
objects opened by the same user are shared by default.

Some ODBC servers, such as Microsoft SQL Server, don't allow simultaneous transactions on a
single connection. If you need to have more than one transaction at a time pending against such a
database, set the IsolateODBCTrans property to True on each Workspace as soon as you open it.
This forces a separate ODBC connection for each Workspace.

LastModified Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproLastModifiedC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproLastModifiedX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproLastModifiedA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproLastModifiedS"}

Returns a bookmark indicating the most recently added or changed record.

Return Values
The return value is a Variant array of Byte data.

Remarks
You can use the LastModified property to move to the most recently added or updated record. Use
the LastModified property with table- and dynaset-type Recordset objects. A record must be added
or modified in the Recordset object itself in order for the LastModified property to have a value.

LockEdits Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproLockEditsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproLockEditsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproLockEditsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproLockEditsS"}

Sets or returns a value indicating the type of locking that is in effect while editing.

Settings and Return Values
The setting or return value is a Boolean that indicates the type of locking, as specified in the following
table.

Value Description
True Default. Pessimistic locking is in

effect. The 2K page containing the
record you're editing is locked as
soon as you call the Edit method.

False Optimistic locking is in effect for
editing. The 2K page containing the
record is not locked until the Update
method is executed.

Remarks
You can use the LockEdits property with updatable Recordset objects.

If a page is locked, no other user can edit records on the same page. If you set LockEdits to True
and another user already has the page locked, an error occurs when you use the Edit method. Other
users can read data from locked pages.

If you set the LockEdits property to False and later use the Update method while another user has
the page locked, an error occurs. To see the changes made to your record by another user, use the
Move method with 0 as the argument; however, if you do this, you will lose your changes.

When working with Microsoft Jet-connected ODBC data sources, the LockEdits property is always
set to False, or optimistic locking. The Microsoft Jet database engine has no control over the locking
mechanisms used in external database servers.

Note You can preset the value of LockEdits when you first open the Recordset by setting the
lockedits argument of the OpenRecordset method. Setting the lockedits argument to dbPessimistic
will set the LockEdits property to True, and setting lockedits to any other value will set the LockEdits
property to False.

LoginTimeout Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproLoginTimeoutC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproLoginTimeoutX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproLoginTimeoutA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproLoginTimeoutS"}

Sets or returns the number of seconds before an error occurs when you attempt to log on to an
ODBC database.

Settings and Return Values
The setting or return value is an Integer representing the number of seconds before a login timeout
error occurs. The default LoginTimeout property setting is 20 seconds. When the LoginTimeout
property is set to 0, no timeout occurs.

Remarks
When you're attempting to log on to an ODBC database, such as Microsoft SQL Server, the
connection can fail as a result of network errors or because the server isn't running. Rather than
waiting for the default 20 seconds to connect, you can specify how long to wait before raising an error.
Logging on to the server happens implicitly as part of a number of different events, such as running a
query on an external server database.

You can use LoginTimeout on the DBEngine object in both Microsoft Jet and ODBCDirect
workspaces. You can use LoginTimeout on the Workspace object only in ODBCDirect workspaces.
Setting the property to -1 on a Workspace will default to the current setting of
DBEngine.LoginTimeout. You can change this property in a Workspace at any time, and the new
setting will take effect with the next Connection or Database object opened.

The default value is determined by the ODBC driver. In a Microsoft Jet workspace, you can override
the driver’s default value by creating a new “ODBC” key in the Registry path \
HKEY_LOCAL_MACHINE\SOFTWARE\Jet\3.5\, creating a LoginTimeout parameter in this key,
and setting the value as desired.

LogMessages Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproLogMessagesC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproLogMessagesX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproLogMessagesA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproLogMessagesS"}

Sets or returns a value that specifies if the messages returned from a Microsoft Jet-connected ODBC
data source are recorded (Microsoft Jet workspaces only).

Note Before you can set or get the value of the LogMessages property, you must create the
LogMessages property with the CreateProperty method, and append it to the Properties collection
of a QueryDef object.

Settings and Return Values
The setting or return value is a Boolean that is True if ODBC-generated messages are recorded.

Remarks
Some pass-through queries can return messages in addition to data. If you set the LogMessages
property to True, the Microsoft Jet database engine creates a table that contains returned messages.
The table name is the user name concatenated with a hyphen (-) and a sequential number starting at
00. For example, because the default user name is Admin, the tables returned would be named
Admin-00, Admin-01, and so on.

If you expect the query to return messages, create and append a user-defined LogMessages
property for the QueryDef object, and set its type to Boolean and its value to True.

Once you've processed the results from these tables, you may want to delete them from the database
along with the temporary query used to create them.

Name Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproNameC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproNameX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"daproNameA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproNameS"}

Sets or returns a user-defined name for a DAO object. For an object not appended to a collection, this
property is read/write.

Settings and Return Values
The setting or return value is a String that specifies a name. The name must start with a letter. The
maximum number of characters depends on the type of object Name applies to, as shown in
Remarks. It can include numbers and underscore characters (_) but can't include punctuation or
spaces.

Remarks
TableDef, QueryDef, Field, Index, User, and Group objects can't share the same name with any
object in the same collection.

The Name property of a Recordset object opened by using an SQL statement is the first 256
characters of the SQL statement.

You can use an object's Name property with the Visual Basic for Applications Dim statement in code
to create other instances of the object.

Note For many of the DAO objects, the Name property reflects the name as known to the
Database object, as in the name of a TableDef, Field, or QueryDef object. There is no direct link
between the name of the DAO object and the object variable used to reference it.

The read/write usage of the Name property depends on the type of object it applies to, and whether
or not the object has been appended to a collection. In an ODBCDirect workspace, the Name
property of an appended object is always read-only. The following table indicates whether the Name
property in a Microsoft Jet workspace is read/write or read-only for an object that is appended to a
collection (unless otherwise noted), and also indicates its maximum length in cases where it is
read/write.

Object Usage Maximum length
Container Read-only
Connection Read-only
Database Read-only
Document Read-only
Field
 Unappended Read/write 64
 Appended to Index Read-only
 Appended to QueryDef Read-only
 Appended to Recordset Read-only
 Appended to TableDef
(native)

Read/write 64

 Appended to TableDef
(linked)

Read-only

 Appended to Relation Read-only
Group
 Unappended Read/write 20
 Appended Read-only

Index
 Unappended Read/write 64
 Appended Read-only
Parameter Read-only
Property
 Unappended Read/write 64
 Appended Read-only
 Built-in Read-only
QueryDef
 Unappended Read/write 64
 Temporary Read-only
 Appended Read/write 64
Recordset Read-only
Relation
 Unappended Read/write 64
 Appended Read-only
TableDef Read/write 64
User
 Unappended Read/write 20
 Appended Read-only
Workspace
 Unappended Read/write 20
 Appended Read-only

NoMatch Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproNoMatchC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproNoMatchX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproNoMatchA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproNoMatchS"}

Indicates whether a particular record was found by using the Seek method or one of the Find
methods (Microsoft Jet workspaces only).

Return Values
The return value is a Boolean that is True if the desired record was not found. When you open or
create a Recordset object, its NoMatch property is set to False.

Remarks
To locate a record, use the Seek method on a table-type Recordset object or one of the Find
methods on a dynaset- or snapshot-type Recordset object. Check the NoMatch property setting to
see whether the record was found.

If the Seek or Find method is unsuccessful and the NoMatch property is True, the current record will
no longer be valid. Be sure to obtain the current record's bookmark before using the Seek method or
a Find method if you'll need to return to that record.

Note Using any of the Move methods on a Recordset object won't affect its NoMatch property
setting.

Number Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproNumberC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproNumberX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproNumberA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproNumberS"}

Returns a numeric value specifying an error. The Number property is the Error object's default
property.

Return Values
The return value is a Long data type that represents an error number.

Remarks
Use the Number property to determine the error that occurred. The value of the property corresponds
to a unique trap number that corresponds to an error condition. For a complete list of all trap numbers
and error conditions, see Trappable Microsoft Jet and DAO Errors.

ODBCTimeout Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproODBCTimeoutC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproODBCTimeoutX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproODBCTimeoutA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproODBCTimeoutS"}

Indicates the number of seconds to wait before a timeout error occurs when a QueryDef is executed
on an ODBC database.

Settings and Return Values
The setting or return value is an Integer representing the number of seconds to wait before a timeout
error occurs.

When the ODBCTimeout property is set to -1, the timeout defaults to the current setting of the
QueryTimeout property of the Connection or Database object that contains the QueryDef. When
the ODBCTimeout property is set to 0, no timeout error occurs.

Remarks
When you're using an ODBC database, such as Microsoft SQL Server, delays can occur because of
network traffic or heavy use of the ODBC server. Rather than waiting indefinitely, you can specify how
long to wait before returning an error.

Setting the ODBCTimeout property of a QueryDef object overrides the value specified by the
QueryTimeout property of the Connection or Database object containing the QueryDef, but only for
that QueryDef object.

Note In an ODBCDirect workspace, after setting ODBCTimeout to an explicit value you can reset it
back to the default (i.e., -1) only once during the life of the QueryDef object. Otherwise, an error will
occur.

OrdinalPosition Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproOrdinalPositionC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproOrdinalPositionX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproOrdinalPositionA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproOrdinalPositionS"}

Sets or returns the relative position of a Field object within a Fields collection. For an object not yet
appended to the Fields collection, this property is read/write.

Settings and Return Values
The setting or return value is an Integer that specifies the numeric order of fields. The default is 0.

Remarks
The availability of the OrdinalPosition property depends on the object that contains the Fields
collection, as shown in the following table.

If the Fields collection
belongs to a Then OrdinalPosition is
Index object Not supported
QueryDef object Read-only
Recordset object Read-only
Relation object Not supported
TableDef object Read/write

Generally, the ordinal position of an object that you append to a collection depends on the order in
which you append the object. The first appended object is in the first position (0), the second
appended object is in the second position (1), and so on. The last appended object is in ordinal
position count – 1, where count is the number of objects in the collection as specified by the Count
property setting.

You can use the OrdinalPosition property to specify an ordinal position for new Field objects that
differs from the order in which you append those objects to a collection. This enables you to specify a
field order for your tables, queries, and recordsets when you use them in an application. For example,
the order in which fields are returned in a SELECT * query is determined by the current
OrdinalPosition property values.

You can permanently reset the order in which fields are returned in recordsets by setting the
OrdinalPosition property to any positive integer.

Two or more Field objects in the same collection can have the same OrdinalPosition property value,
in which case they will be ordered alphabetically. For example, if you have a field named Age set to 4
and you set a second field named Weight to 4, Weight is returned after Age.

You can specify a number that is greater than the number of fields minus 1. The field will be returned
in an order relative to the largest number. For example, if you set a field's OrdinalPosition property to
20 (and there are only 5 fields) and you've set the OrdinalPosition property for two other fields to 10
and 30, respectively, the field set to 20 is returned between the fields set to 10 and 30.

Note Even if the Fields collection of a TableDef has not been refreshed, the field order in a
Recordset opened from the TableDef will reflect the OrdinalPosition data of the TableDef object. A
table-type Recordset will have the same OrdinalPosition data as the underlying table, but any other
type of Recordset will have new OrdinalPosition data (starting with 0) that follow the order
determined by the OrdinalPosition data of the TableDef.

Owner Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproOwnerC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproOwnerX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproOwnerA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproOwnerS"}

Sets or returns a value that specifies the owner of the object (Microsoft Jet workspaces only).

Settings and Return Values
The setting or return value is a String that evaluates to either the name of a User object in the Users
collection or the name of a Group object in the Groups collection.

Remarks
The owner of an object has certain access privileges denied to other users. Any individual user
account (represented by a User object) or group of user accounts (represented by a Group object)
can change the Owner property setting at any time if it has the appropriate permissions.

Password Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproPasswordC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproPasswordX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproPasswordA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproPasswordS"}

Sets the password for a user account (Microsoft Jet workspaces only).

Settings
The setting is a String that can be up to 14 characters long and can include any characters except
the ASCII character 0 (null). This property setting is write-only for new objects not yet appended to a
collection, and is not available for existing objects.

Remarks
Set the Password property along with the PID property when you create a new User object.

Use the NewPassword method to change the Password property setting for an existing User object.
To clear a password, set the newpassword argument of the NewPassword method to a zero-length
string ("").

Passwords are case-sensitive.

Note If you don't have access permission, you can't change the password of any other user.

PercentPosition Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproPercentPositionC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproPercentPositionX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproPercentPositionA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproPercentPositionS"}

Sets or returns a value indicating the approximate location of the current record in the Recordset
object based on a percentage of the records in the Recordset.

Settings and Return Values
The setting or return value is a Single that is a number between 0.0 and 100.00.

Remarks
To indicate or change the approximate position of the current record in a Recordset object, you can
check or set the PercentPosition property. When working with a dynaset- or snapshot-type
Recordset object opened directly from a base table, first populate the Recordset object by moving to
the last record before you set or check the PercentPosition property. If you use the PercentPosition
property before fully populating the Recordset object, the amount of movement is relative to the
number of records accessed as indicated by the RecordCount property setting. You can move to the
last record by using the MoveLast method.

Note Using the PercentPosition property to move the current record to a specific record in a
Recordset object isn't recommended—the Bookmark property is better suited for this task.

Once you set the PercentPosition property to a value, the record at the approximate position
corresponding to that value becomes current, and the PercentPosition property is reset to a value
that reflects the approximate position of the current record. For example, if your Recordset object
contains only five records, and you set its PercentPosition property value to 77, the value returned
from the PercentPosition property may be 80, not 77.

The PercentPosition property applies to all types of Recordset objects except for forward-only–type
Recordset objects or Recordset objects opened from pass-through queries against remote
databases.

You can use the PercentPosition property with a scroll bar on a form or text box to indicate the
location of the current record in a Recordset object.

Permissions Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproPermissionsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproPermissionsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproPermissionsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproPermissionsS"}

Sets or returns a value that establishes the permissions for the user or group identified by the
UserName property of a Container or Document object (Microsoft Jet workspaces only).

Settings and Return Values
The setting or return value is a Long constant that establishes permissions. The following tables list
the valid constants for the Permissions property of various DAO objects. Unless otherwise noted, all
constants shown in all tables are valid for Document objects.

The following table lists possible values for Container objects other than Tables and Databases
containers.

Constant Description
dbSecNoAccess The user doesn't have access to the

object (not valid for Document
objects).

dbSecFullAccess The user has full access to the object.
dbSecDelete The user can delete the object.
dbSecReadSec The user can read the object's

security-related information.
dbSecWriteSec The user can alter access

permissions.
dbSecWriteOwner The user can change the Owner

property setting.

The following tables lists the possible settings and return values for the Tables container.

Constant Description
dbSecCreate The user can create new documents

(not valid for Document objects).
dbSecReadDef The user can read the table definition,

including column and index
information.

dbSecWriteDef The user can modify or delete the
table definition, including column and
index information.

dbSecRetrieveData The user can retrieve data from the
Document object.

dbSecInsertData The user can add records.
dbSecReplaceData The user can modify records.
dbSecDeleteData The user can delete records.

The following tables lists the possible settings and return values for the Databases container.

Constant Description
dbSecDBAdmin The user can replicate a database

and change the database password
(not valid for Document objects).

dbSecDBCreate The user can create new databases.
This option is valid only on the

Databases container in the
workgroup information file
(Systen.mdw). This constant isn't
valid for Document objects.

dbSecDBExclusive The user has exclusive access to the
database.

dbSecDBOpen The user can open the database.

Remarks
Use this property to establish or determine the type of read/write permissions the user has for a
Container or Document object.

A Document object inherits the permissions for users from its Container object, provided the Inherit
property of the Container object is set for those users or for a group to which the users belong. By
setting a Document object's Permissions and UserName properties later, you can further refine the
access control behavior of your object.

If you want to set or return permissions for a user that includes permissions inherited from any groups
to which the user belongs, use the AllPermissions property.

PID Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproPIDC"} {ewc HLP95EN.DLL,DYNALINK,"Example":"daproPIDX":1}
{ewc HLP95EN.DLL,DYNALINK,"Applies To":"daproPIDA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproPIDS"}

Sets the personal identifier (PID) for either a group or a user account (Microsoft Jet workspaces only).

Settings
The setting is a String containing 4-20 alphanumeric characters. This property setting is write-only for
new objects not yet appended to a collection, and is not available for existing objects.

Remarks
Set the PID property along with the Name property when you create a new Group object. Set the PID
property along with the Name and Password properties when you create a new User object.

Primary Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproPrimaryC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproPrimaryX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproPrimaryA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproPrimaryS"}

Sets or returns a value that indicates whether an Index object represents a primary index for a table
(Microsoft Jet workspaces only).

Settings and Return Values
The setting or return value is a Boolean that is True if the Index object represents a primary index.

The Primary property setting is read/write for a new Index object not yet appended to a collection
and read-only for an existing Index object in an Indexes collection. If the Index object is appended to
the TableDef object but the TableDef object isn't appended to the TableDefs collection, the Index
property is read/write.

Remarks
A primary index consists of one or more fields that uniquely identify all records in a table in a
predefined order. Because the index field must be unique, the Unique property of the Index object is
set to True. If the primary index consists of more than one field, each field can contain duplicate
values, but each combination of values from all the indexed fields must be unique. A primary index
consists of a key for the table and usually contains the same fields as the primary key.

Note You don't have to create indexes for tables, but in large, unindexed tables, accessing a
specific record can take a long time. The Attributes property of each Field object in the Index object
determines the order of records and consequently determines the access techniques to use for that
index. When you create a new table in your database, it's a good idea to create an index on one or
more fields that uniquely identify each record, and then set the Primary property of the Index object
to True.

When you set a primary key for a table, the primary key is automatically defined as the primary index
for the table.

QueryTimeout Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproQueryTimeoutC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproQueryTimeoutX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproQueryTimeoutA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproQueryTimeoutS"}

Sets or returns a value that specifies the number of seconds to wait before a timeout error occurs
when a query is executed on an ODBC data source.

Settings and Return Values
The setting or return value is an Integer representing the number of seconds to wait. The default
value is 60.

Remarks
When you're using an ODBC database, such as Microsoft SQL Server, there may be delays due to
network traffic or heavy use of the ODBC server. Rather than waiting indefinitely, you can specify how
long to wait.

When you use QueryTimeout with a Connection or Database object, it specifies a global value for
all queries associated with the database. You can override this value for a specific query by setting
the ODBCTimeout property of the particular QueryDef object.

In a Microsoft Jet workspace, you can override the default value by creating a new “ODBC” key in the
Registry path \HKEY_LOCAL_MACHINE\SOFTWARE\Jet\3.5\, creating a QueryTimeout parameter
in this key, and setting the value as desired.

RecordCount Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproRecordCountC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproRecordCountX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproRecordCountA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproRecordCountS"}

Returns the number of records accessed in a Recordset object, or the total number of records in a
table-type Recordset or TableDef object.

Return Values
The return value is a Long data type.

Remarks
Use the RecordCount property to find out how many records in a Recordset or TableDef object
have been accessed. The RecordCount property doesn't indicate how many records are contained in
a dynaset-, snapshot-, or forward-only–type Recordset object until all records have been accessed.
Once the last record has been accessed, the RecordCount property indicates the total number of
undeleted records in the Recordset or TableDef object. To force the last record to be accessed, use
the MoveLast method on the Recordset object. You can also use an SQL Count function to
determine the approximate number of records your query will return.

Note Using the MoveLast method to populate a newly opened Recordset negatively impacts
performance. Unless it is necessary to have an accurate RecordCount as soon as you open a
Recordset, it's better to wait until you populate the Recordset with other portions of code before
checking the RecordCount property.

As your application deletes records in a dynaset-type Recordset object, the value of the
RecordCount property decreases. However, records deleted by other users aren't reflected by the
RecordCount property until the current record is positioned to a deleted record. If you execute a
transaction that affects the RecordCount property setting and you subsequently roll back the
transaction, the RecordCount property won't reflect the actual number of remaining records.

The RecordCount property of a snapshot- or forward-only–type Recordset object isn't affected by
changes in the underlying tables.

A Recordset or TableDef object with no records has a RecordCount property setting of 0.

When you work with linked TableDef objects, the RecordCount property setting is always –1.

Using the Requery method on a Recordset object resets the RecordCount property just as if the
query were re-executed.

RecordsAffected Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproRecordsAffectedC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproRecordsAffectedX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproRecordsAffectedA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproRecordsAffectedS"}

Returns the number of records affected by the most recently invoked Execute method.

Return Values
The return value is a Long from 0 to the number of records affected by the most recently invoked
Execute method on either a Database or QueryDef object.

Remarks
When you use the Execute method to run an action query from a QueryDef object, the
RecordsAffected property will contain the number of records deleted, updated, or inserted.

When you use RecordsAffected in an ODBCDirect workspace, it will not return a useful value from
an SQL DROP TABLE action query.

Required Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproRequiredC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproRequiredX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproRequiredA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproRequiredS"}

Sets or returns a value that indicates whether a Field object requires a non-Null value or whether all
the fields in an Index object must have a value.

Settings and Return Values
The setting or return value is a Boolean that is True if a field can't contain a Null value.

For an object not yet appended to a collection, this property is read/write. For an Index object, this
property setting is read-only for objects appended to Indexes collections in Recordset and TableDef
objects.

Remarks
The availability of the Required property depends on the object that contains the Fields collection, as
shown in the following table.

If the Fields collection
belongs to a Then Required is
Index object Not supported
QueryDef object Read-only
Recordset object Read-only
Relation object Not supported
TableDef object Read/write

For a Field object, you can use the Required property along with the AllowZeroLength,
ValidateOnSet, or ValidationRule property to determine the validity of the Value property setting for
that Field object. If the Required property is set to False, the field can contain Null values as well as
values that meet the conditions specified by the AllowZeroLength and ValidationRule property
settings.

Note When you can set this property for either an Index object or a Field object, set it for the Field
object. The validity of the property setting for a Field object is checked before that of an Index object.

Restartable Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproRestartableC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproRestartableX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproRestartableA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproRestartableS"}

Returns a value that indicates whether a Recordset object supports the Requery method, which re-
executes the query on which the Recordset object is based.

Return Values
The return value is a Boolean data type that is True if the Recordset object supports the Requery
method. Table-type Recordset objects always return False.

Remarks
Check the Restartable property before using the Requery method on a Recordset object. If the
object's Restartable property is set to False, use the OpenRecordset method on the underlying
QueryDef object to re-execute the query.

ReturnsRecords Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproReturnsRecordsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproReturnsRecordsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproReturnsRecordsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproReturnsRecordsS"}

Sets or returns a value that indicates whether an SQL pass-through query to an external database
returns records.

Settings and Return Values
The setting or return value is a Boolean that is True (default) if a pass-through query returns records.

Remarks
Not all SQL pass-through queries to external databases return records. For example, an SQL
UPDATE statement updates records without returning records, while an SQL SELECT statement
does return records. If the query returns records, set the ReturnsRecords property to True; if the
query doesn't return records, set the ReturnsRecords property to False.

Note You must set the Connect property before you set the ReturnsRecords property.

Size Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproSizeC"} {ewc HLP95EN.DLL,DYNALINK,"Example":"daproSizeX":1}
{ewc HLP95EN.DLL,DYNALINK,"Applies To":"daproSizeA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproSizeS"}

Sets or returns a value that indicates the maximum size, in bytes, of a Field object.

Settings and Return Values
The setting or return value is a constant that indicates the maximum size of a Field object. For an
object not yet appended to the Fields collection, this property is read/write. The setting depends on
the Type property setting of the Field object, as discussed under Remarks.

Remarks
For fields (other than Memo type fields) that contain character data, the Size property indicates the
maximum number of characters that the field can hold. For numeric fields, the Size property indicates
how many bytes of storage are required.

Use of the Size property depends on the object that contains the Fields collection to which the Field
object is appended, as shown in the following table.

Object appended to Usage
Index Not supported
QueryDef Read-only
Recordset Read-only
Relation Not supported
TableDef Read-only

When you create a Field object with a data type other than Text, the Type property setting
automatically determines the Size property setting; you don't need to set it. For a Field object with the
Text data type, however, you can set Size to any integer up to the maximum text size (255 for
Microsoft Jet databases). If you do not set the size, the field will be as large as the database allows.

For Long Binary and Memo Field objects, Size is always set to 0. Use the FieldSize property of the
Field object to determine the size of the data in a specific record. The maximum size of a Long Binary
or Memo field is limited only by your system resources or the maximum size that the database allows.

Sort Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproSortC"} {ewc HLP95EN.DLL,DYNALINK,"Example":"daproSortX":1}
{ewc HLP95EN.DLL,DYNALINK,"Applies To":"daproSortA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproSortS"}

Sets or returns the sort order for records in a Recordset object (Microsoft Jet workspaces only).

Settings and Return Values
The setting or return value is a String that contains the ORDER BY clause of an SQL statement
without the reserved words ORDER BY.

Remarks
You can use the Sort property with dynaset- and snapshot-type Recordset objects.

When you set this property for an object, sorting occurs when a subsequent Recordset object is
created from that object. The Sort property setting overrides any sort order specified for a QueryDef
object.

The default sort order is ascending (A to Z or 0 to 100).

The Sort property doesn't apply to table- or forward-only–type Recordset objects. To sort a table-type
Recordset object, use the Index property.

Note In many cases, it's faster to open a new Recordset object by using an SQL statement that
includes the sorting criteria.

Source Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproSourceC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproSourceX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproSourceA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproSourceS"}

Returns the name of the object or application that originally generated the error.

Return Values
The return value is a String representing the object or application that generated the error.

Remarks
The Source property value is usually the object's class name or programmatic ID. Use the Source
property to provide your users with information when your code is unable to handle an error
generated in an object in another application.

For example, if you access Microsoft Excel and it generates a "Division by zero" error, Microsoft Excel
sets Error.Number to the Microsoft Excel code for that error and sets the Source property to
Excel.Application. Note that if the error is generated in another object called by Microsoft Excel,
Microsoft Excel intercepts the error and still sets Error.Number to the Microsoft Excel code. However,
the other Error object properties (including Source) will retain the values as set by the object that
generated the error. The Source property always contains the name of the object that originally
generated the error.

Based on all of the error documentation, you can write code that will handle the error appropriately. If
your error handler fails, you can use the Error object information to describe the error to your user,
using the Source property and the other Error properties to give the user information about which
object originally caused the error, the description of the error, and so forth.

Note The On Error Resume Next construct may be preferable to On Error GoTo when dealing
with errors generated during access to other objects. Checking the Error object property after each
interaction with an object removes ambiguity about which object your code was accessing when the
error occurred. Thus, you can be sure which object placed the error code in Error.Number, as well as
which object originally generated the error (Error.Source).

SourceField, SourceTable Properties
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproSourceFieldC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproSourceFieldX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproSourceFieldA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproSourceFieldS"}

· SourceField — returns a value that indicates the name of the field that is the original source of the
data for a Field object.

· SourceTable — returns a value that indicates the name of the table that is the original source of
the data for a Field object.

Return Values
The return value is a String specifying the name of the field or table that is the source of data.

Remarks
For a Field object, use of the SourceField and SourceTable properties depends on the object that
contains the Fields collection that the Field object is appended to, as shown in the following table.

Object appended to Usage
Index Not supported
QueryDef Read-only
Recordset Read-only
Relation Not supported
TableDef Read-only

These properties indicate the original field and table names associated with a Field object. For
example, you could use these properties to determine the original source of the data in a query field
whose name is unrelated to the name of the field in the underlying table.

Note The SourceTable property will not return a meaningful table name if used on a Field object in
the Fields collection of a table-type Recordset object.

SourceTableName Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproSourceTableNameC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproSourceTableNameX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproSourceTableNameA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproSourceTableNameS"}

Sets or returns a value that specifies the name of a linked table or the name of a base table (Microsoft
Jet workspaces only).

Settings and Return Values
The setting or return value is a String that specifies a table name. For a base table, the setting is a
zero-length string (""). This property setting is read-only for a base table and read/write for a linked
table or an object not appended to a collection.

SQL Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproSQLC"} {ewc HLP95EN.DLL,DYNALINK,"Example":"daproSQLX":1}
{ewc HLP95EN.DLL,DYNALINK,"Applies To":"daproSQLA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproSQLS"}

Sets or returns the SQL statement that defines the query executed by a QueryDef object.

Settings and Return Values
The setting or return value is a String that contains an SQL statement.

Remarks
The SQL property contains the SQL statement that determines how records are selected, grouped,
and ordered when you execute the query. You can use the query to select records to include in a
Recordset object. You can also define action queries to modify data without returning records.

The SQL syntax used in a query must conform to the SQL dialect of the query engine, which is
determined by the type of workspace. In a Microsoft Jet workspace, use the Microsoft Jet SQL dialect,
unless you create an SQL pass-through query, in which case you should use the dialect of the server.
In an ODBCDirect workspace, use the SQL dialect of the server.

Note You can send DAO queries to a variety of different database servers with ODBCDirect, and
different servers will recognize slightly different dialects of SQL. Therefore, context-sensitive Help is
no longer provided for Microsoft Jet SQL, although online Help for Microsoft Jet SQL is still included
through the Help menu. Be sure to check the appropriate reference documentation for the SQL dialect
of your database server when using either ODBCDirect connections or pass-through queries in
Microsoft Jet-connected client/server applications.

If the SQL statement includes parameters for the query, you must set these before execution. Until
you reset the parameters, the same parameter values are applied each time you execute the query.

In an ODBCDirect workspace, you can also use the SQL property to execute a prepared statement
on the server. For example, setting the SQL property to the following string will execute a prepared
statement named “GetData” with one parameter on a Microsoft SQL Server back-end.
"{call GetData (?)}"
In a Microsoft Jet workspace, using a QueryDef object is the preferred way to perform SQL pass-
through operations on Microsoft Jet-connected ODBC data sources. By setting the QueryDef object's
Connect property to an ODBC data source, you can use non–Microsoft-Jet-database SQL in the
query to be passed to the external server. For example, you can use TRANSACT SQL statements
(with Microsoft SQL Server or Sybase SQL Server databases), which the Microsoft Jet database
engine would otherwise not process.

Note If you set the property to a string concatenated with a non-integer value, and the system
parameters specify a non-U.S. decimal character such as a comma (for example, strSQL =
"PRICE > " & lngPrice, and lngPrice = 125,50), an error will result when you try to execute
the QueryDef object in a Microsoft Jet database. This is because during concatenation, the number
will be converted to a string using your system's default decimal character, and Microsoft Jet SQL only
accepts U.S. decimal characters.

Table Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproTableC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproTableX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"daproTableA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproTableS"}

Indicates the name of a Relation object's primary table. This should be equal to the Name property
setting of a TableDef or QueryDef object (Microsoft Jet workspaces only).

Settings and Return Values
The setting or return value is a String that evaluates to the name of a table in the TableDefs
collection or query in the QueryDefs collection. The Table property setting is read/write for a new
Relation object not yet appended to a collection and read-only for an existing Relation object in a
Relations collection.

Remarks
Use the Table property with the ForeignTable property to define a Relation object, which represents
the relationship between fields in two tables or queries. Set the Table property to the Name property
setting of the primary TableDef or QueryDef object, and set the ForeignTable property to the Name
property setting of the foreign (referencing) TableDef or QueryDef object. The Attributes property
determines the type of relationship between the two objects.

For example, if you had a list of valid part codes (in a field named PartNo) stored in a ValidParts table,
you could establish a one-to-many relationship with an OrderItem table such that if a part code were
entered into the OrderItem table, it would have to already be in the ValidParts table. If the part code
didn't exist in the ValidParts table and you had not set the Attributes property of the Relation object
to dbRelationDontEnforce, a trappable error would occur.

In this case, the ValidParts table is the primary table, so the Table property of the Relation object
would be set to ValidParts and the ForeignTable property of the Relation object would be set to
OrderItem. The Name and ForeignName properties of the Field object in the Relation object's
Fields collection would be set to PartNo.

The following illustration depicts this relation.

Transactions Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproTransactionsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproTransactionsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproTransactionsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproTransactionsS"}

Returns a value that indicates whether an object supports transactions.

Return Values
The return value is a Boolean data type that is True if the object supports transactions.

Remarks
In an ODBCDirect workspace, the Transactions property is available on Connection and Database
objects, and indicates whether or not the ODBC driver you are using supports transactions.

In a Microsoft Jet workspace, you can also use the Transactions property with dynaset- or table-type
Recordset objects. Snapshot- and forward-only–type Recordset objects always return False.

If a dynaset- or table-type Recordset is based on a Microsoft Jet database engine table, the
Transactions property is True and you can use transactions. Other database engines may not
support transactions. For example, you can't use transactions in a dynaset-type Recordset object
based on a Paradox table.

Check the Transactions property before using the BeginTrans method on the Recordset object's
Workspace object to make sure that transactions are supported. Using the BeginTrans,
CommitTrans, or Rollback methods on an unsupported object has no effect.

Type Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproTypeC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproTypeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"daproTypeA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproTypeS"}

Sets or returns a value that indicates the operational type or data type of an object.

Settings and Return Values
The setting or return value is a constant that indicates an operational or data type. For a Field or
Property object, this property is read/write until the object is appended to a collection or to another
object, after which it's read-only. For a QueryDef, Recordset, or Workspace object, the property
setting is read-only. For a Parameter object in a Microsoft Jet workspace the property is read-only,
while in an ODBCDirect workspace the property is always read-write.

For a Field, Parameter, or Property object, the possible settings and return values are described in
the following table.

Constant Description
dbBigInt Big Integer
dbBinary Binary
dbBoolean Boolean
dbByte Byte
dbChar Char
dbCurrency Currency
dbDate Date/Time
dbDecimal Decimal
dbDouble Double
dbFloat Float
dbGUID GUID
dbInteger Integer
dbLong Long
dbLongBinary Long Binary (OLE Object)
dbMemo Memo
dbNumeric Numeric
dbSingle Single
dbText Text
dbTime Time
dbTimeStamp Time Stamp
dbVarBinary VarBinary

For a QueryDef object, the possible settings and return values are shown in the following table.

Constant Query type
dbQAction Action
dbQAppend Append
dbQCompound Compound
dbQCrosstab Crosstab
dbQDDL Data-definition
dbQDelete Delete
dbQMakeTable Make-table

dbQProcedure Procedure (ODBCDirect workspaces only)
dbQSelect Select
dbQSetOperation Union
dbQSPTBulk Used with dbQSQLPassThrough to specify a

query that doesn't return records (Microsoft
Jet workspaces only).

dbQSQLPassThrough Pass-through (Microsoft Jet workspaces only)
dbQUpdate Update

Note To create an SQL pass-through query in a Microsoft Jet workspace, you don't need to
explicitly set the Type property to dbQSQLPassThrough. The Microsoft Jet database engine
automatically sets this when you create a QueryDef object and set the Connect property.

For a Recordset object, the possible settings and return values are as follows.

Constant Recordset type
dbOpenTable Table (Microsoft Jet workspaces only)
dbOpenDynamic Dynamic (ODBCDirect workspaces only)
dbOpenDynaset Dynaset
dbOpenSnapshot Snapshot
dbOpenForwardOnly Forward-only

For a Workspace object, the possible settings and return values are as follows.

Constant Workspace type
dbUseJet The Workspace is connected to the Microsoft

Jet database engine.
dbUseODBC The Workspace is connected to an ODBC

data source.

Remarks
When you append a new Field, Parameter, or Property object to the collection of an Index,
QueryDef, Recordset, or TableDef object, an error occurs if the underlying database doesn't support
the data type specified for the new object.

Unique Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproUniqueC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproUniqueX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproUniqueA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproUniqueS"}

Sets or returns a value that indicates whether an Index object represents a unique (key) index for a
table (Microsoft Jet workspaces only).

Settings and Return Values
The setting or return value is a Boolean that is True if the Index object represents a unique index.
For an Index object, this property setting is read/write until the object is appended to a collection,
after which it's read-only.

Remarks
A unique index consists of one or more fields that logically arrange all records in a table in a unique,
predefined order. If the index consists of one field, values in that field must be unique for the entire
table. If the index consists of more than one field, each field can contain duplicate values, but each
combination of values from all the indexed fields must be unique.

If both the Unique and Primary properties of an Index object are set to True, the index is unique and
primary: It uniquely identifies all records in the table in a predefined, logical order. If the Primary
property is set to False, the index is a secondary index. Secondary indexes (both key and nonkey)
logically arrange records in a predefined order without serving as an identifier for records in the table.

Notes
· You don't have to create indexes for tables, but in large, unindexed tables, accessing a specific

record can take a long time.
· Records retrieved from tables without indexes are returned in no particular sequence.
· The Attributes property of each Field object in the Index object determines the order of records

and consequently determines the access techniques to use for that Index object.
· A unique index helps optimize finding records.
· Indexes don't affect the physical order of a base table ¾ indexes affect only how the records are

accessed by the table-type Recordset object when a particular index is chosen or when the
Microsoft Jet database engine creates Recordset objects.

Updatable Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproUpdatableC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproUpdatableX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproUpdatableA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproUpdatableS"}

Returns a value that indicates whether you can change a DAO object.

Return Values
The return value is a Boolean data type that is True if the object can be changed or updated.
(Snapshot- and forward-only–type Recordset objects always return False.)

Remarks
Depending on the object, if the Updatable property setting is True, the associated statement in the
following table is true.

Object Type indicates
Database The object can be changed
QueryDef The query definition can be changed
Recordset The records can be updated
TableDef The table definition can be changed

The Updatable property setting is always True for a newly created TableDef object and False for a
linked TableDef object. A new TableDef object can be appended only to a database for which the
current user has write permission.

Many types of objects can contain fields that can't be updated. For example, you can create a
dynaset-type Recordset object in which only some fields can be changed. These fields can be fixed
or contain data that increments automatically, or the dynaset can result from a query that combines
updatable and nonupdatable tables.

If the object contains only read-only fields, the value of the Updatable property is False. When one or
more fields are updatable, the property's value is True. You can edit only the updatable fields. A
trappable error occurs if you try to assign a new value to a read-only field.

The Updatable property of a QueryDef object is set to True if the query definition can be updated,
even if the resulting Recordset object isn't updatable.

Because an updatable object can contain read-only fields, check the DataUpdatable property of each
field in the Fields collection of a Recordset object before you edit a record.

UserName Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproUserNameC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproUserNameX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproUserNameA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproUserNameS"}

Sets or returns a value that represents a user, a group of users, or the owner of a Workspace object.

Settings and Return Values
The setting or return value is a String that evaluates to the name of a user. In a Microsoft Jet
workspace, this represents a User object in the Users collection or a Group object in the Groups
collection. For Microsoft Jet Container and Document objects, this property setting is read/write. For
all Workspace objects, this property setting is read-only.

Remarks
Depending on the type of object, the UserName property represents the following.

· The owner of a Workspace object.
· A user or group of users when you manipulate the access permissions of a Container object or a

Document object (Microsoft Jet workspaces only).

To find or set the permissions for a particular user or group of users, first set the UserName property
to the user or group name that you want to examine. Then check the Permissions property setting to
determine what permissions that user or group of users has, or set the Permissions property to
change the permissions.

For a Workspace object, check the UserName property setting to determine the owner of the
Workspace object. Set the UserName property to establish the owner of the Workspace object
before you append the object to the Workspaces collection.

V1xNullBehavior Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproV1xNullBehaviorC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproV1xNullBehaviorX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproV1xNullBehaviorA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproV1xNullBehaviorS"}

Indicates whether zero-length strings ("") used in code to fill Text or Memo fields are converted to
Null.

Settings and Return Values
The setting or return value is a Boolean that is True if zero-length strings are converted to Null.

Remarks
This property applies to Microsoft Jet database engine version 1.x databases that have been
converted to Microsoft Jet database engine version 2.0 or 3.0 databases.

Note The Microsoft Jet database engine automatically creates this property when it converts a
version 1.x database to a version 2.0 or 3.x database. A 2.0 database will retain this property when it
is converted to a 3.x database.

If you change this property setting, you must close and then reopen the database for your change to
take effect.

For fastest performance, modify code that sets any Text or Memo fields to zero-length strings so that
the fields are set to Null instead, and remove the V1xNullBehavior property from the Properties
collection.

ValidateOnSet Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproValidateOnSetC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproValidateOnSetX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproValidateOnSetA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproValidateOnSetS"}

Sets or returns a value that specifies whether or not the value of a Field object is immediately
validated when the object's Value property is set (Microsoft Jet workspaces only).

Settings and Return Values
The setting or return value is a Boolean that can be one of the following values.

