
Microsoft Excel Objects
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xltocObjectModelApplicationC "}

Microsoft Excel Objects (Worksheet)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xltocObjectModelWorksheetC "}

Microsoft Excel Objects (Charts)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xltocObjectModelChartsC "}

Microsoft Excel Objects (ChartGroups)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xltocObjectModelChartGroupsC "}

Help Topic Not Available

The Help topic cannot be displayed because Visual Basic for Applications Help cannot be found or
was not installed.

To install Visual Basic for Applications Help
1. Run Microsoft Office 97 Setup, and click Add/Remove.
2. Click Microsoft Excel, and then click Change Option.
3. Click Help and sample files, and then click Change Option.
4. Make sure that the Help for Visual Basic check box is selected.
5. Continue with Setup

Help Topic Not Available

The Help topic cannot be displayed because Microsoft Office Visual Basic Help cannot be found or
was not installed.

To install Microsoft Office Visual Basic Help
1. Run Microsoft Office 97 Setup, and click Add/Remove.
2. Click Microsoft Excel, and then click Change Option.
3. Click Help and sample files, and then click Change Option.
4. Make sure that the Help for Visual Basic check box is selected.
5. Continue with Setup

Help Topic Not Available

The Help topic cannot be displayed because Microsoft Excel Help cannot be found or was not
installed.

To install Microsoft Excel Help
1. Run Microsoft Office 97 Setup, and click Add/Remove.
2. Click Microsoft Excel, and then click Change Option.
3. Click Help and sample files, and then click Change Option.
4. Make sure that the Help for Microsoft Excel check box is selected.
5. Continue with Setup

Help Topic Not Available

The Help topic cannot be displayed because Data Access Objects Help cannot be found or was not
installed.

To install Data Access Objects Help
1. Run Microsoft Office 97 Setup, and click Add/Remove.
2. Click Microsoft Access, and then click Change Option.
3. Click Help, and then click Change Option.
4. Make sure that the Language Reference check box is selected.
5. Continue with Setup

Changes to the Microsoft Excel 97 Object Model
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmscObjectModelChangesC"}

Extensive changes have been made to the Microsoft Excel 97 Visual Basic object model to support
new and improved features in the application. Many objects, properties, and methods have been
replaced. To provide backward compatibility, most of the replaced components have been hidden
rather than removed. This means that they don't show up in the object browser by default, but old
code that uses the hidden components will still work correctly without modification. When you write
new code, however, you should use the new objects, properties, and methods.

The major feature changes made for Visual Basic in Microsoft Excel 97 are listed in the following
table.

Feature Description
Shapes Replaces the drawing layer (Arc, Oval,

Line, and so on) with a consistent and
improved object model in all Microsoft
Office applications.

UserForms, ActiveX controls Provides a consistent and expandable
control and dialog box interface in all
Microsoft Office applications.

CommandBars Provides a consistent and expandable
menu and toolbar interface in all Microsoft
Office applications.

For more information, see one of the following topics:

New Objects

New Properties and Methods (by Object)

New Properties and Methods (Alphabetic List)

Hidden Objects

Hidden Properties and Methods

Methods with New Arguments

Changes to Visual Basic in Microsoft Excel for Windows 95

Hidden Objects
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmscHiddenObjectsC"}

Objects that have been hidden in the Microsoft Excel 97 Visual Basic object model are listed in the
following table. These objects are supported only for backward compatibility; for new code, you
should use the replacement functionality provided in Microsoft Excel 97. To view hidden objects in the
Object Browser, right-click in the Object Browser window and click Show Hidden Members on the
shortcut menu. For more information about the changes to the Microsoft Excel 97 object model, see
one of the following topics:

New Objects

New Properties and Methods (by Object)

New Properties and Methods (Alphabetic List)

Hidden Properties and Methods

Methods with New Arguments

Changes to Visual Basic in Microsoft Excel for Windows 95

Hidden objects Replacement
Arc, Arcs, Drawing, DrawingObjects,
Drawings, Label, Labels, Line, Lines, Oval,
Ovals, Picture, Pictures, Rectangle,
Rectangles

New Shapes drawing layer

Button, Buttons, CheckBox, CheckBoxes,
DialogFrame, DropDown, DropDowns,
EditBox, EditBoxes, GroupBox,
GroupBoxes, GroupObject, GroupObjects,
ListBox, ListBoxes, OptionButton,
OptionButtons, ScrollBar, ScrollBars,
Spinner, Spinners, TextBox, TextBoxes

ActiveX controls

Menu, MenuBar, MenuBars, MenuItem,
MenuItems, Menus, Toolbar,
ToolbarButton, ToolbarButtons, Toolbars

CommandBars

Module, Modules VBE extensibility object model
DialogSheet, DialogSheets Custom Forms

New Objects
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmscNewObjectsC"}

Objects that were added to Visual Basic in Microsoft Excel 97 are listed in the following table. For
more information about the changes to the Microsoft Excel 97 object model, see one of the following
topics:

New Properties and Methods (by Object)

New Properties and Methods (Alphabetic List)

Hidden Objects

Hidden Properties and Methods

Methods with New Arguments

Changes to Visual Basic in Microsoft Excel for Windows 95

Object Description
CalculatedFields,
CalculatedItems

New PivotTable functionality

Comment, Comments New comment functionality; replaces cell notes
ControlFormat, LinkFormat,
OLEFormat

Expose old Microsoft Excel controls and OLE objects in the
Shapes collection

CustomView, CustomViews New custom view feature
DataTable Chart data table
ChartFillFormat, FillFormat Chart and shape fill formatting
FormatCondition,
FormatConditions

New conditional format feature

HPageBreak, HPageBreaks,
VPageBreak, VPageBreaks

New horizontal and vertical page break features

Hyperlink, HyperLinks Range and shape hyperlinks
LeaderLines Chart leader lines that connect data labels to points
ODBCError, ODBCErrors,
Parameter, Parameters,
QueryTable, QueryTables,

New parameterized query features

PivotCache, PivotCaches,
PivotFormula, PivotFormulas

New PivotTable features

RecentFile, RecentFiles List of recently used files
Adjustments, CalloutFormat,
ChartColorFormat,
ColorFormat,
ConnectorFormat,
FreeformBuilder,
GroupShapes, LineFormat,
PictureFormat,
ShadowFormat, Shape,
ShapeNode, ShapeNodes,
Shapes, TextEfectFormat,
TextFrame, ThreeDFormat

New drawing layer and chart fill

Validation Range data validation

New Properties and Methods (by Object)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmscNewPMbyObjC"}

Properties and methods that have been added to existing objects in Microsoft Excel 97 are listed in
the following table (sorted by object name). For more information about the changes to the Microsoft
Excel 97 object model, see one of the following topics:

New Objects

New Properties and Methods (Alphabetic List)

Hidden Objects

Hidden Properties and Methods

Methods with New Arguments

Changes to Visual Basic in Microsoft Excel for Windows 95

Object New properties and methods
Application Assistant Property, CommandBars Property, ControlCharacters

Property, CursorMovement Property, DefaultSaveFormat Property,
DefaultSheetDirection Property, DisplayCommentIndicator Property,
EnableEvents Property, EnableSound Property, FileFind Property,
FileSearch Property, ODBCErrors Property, ODBCTimeout Property,
PivotTableSelection Property, RecentFiles Property, RollZoom
Property, SaveWorkspace Method, ShowChartTipNames Property,
ShowChartTipValues Property, UILanguage Property, UserControl
Property, VBE Property, WorksheetFunction Property

AutoCorrect CorrectCapsLock Property, CorrectSentenceCap Property
Axis BaseUnit Property, BaseUnitIsAuto Property, CategoryType Property,

Height Property, Left Property, MajorUnitScale Property,
MinorUnitScale Property, Top Property, Width Property

AxisTitle AutoScaleFont Property, Fill Property, ReadingOrder Property
Chart ApplyCustomType Method, BarShape Property, ChartType Property,

CodeName Property, DataTable Property, Export Method,
GetChartElement Method, HasDataTable Property, Hyperlinks
Property, Location Method, PlotBy Property, ProtectData Property,
ProtectFormatting Property, ProtectGoalSeek Property,
ProtectSelection Property, Refresh Method, SetSourceData Method,
Shapes Property, ShowWindow Property

ChartArea AutoScaleFont Property, Fill Property
ChartGroup BubbleScale Property, Has3DShading Property, Index Property,

SecondPlotSize Property, ShowNegativeBubbles Property,
SizeRepresents Property, SplitType Property, SplitValue Property

ChartObject ProtectChartObject Property, ShapeRange Property
ChartObjects ShapeRange Property
Charts HPageBreaks Property, VPageBreaks Property
ChartTitle AutoScaleFont Property, Fill Property, ReadingOrder Property
DataLabel AutoScaleFont Property, Fill Property, Position Property,

ReadingOrder Property
DataLabels AutoScaleFont Property, Fill Property, Position Property,

ReadingOrder Property
DownBars Fill Property

Floor Fill Property, Paste Method, PictureType Property
Interior InvertIfNegative Property
Legend AutoScaleFont Property, Clear Method, Fill Property
LegendEntry AutoScaleFont Property, Height Property, Left Property, Top Property,

Width Property
LegendKey Fill Property, Height Property, Left Property, MarkerSize Property,

PictureType Property, PictureUnit Property, Shadow Property, Top
Property, Width Property

OLEObject LinkedCell Property, ListFillRange Property, ProgId Property,
ShapeRange Property, SourceName Property

OLEObjects AutoLoad Property, ShapeRange Property, SourceName Property
PageSetup PrintComments Property
PivotField AutoShow Method, AutoShowCount Property, AutoShowField

Property, AutoShowRange Property, AutoShowType Property,
AutoSort Method, AutoSortField Property, AutoSortOrder Property,
CalculatedItems Method, Delete Method, DragToColumn Property,
DragToHide Property, DragToPage Property, DragToRow Property,
Formula Property, IsCalculated Property, MemoryUsed Property,
ServerBased Property, ShowAllItems Property