Value Description
True The validation rule specified by the ValidationRule

property setting of the Field object is checked when
you set the object's Value property.

False (Default) Validate when the record is updated.

Only Field objects in Recordset objects support the ValidateOnSet property as read/write.

Remarks
Setting the ValidateOnSet property to True can be useful in a situation when a user is entering
records that include substantial Memo data. Waiting until the Update call to validate the data can
result in unnecessary time spent writing the lengthy Memo data to the database if it turns out that the
data was invalid anyway because a validation rule was broken in another field.

ValidationRule Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproValidationRuleC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproValidationRuleX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproValidationRuleA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproValidationRuleS"}

Sets or returns a value that validates the data in a field as it's changed or added to a table (Microsoft
Jet workspaces only).

Settings and Return Values
The settings or return values is a String that describes a comparison in the form of an SQL WHERE
clause without the WHERE reserved word. For an object not yet appended to the Fields collection,
this property is read/write. See Remarks for the more specific read/write characteristics of this
property.

Remarks
The ValidationRule property determines whether or not a field contains valid data. If the data is not
valid, a trappable run-time error occurs. The returned error message is the text of the ValidationText
property, if specified, or the text of the expression specified by ValidationRule.

For a Field object, use of the ValidationRule property depends on the object that contains the Fields
collection to which the Field object is appended.

Object appended to Usage
Index Not supported
QueryDef Read-only
Recordset Read-only
Relation Not supported
TableDef Read/write

For a Recordset object, use of the ValidationRule property is read-only. For a TableDef object, use
of the ValidationRule property depends on the status of the TableDef object, as the following table
shows.

TableDef Usage
Base table Read/write
Linked table Read-only

Validation is supported only for databases that use the Microsoft Jet database engine.

The string expression specified by the ValidationRule property of a Field object can refer only to that
Field. The expression can't refer to user-defined functions, SQL aggregate functions, or queries. To
set a Field object's ValidationRule property when its ValidateOnSet property setting is True, the
expression must successfully parse (with the field name as an implied operand) and evaluate to True.
If its ValidateOnSet property setting is False, the ValidationRule property setting is ignored.

The ValidationRule property of a Recordset or TableDef object can refer to multiple fields in that
object. The restrictions noted earlier in this topic for the Field object apply.

For a table-type Recordset object, the ValidationRule property inherits the ValidationRule property
setting of the TableDef object that you use to create the table-type Recordset object.

For a TableDef object based on an linked table, the ValidationRule property inherits the
ValidationRule property setting of the underlying base table. If the underlying base table doesn't
support validation, the value of this property is a zero-length string ("").

Note If you set the property to a string concatenated with a non-integer value, and the system
parameters specify a non-U.S. decimal character such as a comma (for example, strRule =

"PRICE > " & lngPrice, and lngPrice = 125,50), an error will result when your code
attempts to validate any data. This is because during concatenation, the number will be converted to
a string using your system's default decimal character, and Microsoft Jet SQL only accepts U.S.
decimal characters.

ValidationText Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproValidationTextC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproValidationTextX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproValidationTextA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproValidationTextS"}

Sets or returns a value that specifies the text of the message that your application displays if the
value of a Field object doesn't satisfy the validation rule specified by the ValidationRule property
setting (Microsoft Jet workspaces only).

Settings and Return Values
The setting or return value is a String that specifies the text displayed if a user tries to enter an invalid
value for a field. For an object not yet appended to a collection, this property is read/write. For a
Recordset object, this property setting is read-only. For a TableDef object, this property setting is
read-only for a linked table and read/write for a base table.

Remarks
For a Field object, use of the ValidationText property depends on the object that contains the Fields
collection to which the Field object is appended, as the following table shows.

Object appended to Usage
Index Not supported
QueryDef Read-only
Recordset Read-only
Relation Not supported
TableDef Read/write

Value Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproValueC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproValueX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"daproValueA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproValueS"}

Sets or returns the value of an object.

Settings and Return Values
The setting or return value is a Variant data type that evaluates to a value appropriate for the data
type, as specified by the Type property of an object.

Remarks
Generally, the Value property is used to retrieve and alter data in Recordset objects.

The Value property is the default property of the Field, Parameter, and Property objects. Therefore,
you can set or return the value of one of these objects by referring to them directly instead of
specifying the Value property.

Trying to set or return the Value property in an inappropriate context (for example, the Value property
of a Field object in the Fields collection of a TableDef object) will cause a trappable error.

Notes
· In an ODBCDirect workspace, you cannot read or set the Value property of a Recordset field more

than once without refreshing the current record. For example, to read and then set the Value
property, first read the property, then use the Move 0 method to refresh the current record, then
write the new value.

· When reading decimal values from a Microsoft SQL Server database, they will be formatted using
scientific notation through a Microsoft Jet workspace, but will appear as normal decimal values
through an ODBCDirect workspace.

Version Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproVersionC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproVersionX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproVersionA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproVersionS"}

· Microsoft Jet workspace ¾ On the DBEngine object, returns the version of DAO currently in use.
On the Database object, returns the version of Jet that created the .mdb file.

· ODBCDirect workspace ¾ On the DBEngine object, returns the version of DAO currently in use.
On the Database object, returns the version of the ODBC driver currently in use.

Return Values
The return value is a String that evaluates to a version number, formatted as follows.

· Microsoft Jet workspace ¾ represents the version number in the form "major.minor". For example,
"3.0". The product version number consists of the version number (3), a period, and the release
number (0).

· ODBCDirect workspace ¾ represents the DAO version number in the form "major.minor", or
represents the ODBC driver version number in the form "major.minor.build". For example, the
DBEngine.Version value of “3.5” indicated DAO version 3.5. A Database object's Version value of
2.50.1032 indicates that the current instance of DAO is connected to ODBC version 2.5, build
1032.

Remarks
In a Microsoft Jet workspace, the Version property of a Database object corresponds to a version of
the Microsoft Jet database engine, and doesn’t necessarily match the version number of the Microsoft
product with which the database engine was included. For example, the Version property of a
Database object created with Microsoft Visual Basic 3.0 will be 1.1, not 3.0.

The following table shows which version of the database engine was included with various versions of
Microsoft products.

Microsoft
Jet Version
(year
released)

Microsoft
Access

Microsoft
Visual
Basic

Microsoft
Excel

Microsoft
Visual C++

1.0 (1992) 1.0 N/A N/A N/A
1.1 (1993) 1.1 3.0 N/A N/A
2.0 (1994) 2.0 N/A N/A N/A
2.5 (1995) N/A 4.0 (16-bit) N/A N/A
3.0 (1995) ‘95 (7.0) 4.0 (32-bit) ‘95 (7.0) 4.x
3.5 (1996) ‘97 (8.0) 5.0 ‘97 (8.0) 5.0

DesignMasterID Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproDesignMasterIDC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproDesignMasterIDX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproDesignMasterIDA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproDesignMasterIDS"}

Sets or returns a 16-byte value that uniquely identifies the Design Master in a replica set (Microsoft
Jet workspaces only).

Settings and Return Values
The setting or return value is a GUID that uniquely identifies the Design Master.

Remarks
You should set the DesignMasterID property only if you need to move the current Design Master.
Setting this property makes a specific replica in the replica set the Design Master.

Caution Never create a second Design Master in a replica set. The existence of a second Design
Master can result in the loss of data.

Under extreme circumstances — for example, if the Design Master is erased or corrupted — you can
set this property at the current replica. However, setting this property at a replica when there is
already another Design Master in the set might partition your replica set into two irreconcilable sets
and prevent any further synchronization of data.

If you decide to make a replica the new Design Master for the set, synchronize it with all the replicas
in the replica set before setting the DesignMasterID property in the replica. The replica must be open
in exclusive mode in order to make it the Design Master.

If you make a replica that is designated read-only into the Design Master, the target replica is made
read/write; the old Design Master also remains read/write.

The DesignMasterID property setting is stored in the MSysRepInfo system table.

KeepLocal Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproKeepLocalC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproKeepLocalX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproKeepLocalA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproKeepLocalS"}

Sets or returns a value on a table, query, form, report, macro, or module that you do not want to
replicate when the database is replicated (Microsoft Jet workspaces only).

Note Before getting or setting the KeepLocal property on a TableDef, or QueryDef object, you
must create it by using the CreateProperty method and append it to the Properties collection for the
object.

Settings and Return Values
The setting or return value is a Text data type. If you set this property to "T", the object will remain
local when the database is replicated. You can't use the KeepLocal property on objects after they
have been replicated.

Remarks
Once you set the KeepLocal property, it will appear in the Properties collection for the Document
object representing the host object.

Before setting the KeepLocal property, you should check the value of the Replicable property.

After you make a database replicable, all new objects created within the Design Master, or in any
other replicas in the set, are local objects. Local objects remain in the replica in which they're created
and aren't copied throughout the replica set. Each time you make a new replica in the set, the new
replica contains all the replicable objects from the source replica, but none of the local objects from
the source replica.

If you create a new object in a replica and want to change it from local to replicable so that all users
can use it, you can either create the object in or import it into the Design Master. Be sure to delete the
local object from any replicas; otherwise, you will encounter a design error. After the object is part of
the Design Master, set the object's Replicable property to True.

The object on which you are setting the KeepLocal property might have already inherited that
property from another object. However, the value set by the other object has no effect on the behavior
of the object you want to keep local. You must explicitly set the property for each object.

Replicable Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproReplicableC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproReplicableX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproReplicableA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproReplicableS"}

Sets or returns a value that determines whether a database or object in a database can be replicated
(Microsoft Jet workspaces only).

Note Before getting or setting the Replicable property on a Database, TableDef, or QueryDef
object, you must create it by using the CreateProperty method and append it to the Properties
collection for the object.

Setting and Return Values
The setting or return value is a Text data type.

On a Database object, setting this property to "T" makes the database replicable. Once you set the
property to "T", you can't change it; setting the property to "F" (or any value other than "T") causes
an error.

On an object in a database, setting this property to "T" replicates the object (and subsequent
changes to the object) at all replicas in the replica set. You can also set this property in the object's
property sheet in Microsoft Access.

Note Microsoft Jet 3.5 also supports the Boolean ReplicableBool property. Its functionality is
identical to the Replicable property, except that it takes a Boolean value. Setting ReplicableBool to
True makes the object replicable.

Remarks
Before setting the Replicable property on a database, make a backup copy of the database. If setting
the Replicable property fails, you should delete the partially replicated database, make a new copy
from the backup, and try again.

When you set this property on a Database object, Microsoft Jet adds fields, tables, and properties to
objects within the database. Microsoft Jet uses these fields, tables, and properties to synchronize
database objects. For example, all existing tables have three new fields added to them that help
identify which records have changed. The addition of these fields and other objects increase the size
of your database.

On forms, reports, macros, and modules defined by a host application (such as Microsoft Access),
you set this property on the host-defined object through the host user interface. Once set, the
Replicable property will appear in the Properties collection for the Document object representing
the host object.

If the Replicable property has already been set on an object using the Replicated check box in the
property sheet for the object, you cannot set the Replicable property in code.

When you create a new table, query, form, report, macro, or module at a replica, the object is
considered local and is stored only at that replica. If you want users at other replicas to be able to use
the object, you must change it from local to replicable. Either create the object at or import it into the
Design Master and then set the Replicable property to "T".

The object on which you are setting the Replicable property might have already inherited that
property from another object. However, the value set by the other object has no effect on the behavior
of the object you want to make replicable. You must explicitly set the property for each object.

ReplicaID Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproReplicaIDC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproReplicaIDX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproReplicaIDA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproReplicaIDS"}

Returns a 16-byte value that uniquely identifies a database replica (Microsoft Jet workspaces only).

Return Values
The return value is a GUID value that uniquely identifies the replica or Design Master.

Remarks
The Microsoft Jet database engine automatically generates this value when you create a new replica.

The ReplicaID property of each replica (and the Design Master) is stored in the MSysReplicas
system table.

SystemDB Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproSystemDBC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproSystemDBX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproSystemDBA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproSystemDBS"}

Sets or returns the path for the current location of the workgroup information file (Microsoft Jet
workspaces only).

Settings and Return Values
The setting or return value is a String describing the fully resolved path to the workgroup information
file.

Remarks
The Microsoft Jet database engine allows you to define a workgroup and set different access
permissions to each object in the database for each user in the workgroup. The workgroup is defined
by the workgroup information file, typically called "system.mda". For users to gain access to the
secured objects in your database, DAO must have the location of this workgroup information file. The
location can be identified to DAO either by specifying it in the Windows Registry or by setting the
SystemDB property. On setup, the default setting is simply "system.mda" with no path.

For this option to have any effect, you must set the SystemDB property before your application
initializes the DBEngine object (that is, before creating an instance of any other DAO object). The
scope of this setting is limited to your application and can't be changed without restarting your
application.

PartialReplica Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproPartialReplicaC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproPartialReplicaX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproPartialReplicaA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproPartialReplicaS"}

Sets or returns a value on a Relation object indicating whether that relation should be considered
when populating a partial replica from a full replica. (Microsoft Jet databases only.)

Settings and Return Values
The setting or return value is a Boolean data type that is True when the relation should be enforced
during synchronization.

Remarks
This property enables you to replicate data from the full replica to the partial replica based on
relationships between tables. You can use the PartialReplica property when setting the ReplicaFilter
property alone can't adequately specify what data should be replicated to the partial. For example,
suppose you have a database in which the Customers table has a one-to-many relationship with the
Orders table, and you want to configure a partial replica that only replicates orders from customers in
the California region (instead of all orders). It is not possible to set the ReplicaFilter property on the
Orders table to Region = 'CA' because the Region field is in the Customers table, not the Orders
table.

To replicate all orders from the California region, you must indicate that the relation between the
Orders and Customers tables will be active during replication. Once you've created a partial replica,
the following steps will populate it with all orders from the California region:

1 Set the ReplicaFilter property on the Customers TableDef object to "Region = 'CA'".
2 Set the value of the PartialReplica property to True on the Relation object corresponding to the

relationship between Orders and Customers.
3 Invoke the PopulatePartial method.

Caution When you set a replica filter or replica relation, be aware that records in the partial replica
that don't satisfy the restriction criteria will be removed from the partial replica, but not from the full
replica. For example, suppose you set the ReplicaFilter property on the Customers TableDef in the
partial replica to "Region = 'CA'" and you then repopulate the database. This will insert or update
all records for California-based customers. If you then reset the ReplicaFilter property to "Region =
'FL'" and repopulate the database, all California region records in the partial replica will be
removed, and all records from Florida-based customers will be inserted from the full replica. No
records in the full replica will be deleted.
Before setting either the ReplicaFilter or PartialReplica property, it's a good idea to synchronize the
partial replica in which you are setting these properties with the full replica. This will ensure that
pending changes in the partial replica will be merged into the full replica before any records are
removed in the partial replica.

ReplicaFilter Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproReplicaFilterC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproReplicaFilterX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproReplicaFilterA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproReplicaFilterS"}

Sets or returns a value on a TableDef object within a partial replica that indicates which subset of
records is replicated to that table from a full replica. (Microsoft Jet databases only.)

Settings And Return Values
The setting or return value is a String or Boolean that indicates which subset of records is replicated,
as specified in the following table:

Value Description
A string A criteria that a record in the partial

replica table must satisfy in order to be
replicated from the full replica.

True Replicates all records.
False (Default) Doesn't replicate any records.

Remarks
This property is similar to an SQL WHERE clause (without the word WHERE), but you cannot specify
subqueries, aggregate functions (such as Count), or user-defined functions within the criteria.

You can only synchronize data between a full replica and a partial replica. You can't synchronize data
between two partial replicas. Also, with partial replication you can set restrictions on which records are
replicated, but you can't indicate which fields are replicated.

Usually, you reset a replica filter when you want to replicate a different set of records. For example,
when a sales representative temporarily takes over another sales representative's region, the
database application can temporarily replicate data for both regions and then return to the previous
filter. In this scenario, the application resets the ReplicaFilter property and then repopulates the
partial replica.

If your application changes replica filters, you should follow these steps:

1 Use the Synchronize method to synchronize your full replica with the partial replica in which the
filters are being changed.

2 Use the ReplicaFilter property to make the desired changes to the replica filter.
3 Use the PopulatePartial method to remove all records from the partial replica and transfer all

records from the full replica that meet the new replica filter criteria.

To remove a filter, set the ReplicaFilter property to False. If you remove all filters and invoke the
PopulatePartial method, no records will appear in any replicated tables in the partial replica.

Note If a replica filter has changed, and the Synchronize method is invoked without first invoking
PopulatePartial, a trappable error occurs.

BatchCollisionCount Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproBatchCollisionCountC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproBatchCollisionCountX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproBatchCollisionCountA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproBatchCollisionCountS"}

Returns the number of records that did not complete the last batch update (ODBCDirect workspaces
only).

Return Value
The return value is a Long that indicates the number of failing records, or 0 if all records were
successfully updated.

Remarks
This property indicates how many records encountered collisions or otherwise failed to update during
the last batch update attempt. The value of this property corresponds to the number of bookmarks in
the BatchCollisions property.

If you set the working Recordset object's Bookmark property to bookmark values in the
BatchCollisions array, you can move to each record that failed to complete the most recent batch
Update operation.

After the collision records are corrected, a batch-mode Update method can be called again. At this
point DAO attempts another batch update, and the BatchCollisions property again reflects the set of
records that failed the second attempt. Any records that succeeded in the previous attempt are not
sent in the current attempt, because they now have a RecordStatus property of
dbRecordUnmodified. This process can continue as long as collisions occur, or until you abandon
the updates and close the result set.

BatchCollisions Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproBatchCollisionsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproBatchCollisionsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproBatchCollisionsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproBatchCollisionsS"}

Returns an array of bookmarks indicating the rows that generated collisions in the last batch update
operation (ODBCDirect workspaces only).

Return Value
The return value is a variant expression containing an array of bookmarks.

Remarks
This property contains an array of bookmarks to rows that encountered a collision during the last
attempted batch Update call. The BatchCollisionCount property indicates the number of elements in
the array.

If you set the working Recordset object's Bookmark property to bookmark values in the
BatchCollisions array, you can move to each record that failed to complete the most recent batch-
mode Update operation.

After the collision records are corrected, you can call the batch mode Update method again. At this
point DAO attempts another batch update, and the BatchCollisions property again reflects the set of
records that failed the second attempt. Any records that succeeded in the previous attempt are not
sent in the current attempt, as they now have a RecordStatus property of dbRecordUnmodified.
This process can continue as long as collisions occur, or until you abandon the updates and close the
result set.

This array is re-created each time you execute a batch-mode Update method.

BatchSize Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproBatchSizeC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproBatchSizeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproBatchSizeA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproBatchSizeS"}

Sets or returns the number of statements sent back to the server in each batch (ODBCDirect
workspaces only).

Settings And Return Values
The setting or return value is a Long that indicates the number of batched statements sent the server
in a single batch update. The default value is 15.

Remarks
The BatchSize property determines the batch size used when sending statements to the server in a
batch update. The value of the property determines the number of statements sent to the server in
one command buffer. By default, 15 statements are sent to the server in each batch. This property
can be changed at any time. If a database server doesn't support statement batching, you can set this
property to 1, causing each statement to be sent separately.

CacheStart Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproCacheStartC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproCacheStartX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproCacheStartA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproCacheStartS"}

Sets or returns a value that specifies the bookmark of the first record in a dynaset-type Recordset
object containing data to be locally cached from an ODBC data source (Microsoft Jet workspaces
only).

Settings And Return Values
The setting or return value is a String that specifies a bookmark.

Remarks
Data caching improves the performance of an application that retrieves data from a remote server
through dynaset-type Recordset objects. A cache is a space in local memory that holds the data
most recently retrieved from the server in the event that the data will be requested again while the
application is running. When data is requested, the Microsoft Jet database engine checks the cache
for the requested data first rather than retrieving it from the server, which takes more time. Only data
from an ODBC data source can be saved in the cache.

Any Microsoft Jet-connected ODBC data source, such as a linked table, can have a local cache. To
create the cache, open a Recordset object from the remote data source, set the CacheSize and
CacheStart properties, and then use the FillCache method or step through the records using the
Move methods.

The CacheStart property setting is the bookmark of the first record in the Recordset object to be
cached. You can use the bookmark of any record to set the CacheStart property. Make the record
you want to start the cache the current record, and set the CacheStart property equal to the
Bookmark property.

The Microsoft Jet database engine requests records within the cache range from the cache, and it
requests records outside the cache range from the server.

Records retrieved from the cache don't reflect changes made concurrently to the source data by other
users.

To force an update of all the cached data, set the CacheSize property of the Recordset object to 0,
set it to the size of the cache you originally requested, and then use the FillCache method.

Connection Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproConnectionC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproConnectionX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproConnectionA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproConnectionS"}

On a Database object, returns the Connection object that corresponds to the database (ODBCDirect
workspaces only).

On a Recordset object, returns the Connection object that owns the Recordset (ODBCDirect
workspaces only).

Settings And Return Values
The return value is an object variable that represents the Connection. On a Database object, the
Connection property is read-only, while on a Recordset object the property is read-write.

Remarks
On a Database object, use the Connection property to obtain a reference to a Connection object
that corresponds to the Database. In DAO, a Connection object and its corresponding Database
object are simply two different object variable references to the same object. The Database property
of a Connection object and the Connection property of a Database object make it easier to change
connections to an ODBC data source through the Microsoft Jet database engine to use ODBCDirect.

Database Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproDatabaseC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproDatabaseX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproDatabaseA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproDatabaseS"}

Returns the Database object that corresponds to this connection (ODBCDirect workspaces only).

Return Values
The return value is an object variable that represents a Database object.

Remarks
On a Connection object, use the Database property to obtain a reference to a Database object that
corresponds to the Connection. In DAO, a Connection object and its corresponding Database
object are simply two different object variable references to the same object. The Database property
of a Connection object and the Connection property of a Database object make it easier to change
connections to an ODBC data source through the Microsoft Jet database engine to use ODBCDirect.

DefaultCursorDriver Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproDefaultCursorDriverC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproDefaultCursorDriverX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproDefaultCursorDriverA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproDefaultCursorDriverS"}

Sets or returns the type of cursor driver used on the connection created by the OpenConnection or
OpenDatabase methods (ODBCDirect workspaces only).

Settings And Return Values
The setting or return value is a Long that can be set to one of the following constants:

Constant Description

dbUseDefaultCursor (Default) Uses server-side cursors if
the server supports them; otherwise
use the ODBC Cursor Library.

dbUseODBCCursor Always uses the ODBC Cursor
Library. This option provides better
performance for small result sets, but
degrades quickly for larger result
sets.

dbUseServerCursor Always uses server-side cursors. For
most large operations this option
provides better performance, but
might cause more network traffic.

dbUseClientBatchCursor Always uses the client batch cursor
library. This option is required for
batch updates.

dbUseNoCursor Opens all cursors (that is, Recordset
objects) as forward-only type, read-
only, with a rowset size of 1. Also
known as "cursorless queries."

Remarks
This property setting only affects connections established after the property has been set. Changing
the DefaultCursorDriver property has no effect on existing connections.

DefaultType Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproDefaultTypeC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproDefaultTypeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproDefaultTypeA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproDefaultTypeS"}

Sets or returns a value that indicates what type of workspace (Microsoft Jet or ODBCDirect) will be
used by the next Workspace object created.

Settings And Return Values
The setting or return value is a Long that can be set to either of the following constants:

Constant Description

dbUseJet Creates Workspace objects
connected to the Microsoft Jet
database engine

dbUseODBC Creates Workspace objects
connected to an ODBC data source

Remarks
The setting can be overridden for a single Workspace by setting the type argument to the
CreateWorkspace method.

Direction Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproDirectionC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproDirectionX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproDirectionA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproDirectionS"}

Sets or returns a value that indicates whether a Parameter object represents an input parameter, an
output parameter, both, or the return value from the procedure (ODBCDirect workspaces only).

Settings And Return Values
The setting or return value is a Long that can be set to one of the following constants:

Constant Description
dbParamInput (Default) Passes information to the

procedure.
dbParamInputOutput Passes information both to and from

the procedure.
dbParamOutput Returns information from the

procedure as in an output parameter
in SQL.

dbParamReturnValue Passes the return value from a
procedure.

Remarks
Use the Direction property to determine whether the parameter is an input parameter, output
parameter, both, or the return value from the procedure. Some ODBC drivers do not provide
information on the direction of parameters to a SELECT statement or procedure call. In these cases, it
is necessary to set the direction prior to executing the query.

For example, the following procedure returns a value from a stored procedure named
"get_employees":
{? = call get_employees}
This call produces one parameter — the return value. You need to set the direction of this parameter
to dbParamOutput or dbParamReturnValue before executing the QueryDef.
You need to set all parameter directions except dbParamInput before accessing or setting the values
of the parameters and before executing the QueryDef.
You should use dbParamReturnValue for return values, but in cases where that option is not
supported by the driver or the server, you can use dbParamOutput instead.

Note The Microsoft SQL Server 6.0 driver automatically sets the Direction property for all
procedure parameters. Not all ODBC drivers can determine the direction of a query parameter. In
these cases, it is necessary to set the direction prior to executing the query.

FieldSize Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproFieldSizeC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproFieldSizeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproFieldSizeA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproFieldSizeS"}

Returns the number of bytes used in the database (rather than in memory) of a Memo or Long Binary
Field object in the Fields collection of a Recordset object.

Return Values
The return value is a Long that indicates the number of characters (for a Memo field) or the number
of bytes (for a Long Binary field).

Remarks
You can use FieldSize with the AppendChunk and GetChunk methods to manipulate large fields.

Because the size of a Long Binary or Memo field can exceed 64K, you should assign the value
returned by FieldSize to a variable large enough to store a Long variable.

To determine the size of a Field object other than Memo and Long Binary types, use the Size
property.

Note In an ODBCDirect workspace, the FieldSize property is not available in the following
situations:
· If the database server or ODBC driver does not support server-side cursors.
· If you are using the ODBC cursor library (that is, the DefaultCursorDriver property is set to

dbUseODBC, or to dbUseDefault when the server does not support server-side cursors).
· If you are using a cursorless query (that is, the DefaultCursorDriver property is set to

dbUseNoCursor).
For example, Microsoft SQL Server version 4.21 does not support server-side cursors, so the
FieldSize property is not available.

MaxRecords Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproMaxRecordsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproMaxRecordsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproMaxRecordsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproMaxRecordsS"}

Sets or returns the maximum number of records to return from a query.

Settings And Return Values
The setting or return value is a Long that represents the number of records to be returned. The
default value is 0, indicating no limit on the number of records returned.

Remarks
Once the number of rows specified by MaxRecords is returned to your application in a Recordset,
the query processor will stop returning additional records even if more records would qualify for
inclusion in the Recordset. This property is useful in situations where limited client resources prohibit
management of large numbers of records.

OriginalValue Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproOriginalValueC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproOriginalValueX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproOriginalValueA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproOriginalValueS"}

Returns the value of a Field in the database that existed when the last batch update began
(ODBCDirect workspaces only).

Return Values
The return value is a variant expression.

Remarks
During an optimistic batch update, a collision may occur where a second client modifies the same
field and record in between the time the first client retrieves the data and the first client's update
attempt. The OriginalValue property contains the value of the field at the time the last batch Update
began. If this value does not match the value actually in the database when the batch Update
attempts to write to the database, a collision occurs. When this happens, the new value in the
database will be accessible through the VisibleValue property.

Prepare Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproPrepareC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproPrepareX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproPrepareA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproPrepareS"}

Sets or returns a value that indicates whether the query should be prepared on the server as a
temporary stored procedure, using the ODBC SQLPrepare API function, prior to execution, or just
executed using the ODBC SQLExecDirect API function (ODBCDirect workspaces only).

Settings and Return Values
The setting or return value is a Long value that can be one of the following constants:

Constant Description

dbQPrepare (Default) The statement is prepared
(that is, the ODBC SQLPrepare API
is called).

dbQUnprepare The statement is not prepared (that
is, the ODBC SQLExecDirect API is
called).

Remarks
You can use the Prepare property to either have the server create a temporary stored procedure from
your query and then execute it, or just have the query executed directly. By default the Prepare
property is set to dbQPrepare. However, you can set this property to dbQUnprepare to prohibit
preparing of the query. In this case, the query is executed using the SQLExecDirect API.

Creating a stored procedure can slow down the initial operation, but increases performance of all
subsequent references to the query. However, some queries cannot be executed in the form of stored
procedures. In these cases, you must set the Prepare property to dbQUnprepare.

If Prepare is set to dbQPrepare, this can be overridden when the query is executed by setting the
Execute method's options argument to dbExecDirect.
Note The ODBC SQLPrepare API is called as soon as the DAO SQL property is set. Therefore, if
you want to improve performance using the dbQUnprepare option, you must set the Prepare
property before setting the SQL property.

RecordStatus Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproRecordStatusC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproRecordStatusX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproRecordStatusA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproRecordStatusS"}

Returns a value indicating the update status of the current record if it is part of a batch update
(ODBCDirect workspaces only).

Return Values
The return value is a Long that can be any of the following constants:

Constant Description

dbRecordUnmodified (Default) The record has not been
modified or has been updated
successfully.

dbRecordModified The record has been modified and
not updated in the database.

dbRecordNew The record has been inserted with the
AddNew method, but not yet inserted
into the database.

dbRecordDeleted The record has been deleted, but not
yet deleted in the database.

dbRecordDBDeleted The record has been deleted locally
and in the database.

Remarks
The value of the RecordStatus property indicates whether and how the current record will be
involved in the next optimistic batch update.

When a user changes a record, the RecordStatus for that record automatically changes to
dbRecordModified. Similarly, if a record is added or deleted, RecordStatus reflects the appropriate
constant. When you then use a batch-mode Update method, DAO will submit an appropriate
operation to the remote server for each record, based on the record's RecordStatus property.

StillExecuting Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproStillExecutingC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproStillExecutingX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproStillExecutingA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproStillExecutingS"}

Indicates whether or not an asynchronous operation (that is, a method called with the dbRunAsync
option) has finished executing (ODBCDirect workspaces only).

Settings And Return Values
The return value is a Boolean that is True if the query is still executing, and False if the query has
completed.

Remarks
Use the StillExecuting property to determine if the most recently called asynchronous Execute,
MoveLast, OpenConnection, or OpenRecordset method (that is, a method executed with the
dbRunAsync option) is complete. While the StillExecuting property is True, any returned object
cannot be accessed.

The following table shows what method is evaluated when you use StillExecuting on a particular
type of object.

If StillExecuting is used on This asynchronous method is
evaluated

Connection Execute or OpenConnection
QueryDef Execute
Recordset MoveLast or OpenRecordset

Once the StillExecuting property on a Connection or Recordset object returns False, follwing the
OpenConnection or OpenRecordset call that returns the associated Recordset or Connection
object, the object can be referenced. So long as StillExecuting remains True, the object may not be
referenced, other than to read the StillExecuting property. When you use the NextRecordset
method to complete processing of a Recordset, the StillExecuting property is reset to True while
subsequent result sets are retrieved.

Use the Cancel method to terminate execution of a task in progress.

UpdateOptions Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproUpdateOptionsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproUpdateOptionsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproUpdateOptionsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproUpdateOptionsS"}

Sets or returns a value that indicates how the WHERE clause is constructed for each record during a
batch update, and whether the batch update should use an UPDATE statement or a DELETE
followed by an INSERT (ODBCDirect workspaces only).

Settings And Return Values
The setting or return value is a Long that can be any of the following constants:

Constant Description

dbCriteriaKey (Default) Uses just the key column(s)
in the where clause.

dbCriteriaModValues Uses the key column(s) and all
updated columns in the where clause.

dbCriteriaAllCols Uses the key column(s) and all the
columns in the where clause.

dbCriteriaTimeStamp Uses just the timestamp column if
available (will generate a run-time
error if no timestamp column is in the
result set).

dbCriteriaDeleteInsert Uses a set of DELETE and INSERT
statements for each modified row.

dbCriteriaUpdate (Default) Uses an UPDATE statement
for each modified row.

Remarks
When a batch-mode Update is executed, DAO and the client batch cursor library create a series of
SQL UPDATE statements to make the needed changes. An SQL WHERE clause is created for each
update to isolate the records that are marked as changed by the RecordStatus property. Because
some remote servers use triggers or other ways to enforce referential integrity, is it often important to
limit the fields being updated to just those affected by the change. To do this, set the UpdateOptions
property to one of the constants dbCriteriaKey, dbCriteriaModValues, dbCriteriaAllCols, or
dbCriteriaTimeStamp. This way, only the absolute minimum amount of trigger code is executed. As
a result, the update operation is executed more quickly, and with fewer potential errors.

You can also concatenate either of the constants dbCriteriaDeleteInsert or dbCriteriaUpdate to
determine whether to use a set of SQL DELETE and INSERT statements or an SQL UPDATE
statement for each update when sending batched modifications back to the server. In the former
case, two separate operations are required to update the record. In some cases, especially where the
remote system implements DELETE, INSERT, and UPDATE triggers, choosing the correct
UpdateOptions property setting can significantly impact performance.

If you don't specify any constants, dbCriteriaUpdate and dbCriteriaKey will be used.

Newly added records will always generate INSERT statements and deleted records will always
generate DELETE statements, so this property only applies to how the cursor library updates
modified records.

VisibleValue Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproVisibleValueC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproVisibleValueX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproVisibleValueA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproVisibleValueS"}

Returns a value currently in the database that is newer than the OriginalValue property as
determined by a batch update conflict (ODBCDirect workspaces only).

Return Values
The return value is a variant expression.

Remarks
This property contains the value of the field that is currently in the database on the server. During an
optimistic batch update, a collision may occur where a second client modified the same field and
record in between the time the first client retrieved the data and the first client's update attempt. When
this happens, the value that the second client set will be accessible through this property.

Data Access Objects (DAO) Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damscDataAccessConstantsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damscDataAccessConstantsX":1} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"damscDataAccessConstantsS"}

Data Access Objects (DAO) provides built-in constants that you can use with methods or properties.
These constants all begin with the letters db and are documented with the method or property to
which they apply.

Legend:

Read-only

Read/write

AllPermissions Property Constants (All Are)
For any Container or Document object:

Constant Description

dbSecReadDef Allows user to read the table
definition, including column and index
information.

dbSecWriteDef Allows user to modify or delete the
table definition, including column and
index information.

dbSecRetrieveData Allows user to retrieve data from the
Document object.

dbSecInsertData Allows user to add records.
dbSecReplaceData Allows user to modify records.
dbSecDeleteData Allows user to delete records.

The Databases container or any Document object in a Documents collection may include the
following:

Constant Description

dbSecDeleteData Allows user to delete records.
dbSecDBAdmin Allows user to replicate the database

and change the database password.
dbSecDBCreate Allows user to create new databases.

This setting is valid only on the
Databases container in the workgroup
information file (System.mdw).

dbSecDBExclusive Allows user exclusive access to the
database.

dbSecDBOpen Allows user to open the database.

Attributes Property Constants
For any Field object, the Attributes property may include the following:

Constant Description

dbFixedField
 Fixed field size

(default for Numeric fields)
dbVariableField

 Variable field size
(Text fields only)

dbAutoIncrField
 New record field

value incremented to unique Long
integer (in a Microsoft Jet workspace,
available only on TableDef objects
opened from .mdb files)

dbUpdatableField
 Field is updatable

dbDescending
 Field sorted in

descending order (Microsoft Jet
workspaces only)

dbHyperlinkField
 The field contains

hyperlink information (Memo fields in
Microsoft Jet workspaces only)

dbSystemField
 The field is a

replication field (on a TableDef object in
Microsoft Jet databases only)

For any Relation object, the Attributes property may include the following:

Constant Description

dbRelationUnique
 One-to-one

relationship
dbRelationDontEnforce

 Relationship not
enforced (no referential integrity)

dbRelationInherited
 Relationship exists

in the database containing the two
linked tables

dbRelationUpdateCascade
 Updates cascade

dbRelationDeleteCascade
 Deletions cascade

For any TableDef object, the Attributes property may include the following:

Constant Description

dbAttachExclusive
 Opens a linked

Microsoft Jet database engine table for
exclusive use.

dbAttachSavePWD
 Saves user ID and

password for linked remote table.
dbSystemObject

 System table
dbHiddenObject

 Hidden table (for
temporary use)

dbAttachedTable
 Linked non-ODBC

database table
dbAttachedODBC

 Linked ODBC
database table

CollatingOrder Property Constants (All Are)
Constant Description
dbSortArabic Arabic collating order
dbSortChineseSimplified Simplified Chinese collating order
dbSortChineseTraditional Traditional Chinese collating order
dbSortCyrillic Russian collating order
dbSortCzech Czech collating order
dbSortDutch Dutch collating order
dbSortGeneral English, German, French, and

Portuguese collating order
dbSortGreek Greek collating order
dbSortHebrew Hebrew collating order
dbSortHungarian Hungarian collating order
dbSortIcelandic Icelandic collating order
dbSortJapanese Japanese collating order
dbSortKorean Korean collating order
dbSortNeutral Neutral collating order
dbSortNorw Norwegian and Danish collating order
dbSortPDXIntl Paradox international collating order
dbSortPDXNor Paradox Norwegian and Danish

collating order
dbSortPDXSwe Paradox Swedish and Finnish

collating order
dbSortPolish Polish collating order
dbSortSlovenian Slovenian collating order
dbSortSpanish Spanish collating order
dbSortSwedFin Swedish and Finnish collating order
dbSortThai Thai collating order
dbSortTurkish Turkish collating order
dbSortUndefined Collating order undefined or unknown

DefaultCursorDriver Property (All are)
Constant Description
dbUseDefaultCursor (Default) Uses server-side cursors if

the server supports them; otherwise
uses the ODBC Cursor Library.

dbUseODBCCursor Always uses the ODBC Cursor
Library. This option provides better
performance for small result sets, but
degrades quickly for larger result

sets.
dbUseServerCursor Always uses server-side cursors. For

most large operations this option
provides better performance, but
might cause more network traffic.

dbUseClientBatchCursor Always uses the FoxPro Cursor
Library. This option is required for
performing batch updates.

dbUseNoCursor Opens all cursors (that is, Recordset
objects) as forward-only type, read-
only, with a rowset size of 1. Also
known as "cursorless queries."

Direction Property Constants (All Are)
Constant Description
dbParamInput (Default) Passes information to the

procedure.
dbParamInputOutput Passes information both to and from

the procedure.
dbParamOutput Returns information from the

procedure as in an output parameter
in SQL.

dbParamReturnValue Passes the return value from a
procedure.

EditMode Property Constants (All Are)
Constant Description

dbEditNone No editing operation in effect.
dbEditInProgress Edit method invoked.
dbEditAdd AddNew method invoked.

Permissions Property Constants (All are)
For any Container object, the Permissions property may include the following:

Constant Description

dbSecNoAccess Denies user access to the object.
dbSecFullAccess Allows user full access to the object.
dbSecDelete Allows user to delete the object.
dbSecReadSec Allows user to read the object's

security-related information.
dbSecWriteSec Allows user to alter access

permissions.
dbSecWriteOwner Allows user to change the Owner

property setting.

For any database Container, the Permissions property may include any of the following (All are

):

Constant Description

dbSecDBAdmin Gives user permission to make a
database replicable and change the
database password.

dbSecDBCreate Allows user to create new databases
(valid only on the databases
Container object in the system
database).

dbSecDBOpen Allows user to open the database.
dbSecDBExclusive Allows user exclusive access.

For any tables Container, the Permissions property may include any of the following (All are

):

Constant Description

dbSecCreate Allows user to create new tables
(valid only with a Container object
that represents a table or with the
databases Container object in the
system database).

dbSecReadDef Allows user to read the table
definition, including column and index
information.

dbSecWriteDef Allows user to modify or delete the
table definition, including column and
index information.

dbSecRetrieveData Allows user to retrieve data from the
document.

dbSecInsertData Allows user to add records.
dbSecReplaceData Allows user to modify records.
dbSecDeleteData Allows user to delete records.

For any Document object, the Permissions property may include any of the following (All are

):

Constant Description

dbSecCreate Allows user to create new tables
(valid only with a Container object
that represents a table).

dbSecDBCreate Allows user to create new databases
(valid only on the databases
Container object in the system
database).

dbSecDBOpen Allows user to open the database.
dbSecDBExclusive Allows user exclusive access.
dbSecDelete Allows user to delete the object.
dbSecDeleteData Allows user to delete records.
dbSecFullAccess Allows user full access to the object.
dbSecInsertData Allows user to add records.
dbSecReadDef Allows user to read the table

definition, including column and index

information.
dbSecReadSec Allows user to read the object's

security-related information.
dbSecReplaceData Allows user to modify records.
dbSecRetrieveData Allows user to retrieve data from the

document.
dbSecWriteDef Allows user to modify or delete the

table definition, including column and
index information.

dbSecWriteSec Allows user to alter access
permissions.

dbSecWriteOwner Allows user to change the Owner
property setting.