PivotItem Delete Method, Formula Property, IsCalculated Property,
RecordCount Property

PivotItems Add Method
PivotTable CacheIndex Property, CalculatedFields Method, DisplayErrorString

Property, DisplayNullString Property, EnableDrilldown Property,
EnableFieldDialog Property, EnableWizard Property, ErrorString
Property, GetData Method, ListFormulas Method, ManualUpdate
Property, MergeLabels Property, NullString Property, PageFieldOrder
Property, PageFieldStyle Property, PageFieldWrapCount Property,
PageRangeCells Property, PivotCache Method, PivotFormulas
Method, PivotSelect Method, PivotSelection Property,
PivotTableWizard Method, PreserveFormatting Property,
SelectionMode Property, SubtotalHiddenPageItems Property,
TableStyle Property, Tag Property, Update Method, VacatedStyle
Property

PlotArea Fill Property, InsideHeight Property, InsideLeft Property, InsideTop
Property, InsideWidth Property

Point ApplyPictToEnd Property, ApplyPictToFront Property,
ApplyPictToSides Property, Fill Property, MarkerSize Property,
SecondaryPlot Property, Shadow Property

Range AddComment Method, ClearComments Method, Comment Property,
FormatConditions Property, FormulaLabel Property, Hyperlinks
Property, IndentLevel Property, InsertIndent Method, Merge Method,
MergeArea Property, MergeCells Property, QueryTable Property,
ReadingOrder Property, ShrinkToFit Property, UnMerge Method,
Validation Property, Value2 Property

Series ApplyCustomType Method, ApplyPictToEnd Property,
ApplyPictToFront Property, ApplyPictToSides Property, BarShape
Property, BubbleSizes Property, ChartType Property, Fill Property,
Has3DEffect Property, HasLeaderLines Property, LeaderLines
Property, MarkerSize Property, Shadow Property

SeriesCollection NewSeries Method
Sheets HPageBreaks Property, VPageBreaks Property
Style BuiltIn Property, IndentLevel Property, MergeCells Property,

ReadingOrder Property, ShrinkToFit Property
TickLabels AutoScaleFont Property, ReadingOrder Property
UpBars Fill Property
Walls Fill Property, Paste Method, PictureType Property, PictureUnit

Property
Window EnableResize Property, View Property
Workbook AcceptAllChanges Method, AcceptLabelsInFormulas Property,

AddToFavorites Method, AutoUpdateFrequency Property,
AutoUpdateSaveChanges Property, ChangeHistoryDuration
Property, CodeName Property, CommandBars Property,
ConflictResolution Property, CustomViews Property,
FollowHyperlink Method, HighlightChangesOnScreen Property,
HighlightChangesOptions Method, IsAddin Property,
KeepChangeHistory Property, ListChangesOnNewSheet Property,
MergeWorkbook Method, PersonalViewListSettings Property,
PersonalViewPrintSettings Property, PivotCaches Method,
ProtectSharing Method, PurgeChangeHistoryNow Method,
RefreshAll Method, RejectAllChanges Method, Reload Method,
RemoveUser Method, ResetColors Method,
TemplateRemoveExtData Property, UnprotectSharing Method,
UserControl Property, VBProject Property

Worksheet CircleInvalid Method, ClearCircles Method, CodeName Property,
Comments Property, DisplayPageBreaks Property,
DisplayRightToLeft Property, EnableCalculation Property,
EnableSelection Property, HPageBreaks Property, Hyperlinks
Property, QueryTables Property, ResetAllPageBreaks Method,
ScrollArea Property, Shapes Property, VPageBreaks Property

Worksheets HPageBreaks Property, VPageBreaks Property

New Properties and Methods (Alphabetic List)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmscNewPMAlphaC"}

Properties and methods that have been added to existing objects in Microsoft Excel 97 are listed in
the following table (sorted alphabetically by property or method name). For more information about
the changes to the Microsoft Excel 97 object model, see one of the following topics:

New Objects

New Properties and Methods (by Object)

Hidden Objects

Hidden Properties and Methods

Methods with New Arguments

Changes to Visual Basic in Microsoft Excel for Windows 95

New property or method Objects
AcceptAllChanges Method Workbook
AcceptLabelsInFormulas Property Workbook
Add Method PivotItems
AddComment Method Range
AddToFavorites Method Workbook
ApplyCustomType Method Chart, Series
ApplyPictToEnd Property Point, Series
ApplyPictToFront Property Point, Series
ApplyPictToSides Property Point, Series
Assistant Property Application
AutoLoad Property OLEObjects
AutoScaleFont Property AxisTitle, ChartArea, ChartTitle, DataLabel,

DataLabels, Legend, LegendEntry, TickLabels
AutoShow Method PivotField
AutoShowCount Property PivotField
AutoShowField Property PivotField
AutoShowRange Property PivotField
AutoShowType Property PivotField
AutoSort Method PivotField
AutoSortField Property PivotField
AutoSortOrder Property PivotField
AutoUpdateFrequency Property Workbook
AutoUpdateSaveChanges Property Workbook
BarShape Property Chart, Series
BaseUnit Property Axis
BaseUnitIsAuto Property Axis
BubbleScale Property ChartGroup
BubbleSizes Property Series
BuiltIn Property Style
CacheIndex Property PivotTable

CalculatedFields Method PivotTable
CalculatedItems Method PivotField
CategoryType Property Axis
ChangeHistoryDuration Property Workbook
ChartType Property Chart, Series
CircleInvalid Method Worksheet
Clear Method Legend
ClearCircles Method Worksheet
ClearComments Method Range
CodeName Property Chart, Workbook, Worksheet
CommandBars Property Application, Workbook
Comment Property Range
Comments Property Worksheet
ConflictResolution Property Workbook
ControlCharacters Property Application
CorrectCapsLock Property AutoCorrect
CorrectSentenceCap Property AutoCorrect
CursorMovement Property Application
CustomViews Property Workbook
DataTable Property Chart
DefaultSaveFormat Property Application
DefaultSheetDirection Property Application
Delete Method PivotField, PivotItem
DisplayCommentIndicator Property Application
DisplayErrorString Property PivotTable
DisplayNullString Property PivotTable
DisplayPageBreaks Property Worksheet
DisplayRightToLeft Property Worksheet
DragToColumn Property PivotField
DragToHide Property PivotField
DragToPage Property PivotField
DragToRow Property PivotField
EnableCalculation Property Worksheet
EnableDrilldown Property PivotTable
EnableEvents Property Application
EnableFieldDialog Property PivotTable
EnableResize Property Window
EnableSelection Property Worksheet
EnableSound Property Application
EnableWizard Property PivotTable
ErrorString Property PivotTable
Export Method Chart
FileFind Property Application
FileSearch Property Application
Fill Property AxisTitle, ChartArea, ChartTitle, DataLabel,

DataLabels, DownBars, Floor, Legend,
LegendKey, PlotArea, Point, Series, UpBars, Walls

FollowHyperlink Method Workbook
FormatConditions Property Range
Formula Property PivotField, PivotItem
FormulaLabel Property Range
GetChartElement Method Chart
GetData Method PivotTable
Has3DEffect Property Series
Has3DShading Property ChartGroup
HasDataTable Property Chart
HasLeaderLines Property Series
Height Property Axis, LegendEntry, LegendKey
HighlightChangesOnScreen
Property

Workbook

HighlightChangesOptions Method Workbook
HPageBreaks Property Charts, Sheets, Worksheet, Worksheets
Hyperlinks Property Chart, Range, Worksheet
IndentLevel Property Range, Style
Index Property ChartGroup
InsertIndent Method Range
InsideHeight Property PlotArea
InsideLeft Property PlotArea
InsideTop Property PlotArea
InsideWidth Property PlotArea
InvertIfNegative Property Interior
IsAddin Property Workbook
IsCalculated Property PivotField, PivotItem
KeepChangeHistory Property Workbook
LeaderLines Property Series
Left Property Axis, LegendEntry, LegendKey
LinkedCell Property OLEObject
ListChangesOnNewSheet Property Workbook
ListFillRange Property OLEObject
ListFormulas Method PivotTable
Location Method Chart
MajorUnitScale Property Axis
ManualUpdate Property PivotTable
MarkerSize Property LegendKey, Point, Series
MemoryUsed Property PivotField
Merge Method Range
MergeArea Property Range
MergeCells Property Range, Style
MergeLabels Property PivotTable
MergeWorkbook Method Workbook
MinorUnitScale Property Axis

NewSeries Method SeriesCollection
NullString Property PivotTable
ODBCErrors Property Application
ODBCTimeout Property Application
PageFieldOrder Property PivotTable
PageFieldStyle Property PivotTable
PageFieldWrapCount Property PivotTable
PageRangeCells Property PivotTable
Paste Method Floor, Walls
PersonalViewListSettings Property Workbook
PersonalViewPrintSettings
Property

Workbook

PictureType Property Floor, LegendKey, Walls
PictureUnit Property LegendKey, Walls
PivotCache Method PivotTable
PivotCaches Method Workbook
PivotFormulas Method PivotTable
PivotSelect Method PivotTable
PivotSelection Property PivotTable
PivotTableSelection Property Application
PivotTableWizard Method PivotTable
PlotBy Property Chart
Position Property DataLabel, DataLabels
PreserveFormatting Property PivotTable
PrintComments Property PageSetup
ProgId Property OLEObject
ProtectChartObject Property ChartObject
ProtectData Property Chart
ProtectFormatting Property Chart
ProtectGoalSeek Property Chart
ProtectSelection Property Chart
ProtectSharing Method Workbook
PurgeChangeHistoryNow Method Workbook
QueryTable Property Range
QueryTables Property Worksheet
ReadingOrder Property AxisTitle, ChartTitle, DataLabel, DataLabels,