Prepare Property Constants (All Are)
Constant Description

dbQPrepare (Default) The statement is prepared
(that is, the ODBC SQLPrepare API
is called).

dbQUnprepare The statement is not prepared (that
is, the ODBC SQLExecDirect API is
called).

RecordStatus Property Constants (All Are)
Constant Description

dbDBDeleted The record has been deleted locally
and in the database.

dbDeleted The record has been deleted, but not
yet deleted in the database.

dbRecordModified The record has been modified and
not updated in the database.

dbRecordNew The record has been inserted with the
AddNew method, but not yet inserted
into the database.

dbRecordUnmodified (Default) The record has not been
modified or has been updated
successfully.

Type Property Constants
For any Field, Parameter, or Property object, the Type property may include any of the follwing (All

are):

Constant Description

dbBigInt Big Integer data (ODBCDirect only)
dbBinary Binary data
dbBoolean Boolean (True/False) data
dbByte Byte (8-bit) data

dbChar Character data (ODBCDirect only)
dbCurrency Currency data
dbDate Date value data
dbDecimal Decimal data (ODBCDirect only)
dbDouble Double-precision floating-point data
dbFloat Floating-point data (ODBCDirect

only)
dbGUID GUID data
dbInteger Integer data
dbLong Long Integer data
dbLongBinary Binary data (bitmap)
dbMemo Memo data (extended text)
dbNumeric Numeric data (ODBCDirect only)
dbSingle Single-precision floating-point data
dbText Text data (variable width)
dbTime Data in time format (ODBCDirect

only)
dbTimeStamp Data in time and date format

(ODBCDirect only)
dbVarBinary Variable Binary data (ODBCDirect

only)

For any QueryDef object, the Type property may include any of the following (All are

):

Constant Description

dbQAction Action query
dbQAppend Append query
dbQCompound Compound query (ODBCDirect

workspaces only)
dbQCrosstab Crosstab query
dbQDDL Data-definition language (DDL) query
dbQDelete Delete query
dbQMakeTable Make-table query
dbQProcedure SQL procedure that executes a

stored procedure (ODBCDirect
workspaces only)

dbQSelect Select query
dbQSetOperation Set operation query
dbQSPTBulk Bulk operation query
dbQSQLPassThrough SQL pass-through query
dbQUpdate Update query

For any Recordset object, the Type property may include any of the following (All are

):

Constants Description
dbOpenDynamic Opens a dynaset-type Recordset

(ODBCDirect workspaces only)
dbOpenDynaset Opens a dynaset-type Recordset
dbOpenForwardOnly Opens a forward-only type

Recordset
dbOpenSnapshot Opens a snapshot-type Recordset
dbOpenTable Opens a table-type Recordset

(Microsoft Jet workspaces only)

UpdateOptions Property Constants (All Are)
Constant Description

dbCriteriaKey (Default) Uses just the key column(s)
in the where clause.

dbCriteriaModValues Uses the key column(s) and all
updated columns in the where clause.

dbCriteriaAllCols Uses the key column(s) and all the
columns in the where clause.

dbCriteriaTimeStamp Uses just the timestamp column if
available (will generate a run-time
error if no timestamp column is in the
result set).

dbCriteriaDeleteInsert Uses a pair of DELETE and INSERT
statements for each modified row.

dbCriteriaUpdate (Default) Uses an UPDATE statement
for each modified row.

CompactDatabase, CreateDatabase Methods Locale Argument Constants (All Are

)
Constant Description
dbLangGeneral English, German, French,

Portuguese, Italian, and Modern
Spanish

dbLangArabic Arabic
dbLangChineseSimplified Simplified Chinese
dbLangChineseTraditional Traditional Chinese
dbLangCyrillic Russian
dbLangCzech Czech
dbLangDutch Dutch
dbLangGreek Greek
dbLangHebrew Hebrew
dbLangHungarian Hungarian
dbLangIcelandic Icelandic
dbLangJapanese Japanese
dbLangKorean Korean
dbLangNordic Nordic
dbLangNorwdan Norwegian and Danish
dbLangPolish Polish

dbLangSlovenian Slovenian
dbLangSpanish Spanish
dbLangSwedfin Swedish and Finnish
dbLangThai Thai
dbLangTurkish Turkish

CompactDatabase Method Options Argument Constants (All Are)
Constant Description

dbDecrypt Decrypts database while compacting
dbEncrypt Encrypts database
dbVersion10 Microsoft Jet database engine

version 1.0
dbVersion11 Microsoft Jet database engine

version 1.1
dbVersion20 Microsoft Jet database engine

version 2.0
dbVersion30 Microsoft Jet database engine

version 3.0

CreateDatabase Method Options Argument Constants (All Are)
Constant Description

dbEncrypt Encrypts database
dbVersion10 Microsoft Jet database engine

version 1.0
dbVersion11 Microsoft Jet database engine

version 1.1
dbVersion20 Microsoft Jet database engine

version 2.0
dbVersion30 Microsoft Jet database engine

version 3.0

CreateWorkspace Method Type Argument Constants
For any Workspace object Type property and DBEngine object DefaultType property, use any of the

following: (All Are)

Constant Description

dbUseODBC The next workspace created will use
ODBCDirect.

dbUseJet The next workspace created will use
the Microsoft Jet database engine.

Execute Method Options Argument Constants (All Are)
Constant Description

dbDenyWrite Denies write permission to other
users (Microsoft Jet workspaces

only).
dbInconsistent Allows inconsistent updates

(Microsoft Jet workspaces only).
dbConsistent Allows consistent updates (Microsoft

Jet workspaces only).
dbSQLPassThrough An SQL pass-through. Causes the

SQL statement to be passed to an
ODBC database for processing
(Microsoft Jet workspaces only).

dbFailOnError Rolls back updates if an error occurs
(Microsoft Jet workspaces only).

dbSeeChanges Generates a run-time error if another
user is changing data you are editing
(Microsoft Jet workspaces only).

dbRunAsync Executes the query asynchronously
(ODBCDirect workspaces only).

dbExecDirect Executes the query without first
calling the SQLPrepare ODBC
function (ODBCDirect workspaces
only).

Idle Method Optional Argument Constant (This Is)
Constant Description

dbRefreshCache Forces any pending writes to disk,
and refreshes memory from current
disk files.

MakeReplica Method Optional Argument Constants (All are)
Constant Description

dbRepMakePartial Creates a partial replica.
dbRepMakeReadOnly Makes replicable elements of new

database read-only.

OpenConnection and OpenDatabase Methods Option Argument Constants (All Are

)
Constant Description

dbDriverNoPrompt The driver manager uses the
connection string provided in connect.
If sufficient information is not
provided, a trappable error is
returned.

dbDriverPrompt The driver manager displays the
ODBC Data Sources dialog box. The
connection string used to establish
the connection is constructed from
the data source name (DSN) selected
and completed by the user via the
dialog boxes.

dbDriverComplete If the connection string provided
includes the DSN keyword, the driver
manager uses the string as provided
in connect, otherwise it behaves as it
does when dbDriverPrompt is
specified.

dbDriverCompleteRequired (Default) Behaves like
dbDriverComplete except the driver
disables the controls for any
information not required to complete
the connection.

OpenRecordset Method Type Argument Constants (All Are)
Constant Description

dbOpenDynamic Opens a dynamic-type Recordset
(ODBCDirect workspaces only)

dbOpenDynaset Opens a dynaset-type Recordset
dbOpenForwardOnly Opens a forward-only type

Recordset
dbOpenSnapshot Opens a snapshot-type Recordset
dbOpenTable Opens a table-type Recordset

(Microsoft Jet workspaces only)

OpenRecordset Method LockEdits Argument Constants (All Are)
Constant Description
dbPessimistic Pessimistic concurrency. Cursor uses

the lowest level of locking sufficient to
ensure the record can be updated.

dbReadOnly Cursor is read-only. No updates are
allowed.

dbOptimistic Optimistic concurrency based on
record ID. Cursor compares record ID
in old and new records to determine if
changes have been made since the
record was last accessed.

dbOptimisticValue Optimistic concurrency based on
record values. Cursor compares data
values in old and new records to
determine if changes have been
made since the record was last
accessed (ODBCDirect workspaces
only).

dbOptimisticBatch Enables batch optimistic updates
(ODBCDirect workspaces only).

OpenRecordset Method Options Argument Constants (All Are)
Constant Description

dbDenyWrite Prevents other users from changing

Recordset records (Microsoft Jet
workspaces only).

dbDenyRead Prevents other users from reading
Recordset records (table-type in
Microsoft Jet workspaces only).

dbReadOnly Opens the Recordset as read-only
(Microsoft Jet workspaces only).

dbAppendOnly Allows user to add new records to the
dynaset, but prevents user from
reading existing records (dynaset-
type in Microsoft Jet workspaces
only).

dbInconsistent Applies updates to all dynaset fields,
even if other records are affected
(dynaset- and snapshot-type in
Microsoft Jet workspaces only).

dbConsistent Applies updates only to those fields
that will not affect other records in the
dynaset (dynaset- and snapshot-type
in Microsoft Jet workspaces only).

dbSQLPassThrough Sends an SQL statement to an ODBC
database (snapshot-type in Microsoft
Jet workspaces only).

dbForwardOnly Creates a forward-only scrolling
snapshot-type Recordset (snapshot-
type in Microsoft Jet workspaces
only).

dbSeeChanges Generates a run-time error if another
user is changing data you are editing
(dynaset-type in Microsoft Jet
workspaces only).

dbRunAsync Executes the query asynchronously
(ODBCDirect workspaces only).

dbExecDirect Executes the query without first
calling the SQLPrepare ODBC
function (ODBCDirect workspaces
only).

SetOption Method Parameter Constants (All Are)
Constant Description

dbPageTimeout The PageTimeout key
dbSharedAsyncDelay The SharedAsyncDelay key
dbExclusiveAsyncDelay The ExclusiveAsyncDelay key
dbLockRetry The LockRetry key
dbUserCommitSync The UserCommitSync key
dbImplicitCommitSync The ImplicitCommitSync key
dbMaxBufferSize The MaxBufferSize key
dbMaxLocksPerFile The MaxLocksPerFile key
dbLockDelay The LockDelay key

dbRecycleLVs The RecycleLVs key
dbFlushTransactionTimeout The FlushTransactionTimeout key

Synchronize Method Exchange Argument Constants (All Are)
Constant Description

dbRepExportChanges Sends changes from current
database to target database.

dbRepImportChanges Receives changes from target
database.

dbRepImpExpChanges Sends and receives data in a
bidirectional exchange.

dbRepSyncInternet Exchanges data between files
connected via an Internet pathway.

Update Method Type Argument Constants (All Are)
Constant Description

dbUpdateRegular (Default) Pending changes aren't
cached and are written to disk
immediately.

dbUpdateBatch All pending changes in the update
cache are written to disk.

dbUpdateCurrentRecord Only the current record's pending
changes are written to disk.

CancelUpdate Method Type Argument Constants (All Are)
Constant Description

dbUpdateRegular (Default) Pending changes aren't
cached and are written to disk
immediately.

dbUpdateBatch All pending changes in the update
cache are written to disk.

Container Object and Containers Collection Example

This example enumerates the Containers collection of the Northwind database and the Properties
collection of each Container object in the collection.
Sub ContainerObjectX()

Dim dbsNorthwind As Database
Dim ctrLoop As Container
Dim prpLoop As Property

Set dbsNorthwind = OpenDatabase("Northwind.mdb")

With dbsNorthwind

' Enumerate Containers collection.
For Each ctrLoop In .Containers

Debug.Print "Properties of " & ctrLoop.Name _
& " container"

' Enumerate Properties collection of each
' Container object.
For Each prpLoop In ctrLoop.Properties

Debug.Print " " & prpLoop.Name _
& " = " prpLoop

Next prpLoop

Next ctrLoop

.Close
End With

End Sub

DBEngine Object Example

This example enumerates the collections of the DBEngine object. See the methods and properties of
DBEngine for additional examples.
Sub DBEngineX()

Dim wrkLoop As Workspace
Dim prpLoop As Property

With DBEngine
Debug.Print "DBEngine Properties"

' Enumerate Properties collection of DBEngine,
' trapping for properties whose values are
' invalid in this context.
For Each prpLoop In .Properties

On Error Resume Next
Debug.Print " " & prpLoop.Name & " = " _

& prpLoop
On Error GoTo 0

Next prpLoop

Debug.Print "Workspaces collection of DBEngine"

' Enumerate Workspaces collection of DBEngine.
For Each wrkLoop In .Workspaces

Debug.Print " " & wrkLoop.Name

' Enumerate Properties collection of each
' Workspace object, trapping for properties
' whose values are invalid in this context.
For Each prpLoop In wrkLoop.Properties

On Error Resume Next
Debug.Print " " & prpLoop.Name & _

" = " & prpLoop
On Error GoTo 0

Next prpLoop

Next wrkLoop

End With

End Sub

Dynaset-Type Recordset Example

This example opens a dynaset-type Recordset and shows the extent to which its fields are
updatable.
Sub dbOpenDynasetX()

Dim dbsNorthwind As Database
Dim rstInvoices As Recordset
Dim fldLoop As Field

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
Set rstInvoices = _

dbsNorthwind.OpenRecordset("Invoices", dbOpenDynaset)

With rstInvoices
Debug.Print "Dynaset-type recordset: " & .Name

If .Updatable Then
Debug.Print " Updatable fields:"

' Enumerate Fields collection of dynaset-type
' Recordset object, print only updatable
' fields.
For Each fldLoop In .Fields

If fldLoop.DataUpdatable Then
Debug.Print " " & fldLoop.Name

End If
Next fldLoop

End If

.Close
End With

dbsNorthwind.Close

End Sub

Field Object, Fields Collection Example

This example shows what properties are valid for a Field object depending on where the Field
resides (for example, the Fields collection of a TableDef, the Fields collection of a QueryDef, and so
forth). The FieldOutput procedure is required for this procedure to run.
Sub FieldX()

Dim dbsNorthwind As Database
Dim rstEmployees As Recordset
Dim fldTableDef As Field
Dim fldQueryDef As Field
Dim fldRecordset As Field
Dim fldRelation As Field
Dim fldIndex As Field
Dim prpLoop As Property

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
Set rstEmployees = _

dbsNorthwind.OpenRecordset("Employees")

' Assign a Field object from different Fields
' collections to object variables.
Set fldTableDef = _

dbsNorthwind.TableDefs(0).Fields(0)
Set fldQueryDef =dbsNorthwind.QueryDefs(0).Fields(0)
Set fldRecordset = rstEmployees.Fields(0)
Set fldRelation =dbsNorthwind.Relations(0).Fields(0)
Set fldIndex = _

dbsNorthwind.TableDefs(0).Indexes(0).Fields(0)

' Print report.
FieldOutput "TableDef", fldTableDef
FieldOutput "QueryDef", fldQueryDef
FieldOutput "Recordset", fldRecordset
FieldOutput "Relation", fldRelation
FieldOutput "Index", fldIndex

rstEmployees.Close
dbsNorthwind.Close

End Sub

Sub FieldOutput(strTemp As String, fldTemp As Field)
' Report function for FieldX.

Dim prpLoop As Property

Debug.Print "Valid Field properties in " & strTemp

' Enumerate Properties collection of passed Field
' object.
For Each prpLoop In fldTemp.Properties

' Some properties are invalid in certain
' contexts (the Value property in the Fields
' collection of a TableDef for example). Any
' attempt to use an invalid property will

' trigger an error.
On Error Resume Next
Debug.Print " " & prpLoop.Name & " = " & _

prpLoop.Value
On Error GoTo 0

Next prpLoop

End Sub

Group Object, Groups Collection, User Object, and Users Collection Example

This example illustrates the use of the Group and User objects and the Groups and Users
collections. First, it creates a new User object and appends the object to the Users collection of the
default Workspace object. Next, it creates a new Group object and appends the object to the
Groups collection of the default Workspace object. Then the example adds user Pat Smith to the
Accounting group. Finally, it enumerates the Users and Groups collections of the default Workspace
object. See the methods and properties listed in the Group and User summary topics for additional
examples.
Sub GroupX()

Dim wrkDefault As Workspace
Dim usrNew As User
Dim usrLoop As User
Dim grpNew As Group
Dim grpLoop As Group
Dim grpMember As Group

Set wrkDefault = DBEngine.Workspaces(0)

With wrkDefault

' Create and append new user.
Set usrNew = .CreateUser("Pat Smith", _

"abc123DEF456", "Password1")
.Users.Append usrNew

' Create and append new group.
Set grpNew = .CreateGroup("Accounting", _

"UVW987xyz654")
.Groups.Append grpNew

' Make the user Pat Smith a member of the
' Accounting group by creating and adding the
' appropriate Group object to the user's Groups
' collection. The same is accomplished if a User
' object representing Pat Smith is created and
' appended to the Accounting group's Users
' collection.
Set grpMember = usrNew.CreateGroup("Accounting")
usrNew.Groups.Append grpMember

Debug.Print "Users collection:"

' Enumerate all User objects in the default
' workspace's Users collection.
For Each usrLoop In .Users

Debug.Print " " & usrLoop.Name
Debug.Print " Belongs to these groups:"

' Enumerate all Group objects in each User
' object's Groups collection.
If usrLoop.Groups.Count <> 0 Then

For Each grpLoop In usrLoop.Groups
Debug.Print " " & _

grpLoop.Name
Next grpLoop

Else
Debug.Print " [None]"

End If

Next usrLoop

Debug.Print "Groups collection:"

' Enumerate all Group objects in the default
' workspace's Groups collection.
For Each grpLoop In .Groups

Debug.Print " " & grpLoop.Name
Debug.Print " Has as its members:"

' Enumerate all User objects in each Group
' object's Users collection.
If grpLoop.Users.Count <> 0 Then

For Each usrLoop In grpLoop.Users
Debug.Print " " & _

usrLoop.Name
Next usrLoop

Else
Debug.Print " [None]"

End If

Next grpLoop

' Delete new User and Group objects because this
' is only a demonstration.
.Users.Delete "Pat Smith"
.Groups.Delete "Accounting"

End With

End Sub

Index Object, Indexes Collection Example

This example creates a new Index object, appends it to the Indexes collection of the Employees
TableDef, and then enumerates the Indexes collection of the TableDef. Finally, it enumerates a
Recordset, first using the primary Index, and then using the new Index. The IndexOutput procedure
is required for this procedure to run.
Sub IndexObjectX()

Dim dbsNorthwind As Database
Dim tdfEmployees As TableDef
Dim idxNew As Index
Dim idxLoop As Index
Dim rstEmployees As Recordset

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
Set tdfEmployees = dbsNorthwind!Employees

With tdfEmployees
' Create new index, create and append Field
' objects to its Fields collection.
Set idxNew = .CreateIndex("NewIndex")

With idxNew
.Fields.Append .CreateField("Country")
.Fields.Append .CreateField("LastName")
.Fields.Append .CreateField("FirstName")

End With

' Add new Index object to the Indexes collection
' of the Employees table collection.
.Indexes.Append idxNew
.Indexes.Refresh

Debug.Print .Indexes.Count & " Indexes in " & _
.Name & " TableDef"

' Enumerate Indexes collection of Employees
' table.
For Each idxLoop In .Indexes

Debug.Print " " & idxLoop.Name
Next idxLoop

Set rstEmployees = _
dbsNorthwind.OpenRecordset("Employees")

' Print report using old and new indexes.
IndexOutput rstEmployees, "PrimaryKey"
IndexOutput rstEmployees, idxNew.Name
rstEmployees.Close

' Delete new Index because this is a
' demonstration.
.Indexes.Delete idxNew.Name

End With

dbsNorthwind.Close

End Sub

Sub IndexOutput(rstTemp As Recordset, _
strIndex As String)
' Report function for FieldX.

With rstTemp
' Set the index.
.Index = strIndex
.MoveFirst
Debug.Print "Recordset = " & .Name & _

", Index = " & .Index
Debug.Print " EmployeeID - Country - Name"

' Enumerate the recordset using the specified
' index.
Do While Not .EOF

Debug.Print " " & !EmployeeID & " - " & _
!Country & " - " & !LastName & ", " & !FirstName

.MoveNext
Loop

End With

End Sub

Parameter Object, Parameters Collection Example

This example demonstrates Parameter objects and the Parameters collection by creating a
temporary QueryDef and retrieving data based on changes made to the QueryDef object's
Parameters. The ParametersChange procedure is required for this procedure to run.
Sub ParameterX()

Dim dbsNorthwind As Database
Dim qdfReport As QueryDef
Dim prmBegin As Parameter
Dim prmEnd As Parameter

Set dbsNorthwind = OpenDatabase("Northwind.mdb")

' Create temporary QueryDef object with two
' parameters.
Set qdfReport = dbsNorthwind.CreateQueryDef("", _

"PARAMETERS dteBegin DateTime, dteEnd DateTime; " & _
"SELECT EmployeeID, COUNT(OrderID) AS NumOrders " & _
"FROM Orders WHERE ShippedDate BETWEEN " & _
"[dteBegin] AND [dteEnd] GROUP BY EmployeeID " & _
"ORDER BY EmployeeID")

Set prmBegin = qdfReport.Parameters!dteBegin
Set prmEnd = qdfReport.Parameters!dteEnd

' Print report using specified parameter values.
ParametersChange qdfReport, prmBegin, #1/1/95#, _

prmEnd, #6/30/95#
ParametersChange qdfReport, prmBegin, #7/1/95#, _

prmEnd, #12/31/95#

dbsNorthwind.Close

End Sub

Sub ParametersChange(qdfTemp As QueryDef, _
prmFirst As Parameter, dteFirst As Date, _
prmLast As Parameter, dteLast As Date)
' Report function for ParameterX.

Dim rstTemp As Recordset
Dim fldLoop As Field

' Set parameter values and open recordset from
' temporary QueryDef object.
prmFirst = dteFirst
prmLast = dteLast
Set rstTemp = _

qdfTemp.OpenRecordset(dbOpenForwardOnly)
Debug.Print "Period " & dteFirst & " to " & dteLast

' Enumerate recordset.
Do While Not rstTemp.EOF

' Enumerate Fields collection of recordset.
For Each fldLoop In rstTemp.Fields

Debug.Print " - " & fldLoop.Name & " = " & fldLoop;
Next fldLoop

Debug.Print
rstTemp.MoveNext

Loop

rstTemp.Close

End Sub

Property Object, Properties Collection Example

This example creates a user-defined property for the current database, sets its Type and Value
properties, and appends it to the Properties collection of the database. Then the example
enumerates all properties in the database. See the properties listed in the Property summary topic
for additional examples.
Sub PropertyX()

Dim dbsNorthwind As Database
Dim prpNew As Property
Dim prpLoop As Property

Set dbsNorthwind = OpenDatabase("Northwind.mdb")

With dbsNorthwind
' Create and append user-defined property.
Set prpNew = .CreateProperty()
prpNew.Name = "UserDefined"
prpNew.Type = dbText
prpNew.Value = "This is a user-defined property."
.Properties.Append prpNew

' Enumerate all properties of current database.
Debug.Print "Properties of " & .Name
For Each prpLoop In .Properties

With prpLoop
Debug.Print " " & .Name
Debug.Print " Type: " & .Type
Debug.Print " Value: " & .Value
Debug.Print " Inherited: " & _

.Inherited
End With

Next prpLoop

' Delete new property because this is a
' demonstration.
.Properties.Delete "UserDefined"

End With

End Sub

QueryDef Object, QueryDefs Collection Example

This example creates a new QueryDef object and appends it to the QueryDefs collection of the
Northwind Database object. It then enumerates the QueryDefs collection and the Properties
collection of the new QueryDef.
Sub QueryDefX()

Dim dbsNorthwind As Database
Dim qdfNew As QueryDef
Dim qdfLoop As QueryDef
Dim prpLoop As Property

Set dbsNorthwind = OpenDatabase("Northwind.mdb")

' Create new QueryDef object. Because it has a
' name, it is automatically appended to the
' QueryDefs collection.
Set qdfNew = dbsNorthwind.CreateQueryDef("NewQueryDef", _

"SELECT * FROM Categories")

With dbsNorthwind
Debug.Print .QueryDefs.Count & _

" QueryDefs in " & .Name

' Enumerate QueryDefs collection.
For Each qdfLoop In .QueryDefs

Debug.Print " " & qdfLoop.Name
Next qdfLoop

With qdfNew
Debug.Print "Properties of " & .Name

' Enumerate Properties collection of new
' QueryDef object.
For Each prpLoop In .Properties

On Error Resume Next
Debug.Print " " & prpLoop.Name & " - " & _

IIf(prpLoop = "", "[empty]", prpLoop)
On Error Goto 0

Next prpLoop
End With

' Delete new QueryDef because this is a
' demonstration.
.QueryDefs.Delete qdfNew.Name
.Close

End With

End Sub

Recordset Object, Recordsets Collection Example

This example demonstrates Recordset objects and the Recordsets collection by opening four
different types of Recordsets, enumerating the Recordsets collection of the current Database, and
enumerating the Properties collection of each Recordset.
Sub RecordsetX()

Dim dbsNorthwind As Database
Dim rstTable As Recordset
Dim rstDynaset As Recordset
Dim rstSnapshot As Recordset
Dim rstForwardOnly As Recordset
Dim rstLoop As Recordset
Dim prpLoop As Property

Set dbsNorthwind = OpenDatabase("Northwind.mdb")

With dbsNorthwind

' Open one of each type of Recordset object.
Set rstTable = .OpenRecordset("Categories", _

dbOpenTable)
Set rstDynaset = .OpenRecordset("Employees", _

dbOpenDynaset)
Set rstSnapshot = .OpenRecordset("Shippers", _

dbOpenSnapshot)
Set rstForwardOnly = .OpenRecordset _

("Employees", dbOpenForwardOnly)

Debug.Print "Recordsets in Recordsets " & _
"collection of dbsNorthwind"

' Enumerate Recordsets collection.
For Each rstLoop In .Recordsets

With rstLoop
Debug.Print " " & .Name

' Enumerate Properties collection of each
' Recordset object. Trap for any
' properties whose values are invalid in
' this context.
For Each prpLoop In .Properties

On Error Resume Next
If prpLoop <> "" Then Debug.Print _

" " & prpLoop.Name & _
" = " & prpLoop

On Error GoTo 0
Next prpLoop

End With

Next rstLoop

rstTable.Close
rstDynaset.Close

rstSnapshot.Close
rstForwardOnly.Close

.Close
End With

End Sub

Relation Object, Relations Collection Example

This example shows how an existing Relation object can control data entry. The procedure attempts
to add a record with a deliberately incorrect CategoryID; this triggers the error-handling routine.
Sub RelationX()

Dim dbsNorthwind As Database
Dim rstProducts As Recordset
Dim prpLoop As Property
Dim fldLoop As Field
Dim errLoop As Error

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
Set rstProducts = dbsNorthwind.OpenRecordset("Products")

' Print a report showing all the different parts of
' the relation and where each part is stored.
With dbsNorthwind.Relations!CategoriesProducts

Debug.Print "Properties of " & .Name & " Relation"
Debug.Print " Table = " & .Table
Debug.Print " ForeignTable = " & .ForeignTable
Debug.Print "Fields of " & .Name & " Relation"
With .Fields!CategoryID

Debug.Print " " & .Name
Debug.Print " Name = " & .Name
Debug.Print " ForeignName = " & .ForeignName

End With
End With

' Attempt to add a record that violates the relation.
With rstProducts

.AddNew
!ProductName = "Trygve's Lutefisk"
!CategoryID = 10
On Error GoTo Err_Relation
.Update
On Error GoTo 0
.Close

End With

dbsNorthwind.Close

Exit Sub

Err_Relation:

' Notify user of any errors that result from
' the invalid data.
If DBEngine.Errors.Count > 0 Then

For Each errLoop In DBEngine.Errors
MsgBox "Error number: " & errLoop.Number & _

vbCr & errLoop.Description
Next errLoop

End If

Resume Next

End Sub

Snapshot-Type Recordset Example

This example opens a snapshot-type Recordset and demonstrates its read-only characteristics.
Sub dbOpenSnapshotX()

Dim dbsNorthwind As Database
Dim rstEmployees As Recordset
Dim prpLoop As Property

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
Set rstEmployees = _

dbsNorthwind.OpenRecordset("Employees", _
dbOpenSnapshot)

With rstEmployees
Debug.Print "Snapshot-type recordset: " & _

.Name

' Enumerate the Properties collection of the
' snapshot-type Recordset object, trapping for
' any properties whose values are invalid in
' this context.
For Each prpLoop In .Properties

On Error Resume Next
Debug.Print " " & _

prpLoop.Name & " = " & prpLoop
On Error Goto 0

Next prpLoop

.Close
End With

dbsNorthwind.Close

End Sub

Table-Type Recordset Example

This example opens a table-type Recordset, sets its Index property, and enumerates its records.
Sub dbOpenTableX()

Dim dbsNorthwind As Database
Dim rstEmployees As Recordset

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
' dbOpenTable is default.
Set rstEmployees = _

dbsNorthwind.OpenRecordset("Employees")

With rstEmployees
Debug.Print "Table-type recordset: " & .Name

' Use predefined index.
.Index = "LastName"
Debug.Print " Index = " & .Index

' Enumerate records.
Do While Not .EOF

Debug.Print " " & !LastName & ", " & _
!FirstName

.MoveNext
Loop

.Close
End With

dbsNorthwind.Close

End Sub

TableDef Object, TableDefs Collection Example

This example creates a new TableDef object and appends it to the TableDefs collection of the
Northwind Database object. It then enumerates the TableDefs collection and the Properties
collection of the new TableDef.
Sub TableDefX()

Dim dbsNorthwind As Database
Dim tdfNew As TableDef
Dim tdfLoop As TableDef
Dim prpLoop As Property

Set dbsNorthwind = OpenDatabase("Northwind.mdb")

' Create new TableDef object, append Field objects
' to its Fields collection, and append TableDef
' object to the TableDefs collection of the
' Database object.
Set tdfNew = dbsNorthwind.CreateTableDef("NewTableDef")
tdfNew.Fields.Append tdfNew.CreateField("Date", dbDate)
dbsNorthwind.TableDefs.Append tdfNew

With dbsNorthwind
Debug.Print .TableDefs.Count & _

" TableDefs in " & .Name

' Enumerate TableDefs collection.
For Each tdfLoop In .TableDefs

Debug.Print " " & tdfLoop.Name
Next tdfLoop

With tdfNew
Debug.Print "Properties of " & .Name

' Enumerate Properties collection of new
' TableDef object, only printing properties
' with non-empty values.
For Each prpLoop In .Properties

Debug.Print " " & prpLoop.Name & " - " & _
IIf(prpLoop = "", "[empty]", prpLoop)

Next prpLoop

End With

' Delete new TableDef since this is a
' demonstration.
.TableDefs.Delete tdfNew.Name
.Close

End With

End Sub

Connection Object, Connections Collection Example

This example demonstrates the Connection object and Connections collection by opening a
Microsoft Jet Database object and two ODBCDirect Connection objects and listing the properties
available to each object.
Sub ConnectionObjectX()

Dim wrkJet as Workspace
Dim dbsNorthwind As Database
Dim wrkODBC As Workspace
Dim conPubs As Connection
Dim conPubs2 As Connection
Dim conLoop As Connection
Dim prpLoop As Property

' Open Microsoft Jet Database object.
Set wrkJet = CreateWorkspace("NewJetWorkspace", _

"admin", "", dbUseJet)
Set dbsNorthwind = wrkJet.OpenDatabase("Northwind.mdb")

' Create ODBCDirect Workspace object and open Connection
' objects.
Set wrkODBC = CreateWorkspace("NewODBCWorkspace", _

"admin", "", dbUseODBC)
Set conPubs = wrkODBC.OpenConnection("Connection1", , , _

"ODBC;DATABASE=pubs;UID=sa;PWD=;DSN=Publishers")
Set conPubs2 = wrkODBC.OpenConnection("Connection2", , _

True, "ODBC;DATABASE=pubs;UID=sa;PWD=;DSN=Publishers")

Debug.Print "Database properties:"

With dbsNorthwind
' Enumerate Properties collection of Database object.
For Each prpLoop In .Properties

On Error Resume Next
Debug.Print " " & prpLoop.Name & " = " & _

prpLoop.Value
On Error GoTo 0

Next prpLoop
End With

' Enumerate the Connections collection.
For Each conLoop In wrkODBC.Connections

Debug.Print "Connection properties for " & _
conLoop.Name & ":"

With conLoop
' Print property values by explicitly calling each
' Property object; the Connection object does not
' support a Properties collection.
Debug.Print " Connect = " & .Connect
' Property actually returns a Database object.
Debug.Print " Database[.Name] = " & _

.Database.Name
Debug.Print " Name = " & .Name
Debug.Print " QueryTimeout = " & .QueryTimeout

Debug.Print " RecordsAffected = " & _
.RecordsAffected

Debug.Print " StillExecuting = " & _
.StillExecuting

Debug.Print " Transactions = " & .Transactions
Debug.Print " Updatable = " & .Updatable

End With

Next conLoop

dbsNorthwind.Close
conPubs.Close
conPubs2.Close
wrkJet.Close
wrkODBC.Close

End Sub

Database Object, Databases Collection Example

This example creates a new Database object and opens an existing Database object in the default
Workspace object. Then it enumerates the Database collection and the Properties collection of
each Database object. See the methods and properties listed in the Database summary topic for
additional examples.
Sub DatabaseObjectX()

Dim wrkJet As Workspace
Dim dbsNorthwind As Database
Dim dbsNew As Database
Dim dbsLoop As Database
Dim prpLoop As Property

Set wrkJet = CreateWorkspace("JetWorkspace", "admin", _
"", dbUseJet)

' Make sure there isn't already a file with the name of
' the new database.
If Dir("NewDB.mdb") <> "" Then Kill "NewDB.mdb"

' Create a new database with the specified
' collating order.
Set dbsNew = wrkJet.CreateDatabase("NewDB.mdb", _

dbLangGeneral)
Set dbsNorthwind = wrkJet.OpenDatabase("Northwind.mdb")

' Enumerate the Databases collection.
For Each dbsLoop In wrkJet.Databases

With dbsLoop
Debug.Print "Properties of " & .Name
' Enumerate the Properties collection of each
' Database object.
For Each prpLoop In .Properties

If prpLoop <> "" Then Debug.Print " " & _
prpLoop.Name & " = " & prpLoop

Next prpLoop
End With

Next dbsLoop

dbsNew.Close
dbsNorthwind.Close
wrkJet.Close

End Sub

Document Object and Documents Collection Example

This example enumerates the Documents collection of the Tables container, and then enumerates
the Properties collection of the first Document object in the collection.
Sub DocumentX()

Dim dbsNorthwind As Database
Dim docLoop As Document
Dim prpLoop As Property

Set dbsNorthwind = OpenDatabase("Northwind.mdb")

With dbsNorthwind.Containers!Tables
Debug.Print "Documents in " & .Name & " container"
' Enumerate the Documents collection of the Tables
' container.
For Each docLoop In .Documents

Debug.Print " " & docLoop.Name
Next docLoop
With .Documents(0)

' Enumerate the Properties collection of the first.
' Document object of the Tables container.
Debug.Print "Properties of " & .Name & " document"
On Error Resume Next
For Each prpLoop In .Properties

Debug.Print " " & prpLoop.Name & " = " & _
prpLoop

Next prpLoop
On Error GoTo 0

End With
End With

dbsNorthwind.Close

End Sub

Dynamic-Type Recordset Example

This example opens a dynamic-type Recordset object and enumerates its records.
Sub dbOpenDynamicX()

Dim wrkMain As Workspace
Dim conMain As Connection
Dim qdfTemp As QueryDef
Dim rstTemp As Recordset
Dim strSQL As String
Dim intLoop As Integer

' Create ODBC workspace and open connection to
' SQL Server database.
Set wrkMain = CreateWorkspace("ODBCWorkspace", _

"admin", "", dbUseODBC)
Set conMain = wrkMain.OpenConnection("Publishers", _

dbDriverNoPrompt, False, _
"ODBC;DATABASE=pubs;UID=sa;PWD=;DSN=Publishers")

' Open dynamic-type recordset.
Set rstTemp = _

conMain.OpenRecordset("authors", _
dbOpenDynamic)

With rstTemp
Debug.Print "Dynamic-type recordset: " & .Name

' Enumerate records.
Do While Not .EOF

Debug.Print " " & !au_lname & ", " & _
!au_fname

.MoveNext
Loop

.Close
End With

conMain.Close
wrkMain.Close

End Sub

Forward-Only–Type Recordset Example

This example opens a forward-only-type Recordset, demonstrates its read-only characteristics, and
steps through the Recordset with the MoveNext method.
Sub dbOpenForwardOnlyX()

Dim dbsNorthwind As Database
Dim rstEmployees As Recordset
Dim fldLoop As Field

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
' Open a forward-only-type Recordset object. Only the
' MoveNext and Move methods may be used to navigate
' through the recordset.
Set rstEmployees = _

dbsNorthwind.OpenRecordset("Employees", _
dbOpenForwardOnly)

With rstEmployees
Debug.Print "Forward-only-type recordset: " & _

.Name & ", Updatable = " & .Updatable

Debug.Print " Field - DataUpdatable"
' Enumerate Fields collection, printing the Name and
' DataUpdatable properties of each Field object.
For Each fldLoop In .Fields

Debug.Print " " & _
fldLoop.Name & " - " & fldLoop.DataUpdatable

Next fldLoop

Debug.Print " Data"
' Enumerate the recordset.
Do While Not .EOF

Debug.Print " " & !FirstName & " " & _
!LastName

.MoveNext
Loop

.Close
End With

dbsNorthwind.Close

End Sub

Workspace Object, Workspaces Collection Example

This example creates a new Microsoft Jet Workspace object and a new ODBCDirect Workspace
object and appends them to the Workspaces collection. It then enumerates the Workspaces
collections and the Properties collection of each Workspace object. See the methods and properties
of the Workspace object or Workspaces collection for additional examples.
Sub WorkspaceX()

Dim wrkNewJet As Workspace
Dim wrkNewODBC As Workspace
Dim wrkLoop As Workspace
Dim prpLoop As Property

' Create a new Microsoft Jet workspace.
Set wrkNewJet = CreateWorkspace("NewJetWorkspace", _

"admin", "", dbUseJet)
Workspaces.Append wrkNewJet

' Create a new ODBCDirect workspace.
Set wrkNewODBC = CreateWorkspace("NewODBCWorkspace", _

"admin", "", dbUseODBC)
Workspaces.Append wrkNewODBC

' Enumerate the Workspaces collection.
For Each wrkLoop In Workspaces

With wrkLoop
Debug.Print "Properties of " & .Name
' Enumerate the Properties collection of the new
' Workspace object.
For Each prpLoop In .Properties

On Error Resume Next
If prpLoop <> "" Then Debug.Print " " & _

prpLoop.Name & " = " & prpLoop
On Error GoTo 0

Next prpLoop
End With

Next wrkLoop

wrkNewJet.Close
wrkNewODBC.Close

End Sub

AddNew Method Example

This example uses the AddNew method to create a new record with the specified name. The
AddName function is required for this procedure to run.
Sub AddNewX()

Dim dbsNorthwind As Database
Dim rstEmployees As Recordset
Dim strFirstName As String
Dim strLastName As String

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
Set rstEmployees = _

dbsNorthwind.OpenRecordset("Employees", dbOpenDynaset)

' Get data from the user.
strFirstName = Trim(InputBox(_

"Enter first name:"))
strLastName = Trim(InputBox(_

"Enter last name:"))

' Proceed only if the user actually entered something
' for both the first and last names.
If strFirstName <> "" and strLastName <> "" Then

' Call the function that adds the record.
AddName rstEmployees, strFirstName, strLastName

' Show the newly added data.
With rstEmployees

Debug.Print "New record: " & !FirstName & _
" " & !LastName

' Delete new record because this is a demonstration.
.Delete

End With

Else
Debug.Print _

"You must input a string for first and last name!"
End If

rstEmployees.Close
dbsNorthwind.Close

End Sub

Function AddName(rstTemp As Recordset, _
strFirst As String, strLast As String)

' Adds a new record to a Recordset using the data passed
' by the calling procedure. The new record is then made
' the current record.
With rstTemp

.AddNew
!FirstName = strFirst
!LastName = strLast

.Update

.Bookmark = .LastModified
End With

End Function

Append and Delete Methods Example

This example uses either the Append method or the Delete method to modify the Fields collection of
a TableDef. The AppendDeleteField procedure is required for this procedure to run.
Sub AppendX()

Dim dbsNorthwind As Database
Dim tdfEmployees As TableDef
Dim fldLoop As Field

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
Set tdfEmployees = dbsNorthwind.TableDefs!Employees

' Add three new fields.
AppendDeleteField tdfEmployees, "APPEND", _

"E-mail", dbText, 50
AppendDeleteField tdfEmployees, "APPEND", _

"Http", dbText, 80
AppendDeleteField tdfEmployees, "APPEND", _

"Quota", dbInteger, 5

Debug.Print "Fields after Append"
Debug.Print , "Type", "Size", "Name"

' Enumerate the Fields collection to show the new fields.
For Each fldLoop In tdfEmployees.Fields

Debug.Print , fldLoop.Type, fldLoop.Size, fldLoop.Name
Next fldLoop

' Delete the newly added fields.
AppendDeleteField tdfEmployees, "DELETE", "E-mail"
AppendDeleteField tdfEmployees, "DELETE", "Http"
AppendDeleteField tdfEmployees, "DELETE", "Quota"

Debug.Print "Fields after Delete"
Debug.Print , "Type", "Size", "Name"

' Enumerate the Fields collection to show that the new
' fields have been deleted.
For Each fldLoop In tdfEmployees.Fields

Debug.Print , fldLoop.Type, fldLoop.Size, fldLoop.Name
Next fldLoop

dbsNorthwind.Close

End Sub

Sub AppendDeleteField(tdfTemp As TableDef, _
strCommand As String, strName As String, _
Optional varType, Optional varSize)

With tdfTemp

' Check first to see if the TableDef object is
' updatable. If it isn't, control is passed back to
' the calling procedure.