Range, Style, TickLabels
RecentFiles Property Application
RecordCount Property PivotItem
Refresh Method Chart
RefreshAll Method Workbook
RejectAllChanges Method Workbook
Reload Method Workbook
RemoveUser Method Workbook

ResetAllPageBreaks Method Worksheet
ResetColors Method Workbook
RollZoom Property Application
SaveWorkspace Method Application
ScrollArea Property Worksheet
SecondaryPlot Property Point
SecondPlotSize Property ChartGroup
SelectionMode Property PivotTable
ServerBased Property PivotField
SetSourceData Method Chart
Shadow Property LegendKey, Point, Series
ShapeRange Property ChartObject, ChartObjects, OLEObject,

OLEObjects
Shapes Property Chart, Worksheet
ShowAllItems Property PivotField
ShowChartTipNames Property Application
ShowChartTipValues Property Application
ShowNegativeBubbles Property ChartGroup
ShowWindow Property Chart
ShrinkToFit Property Range, Style
SizeRepresents Property ChartGroup
SourceName Property OLEObject, OLEObjects
SplitType Property ChartGroup
SplitValue Property ChartGroup
SubtotalHiddenPageItems Property PivotTable
TableStyle Property PivotTable
Tag Property PivotTable
TemplateRemoveExtData Property Workbook
Top Property Axis, LegendEntry, LegendKey
UILanguage Property Application
UnMerge Method Range
UnprotectSharing Method Workbook
Update Method PivotTable
UserControl Property Application, Workbook
VacatedStyle Property PivotTable
Validation Property Range
Value2 Property Range
VBE Property Application
VBProject Property Workbook
View Property Window
VPageBreaks Property Charts, Sheets, Worksheet, Worksheets
Width Property Axis, LegendEntry, LegendKey
WorksheetFunction Property Application

Hidden Properties and Methods
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmscHiddenPMC"}

Hidden properties and methods for visible objects are listed in the following table. Most of the hidden
properties and methods have been replaced by new functionality in Microsoft Excel 97. These
properties and methods are supported only for backward compatibility; for new code, you should use
the replacement functionality provided in Microsoft Excel 97. For more information about the changes
to the Microsoft Excel 97 object model, see one of the following topics:

New Objects

New Properties and Methods (by Object)

New Properties and Methods (Alphabetic List)

Hidden Objects

Methods with New Arguments

Changes to Visual Basic in Microsoft Excel for Windows 95

Object Hidden Property or Method Replacement
Application ActiveDialog ActiveX controls
Application ActiveMenuBar CommandBars
Chart, Worksheet Arcs Shapes
AddIn, Workbook Author DocumentProperties
Chart AutoFormat ApplyCustomType method
Chart, Worksheet Buttons ActiveX controls
Chart, Worksheet CheckBoxes ActiveX controls
Application ColorButtons no replacement
AddIn, Workbook Comments DocumentProperties
Application, Workbook DialogSheets Custom Forms and ActiveX

controls
Worksheet DisplayAutomaticPageBreaks DisplayPageBreaks

Property
Application DisplayInfoWindow no replacement
Chart, Worksheet DrawingObjects Shapes
Chart, Worksheet Drawings Shapes
Chart, Worksheet DropDowns ActiveX controls
Application EnableTipWizard Assistant
ChartObjects,
OLEObjects

Group Shapes

Chart, Worksheet GroupBoxes Shapes
Chart, Worksheet GroupObjects Shapes
AddIn, Workbook Keywords DocumentProperties
Chart, Worksheet Labels Shapes
Application LargeButtons no replacement
Chart, Worksheet Lines Shapes
Chart, Worksheet ListBoxes ActiveX controls
Application MenuBars CommandBars
Application, Workbook Modules VBE

ChartObject,
ChartObjects,
OLEObject, OLEObjects

OnAction Change or SheetChange
event

Application, Worksheet OnCalculate Calculate event
Application, Worksheet OnData Change or SheetChange

event
Application, Chart,
Worksheet

OnDoubleClick BeforeDoubleClick event

Application, Worksheet OnEntry Change event
Workbook OnSave BeforeSave event
Application, Chart,
Workbook, Worksheet

OnSheetActivate Activate or SheetActivate
event

Application, Chart,
Workbook, Worksheet

OnSheetDeactivate Deactivate or
SheetDeactivate events

Chart, Worksheet OptionButtons ActiveX controls
Chart, Worksheet Ovals ActiveX controls
Chart, Worksheet Pictures Shapes
Chart, Worksheet Rectangles Shapes
Application ResetTipWizard Assistant
Application Save SaveWorkspace Method
Chart, Worksheet ScrollBars ActiveX controls
Window SetInfoDisplay no replacement
Application ShortcutMenus CommandBars
Chart, Worksheet Spinners ActiveX controls
AddIn, Workbook Subject DocumentProperties
Chart, ChartGroup SubType ChartType property
Chart, Worksheet TextBoxes ActiveX controls
AddIn, Workbook Title DocumentProperties
Application Toolbars CommandBars
Chart, ChartGroup Type ChartType property

Methods with New Arguments
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmscNewArgsC"}

Methods with arguments that have been added for Microsoft Excel 97 are listed in the following table.
For more information about the changes to the Microsoft Excel 97 object model, see one of the
following topics:

New Objects

New Properties and Methods (by Object)

New Properties and Methods (Alphabetic List)

Hidden Objects

Hidden Properties and Methods

Changes to Visual Basic in Microsoft Excel for Windows 95

Method Objects New arguments
Add OLEObjects Left, Top, Width, Height
ApplyDataLabels Chart, Series AutoText, HasLeaderLines
ApplyDataLabels Point AutoText
AutoFilter Range VisibleDropDown
CheckSpelling Chart, Range,

Worksheet
IgnoreInitialAlefHamza,
IgnoreFinalYaa, SpellScript (these
arguments aren't used in U.S.
English Microsoft Excel)

Find Range MatchControlCharacters,
MatchDiacritics, MatchKashida,
MatchAlefHamza (these arguments
aren't used in U.S. English Microsoft
Excel)

Open Workbooks AddToMru
OpenText Workbooks TextVisualLayout (not used in U.S.

English Microsoft Excel)
PivotTableWizard Worksheet BackgroundQuery,

OptimizeCache, PageFieldOrder,
PageFieldWrapCount, ReadData,
Connection

PrintPreview Chart, Charts,
Range, Sheets,
Window, Workbook,
Worksheet,
Worksheets

EnableChanges

RegisteredFunctio
ns

Application Index1, Index2

Replace Range MatchControlCharacters,
MatchDiacritics, MatchKashida,
MatchAlefHamza (these arguments
aren't used in U.S. English Microsoft
Excel)

Run Application Now uses a variable-length
argument array

SaveAs Chart, Workbook,
Worksheet

AddToMru, TextCodepage,
TextVisualLayout (the last two
arguments aren't used in U.S.
English Microsoft Excel)

SetDefaultChart Application Gallery
Sort Range SortMethod,

IgnoreControlCharacters,
IgnoreDiacritics, IgnoreKashida
(the last three arguments aren't
used in U.S. English Microsoft
Excel)

Changes to Visual Basic in Microsoft Excel for Windows 95
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmscChanged95C "} Top

This topic covers changes made to the Visual Basic object model between Microsoft Excel version 5.0
and Microsoft Excel for Windows 95. For more information about changes made between Microsoft
Excel for Windows 95 and Microsoft Excel 97, see Changes to the Microsoft Excel 97 Object Model.

Existing properties and methods were changed, and several new properties, methods, and objects
were added to Visual Basic in Microsoft Excel for Windows 95. For more information about these
changes and additions, select one of the items in the following list, or scroll through this topic to find
the information.

Changed Properties and Methods

AutoCorrect Support

OLE Document Properties Support

AutoComplete Support

Protection Control

Appearance Control

Miscellaneous

Changed Properties And Methods
The following properties and methods have been changed to support new Microsoft Excel features or
to enhance existing features.

Topic Description
GetOpenFileName Method The new multiSelect argument allows you to select more

than one filename in the Open dialog box.
Names Property Added to the Worksheet object to handle sheet-scoped

names.
PasteSpecial Method For the Range object, a new constant for the paste argument

allows you to paste range content and formatting but not
border formatting.

Protect Method The new userInterfaceOnly argument allows you to specify
protection from user changes while still allowing changes from
Visual Basic code.

SaveAs Method New arguments allow you to specify shared-mode access and
how change conflicts are resolved.

StatusBar Property Added to the ToolbarButton object.

Autocorrect Support
The following new object, properties, methods have been added to support automatic corrections.

Topic Description
AddReplacement Method Adds a row to the array of AutoCorrect replacements returned

by the ReplacementList method.
AutoCorrect Object Contains AutoCorrect attributes (capitalization of names of

days, correction of two initial capital letters, automatic
correction list, and so on).

AutoCorrect Property Returns an AutoCorrect object that represents the
AutoCorrect attributes.

CapitalizeNamesOfDays
Property

True if the first letters of names (and abbreviations) of days
are capitalized automatically.

DeleteReplacement Method Deletes a row from the array of AutoCorrect replacements
returned by the ReplacementList method.

ReplacementList Method Returns or sets the entire array or one row of the array of
AutoCorrect replacements.

ReplaceText Property True if text from column one of the array of AutoCorrect
replacements is automatically replaced with the text from
column two.

TwoInitialCapitals Property True if occurrences of two initial capital letters in a word are
corrected automatically.

OLE Document Properties Support
The following new properties, methods, and objects have been added to support OLE document
properties. Document properties allow Microsoft Excel to expose a standard set of built-in document
properties and additional custom document properties added by the user.

Topic Description
BuiltinDocumentProperties
Property

Returns a DocumentProperties collection object that
contains the built-in document properties for the object.

CustomDocumentProperties
Property

Returns a DocumentProperties collection object that
contains the custom document properties for the object.