If .Updatable = False Then
MsgBox "TableDef not Updatable! " & _

"Unable to complete task."
Exit Sub

End If

' Depending on the passed data, append or delete a
' field to the Fields collection of the specified
' TableDef object.
If strCommand = "APPEND" Then

.Fields.Append .CreateField(strName, _
varType, varSize)

Else
If strCommand = "DELETE" Then .Fields.Delete _

strName
End If

End With

End Sub

AppendChunk and GetChunk Methods Example

This example uses the AppendChunk and GetChunk methods to fill an OLE object field with data
from another record, 32K at a time. In a real application, one might use a procedure like this to copy
an employee record (including the employee's photo) from one table to another. In this example, the
record is simply being copied back to same table. Note that all the chunk manipulation takes place
within a single AddNew-Update sequence.
Sub AppendChunkX()

Dim dbsNorthwind As Database
Dim rstEmployees As Recordset
Dim rstEmployees2 As Recordset

Set dbsNorthwind = OpenDatabase("Northwind.mdb")

' Open two recordsets from the Employees table.
Set rstEmployees = _

dbsNorthwind.OpenRecordset("Employees", _
dbOpenDynaset)

Set rstEmployees2 = rstEmployees.Clone

' Add a new record to the first Recordset and copy the
' data from a record in the second Recordset.
With rstEmployees

.AddNew
!FirstName = rstEmployees2!FirstName
!LastName = rstEmployees2!LastName
CopyLargeField rstEmployees2!Photo, !Photo
.Update

' Delete new record because this is a demonstration.
.Bookmark = .LastModified
.Delete
.Close

End With

rstEmployees2.Close
dbsNorthwind.Close

End Sub

Function CopyLargeField(fldSource As Field, _
fldDestination As Field)

' Set size of chunk in bytes.
Const conChunkSize = 32768

Dim lngOffset As Long
Dim lngTotalSize As Long
Dim strChunk As String

' Copy the photo from one Recordset to the other in 32K
' chunks until the entire field is copied.
lngTotalSize = fldSource.FieldSize
Do While lngOffset < lngTotalSize

strChunk = fldSource.GetChunk(lngOffset, conChunkSize)
fldDestination.AppendChunk strChunk
lngOffset = lngOffset + conChunkSize

Loop

End Function

BeginTrans, CommitTrans, Rollback Methods Example

This example changes the job title of all sales representatives in the Employees table of the
database. After the BeginTrans method starts a transaction that isolates all the changes made to the
Employees table, the CommitTrans method saves the changes. Notice that you can use the
Rollback method to undo changes that you saved using the Update method. Furthermore, the main
transaction is nested within another transaction that automatically rolls back any changes made by
the user during this example.

One or more table pages remain locked while the user decides whether or not to accept the changes.
For this reason, this technique isn't recommended but shown only as an example.
Sub BeginTransX()

Dim strName As String
Dim strMessage As String
Dim wrkDefault As Workspace
Dim dbsNorthwind As Database
Dim rstEmployees As Recordset

' Get default Workspace.
Set wrkDefault = DBEngine.Workspaces(0)
Set dbsNorthwind = OpenDatabase("Northwind.mdb")
Set rstEmployees = _

dbsNorthwind.OpenRecordset("Employees")

' Start of outer transaction.
wrkDefault.BeginTrans
' Start of main transaction.
wrkDefault.BeginTrans

With rstEmployees

' Loop through recordset and ask user if she wants to
' change the title for a specified employee.
Do Until .EOF

If !Title = "Sales Representative" Then
strName = !LastName & ", " & !FirstName
strMessage = "Employee: " & strName & vbCr & _

"Change title to Account Executive?"

' Change the title for the specified employee.
If MsgBox(strMessage, vbYesNo) = vbYes Then

.Edit
!Title = "Account Executive"
.Update

End If
End If

.MoveNext
Loop

' Ask if the user wants to commit to all the changes
' made above.
If MsgBox("Save all changes?", vbYesNo) = vbYes Then

wrkDefault.CommitTrans
Else

wrkDefault.Rollback
End If

' Print current data in recordset.
.MoveFirst
Do While Not .EOF

Debug.Print !LastName & ", " & !FirstName & _
" - " & !Title

.MoveNext
Loop

' Roll back any changes made by the user since this is
' a demonstration.
wrkDefault.Rollback
.Close

End With

dbsNorthwind.Close

End Sub

Clone Method Example

This example uses the Clone method to create copies of a Recordset and then lets the user position
the record pointer of each copy independently.
Sub CloneX()

Dim dbsNorthwind As Database
Dim arstProducts(1 To 3) As Recordset
Dim intLoop As Integer
Dim strMessage As String
Dim strFind As String

Set dbsNorthwind = OpenDatabase("Northwind.mdb")

' If the following SQL statement will be used often,
' creating a permanent QueryDef will result in better
' performance.
Set arstProducts(1) = dbsNorthwind.OpenRecordset(_

"SELECT ProductName FROM Products " & _
"ORDER BY ProductName", dbOpenSnapshot)

' Create two clones of the original Recordset.
Set arstProducts(2) = arstProducts(1).Clone
Set arstProducts(3) = arstProducts(1).Clone

Do While True

' Loop through the array so that on each pass, the
' user is searching a different copy of the same
' Recordset.
For intLoop = 1 To 3

' Ask for search string while showing where the
' current record pointer is for each Recordset.
strMessage = _

"Recordsets from Products table:" & vbCr & _
" 1 - Original - Record pointer at " & _
arstProducts(1)!ProductName & vbCr & _
" 2 - Clone - Record pointer at " & _
arstProducts(2)!ProductName & vbCr & _
" 3 - Clone - Record pointer at " & _
arstProducts(3)!ProductName & vbCr & _
"Enter search string for #" & intLoop & ":"

strFind = Trim(InputBox(strMessage))
If strFind = "" Then Exit Do

' Find the search string; if there's no match, jump
' to the last record.
With arstProducts(intLoop)

.FindFirst "ProductName >= '" & strFind & "'"
If .NoMatch Then .MoveLast

End With

Next intLoop

Loop

arstProducts(1).Close
arstProducts(2).Close
arstProducts(3).Close
dbsNorthwind.Close

End Sub

Close Method Example

This example uses the Close method on both Recordset and Database objects that have been
opened. It also demonstrates how closing a Recordset will cause unsaved changes to be lost.
Sub CloseX()

Dim dbsNorthwind As Database
Dim rstEmployees As Recordset

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
Set rstEmployees = _

dbsNorthwind.OpenRecordset("Employees")

' Make changes to a record but close the recordset before
' saving the changes.
With rstEmployees

Debug.Print "Original data"
Debug.Print " Name - Extension"
Debug.Print " " & !FirstName & " " & _

!LastName & " - " & !Extension
.Edit
!Extension = "9999"
.Close

End With

' Reopen Recordset to show that the data hasn't
' changed.
Set rstEmployees = _

dbsNorthwind.OpenRecordset("Employees")

With rstEmployees
Debug.Print "Data after Close"
Debug.Print " Name - Extension"
Debug.Print " " & !FirstName & " " & _

!LastName & " - " & !Extension
.Close

End With

dbsNorthwind.Close

End Sub

CompactDatabase Method Example

This example uses the CompactDatabase method to change the collating order of a database. You
cannot use this code in a module belonging to Northwind.mdb.
Sub CompactDatabaseX()

Dim dbsNorthwind As Database

Set dbsNorthwind = OpenDatabase("Northwind.mdb")

' Show the properties of the original database.
With dbsNorthwind

Debug.Print .Name & ", version " & .Version
Debug.Print " CollatingOrder = " & .CollatingOrder
.Close

End With

' Make sure there isn't already a file with the
' name of the compacted database.
If Dir("NwindKorean.mdb") <> "" Then _

Kill "NwindKorean.mdb"

' This statement creates a compact version of the
' Northwind database that uses a Korean language
' collating order.
DBEngine.CompactDatabase "Northwind.mdb", _

"NwindKorean.mdb", dbLangKorean

Set dbsNorthwind = OpenDatabase("NwindKorean.mdb")

' Show the properties of the compacted database.
With dbsNorthwind

Debug.Print .Name & ", version " & .Version
Debug.Print " CollatingOrder = " & .CollatingOrder
.Close

End With

End Sub
This example uses the CompactDatabase method to change the version of a database. To run this
code, you must have a Microsoft Jet version 1.1 database called Nwind11.mdb and you cannot use
this code in a module belonging to Nwind11.mdb.
Sub CompactDatabaseX2()

Dim dbsNorthwind As Database
Dim prpLoop As Property

Set dbsNorthwind = OpenDatabase("Nwind11.mdb")

' Show the properties of the original database.
With dbsNorthwind

Debug.Print .Name & ", version " & .Version
Debug.Print " CollatingOrder = " & .CollatingOrder
.Close

End With

' Make sure there isn't already a file with the
' name of the compacted database.
If Dir("Nwind20.mdb") <> "" Then _

Kill "Nwind20.mdb"

' This statement creates a compact and encrypted
' Microsoft Jet 2.0 version of a Microsoft Jet version
' 1.1 database.
DBEngine.CompactDatabase "Nwind11.mdb", _

"Nwind20.mdb", , dbEncrypt + dbVersion20

Set dbsNorthwind = OpenDatabase("Nwind20.mdb")

' Show the properties of the compacted database.
With dbsNorthwind

Debug.Print .Name & ", version " & .Version
For Each prpLoop In .Properties

On Error Resume Next
If prpLoop <> "" Then Debug.Print " " & _

prpLoop.Name & " = " & prpLoop
On Error GoTo 0

Next prpLoop
.Close

End With

End Sub

CreateDatabase Method Example

This example uses CreateDatabase to create a new, encrypted Database object.
Sub CreateDatabaseX()

Dim wrkDefault As Workspace
Dim dbsNew As DATABASE
Dim prpLoop As Property

' Get default Workspace.
Set wrkDefault = DBEngine.Workspaces(0)

' Make sure there isn't already a file with the name of
' the new database.
If Dir("NewDB.mdb") <> "" Then Kill "NewDB.mdb"

' Create a new encrypted database with the specified
' collating order.
Set dbsNew = wrkDefault.CreateDatabase("NewDB.mdb", _

dbLangGeneral, dbEncrypt)

With dbsNew
Debug.Print "Properties of " & .Name
' Enumerate the Properties collection of the new
' Database object.
For Each prpLoop In .Properties

If prpLoop <> "" Then Debug.Print " " & _
prpLoop.Name & " = " & prpLoop

Next prpLoop
End With

dbsNew.Close

End Sub

CreateField Method Example

This example uses the CreateField method to create three Fields for a new TableDef. It then
displays the properties of those Field objects that are automatically set by the CreateField method.
(Properties whose values are empty at the time of Field creation are not shown.)
Sub CreateFieldX()

Dim dbsNorthwind As Database
Dim tdfNew As TableDef
Dim fldLoop As Field
Dim prpLoop As Property

Set dbsNorthwind = OpenDatabase("Northwind.mdb")

Set tdfNew = dbsNorthwind.CreateTableDef("NewTableDef")

' Create and append new Field objects for the new
' TableDef object.
With tdfNew

' The CreateField method will set a default Size
' for a new Field object if one is not specified.
.Fields.Append .CreateField("TextField", dbText)
.Fields.Append .CreateField("IntegerField", dbInteger)
.Fields.Append .CreateField("DateField", dbDate)

End With

dbsNorthwind.TableDefs.Append tdfNew

Debug.Print "Properties of new Fields in " & tdfNew.Name

' Enumerate Fields collection to show the properties of
' the new Field objects.
For Each fldLoop In tdfNew.Fields

Debug.Print " " & fldLoop.Name

For Each prpLoop In fldLoop.Properties
' Properties that are invalid in the context of
' TableDefs will trigger an error if an attempt
' is made to read their values.
On Error Resume Next
Debug.Print " " & prpLoop.Name & " - " & _

IIf(prpLoop = "", "[empty]", prpLoop)
On Error GoTo 0

Next prpLoop

Next fldLoop

' Delete new TableDef because this is a demonstration.
dbsNorthwind.TableDefs.Delete tdfNew.Name
dbsNorthwind.Close

End Sub

CreateIndex Method Example

This example uses the CreateIndex method to create two new Index objects and then appends them
to the Indexes collection of the Employees TableDef object. It then enumerates the Indexes
collection of the TableDef object, the Fields collection of the new Index objects, and the Properties
collection of the new Index objects. The CreateIndexOutput function is required for this procedure to
run.
Sub CreateIndexX()

Dim dbsNorthwind As Database
Dim tdfEmployees As TableDef
Dim idxCountry As Index
Dim idxFirstName As Index
Dim idxLoop As Index

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
Set tdfEmployees = dbsNorthwind!Employees

With tdfEmployees
' Create first Index object, create and append Field
' objects to the Index object, and then append the
' Index object to the Indexes collection of the
' TableDef.
Set idxCountry = .CreateIndex("CountryIndex")
With idxCountry

.Fields.Append .CreateField("Country")

.Fields.Append .CreateField("LastName")

.Fields.Append .CreateField("FirstName")
End With
.Indexes.Append idxCountry

' Create second Index object, create and append Field
' objects to the Index object, and then append the
' Index object to the Indexes collection of the
' TableDef.
Set idxFirstName = .CreateIndex
With idxFirstName

.Name = "FirstNameIndex"

.Fields.Append .CreateField("FirstName")

.Fields.Append .CreateField("LastName")
End With
.Indexes.Append idxFirstName

' Refresh collection so that you can access new Index
' objects.
.Indexes.Refresh

Debug.Print .Indexes.Count & " Indexes in " & _
.Name & " TableDef"

' Enumerate Indexes collection.
For Each idxLoop In .Indexes

Debug.Print " " & idxLoop.Name
Next idxLoop

' Print report.
CreateIndexOutput idxCountry
CreateIndexOutput idxFirstName

' Delete new Index objects because this is a
' demonstration.
.Indexes.Delete idxCountry.Name
.Indexes.Delete idxFirstName.Name

End With

dbsNorthwind.Close

End Sub

Function CreateIndexOutput(idxTemp As Index)

Dim fldLoop As Field
Dim prpLoop As Property

With idxTemp
' Enumerate Fields collection of Index object.
Debug.Print "Fields in " & .Name
For Each fldLoop In .Fields

Debug.Print " " & fldLoop.Name
Next fldLoop

' Enumerate Properties collection of Index object.
Debug.Print "Properties of " & .Name
For Each prpLoop In .Properties

Debug.Print " " & prpLoop.Name & " - " & _
IIf(prpLoop = "", "[empty]", prpLoop)

Next prpLoop
End With

End Function

CreateProperty Method Example

This example tries to set the value of a user-defined property. If the property doesn't exist, it uses the
CreateProperty method to create and set the value of the new property. The SetProperty procedure
is required for this procedure to run.
Sub CreatePropertyX()

Dim dbsNorthwind As Database
Dim prpLoop As Property

Set dbsNorthwind = OpenDatabase("Northwind.mdb")

' Set the Archive property to True.
SetProperty dbsNorthwind, "Archive", True

With dbsNorthwind
Debug.Print "Properties of " & .Name

' Enumerate Properties collection of the Northwind
' database.
For Each prpLoop In .Properties

If prpLoop <> "" Then Debug.Print " " & _
prpLoop.Name & " = " & prpLoop

Next prpLoop

' Delete the new property since this is a
' demonstration.
.Properties.Delete "Archive"

.Close
End With

End Sub

Sub SetProperty(dbsTemp As Database, strName As String, _
booTemp As Boolean)

Dim prpNew As Property
Dim errLoop As Error

' Attempt to set the specified property.
On Error GoTo Err_Property
dbsTemp.Properties("strName") = booTemp
On Error GoTo 0

Exit Sub

Err_Property:

' Error 3270 means that the property was not found.
If DBEngine.Errors(0).Number = 3270 Then

' Create property, set its value, and append it to the
' Properties collection.
Set prpNew = dbsTemp.CreateProperty(strName, _

dbBoolean, booTemp)
dbsTemp.Properties.Append prpNew

Resume Next
Else

' If different error has occurred, display message.
For Each errLoop In DBEngine.Errors

MsgBox "Error number: " & errLoop.Number & vbCr & _
errLoop.Description

Next errLoop
End

End If

End Sub

CreateQueryDef Method Example

This example uses the CreateQueryDef method to create and execute both a temporary and a
permanent QueryDef. The GetrstTemp function is required for this procedure to run.
Sub CreateQueryDefX()

Dim dbsNorthwind As Database
Dim qdfTemp As QueryDef
Dim qdfNew As QueryDef

Set dbsNorthwind = OpenDatabase("Northwind.mdb")

With dbsNorthwind
' Create temporary QueryDef.
Set qdfTemp = .CreateQueryDef("", _

"SELECT * FROM Employees")
' Open Recordset and print report.
GetrstTemp qdfTemp
' Create permanent QueryDef.
Set qdfNew = .CreateQueryDef("NewQueryDef", _

"SELECT * FROM Categories")
' Open Recordset and print report.
GetrstTemp qdfNew
' Delete new QueryDef because this is a demonstration.
.QueryDefs.Delete qdfNew.Name
.Close

End With

End Sub

Function GetrstTemp(qdfTemp As QueryDef)

Dim rstTemp As Recordset

With qdfTemp
Debug.Print .Name
Debug.Print " " & .SQL
' Open Recordset from QueryDef.
Set rstTemp = .OpenRecordset(dbOpenSnapshot)

With rstTemp
' Populate Recordset and print number of records.
.MoveLast
Debug.Print " Number of records = " & _

.RecordCount
Debug.Print
.Close

End With

End With

End Function

CreateRelation Method Example

This example uses the CreateRelation method to create a Relation between the Employees
TableDef and a new TableDef called Departments. This example also demonstrates how creating a
new Relation will also create any necessary Indexes in the foreign table (the
DepartmentsEmployees Index in the Employees table).
Sub CreateRelationX()

Dim dbsNorthwind As Database
Dim tdfEmployees As TableDef
Dim tdfNew As TableDef
Dim idxNew As Index
Dim relNew As Relation
Dim idxLoop As Index

Set dbsNorthwind = OpenDatabase("Northwind.mdb")

With dbsNorthwind
' Add new field to Employees table.
Set tdfEmployees = .TableDefs!Employees
tdfEmployees.Fields.Append _

tdfEmployees.CreateField("DeptID", dbInteger, 2)

' Create new Departments table.
Set tdfNew = .CreateTableDef("Departments")

With tdfNew
' Create and append Field objects to Fields
' collection of the new TableDef object.
.Fields.Append .CreateField("DeptID", dbInteger, 2)
.Fields.Append .CreateField("DeptName", dbText, 20)

' Create Index object for Departments table.
Set idxNew = .CreateIndex("DeptIDIndex")
' Create and append Field object to Fields
' collection of the new Index object.
idxNew.Fields.Append idxNew.CreateField("DeptID")
' The index in the primary table must be Unique in
' order to be part of a Relation.
idxNew.Unique = True
.Indexes.Append idxNew

End With

.TableDefs.Append tdfNew

' Create EmployeesDepartments Relation object, using
' the names of the two tables in the relation.
Set relNew = .CreateRelation("EmployeesDepartments", _

tdfNew.Name, tdfEmployees.Name, _
dbRelationUpdateCascade)

' Create Field object for the Fields collection of the
' new Relation object. Set the Name and ForeignName
' properties based on the fields to be used for the
' relation.
relNew.Fields.Append relNew.CreateField("DeptID")

relNew.Fields!DeptID.ForeignName = "DeptID"
.Relations.Append relNew

' Print report.
Debug.Print "Properties of " & relNew.Name & _

" Relation"
Debug.Print " Table = " & relNew.Table
Debug.Print " ForeignTable = " & _

relNew.ForeignTable
Debug.Print "Fields of " & relNew.Name & " Relation"

With relNew.Fields!DeptID
Debug.Print " " & .Name
Debug.Print " Name = " & .Name
Debug.Print " ForeignName = " & .ForeignName

End With

Debug.Print "Indexes in " & tdfEmployees.Name & _
" TableDef"

For Each idxLoop In tdfEmployees.Indexes
Debug.Print " " & idxLoop.Name & _

", Foreign = " & idxLoop.Foreign
Next idxLoop

' Delete new objects because this is a demonstration.
.Relations.Delete relNew.Name
.TableDefs.Delete tdfNew.Name
tdfEmployees.Fields.Delete "DeptID"
.Close

End With

End Sub

CreateTableDef Method Example

This example creates a new TableDef object in the Northwind database.
Sub CreateTableDefX()

Dim dbsNorthwind As Database
Dim tdfNew As TableDef
Dim prpLoop As Property

Set dbsNorthwind = OpenDatabase("Northwind.mdb")

' Create a new TableDef object.
Set tdfNew = dbsNorthwind.CreateTableDef("Contacts")

With tdfNew
' Create fields and append them to the new TableDef
' object. This must be done before appending the
' TableDef object to the TableDefs collection of the
' Northwind database.
.Fields.Append .CreateField("FirstName", dbText)
.Fields.Append .CreateField("LastName", dbText)
.Fields.Append .CreateField("Phone", dbText)
.Fields.Append .CreateField("Notes", dbMemo)

Debug.Print "Properties of new TableDef object " & _
"before appending to collection:"

' Enumerate Properties collection of new TableDef
' object.
For Each prpLoop In .Properties

On Error Resume Next
If prpLoop <> "" Then Debug.Print " " & _
 prpLoop.Name & " = " & prpLoop
On Error GoTo 0

Next prpLoop

' Append the new TableDef object to the Northwind
' database.
dbsNorthwind.TableDefs.Append tdfNew

Debug.Print "Properties of new TableDef object " & _
"after appending to collection:"

' Enumerate Properties collection of new TableDef
' object.
For Each prpLoop In .Properties

On Error Resume Next
If prpLoop <> "" Then Debug.Print " " & _
 prpLoop.Name & " = " & prpLoop
On Error GoTo 0

Next prpLoop

End With

' Delete new TableDef object since this is a
' demonstration.

dbsNorthwind.TableDefs.Delete "Contacts"

dbsNorthwind.Close

End Sub

Delete Method Example

This example uses the Delete method to remove a specified record from a Recordset. The
DeleteRecord procedure is required for this procedure to run
Sub DeleteX()

Dim dbsNorthwind As Database
Dim rstEmployees As Recordset
Dim lngID As Long

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
Set rstEmployees = _

dbsNorthwind.OpenRecordset("Employees")

' Add temporary record to be deleted.
With rstEmployees

.Index = "PrimaryKey"

.AddNew
!FirstName = "Janelle"
!LastName = "Tebbs"
.Update
.Bookmark = .LastModified
lngID = !EmployeeID

End With

' Delete the employee record with the specified ID
' number.
DeleteRecord rstEmployees, lngID

rstEmployees.Close
dbsNorthwind.Close

End Sub

Sub DeleteRecord(rstTemp As Recordset, _
lngSeek As Long)

With rstTemp
.Seek "=", lngSeek
If .NoMatch Then

MsgBox "No employee #" & lngSeek & " in file!"
Else

.Delete
MsgBox "Record for employee #" & lngSeek & _

" deleted!"
End If

End With

End Sub

Edit Method Example

This example uses the Edit method to replace the current data with the specified name. The
EditName procedure is required for this procedure to run.
Sub EditX()

Dim dbsNorthwind As Database
Dim rstEmployees As Recordset
Dim strOldFirst As String
Dim strOldLast As String
Dim strFirstName As String
Dim strLastName As String

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
Set rstEmployees = _

dbsNorthwind.OpenRecordset("Employees", _
dbOpenDynaset)

' Store original data.
strOldFirst = rstEmployees!FirstName
strOldLast = rstEmployees!LastName

' Get new data for record.
strFirstName = Trim(InputBox(_

"Enter first name:"))
strLastName = Trim(InputBox(_

"Enter last name:"))

' Proceed if the user entered something for both fields.
If strFirstName <> "" and strLastName <> "" Then

' Update record with new data.
EditName rstEmployees, strFirstName, strLastName

With rstEmployees
' Show old and new data.
Debug.Print "Old data: " & strOldFirst & _

" " & strOldLast
Debug.Print "New data: " & !FirstName & _

" " & !LastName
' Restore original data because this is a
' demonstration.
.Edit
!FirstName = strOldFirst
!LastName = strOldLast
.Update

End With

Else
Debug.Print _

"You must input a string for first and last name!"
End If

rstEmployees.Close
dbsNorthwind.Close

End Sub

Sub EditName(rstTemp As Recordset, _
strFirst As String, strLast As String)

' Make changes to record and set the bookmark to keep
' the same record current.
With rstTemp

.Edit
!FirstName = strFirst
!LastName = strLast
.Update
.Bookmark = .LastModified

End With

End Sub

Execute Method Example

This example demonstrates the Execute method when run from both a QueryDef object and a
Database object. The ExecuteQueryDef and PrintOutput procedures are required for this procedure
to run.
Sub ExecuteX()

Dim dbsNorthwind As Database
Dim strSQLChange As String
Dim strSQLRestore As String
Dim qdfChange As QueryDef
Dim rstEmployees As Recordset
Dim errLoop As Error

' Define two SQL statements for action queries.
strSQLChange = "UPDATE Employees SET Country = " & _

"'United States' WHERE Country = 'USA'"
strSQLRestore = "UPDATE Employees SET Country = " & _

"'USA' WHERE Country = 'United States'"

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
' Create temporary QueryDef object.
Set qdfChange = dbsNorthwind.CreateQueryDef("", _

strSQLChange)
Set rstEmployees = dbsNorthwind.OpenRecordset(_

"SELECT LastName, Country FROM Employees", _
dbOpenForwardOnly)

' Print report of original data.
Debug.Print _

"Data in Employees table before executing the query"
PrintOutput rstEmployees

' Run temporary QueryDef.
ExecuteQueryDef qdfChange, rstEmployees

' Print report of new data.
Debug.Print _

"Data in Employees table after executing the query"
PrintOutput rstEmployees

' Run action query to restore data. Trap for errors,
' checking the Errors collection if necessary.
On Error GoTo Err_Execute
dbsNorthwind.Execute strSQLRestore, dbFailOnError
On Error GoTo 0

' Retrieve the current data by requerying the recordset.
rstEmployees.Requery

' Print report of restored data.
Debug.Print "Data after executing the query " & _

"to restore the original information"
PrintOutput rstEmployees

rstEmployees.Close

Exit Sub

Err_Execute:

' Notify user of any errors that result from
' executing the query.
If DBEngine.Errors.Count > 0 Then

For Each errLoop In DBEngine.Errors
MsgBox "Error number: " & errLoop.Number & vbCr & _

errLoop.Description
Next errLoop

End If

Resume Next

End Sub

Sub ExecuteQueryDef(qdfTemp As QueryDef, _
rstTemp As Recordset)

Dim errLoop As Error

' Run the specified QueryDef object. Trap for errors,
' checking the Errors collection if necessary.
On Error GoTo Err_Execute
qdfTemp.Execute dbFailOnError
On Error GoTo 0

' Retrieve the current data by requerying the recordset.
rstTemp.Requery

Exit Sub

Err_Execute:

' Notify user of any errors that result from
' executing the query.
If DBEngine.Errors.Count > 0 Then

For Each errLoop In DBEngine.Errors
MsgBox "Error number: " & errLoop.Number & vbCr & _

errLoop.Description
Next errLoop

End If

Resume Next

End Sub

Sub PrintOutput(rstTemp As Recordset)

' Enumerate Recordset.
Do While Not rstTemp.EOF

Debug.Print " " & rstTemp!LastName & _
", " & rstTemp!Country

rstTemp.MoveNext
Loop

End Sub

FindFirst, FindLast, FindNext, FindPrevious Methods Example

This example uses the FindFirst, FindLast, FindNext, and FindPrevious methods to move the
record pointer of a Recordset based on the supplied search string and command. The FindAny
function is required for this procedure to run.
Sub FindFirstX()

Dim dbsNorthwind As Database
Dim rstCustomers As Recordset
Dim strCountry As String
Dim varBookmark As Variant
Dim strMessage As String
Dim intCommand As Integer

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
Set rstCustomers = dbsNorthwind.OpenRecordset(_

"SELECT CompanyName, City, Country " & _
"FROM Customers ORDER BY CompanyName", _
dbOpenSnapshot)

Do While True
' Get user input and build search string.
strCountry = _

Trim(InputBox("Enter country for search."))
If strCountry = "" Then Exit Do
strCountry = "Country = '" & strCountry & "'"

With rstCustomers
' Populate recordset.
.MoveLast
' Find first record satisfying search string. Exit
' loop if no such record exists.
.FindFirst strCountry
If .NoMatch Then

MsgBox "No records found with " & _
strCountry & "."

Exit Do
End If

Do While True
' Store bookmark of current record.
varBookmark = .Bookmark
' Get user choice of which method to use.
strMessage = "Company: " & !CompanyName & _

vbCr & "Location: " & !City & ", " & _
!Country & vbCr & vbCr & _
strCountry & vbCr & vbCr & _
"[1 - FindFirst, 2 - FindLast, " & _
vbCr & "3 - FindNext, " & _
"4 - FindPrevious]"

intCommand = Val(Left(InputBox(strMessage), 1))
If intCommand < 1 Or intCommand > 4 Then Exit Do

' Use selected Find method. If the Find fails,
' return to the last current record.
If FindAny(intCommand, rstCustomers, _

strCountry) = False Then
.Bookmark = varBookmark
MsgBox "No match--returning to " & _

"current record."
End If

Loop

End With

Exit Do
Loop

rstCustomers.Close
dbsNorthwind.Close

End Sub

Function FindAny(intChoice As Integer, _
rstTemp As Recordset, _
strFind As String) As Boolean

' Use Find method based on user input.
Select Case intChoice

Case 1
rstTemp.FindFirst strFind

Case 2
rstTemp.FindLast strFind

Case 3
rstTemp.FindNext strFind

Case 4
rstTemp.FindPrevious strFind

End Select

' Set return value based on NoMatch property.
FindAny = IIf(rstTemp.NoMatch, False, True)

End Function

GetRows Method Example

This example uses the GetRows method to retrieve a specified number of rows from a Recordset
and to fill an array with the resulting data. The GetRows method will return fewer than the desired
number of rows in two cases: either if EOF has been reached, or if GetRows tried to retrieve a record
that was deleted by another user. The function returns False only if the second case occurs. The
GetRowsOK function is required for this procedure to run.
Sub GetRowsX()

Dim dbsNorthwind As Database
Dim rstEmployees As Recordset
Dim strMessage As String
Dim intRows As Integer
Dim avarRecords As Variant
Dim intRecord As Integer

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
Set rstEmployees = dbsNorthwind.OpenRecordset(_

"SELECT FirstName, LastName, Title " & _
"FROM Employees ORDER BY LastName", dbOpenSnapshot)

With rstEmployees
Do While True

' Get user input for number of rows.
strMessage = "Enter number of rows to retrieve."
intRows = Val(InputBox(strMessage))

If intRows <= 0 Then Exit Do

' If GetRowsOK is successful, print the results,
' noting if the end of the file was reached.
If GetRowsOK(rstEmployees, intRows, _

avarRecords) Then
If intRows > UBound(avarRecords, 2) + 1 Then

Debug.Print "(Not enough records in " & _
"Recordset to retrieve " & intRows & _
" rows.)"

End If
Debug.Print UBound(avarRecords, 2) + 1 & _

" records found."

' Print the retrieved data.
For intRecord = 0 To UBound(avarRecords, 2)

Debug.Print " " & _
avarRecords(0, intRecord) & " " & _
avarRecords(1, intRecord) & ", " & _
avarRecords(2, intRecord)

Next intRecord
Else

' Assuming the GetRows error was due to data
' changes by another user, use Requery to
' refresh the Recordset and start over.
If .Restartable Then

If MsgBox("GetRows failed--retry?", _
vbYesNo) = vbYes Then

.Requery
Else

Debug.Print "GetRows failed!"
Exit Do

End If
Else

Debug.Print "GetRows failed! " & _
"Recordset not Restartable!"

Exit Do
End If

End If

' Because using GetRows leaves the current record
' pointer at the last record accessed, move the
' pointer back to the beginning of the Recordset
' before looping back for another search.
.MoveFirst

Loop
End With

rstEmployees.Close
dbsNorthwind.Close

End Sub

Function GetRowsOK(rstTemp As Recordset, _
intNumber As Integer, avarData As Variant) As Boolean

' Store results of GetRows method in array.
avarData = rstTemp.GetRows(intNumber)
' Return False only if fewer than the desired number of
' rows were returned, but not because the end of the
' Recordset was reached.
If intNumber > UBound(avarData, 2) + 1 And _

Not rstTemp.EOF Then
GetRowsOK = False

Else
GetRowsOK = True

End If

End Function

Move Method Example

This example uses the Move method to position the record pointer based on user input.
Sub MoveX()

Dim dbsNorthwind As Database
Dim rstSuppliers As Recordset
Dim varBookmark As Variant
Dim strCommand As String
Dim lngMove As Long

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
Set rstSuppliers = _

dbsNorthwind.OpenRecordset("SELECT CompanyName, " & _
"City, Country FROM Suppliers ORDER BY CompanyName", _
dbOpenDynaset)

With rstSuppliers
' Populate recordset.
.MoveLast
.MoveFirst

Do While True
' Display information about current record and ask
' how many records to move.
strCommand = InputBox(_

"Record " & (.AbsolutePosition + 1) & " of " & _
.RecordCount & vbCr & "Company: " & _
!CompanyName & vbCr & "Location: " & !City & _
", " & !Country & vbCr & vbCr & _
"Enter number of records to Move " & _
"(positive or negative).")

If strCommand = "" Then Exit Do

' Store bookmark in case the Move doesn't work.
varBookmark = .Bookmark

' Move method requires parameter of data type Long.
lngMove = CLng(strCommand)
.Move lngMove

' Trap for BOF or EOF.
If .BOF Then

MsgBox "Too far backward! " & _
"Returning to current record."

.Bookmark = varBookmark
End If
If .EOF Then

MsgBox "Too far forward! " & _
"Returning to current record."

.Bookmark = varBookmark
End If

Loop
.Close

End With

dbsNorthwind.Close

End Sub

MoveFirst, MoveLast, MoveNext, MovePrevious Methods Example

This example uses the MoveFirst, MoveLast, MoveNext, and MovePrevious methods to move the
record pointer of a Recordset based on the supplied command. The MoveAny procedure is required
for this procedure to run.
Sub MoveFirstX()

Dim dbsNorthwind As Database
Dim rstEmployees As Recordset
Dim strMessage As String
Dim intCommand As Integer

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
Set rstEmployees = dbsNorthwind.OpenRecordset(_

"SELECT FirstName, LastName FROM Employees " & _
"ORDER BY LastName", dbOpenSnapshot)

With rstEmployees
' Populate Recordset.
.MoveLast
.MoveFirst
Do While True

' Show current record information and get user's
' method choice.
strMessage = "Name: " & !FirstName & " " & _

!LastName & vbCr & "Record " & _
(.AbsolutePosition + 1) & " of " & _
.RecordCount & vbCr & vbCr & _
"[1 - MoveFirst, 2 - MoveLast, " & vbCr & _
"3 - MoveNext, 4 - MovePrevious]"

intCommand = Val(Left(InputBox(strMessage), 1))
If intCommand < 1 Or intCommand > 4 Then Exit Do

' Call method based on user's input.
MoveAny intCommand, rstEmployees

Loop
.Close

End With

dbsNorthwind.Close

End Sub

Sub MoveAny(intChoice As Integer, _
rstTemp As Recordset)

' Use specified method, trapping for BOF and EOF.
With rstTemp

Select Case intChoice
Case 1

.MoveFirst
Case 2

.MoveLast
Case 3

.MoveNext
If .EOF Then

MsgBox "Already at end of recordset!"
.MoveLast

End If
Case 4

.MovePrevious
If .BOF Then

MsgBox "Already at beginning of recordset!"
.MoveFirst

End If
End Select

End With

End Sub

NewPassword Method Example

This example asks the user for a new password for user Pat Smith. If the input is a string between 1
and 14 characters long, the example uses the NewPassword method to change the password. The
user must be logged on as Pat Smith or as a member of the Admins group.
Sub NewPasswordX()

Dim wrkDefault As Workspace
Dim usrNew As User
Dim grpNew As Group
Dim grpMember As Group
Dim strPassword As String

' Get default workspace.
Set wrkDefault = DBEngine.Workspaces(0)

With wrkDefault

' Create and append new user.
Set usrNew = .CreateUser("Pat Smith", _

"abc123DEF456", "Password1")
.Users.Append usrNew

' Create and append new group.
Set grpNew = .CreateGroup("Accounting", _

"UVW987xyz654")
.Groups.Append grpNew

' Make the new user a member of the new group.
Set grpMember = usrNew.CreateGroup("Accounting")
usrNew.Groups.Append grpMember

' Ask user for new password. If input is too long, ask
' again.
Do While True

strPassword = InputBox("Enter new password:")
Select Case Len(strPassword)

Case 1 To 14
usrNew.NewPassword "Password1", strPassword
MsgBox "Password changed!"
Exit Do

Case Is > 14
MsgBox "Password too long!"

Case 0
Exit Do

End Select
Loop

' Delete new User and Group objects because this
' is only a demonstration.
.Users.Delete "Pat Smith"
.Groups.Delete "Accounting"

End With

End Sub

Refresh Method Example

This example uses the Refresh method to update the Fields collection of the Categories table based
on changes to the OrdinalPosition data. The order of the Fields in the collection changes only after
the Refresh method is used.
Sub RefreshX()

Dim dbsNorthwind As Database
Dim tdfEmployees As TableDef
Dim aintPosition() As Integer
Dim astrFieldName() As String
Dim intTemp As Integer
Dim fldLoop As Field

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
Set tdfEmployees = dbsNorthwind.TableDefs("Categories")

With tdfEmployees
' Display original OrdinalPosition data and store it
' in an array.
Debug.Print _

"Original OrdinalPosition data in TableDef."
ReDim aintPosition(0 To .Fields.Count - 1) As Integer
ReDim astrFieldName(0 To .Fields.Count - 1) As String
For intTemp = 0 To .Fields.Count - 1

aintPosition(intTemp) = _
.Fields(intTemp).OrdinalPosition

astrFieldName(intTemp) = .Fields(intTemp).Name
Debug.Print , aintPosition(intTemp), _

astrFieldName(intTemp)
Next intTemp

' Change OrdinalPosition data.
For Each fldLoop In .Fields

fldLoop.OrdinalPosition = _
100 - fldLoop.OrdinalPosition

Next fldLoop
Set fldLoop = Nothing

' Print new data.
Debug.Print "New OrdinalPosition data before Refresh."
For Each fldLoop In .Fields

Debug.Print , fldLoop.OrdinalPosition, fldLoop.Name
Next fldLoop

.Fields.Refresh

' Print new data, showing how the field order has been
' changed.
Debug.Print "New OrdinalPosition data after Refresh."
For Each fldLoop In .Fields

Debug.Print , fldLoop.OrdinalPosition, fldLoop.Name
Next fldLoop

' Restore original OrdinalPosition data.
For intTemp = 0 To .Fields.Count - 1

.Fields(astrFieldName(intTemp)).OrdinalPosition = _
aintPosition(intTemp)

Next intTemp
End With

dbsNorthwind.Close

End Sub

RepairDatabase Method Example

This example attempts to repair the database named Northwind.mdb. You cannot run this procedure
from a module within Northwind.mdb.
Sub RepairDatabaseX()

Dim errLoop As Error

If MsgBox("Repair the Northwind database?", _
vbYesNo) = vbYes Then

On Error GoTo Err_Repair
DBEngine.RepairDatabase "Northwind.mdb"
On Error GoTo 0
MsgBox "End of repair procedure!"

End If

Exit Sub

Err_Repair:

For Each errLoop In DBEngine.Errors
MsgBox "Repair unsuccessful!" & vbCr & _

"Error number: " & errLoop.Number & _
vbCr & errLoop.Description

Next errLoop

End Sub

Seek Method Example

This example demonstrates the Seek method by allowing the user to search for a product based on
an ID number.
Sub SeekX()

Dim dbsNorthwind As Database
Dim rstProducts As Recordset
Dim intFirst As Integer
Dim intLast As Integer
Dim strMessage As String
Dim strSeek As String
Dim varBookmark As Variant

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
' You must open a table-type Recordset to use an index,
' and hence the Seek method.
Set rstProducts = _

dbsNorthwind.OpenRecordset("Products", dbOpenTable)

With rstProducts
' Set the index.
.Index = "PrimaryKey"

' Get the lowest and highest product IDs.
.MoveLast
intLast = !ProductID
.MoveFirst
intFirst = !ProductID

Do While True
' Display current record information and ask user
' for ID number.
strMessage = "Product ID: " & !ProductID & vbCr & _

"Name: " & !ProductName & vbCr & vbCr & _
"Enter a product ID between " & intFirst & _
" and " & intLast & "."

strSeek = InputBox(strMessage)

If strSeek = "" Then Exit Do

' Store current bookmark in case the Seek fails.
varBookmark = .Bookmark

.Seek "=", Val(strSeek)

' Return to the current record if the Seek fails.
If .NoMatch Then

MsgBox "ID not found!"
.Bookmark = varBookmark

End If
Loop

.Close
End With

dbsNorthwind.Close

End Sub

Update Method Example

This example demonstrates the Update method in conjunction with Edit method.
Sub UpdateX()

Dim dbsNorthwind As Database
Dim rstEmployees As Recordset
Dim strOldFirst As String
Dim strOldLast As String
Dim strMessage As String

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
Set rstEmployees = _

dbsNorthwind.OpenRecordset("Employees")

With rstEmployees
.Edit
' Store original data.
strOldFirst = !FirstName
strOldLast = !LastName
' Change data in edit buffer.
!FirstName = "Linda"
!LastName = "Kobara"

' Show contents of buffer and get user input.
strMessage = "Edit in progress:" & vbCr & _

" Original data = " & strOldFirst & " " & _
strOldLast & vbCr & " Data in buffer = " & _
!FirstName & " " & !LastName & vbCr & vbCr & _
"Use Update to replace the original data with " & _
"the buffered data in the Recordset?"

If MsgBox(strMessage, vbYesNo) = vbYes Then
.Update

Else
.CancelUpdate

End If

' Show the resulting data.
MsgBox "Data in recordset = " & !FirstName & " " & _

!LastName

' Restore original data because this is a demonstration.
If Not (strOldFirst = !FirstName And _

strOldLast = !LastName) Then
.Edit
!FirstName = strOldFirst
!LastName = strOldLast
.Update

End If

.Close
End With

dbsNorthwind.Close

End Sub
This example demonstrates the Update method in conjunction with the AddNew method.
Sub UpdateX2()

Dim dbsNorthwind As Database
Dim rstEmployees As Recordset
Dim strOldFirst As String
Dim strOldLast As String
Dim strMessage As String

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
Set rstEmployees = _

dbsNorthwind.OpenRecordset("Employees")

With rstEmployees
.AddNew
!FirstName = "Bill"
!LastName = "Sornsin"

' Show contents of buffer and get user input.
strMessage = "AddNew in progress:" & vbCr & _

" Data in buffer = " & !FirstName & " " & _
!LastName & vbCr & vbCr & _
"Use Update to save buffer to recordset?"

If MsgBox(strMessage, vbYesNoCancel) = vbYes Then
.Update
' Go to the new record and show the resulting data.
.Bookmark = .LastModified
MsgBox "Data in recordset = " & !FirstName & _

" " & !LastName
' Delete new data because this is a demonstration.
.Delete

Else
.CancelUpdate
MsgBox "No new record added."

End If

.Close
End With

dbsNorthwind.Close

End Sub

CancelUpdate Method Example

This example shows how the CancelUpdate method is used with the AddNew method.
Sub CancelUpdateX()

Dim dbsNorthwind As Database
Dim rstEmployees As Recordset
Dim intCommand As Integer

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
Set rstEmployees = dbsNorthwind.OpenRecordset(_

"Employees", dbOpenDynaset)

With rstEmployees
.AddNew
!FirstName = "Kimberly"
!LastName = "Bowen"
intCommand = MsgBox("Add new record for " & _

!FirstName & " " & !LastName & "?", vbYesNo)
If intCommand = vbYes Then

.Update
MsgBox "Record added."
' Delete new record because this is a
' demonstration.
.Bookmark = .LastModified
.Delete

Else
.CancelUpdate
MsgBox "Record not added."

End If
End With

dbsNorthwind.Close

End Sub
This example shows how the CancelUpdate method is used with the Edit method.
Sub CancelUpdateX2()

Dim dbsNorthwind As Database
Dim rstEmployees As Recordset
Dim strFirst As String
Dim strLast As String
Dim intCommand As Integer

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
Set rstEmployees = dbsNorthwind.OpenRecordset(_

"Employees", dbOpenDynaset)

With rstEmployees
strFirst = !FirstName
strLast = !LastName
.Edit
!FirstName = "Cora"
!LastName = "Edmonds"
intCommand = MsgBox("Replace current name with " & _

!FirstName & " " & !LastName & "?", vbYesNo)
If intCommand = vbYes Then

.Update
MsgBox "Record modified."
' Restore data because this is a demonstration.
.Bookmark = .LastModified
.Edit
!FirstName = strFirst
!LastName = strLast
.Update

Else
.CancelUpdate
MsgBox "Record not modified."

End If
.Close

End With

dbsNorthwind.Close

End Sub

CopyQueryDef Method Example

This example uses the CopyQueryDef method to create a copy of a QueryDef from an existing
Recordset and modifies the copy by adding a clause to the SQL property. When you create a
permanent QueryDef, spaces, semicolons, or linefeeds may be added to the SQL property; these
extra characters must be stripped before any new clauses can be attached to the SQL statement.
Function CopyQueryNew(rstTemp As Recordset, _

strAdd As String) As QueryDef

Dim strSQL As String
Dim strRightSQL As String

Set CopyQueryNew = rstTemp.CopyQueryDef
With CopyQueryNew

' Strip extra characters.
strSQL = .SQL
strRightSQL = Right(strSQL, 1)
Do While strRightSQL = " " Or strRightSQL = ";" Or _

strRightSQL = Chr(10) Or strRightSQL = vbCr
strSQL = Left(strSQL, Len(strSQL) - 1)
strRightSQL = Right(strSQL, 1)

Loop
.SQL = strSQL & strAdd

End With

End Function
This example shows a possible use of CopyQueryNew().
Sub CopyQueryDefX()

Dim dbsNorthwind As Database
Dim qdfEmployees As QueryDef
Dim rstEmployees As Recordset
Dim intCommand As Integer
Dim strOrderBy As String
Dim qdfCopy As QueryDef
Dim rstCopy As Recordset

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
Set qdfEmployees = dbsNorthwind.CreateQueryDef(_

"NewQueryDef", "SELECT FirstName, LastName, " & _
"BirthDate FROM Employees")

Set rstEmployees = qdfEmployees.OpenRecordset(_
dbOpenForwardOnly)

Do While True
intCommand = Val(InputBox(_

"Choose field on which to order a new " & _
"Recordset:" & vbCr & "1 - FirstName" & vbCr & _
"2 - LastName" & vbCr & "3 - BirthDate" & vbCr & _
"[Cancel - exit]"))

Select Case intCommand
Case 1

strOrderBy = " ORDER BY FirstName"
Case 2

strOrderBy = " ORDER BY LastName"
Case 3

strOrderBy = " ORDER BY BirthDate"
Case Else

Exit Do
End Select
Set qdfCopy = CopyQueryNew(rstEmployees, strOrderBy)
Set rstCopy = qdfCopy.OpenRecordset(dbOpenSnapshot, _

dbForwardOnly)
With rstCopy

Do While Not .EOF
Debug.Print !LastName & ", " & !FirstName & _

" - " & !BirthDate
.MoveNext

Loop
.Close

End With
Exit Do

Loop

rstEmployees.Close
' Delete new QueryDef because this is a demonstration.
dbsNorthwind.QueryDefs.Delete qdfEmployees.Name
dbsNorthwind.Close

End Sub

CreateGroup Method Example

This example uses the CreateGroup method to create a new Group object; it then makes the
"admin" user a member of the new Group object and lists its properties and users.
Sub CreateGroupX()

Dim wrkDefault As Workspace
Dim grpNew As Group
Dim grpTemp As Group
Dim prpLoop As Property
Dim usrLoop As User

Set wrkDefault = DBEngine.Workspaces(0)

With wrkDefault

' Create and append new group.
Set grpNew = .CreateGroup("NewGroup", _

"AAA123456789")
.Groups.Append grpNew

' Make the user "admin" a member of the
' group NewGroup by creating and adding the
' appropriate Group object to the user's Groups
' collection.
Set grpTemp = .Users("admin").CreateGroup("NewGroup")
.Users("admin").Groups.Append grpTemp

Debug.Print "Properties of " & grpNew.Name

' Enumerate the Properties collection of NewGroup. The
' PID property is not readable.
For Each prpLoop In grpNew.Properties

On Error Resume Next
If prpLoop <> "" Then Debug.Print " " & _

prpLoop.Name & " = " & prpLoop
On Error GoTo 0

Next prpLoop

Debug.Print "Users collection of " & grpNew.Name

' Enumerate the Users collection of NewGroup.
For Each usrLoop In grpNew.Users

Debug.Print " " & _
usrLoop.Name

Next usrLoop

' Delete the new Group object because this
' is a demonstration.
.Groups.Delete "NewGroup"

End With

End Sub

CreateUser Method and Password and PID Properties Example

This example uses the CreateUser method and Password and PID properties to create a new User
object; it then makes the new User object a member of different Group objects and lists its properties
and groups.
Sub CreateUserX()

Dim wrkDefault As Workspace
Dim usrNew As User
Dim grpNew As Group
Dim usrTemp As User
Dim prpLoop As Property
Dim grpLoop As Group

Set wrkDefault = DBEngine.Workspaces(0)

With wrkDefault

' Create and append new User.
Set usrNew = .CreateUser("NewUser")
usrNew.PID = "AAA123456789"
usrNew.Password = "NewPassword"
.Users.Append usrNew

' Create and append new Group.
Set grpNew = .CreateGroup("NewGroup", _

"AAA123456789")
.Groups.Append grpNew

' Make the user "NewUser" a member of the
' group "NewGroup" by creating and adding the
' appropriate User object to the group's Users
' collection.
Set usrTemp = _

.Groups("NewGroup").CreateUser("NewUser")
.Groups("NewGroup").Users.Append usrTemp

Debug.Print "Properties of " & usrNew.Name

' Enumerate the Properties collection of NewUser. The
' PID property is not readable.
For Each prpLoop In usrNew.Properties

On Error Resume Next
If prpLoop <> "" Then Debug.Print " " & _

prpLoop.Name & " = " & prpLoop
On Error GoTo 0

Next prpLoop

Debug.Print "Groups collection of " & usrNew.Name

' Enumerate the Groups collection of NewUser.
For Each grpLoop In usrNew.Groups

Debug.Print " " & _
grpLoop.Name

Next grpLoop

' Delete the new User and Group objects because this
' is a demonstration.
.Users.Delete "NewUser"
.Groups.Delete "NewGroup"

End With

End Sub

CreateWorkspace Method Example

This example uses the CreateWorkspace method to create both a Microsoft Jet workspace and an
ODBCDirect workspace. It then lists the properties of both types of workspace.
Sub CreateWorkspaceX()

Dim wrkODBC As Workspace
Dim wrkJet As Workspace
Dim wrkLoop As Workspace
Dim prpLoop As Property

' Create an ODBCDirect workspace. Until you create
' Microsoft Jet workspace, the Microsoft Jet database
' engine will not be loaded into memory.
Set wrkODBC = CreateWorkspace("ODBCWorkspace", "admin", _

"", dbUseODBC)
Workspaces.Append wrkODBC

DefaultType = dbUseJet
' Create an unnamed Workspace object of the type
' specified by the DefaultType property of DBEngine
' (dbUseJet).
Set wrkJet = CreateWorkspace("", "admin", "")

' Enumerate Workspaces collection.
Debug.Print "Workspace objects in Workspaces collection:"
For Each wrkLoop In Workspaces

Debug.Print " " & wrkLoop.Name
Next wrkLoop

With wrkODBC
' Enumerate Properties collection of ODBCDirect
' workspace.
Debug.Print "Properties of " & .Name
On Error Resume Next
For Each prpLoop In .Properties

Debug.Print " " & prpLoop.Name & " = " & prpLoop
Next prpLoop
On Error GoTo 0

End With

With wrkJet
' Enumerate Properties collection of Microsoft Jet
' workspace.
Debug.Print _

"Properties of unnamed Microsoft Jet workspace"
On Error Resume Next
For Each prpLoop In .Properties

Debug.Print " " & prpLoop.Name & " = " & prpLoop
Next prpLoop
On Error GoTo 0

End With

wrkODBC.Close
wrkJet.Close

End Sub

Idle Method Example

This example uses the Idle method to ensure that an output procedure is accessing the most current
data available from the database. The IdleOutput procedure is required for this procedure to run.
Sub IdleX()

Dim dbsNorthwind As Database
Dim strCountry As String
Dim strSQL As String
Dim rstOrders As Recordset

Set dbsNorthwind = OpenDatabase("Northwind.mdb")

' Get name of country from user and build SQL statement
' with it.
strCountry = Trim(InputBox("Enter country:"))
strSQL = "SELECT * FROM Orders WHERE ShipCountry = '" & _

strCountry & "' ORDER BY OrderID"

' Open Recordset object with SQL statement.
Set rstOrders = dbsNorthwind.OpenRecordset(strSQL)

' Display contents of Recordset object.
IdleOutput rstOrders, strCountry

rstOrders.Close
dbsNorthwind.Close

End Sub

Sub IdleOutput(rstTemp As Recordset, strTemp As String)

' Call the Idle method to release unneeded locks, force
' pending writes, and refresh the memory with the current
' data in the .mdb file.
DBEngine.Idle dbRefreshCache

' Enumerate the Recordset object.
With rstTemp

Debug.Print "Orders from " & strTemp & ":"
Debug.Print , "OrderID", "CustomerID", "OrderDate"
Do While Not .EOF

Debug.Print , !OrderID, !CustomerID, !OrderDate
.MoveNext

Loop
End With

End Sub

MakeReplica Method Example

This function uses the MakeReplica method to create an additional replica of an existing Design
Master. The intOptions argument can be a combination of the constants dbRepMakeReadOnly
and dbRepMakePartial, or it can be 0. For example, to create a read-only partial replica, you should
pass the value dbRepMakeReadOnly + dbRepMakePartial as the value of intOptions.

Function MakeAdditionalReplica(strReplicableDB As _
String, strNewReplica As String, intOptions As _
Integer) As Integer

Dim dbsTemp As Database
On Error GoTo ErrorHandler

Set dbsTemp = OpenDatabase(strReplicableDB)

' If no options are passed to
' MakeAdditionalReplica, omit the
' options argument, which defaults to
' a full, read/write replica. Otherwise,
' use the value of intOptions.

If intOptions = 0 Then
dbsTemp.MakeReplica strNewReplica, _

"Replica of " & strReplicableDB
Else

dbsTemp.MakeReplica strNewReplica, _
"Replica of " & strReplicableDB, _
intOptions

End If

dbsTemp.Close

ErrorHandler:
Select Case Err

Case 0:
MakeAdditionalReplica = 0
Exit Function

Case Else:
MsgBox "Error " & Err & " : " & Error
MakeAdditionalReplica = Err
Exit Function

End Select

End Function

NextRecordset Method and DefaultCursorDriver Property Example

This example uses the NextRecordset method to view the data from a compound SELECT query.
The DefaultCursorDriver property must be set to dbUseODBCCursor when executing such
queries. The NextRecordset method will return True even if some or all of the SELECT statements
return zero records ¾ it will return False only after all the individual SQL clauses have been checked.
Sub NextRecordsetX()

Dim wrkODBC As Workspace
Dim conPubs As Connection
Dim rstTemp As Recordset
Dim intCount As Integer
Dim booNext As Boolean

' Create ODBCDirect Workspace object and open Connection
' object. The DefaultCursorDriver setting is required
' when using compound SQL statements.
Set wrkODBC = CreateWorkspace("", _

"admin", "", dbUseODBC)
wrkODBC.DefaultCursorDriver = dbUseODBCCursor
Set conPubs = wrkODBC.OpenConnection("Publishers", , , _

"ODBC;DATABASE=pubs;UID=sa;PWD=;DSN=Publishers")

' Construct compound SELECT statement.
Set rstTemp = conPubs.OpenRecordset("SELECT * " & _

"FROM authors; " & _
"SELECT * FROM stores; " & _
"SELECT * FROM jobs")

' Try printing results from each of the three SELECT
' statements.
booNext = True
intCount = 1
With rstTemp

Do While booNext
Debug.Print "Contents of recordset #" & intCount
Do While Not .EOF

Debug.Print , .Fields(0), .Fields(1)
.MoveNext

Loop
booNext = .NextRecordset
Debug.Print " rstTemp.NextRecordset = " & _

booNext
intCount = intCount + 1

Loop
End With

rstTemp.Close
conPubs.Close
wrkODBC.Close

End Sub
Another way to accomplish the same task would be to create a prepared statement containing the
compound SQL statement. The CacheSize property of the QueryDef object must be set to 1, and the
Recordset object must be forward-only and read-only.

Sub NextRecordsetX2()

Dim wrkODBC As Workspace
Dim conPubs As Connection
Dim qdfTemp As QueryDef
Dim rstTemp As Recordset
Dim intCount As Integer
Dim booNext As Boolean

' Create ODBCDirect Workspace object and open Connection
' object. The DefaultCursorDriver setting is required
' when using compound SQL statements.
Set wrkODBC = CreateWorkspace("", _

"admin", "", dbUseODBC)
wrkODBC.DefaultCursorDriver = dbUseODBCCursor
Set conPubs = wrkODBC.OpenConnection("Publishers", , , _

"ODBC;DATABASE=pubs;UID=sa;PWD=;DSN=Publishers")

' Create a temporary stored procedure with a compound
' SELECT statement.
Set qdfTemp = conPubs.CreateQueryDef("", _

"SELECT * FROM authors; " & _
"SELECT * FROM stores; " & _
"SELECT * FROM jobs")

' Set CacheSize and open Recordset object with arguments
' that will allow access to multiple recordsets.
qdfTemp.CacheSize = 1
Set rstTemp = qdfTemp.OpenRecordset(dbOpenForwardOnly, _

dbReadOnly)

' Try printing results from each of the three SELECT
' statements.
booNext = True
intCount = 1
With rstTemp

Do While booNext
Debug.Print "Contents of recordset #" & intCount
Do While Not .EOF

Debug.Print , .Fields(0), .Fields(1)
.MoveNext

Loop
booNext = .NextRecordset
Debug.Print " rstTemp.NextRecordset = " & _

booNext
intCount = intCount + 1

Loop
End With

rstTemp.Close
qdfTemp.Close
conPubs.Close
wrkODBC.Close

End Sub

OpenConnection Method Example

This example uses the OpenConnection method with different parameters to open three different
Connection objects.
Sub OpenConnectionX()

Dim wrkODBC As Workspace
Dim conPubs As Connection
Dim conPubs2 As Connection
Dim conPubs3 As Connection
Dim conLoop As Connection

' Create ODBCDirect Workspace object.
Set wrkODBC = CreateWorkspace("NewODBCWorkspace", _

"admin", "", dbUseODBC)

' Open Connection object using supplied information in
' the connect string. If this information were
' insufficient, you could trap for an error rather than
' go to an ODBC Driver Manager dialog box.
MsgBox "Opening Connection1..."
Set conPubs = wrkODBC.OpenConnection("Connection1", _

dbDriverNoPrompt, , _
"ODBC;DATABASE=pubs;UID=sa;PWD=;DSN=Publishers")

' Open read-only Connection object based on information
' you enter in the ODBC Driver Manager dialog box.
MsgBox "Opening Connection2..."
Set conPubs2 = wrkODBC.OpenConnection("Connection2", _

dbDriverPrompt, True, "ODBC;DSN=Publishers;")

' Open read-only Connection object by entering only the
' missing information in the ODBC Driver Manager dialog
' box.
MsgBox "Opening Connection3..."
Set conPubs3 = wrkODBC.OpenConnection("Connection3", _

dbDriverCompleteRequired, True, _
"ODBC;DATABASE=pubs;DSN=Publishers;")

' Enumerate the Connections collection.
For Each conLoop In wrkODBC.Connections

Debug.Print "Connection properties for " & _
conLoop.Name & ":"

With conLoop
' Print property values by explicitly calling each
' Property object; the Connection object does not
' support a Properties collection.
Debug.Print " Connect = " & .Connect
' Property actually returns a Database object.
Debug.Print " Database[.Name] = " & _

.Database.Name
Debug.Print " Name = " & .Name
Debug.Print " QueryTimeout = " & .QueryTimeout
Debug.Print " RecordsAffected = " & _

.RecordsAffected

Debug.Print " StillExecuting = " & _
.StillExecuting

Debug.Print " Transactions = " & .Transactions
Debug.Print " Updatable = " & .Updatable

End With

Next conLoop

conPubs.Close
conPubs2.Close
conPubs3.Close
wrkODBC.Close

End Sub

OpenDatabase Method Example

This example uses the OpenDatabase method to open one Microsoft Jet database and two Microsoft
Jet-connected ODBC databases.
Sub OpenDatabaseX()

Dim wrkJet As Workspace
Dim dbsNorthwind As Database
Dim dbsPubs As Database
Dim dbsPubs2 As Database
Dim dbsLoop As Database
Dim prpLoop As Property

' Create Microsoft Jet Workspace object.
Set wrkJet = CreateWorkspace("", "admin", "", dbUseJet)

' Open Database object from saved Microsoft Jet database
' for exclusive use.
MsgBox "Opening Northwind..."
Set dbsNorthwind = wrkJet.OpenDatabase("Northwind.mdb", _

True)

' Open read-only Database object based on information in
' the connect string.
MsgBox "Opening pubs..."
Set dbsPubs = wrkJet.OpenDatabase("Publishers", _

dbDriverNoPrompt, True, _
"ODBC;DATABASE=pubs;UID=sa;PWD=;DSN=Publishers")

' Open read-only Database object by entering only the
' missing information in the ODBC Driver Manager dialog
' box.
MsgBox "Opening second copy of pubs..."
Set dbsPubs2 = wrkJet.OpenDatabase("Publishers", _

dbDriverCompleteRequired, True, _
"ODBC;DATABASE=pubs;DSN=Publishers;")

' Enumerate the Databases collection.
For Each dbsLoop In wrkJet.Databases

Debug.Print "Database properties for " & _
dbsLoop.Name & ":"

On Error Resume Next
' Enumerate the Properties collection of each Database
' object.
For Each prpLoop In dbsLoop.Properties

If prpLoop.Name = "Connection" Then
' Property actually returns a Connection object.
Debug.Print " Connection[.Name] = " & _

dbsLoop.Connection.Name
Else

Debug.Print " " & prpLoop.Name & " = " & _
prpLoop

End If
Next prpLoop
On Error GoTo 0

Next dbsLoop

dbsNorthwind.Close
dbsPubs.Close
dbsPubs2.Close
wrkJet.Close

End Sub

OpenRecordset Method Example

This example uses the OpenRecordset method to open five different Recordset objects and display
their contents. The OpenRecordsetOutput procedure is required for this procedure to run.
Sub OpenRecordsetX()

Dim wrkJet As Workspace
Dim wrkODBC As Workspace
Dim dbsNorthwind As Database
Dim conPubs As Connection
Dim rstTemp As Recordset
Dim rstTemp2 As Recordset

' Open Microsoft Jet and ODBCDirect workspaces, Microsoft
' Jet database, and ODBCDirect connection.
Set wrkJet = CreateWorkspace("", "admin", "", dbUseJet)
Set wrkODBC = CreateWorkspace("", "admin", "", dbUseODBC)
Set dbsNorthwind = wrkJet.OpenDatabase("Northwind.mdb")
Set conPubs = wrkODBC.OpenConnection("", , , _

"ODBC;DATABASE=pubs;UID=sa;PWD=;DSN=Publishers")

' Open five different Recordset objects and display the
' contents of each.

Debug.Print "Opening forward-only-type recordset " & _
"where the source is a QueryDef object..."

Set rstTemp = dbsNorthwind.OpenRecordset(_
"Ten Most Expensive Products", dbOpenForwardOnly)

OpenRecordsetOutput rstTemp

Debug.Print "Opening read-only dynaset-type " & _
"recordset where the source is an SQL statement..."

Set rstTemp = dbsNorthwind.OpenRecordset(_
"SELECT * FROM Employees", dbOpenDynaset, dbReadOnly)

OpenRecordsetOutput rstTemp

' Use the Filter property to retrieve only certain
' records with the next OpenRecordset call.
Debug.Print "Opening recordset from existing " & _

"Recordset object to filter records..."
rstTemp.Filter = "LastName >= 'M'"
Set rstTemp2 = rstTemp.OpenRecordset()
OpenRecordsetOutput rstTemp2

Debug.Print "Opening dynamic-type recordset from " & _
"an ODBC connection..."

Set rstTemp = conPubs.OpenRecordset(_
"SELECT * FROM stores", dbOpenDynamic)

OpenRecordsetOutput rstTemp

' Use the StillExecuting property to determine when the
' Recordset is ready for manipulation.
Debug.Print "Opening snapshot-type recordset based " & _

"on asynchronous query to ODBC connection..."
Set rstTemp = conPubs.OpenRecordset("publishers", _

dbOpenSnapshot, dbRunAsync)

Do While rstTemp.StillExecuting
Debug.Print " [still executing...]"

Loop
OpenRecordsetOutput rstTemp

rstTemp.Close
dbsNorthwind.Close
conPubs.Close
wrkJet.Close
wrkODBC.Close

End Sub

Sub OpenRecordsetOutput(rstOutput As Recordset)

' Enumerate the specified Recordset object.
With rstOutput

Do While Not .EOF
Debug.Print , .Fields(0), .Fields(1)
.MoveNext

Loop
End With

End Sub

PopulatePartial Method Example

The following example uses the PopulatePartial method after changing a replica filter.
Sub PopulatePartialX()

Dim tdfCustomers As TableDef
Dim strFilter As String
Dim dbsTemp As Database

' Open the partial replica in exclusive mode.
Set dbsTemp = OpenDatabase("F:\SALES\FY96CA.MDB", True)

With dbsTemp
Set tdfCustomers = .TableDefs("Customers")

' Synchronize with full replica
' before setting replica filter.
.Synchronize "C:\SALES\FY96.MDB"

strFilter = "Region = 'CA'"
tdfCustomers.ReplicaFilter = strFilter

' Populate records from the full replica.
.PopulatePartial "C:\SALES\FY96.MDB"

.Close
End With

End Sub

RefreshLink Method Example

This example uses the RefreshLink method to refresh the data in a linked table after its connection
has been changed from one data source to another. The RefreshLinkOutput procedure is required for
this procedure to run.
Sub RefreshLinkX()

Dim dbsCurrent As Database
Dim tdfLinked As TableDef

' Open a database to which a linked table can be
' appended.
Set dbsCurrent = OpenDatabase("DB1.mdb")

' Create a linked table that points to a Microsoft
' SQL Server database.
Set tdfLinked = _

dbsCurrent.CreateTableDef("AuthorsTable")
tdfLinked.Connect = _

"ODBC;DATABASE=pubs;UID=sa;PWD=;DSN=Publishers"
tdfLinked.SourceTableName = "authors"
dbsCurrent.TableDefs.Append tdfLinked

' Display contents of linked table.
Debug.Print _

"Data from linked table connected to first source:"
RefreshLinkOutput dbsCurrent

' Change connection information for linked table and
' refresh the connection in order to make the new data
' available.
tdfLinked.Connect = _

"ODBC;DATABASE=pubs;UID=sa;PWD=;DSN=NewPublishers"
tdfLinked.RefreshLink

' Display contents of linked table.
Debug.Print _

"Data from linked table connected to second source:"
RefreshLinkOutput dbsCurrent

' Delete linked table because this is a demonstration.
dbsCurrent.TableDefs.Delete tdfLinked.Name

dbsCurrent.Close

End Sub

Sub RefreshLinkOutput(dbsTemp As Database)

Dim rstRemote As Recordset
Dim intCount As Integer

' Open linked table.
Set rstRemote = _

dbsTemp.OpenRecordset("AuthorsTable")

intCount = 0

' Enumerate Recordset object, but stop at 50 records.
With rstRemote

Do While Not .EOF And intCount < 50
Debug.Print , .Fields(0), .Fields(1)
intCount = intCount + 1
.MoveNext

Loop
If Not .EOF Then Debug.Print , "[more records]"
.Close

End With

End Sub

RegisterDatabase Method Example

This example uses the RegisterDatabase method to register a Microsoft SQL Server data source
named Publishers in the Windows Registry.

Using the Windows ODBC Control Panel icon is the preferred way to create, modify, or delete data
source names.
Sub RegisterDatabaseX()

Dim dbsRegister As Database
Dim strDescription As String
Dim strAttributes As String
Dim errLoop As Error

' Build keywords string.
strDescription = InputBox("Enter a description " & _

"for the database to be registered.")
strAttributes = "Database=pubs" & _

vbCr & "Description=" & strDescription & _
vbCr & "OemToAnsi=No" & _
vbCr & "Server=Server1"

' Update Windows Registry.
On Error GoTo Err_Register
DBEngine.RegisterDatabase "Publishers", "SQL Server", _

True, strAttributes
On Error GoTo 0

MsgBox "Use regedit.exe to view changes: " & _
"HKEY_CURRENT_USER\" & _
"Software\ODBC\ODBC.INI"

Exit Sub

Err_Register:

' Notify user of any errors that result from
' the invalid data.
If DBEngine.Errors.Count > 0 Then

For Each errLoop In DBEngine.Errors
MsgBox "Error number: " & errLoop.Number & _

vbCr & errLoop.Description
Next errLoop

End If

Resume Next

End Sub

Requery Method Example

This example shows how the Requery method can be used to refresh a query after underlying data
has been changed.
Sub RequeryX()

Dim dbsNorthwind As Database
Dim qdfTemp As QueryDef
Dim rstView As Recordset
Dim rstChange As Recordset

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
Set qdfTemp = dbsNorthwind.CreateQueryDef("", _

"PARAMETERS ViewCountry Text; " & _
"SELECT FirstName, LastName, Country FROM " & _
"Employees WHERE Country = [ViewCountry] " & _
"ORDER BY LastName")

qdfTemp.Parameters!ViewCountry = "USA"
Debug.Print "Data after initial query, " & _

[ViewCountry] = USA"
Set rstView = qdfTemp.OpenRecordset
Do While Not rstView.EOF

Debug.Print " " & rstView!FirstName & " " & _
rstView!LastName & ", " & rstView!Country

rstView.MoveNext
Loop

' Change underlying data.
Set rstChange = dbsNorthwind.OpenRecordset("Employees")
rstChange.AddNew
rstChange!FirstName = "Nina"
rstChange!LastName = "Roberts"
rstChange!Country = "USA"
rstChange.Update

rstView.Requery
Debug.Print "Requery after changing underlying data"
Set rstView = qdfTemp.OpenRecordset
Do While Not rstView.EOF

Debug.Print " " & rstView!FirstName & " " & _
rstView!LastName & ", " & rstView!Country

rstView.MoveNext
Loop

' Restore original data because this is only a
' demonstration.
rstChange.Bookmark = rstChange.LastModified
rstChange.Delete
rstChange.Close

rstView.Close
dbsNorthwind.Close

End Sub

This example shows how the Requery method can be used to refresh a query after the query
parameters have been changed.
Sub RequeryX2()

Dim dbsNorthwind As Database
Dim qdfTemp As QueryDef
Dim prmCountry As Parameter
Dim rstView As Recordset

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
Set qdfTemp = dbsNorthwind.CreateQueryDef("", _

"PARAMETERS ViewCountry Text; " & _
"SELECT FirstName, LastName, Country FROM " & _
"Employees WHERE Country = [ViewCountry] " & _
"ORDER BY LastName")

Set prmCountry = qdfTemp.Parameters!ViewCountry

qdfTemp.Parameters!ViewCountry = "USA"
Debug.Print "Data after initial query, " & _

[ViewCountry] = USA"
Set rstView = qdfTemp.OpenRecordset
Do While Not rstView.EOF

Debug.Print " " & rstView!FirstName & " " & _
rstView!LastName & ", " & rstView!Country

rstView.MoveNext
Loop

' Change query parameter.
qdfTemp.Parameters!ViewCountry = "UK"
' QueryDef argument must be included so that the
' resulting Recordset reflects the change in the query
' parameter.
rstView.Requery qdfTemp
Debug.Print "Requery after changing parameter, " & _

"[ViewCountry] = UK"
Do While Not rstView.EOF

Debug.Print " " & rstView!FirstName & " " & _
rstView!LastName & ", " & rstView!Country

rstView.MoveNext
Loop

rstView.Close
dbsNorthwind.Close

End Sub

SetOption Method Example

This example uses the SetOption method to change the value of two registry keys based on input
from the user. The SetOption method only overrides the stored registry values for the current
application. The stored settings will remain unchanged and will be the only values visible to the user
through REGEDIT.EXE.
Sub SetOptionX()

Dim intExclusiveDelay As Integer
Dim intSharedDelay As Integer

' Get user input for new values of ExclusiveAsyncDelay
' and SharedAsyncDelay registry keys.
intExclusiveDelay = Val(InputBox("Enter a new value " & _

" for the ExclusiveAsyncDelay registry key " & _
"(in milliseconds):"))

intSharedDelay = Val(InputBox("Enter a new value " & _
"for the SharedAsyncDelay registry key " & _
"(in milliseconds):"))

If intExclusiveDelay > 0 And intSharedDelay > 0 Then
' Change values of registry keys.
SetOption dbExclusiveAsyncDelay, intExclusiveDelay
SetOption dbSharedAsyncDelay, intSharedDelay
MsgBox "Registry keys changed to new values " & _

"for duration of program."
Else

MsgBox "Registry keys left unchanged."
End If

End Sub

Synchronize Method Example

These four examples use the Synchronize method to demonstrate one-way and bi-directional
exchanges of information between two members of a replica set. They will work if you have converted
Northwind.mdb to a Design Master (see the Replicable Property), and created a replica from it. The
replica name specified is Nwreplica.mdb. Change the name of the replica to fit your situation, or use
the MakeReplica method to create a replica if you need one.

This example sends the changes from the Northwind Design Master to Nwreplica. Adjust the paths to
the locations of the files on your computer.
Sub SendChangeToReplicaX()

Dim dbsNorthwind As Database

' Opens the replicable database Northwind.mdb.
Set dbsNorthwind = OpenDatabase("Northwind.mdb")

' Sends data or structural changes to the replica.
dbsNorthwind.Synchronize "Nwreplica.mdb", _

dbRepExportChanges

dbsNorthwind.Close

End Sub
In this example, the replicable database Northwind.mdb receives changes from the replica in the path
— Nwreplica. You must run this procedure from the database receiving the changes.
Sub ReceiveChangeX()

Dim dbsNorthwind As Database

Set dbsNorthwind = OpenDatabase("Northwind.mdb")

' Sends changes from replica to Design Master.
dbsNorthwind.Synchronize "Nwreplica.mdb", _

dbRepImportChanges

dbsNorthwind.Close

End Sub
In this example, changes from both the replicable database Northwind and a replica are exchanged.
This is the default argument for this method.
Sub TwoWayExchangeX()

Dim dbsNorthwind As Database

Set dbsNorthwind = OpenDatabase("Northwind.mdb")

' Sends changes made in each replica to the other.
dbsNorthwind.Synchronize "Nwreplica.mdb", _

dbRepImpExpChanges

dbsNorthwind.Close

End Sub

The following code sample synchronizes two databases over the Internet.
Sub InternetSynchronizeX()

Dim dbsTemp As Database

Set dbsTemp = OpenDatabase("C:\Data\OrdEntry.mdb")

' Synchronize the local database with the replica on
' the Internet server.
dbsTemp.Synchronize _

"www.mycompany.myserver.com" _
& "/files/Orders.mdb", _
dbRepImpExpChanges + dbRepSyncInternet

dbsTemp.Close

End Sub

AbsolutePosition Property Example

This example uses the AbsolutePosition property to track the progress of a loop that enumerates all
the records of a Recordset.
Sub AbsolutePositionX()

Dim dbsNorthwind As Database
Dim rstEmployees As Recordset
Dim strMessage As String

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
' AbsolutePosition only works with dynasets or snapshots.
Set rstEmployees = _

dbsNorthwind.OpenRecordset("Employees", _
dbOpenSnapshot)

With rstEmployees
' Populate Recordset.
.MoveLast
.MoveFirst

' Enumerate Recordset.
Do While Not .EOF

' Display current record information. Add 1 to
' AbsolutePosition value because it is zero-based.
strMessage = "Employee: " & !LastName & vbCr & _

"(record " & (.AbsolutePosition + 1) & _
" of " & .RecordCount & ")"

If MsgBox(strMessage, vbOKCancel) = vbCancel _
Then Exit Do

.MoveNext
Loop

.Close
End With

dbsNorthwind.Close

End Sub

AllowZeroLength Property Example

In this example, the AllowZeroLength property allows the user to set the value of a Field to an
empty string. In this situation, the user can distinguish between a record where data is not known and
a record where the data does not apply.
Sub AllowZeroLengthX()

Dim dbsNorthwind As Database
Dim tdfEmployees As TableDef
Dim fldTemp As Field
Dim rstEmployees As Recordset
Dim strMessage As String
Dim strInput As String

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
Set tdfEmployees = dbsNorthwind.TableDefs("Employees")
' Create a new Field object and append it to the Fields
' collection of the Employees table.
Set fldTemp = tdfEmployees.CreateField("FaxPhone", _

dbText, 24)
fldTemp.AllowZeroLength = True
tdfEmployees.Fields.Append fldTemp

Set rstEmployees = _
dbsNorthwind.OpenRecordset("Employees")

With rstEmployees
' Get user input.
.Edit
strMessage = "Enter fax number for " & _

!FirstName & " " & !LastName & "." & vbCr & _
"[? - unknown, X - has no fax]"

strInput = UCase(InputBox(strMessage))
If strInput <> "" Then

Select Case strInput
Case "?"