DocumentProperties Object Represents the collection of document properties (either
built-in or custom).

DocumentProperty Object Represents a single document property.
LinkedToContent Property True if the value of a custom property is linked to the

contents of the document it's contained in; False if the
property is a static value.

LinkSource Property Specifies the source of a custom document property that's
linked to document contents.

Autocomplete Support
The following method and property have been added to support the AutoComplete feature.

Topic Description
AutoComplete Method Returns a completed string from the list, or returns an

empty string if there was no completion or if more than one
entry in the list matches.

EnableAutoComplete Property True if the AutoComplete feature is enabled.

Protection Control
The following properties have been added to allow you to control the user's ability to change toolbars,
filtered lists, PivotTables, and outlining.

Topic Description
EnableAutoFilter Property True if AutoFilter arrows are enabled when user-interface-only

protection is turned on.
EnableOutlining Property True if outlining symbols (show detail or hide detail) are

enabled when user-interface-only protection is turned on.
EnablePivotTable Property True if PivotTable controls and actions are enabled when

user-interface-only protection is turned on

Appearance Control
The following properties and methods have been added to control the appearance of the mouse
pointer, turn animated insertion and deletion on and off, create a password-entry edit box, and set the
background graphic for a worksheet or chart.

Topic Description
Cursor Property Sets the appearance of the mouse pointer in Microsoft Excel.
EnableAnimations Property True if animated insertion and deletion is enabled.
SetBackgroundPicture
Method

Sets the background graphic for a worksheet or chart.

Miscellaneous
Topic Description
AutoLoad Property True if the OLE object is automatically loaded when the

workbook that contains the object is opened.
CopyFromRecordset
Method

Copies the contents of a DAO Recordset object into cells on
a worksheet, beginning at the first cell of the specified range.

ListHeaderRows Property Returns the number of header rows for the specified range.
MoveAfterReturnDirection
Property

Controls the direction in which the active cell is moved after
the user presses ENTER.

NetworkTemplatesPath
Property

Returns the network path where templates are stored. If the
network path doesn't exist, the property returns an empty
string.

Post Method Posts the specified workbook to a Microsoft Exchange public
folder or a Lotus Notes database.

ProtectionMode Property True if user-interface-only protection is turned on.
RangeSelection Property Returns a Range object that represents the selected cells on

the worksheet in the specified window even if a graphic object
is active or selected on the worksheet.

RefersToRange Property Returns the Range object referred to by a Name object.
TemplatesPath Property Returns the local path where templates are stored.

RunAutoMacros Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthRunAutoMacrosC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthRunAutoMacrosX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthRunAutoMacrosA "}

Runs the Auto_Open, Auto_Close, Auto_Activate, or Auto_Deactivate macro attached to the
workbook. This method is included for backward compatibility. For new Visual Basic code, you should
use the Open, Close, Activate and Deactivate events instead of these macros.

Syntax
expression.RunAutoMacros(Which)
expression Required. An expression that returns a Workbook object.
Which Required. The macros to run. Can be one of the following XlRunAutoMacro constants:

Constant Description

xlAutoOpen Auto_Open macros
xlAutoClose Auto_Close macros
xlAutoActivate Auto_Activate macros
xlAutoDeactivate Auto_Deactivate macros

RunAutoMacros Method Example

This example opens the workbook Analysis.xls and then runs its Auto_Open macro.
Workbooks.Open "ANALYSIS.XLS"
ActiveWorkbook.RunAutoMacros xlAutoOpen
This example runs the Auto_Close macro for the active workbook and then closes the workbook.
With ActiveWorkbook

.RunAutoMacros xlAutoClose

.Close
End With

Activate Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlevtActivateC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlevtActivateX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlevtActivateA"}

Occurs when a workbook, worksheet, chart sheet, or embedded chart is activated.

Syntax
Private Sub object_Activate()
object Chart, Workbook, or Worksheet. For information about using events with the Chart object,

see Using Events with the Chart Object.

Remarks
When you switch between two windows showing the same workbook, the WindowActivate event
occurs, but the Activate event for the workbook doesn't occur.

This event doesn't occur when you create a new window.

Activate Event Example

This example sorts the range A1:A10 when the worksheet is activated.
Private Sub Worksheet_Activate()

Range("a1:a10").Sort Key1:=Range("a1"), Order:=xlAscending
End Sub

AddinInstall Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlevtAddinInstallC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlevtAddinInstallX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlevtAddinInstallA"}

Occurs when the workbook is installed as an add-in

Syntax
Private Sub Workbook_AddinInstall()

AddinInstall Event Example

This example adds a control to the standard toolbar when the workbook is installed as an add-in.
Private Sub Workbook_AddinInstall()

With Application.Commandbars("Standard").Controls.Add
.Caption = "The AddIn's menu item"
.OnAction = "'ThisAddin.xls'!Amacro"

End With End Sub
End Sub

AddinUninstall Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlevtAddinUninstallC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlevtAddinUninstallX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlevtAddinUninstallA"}

Occurs when the workbook is uninstalled as an add-in.

Syntax
Private Sub Workbook_AddinUninstall()

Remarks
The add-in doesn't automatically close when it's uninstalled.

AddinUninstall Event Example

This example minimizes Microsoft Excel when the workbook is uninstalled as an add-in.
Private Sub Workbook_AddinUninstall()

Application.WindowState = xlMinimized
End Sub

AfterRefresh Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlevtAfterRefreshC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlevtAfterRefreshX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlevtAfterRefreshA"}

Occurs after a query is completed or canceled.

Syntax
Private Sub QueryTable_AfterRefresh(Success As Boolean)
Success True if the query was completed successfully.

AfterRefresh Event Example

This example uses the Success argument to determine which section of code to run.

Private Sub QueryTable_AfterRefresh(Success As Boolean)
If Success

' Query completed successfully
Else

' Query failed or was cancelled
End If

End Sub

BeforeClose Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlevtBeforeCloseC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlevtBeforeCloseX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlevtBeforeCloseA"}

Occurs before the workbook closes. If the workbook has been changed, this event occurs before the
user is asked to save changes.

Syntax
Private Sub Workbook_BeforeClose(Cancel As Boolean)
Cancel False when the event occurs. If the event procedure sets this argument to True, the close

operation stops and the workbook is left open.

BeforeClose Event Example

This example always saves the workbook if it's been changed.
Private Sub Workbook_BeforeClose(Cancel as Boolean)

If Me.Saved = False Then Me.Save
End Sub

BeforeDoubleClick Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlevtBeforeDoubleClickC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlevtBeforeDoubleClickX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlevtBeforeDoubleClickA"}

Occurs when an embedded chart or worksheet is double-clicked, before the default double-click
action.

Syntax 1
Private Sub Worksheet_BeforeDoubleClick(ByVal Target As Range, Cancel As Boolean)
Syntax 2
Private Sub object_BeforeDoubleClick(ByVal ElementID As Long, ByVal Arg1 As Long, ByVal

Arg2 As Long, Cancel As Boolean)
object An object of type Chart declared with events in a class module. For more information, see

Using Events with the Chart Object.
Target The cell nearest to the mouse pointer when the double-click occurs.
Cancel False when the event occurs. If the event procedure sets this argument to True, the default

double-click action isn't performed when the procedure is finished.
ElementID The double-clicked object The meaning of Arg1 and Arg2 depends on the ElementID

value, as shown in the following table.
ElementID Arg1 Arg2
xlChartArea None None
xlChartTitle None None
xlPlotArea None None
xlLegend None None
xlFloor None None
xlWalls None None
xlCorners None None
xlDataTable None None
xlSeries SeriesIndex PointIndex
xlDataLabel SeriesIndex PointIndex
xlTrendline SeriesIndex TrendLineIndex
xlErrorBars SeriesIndex None
xlXErrorBars SeriesIndex None
xlYErrorBars SeriesIndex None
xlLegendEntry SeriesIndex None
xlLegendKey SeriesIndex None
xlAxis AxisIndex AxisType
xlMajorGridlines AxisIndex AxisType
xlMinorGridlines AxisIndex AxisType
xlAxisTitle AxisIndex AxisType
xlUpBars GroupIndex None
xlDownBars GroupIndex None
xlSeriesLines GroupIndex None
xlHiLoLines GroupIndex None
xlDropLines GroupIndex None
xlRadarAxisLabels GroupIndex None

xlShape ShapeIndex None
xlNothing None None

The following table describes the meaning of the arguments.
Argument Description
SeriesIndex Specifies the offset within the Series collection for a

specific series.
PointIndex Specifies the offset within the Points collection for a

specific point within a series. The value – 1 indicates
that all data points are selected.

TrendlineIndex Specifies the offset within the Trendlines collection for
a specific trendline within a series.

AxisIndex Specifies whether the axis is primary (0) or secondary
(1).

AxisType Specifies the axis type: category (0), value (1), or
series (2).

GroupIndex Specifies the offset within the ChartGroups collection
for a specific chart group.

ShapeIndex Specifies the offset within the Shapes collection for a
specific shape.

Remarks
The DoubleClick method doesn't cause this event to occur.

This event doesn't occur when the user double-clicks the border of a cell.

BeforeDoubleClick Event Example

This example overrides the default double-click behavior for the chart floor.
Private Sub Chart_BeforeDoubleClick(ByVal ElementID As Long, _

ByVal Arg1 As Long, ByVal Arg2 As Long, Cancel As Boolean)
If ElementID = xlFloor Then

Cancel = True
MsgBox "Chart formatting for this item is restricted."

End If
End Sub

BeforePrint Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlevtBeforePrintC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlevtBeforePrintX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlevtBeforePrintA"}

Occurs before the workbook (or anything in it) is printed.

Syntax
Private Sub Workbook_BeforePrint(Cancel As Boolean)
Cancel False when the event occurs. If the event procedure sets this argument to True, the

workbook isn't printed when the procedure is finished.

BeforePrint Event Example

This example recalculates all worksheets in the active workbook before printing anything.
Private Sub Workbook_BeforePrint(Cancel As Boolean)

For Each wk in Worksheets
wk.Calculate

Next
End Sub

BeforeRefresh Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlevtBeforeRefreshC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlevtBeforeRefreshX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlevtBeforeRefreshA"}

Occurs before any refreshes of the query table. This includes refreshes resulting from calling the
Refresh method, from the user's actions in the product, and from opening the workbook containing
the query table.

Syntax
Private Sub QueryTable_BeforeRefresh(Cancel As Boolean)
Cancel False when the event occurs. If the event procedure sets this argument to True, the refresh

doesn't occur when the procedure is finished.

BeforeRefresh Event Example

This example runs before the query table is refreshed.
Private Sub QueryTable_BeforeRefresh(Cancel As Boolean)
 a = MsgBox("Refresh Now?", vbYesNoCancel)
 If a = vbNo Then Cancel = True
 MsgBox Cancel
End Sub

BeforeRightClick Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlevtBeforeRightClickC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlevtBeforeRightClickX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlevtBeforeRightClickA"}

Occurs when an embedded chart or worksheet is right-clicked, before the default right-click action.

Syntax 1
Private Sub object_BeforeRightClick(Cancel As Boolean)
Syntax 2
Private Sub Worksheet_BeforeRightClick(ByVal Target As Range, Cancel As Boolean)
object An object of type Chart declared with events in a class module. For more information, see

Using Events with the Chart Object.
Target The cell nearest to the mouse pointer when the right-click occurs.
Cancel False when the event occurs. If the event procedure sets this argument to True, the default

right-click action doesn't occur when the procedure is finished.

Remarks
Like other worksheet events, this event doesn't occur if you right-click while the pointer is on a shape
or a command bar (a toolbar or menu bar).

BeforeRightClick Event Example

This example adds a new menu item to the shortcut menu for cells B1:B10.
Private Sub Worksheet_BeforeRightClick(ByVal Target As Range, _
 Cancel As Boolean)
 For Each icbc In Application.CommandBars("cell").Controls
 If icbc.Tag = "brccm" Then icbc.Delete
 Next icbc
 If Not Application.Intersect(Target, Range("b1:b10")) _
 Is Nothing Then
 With Application.CommandBars("cell").Controls _
 .Add(Type:=msoControlButton, before:=6, _
 temporary:=True)
 .Caption = "New Context Menu Item"
 .OnAction = "MyMacro"
 .Tag = "brccm"
 End With
 End If
End Sub

BeforeSave Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlevtBeforeSaveC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlevtBeforeSaveX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlevtBeforeSaveA"}

Occurs before the workbook is saved.

Syntax
Private Sub Workbook_BeforeSave(ByVal SaveAsUi As Boolean, Cancel As Boolean)
SaveAsUi True if the Save As dialog box will be displayed.
Cancel False when the event occurs. If the event procedure sets this argument to True, the

workbook isn't saved when the procedure is finished.

BeforeSave Event Example

This example prompts the user for a yes or no response before saving the workbook.
Private Sub Workbook_BeforeSave(ByVal SaveAsUI As Boolean, _

Cancel as Boolean)
a = MsgBox("Do you really want to save the workbook?", vbYesNo)
If a = vbNo Then Cancel = True

End Sub

Calculate Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlevtCalculateC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlevtCalculateX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlevtCalculateA"}

Chart object: Occurs after the chart plots new or changed data.

Worksheet object: Occurs after the worksheet is recalculated.

Syntax
Private Sub object_Calculate()
object Chart or Worksheet. For information about using events with the Chart object, see Using

Events with the Chart Object.

Calculate Event Example

This example adjusts the size of columns A through F whenever the worksheet is recalculated.
Private Sub Worksheet_Calculate()

Columns("A:F").AutoFit
End Sub

Change Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlevtChangeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlevtChangeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlevtChangeA"}

Occurs when cells on the worksheet are changed by the user or by an external link.

Syntax
Private Sub Worksheet_Change(ByVal Target As Range)
Target The changed range. Can be more than one cell.

Remarks
This event doesn't occur when cells change during a recalculation. Use the Calculate event to trap a
sheet recalculation.

Deleting cells doesn't trigger this event.

Change Event Example

This example changes the color of changed cells to blue.
Private Sub Worksheet_Change(ByVal Target as Range)

Target.Font.ColorIndex = 5
End Sub

Deactivate Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlevtDeactivateC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlevtDeactivateX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlevtDeactivateA"}

Occurs when the chart, worksheet, or workbook is deactivated.

Syntax
Private Sub object_Deactivate()
object Chart, Workbook, or Worksheet. For information about using events with the Chart object,

see Using Events with the Chart Object.

Deactivate Event Example

This example arranges all open windows when the workbook is deactivated.
Private Sub Workbook_Deactivate()

Application.Windows.Arrange xlArrangeStyleTiled
End Sub

DragOver Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlevtDragOverC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlevtDragOverX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlevtDragOverA"}

Occurs when a range of cells is dragged over a chart.

Syntax
Private Sub object_DragOver()
object An object of type Chart declared with events in a class module. For more information, see

Using Events with the Chart Object.

DragOver Event Example

This example displays the address of a range of cells dragged over a chart.
Private Sub Chart_DragOver()

MsgBox Selection.Address
End Sub

DragPlot Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlevtDragPlotC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlevtDragPlotX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlevtDragPlotA"}

Occurs when a range of cells is dragged and dropped on a chart.

Syntax
Private Sub object_DragPlot()
object An object of type Chart declared with events in a class module. For more information, see

Using Events with the Chart Object.

DragPlot Event Example

This example changes the chart type when a range of cells is dragged and dropped on a chart.
Private Sub Chart_DragPlot()

Me.ChartType = xlLine
End Sub

MouseDown Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlevtMouseDownC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlevtMouseDownX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlevtMouseDownA"}

Occurs when a mouse button is pressed while the pointer is over a chart.

Syntax
Private Sub object_MouseDown(ByVal Button As Long, ByVal Shift As Long, ByVal X As Long,

ByVal Y As Long)
object An object of type Chart declared with events in a class module. For more information, see

Using Events with the Chart Object.
Button The mouse button that was pressed. Can be one of the following XlMouseButton

constants: xlNoButton, xlPrimaryButton, xlSecondaryButton, or xlMiddleButton.
Shift The state of the SHIFT, CTRL, and ALT keys when the event occurred. Can be one of or a sum

of the following values.
Value Meaning
0 (zero) No keys
1 SHIFT key
2 CTRL key
4 ALT key

X The X coordinate of the mouse pointer in chart object client coordinates.
Y The Y coordinate of the mouse pointer in chart object client coordinates.

MouseDown Event Example

This example runs when a mouse button is pressed while the pointer is over a chart.
Private Sub Chart_MouseDown(ByVal Button As Long, _

ByVal Shift As Long, ByVal X As Long, ByVal Y As Long)
MsgBox "Button = " & Button & chr$(13) & _

"Shift = " & Shift & chr$(13) & _
"X = " & X & " Y = " & Y

End Sub

MouseMove Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlevtMouseMoveC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlevtMouseMoveX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlevtMouseMoveA"}

Occurs when the position of the mouse pointer changes over a chart.

Syntax
Private Sub object_MouseMove(ByVal X As Long, ByVal Y As Long)
object An object of type Chart declared with events in a class module. For more information, see

Using Events with the Chart Object.
X The X coordinate of the mouse pointer in chart object client coordinates.
Y The Y coordinate of the mouse pointer in chart object client coordinates.

MouseMove Event Example

This example runs when the position of the mouse pointer changes over a chart.
Private Sub Chart_MouseMove(ByVal X As Long, ByVal Y As Long)

MsgBox "X = " & X & " Y = " & Y
End Sub

MouseUp Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlevtMouseUpC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlevtMouseUpX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlevtMouseUpA"}

Occurs when a mouse button is released while the pointer is over a chart.

Syntax
Private Sub object_MouseUp(ByVal Button As Long, ByVal Shift As Long, ByVal X As Long,

ByVal Y As Long)
object An object of type Chart declared with events in a class module. For more information, see

Using Events with the Chart Object.
Button The mouse button that was released. Can be one of the following XlMouseButton

constants: xlNoButton, xlPrimaryButton, xlSecondaryButton, or xlMiddleButton.
Shift The state of the SHIFT, CTRL, and ALT keys when the event occurred. Can be one of or a sum

of the following values.
Value Meaning
0 (zero) No keys
1 SHIFT key
2 CTRL key
4 ALT key

X The X coordinate of the mouse pointer in chart object client coordinates.
Y The Y coordinate of the mouse pointer in chart object client coordinates.

MouseUp Event Example

This example runs when a mouse button is released over a chart.
Private Sub Chart_MouseUp(ByVal Button As Long, _

ByVal Shift As Long, ByVal X As Long, ByVal Y As Long)
MsgBox "Button = " & Button & chr$(13) & _

"Shift = " & Shift & chr$(13) & _
"X = " & X & " Y = " & Y

End Sub

NewSheet Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlevtNewSheetC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlevtNewSheetX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlevtNewSheetA"}

Occurs when a new sheet is created in the workbook.

Syntax
Private Sub Workbook_NewSheet(ByVal Sh As Object)
Sh The new sheet. Can be a Worksheet or Chart object.

NewSheet Event Example

This example moves new sheets to the end of the workbook.
Private Sub Workbook_NewSheet(ByVal Sh as Object)

Sh.Move After:= Sheets(Sheets.Count)
End Sub

NewWorkbook Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlevtNewWorkbookC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlevtNewWorkbookX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlevtNewWorkbookA"}

Occurs when a new workbook is created.

Syntax
Private Sub object_NewWorkbook(ByVal Wb As Workbook)
object An object of type Application declared with events in a class module. For more information,

see Using Events with the Application Object.
Wb The new workbook.

NewWorkbook Event Example

This example arranges open windows when a new workbook is created.
Private Sub App_NewWorkbook(ByVal Wb As Workbook)

Application.Windows.Arrange xlArrangeStyleTiled
End Sub

SeriesChange Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlevtSeriesChangeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlevtSeriesChangeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlevtSeriesChangeA"}

Occurs when the user changes the value of a chart data point.