!FaxPhone = Null
Case "X"

!FaxPhone = ""
Case Else

!FaxPhone = strInput
End Select

.Update

' Print report.
Debug.Print "Name - Fax number"
Debug.Print !FirstName & " " & !LastName & " - ";

If IsNull(!FaxPhone) Then
Debug.Print "[Unknown]"

Else
If !FaxPhone = "" Then

Debug.Print "[Has no fax]"
Else

Debug.Print !FaxPhone

End If
End If

Else
.CancelUpdate

End If

.Close
End With

' Delete new field because this is a demonstration.
tdfEmployees.Fields.Delete fldTemp.Name
dbsNorthwind.Close

End Sub

BOF, EOF Properties Example

This example demonstrates how the BOF and EOF properties let the user move forward and
backward through a Recordset.
Sub BOFX()

Dim dbsNorthwind As Database
Dim rstCategories As Recordset
Dim strMessage As String

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
Set rstCategories = _

dbsNorthwind.OpenRecordset("Categories", _
dbOpenSnapshot)

With rstCategories
' Populate Recordset.
.MoveLast
.MoveFirst

Do While True
' Display current record information and get user
' input.
strMessage = "Category: " & !CategoryName & _

vbCr & "(record " & (.AbsolutePosition + 1) & _
" of " & .RecordCount & ")" & vbCr & vbCr & _
"Enter 1 to go forward, 2 to go backward:"

' Move forward or backward and trap for BOF or EOF.
Select Case InputBox(strMessage)

Case 1
.MoveNext
If .EOF Then

MsgBox _
"End of the file!" & vbCr & _
"Pointer being moved to last record."

.MoveLast
End If

Case 2
.MovePrevious
If .BOF Then

MsgBox _
"Beginning of the file!" & vbCr & _
"Pointer being moved to first record."

.MoveFirst
End If

Case Else
Exit Do

End Select

Loop

.Close
End With

dbsNorthwind.Close

End Sub

Bookmark and Bookmarkable Properties Example

This example uses the Bookmark and Bookmarkable properties to let the user flag a record in a
Recordset and return to it later.
Sub BookmarkX()

Dim dbsNorthwind As Database
Dim rstCategories As Recordset
Dim strMessage As String
Dim intCommand As Integer
Dim varBookmark As Variant

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
Set rstCategories = _

dbsNorthwind.OpenRecordset("Categories", _
dbOpenSnapshot)

With rstCategories

If .Bookmarkable = False Then
Debug.Print "Recordset is not Bookmarkable!"

Else
' Populate Recordset.
.MoveLast
.MoveFirst

Do While True
' Show information about current record and get
' user input.
strMessage = "Category: " & !CategoryName & _

" (record " & (.AbsolutePosition + 1) & _
" of " & .RecordCount & ")" & vbCr & _
"Enter command:" & vbCr & _
"[1 - next / 2 - previous /" & vbCr & _
"3 - set bookmark / 4 - go to bookmark]"

intCommand = Val(InputBox(strMessage))

Select Case intCommand
' Move forward or backward, trapping for BOF
' or EOF.
Case 1

.MoveNext
If .EOF Then .MoveLast

Case 2
.MovePrevious
If .BOF Then .MoveFirst

' Store the bookmark of the current record.
Case 3

varBookmark = .Bookmark

' Go to the record indicated by the stored
' bookmark.
Case 4

If IsEmpty(varBookmark) Then
MsgBox "No Bookmark set!"

Else
.Bookmark = varBookmark

End If

Case Else
Exit Do

End Select

Loop

End If

.Close
End With

dbsNorthwind.Close

End Sub

Count Property Example

This example demonstrates the Count property with three different collections in the Northwind
database. The property obtains the number of objects in each collection, and sets the upper limit for
loops that enumerate these collections. Another way to enumerate these collections without using the
Count property would be to use For Each...Next statements.
Sub CountX()

Dim dbsNorthwind As Database
Dim intloop As Integer

Set dbsNorthwind = OpenDatabase("Northwind.mdb")

With dbsNorthwind
' Print information about TableDefs collection.
Debug.Print .TableDefs.Count & _

" TableDefs in Northwind"
For intloop = 0 To .TableDefs.Count - 1

Debug.Print " " & .TableDefs(intloop).Name
Next intloop

' Print information about QueryDefs collection.
Debug.Print .QueryDefs.Count & _

" QueryDefs in Northwind"
For intloop = 0 To .QueryDefs.Count - 1

Debug.Print " " & .QueryDefs(intloop).Name
Next intloop

' Print information about Relations collection.
Debug.Print .Relations.Count & _

" Relations in Northwind"
For intloop = 0 To .Relations.Count - 1

Debug.Print " " & .Relations(intloop).Name
Next intloop

.Close
End With

End Sub

DataUpdatable Property Example

This example demonstrates the DataUpdatable property using the first field from six different
Recordsets. The DataOutput function is required for this procedure to run.
Sub DataUpdatableX()

Dim dbsNorthwind As Database
Dim rstNorthwind As Recordset

Set dbsNorthwind = OpenDatabase("Northwind.mdb")

With dbsNorthwind
' Open and print report about a table-type Recordset.
Set rstNorthwind = .OpenRecordset("Employees")
DataOutput rstNorthwind

' Open and print report about a dynaset-type Recordset.
Set rstNorthwind = .OpenRecordset("Employees", _

dbOpenDynaset)
DataOutput rstNorthwind

' Open and print report about a snapshot-type Recordset.
Set rstNorthwind = .OpenRecordset("Employees", _

dbOpenSnapshot)
DataOutput rstNorthwind

' Open and print report about a forward-only-type Recordset.
Set rstNorthwind = .OpenRecordset("Employees", _

dbOpenForwardOnly)
DataOutput rstNorthwind

' Open and print report about a Recordset based on
' a select query.
Set rstNorthwind = _

.OpenRecordset("Current Product List")
DataOutput rstNorthwind

' Open and print report about a Recordset based on a
' select query that calculates totals.
Set rstNorthwind = .OpenRecordset("Order Subtotals")
DataOutput rstNorthwind

.Close
End With

End Sub

Function DataOutput(rstTemp As Recordset)

With rstTemp
Debug.Print "Recordset: " & .Name & ", ";
Select Case .Type

Case dbOpenTable
Debug.Print "dbOpenTable"

Case dbOpenDynaset
Debug.Print "dbOpenDynaset"

Case dbOpenSnapshot
Debug.Print "dbOpenSnapshot"

Case dbOpenForwardOnly
Debug.Print "dbOpenForwardOnly"

End Select
Debug.Print " Field: " & .Fields(0).Name & ", " & _

"DataUpdatable = " & .Fields(0).DataUpdatable
Debug.Print
.Close

End With

End Function

DateCreated, LastUpdated Properties Example

This example demonstrates the DateCreated and LastUpdated properties by adding a new Field to
an existing TableDef and by creating a new TableDef. The DateOutput function is required for this
procedure to run.
Sub DateCreatedX()

Dim dbsNorthwind As Database
Dim tdfEmployees As TableDef
Dim tdfNewTable As TableDef

Set dbsNorthwind = OpenDatabase("Northwind.mdb")

With dbsNorthwind
Set tdfEmployees = .TableDefs!Employees

With tdfEmployees
' Print current information about the Employees
' table.
DateOutput "Current properties", tdfEmployees

' Create and append a field to the Employees table.
.Fields.Append .CreateField("NewField", dbDate)

' Print new information about the Employees
' table.
DateOutput "After creating a new field", _

tdfEmployees

' Delete new Field because this is a demonstration.
.Fields.Delete "NewField"

End With

' Create and append a new TableDef object to the
' Northwind database.
Set tdfNewTable = .CreateTableDef("NewTableDef")
With tdfNewTable

.Fields.Append .CreateField("NewField", dbDate)
End With
.TableDefs.Append tdfNewTable

' Print information about the new TableDef object.
DateOutput "After creating a new table", tdfNewTable

' Delete new TableDef object because this is a
' demonstration.
.TableDefs.Delete tdfNewTable.Name
.Close

End With

End Sub

Function DateOutput(strTemp As String, _
tdfTemp As TableDef)

' Print DateCreated and LastUpdated information about

' specified TableDef object.
Debug.Print strTemp
Debug.Print " TableDef: " & tdfTemp.Name
Debug.Print " DateCreated = " & _

tdfTemp.DateCreated
Debug.Print " LastUpdated = " & _

tdfTemp.LastUpdated
Debug.Print

End Function

DefaultValue Property Example

This example uses the DefaultValue property to alert the user of a field's normal value while
prompting for input. In addition, it demonstrates how new records will be filled using DefaultValue in
the absence of any other input. The DefaultPrompt function is required for this procedure to run.
Sub DefaultValueX()

Dim dbsNorthwind As Database
Dim tdfEmployees As TableDef
Dim strOldDefault As String
Dim rstEmployees As Recordset
Dim strMessage As String
Dim strCode As String

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
Set tdfEmployees = dbsNorthwind.TableDefs!Employees

' Store original DefaultValue information and set the
' property to a new value.
strOldDefault = _

tdfEmployees.Fields!PostalCode.DefaultValue
tdfEmployees.Fields!PostalCode.DefaultValue = "98052"

Set rstEmployees = _
dbsNorthwind.OpenRecordset("Employees", _
dbOpenDynaset)

With rstEmployees
' Add a new record to the Recordset.
.AddNew
!FirstName = "Bruce"
!LastName = "Oberg"

' Get user input. If user enters something, the field
' will be filled with that data; otherwise, it will be
' filled with the DefaultValue information.
strMessage = "Enter postal code for " & vbCr & _

!FirstName & " " & !LastName & ":"
strCode = DefaultPrompt(strMessage, !PostalCode)
If strCode <> "" Then !PostalCode = strCode
.Update

' Go to new record and print information.
.Bookmark = .LastModified
Debug.Print " FirstName = " & !FirstName
Debug.Print " LastName = " & !LastName
Debug.Print " PostalCode = " & !PostalCode

' Delete new record because this is a demonstration.
.Delete
.Close

End With

' Restore original DefaultValue property because this is a
' demonstration.
tdfEmployees.Fields!PostalCode.DefaultValue = _

strOldDefault

dbsNorthwind.Close

End Sub

Function DefaultPrompt(strPrompt As String, _
fldTemp As Field) As String

Dim strFullPrompt As String

' Ask user for new DefaultValue setting for the specified
' Field object.
strFullPrompt = strPrompt & vbCr & _

"[Default = " & fldTemp.DefaultValue & _
", Cancel - use default]"

DefaultPrompt = InputBox(strFullPrompt)

End Function

DistinctCount Property Example

This example uses the DistinctCount property to show how you can determine the number of unique
values in an Index object. However, this value is only accurate immediately after creating the Index. It
will remain accurate if no keys change, or if new keys are added and no old keys are deleted;
otherwise, it will not be reliable. (If this procedure is run several times, you can see the effect on the
DistinctCount property values of the existing Index objects.)
Sub DistinctCountX()

Dim dbsNorthwind As Database
Dim tdfEmployees As TableDef
Dim idxCountry As Index
Dim idxLoop As Index
Dim rstEmployees As Recordset

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
Set tdfEmployees = dbsNorthwind!Employees

With tdfEmployees
' Create and append new Index object to the Employees
' table.
Set idxCountry = .CreateIndex("CountryIndex")
idxCountry.Fields.Append _

idxCountry.CreateField("Country")
.Indexes.Append idxCountry

' The collection must be refreshed for the new
' DistinctCount data to be available.
.Indexes.Refresh

' Enumerate Indexes collection to show the current
' DistinctCount values.
Debug.Print "Indexes before adding new record"
For Each idxLoop In .Indexes

Debug.Print " DistinctCount = " & _
idxLoop.DistinctCount & ", Name = " & _
idxLoop.Name

Next idxLoop

Set rstEmployees = _
dbsNorthwind.OpenRecordset("Employees")

' Add a new record to the Employees table.
With rstEmployees

.AddNew
!FirstName = "April"
!LastName = "LaMonte"
!Country = "Canada"
.Update

End With

' Enumerate Indexes collection to show the modified
' DistinctCount values.
Debug.Print "Indexes after adding new record and " & _

"refreshing Indexes"

.Indexes.Refresh
For Each idxLoop In .Indexes

Debug.Print " DistinctCount = " & _
idxLoop.DistinctCount & ", Name = " & _
idxLoop.Name

Next idxLoop

' Delete new record because this is a demonstration.
With rstEmployees

.Bookmark = .LastModified

.Delete

.Close
End With

' Delete new Indexes because this is a demonstration.
.Indexes.Delete idxCountry.Name

End With

dbsNorthwind.Close

End Sub

EditMode Property Example

This example shows the value of the EditMode property under various conditions. The
EditModeOutput function is required for this procedure to run.
Sub EditModeX()

Dim dbsNorthwind As Database
Dim rstEmployees As Recordset

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
Set rstEmployees = _

dbsNorthwind.OpenRecordset("Employees", _
dbOpenDynaset)

' Show the EditMode property under different editing
' states.
With rstEmployees

EditModeOutput "Before any Edit or AddNew:", .EditMode
.Edit
EditModeOutput "After Edit:", .EditMode
.Update
EditModeOutput "After Update:", .EditMode
.AddNew
EditModeOutput "After AddNew:", .EditMode
.CancelUpdate
EditModeOutput "After CancelUpdate:", .EditMode
.Close

End With

dbsNorthwind.Close

End Sub

Function EditModeOutput(strTemp As String, _
intEditMode As Integer)

' Print report based on the value of the EditMode
' property.
Debug.Print strTemp
Debug.Print " EditMode = ";

Select Case intEditMode
Case dbEditNone

Debug.Print "dbEditNone"
Case dbEditInProgress

Debug.Print "dbEditInProgress"
Case dbEditAdd

Debug.Print "dbEditAdd"
End Select

End Function

FieldSize Property Example

This example uses the FieldSize property to list the number of bytes used by the Memo and Long
Binary Field objects in two different tables.
Sub FieldSizeX()

Dim dbsNorthwind As Database
Dim rstCategories As Recordset
Dim rstEmployees As Recordset

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
Set rstCategories = _

dbsNorthwind.OpenRecordset("Categories", _
dbOpenDynaset)

Set rstEmployees = _
dbsNorthwind.OpenRecordset("Employees", _
dbOpenDynaset)

Debug.Print _
"Field sizes from records in Categories table"

With rstCategories
Debug.Print " CategoryName - " & _

"Description (bytes) - Picture (bytes)"

' Enumerate the Categories Recordset and print the size
' in bytes of the picture field for each record.

Do While Not .EOF
Debug.Print " " & !CategoryName & " - " & _

!Description.FieldSize & " - " & _
!Picture.FieldSize

.MoveNext
Loop

.Close
End With

Debug.Print "Field sizes from records in Employees table"

With rstEmployees
Debug.Print " LastName - Notes (bytes) - " & _

"Photo (bytes)"

' Enumerate the Employees Recordset and print the size
' in bytes of the picture field for each record.

Do While Not .EOF
Debug.Print " " & !LastName & " - " & _

!Notes.FieldSize & " - " & !Photo.FieldSize
.MoveNext

Loop

.Close
End With

dbsNorthwind.Close

End Sub

Filter Property Example

This example uses the Filter property to create a new Recordset from an existing Recordset based
on a specified condition. The FilterField function is required for this procedure to run.
Sub FilterX()

Dim dbsNorthwind As Database
Dim rstOrders As Recordset
Dim intOrders As Integer
Dim strCountry As String
Dim rstOrdersCountry As Recordset
Dim strMessage As String

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
Set rstOrders = dbsNorthwind.OpenRecordset("Orders", _

dbOpenSnapshot)

' Populate the Recordset.
rstOrders.MoveLast
intOrders = rstOrders.RecordCount

' Get user input.
strCountry = Trim(InputBox(_

"Enter a country to filter on:"))

If strCountry <> "" Then
' Open a filtered Recordset object.
Set rstOrdersCountry = _

FilterField(rstOrders, "ShipCountry", strCountry)

With rstOrdersCountry
' Check RecordCount before populating Recordset;
' otherwise, error may result.
If .RecordCount <> 0 Then .MoveLast
' Print number of records for the original
' Recordset object and the filtered Recordset
' object.
strMessage = "Orders in original recordset: " & _

vbCr & intOrders & vbCr & _
"Orders in filtered recordset (Country = '" & _
strCountry & "'): " & vbCr & .RecordCount

MsgBox strMessage
.Close

End With

End If

rstOrders.Close

dbsNorthwind.Close

End Sub

Function FilterField(rstTemp As Recordset, _
strField As String, strFilter As String) As Recordset

' Set a filter on the specified Recordset object and then
' open a new Recordset object.
rstTemp.Filter = strField & " = '" & strFilter & "'"
Set FilterField = rstTemp.OpenRecordset

End Function
Note To see the effects of filtering rstOrders, you must set its Filter property, and then open a
second Recordset object based on rstOrders.

Note When you know the data you want to select, it's usually more efficient to create a Recordset
with an SQL statement. This example shows how you can create just one Recordset and obtain
records from a particular country.
Sub FilterX2()

Dim dbsNorthwind As Database
Dim rstOrders As Recordset

Set dbsNorthwind = OpenDatabase("Northwind.mdb")

' Open a Recordset object that selects records from a
' table based on the shipping country.
Set rstOrders = _

dbsNorthwind.OpenRecordset("SELECT * " & _
"FROM Orders WHERE ShipCountry = 'USA'", _
dbOpenSnapshot)

rstOrders.Close
dbsNorthwind.Close

End Sub

Foreign Property Example

This example shows how the Foreign property can indicate which Index objects in a TableDef are
foreign key indexes. Such indexes are created by the Microsoft Jet database engine when a Relation
is created. The default name for the foreign key indexes is the name of the primary table plus the
name of the foreign table. The ForeignOutput function is required for this procedure to run.
Sub ForeignX()

Dim dbsNorthwind As Database

Set dbsNorthwind = OpenDatabase("Northwind.mdb")

With dbsNorthwind
' Print report on foreign key indexes from two
' TableDef objects and a QueryDef object.
ForeignOutput .TableDefs!Products
ForeignOutput .TableDefs!Orders
ForeignOutput .TableDefs![Order Details]

.Close
End With

End Sub

Function ForeignOutput(tdfTemp As TableDef)

Dim idxLoop As Index

With tdfTemp
Debug.Print "Indexes in " & .Name & " TableDef"
' Enumerate the Indexes collection of the specified
' TableDef object.
For Each idxLoop In .Indexes

Debug.Print " " & idxLoop.Name
Debug.Print " Foreign = " & idxLoop.Foreign

Next idxLoop
End With

End Function

ForeignName, ForeignTable, and Table Properties Example

This example shows how the Table, ForeignTable, and ForeignName properties define the terms of
a Relation between two tables.
Sub ForeignNameX()

Dim dbsNorthwind As Database
Dim relLoop As Relation

Set dbsNorthwind = OpenDatabase("Northwind.mdb")

Debug.Print "Relation"
Debug.Print " Table - Field"
Debug.Print " Primary (One) ";
Debug.Print ".Table - .Fields(0).Name"
Debug.Print " Foreign (Many) ";
Debug.Print ".ForeignTable - .Fields(0).ForeignName"

' Enumerate the Relations collection of the Northwind
' database to report on the property values of
' the Relation objects and their Field objects.
For Each relLoop In dbsNorthwind.Relations

With relLoop
Debug.Print
Debug.Print .Name & " Relation"
Debug.Print " Table - Field"
Debug.Print " Primary (One) ";
Debug.Print .Table & " - " & .Fields(0).Name
Debug.Print " Foreign (Many) ";
Debug.Print .ForeignTable & " - " & _

.Fields(0).ForeignName
End With

Next relLoop

dbsNorthwind.Close

End Sub

IgnoreNulls Property Example

This example sets the IgnoreNulls property of a new Index to True or False based on user input,
and then demonstrates the effect on a Recordset with a record whose key field contains a Null value.
Sub IgnoreNullsX()

Dim dbsNorthwind As Database
Dim tdfEmployees As TableDef
Dim idxNew As Index
Dim rstEmployees As Recordset

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
Set tdfEmployees = dbsNorthwind!Employees

With tdfEmployees
' Create a new Index object.
Set idxNew = .CreateIndex("NewIndex")
idxNew.Fields.Append idxNew.CreateField("Country")

' Set the IgnoreNulls property of the new Index object
' based on the user's input.
Select Case MsgBox("Set IgnoreNulls to True?", _

vbYesNoCancel)
Case vbYes

idxNew.IgnoreNulls = True
Case vbNo

idxNew.IgnoreNulls = False
Case Else

dbsNorthwind.Close
End

End Select

' Append the new Index object to the Indexes
' collection of the Employees table.
.Indexes.Append idxNew
.Indexes.Refresh

End With

Set rstEmployees = _
dbsNorthwind.OpenRecordset("Employees")

With rstEmployees
' Add a new record to the Employees table.
.AddNew
!FirstName = "Gary"
!LastName = "Haarsager"
.Update

' Use the new index to set the order of the records.
.Index = idxNew.Name
.MoveFirst

Debug.Print "Index = " & .Index & _
", IgnoreNulls = " & idxNew.IgnoreNulls

Debug.Print " Country - Name"

' Enumerate the Recordset. The value of the
' IgnoreNulls property will determine if the newly
' added record appears in the output.
Do While Not .EOF

Debug.Print " " & _
IIf(IsNull(!Country), "[Null]", !Country) & _
" - " & !FirstName & " " & !LastName

.MoveNext
Loop

' Delete new record because this is a demonstration.
.Index = ""
.Bookmark = .LastModified
.Delete
.Close

End With

' Delete new Index because this is a demonstration.
tdfEmployees.Indexes.Delete idxNew.Name
dbsNorthwind.Close

End Sub

Index Property Example

This example uses the Index property to set different record orders for a table-type Recordset.
Sub IndexPropertyX()

Dim dbsNorthwind As Database
Dim tdfEmployees As TableDef
Dim rstEmployees As Recordset
Dim idxLoop As Index

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
Set rstEmployees = _

dbsNorthwind.OpenRecordset("Employees")
Set tdfEmployees = dbsNorthwind.TableDefs!Employees

With rstEmployees

' Enumerate Indexes collection of Employees table.
For Each idxLoop In tdfEmployees.Indexes

.Index = idxLoop.Name
Debug.Print "Index = " & .Index
Debug.Print " EmployeeID - PostalCode - Name"
.MoveFirst

' Enumerate Recordset to show the order of records.
Do While Not .EOF

Debug.Print " " & !EmployeeID & " - " & _
!PostalCode & " - " & !FirstName & " " & _
!LastName

.MoveNext
Loop

Next idxLoop

.Close
End With

dbsNorthwind.Close

End Sub

LastModified Property Example

This example uses the LastModified property to move the current record pointer to both a record that
has been modified and a newly created record.
Sub LastModifiedX()

Dim dbsNorthwind As Database
Dim rstEmployees As Recordset
Dim strFirst As String
Dim strLast As String

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
Set rstEmployees = _

dbsNorthwind.OpenRecordset("Employees", _
dbOpenDynaset)

With rstEmployees
' Store current data.
strFirst = !FirstName
strLast = !LastName
' Change data in current record.
.Edit
!FirstName = "Julie"
!LastName = "Warren"
.Update
' Move current record pointer to the most recently
' changed or added record.
.Bookmark = .LastModified
Debug.Print _

"Data in LastModified record after Edit: " & _
!FirstName & " " & !LastName

' Restore original data because this is a demonstration.
.Edit
!FirstName = strFirst
!LastName = strLast
.Update

' Add new record.
.AddNew
!FirstName = "Roger"
!LastName = "Harui"
.Update
' Move current record pointer to the most recently
' changed or added record.
.Bookmark = .LastModified
Debug.Print _

"Data in LastModified record after AddNew: " & _
!FirstName & " " & !LastName

' Delete new record because this is a demonstration.
.Delete
.Close

End With

dbsNorthwind.Close

End Sub

LockEdits Property Example

This example demonstrates pessimistic locking by setting the LockEdits property to True, and then
demonstrates optimistic locking by setting the LockEdits property to False. It also demonstrates what
kind of error handling is required in a multiuser database environment in order to modify a field. The
PessimisticLock and OptimisticLock functions are required for this procedure to run.
Sub LockEditsX()

Dim dbsNorthwind As Database
Dim rstCustomers As Recordset
Dim strOldName As String

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
Set rstCustomers = _

dbsNorthwind.OpenRecordset("Customers", _
dbOpenDynaset)

With rstCustomers
' Store original data.
strOldName = !CompanyName

If MsgBox("Pessimistic locking demonstration...", _
vbOKCancel) = vbOK Then

' Attempt to modify data with pessimistic locking
' in effect.
If PessimisticLock(rstCustomers, !CompanyName, _

"Acme Foods") Then
MsgBox "Record successfully edited."

' Restore original data...
.Edit
!CompanyName = strOldName
.Update

End If

End If

If MsgBox("Optimistic locking demonstration...", _
vbOKCancel) = vbOK Then

' Attempt to modify data with optimistic locking
' in effect.
If OptimisticLock(rstCustomers, !CompanyName, _

"Acme Foods") Then
MsgBox "Record successfully edited."

' Restore original data...
.Edit
!CompanyName = strOldName
.Update

End If

End If

.Close

End With

dbsNorthwind.Close

End Sub

Function PessimisticLock(rstTemp As Recordset, _
fldTemp As Field, strNew As String) As Boolean

dim ErrLoop as Error

PessimisticLock = True

With rstTemp
.LockEdits = True

' When you set LockEdits to True, you trap for errors
' when you call the Edit method.
On Error GoTo Err_Lock
.Edit
On Error GoTo 0

' If the Edit is still in progress, then no errors
' were triggered; you may modify the data.
If .EditMode = dbEditInProgress Then

fldTemp = strNew
.Update
.Bookmark = .LastModified

Else
' Retrieve current record to see changes made by
' other user.
.Move 0

End If

End With

Exit Function

Err_Lock:

If DBEngine.Errors.Count > 0 Then
' Enumerate the Errors collection.
For Each errLoop In DBEngine.Errors

MsgBox "Error number: " & errLoop.Number & _
vbCr & errLoop.Description

Next errLoop
PessimisticLock = False

End If

Resume Next

End Function

Function OptimisticLock(rstTemp As Recordset, _
fldTemp As Field, strNew As String) As Boolean

dim ErrLoop as Error

OptimisticLock = True

With rstTemp
.LockEdits = False
.Edit
fldTemp = strNew

' When you set LockEdits to False, you trap for errors
' when you call the Update method.
On Error GoTo Err_Lock
.Update
On Error GoTo 0

' If there is no Edit in progress, then no errors were
' triggered; you may modify the data.
If .EditMode = dbEditNone Then

' Move current record pointer to the most recently
' modified record.
.Bookmark = .LastModified

Else
.CancelUpdate
' Retrieve current record to see changes made by
' other user.
.Move 0

End If

End With

Exit Function

Err_Lock:

If DBEngine.Errors.Count > 0 Then
' Enumerate the Errors collection.
For Each errLoop In DBEngine.Errors

MsgBox "Error number: " & errLoop.Number & _
vbCr & errLoop.Description

Next errLoop
OptimisticLock = False

End If

Resume Next

End Function

NoMatch Property Example

This example uses the NoMatch property to determine whether a Seek and a FindFirst were
successful, and if not, to give appropriate feedback. The SeekMatch and FindMatch procedures are
required for this procedure to run.
Sub NoMatchX()

Dim dbsNorthwind As Database
Dim rstProducts As Recordset
Dim rstCustomers As Recordset
Dim strMessage As String
Dim strSeek As String
Dim strCountry As String
Dim varBookmark As Variant

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
' Default is dbOpenTable; required if Index property will
' be used.
Set rstProducts = dbsNorthwind.OpenRecordset("Products")

With rstProducts
.Index = "PrimaryKey"

Do While True
' Show current record information; ask user for
' input.
strMessage = "NoMatch with Seek method" & vbCr & _

"Product ID: " & !ProductID & vbCr & _
"Product Name: " & !ProductName & vbCr & _
"NoMatch = " & .NoMatch & vbCr & vbCr & _
"Enter a product ID."

strSeek = InputBox(strMessage)
If strSeek = "" Then Exit Do

' Call procedure that seeks for a record based on
' the ID number supplied by the user.
SeekMatch rstProducts, Val(strSeek)

Loop

.Close
End With

Set rstCustomers = dbsNorthwind.OpenRecordset(_
"SELECT CompanyName, Country FROM Customers " & _
"ORDER BY CompanyName", dbOpenSnapshot)

With rstCustomers

Do While True
' Show current record information; ask user for
' input.
strMessage = "NoMatch with FindFirst method" & _

vbCr & "Customer Name: " & !CompanyName & _
vbCr & "Country: " & !Country & vbCr & _
"NoMatch = " & .NoMatch & vbCr & vbCr & _
"Enter country on which to search."

strCountry = Trim(InputBox(strMessage))
If strCountry = "" Then Exit Do

' Call procedure that finds a record based on
' the country name supplied by the user.
FindMatch rstCustomers, _

"Country = '" & strCountry & "'"
Loop

.Close
End With

dbsNorthwind.Close

End Sub

Sub SeekMatch(rstTemp As Recordset, _
intSeek As Integer)

Dim varBookmark As Variant
Dim strMessage As String

With rstTemp
' Store current record location.
varBookmark = .Bookmark
.Seek "=", intSeek

' If Seek method fails, notify user and return to the
' last current record.
If .NoMatch Then

strMessage = _
"Not found! Returning to current record." & _
vbCr & vbCr & "NoMatch = " & .NoMatch

MsgBox strMessage
.Bookmark = varBookmark

End If

End With

End Sub

Sub FindMatch(rstTemp As Recordset, _
strFind As String)

Dim varBookmark As Variant
Dim strMessage As String

With rstTemp
' Store current record location.
varBookmark = .Bookmark
.FindFirst strFind

' If Find method fails, notify user and return to the
' last current record.
If .NoMatch Then

strMessage = _
"Not found! Returning to current record." & _

vbCr & vbCr & "NoMatch = " & .NoMatch
MsgBox strMessage
.Bookmark = varBookmark

End If

End With

End Sub

OrdinalPosition Property Example

This example changes the OrdinalPosition property values in the Employees TableDef in order to
control the Field order in a resulting Recordset. By setting the OrdinalPosition of all the Fields to 1,
any resulting Recordset will order the Fields alphabetically. Note that the OrdinalPosition values in
the Recordset don't match the values in the TableDef, but simply reflect the end result of the
TableDef changes.
Sub OrdinalPositionX()

Dim dbsNorthwind As Database
Dim tdfEmployees As TableDef
Dim aintPosition() As Integer
Dim astrFieldName() As String
Dim intTemp As Integer
Dim fldTemp As Field
Dim rstEmployees As Recordset

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
Set tdfEmployees = dbsNorthwind.TableDefs("Employees")

With tdfEmployees
' Display and store original OrdinalPosition data.
Debug.Print _

"Original OrdinalPosition data in TableDef."
ReDim aintPosition(0 To .Fields.Count - 1) As Integer
ReDim astrFieldName(0 To .Fields.Count - 1) As String
For intTemp = 0 To .Fields.Count - 1

aintPosition(intTemp) = _
.Fields(intTemp).OrdinalPosition

astrFieldName(intTemp) = .Fields(intTemp).Name
Debug.Print , aintPosition(intTemp), _

astrFieldName(intTemp)
Next intTemp

' Change OrdinalPosition data.
For Each fldTemp In .Fields

fldTemp.OrdinalPosition = 1
Next fldTemp

' Open new Recordset object to show how the
' OrdinalPosition data has affected the record order.
Debug.Print _

"OrdinalPosition data from resulting Recordset."
Set rstEmployees = dbsNorthwind.OpenRecordset(_

"SELECT * FROM Employees")
For Each fldTemp In rstEmployees.Fields

Debug.Print , fldTemp.OrdinalPosition, fldTemp.Name
Next fldTemp
rstEmployees.Close

' Restore original OrdinalPosition data because this is
' a demonstration.
For intTemp = 0 To .Fields.Count - 1

.Fields(astrFieldName(intTemp)).OrdinalPosition = _
aintPosition(intTemp)

Next intTemp

End With

dbsNorthwind.Close

End Sub

PercentPosition Property Example

This example uses the PercentPosition property to show the position of the current record pointer
relative to the beginning of the Recordset.
Sub PercentPositionX()

Dim dbsNorthwind As Database
Dim rstProducts As Recordset
Dim strFind As String
Dim strMessage As String

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
' PercentPosition only works with dynasets or snapshots.
Set rstProducts = dbsNorthwind.OpenRecordset(_

"SELECT ProductName FROM Products " & _
"ORDER BY ProductName", dbOpenSnapshot)

With rstProducts
' Populate the Recordset.
.MoveLast
.MoveFirst

Do While True
' Show current record information and ask user
' for input.
strMessage = "Product: " & !ProductName & vbCr & _

"The record pointer is " & _
Format(.PercentPosition, "##0.0") & _
"% from the " & vbCr & _
"beginning of the Recordset." & vbCr & _
"Please enter a character search string " & _
"for a product name."

strFind = Trim(InputBox(strMessage))
If strFind = "" Then Exit Do

' Try to find a record matching the search string.
.FindFirst "ProductName >= '" & strFind & "'"
If .NoMatch Then .MoveLast

Loop

.Close
End With

dbsNorthwind.Close

End Sub

Primary Property Example

This example uses the Primary property to designate a new Index in a new TableDef as the primary
Index for that table. Note that setting the Primary property to True automatically sets Unique and
Required properties to True as well.
Sub PrimaryX()

Dim dbsNorthwind As Database
Dim tdfNew As TableDef
Dim idxNew As Index
Dim idxLoop As Index
Dim fldLoop As Field
Dim prpLoop As Property

Set dbsNorthwind = OpenDatabase("Northwind.mdb")

' Create and append a new TableDef object to the
' TableDefs collection of the Northwind database.
Set tdfNew = dbsNorthwind.CreateTableDef("NewTable")
tdfNew.Fields.Append tdfNew.CreateField("NumField", _

dbLong, 20)
tdfNew.Fields.Append tdfNew.CreateField("TextField", _

dbText, 20)
dbsNorthwind.TableDefs.Append tdfNew

With tdfNew
' Create and append a new Index object to the
' Indexes collection of the new TableDef object.
Set idxNew = .CreateIndex("NumIndex")
idxNew.Fields.Append idxNew.CreateField("NumField")
idxNew.Primary = True
.Indexes.Append idxNew
Set idxNew = .CreateIndex("TextIndex")
idxNew.Fields.Append idxNew.CreateField("TextField")
.Indexes.Append idxNew

Debug.Print .Indexes.Count & " Indexes in " & _
.Name & " TableDef"

' Enumerate Indexes collection.
For Each idxLoop In .Indexes

With idxLoop
Debug.Print " " & .Name

' Enumerate Fields collection of each Index
' object.
Debug.Print " Fields"
For Each fldLoop In .Fields

Debug.Print " " & fldLoop.Name
Next fldLoop

' Enumerate Properties collection of each
' Index object.
Debug.Print " Properties"
For Each prpLoop In .Properties

Debug.Print " " & prpLoop.Name & _
" = " & IIf(prpLoop = "", "[empty]", _
prpLoop)

Next prpLoop
End With

Next idxLoop

End With

dbsNorthwind.TableDefs.Delete tdfNew.Name
dbsNorthwind.Close

End Sub

RecordCount Property Example

This example demonstrates the RecordCount property with different types of Recordsets before and
after they're populated.
Sub RecordCountX()

Dim dbsNorthwind As Database
Dim rstEmployees As Recordset

Set dbsNorthwind = OpenDatabase("Northwind.mdb")

With dbsNorthwind
' Open table-type Recordset and show RecordCount
' property.
Set rstEmployees = .OpenRecordset("Employees")
Debug.Print _

"Table-type recordset from Employees table"
Debug.Print " RecordCount = " & _

rstEmployees.RecordCount
rstEmployees.Close

' Open dynaset-type Recordset and show RecordCount
' property before populating the Recordset.
Set rstEmployees = .OpenRecordset("Employees", _

dbOpenDynaset)
Debug.Print "Dynaset-type recordset " & _

"from Employees table before MoveLast"
Debug.Print " RecordCount = " & _

rstEmployees.RecordCount

' Show the RecordCount property after populating the
' Recordset.
rstEmployees.MoveLast
Debug.Print "Dynaset-type recordset " & _

"from Employees table after MoveLast"
Debug.Print " RecordCount = " & _

rstEmployees.RecordCount
rstEmployees.Close

' Open snapshot-type Recordset and show RecordCount
' property before populating the Recordset.
Set rstEmployees = .OpenRecordset("Employees", _

dbOpenSnapshot)
Debug.Print "Snapshot-type recordset " & _

"from Employees table before MoveLast"
Debug.Print " RecordCount = " & _

rstEmployees.RecordCount

' Show the RecordCount property after populating the
' Recordset.
rstEmployees.MoveLast
Debug.Print "Snapshot-type recordset " & _

"from Employees table after MoveLast"
Debug.Print " RecordCount = " & _

rstEmployees.RecordCount
rstEmployees.Close

' Open forward-only-type Recordset and show
' RecordCount property before populating the
' Recordset.
Set rstEmployees = .OpenRecordset("Employees", _

dbOpenForwardOnly)
Debug.Print "Forward-only-type recordset " & _

"from Employees table before MoveLast"
Debug.Print " RecordCount = " & _

rstEmployees.RecordCount

' Show the RecordCount property after calling the
' MoveNext method.
rstEmployees.MoveNext
Debug.Print "Forward-only-type recordset " & _

"from Employees table after MoveNext"
Debug.Print " RecordCount = " & _

rstEmployees.RecordCount
rstEmployees.Close

.Close
End With

End Sub

RecordsAffected Property Example

This example uses the RecordsAffected property with action queries executed from a Database
object and from a QueryDef object. The RecordsAffectedOutput function is required for this
procedure to run.
Sub RecordsAffectedX()

Dim dbsNorthwind As Database
Dim qdfTemp As QueryDef
Dim strSQLChange As String
Dim strSQLRestore As String

Set dbsNorthwind = OpenDatabase("Northwind.mdb")

With dbsNorthwind
' Print report of contents of the Employees
' table.
Debug.Print _

"Number of records in Employees table: " & _
.TableDefs!Employees.RecordCount

RecordsAffectedOutput dbsNorthwind

' Define and execute an action query.
strSQLChange = "UPDATE Employees " & _

"SET Country = 'United States' " & _
"WHERE Country = 'USA'"

.Execute strSQLChange

' Print report of contents of the Employees
' table.
Debug.Print _

"RecordsAffected after executing query " & _
"from Database: " & .RecordsAffected

RecordsAffectedOutput dbsNorthwind

' Define and run another action query.
strSQLRestore = "UPDATE Employees " & _

"SET Country = 'USA' " & _
"WHERE Country = 'United States'"

Set qdfTemp = .CreateQueryDef("", strSQLRestore)
qdfTemp.Execute

' Print report of contents of the Employees
' table.
Debug.Print _

"RecordsAffected after executing query " & _
"from QueryDef: " & qdfTemp.RecordsAffected

RecordsAffectedOutput dbsNorthwind

.Close

End With

End Sub

Function RecordsAffectedOutput(dbsNorthwind As Database)

Dim rstEmployees As Recordset

' Open a Recordset object from the Employees table.
Set rstEmployees = _

dbsNorthwind.OpenRecordset("Employees")

With rstEmployees
' Enumerate Recordset.
.MoveFirst
Do While Not .EOF

Debug.Print " " & !LastName & ", " & !Country
.MoveNext

Loop
.Close

End With

End Function

Restartable Property Example

This example demonstrates the Restartable property with different Recordset objects.
Sub RestartableX()

Dim dbsNorthwind As Database
Dim rstTemp As Recordset

Set dbsNorthwind = OpenDatabase("Northwind.mdb")

With dbsNorthwind
' Open a table-type Recordset and print its
' Restartable property.
Set rstTemp = .OpenRecordset("Employees", dbOpenTable)
Debug.Print _

"Table-type recordset from Employees table"
Debug.Print " Restartable = " & rstTemp.Restartable
rstTemp.Close

' Open a Recordset from an SQL statement and print its
' Restartable property.
Set rstTemp = _

.OpenRecordset("SELECT * FROM Employees")
Debug.Print "Recordset based on SQL statement"
Debug.Print " Restartable = " & rstTemp.Restartable
rstTemp.Close

' Open a Recordset from a saved QueryDef object and
' print its Restartable property.
Set rstTemp = .OpenRecordset("Current Product List")
Debug.Print _

"Recordset based on permanent QueryDef (" & _
rstTemp.Name & ")"

Debug.Print " Restartable = " & rstTemp.Restartable
rstTemp.Close

.Close
End With

End Sub

Size Property Example

This example demonstrates the Size property by enumerating the names and sizes of the Field
objects in the Employees table.
Sub SizeX()

Dim dbsNorthwind As Database
Dim tdfEmployees As TableDef
Dim fldNew As Field
Dim fldLoop As Field

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
Set tdfEmployees = dbsNorthwind.TableDefs!Employees

With tdfEmployees

' Create and append a new Field object to the
' Employees table.
Set fldNew = .CreateField("FaxPhone")
fldNew.Type = dbText
fldNew.Size = 20
.Fields.Append fldNew

Debug.Print "TableDef: " & .Name
Debug.Print " Field.Name - Field.Type - Field.Size"

' Enumerate Fields collection; print field names,
' types, and sizes.
For Each fldLoop In .Fields

Debug.Print " " & fldLoop.Name & " - " & _
fldLoop.Type & " - " & fldLoop.Size

Next fldLoop

' Delete new field because this is a demonstration.
.Fields.Delete fldNew.Name

End With

dbsNorthwind.Close

End Sub

Sort Property Example

This example demonstrates the Sort property by changing its value and creating a new Recordset.
The SortOutput function is required for this procedure to run.
Sub SortX()

Dim dbsNorthwind As Database
Dim rstEmployees As Recordset
Dim rstSortEmployees As Recordset

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
Set rstEmployees = _

dbsNorthwind.OpenRecordset("Employees", _
dbOpenDynaset)

With rstEmployees
SortOutput "Original Recordset:", rstEmployees
.Sort = "LastName, FirstName"
' Print report showing Sort property and record order.
SortOutput _

"Recordset after changing Sort property:", _
rstEmployees

' Open new Recordset from current one.
Set rstSortEmployees = .OpenRecordset
' Print report showing Sort property and record order.
SortOutput "New Recordset:", rstSortEmployees
rstSortEmployees.Close
.Close

End With

dbsNorthwind.Close

End Sub

Function SortOutput(strTemp As String, _
rstTemp As Recordset)

With rstTemp
Debug.Print strTemp
Debug.Print " Sort = " & _

IIf(.Sort <> "", .Sort, "[Empty]")
.MoveFirst

' Enumerate Recordset.
Do While Not .EOF

Debug.Print " " & !LastName & _
", " & !FirstName

.MoveNext
Loop

End With

End Function
Note When you know the data you want to select, it's usually more efficient to create a Recordset
with an SQL statement. This example shows how you can create just one Recordset and obtain the

same results as in the preceding example.