Syntax
Private Sub object_SeriesChange(ByVal SeriesIndex As Long, ByVal PointIndex As Long)
object An object of type Chart declared with events in a class module. For more information, see

Using Events with the Chart Object.
SeriesIndex The offset within the Series collection for the changed series.
PointIndex The offset within the Points collection for the changed point.

SeriesChange Event Example

This example changes the point's border color when the user changes the point value.
Private Sub Chart_SeriesChange(ByVal SeriesIndex As Long, _

ByVal PointIndex As Long)
 Set p = Me.SeriesCollection(SeriesIndex).Points(PointIndex)
 p.Border.ColorIndex = 3
End Sub

SheetActivate Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlevtSheetActivateC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlevtSheetActivateX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlevtSheetActivateA"}

Occurs when any sheet is activated.

Syntax
Private Sub object_SheetActivate(ByVal Sh As Object)
object Application or Workbook.
Sh The activated sheet. Can be a Chart or Worksheet object.

SheetActivate Event Example

This example displays the name of each activated sheet.
Private Sub Workbook_SheetActivate(ByVal Sh As Object)

MsgBox Sh.Name
End Sub

SheetBeforeDoubleClick Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlevtSheetBeforeDoubleClickC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlevtSheetBeforeDoubleClickX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlevtSheetBeforeDoubleClickA"}

Occurs when any worksheet is double-clicked, before the default double-click action.

Syntax
Private Sub object_SheetBeforeDoubleClick(ByVal Sh As Object, ByVal Target As Range, ByVal

Cancel As Boolean)
object Application or Workbook. For more information about using events with the Application

object, see Using Events with the Application Object.
Sh A Worksheet object that represents the sheet.
Target The cell nearest to the mouse pointer when the double-click occurred.
Cancel False when the event occurs. If the event procedure sets this argument to True, the default

double-click action isn't performed when the procedure is finished.

Remarks
This event doesn't occur on chart sheets.

SheetBeforeDoubleClick Event Example

This example disables the default double-click action.
Private Sub Workbook_SheetBeforeDoubleClick(ByVal Sh As Object, _

ByVal Target As Range, ByVal Cancel As Boolean)
Cancel = True

End Sub

SheetBeforeRightClick Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlevtSheetBeforeRightClickC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlevtSheetBeforeRightClickX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlevtSheetBeforeRightClickA"}

Occurs when any worksheet is right-clicked, before the default right-click action.

Syntax
Private Sub object_SheetBeforeRightClick(ByVal Sh As Object, ByVal Target As Range, ByVal

Cancel As Boolean)
object Application or Workbook. For more information about using events with the Application

object, see Using Events with the Application Object.
Sh A Worksheet object that represents the sheet.
Target The cell nearest to the mouse pointer when the right-click occurred.
Cancel False when the event occurs. If the event procedure sets this argument to True, the default

right-click action isn't performed when the procedure is finished.

Remarks
This event doesn't occur on chart sheets.

SheetBeforeRightClick Event Example

This example disables the default right-click action. For another example, see the BeforeRightClick
event example.
Private Sub Workbook_SheetBeforeRightClick(ByVal Sh As Object, _

ByVal Target As Range, ByVal Cancel As Boolean)
Cancel = True

End Sub

SheetCalculate Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlevtSheetCalculateC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlevtSheetCalculateX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlevtSheetCalculateA"}

Occurs after any worksheet is recalculated or after any changed data is plotted on a chart.

Syntax
Private Sub object_SheetCalculate(ByVal Sh As Object)
object Application or Workbook. For more information about using events with the Application

object, see Using Events with the Application Object.
Sh The sheet. Can be a Chart or Worksheet object.

SheetCalculate Event Example

This example sorts the range A1:A100 on worksheet one when any sheet in the workbook is
calculated.
Private Sub Workbook_SheetCalculate(ByVal Sh As Object)

With Worksheets(1)
.Range("a1:a100").Sort Key1:=.Range("a1")

End With
End Sub

SheetChange Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlevtSheetChangeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlevtSheetChangeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlevtSheetChangeA"}

Occurs when cells in any worksheet are changed by the user or by an external link.

Syntax
Private Sub object_SheetChange(ByVal Sh As Object, ByVal Source As Range)
object Application or Workbook. For more information about using events with the Application

object, see Using Events with the Application Object.
Sh A Worksheet object that represents the sheet.
Source The changed range.

Remarks
This event doesn't occur on chart sheets.

SheetChange Event Example

This example runs when any worksheet is changed.
Private Sub Workbook_SheetChange(ByVal Sh As Object, _

ByVal Source As Range)
' runs when a sheet is changed

End Sub

SheetDeactivate Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlevtSheetDeactivateC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlevtSheetDeactivateX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlevtSheetDeactivateA"}

Occurs when any sheet is deactivated.

Syntax
Private Sub object_SheetDeactivate(ByVal Sh As Object)
object Application or Workbook.
Sh The sheet. Can be a Chart or Worksheet object.

SheetDeactivate Event Example

This example displays the name of each deactivated sheet.
Private Sub Workbook_SheetDeactivate(ByVal Sh As Object)

MsgBox Sh.Name
End Sub

WorkbookActivate Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlevtWorkbookActivateC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlevtWorkbookActivateX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlevtWorkbookActivateA"}

Occurs when any workbook is activated.

Syntax
Private Sub app_WorkbookActivate(ByVal Wb As Workbook)
app An object of type Application declared with events in a class module. For more information,

see Using Events with the Application Object.
Wb The activated workbook.

WorkbookActivate Event Example

This example arranges open windows when a workbook is activated.
Private Sub App_WorkbookActivate(ByVal Wb As Workbook)

Application.Windows.Arrange xlArrangeStyleTiled
End Sub

WorkbookAddinInstall Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlevtWorkbookAddinInstallC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlevtWorkbookAddinInstallX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlevtWorkbookAddinInstallA"}

Occurs when a workbook is installed as an add-in.

Syntax
Private Sub object_WorkbookAddinInstall(ByVal Wb As Workbook)
object An object of type Application declared with events in a class module. For more information,

see Using Events with the Application Object.
Wb The installed workbook.

WorkbookAddinInstall Event Example

This example maximizes the Microsoft Excel window when a workbook is installed as an add-in.
Private Sub App_WorkbookAddinInstall(ByVal Wb As Workbook)

Application.WindowState = xlMaximized
End Sub

WorkbookAddinUninstall Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlevtWorkbookAddinUninstallC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlevtWorkbookAddinUninstallX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlevtWorkbookAddinUninstallA"}

Occurs when any add-in workbook is uninstalled.

Syntax
Private Sub object_WorkbookAddinUninstall(ByVal Wb As Workbook)
object An object of type Application declared with events in a class module. For more information,

see Using Events with the Application Object.
Wb The uninstalled workbook.

WorkbookAddinUninstall Event Example

This example minimizes the Microsoft Excel window when a workbook is installed as an add-in.
Private Sub App_WorkbookAddinUninstall(ByVal Wb As Workbook)

Application.WindowState = xlMinimized
End Sub

WorkbookBeforeClose Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlevtWorkbookBeforeCloseC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlevtWorkbookBeforeCloseX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlevtWorkbookBeforeCloseA"}

Occurs immediately before any open workbook closes.

Syntax
Private Sub object_WorkbookBeforeClose(ByVal Wb As Workbook, ByVal Cancel As Boolean)
object An object of type Application declared with events in a class module. For more information,

see Using Events with the Application Object.
Wb The workbook that's being closed.
Cancel False when the event occurs. If the event procedure sets this argument to True, the

workbook doesn't close when the procedure is finished.

WorkbookBeforeClose Event Example

This example prompts the user for a yes or no response before closing any workbook.
Private Sub App_WorkbookBeforeClose(ByVal Wb as Workbook, _

Cancel as Boolean)
a = MsgBox("Do you really want to close the workbook?", vbYesNo)
If a = vbNo Then Cancel = True

End Sub

WorkbookBeforePrint Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlevtWorkbookBeforePrintC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlevtWorkbookBeforePrintX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlevtWorkbookBeforePrintA"}

Occurs before any open workbook is printed.

Syntax
Private Sub object_WorkbookBeforePrint(ByVal Wb As Workbook, ByVal Cancel As Boolean)
object An object of type Application declared with events in a class module. For more information,

see Using Events with the Application Object.
Wb The workbook.
Cancel False when the event occurs. If the event procedure sets this argument to True, the

workbook isn't printed when the procedure is finished.

WorkbookBeforePrint Event Example

This example recalculates all worksheets in the workbook before printing anything.
Private Sub App_WorkbookBeforePrint(ByVal Wb As Workbook, _

Cancel As Boolean)
For Each wk in Wb.Worksheets

wk.Calculate
Next

End Sub

WorkbookBeforeSave Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlevtWorkbookBeforeSaveC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlevtWorkbookBeforeSaveX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlevtWorkbookBeforeSaveA"}

Occurs before any open workbook is saved.

Syntax
Private Sub object_WorkbookBeforeSave(ByVal Wb As Workbook, ByVal SaveAsUi As Boolean,

ByVal Cancel As Boolean)
object An object of type Application declared with events in a class module. For more information,

see Using Events with the Application Object.
Wb The workbook.
SaveAsUi True if the Save As dialog box will be displayed.
Cancel False when the event occurs. If the event procedure sets this argument to True, the

workbook isn't saved when the procedure is finished.

WorkbookBeforeSave Event Example

This example prompts the user for a yes or no response before saving any workbook.
Private Sub App_WorkbookBeforeSave(ByVal Wb As Workbook, _

ByVal SaveAsUI As Boolean, Cancel as Boolean)
a = MsgBox("Do you really want to save the workbook?", vbYesNo)
If a = vbNo Then Cancel = True

End Sub

WorkbookDeactivate Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlevtWorkbookDeactivateC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlevtWorkbookDeactivateX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlevtWorkbookDeactivateA"}

Occurs when any open workbook is deactivated.