Sub SortX2()

Dim dbsNorthwind As Database
Dim rstEmployees As Recordset

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
' Open a Recordset from an SQL statement that specifies a
' sort order.
Set rstEmployees = _

dbsNorthwind.OpenRecordset("SELECT * " & _
"FROM Employees ORDER BY LastName, FirstName", _
dbOpenDynaset)

dbsNorthwind.Close

End Sub

SourceField, SourceTable Properties Example

This example demonstrates the SourceField and SourceTable properties by opening a Recordset
made up of fields from two tables.
Sub SourceFieldX()

Dim dbsNorthwind As Database
Dim rstProductCategory As Recordset
Dim fldLoop As Field
Dim strSQL As String

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
' Open a Recordset from an SQL statement that uses fields
' from two different tables.
strSQL = "SELECT ProductID AS ProdID, " & _

"ProductName AS ProdName, " & _
"Categories.CategoryID AS CatID, " & _
"CategoryName AS CatName " & _
"FROM Categories INNER JOIN Products ON " & _
"Categories.CategoryID = Products.CategoryID " & _
"ORDER BY ProductName"

Set rstProductCategory = _
dbsNorthwind.OpenRecordset(strSQL)

Debug.Print "Field - SourceTable - SourceField"
' Enumerate Fields collection of Recordset, printing
' name, original table, and original name.
For Each fldLoop In rstProductCategory.Fields

Debug.Print " " & fldLoop.Name & " - " & _
fldLoop.SourceTable & " - " & fldLoop.SourceField

Next fldLoop

rstProductCategory.Close
dbsNorthwind.Close

End Sub

SQL Property Example

This example demonstrates the SQL property by setting and changing the SQL property of a
temporary QueryDef and comparing the results. The SQLOutput function is required for this
procedure to run.
Sub SQLX()

Dim dbsNorthwind As Database
Dim qdfTemp As QueryDef
Dim rstEmployees As Recordset

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
Set qdfTemp = dbsNorthwind.CreateQueryDef("")

' Open Recordset using temporary QueryDef object and
' print report.
SQLOutput "SELECT * FROM Employees " & _

"WHERE Country = 'USA' " & _
"ORDER BY LastName", qdfTemp

' Open Recordset using temporary QueryDef object and
' print report.
SQLOutput "SELECT * FROM Employees " & _

"WHERE Country = 'UK' " & _
"ORDER BY LastName", qdfTemp

dbsNorthwind.Close

End Sub

Function SQLOutput(strSQL As String, qdfTemp As QueryDef)

Dim rstEmployees As Recordset

' Set SQL property of temporary QueryDef object and open
' a Recordset.
qdfTemp.SQL = strSQL
Set rstEmployees = qdfTemp.OpenRecordset

Debug.Print strSQL

With rstEmployees
' Enumerate Recordset.
Do While Not .EOF

Debug.Print " " & !FirstName & " " & _
!LastName & ", " & !Country

.MoveNext
Loop
.Close

End With

End Function

Type Property Example

This example demonstrates the Type property by returning the name of the constant corresponding to
the value of the Type property of four different Recordsets. The RecordsetType function is required
for this procedure to run.
Sub TypeX()

Dim dbsNorthwind As Database
Dim rstEmployees As Recordset

Set dbsNorthwind = OpenDatabase("Northwind.mdb")

' Default is dbOpenTable.
Set rstEmployees = _

dbsNorthwind.OpenRecordset("Employees")
Debug.Print _

"Table-type recordset (Employees table): " & _
RecordsetType(rstEmployees.Type)

rstEmployees.Close

Set rstEmployees = _
dbsNorthwind.OpenRecordset("Employees", _
dbOpenDynaset)

Debug.Print _
"Dynaset-type recordset (Employees table): " & _
RecordsetType(rstEmployees.Type)

rstEmployees.Close

Set rstEmployees = _
dbsNorthwind.OpenRecordset("Employees", _
dbOpenSnapshot)

Debug.Print _
"Snapshot-type recordset (Employees table): " & _
RecordsetType(rstEmployees.Type)

rstEmployees.Close

Set rstEmployees = _
dbsNorthwind.OpenRecordset("Employees", _
dbOpenForwardOnly)

Debug.Print _
"Forward-only-type recordset (Employees table): " & _
RecordsetType(rstEmployees.Type)

rstEmployees.Close

dbsNorthwind.Close

End Sub

Function RecordsetType(intType As Integer) As String

Select Case intType
Case dbOpenTable

RecordsetType = "dbOpenTable"
Case dbOpenDynaset

RecordsetType = "dbOpenDynaset"
Case dbOpenSnapshot

RecordsetType = "dbOpenSnapshot"
Case dbOpenForwardOnly

RecordsetType = "dbOpenForwardOnly"
End Select

End Function
This example demonstrates the Type property by returning the name of the constant corresponding to
the value of the Type property of all the Field objects in the Employees table. The FieldType function
is required for this procedure to run.
Sub TypeX2()

Dim dbsNorthwind As Database
Dim fldLoop As Field

Set dbsNorthwind = OpenDatabase("Northwind.mdb")

Debug.Print "Fields in Employees TableDef:"
Debug.Print " Type - Name"

' Enumerate Fields collection of Employees table.
For Each fldLoop In _

dbsNorthwind.TableDefs!Employees.Fields
Debug.Print " " & FieldType(fldLoop.Type) & _

" - " & fldLoop.Name
Next fldLoop

dbsNorthwind.Close

End Sub

Function FieldType(intType As Integer) As String

Select Case intType
Case dbBoolean

FieldType = "dbBoolean"
Case dbByte

FieldType = "dbByte"
Case dbInteger

FieldType = "dbInteger"
Case dbLong

FieldType = "dbLong"
Case dbCurrency

FieldType = "dbCurrency"
Case dbSingle

FieldType = "dbSingle"
Case dbDouble

FieldType = "dbDouble"
Case dbDate

FieldType = "dbDate"
Case dbText

FieldType = "dbText"
Case dbLongBinary

FieldType = "dbLongBinary"
Case dbMemo

FieldType = "dbMemo"
Case dbGUID

FieldType = "dbGUID"
End Select

End Function
This example demonstrates the Type property by returning the name of the constant corresponding to
the value of the Type property of all the QueryDef objects in Northwind. The QueryDefType function
is required for this procedure to run.
Sub TypeX3()

Dim dbsNorthwind As Database
Dim qdfLoop As QueryDef

Set dbsNorthwind = OpenDatabase("Northwind.mdb")

Debug.Print "QueryDefs in Northwind Database:"
Debug.Print " Type - Name"

' Enumerate QueryDefs collection of Northwind database.
For Each qdfLoop In dbsNorthwind.QueryDefs

Debug.Print " " & _
QueryDefType(qdfLoop.Type) & " - " & qdfLoop.Name

Next qdfLoop

dbsNorthwind.Close

End Sub

Function QueryDefType(intType As Integer) As String

Select Case intType
Case dbQSelect

QueryDefType = "dbQSelect"
Case dbQAction

QueryDefType = "dbQAction"
Case dbQCrosstab

QueryDefType = "dbQCrosstab"
Case dbQDelete

QueryDefType = "dbQDelete"
Case dbQUpdate

QueryDefType = "dbQUpdate"
Case dbQAppend

QueryDefType = "dbQAppend"
Case dbQMakeTable

QueryDefType = "dbQMakeTable"
Case dbQDDL

QueryDefType = "dbQDDL"
Case dbQSQLPassThrough

QueryDefType = "dbQSQLPassThrough"
Case dbQSetOperation

QueryDefType = "dbQSetOperation"
Case dbQSPTBulk

QueryDefType = "dbQSPTBulk"
End Select

End Function

Unique Property Example

This example sets the Unique property of a new Index object to True, and appends the Index to the
Indexes collection of the Employees table. It then enumerates the Indexes collection of the TableDef
and the Properties collection of each Index. The new Index will only allow one record with a
particular combination of Country, LastName, and FirstName in the TableDef.
Sub UniqueX()

Dim dbsNorthwind As Database
Dim tdfEmployees As TableDef
Dim idxNew As Index
Dim idxLoop As Index
Dim prpLoop As Property

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
Set tdfEmployees = dbsNorthwind!Employees

With tdfEmployees
' Create and append new Index object to the Indexes
' collection of the Employees table.
Set idxNew = .CreateIndex("NewIndex")

With idxNew
.Fields.Append .CreateField("Country")
.Fields.Append .CreateField("LastName")
.Fields.Append .CreateField("FirstName")
.Unique = True

End With

.Indexes.Append idxNew

.Indexes.Refresh

Debug.Print .Indexes.Count & " Indexes in " & _
.Name & " TableDef"

' Enumerate Indexes collection of Employees table.
For Each idxLoop In .Indexes

Debug.Print " " & idxLoop.Name

' Enumerate Properties collection of each Index
' object.
For Each prpLoop In idxLoop.Properties

Debug.Print " " & prpLoop.Name & _
" = " & IIf(prpLoop = "", "[empty]", prpLoop)

Next prpLoop

Next idxLoop

' Delete new Index because this is a demonstration.
.Indexes.Delete idxNew.Name

End With

dbsNorthwind.Close

End Sub

Updatable Property Example

This example demonstrates the Updatable property for a Database, four types of Recordset objects,
a TableDef, and a QueryDef.
Sub UpdatableX()

Dim dbsNorthwind As Database
Dim rstEmployees As Recordset

Set dbsNorthwind = OpenDatabase("Northwind.mdb")

With dbsNorthwind
Debug.Print .Name
Debug.Print " Updatable = " & .Updatable

' Default is dbOpenTable.
Set rstEmployees = .OpenRecordset("Employees")
Debug.Print _

"Table-type recordset from Employees table"
Debug.Print " Updatable = " & _

rstEmployees.Updatable
rstEmployees.Close

Set rstEmployees = .OpenRecordset("Employees", _
dbOpenDynaset)

Debug.Print _
"Dynaset-type recordset from Employees table"

Debug.Print " Updatable = " & _
rstEmployees.Updatable

rstEmployees.Close

Set rstEmployees = .OpenRecordset("Employees", _
dbOpenSnapshot)

Debug.Print _
"Snapshot-type recordset from Employees table"

Debug.Print " Updatable = " & _
rstEmployees.Updatable

rstEmployees.Close

Set rstEmployees = .OpenRecordset("Employees", _
dbOpenForwardOnly)

Debug.Print _
"Forward-only-type recordset from Employees table"

Debug.Print " Updatable = " & _
rstEmployees.Updatable

rstEmployees.Close

Debug.Print "'" & .TableDefs(0).Name & "' TableDef"
Debug.Print " Updatable = " & _

.TableDefs(0).Updatable

Debug.Print "'" & .QueryDefs(0).Name & "' QueryDef"
Debug.Print " Updatable = " & _

.QueryDefs(0).Updatable

.Close

End With

End Sub

V1xNullBehavior Property Example

This example converts a Microsoft Jet version 1.1 database file to a Microsoft Jet version 3.0
database file. During conversion, the V1xNullBehavior property is created and added to the
Properties collection of the new database. The Properties collections of both database files are
enumerated to show the change. Finally, the V1xNullBehavior property is deleted. This assumes that
any applications will be modified to store Null values in empty Text and Memo fields rather than
empty strings.

Note Unless you can obtain a Microsoft Jet version 1.1 file called "Nwind11.mdb," this procedure
will not run.
Sub V1xNullBehaviorX()

Dim dbsNorthwind As Database
Dim prpLoop As Property

Set dbsNorthwind = OpenDatabase("Nwind11.mdb")

With dbsNorthwind
Debug.Print .Name & ", version " & .Version
' Enumerate Properties collection of Northwind
' database.
For Each prpLoop In .Properties

On Error Resume Next
If prpLoop <> "" Then Debug.Print " " & _

prpLoop.Name & " = " & prpLoop
On Error GoTo 0

Next prpLoop

.Close
End With

DBEngine.CompactDatabase "Nwind11.mdb", _
"Nwind30.mdb", , dbVersion30

Set dbsNorthwind = OpenDatabase("Nwind30.mdb")

With dbsNorthwind
Debug.Print .Name & ", version " & .Version

' Enumerate Properties collection of compacted
' database. The V1xNullBehavior property cannot be
' referred to explicitly, that is,
' dbsNorthwind.V1xNullBehavior, but it can be accessed
' in loops or by string reference, that is,
' dbsNorthwind.Properties("V1xNullBehavior").
For Each prpLoop In .Properties

On Error Resume Next
If prpLoop <> "" Then Debug.Print " " & _

prpLoop.Name & " = " & prpLoop
On Error GoTo 0

Next prpLoop

.Properties.Delete "V1xNullBehavior"

.Close
End With

End Sub

ValidateOnSet Property Example

This example uses the ValidateOnSet property to demonstrate how one might trap for errors during
data entry. The ValidateData function is required for this procedure to run.
Sub ValidateOnSetX()

Dim dbsNorthwind As Database
Dim fldDays As Field
Dim rstEmployees As Recordset

Set dbsNorthwind = OpenDatabase("Northwind.mdb")

' Create and append a new Field object to the Fields
' collection of the Employees table.
Set fldDays = _

dbsNorthwind.TableDefs!Employees.CreateField(_
"DaysOfVacation", dbInteger, 2)

fldDays.ValidationRule = "BETWEEN 1 AND 20"
fldDays.ValidationText = _

"Number must be between 1 and 20!"
dbsNorthwind.TableDefs!Employees.Fields.Append fldDays

Set rstEmployees = _
dbsNorthwind.OpenRecordset("Employees")

With rstEmployees

Do While True
' Add new record.
.AddNew

' Get user input for three fields. Verify that the
' data do not violate the validation rules for any
' of the fields.
If ValidateData(!FirstName, _

"Enter first name.") = False Then Exit Do
If ValidateData(!LastName, _

"Enter last name.") = False Then Exit Do
If ValidateData(!DaysOfVacation, _

"Enter days of vacation.") = False Then Exit Do

.Update

.Bookmark = .LastModified
Debug.Print !FirstName & " " & !LastName & _

" - " & "DaysOfVacation = " & !DaysOfVacation

' Delete new record because this is a demonstration.
.Delete
Exit Do

Loop

' Cancel AddNew method if any of the validation rules
' were broken.
If .EditMode <> dbEditNone Then .CancelUpdate
.Close

End With

' Delete new field because this is a demonstration.
dbsNorthwind.TableDefs!Employees.Fields.Delete _

fldDays.Name
dbsNorthwind.Close

End Sub

Function ValidateData(fldTemp As Field, _
strMessage As String) As Boolean

Dim strInput As String
Dim errLoop As Error

ValidateData = True
' ValidateOnSet is only read/write for Field objects in
' Recordset objects.
fldTemp.ValidateOnSet = True

Do While True
strInput = InputBox(strMessage)
If strInput = "" Then Exit Do
' Trap for errors when setting the Field value.
On Error GoTo Err_Data
If fldTemp.Type = dbInteger Then

fldTemp = Val(strInput)
Else

fldTemp = strInput
End If
On Error GoTo 0
If Not IsNull(fldTemp) Then Exit Do

Loop

If strInput = "" Then ValidateData = False

Exit Function

Err_Data:

If DBEngine.Errors.Count > 0 Then
' Enumerate the Errors collection. The description
' property of the last Error object will be set to
' the ValidationText property of the relevant
' field.
For Each errLoop In DBEngine.Errors

MsgBox "Error number: " & errLoop.Number & _
vbCr & errLoop.Description

Next errLoop
End If

Resume Next

End Function

ValidationRule and ValidationText Properties Example

This example creates a new Field object in the specified TableDef object and sets the
ValidationRule and ValidationText properties based on the passed data. It also shows how the
ValidationRule and ValidationText properties are used during actual data entry. The SetValidation
function is required for this procedure to run.
Sub ValidationRuleX()

Dim dbsNorthwind As Database
Dim fldDays As Field
Dim rstEmployees As Recordset
Dim strMessage As String
Dim strDays As String
Dim errLoop As Error

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
' Create a new field for the Employees TableDef object
' using the specified property settings.
Set fldDays = _

SetValidation(dbsNorthwind.TableDefs!Employees, _
"DaysOfVacation", dbInteger, 2, "BETWEEN 1 AND 20", _
"Number must be between 1 and 20!")

Set rstEmployees = _
dbsNorthwind.OpenRecordset("Employees")

With rstEmployees

' Enumerate Recordset. With each record, fill the new
' field with data supplied by the user.
Do While Not .EOF

.Edit
strMessage = "Enter days of vacation for " & _

!FirstName & " " & !LastName & vbCr & _
"[" & !DaysOfVacation.ValidationRule & "]"

Do While True
' Get user input.
strDays = InputBox(strMessage)
If strDays = "" Then

.CancelUpdate
Exit Do

End If
!DaysOfVacation = Val(strDays)

' Because ValidateOnSet defaults to False, the
' data in the buffer will be checked against the
' ValidationRule during Update.
On Error GoTo Err_Rule
.Update
On Error GoTo 0

' If the Update method was successful, print the
' results of the data change.
If .EditMode = dbEditNone Then

Debug.Print !FirstName & " " & !LastName & _
 " - " & "DaysOfVacation = " & _

 !DaysOfVacation
Exit Do

End If

Loop

If strDays = "" Then Exit Do
.MoveNext

Loop

.Close
End With

' Delete new field because this is a demonstration.
dbsNorthwind.TableDefs!Employees.Fields.Delete _

fldDays.Name
dbsNorthwind.Close

Exit Sub

Err_Rule:

If DBEngine.Errors.Count > 0 Then
' Enumerate the Errors collection.
For Each errLoop In DBEngine.Errors

MsgBox "Error number: " & _
errLoop.Number & vbCr & _
errLoop.Description

Next errLoop
End If

Resume Next

End Sub

Function SetValidation(tdfTemp As TableDef, _
strFieldName As String, intType As Integer, _
intLength As Integer, strRule As String, _
strText As String) As Field

' Create and append a new Field object to the Fields
' collection of the specified TableDef object.
Set SetValidation = tdfTemp.CreateField(strFieldName, _

intType, intLength)

SetValidation.ValidationRule = strRule
SetValidation.ValidationText = strText
tdfTemp.Fields.Append SetValidation

End Function

Value Property Example

This example demonstrates the Value property with Field and Property objects.
Sub ValueX()

Dim dbsNorthwind As Database
Dim rstEmployees As Recordset
Dim fldLoop As Field
Dim prpLoop As Property

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
Set rstEmployees = _

dbsNorthwind.OpenRecordset("Employees")

With rstEmployees
Debug.Print "Field values in rstEmployees"
' Enumerate the Fields collection of the Employees
' table.
For Each fldLoop In .Fields

Debug.Print " " & fldLoop.Name & " = ";
Select Case fldLoop.Type

Case dbLongBinary
Debug.Print "[LongBinary]"

Case dbMemo
Debug.Print "[Memo]"

Case Else
' Because Value is the default property of a
' Field object, the use of the actual keyword
' here is optional.
Debug.Print fldLoop.Value

End Select
Next fldLoop

Debug.Print "Property values in rstEmployees"
' Enumerate the Properties collection of the
' Recordset object.
For Each prpLoop In .Properties

On Error Resume Next
' Because Value is the default property of a
' Property object, the use of the actual keyword
' here is optional.
If prpLoop <> "" Then Debug.Print " " & _

prpLoop.Name & " = " & prpLoop.Value
On Error GoTo 0

Next prpLoop

.Close
End With

dbsNorthwind.Close

End Sub

AllPermissions, Permissions, and SystemDB Properties Example

This example uses the SystemDB, AllPermissions, and Permissions properties to show how users
can have different levels of permissions depending on the permissions of the group to which they
belong.
Sub AllPermissionsX()

' Ensure that the Microsoft Jet workgroup information
' file is available.
DBEngine.SystemDB = "system.mdw"

Dim dbsNorthwind As Database
Dim ctrLoop As Container

Set dbsNorthwind = OpenDatabase("Northwind.mdb")

' Enumerate Containers collection and display the current
' user and the permissions set for that user.
For Each ctrLoop In dbsNorthwind.Containers

With ctrLoop
Debug.Print "Container: " & .Name
Debug.Print "User: " & .UserName
Debug.Print " Permissions: " & .Permissions
Debug.Print " AllPermissions: " & _

.AllPermissions
End With

Next ctrLoop

dbsNorthwind.Close

End Sub

Attributes Property Example

This example displays the Attributes property for Field, Relation, and TableDef objects in the
Northwind database.
Sub AttributesX()

Dim dbsNorthwind As Database
Dim fldLoop As Field
Dim relLoop As Relation
Dim tdfloop As TableDef

Set dbsNorthwind = OpenDatabase("Northwind.mdb")

With dbsNorthwind

' Display the attributes of a TableDef object's
' fields.
Debug.Print "Attributes of fields in " & _

.TableDefs(0).Name & " table:"
For Each fldLoop In .TableDefs(0).Fields

Debug.Print " " & fldLoop.Name & " = " & _
fldLoop.Attributes

Next fldLoop

' Display the attributes of the Northwind database's
' relations.
Debug.Print "Attributes of relations in " & _

.Name & ":"
For Each relLoop In .Relations

Debug.Print " " & relLoop.Name & " = " & _
relLoop.Attributes

Next relLoop

' Display the attributes of the Northwind database's
' tables.
Debug.Print "Attributes of tables in " & .Name & ":"
For Each tdfloop In .TableDefs

Debug.Print " " & tdfloop.Name & " = " & _
tdfloop.Attributes

Next tdfloop

.Close
End With

End Sub

BatchCollisionCount Property and Update Method Example

This example uses the BatchCollisionCount property and the Update method to demonstrate batch
updating where any collisions are resolved by forcing the batch update.
Sub BatchX()

Dim wrkMain As Workspace
Dim conMain As Connection
Dim rstTemp As Recordset
Dim intLoop As Integer
Dim strPrompt As String

Set wrkMain = CreateWorkspace("ODBCWorkspace", _
"admin", "", dbUseODBC)

' This DefaultCursorDriver setting is required for
' batch updating.
wrkMain.DefaultCursorDriver = dbUseClientBatchCursor

Set conMain = wrkMain.OpenConnection("Publishers", _
dbDriverNoPrompt, False, _
"ODBC;DATABASE=pubs;UID=sa;PWD=;DSN=Publishers")

' The following locking argument is required for
' batch updating.
Set rstTemp = conMain.OpenRecordset(_

"SELECT * FROM roysched", dbOpenDynaset, 0, _
dbOptimisticBatch)

With rstTemp
' Modify data in local recordset.
Do While Not .EOF

.Edit
If !royalty <= 20 Then

!royalty = !royalty - 4
Else

!royalty = !royalty + 2
End If
.Update
.MoveNext

Loop

' Attempt a batch update.
.Update dbUpdateBatch

' If there are collisions, give the user the option
' of forcing the changes or resolving them
' individually.
If .BatchCollisionCount > 0 Then

strPrompt = "There are collisions. " & vbCr & _
"Do you want the program to force " & _
vbCr & "an update using the local data?"

If MsgBox(strPrompt, vbYesNo) = vbYes Then _
.Update dbUpdateBatch, True

End If

.Close
End With

conMain.Close
wrkMain.Close

End Sub

BatchSize and UpdateOptions Properties Example

This example uses the BatchSize and UpdateOptions properties to control aspects of any batch
updating for the specified Recordset object.
Sub BatchSizeX()

Dim wrkMain As Workspace
Dim conMain As Connection
Dim rstTemp As Recordset

Set wrkMain = CreateWorkspace("ODBCWorkspace", _
"admin", "", dbUseODBC)

' This DefaultCursorDriver setting is required for
' batch updating.
wrkMain.DefaultCursorDriver = dbUseClientBatchCursor

Set conMain = wrkMain.OpenConnection("Publishers", _
dbDriverNoPrompt, False, _
"ODBC;DATABASE=pubs;UID=sa;PWD=;DSN=Publishers")

' The following locking argument is required for
' batch updating.
Set rstTemp = conMain.OpenRecordset(_

"SELECT * FROM roysched", dbOpenDynaset, 0, _
dbOptimisticBatch)

With rstTemp
' Increase the number of statements sent to the server
' during a single batch update, thereby reducing the
' number of times an update would have to access the
' server.
.BatchSize = 25

' Change the UpdateOptions property so that the WHERE
' clause of any batched statements going to the server
' will include any updated columns in addition to the
' key column(s). Also, any modifications to records
' will be made by deleting the original record
' and adding a modified version rather than just
' modifying the original record.
.UpdateOptions = dbCriteriaModValues + _

dbCriteriaDeleteInsert

' Engage in batch updating using the new settings
' above.
' ...

.Close
End With

conMain.Close
wrkMain.Close

End Sub

CollatingOrder Property Example

This example displays the CollatingOrder property for the Northwind database and for individual
fields in a table.
Sub CollatingOrderX()

Dim dbsNorthwind As Database
Dim fldLoop As Field

Set dbsNorthwind = OpenDatabase("Northwind.mdb")

With dbsNorthwind
' Show collating order of Northwind database.
Debug.Print "Collating order of " & .Name & " = " & _

.CollatingOrder

' Show collating order of a TableDef object's fields.
Debug.Print "Collating order of fields in " & _

.TableDefs(0).Name & " table:"
For Each fldLoop In .TableDefs(0).Fields

Debug.Print " " & fldLoop.Name & " = " & _
fldLoop.CollatingOrder

Next fldLoop

.Close
End With

End Sub

ConflictTable Property Example

This example uses the ConflictTable property to report the table names that had conflicts during
synchronization.
Sub ConflictTableX()

Dim dbsNorthwind As Database
Dim tdfTest As TableDef

Set dbsNorthwind = OpenDatabase("Northwind.mdb")

' Enumerate TableDefs collection and check ConflictTable
' property of each.
For Each tdfTest In dbsNorthwind.TableDefs

If tdfTest.ConflictTable <> "" Then _
Debug.Print tdfTest.Name & " had a conflict."

Next tdfTest

dbsNorthwind.Close

End Sub
This example opens a Recordset from the conflict table and one from the table that caused the
conflict. It then processes the records in these tables, using the RequiredDate field to copy
information from one table to the other depending on which record was more recently updated.
Sub ConflictTableX2(dbsResolve As Database)

Dim tdfTest As TableDef
Dim rstSource As Recordset
Dim rstConflict As Recordset
Dim fldLoop As Field

Set tdfTest = dbsResolve.TableDefs("Orders")

If tdfTest.ConflictTable <> "" Then

Set rstSource = dbsResolve.OpenRecordset(_
tdfTest.Name, dbOpenTable)

Set rstConflict = dbsResolve.OpenRecordset(_
tdfTest.ConflictTable, dbOpenTable)

rstSource.Index = "[d_Guid]"
rstConflict.MoveFirst

Do Until rstConflict.EOF
rstSource.Seek "=", rstConflict![s_Guid]
If Not rstSource.NoMatch Then

If rstSource!RequiredDate < _
rstConflict!RequiredDate Then

On Error Resume Next
For Each fldLoop in rstConflict.Fields

fldLoop = rstSource(fldLoop.Name)
Next fldLoop

On Error Goto 0
End If

End If

rstConflict.Delete
rstConflict.MoveNext

Loop

rstConflict.Close
rstSource.Close

End If

End Sub

Connect and SourceTableName Properties Example

This example uses the Connect and SourceTableName properties to link various external tables to a
Microsoft Jet database. The ConnectOutput procedure is required for this procedure to run.
Sub ConnectX()

Dim dbsTemp As Database
Dim strMenu As String
Dim strInput As String

' Open a Microsoft Jet database to which you will link
' a table.
Set dbsTemp = OpenDatabase("DB1.mdb")

' Build menu text.
strMenu = "Enter number for data source:" & vbCr
strMenu = strMenu & _

" 1. Microsoft Jet database" & vbCr
strMenu = strMenu & _

" 2. Microsoft FoxPro 3.0 table" & vbCr
strMenu = strMenu & _

" 3. dBASE table" & vbCr
strMenu = strMenu & _

" 4. Paradox table" & vbCr
strMenu = strMenu & _

" M. (see choices 5-9)"

' Get user's choice.
strInput = InputBox(strMenu)

If UCase(strInput) = "M" Then

' Build menu text.
strMenu = "Enter number for data source:" & vbCr
strMenu = strMenu & _

" 5. Microsoft Excel spreadsheet" & vbCr
strMenu = strMenu & _

" 6. Lotus spreadsheet" & vbCr
strMenu = strMenu & _

" 7. Comma-delimited text (CSV)" & vbCr
strMenu = strMenu & _

" 8. HTML table" & vbCr
strMenu = strMenu & _

" 9. Microsoft Exchange folder"

' Get user's choice.
strInput = InputBox(strMenu)

End If

' Call the ConnectOutput procedure. The third argument
' will be used as the Connect string, and the fourth
' argument will be used as the SourceTableName.
Select Case Val(strInput)

Case 1
ConnectOutput dbsTemp, _

"JetTable", _
";DATABASE=C:\My Documents\Northwind.mdb", _
"Employees"

Case 2
ConnectOutput dbsTemp, _

"FoxProTable", _
"FoxPro 3.0;DATABASE=C:\FoxPro30\Samples", _
"Q1Sales"

Case 3
ConnectOutput dbsTemp, _

"dBASETable", _
"dBase IV;DATABASE=C:\dBASE\Samples", _
"Accounts"

Case 4
ConnectOutput dbsTemp, _

"ParadoxTable", _
"Paradox 3.X;DATABASE=C:\Paradox\Samples", _
"Accounts"

Case 5
ConnectOutput dbsTemp, _

"ExcelTable", _
"Excel 5.0;" & _

"DATABASE=C:\Excel\Samples\Q1Sales.xls", _
"January Sales"

Case 6
ConnectOutput dbsTemp, _

"LotusTable", _
"Lotus WK3;" & _

"DATABASE=C:\Lotus\Samples\Sales.xls", _
"THIRDQTR"

Case 7
ConnectOutput dbsTemp, _

"CSVTable", _
"Text;DATABASE=C:\Samples", _
"Sample.txt"

Case 8
ConnectOutput dbsTemp, _

"HTMLTable", _
"HTML Import;DATABASE=http://" & _

"www.server1.com/samples/page1.html", _
"Q1SalesData"

Case 9
ConnectOutput dbsTemp, _

"ExchangeTable", _
"Exchange 4.0;MAPILEVEL=" & _

"Mailbox - Michelle Wortman (Exchange)" & _
"|People\Important;", _

"Jerry Wheeler"
End Select

dbsTemp.Close

End Sub

Sub ConnectOutput(dbsTemp As Database, _
strTable As String, strConnect As String, _
strSourceTable As String)

Dim tdfLinked As TableDef
Dim rstLinked As Recordset
Dim intTemp As Integer

' Create a new TableDef, set its Connect and
' SourceTableName properties based on the passed
' arguments, and append it to the TableDefs collection.
Set tdfLinked = dbsTemp.CreateTableDef(strTable)

tdfLinked.Connect = strConnect
tdfLinked.SourceTableName = strSourceTable
dbsTemp.TableDefs.Append tdfLinked

Set rstLinked = dbsTemp.OpenRecordset(strTable)

Debug.Print "Data from linked table:"

' Display the first three records of the linked table.
intTemp = 1
With rstLinked

Do While Not .EOF And intTemp <= 3
Debug.Print , .Fields(0), .Fields(1)
intTemp = intTemp + 1
.MoveNext

Loop
If Not .EOF Then Debug.Print , "[additional records]"
.Close

End With

' Delete the linked table because this is a demonstration.
dbsTemp.TableDefs.Delete strTable

End Sub

Container Property Example

This example displays the Container property for a variety of Document objects.
Sub ContainerPropertyX()

Dim dbsNorthwind As Database
Dim ctrLoop As Container

Set dbsNorthwind = OpenDatabase("Northwind.mdb")

' Display the container name for the first Document
' object in each Container object's Documents collection.
For Each ctrLoop In dbsNorthwind.Containers

Debug.Print "Document: " & ctrLoop.Documents(0).Name
Debug.Print " Container = " & _

ctrLoop.Documents(0).Container
Next ctrLoop

dbsNorthwind.Close

End Sub

Database Property Example

This example uses the Database property to show how code that used to access ODBC data through
the Microsoft Jet database engine can be converted to use ODBCDirect Connection objects.

The OldDatabaseCode procedure uses a Microsoft Jet-connected data source to access an ODBC
database.
Sub OldDatabaseCode()

Dim wrkMain As Workspace
Dim dbsPubs As Database
Dim prpLoop As Property

' Create Microsoft Jet Workspace object.
Set wrkMain = CreateWorkspace("", "admin", "", dbUseJet)

' Open a Database object based on information in
' the connect string.
Set dbsPubs = wrkMain.OpenDatabase("Publishers", _

dbDriverNoPrompt, False, _
"ODBC;DATABASE=pubs;UID=sa;PWD=;DSN=Publishers")

' Enumerate the Properties collection of the Database
' object.
With dbsPubs

Debug.Print "Database properties for " & _
.Name & ":"

On Error Resume Next
For Each prpLoop In .Properties

If prpLoop.Name = "Connection" Then
' Property actually returns a Connection object.
Debug.Print " Connection[.Name] = " & _

.Connection.Name
Else

Debug.Print " " & prpLoop.Name & " = " & _
prpLoop

End If
Next prpLoop
On Error GoTo 0

End With

dbsPubs.Close
wrkMain.Close

End Sub
The NewDatabaseCode example opens a Connection object in an ODBCDirect workspace. It then
assigns the Database property of the Connection object to an object variable with the same name as
the data source in the old procedure. None of the subsequent code has to be changed as long as it
doesn't use any features specific to Microsoft Jet workspaces.
Sub NewDatabaseCode()

Dim wrkMain As Workspace
Dim conPubs As Connection

Dim dbsPubs As Database
Dim prpLoop As Property

' Create ODBCDirect Workspace object instead of Microsoft
' Jet Workspace object.
Set wrkMain = CreateWorkspace("", "admin", "", dbUseODBC)

' Open Connection object based on information in
' the connect string.
Set conPubs = wrkMain.OpenConnection("Publishers", _

dbDriverNoPrompt, False, _
"ODBC;DATABASE=pubs;UID=sa;PWD=;DSN=Publishers")

' Assign the Database property to the same object
' variable as in the old code.
Set dbsPubs = conPubs.Database

' Enumerate the Properties collection of the Database
' object. From this point on, the code is the same as the
' old example.
With dbsPubs

Debug.Print "Database properties for " & _
.Name & ":"

On Error Resume Next
For Each prpLoop In .Properties

If prpLoop.Name = "Connection" Then
' Property actually returns a Connection object.
Debug.Print " Connection[.Name] = " & _

.Connection.Name
Else

Debug.Print " " & prpLoop.Name & " = " & _
prpLoop

End If
Next prpLoop
On Error GoTo 0

End With

dbsPubs.Close
wrkMain.Close

End Sub

DefaultType Property Example

This example uses the DefaultType property to predetermine what type of Workspace object will be
created when you call the CreateWorkspace method. The TypeOutput function is required for this
procedure to run.
Sub DefaultTypeX()

Dim wrkODBC As Workspace
Dim wrkJet As Workspace
Dim prpLoop As Property

' Set DefaultType property and create Workspace object
' without specifying a type.
DBEngine.DefaultType = dbUseODBC
Set wrkODBC = CreateWorkspace("ODBCWorkspace", _

"admin", "")

Debug.Print "DBEngine.DefaultType = " & _
TypeOutput(DBEngine.DefaultType)

With wrkODBC
' Enumerate Properties collection of Workspace object.
Debug.Print "Properties of " & .Name
On Error Resume Next
For Each prpLoop In .Properties

Debug.Print " " & prpLoop.Name & " = " & prpLoop
If prpLoop.Name = "Type" Then Debug.Print _

" (" & TypeOutput(prpLoop.Value) & ")"
Next prpLoop
On Error GoTo 0

End With

' Set DefaultType property and create Workspace object
' without specifying a type.
DBEngine.DefaultType = dbUseJet
Set wrkJet = CreateWorkspace("JetWorkspace", "admin", "")

Debug.Print "DBEngine.DefaultType = " & _
TypeOutput(DBEngine.DefaultType)

With wrkJet
' Enumerate Properties collection of Workspace object.
Debug.Print "Properties of " & .Name
On Error Resume Next
For Each prpLoop In .Properties

Debug.Print " " & prpLoop.Name & " = " & prpLoop
If prpLoop.Name = "Type" Then Debug.Print _

" (" & TypeOutput(prpLoop.Value) & ")"
Next prpLoop
On Error GoTo 0

End With

wrkODBC.Close
wrkJet.Close

End Sub

Function TypeOutput(intTemp As Integer) As String

If intTemp = dbUseJet Then
TypeOutput = "dbUseJet"

Else
TypeOutput = "dbUseODBC"

End If

End Function

DefaultUser, DefaultPassword Properties Example

This example sets the DefaultUser and DefaultPassword properties which will determine the
settings for the default Workspace object.
Sub DefaultUserX()

' Set the DefaultUser and DefaultPassword properties for
' the DBEngine object.
DBEngine.DefaultUser = "NewUser"
DBEngine.DefaultPassword = ""

Debug.Print _
"Setting DBEngine.DefaultUser to 'NewUser'..."

Debug.Print _
"Setting DBEngine.DefaultPassword to " & _

"[zero-length string]..."