Syntax
Private Sub object_WorkbookDeactivate(ByVal Wb As Workbook)
object An object of type Application declared with events in a class module. For more information,

see Using Events with the Application Object.
Wb The workbook.

WorkbookDeactivate Event Example

This example arranges all open windows when a workbook is deactivated.
Private Sub App_WorkbookDeactivate(ByVal Wb As Workbook)

Application.Windows.Arrange xlArrangeStyleTiled
End Sub

WorkbookNewSheet Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlevtWorkbookNewSheetC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlevtWorkbookNewSheetX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlevtWorkbookNewSheetA"}

Occurs when a new sheet is created in any open worbook.

Syntax
Private Sub object_WorkbookNewSheet(ByVal Wb As Workbook, ByVal Sh As Object)
object An object of type Application declared with events in a class module. For more information,

see Using Events with the Application Object.
Wb The workbook.
Sh The new sheet.

WorkbookNewSheet Event Example

This example moves the new sheet to the end of the workbook.
Private Sub App_WorkbookNewSheet(ByVal Wb As Workbook, _

ByVal Sh As Object)
Sh.Move After:=Wb.Sheets(Wb.Sheets.Count)

End Sub

WorkbookOpen Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlevtWorkbookOpenC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlevtWorkbookOpenX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlevtWorkbookOpenA"}

Occurs when a workbook is opened.

Syntax
Private Sub object_WorkbookOpen(ByVal Wb As Workbook)
object An object of type Application declared with events in a class module. For more information,

see Using Events with the Application Object.
Wb The workbook.

WorkbookOpen Event Example

This example arranges all open windows when a workbook is opened.
Private Sub App_WorkbookOpen(ByVal Wb As Workbook)

Application.Windows.Arrange xlArrangeStyleTiled
End Sub

Using Events with the Application Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlhowUsingAppEventsC"}

Before you can use events with the Application object, you must create a new class module and
declare an object of type Application with events. For example, assume that a new class module is
created and called EventClassModule. The new class module contains the following code.
Public WithEvents App As Application
After the new object has been declared with events, it appears in the Object drop-down list box in the
class module, and you can write event procedures for the new object. (When you select the new
object in the Object box, the valid events for that object are listed in the Procedure drop-down list
box.)

Before the procedures will run, however, you must connect the declared object in the class module
with the Application object. You can do this with the following code from any module.
Dim X As New EventClassModule

Sub InitializeApp()
Set X.App = Application

End Sub
After you run the InitializeApp procedure, the App object in the class module points to the Microsoft
Excel Application object, and the event procedures in the class module will run when the events
occur.

GotFocus Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlevtGotFocusC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlevtGotFocusX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlevtGotFocusA"}

Occurs when an ActiveX control gets input focus.

Syntax
Private Sub object_GotFocus()
object The name of an ActiveX control.

GotFocus Event Example

This example runs when ListBox1 gets the focus.
Private Sub ListBox1_GotFocus()

' runs when list box gets the focus
End Sub

LostFocus Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlevtLostFocusC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlevtLostFocusX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlevtLostFocusA"}

Occurs when an ActiveX control loses input focus.

Syntax
Private Sub object_LostFocus()
object The name of an ActiveX control.

LostFocus Event Example

This example runs when ListBox1 loses the focus.
Private Sub ListBox1_LostFocus()

' runs when list box loses the focus
End Sub

Open Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlevtOpenC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlevtOpenX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlevtOpenA"}

Occurs when the workbook is opened.

Syntax
Private Sub Workbook_Open()

Open Event Example

This example maximizes Microsoft Excel whenever the workbook is opened.
Private Sub Workbook_Open()

Application.WindowState = xlMaximized
End Sub

Resize Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlevtResizeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlevtResizeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlevtResizeA"}

Occurs when the chart is resized.

Syntax
Private Sub object_Resize()
object Chart or an object of type Chart declared with events in a class module. For more

information, see Using Events with Embedded Charts.

Resize Event Example

This example keeps the upper-left corner of the chart at the same location when the chart is resized.
Private Sub myChartClass_Resize()
 With ActiveChart.Parent
 .Left = 100
 .Top = 150
 End With
End Sub

Select Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlevtSelectC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlevtSelectX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlevtSelectA"}

Occurs when a chart element is selected.

Syntax
Private Sub object_Select(ByVal ElementID As Long, ByVal Arg1 As Long, ByVal Arg2 As Long)
object Chart or an object of type Chart declared with events in a class module. For more

information, see Using Events with Embedded Charts.
ElementID, Arg1, Arg2 The selected chart element. For more information about these arguments,

see the BeforeDoubleClick event.

Select Event Example

This example displays a message box if the user selects the chart title.
Private Sub Chart_Select(ByVal ElementID As Long, _

ByVal Arg1 As Long, ByVal Arg2 As Long)
If ElementId = xlChartTitle Then

MsgBox "please don't change the chart title"
End If

End Sub

SelectionChange Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlevtSelectionChangeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlevtSelectionChangeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlevtSelectionChangeA"}

Occurs when the selection changes on a worksheet.

Syntax
Private Sub Worksheet_SelectionChange(ByVal Target As Excel.Range)
Target The new selected range.

SelectionChange Event Example

This example scrolls through the workbook window until the selection is in the upper-left corner of the
window.
Private Sub Worksheet_SelectionChange(ByVal Target As Range)

With ActiveWindow
.ScrollRow = Target.Row
.ScrollColumn = Target.Column

End Sub

SheetSelectionChange Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlevtSheetSelectionChangeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlevtSheetSelectionChangeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlevtSheetSelectionChangeA"}

Occurs when the selection changes on any worksheet (doesn't occur if the selection is on a chart
sheet).

Syntax
Private Sub object_SheetSelectionChange(ByVal Sh As Object, ByVal Target As Excel.Range)
object Application or Workbook. For more information about using events with the Application

object, see Using Events with the Application Object.
Sh The worksheet that contains the new selection.
Target The new selected range.

SheetSelectionChange Event Example

This example displays the sheet name and address of the selected range in the status bar.
Private Sub Workbook_SheetSelectionChange(ByVal Sh As Object, _

ByVal Target As Excel.Range)
Application.StatusBar = Sh.Name & ":" & Target.Address

End Sub

WindowActivate Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlevtWindowActivateC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlevtWindowActivateX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlevtWindowActivateA"}

Occurs when any workbook window is activated.

Syntax
Private Sub object_WindowActivate(ByVal Wb As Excel.Workbook, ByVal Wn As

Excel.Window)
object Application or Workbook. For more information about using events with the Application

object, see Using Events with the Application Object.
Wb Used only with the Application object. The workbook displayed in the activated window.
Wn The activated window.

WindowActivate Event Example

This example maximizes any workbook window when it's activated.
Private Sub Workbook_WindowActivate(ByVal Wn As Excel.Window)

Wn.WindowState = xlMaximized
End Sub

WindowDeactivate Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlevtWindowDeactivateC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlevtWindowDeactivateX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlevtWindowDeactivateA"}

Occurs when any workbook window is deactivated.

Syntax
Private Sub object_WindowDeactivate(ByVal Wb As Excel.Workbook, ByVal Wn As

Excel.Window)
object Application or Workbook. For more information about using events with the Application

object, see Using Events with the Application Object.
Wb Used only with the Application object. The workbook displayed in the deactivated window.
Wn The deactivated window.

WindowDeactivate Event Example

This example minimizes any workbook window when it's deactivated.
Private Sub Workbook_WindowDeactivate(ByVal Wn As Excel.Window)

Wn.WindowState = xlMinimized
End Sub

WindowResize Event
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlevtWindowResizeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlevtWindowResizeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlevtWindowResizeA"}

Occurs when any workbook window is resized.

Syntax
Private Sub object_WindowResize(ByVal Wb As Excel.Workbook, ByVal Wn As Excel.Window)
object Application or Workbook. For more information about using events with the Application

object, see Using Events with the Application Object.
Wb Used only with the Application object. The workbook displayed in the resized window.
Wn The resized window.

WindowResize Event Example

This example runs when any workbook window is resized.
Private Sub Workbook_WindowResize(ByVal Wn As Excel.Window)

Application.StatusBar = Wn.Caption & " resized"
End Sub

Using Events with Embedded Charts
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlhowUsingChartEventsC"}

Events are enabled for chart sheets by default. Before you can use events with a Chart object that
represents an embedded chart, you must create a new class module and declare an object of type
Chart with events. For example, assume that a new class module is created and named
"EventClassModule." The new class module contains the following code.
Public WithEvents myChartClass As Chart
After the new object has been declared with events, it appears in the Object drop-down list box in the
class module, and you can write event procedures for this object. (When you select the new object in
the Object box, the valid events for that object are listed in the Procedure drop-down list box.)

Before your procedures will run, however, you must connect the declared object in the class module
with the embedded chart. You can do this by using the following code from any module.
Dim myClassModule As New EventClassModule

Sub InitializeChart()
Set myClassModule.myChartClass = _

Worksheets(1).ChartObjects(1).Chart
End Sub
After you run the InitializeChart procedure, the myChartClass object in the class module points to
embedded chart one on worksheet one, and the event procedures in the class module will run when
the events occur.

Looping through a range of cells
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlhowHowToLoopThroughARangeOfCellsC"}

When using Visual Basic, you often need to run the same block of statements on each cell in a range
of cells. To do this, you combine a looping statement and one or more methods to identify each cell,
one at a time, and run the operation.