Dim wrkJet As Workspace
Dim wrkLoop As Workspace
Dim prpLoop As Property

Set wrkJet = CreateWorkspace("JetWorkspace", "admin", _
"", dbUseJet)

' Enumerate Workspaces collection.
On Error Resume Next
For Each wrkLoop In Workspaces

Debug.Print "Workspace: " & wrkLoop.Name
' Enumerate Properties collection of each Workspace
' object.
For Each prpLoop In wrkLoop.Properties

Debug.Print " " & prpLoop.Name & " = " & prpLoop
Next prpLoop

Next wrkLoop
On Error GoTo 0

wrkJet.Close

End Sub

DesignMasterID Property Example

This example sets the DesignMasterID property to the ReplicaID property setting of another
database, making that database the Design Master in the replica set. The old and new Design
Masters are synchronized to update the design change. For this code to work, you must create a
Design Master and replica, include their names and paths as appropriate, and run this code from a
database other than the old or new Design Master.
Sub SetNewDesignMaster(strOldDM as String, _

strNewDM as String)

Dim dbsOld As Database
Dim dbsNew As Database

' Open the current Design Master in exclusive mode.
Set dbsOld = OpenDatabase(strOldDM, True)

' Open the database that will become the new
' Design Master.
Set dbsNew = OpenDatabase(strNewDM)

' Make the new database the Design Master.
dbsOld.DesignMasterID = dbsNew.ReplicaID

' Synchronize the old Design Master with the new
' Design Master, and allow two-way exchanges.
dbsOld.Synchronize strNewDM, dbRepImpExpChanges
dbsOld.Close
dbsNew.Close

End Sub

Direction Property Example

This example uses the Direction property to configure the parameters of a query to an ODBC data
source.
Sub DirectionX()

Dim wrkMain As Workspace
Dim conMain As Connection
Dim qdfTemp As QueryDef
Dim rstTemp As Recordset
Dim strSQL As String
Dim intLoop As Integer

' Create ODBC workspace and open a connection to a
' Microsoft SQL Server database.
Set wrkMain = CreateWorkspace("ODBCWorkspace", _

"admin", "", dbUseODBC)
Set conMain = wrkMain.OpenConnection("Publishers", _

dbDriverNoPrompt, False, _
"ODBC;DATABASE=pubs;UID=sa;PWD=;DSN=Publishers")

' Set SQL string to call the stored procedure
' getempsperjob.
strSQL = "{ call getempsperjob (?, ?) }"

Set qdfTemp = conMain.CreateQueryDef("", strSQL)

With qdfTemp
' Indicate that the two query parameters will only
' pass information to the stored procedure.
.Parameters(0).Direction = dbParamInput
.Parameters(1).Direction = dbParamInput

' Assign initial parameter values.
.Parameters(0) = "0877"
.Parameters(1) = 0

Set rstTemp = .OpenRecordset()

With rstTemp
' Loop through all valid values for the second
' parameter. For each value, requery the recordset
' to obtain the correct results and then print out
' the contents of the recordset.
For intLoop = 1 To 14

qdfTemp.Parameters(1) = intLoop
.Requery
Debug.Print "Publisher = " & _

qdfTemp.Parameters(0) & _
", job = " & intLoop

Do While Not .EOF
Debug.Print , .Fields(0), .Fields(1)
.MoveNext

Loop
Next intLoop
.Close

End With

End With

conMain.Close
wrkMain.Close

End Sub

Error Object, Errors Collection, and Description, Number, Source, HelpFile, and HelpContext
Properties Example

This example forces an error, traps it, and displays the Description, Number, Source, HelpContext,
and HelpFile properties of the resulting Error object.
Sub DescriptionX()

Dim dbsTest As Database

On Error GoTo ErrorHandler

' Intentionally trigger an error.
Set dbsTest = OpenDatabase("NoDatabase")

Exit Sub

ErrorHandler:
Dim strError As String
Dim errLoop As Error

' Enumerate Errors collection and display properties of
' each Error object.
For Each errLoop In Errors

With errLoop
strError = _

"Error #" & .Number & vbCr
strError = strError & _

" " & .Description & vbCr
strError = strError & _

" (Source: " & .Source & ")" & vbCr
strError = strError & _

"Press F1 to see topic " & .HelpContext & vbCr
strError = strError & _

" in the file " & .HelpFile & "."
End With
MsgBox strError

Next

Resume Next

End Sub

Inherit Property Example

This example sets the Tables container's Inherit property to True so that any subsequently created
Document objects in the Tables container will have the same security settings as the Tables
container.
Sub InheritX()

Dim dbsNorthwind As Database
Dim conTables As Container

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
Set conTables = dbsNorthwind.Containers("Tables")

' By setting the Inherit property of the Tables container
' to true and setting its permissions, any new Document
' object in this container will inherit the same
' permissions setting.
conTables.Inherit = True
conTables.Permissions = dbSecWriteSec

dbsNorthwind.Close

End Sub

Inherited Property Example

This example use the Inherited property to determine if a user-defined Property object was created
for a Recordset object or for some underlying object.
Sub InheritedX()

Dim dbsNorthwind As Database
Dim tdfTest As TableDef
Dim rstTest As Recordset
Dim prpNew As Property
Dim prpLoop As Property

' Create a new property for a saved TableDef object, then
' open a recordset from that TableDef object.
Set dbsNorthwind = OpenDatabase("Northwind.mdb")
Set tdfTest = dbsNorthwind.TableDefs(0)
Set prpNew = tdfTest.CreateProperty("NewProperty", _

dbBoolean, True)
tdfTest.Properties.Append prpNew
Set rstTest = tdfTest.OpenRecordset(dbOpenForwardOnly)

' Show Name and Inherited property of the new Property
' object in the TableDef.
Debug.Print "NewProperty of " & tdfTest.Name & _

" TableDef:"
Debug.Print " Inherited = " & _

tdfTest.Properties("NewProperty").Inherited

' Show Name and Inherited property of the new Property
' object in the Recordset.
Debug.Print "NewProperty of " & rstTest.Name & _

" Recordset:"
Debug.Print " Inherited = " & _

rstTest.Properties("NewProperty").Inherited

' Delete new TableDef because this is a demonstration.
tdfTest.Properties.Delete prpNew.Name
dbsNorthwind.Close

End Sub

IniPath Property Example

This example sets the path in the IniPath property to an application's key in the Windows Registry.
Sub IniPathX()

' Change the IniPath property to point to a different
' section of the Windows Registry for settings
' information.
Debug.Print "Original IniPath setting = " & _

IIf(DBEngine.IniPath = "", "[Empty]", _
DBEngine.IniPath)

DBEngine.IniPath = _
"HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\" & _
"Jet\3.5\ISAM Formats\FoxPro 3.0"

Debug.Print "New IniPath setting = " & _
IIf(DBEngine.IniPath = "", "[Empty]", _
DBEngine.IniPath)

End Sub

IsolateODBCTrans Property Example

This example opens three ODBCDirect workspaces and sets their IsolateODBCTrans properties to
True so that multiple transactions to the same data source will be isolated from each other.
Sub IsolateODBCTransX()

DBEngine.DefaultType = dbUseJet

Dim wrkJet1 As Workspace
Dim wrkJet2 As Workspace
Dim wrkJet3 As Workspace

' Open three ODBCDirect workspaces to separate
' transactions involving the same ODBC data source.
Set wrkJet1 = CreateWorkspace("", "admin", "")
wrkJet1.IsolateODBCTrans = True

Set wrkJet2 = CreateWorkspace("", "admin", "")
wrkJet2.IsolateODBCTrans = True

Set wrkJet3 = CreateWorkspace("", "admin", "")
wrkJet3.IsolateODBCTrans = True

wrkJet1.Close
wrkJet2.Close
wrkJet3.Close

End Sub

KeepLocal Property Example

The following example appends the KeepLocal property to the properties collection of a document
object for the Utilities module in the Northwind database. You set this property on an object (such as a
table) before a database is made replicable. When the database is converted to a Design Master, the
object you specified to remain local will not be dispersed to other members of the replica set. Adjust
the path to Northwind.mdb as appropriate to its location on your computer.
Sub KeepLocalNWObjectX()

Dim dbsNorthwind As Database
Dim docTemp As Document
Dim prpTemp As Property

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
Set docTemp = dbsNorthwind.Containers("Modules"). _

Documents("Utility Functions")
Set prpTemp = doc.CreateProperty("KeepLocal", _

dbText, "T")
docTemp.Properties.Append prpTemp
dbsNorthwind.Close

End Sub
The following code sets the KeepLocal property on the specified TableDef object to "T". If the
KeepLocal property doesn't exist, it is created and appended to the table's Properties collection, and
given a value of "T".

Sub SetKeepLocal(tdfTemp As TableDef)

On Error GoTo ErrHandler

tdfTemp.Properties("KeepLocal") = "T"

On Error GoTo 0

Exit Sub

ErrHandler:

Dim prpNew As Property

If Err.Number = 3270 Then
Set prpNew = tdfTemp.CreateProperty("KeepLocal", _

dbText, "T")
tdfTemp.Properties.Append prpNew

Else
MsgBox "Error " & Err & ": " & Error

End If

End Sub

LoginTimeout Property Example

This example sets the LoginTimeout property of the DBEngine object to 120 seconds. It then opens
three ODBCDirect workspaces and modifies their LoginTimeout properties from the default inherited
from the DBEngine object.
Sub LoginTimeoutX()

' Change the default LoginTimeout value.
DBEngine.LoginTimeout = 120

Dim wrkODBC1 As Workspace
Dim wrkODBC2 As Workspace
Dim wrkODBC3 As Workspace

Set wrkODBC1 = CreateWorkspace("", "admin", "", _
dbUseODBC)

Set wrkODBC2 = CreateWorkspace("", "admin", "", _
dbUseODBC)

Set wrkODBC3 = CreateWorkspace("", "admin", "", _
dbUseODBC)

' Change the LoginTimeout of the individual ODBCDirect
' workspaces for 60 seconds, the default time (120
' seconds), and no timeout.
wrkODBC1.LoginTimeout = 60
wrkODBC2.LoginTimeout = -1
wrkODBC2.LoginTimeout = 0

wrkODBC1.Close
wrkODBC2.Close
wrkODBC3.Close

End Sub

LogMessages and ReturnsRecords Properties Example

This example uses the LogMessages and ReturnsRecords properties to create a pass-through
query that will return data and any messages generated by the remote server.
Sub LogMessagesX()

Dim wrkJet As Workspace
Dim dbsCurrent As Database
Dim qdfTemp As QueryDef
Dim prpNew As Property
Dim rstTemp As Recordset

' Create Microsoft Jet Workspace object.
Set wrkJet = CreateWorkspace("", "admin", "", dbUseJet)

Set dbsCurrent = wrkJet.OpenDatabase("DB1.mdb")

' Create a QueryDef that will log any messages from the
' server in temporary tables.
Set qdfTemp = dbsCurrent.CreateQueryDef("NewQueryDef")
qdfTemp.Connect = _

"ODBC;DATABASE=pubs;UID=sa;PWD=;DSN=Publishers"
qdfTemp.SQL = "SELECT * FROM stores"
qdfTemp.ReturnsRecords = True
Set prpNew = qdfTemp.CreateProperty("LogMessages", _

dbBoolean, True)
qdfTemp.Properties.Append prpNew

' Execute query and display results.
Set rstTemp = qdfTemp.OpenRecordset()

Debug.Print "Contents of recordset:"
With rstTemp

Do While Not .EOF
Debug.Print , .Fields(0), .Fields(1)
.MoveNext

Loop
.Close

End With

' Delete new QueryDef because this is a demonstration.
dbsCurrent.QueryDefs.Delete qdfTemp.Name
dbsCurrent.Close
wrkJet.Close

End Sub

MaxRecords Property Example

This example uses the MaxRecords property to set a limit on how many records are returned by a
query on an ODBC data source.
Sub MaxRecordsX()

Dim dbsCurrent As Database
Dim qdfPassThrough As QueryDef
Dim qdfLocal As QueryDef
Dim rstTemp As Recordset

' Open a database from which QueryDef objects can be
' created.
Set dbsCurrent = OpenDatabase("DB1.mdb")

' Create a pass-through query to retrieve data from
' a Microsoft SQL Server database.
Set qdfPassThrough = _

dbsCurrent.CreateQueryDef("")

' Set the properties of the new query, limiting the
' number of returnable records to 20.
qdfPassThrough.Connect = _

"ODBC;DATABASE=pubs;UID=sa;PWD=;DSN=Publishers"
qdfPassThrough.SQL = "SELECT * FROM titles"
qdfPassThrough.ReturnsRecords = True
qdfPassThrough.MaxRecords = 20

Set rstTemp = qdfPassThrough.OpenRecordset()

' Display results of query.
Debug.Print "Query results:"
With rstTemp

Do While Not .EOF
Debug.Print , .Fields(0), .Fields(1)
.MoveNext

Loop
.Close

End With

dbsCurrent.Close

End Sub

Name Property Example

This example uses the Name property to give a name to a newly created object, to show what objects
are in a given collection, and to delete an object from a collection.
Sub NameX()

Dim dbsNorthwind As Database
Dim qdfNew As QueryDef
Dim qdfLoop As QueryDef

Set dbsNorthwind = OpenDatabase("Northwind.mdb")

With dbsNorthwind
' Create a new permanent QueryDef object and append it
' to the QueryDefs collection.
Set qdfNew = .CreateQueryDef()
qdfNew.Name = "NewQueryDef"
qdfNew.SQL = "SELECT * FROM Employees"
.QueryDefs.Append qdfNew

' Enumerate the QueryDefs collection to display the
' names of the QueryDef objects.
Debug.Print "Names of queries in " & .Name

For Each qdfLoop In .QueryDefs
Debug.Print " " & qdfLoop.Name

Next qdfLoop

' Delete new QueryDef object because this is a
' demonstration.
.QueryDefs.Delete qdfNew.Name

.Close
End With

End Sub

ODBCTimeout and QueryTimeout Properties Example

This example uses the ODBCTimeout and QueryTimeout properties to show how the
QueryTimeout setting on a Database object sets the default ODBCTimeout setting on any
QueryDef objects created from the Database object.
Sub ODBCTimeoutX()

Dim dbsCurrent As Database
Dim qdfStores As QueryDef
Dim rstStores As Recordset

Set dbsCurrent = OpenDatabase("Northwind.mdb")

' Change the default QueryTimeout of the Northwind
' database.
Debug.Print "Default QueryTimeout of Database: " & _

dbsCurrent.QueryTimeout
dbsCurrent.QueryTimeout = 30
Debug.Print "New QueryTimeout of Database: " & _

dbsCurrent.QueryTimeout

' Create a new QueryDef object.
Set qdfStores = dbsCurrent.CreateQueryDef("Stores", _

"SELECT * FROM stores")
qdfStores.Connect = _

"ODBC;DATABASE=pubs;UID=sa;PWD=;DSN=Publishers"

' Change the ODBCTimeout setting of the new QueryDef
' object from its default setting.
Debug.Print "Default ODBCTimeout of QueryDef: " & _

qdfStores.ODBCTimeout
qdfStores.ODBCTimeout = 0
Debug.Print "New ODBCTimeout of QueryDef: " & _

qdfStores.ODBCTimeout

' Execute the query and display the results.
Set rstStores = qdfStores.OpenRecordset()

Debug.Print "Contents of recordset:"
With rstStores

Do While Not .EOF
Debug.Print , .Fields(0), .Fields(1)
.MoveNext

Loop
.Close

End With

' Delete new QueryDef because this is a demonstration.
dbsCurrent.QueryDefs.Delete qdfStores.Name
dbsCurrent.Close

End Sub

Owner and SystemDB Properties Example

This example uses the Owner and SystemDB properties to show the owners of a variety of
Document objects.
Sub OwnerX()

' Ensure that the Microsoft Jet workgroup file is
' available.
DBEngine.SystemDB = "system.mdw"

Dim dbsNorthwind As Database
Dim ctrLoop As Container

Set dbsNorthwind = OpenDatabase("Northwind.mdb")

With dbsNorthwind
Debug.Print "Document owners:"
' Enumerate Containers collection and show the owner
' of the first Document in each container's Documents
' collection.
For Each ctrLoop In .Containers

With ctrLoop
Debug.Print " [" & .Documents(0).Name & _

"] in [" & .Name & _
"] container owned by [" & _
.Documents(0).Owner & "]"

End With
Next ctrLoop

.Close
End With

End Sub

PartialReplica Property Example

The following code example uses the PartialReplica property to replicate all records representing
orders from customers in California:
Sub PartialReplicaX()

' Assumptions: dbsTemp is the partial replica and
' appropriate relationships already exist between
' the tables.

Dim tdfOrders As TableDef
Dim relCustOrd As Relation
Dim dbsTemp As Database
Dim relLoop As Relation

Set dbsTemp = OpenDatabase("Northwind.mdb")
Set tdfOrders = dbsTemp.TableDefs("Orders")

' Find the "Customers to Orders" Relation object.
For Each relLoop In dbsTemp.Relations

If relLoop.Table = "Customers" And _
relLoop.ForeignTable = "Orders" Then

' Set the Relation object's PartialReplica
' property to True.
relLoop.PartialReplica = True
Exit For

End If
Next relLoop

End Sub
Note If you have set a replica filter and a replica relation on the same table, the two act in
combination as a logical OR operation, not a logical AND operation. For instance, in the preceding
example, the records exchanged during synchronization are all orders greater than $1000 OR all
orders from the California region, not all orders from the California region that are over $1000.

Prepare Property Example

This example uses the Prepare property to specify that a query should be executed directly rather
than first creating a temporary stored procedure on the server.
Sub PrepareX()

Dim wrkODBC As Workspace
Dim conPubs As Connection
Dim qdfTemp As QueryDef
Dim rstTemp As Recordset

' Create ODBCDirect Workspace object and open Connection
' object.
Set wrkODBC = CreateWorkspace("", _

"admin", "", dbUseODBC)
Set conPubs = wrkODBC.OpenConnection("Publishers", , , _

"ODBC;DATABASE=pubs;UID=sa;PWD=;DSN=Publishers")

Set qdfTemp = conPubs.CreateQueryDef("")

With qdfTemp
' Because you will only run this query once, specify
' the ODBC SQLExecDirect API function. If you do
' not set this property before you set the SQL
' property, the ODBC SQLPrepare API function will
' be called anyway which will nullify any
' performance gain.
.Prepare = dbQUnprepare
.SQL = "UPDATE roysched " & _

"SET royalty = royalty * 2 " & _
"WHERE title_id LIKE 'BU____' OR " & _
"title_id LIKE 'PC____'"

.Execute
End With

Debug.Print "Query results:"

' Open recordset containing modified records.
Set rstTemp = conPubs.OpenRecordset(_

"SELECT * FROM roysched " & _
"WHERE title_id LIKE 'BU____' OR " & _
"title_id LIKE 'PC____'")

' Enumerate recordset.
With rstTemp

Do While Not .EOF
Debug.Print , !title_id, !lorange, _

!hirange, !royalty
.MoveNext

Loop
.Close

End With

conPubs.Close
wrkODBC.Close

End Sub

RecordStatus and DefaultCursorDriver Properties Example

This example uses the RecordStatus and DefaultCursorDriver properties to show how changes to
a local Recordset are tracked during batch updating. The RecordStatusOutput function is required for
this procedure to run.
Sub RecordStatusX()

Dim wrkMain As Workspace
Dim conMain As Connection
Dim rstTemp As Recordset

Set wrkMain = CreateWorkspace("ODBCWorkspace", _
"admin", "", dbUseODBC)

' This DefaultCursorDriver setting is required for
' batch updating.
wrkMain.DefaultCursorDriver = dbUseClientBatchCursor

Set conMain = wrkMain.OpenConnection("Publishers", _
dbDriverNoPrompt, False, _
"ODBC;DATABASE=pubs;UID=sa;PWD=;DSN=Publishers")

' The following locking argument is required for
' batch updating.
Set rstTemp = conMain.OpenRecordset(_

"SELECT * FROM authors", dbOpenDynaset, 0, _
dbOptimisticBatch)

With rstTemp
.MoveFirst
Debug.Print "Original record: " & !au_lname
Debug.Print , RecordStatusOutput2(.RecordStatus)

.Edit
!au_lname = "Bowen"
.Update
Debug.Print "Edited record: " & !au_lname
Debug.Print , RecordStatusOutput2(.RecordStatus)

.AddNew
!au_lname = "NewName"
.Update
Debug.Print "New record: " & !au_lname
Debug.Print , RecordStatusOutput2(.RecordStatus)

.Delete
Debug.Print "Deleted record: " & !au_lname
Debug.Print , RecordStatusOutput2(.RecordStatus)

' Close the local recordset without updating the
' data on the server.
.Close

End With

conMain.Close
wrkMain.Close

End Sub

Function RecordStatusOutput(lngTemp As Long) As String

Dim strTemp As String

strTemp = ""

' Construct an output string based on the RecordStatus
' value.

If lngTemp = dbRecordUnmodified Then _
strTemp = "[dbRecordUnmodified]"

If lngTemp = dbRecordModified Then _
strTemp = "[dbRecordModified]"

If lngTemp = dbRecordNew Then _
strTemp = "[dbRecordNew]"

If lngTemp = dbRecordDeleted Then _
strTemp = "[dbRecordDeleted]"

If lngTemp = dbRecordDBDeleted Then _
strTemp = "[dbRecordDBDeleted]"

RecordStatusOutput = strTemp

End Function

Replicable Property Example

These examples illustrate two situations for using the Replicable Property — on a database and on
an object in the database.

This example makes Northwind.mdb a replicable database. It's recommended that you make a back-
up copy of Northwind before running this code, and that you adjust the path to Northwind as
appropriate to its location on your computer.
Sub MakeDesignMasterX()

Dim dbsNorthwind As Database
Dim prpNew As Property

' Open database for exclusive access.
Set dbsNorthwind = OpenDatabase("Northwind.mdb", _

True)

With dbsNorthwind

' If Replicable property doesn't exist, create it.
' Turn off error handling in case property exists.
On Error Resume Next
Set prpNew = .CreateProperty("Replicable", _

dbText, "T")
.Properties.Append prpNew

' Set database Replicable property to True.
.Properties("Replicable") = "T"

.Close

End With

End Sub
This example creates a new TableDef and then makes it replicable. The database must first be
replicable for this procedure to work.
Sub CreateReplLocalTableX()

Dim dbsNorthwind As Database
Dim tdfNew As TableDef
Dim fldNew As Field
Dim prpNew As Property

Set dbsNorthwind = OpenDatabase("Northwind.mdb")
' Create a new TableDef named "Taxes".
Set tdfNew = dbsNorthwind.CreateTableDef("Taxes")
' Define a text field named "Grade".
Set fldNew = tdfNew.CreateField("Grade", dbText, 3)
' Append new field to the TableDef.
tdfNew.Fields.Append fldNew

' Add the new TableDef to the database.
dbsNorthwind.TableDefs.Append tdfNew

' Create a new Replicable property for new TableDef.

Set prpNew = tdfNew.CreateProperty("Replicable", _
dbText, "T")

' Append the Replicable property to the new
' TableDef.
tdfNew.Properties.Append prpNew
dbsNorthwind.Close

End Sub
The following code sets the Replicable property on the specified TableDef object to "T". If the
property does not exist, it is created and appended to the table's Properties collection, and given a
value of "T".

Sub SetReplicable(tdfTemp As TableDef)

On Error GoTo ErrHandler

tdfTemp.Properties("Replicable") = "T"

On Error GoTo 0

Exit Sub

ErrHandler:

Dim prpNew As Property

If Err.Number = 3270 Then
Set prpNew = tdfTemp.CreateProperty("Replicable", _

dbText, "T")
tdfTemp.Properties.Append prpNew

Else
MsgBox "Error " & Err & ": " & Error

End If

End Sub

ReplicaFilter Property Example

The following example uses the ReplicaFilter property to replicate only customer records from the
California region.
Sub ReplicaFilterX()

' This example assumes the current open database
' is the replica.
Dim tdfCustomers As TableDef
Dim strFilter As String
Dim dbsTemp As Database

Set dbsTemp = OpenDatabase("Northwind.mdb")
Set tdfCustomers = dbsTemp.TableDefs("Customers")

' Synchronize with full replica
' before setting replica filter.
dbsTemp.Synchronize "C:\SALES\FY96.MDB"

strFilter = "Region = 'CA'"
tdfCustomers.ReplicaFilter = strFilter
dbsTemp.PopulatePartial "C:\SALES\FY96.MDB"

' Now remove the replica filter (for example purposes
' only).
tdfCustomers.ReplicaFilter = False
' Repopulate the database.
dbsTemp.PopulatePartial "C:\SALES\DATA96.MDB"

End Sub

ReplicaID Property Example

This example makes a replica from the Design Master of Northwind.mdb, and then returns the
replica's ReplicaID, which is automatically created by the Microsoft Jet database engine. (If you have
not yet created a Design Master of Northwind, refer to the Replicable property, or change the name
of the database in the code to an existing Design Master.)
Sub MakeReplicaReplicaIDX()

Dim dbsNorthwind As Database
Dim prpReplicaID As Property
Dim dbsReplica As Database

Set dbsNorthwind = OpenDatabase("Northwind.mdb")

' Makes a new replica.
dbsNorthwind.MakeReplica "Nwreplica2.mdb", _

"second replica"
dbsNorthwind.Close

' Opens the new replica to read its ReplicaID.
Set dbsReplica = OpenDatabase("Nwreplica2.mdb")

Debug.Print dbsReplica.ReplicaID
dbsReplica.Close

End Sub

Required Property Example

This example uses the Required property to report which fields in three different tables must contain
data in order for a new record to be added. The RequiredOutput procedure is required for this
procedure to run.
Sub RequiredX()

Dim dbsNorthwind As Database
Dim tdfloop As TableDef

Set dbsNorthwind = OpenDatabase("Northwind.mdb")

With dbsNorthwind
' Show which fields are required in the Fields
' collections of three different TableDef objects.
RequiredOutput .TableDefs("Categories")
RequiredOutput .TableDefs("Customers")
RequiredOutput .TableDefs("Employees")
.Close

End With

End Sub

Sub RequiredOutput(tdfTemp As TableDef)

Dim fldLoop As Field

' Enumerate Fields collection of the specified TableDef
' and show the Required property.
Debug.Print "Fields in " & tdfTemp.Name & ":"
For Each fldLoop In tdfTemp.Fields

Debug.Print , fldLoop.Name & ", Required = " & _
fldLoop.Required

Next fldLoop

End Sub

StillExecuting Property and Cancel Method Example

This example uses the StillExecuting property and the Cancel method to asynchronously open a
Connection object.
Sub CancelConnectionX()

Dim wrkMain As Workspace
Dim conMain As Connection
Dim sngTime As Single

Set wrkMain = CreateWorkspace("ODBCWorkspace", _
"admin", "", dbUseODBC)

' Open the connection asynchronously.
Set conMain = wrkMain.OpenConnection("Publishers", _

dbDriverNoPrompt + dbRunAsync, False, _
"ODBC;DATABASE=pubs;UID=sa;PWD=;DSN=Publishers")

sngTime = Timer

' Wait five seconds.
Do While Timer - sngTime < 5
Loop

' If the connection has not been made, ask the user
' if she wants to keep waiting. If she does not, cancel
' the connection and exit the procedure.
Do While conMain.StillExecuting

If MsgBox("No connection yet--keep waiting?", _
vbYesNo) = vbNo Then

conMain.Cancel
MsgBox "Connection cancelled!"
wrkMain.Close
Exit Sub

End If

Loop

With conMain
' Use the Connection object conMain.
.Close

End With

wrkMain.Close

End Sub
This example uses the StillExecuting property and the Cancel method to asynchronously execute a
QueryDef object.
Sub CancelQueryDefX()

Dim wrkMain As Workspace
Dim conMain As Connection
Dim qdfTemp As QueryDef
Dim sngTime As Single

Set wrkMain = CreateWorkspace("ODBCWorkspace", _
"admin", "", dbUseODBC)

Set conMain = wrkMain.OpenConnection("Publishers", _
dbDriverNoPrompt, False, _
"ODBC;DATABASE=pubs;UID=sa;PWD=;DSN=Publishers")

Set qdfTemp = conMain.CreateQueryDef("")

With qdfTemp
.SQL = "UPDATE roysched " & _

"SET royalty = royalty * 2 " & _
"WHERE title_id LIKE 'BU____' OR " & _
"title_id LIKE 'PC____'"

' Execute the query asynchronously.
.Execute dbRunAsync

sngTime = Timer

' Wait five seconds.
Do While Timer - sngTime < 5
Loop

' If the query has not completed, ask the user if
' she wants to keep waiting. If she does not, cancel
' the query and exit the procedure.
Do While .StillExecuting

If MsgBox(_
"Query still running--keep waiting?", _
vbYesNo) = vbNo Then

.Cancel
MsgBox "Query cancelled!"
Exit Do

End If

Loop

End With

conMain.Close
wrkMain.Close

End Sub
This example uses the StillExecuting property and the Cancel method to asynchronously move to
the last record of a Recordset object.
Sub CancelRecordsetX()

Dim wrkMain As Workspace
Dim conMain As Connection
Dim rstTemp As Recordset
Dim sngTime As Single

Set wrkMain = CreateWorkspace("ODBCWorkspace", _
"admin", "", dbUseODBC)

Set conMain = wrkMain.OpenConnection("Publishers", _
dbDriverNoPrompt, False, _
"ODBC;DATABASE=pubs;UID=sa;PWD=;DSN=Publishers")

Set rstTemp = conMain.OpenRecordset(_
"SELECT * FROM roysched", dbOpenDynaset)

With rstTemp

' Call the MoveLast method asynchronously.
.MoveLast dbRunAsync

sngTime = Timer

' Wait five seconds.
Do While Timer - sngTime < 5
Loop

' If the MoveLast has not completed, ask the user if
' she wants to keep waiting. If she does not, cancel
' the MoveLast and exit the procedure.
Do While .StillExecuting

If MsgBox(_
"Not at last record yet--keep waiting?", _
vbYesNo) = vbNo Then

.Cancel
MsgBox "MoveLast cancelled!"
conMain.Close
wrkMain.Close
Exit Sub

End If

Loop

' Use recordset.

.Close

End With

conMain.Close
wrkMain.Close

End Sub

Transactions Property Example

This example demonstrates the Transactions property in Microsoft Jet and ODBCDirect workspaces.
Sub TransactionsX()

Dim wrkJet As Workspace
Dim wrkODBC As Workspace
Dim dbsNorthwind As Database
Dim conPubs As Connection
Dim rstTemp As Recordset

' Open Microsoft Jet and ODBCDirect workspaces, a Microsoft
' Jet database, and an ODBCDirect connection.
Set wrkJet = CreateWorkspace("", "admin", "", dbUseJet)
Set wrkODBC = CreateWorkspace("", "admin", "", dbUseODBC)
Set dbsNorthwind = wrkJet.OpenDatabase("Northwind.mdb")
Set conPubs = wrkODBC.OpenConnection("", , , _

"ODBC;DATABASE=pubs;UID=sa;PWD=;DSN=Publishers")

' Open two different Recordset objects and display the
' Transactions property of each.

Debug.Print "Opening Microsoft Jet table-type " & _
"recordset..."

Set rstTemp = dbsNorthwind.OpenRecordset(_
"Employees", dbOpenTable)

Debug.Print " Transactions = " & rstTemp.Transactions

Debug.Print "Opening forward-only-type " & _
"recordset where the source is an SQL statement..."

Set rstTemp = dbsNorthwind.OpenRecordset(_
"SELECT * FROM Employees", dbOpenForwardOnly)

Debug.Print " Transactions = " & rstTemp.Transactions

' Display Transactions property of a Connection object in
' an ODBCDirect workspace.
Debug.Print "Testing Transaction property of " & _

"an ODBC connection..."
Debug.Print " Transactions = " & conPubs.Transactions

rstTemp.Close
dbsNorthwind.Close
conPubs.Close
wrkJet.Close
wrkODBC.Close

End Sub

UserName Property Example

This example uses the UserName property to change a particular user's permissions on an object
and to verify that user's ability to append new data to the same object.
Sub UserNameX()

' Ensure that the Microsoft Jet workgroup information
' file is available.
DBEngine.SystemDB = "system.mdw"

Dim dbsNorthwind As Database
Dim docTemp As Document

Set dbsNorthwind = OpenDatabase("Northwind.mdb")

Set docTemp = _
dbsNorthwind.Containers("Tables").Documents(0)

' Change the permissions of NewUser on the first Document
' object in the Tables container.
With docTemp

.UserName = "NewUser"

.Permissions = dbSecRetrieveData
If (.Permissions And dbSecInsertData) = _

dbSecInsertData Then
Debug.Print .UserName & " can insert data."

Else
Debug.Print .UserName & " can't insert data."

End If
End With

dbsNorthwind.Close

End Sub

Version Property Example

This example uses the Version property to report on the Microsoft Jet database engine in memory, a
Microsoft Jet database, and an ODBC connection.
Sub VersionX()

Dim wrkJet As Workspace
Dim dbsNorthwind As Database
Dim wrkODBC As Workspace
Dim conPubs As Connection

' Open Microsoft Jet Database object.
Set wrkJet = CreateWorkspace("NewJetWorkspace", _

"admin", "", dbUseJet)
Set dbsNorthwind = wrkJet.OpenDatabase("Northwind.mdb")

' Create ODBCDirect Workspace object and open Connection
' objects.
Set wrkODBC = CreateWorkspace("NewODBCWorkspace", _

"admin", "", dbUseODBC)
Set conPubs = wrkODBC.OpenConnection("Connection1", , , _

"ODBC;DATABASE=pubs;UID=sa;PWD=;DSN=Publishers")

' Show three different uses for the Version property.
Debug.Print "Version of DBEngine (Microsoft Jet " & _

"in memory) = " & DBEngine.Version
Debug.Print "Version of the Microsoft Jet engine " & _

"with which " & dbsNorthwind.Name & _
" was created = " & dbsNorthwind.Version

Debug.Print "Version of ODBCDirect connection " & _
"(using Database property) = " & _
conPubs.Database.Version

dbsNorthwind.Close
conPubs.Close
wrkJet.Close
wrkODBC.Close

End Sub

Connect and ReturnsRecords Properties Example (Client/Server)

This example uses the Connect and ReturnsRecords properties to select the top five book titles
from a Microsoft SQL Server database based on year-to-date sales amounts. In the event of an exact
match in sales amounts, the example increases the size of the list displaying the results of the query
and prints a message explaining why this occurred.
Sub ClientServerX1()

Dim dbsCurrent As Database
Dim qdfPassThrough As QueryDef
Dim qdfLocal As QueryDef
Dim rstTopFive As Recordset
Dim strMessage As String

' Open a database from which QueryDef objects can be
' created.
Set dbsCurrent = OpenDatabase("DB1.mdb")

' Create a pass-through query to retrieve data from
' a Microsoft SQL Server database.
Set qdfPassThrough = _

dbsCurrent.CreateQueryDef("AllTitles")
qdfPassThrough.Connect = _

"ODBC;DATABASE=pubs;UID=sa;PWD=;DSN=Publishers"
qdfPassThrough.SQL = "SELECT * FROM titles " & _

"ORDER BY ytd_sales DESC"
qdfPassThrough.ReturnsRecords = True

' Create a temporary QueryDef object to retrieve
' data from the pass-through query.
Set qdfLocal = dbsCurrent.CreateQueryDef("")
qdfLocal.SQL = "SELECT TOP 5 title FROM AllTitles"

Set rstTopFive = qdfLocal.OpenRecordset()

' Display results of queries.
With rstTopFive

strMessage = _
"Our top 5 best-selling books are:" & vbCr

Do While Not .EOF
strMessage = strMessage & " " & !Title & _

vbCr
.MoveNext

Loop

If .RecordCount > 5 Then
strMessage = strMessage & _

"(There was a tie, resulting in " & _
vbCr & .RecordCount & _
" books in the list.)"

End If

MsgBox strMessage
.Close

End With

' Delete new pass-through query because this is a
' demonstration.
dbsCurrent.QueryDefs.Delete "AllTitles"
dbsCurrent.Close

End Sub

CreateQueryDef Method, OpenRecordset Method, and SQL Property Example (Client/Server)

This example uses the CreateQueryDef and OpenRecordset methods and the SQL property to
query the table of titles in the Microsoft SQL Server sample database Pubs and return the title and
title identifier of the best-selling book. The example then queries the table of authors and instructs the
user to send a bonus check to each author based on his or her royalty share (the total bonus is
$1,000 and each author should receive a percentage of that amount).
Sub ClientServerX2()

Dim dbsCurrent As Database
Dim qdfBestSellers As QueryDef
Dim qdfBonusEarners As QueryDef
Dim rstTopSeller As Recordset
Dim rstBonusRecipients As Recordset
Dim strAuthorList As String

' Open a database from which QueryDef objects can be
' created.
Set dbsCurrent = OpenDatabase("DB1.mdb")

' Create a temporary QueryDef object to retrieve
' data from a Microsoft SQL Server database.
Set qdfBestSellers = dbsCurrent.CreateQueryDef("")
With qdfBestSellers

.Connect = "ODBC;DATABASE=pubs;UID=sa;PWD=;" & _
 "DSN=Publishers"

.SQL = "SELECT title, title_id FROM titles " & _
"ORDER BY ytd_sales DESC"

Set rstTopSeller = .OpenRecordset()
rstTopSeller.MoveFirst

End With

' Create a temporary QueryDef to retrieve data from
' a Microsoft SQL Server database based on the results from
' the first query.
Set qdfBonusEarners = dbsCurrent.CreateQueryDef("")
With qdfBonusEarners

.Connect = "ODBC;DATABASE=pubs;UID=sa;PWD=;" & _
"DSN=Publishers"

.SQL = "SELECT * FROM titleauthor " & _
"WHERE title_id = '" & _
rstTopSeller!title_id & "'"

Set rstBonusRecipients = .OpenRecordset()
End With

' Build the output string.
With rstBonusRecipients

Do While Not .EOF
strAuthorList = strAuthorList & " " & _

!au_id & ": $" & (10 * !royaltyper) & vbCr
.MoveNext

Loop
End With

' Display results.

MsgBox "Please send a check to the following " & _
"authors in the amounts shown:" & vbCr & _
strAuthorList & "for outstanding sales of " & _
rstTopSeller!Title & "."

rstTopSeller.Close
dbsCurrent.Close

End Sub

CreateTableDef Method, FillCache Method, and CacheSize, CacheStart and SourceTableName
Properties Example (Client/Server)

This example uses the CreateTableDef and FillCache methods and the CacheSize, CacheStart and
SourceTableName properties to enumerate the records in a linked table twice. Then it enumerates
the records twice with a 50-record cache. The example then displays the performance statistics for
the uncached and cached runs through the linked table.
Sub ClientServerX3()

Dim dbsCurrent As Database
Dim tdfRoyalties As TableDef
Dim rstRemote As Recordset
Dim sngStart As Single
Dim sngEnd As Single
Dim sngNoCache As Single
Dim sngCache As Single
Dim intLoop As Integer
Dim strTemp As String
Dim intRecords As Integer

' Open a database to which a linked table can be
' appended.
Set dbsCurrent = OpenDatabase("DB1.mdb")

' Create a linked table that connects to a Microsoft SQL
' Server database.
Set tdfRoyalties = _

dbsCurrent.CreateTableDef("Royalties")
tdfRoyalties.Connect = _

"ODBC;DATABASE=pubs;UID=sa;PWD=;DSN=Publishers"
tdfRoyalties.SourceTableName = "roysched"
dbsCurrent.TableDefs.Append tdfRoyalties
Set rstRemote = _

dbsCurrent.OpenRecordset("Royalties")

With rstRemote
' Enumerate the Recordset object twice and record
' the elapsed time.
sngStart = Timer

For intLoop = 1 To 2
.MoveFirst
Do While Not .EOF

' Execute a simple operation for the
' performance test.
strTemp = !title_id
.MoveNext

Loop
Next intLoop

sngEnd = Timer
sngNoCache = sngEnd - sngStart

' Cache the first 50 records.
.MoveFirst

.CacheSize = 50

.FillCache
sngStart = Timer

' Enumerate the Recordset object twice and record
' the elapsed time.
For intLoop = 1 To 2

intRecords = 0
.MoveFirst
Do While Not .EOF

' Execute a simple operation for the
' performance test.
strTemp = !title_id
' Count the records. If the end of the
' cache is reached, reset the cache to the
' next 50 records.
intRecords = intRecords + 1
.MoveNext
If intRecords Mod 50 = 0 Then

.CacheStart = .Bookmark

.FillCache
End If

Loop
Next intLoop

sngEnd = Timer
sngCache = sngEnd - sngStart

' Display performance results.
MsgBox "Caching Performance Results:" & vbCr & _

" No cache: " & Format(sngNoCache, _
"##0.000") & " seconds" & vbCr & _
" 50-record cache: " & Format(sngCache, _
"##0.000") & " seconds"

.Close
End With

' Delete linked table because this is a demonstration.
dbsCurrent.TableDefs.Delete tdfRoyalties.Name
dbsCurrent.Close

End Sub