One way to loop through a range is to use the For...Next loop with the Cells property. Using the Cells
property, you can substitute the loop counter (or other variables or expressions) for the cell index
numbers. In the following example, the variable counter is substituted for the row index. The
procedure loops through the range C1:C20, setting to 0 (zero) any number whose absolute value is
less than 0.01.
Sub RoundToZero1()

For counter = 1 To 20
Set curCell = Worksheets("Sheet1").Cells(counter, 3)
If Abs(curCell.Value) < 0.01 Then curCell.Value = 0

Next counter
End Sub
Another easy way to loop through a range is to use a For Each...Next loop with the collection of cells
returned by the Range method. Visual Basic automatically sets an object variable for the next cell
each time the loop runs. The following procedure loops through the range A1:D10, setting to 0 (zero)
any number whose absolute value is less than 0.01.
Sub RoundToZero2()

For Each c In Worksheets("Sheet1").Range("A1:D10").Cells
If Abs(c.Value) < 0.01 Then c.Value = 0

Next
End Sub
If you don't know the boundaries of the range you want to loop through, you can use the
CurrentRegion property to return the range that surrounds the active cell. For example, the following
procedure, when run from a worksheet, loops through the range that surrounds the active cell, setting
to 0 (zero) any number whose absolute value is less than 0.01.
Sub RoundToZero3()

For Each c In ActiveCell.CurrentRegion.Cells
If Abs(c.Value) < 0.01 Then c.Value = 0

Next
End Sub

Creating a new workbook
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlhowCreatinganewworkbookC"}

To create a new workbook in Visual Basic, you use the Add method. The following procedure creates
a new workbook. Microsoft Excel automatically names the workbook BookN, where N is the next
available number. The new workbook becomes the active workbook.
Sub AddOne()

Workbooks.Add
End Sub
A better way to create a new workbook is to assign it to an object variable. In the following example,
the Workbook object returned by the Add method is assigned to an object variable, newBook. Next,
several properties of newBook are set. You can easily control the new workbook using the object
variable.
Sub AddNew()
Set newBook = Workbooks.Add

With newBook
.Title = "1995 Sales"
.Subject = "Sales"
.SaveAs filename:="95Sales.xls"

End With
End Sub

Opening a workbook
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlhowOpeningaworkbookC"}

When you open a workbook using the Open method, it becomes a member of the Workbooks
collection. The following procedure opens a workbook named MyBook.xls located in the folder named
"MyFolder" on drive C.
Sub OpenUp()

Workbooks.Open("C:\MyFolder\MyBook.xls")
End Sub

Activating a workbook
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlhowActivatingaworkbookC"}

Activating a workbook using the Activate method puts the workbook in the active window. The
following procedure activates the open workbook named "MyBook.xls."
Sub MakeActive()

Workbooks("MyBook.xls").Activate
End Sub

Referring to sheets by name
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlhowReferringtosheetsbynameC"}

You can identify sheets by name using the Worksheets and Charts properties. The following
statements activate various sheets in the active workbook.
Worksheets("Sheet1").Activate
Charts("Chart1").Activate
DialogSheets("Dialog1").Activate
You can use the Sheets property to return a worksheet, chart, module, or dialog sheet; the Sheets
collection contains all of these. The following example activates the sheet named "Chart1" in the
active workbook.
Sub ActivateChart()

Sheets("Chart1").Activate
End Sub
Note Charts embedded in a worksheet are members of the ChartObjects collection, whereas
charts that exist on their own sheets belong to the Charts collection.

Referring to sheets by index number
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlhowReferringtosheetsbyindexnumberC"}

An index number is a sequential number assigned to a sheet, based on the position of its sheet tab
(counting from the left) among sheets of the same type. The following procedure uses the
Worksheets property to activate worksheet one in the active workbook.
Sub FirstOne()

Worksheets(1).Activate
End Sub
If you want to work with all types of sheets (worksheets, charts, modules, and dialog sheets), use the
Sheets property. The following procedure activates sheet four in the workbook.
Sub FourthOne()

Sheets(4).Activate
End Sub
Note The index order can change if you move, add, or delete sheets.

Referring to more than one sheet
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlhowReferringtomorethanonesheetC;vafctArray "}

You use the Array function to identify a group of sheets. The following example selects three sheets
in the active workbook.
Sub Several()

Worksheets(Array("Sheet1", "Sheet2", "Sheet4")).Select
End Sub

How to reference cells and ranges
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlhowHowtoreferencecellsandrangesC"}

A common task when using Visual Basic is to specify a cell or range of cells and then do something
with it, such as enter a formula or change the format. You can usually do this in one statement that
identifies the range and also changes a property or applies a method.

A Range object in Visual Basic can be either a single cell or a range of cells. The following topics
show the most common ways to identify and work with Range objects.

Which way do you want to reference cells?

 Referring to cells and ranges using A1 notation
 Referring to cells using index numbers
 Referring to rows and columns
 Referring to cells using shortcut notation
 Referring to named ranges
 Referring to cells relative to other cells
 Referring to cells using a Range object
 Referring to all the cells on the worksheet
 Referring to multiple ranges

Referring to cells and ranges using A1 notation
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlhowReferringtocellsandrangesusingtheA1notationC"}

You can refer to a cell or range of cells in the A1 reference style by using the Range method. The
following Sub procedure changes the format of cells A1:D5 to bold.
Sub FormatRange()

Workbooks("Book1").Sheets("Sheet1").Range("A1:D5") _
.Font.Bold = True

End Sub
The following table illustrates some A1-style references using the Range method.

Reference Meaning
Range("A1") Cell A1
Range("A1:B5") Cells A1 through B5
Range("C5:D9,G9:H16") A multiple-area selection
Range("A:A") Column A
Range("1:1") Row one
Range("A:C") Columns A through C
Range("1:5") Rows one through five
Range("1:1,3:3,8:8") Rows one, three, and eight
Range("A:A,C:C,F:F") Columns A, C, and F

Referring to cells using index numbers
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlhowReferringtocellsbyindexnumberC"}

You can use the Cells property to refer to a single cell by using row and column index numbers. This
property returns a Range object that represents a single cell. In the following example, Cells(6,1)
returns cell A6 on Sheet1. The Value property is then set to 10.
Sub EnterValue()

Worksheets("Sheet1").Cells(6, 1).Value = 10
End Sub
The Cells property works well for looping through a range of cells, because you can substitute
variables for the index numbers, as shown in the following example.
Sub CycleThrough()

Dim counter As Integer
For counter = 1 To 20

Worksheets("Sheet1").Cells(counter, 3).Value = counter
Next counter

End Sub
Note If you want to change the properties of or apply a method to a range of cells all at once, use
the Range property. For more information, see Referring to cells using A1 notation.

Referring to rows and columns
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlhowReferringtorowsandcolumnsC"}

Use the Rows property or the Columns property to work with entire rows or columns. These
properties return a Range object that represents a range of cells. In the following example, Rows(1)
returns row one on Sheet1. The Bold property of the Font object for the range is then set to True.
Sub RowBold()

Worksheets("Sheet1").Rows(1).Font.Bold = True
End Sub
The following table illustrates some row and column references using the Rows and Columns
properties.

Reference Meaning
Rows(1) Row one
Rows All the rows on the worksheet
Columns(1) Column one
Columns("A") Column one
Columns All the columns on the worksheet

To work with several rows or columns at the same time, create an object variable and use the Union
method, combining multiple calls to the Rows or Columns property. The following example changes
the format of rows one, three, and five on worksheet one in the active workbook to bold.
Sub SeveralRows()

Worksheets("Sheet1").Activate
Dim myUnion As Range
Set myUnion = Union(Rows(1), Rows(3), Rows(5))
myUnion.Font.Bold = True

End Sub

Referring to cells using shortcut notation
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlhowReferringtocellsusingshortcutnotationC"}

You can use either the A1 reference style or a named range within brackets as a shortcut for the
Range property. You don't have to type the word "Range" or use quotation marks, as shown in the
following examples.
Sub ClearRange()

Worksheets("Sheet1").[A1:B5].ClearContents
End Sub

Sub SetValue()
[MyRange].Value = 30

End Sub

Referring to named ranges
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlhowReferringtonamedrangesC"}

Ranges are easier to identify by name than by A1 notation. To name a selected range, click the name
box at the left end of the formula bar, type a name, and then press ENTER.

Referring to a named range
The following example refers to the range named "MyRange" in the workbook named "MyBook.xls."
Sub FormatRange()

Range("MyBook.xls!MyRange").Font.Italic = True
End Sub
The following example refers to the worksheet-specific range named "Sheet1!Sales" in the workbook
named "Report.xls."
Sub FormatSales()

Range("[Report.xls]Sheet1!Sales").BorderAround weight:=xlthin
End Sub
To select a named range, use the GoTo method, which activates the workbook and the worksheet
and then selects the range.
Sub ClearRange()

Application.Goto Reference:="MyBook.xls!MyRange"
Selection.ClearContents

End Sub
The following example shows how the same procedure would be written for the active workbook.
Sub ClearRange()

Application.Goto Reference:="MyRange"
Selection.ClearContents

End Sub

Looping through cells in a named range
The following example loops through each cell in a named range by using a For Each...Next loop. If
the value of any cell in the range exceeds the value of limit, the cell color is changed to yellow.

Sub ApplyColor()
Const limit As Integer = 25
For Each c In Range("MyRange")

If c.Value > limit Then
c.Interior.ColorIndex = 27

End If
Next c

End Sub

Referring to cells relative to other cells
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlhowReferringtocellsrelativetoothercellsC"}

A common way to work with a cell relative to another cell is to use the Offset property. In the following
example, the contents of the cell that's one row down and three columns over from the active cell on
the active worksheet are formatted as double-underlined.
Sub Underline()

ActiveCell.Offset(1, 3).Font.Underline = xlDouble
End Sub
Note You can record macros that use the Offset property instead of absolute references. On the
Tools menu, point to Record Macro, and then click Use Relative References.

To loop through a range of cells, use a variable with the Cells property in a loop. The following
example fills the first 20 cells in the third column with values between 5 and 100, incremented by 5.
The variable counter is used as the row index for the Cells property.

Sub CycleThrough()
Dim counter As Integer
For counter = 1 To 20

Worksheets("Sheet1").Cells(counter, 3).Value = counter * 5
Next counter

End Sub

Referring to cells using a Range object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlhowReferringtocellsusingarangeobjectC;vastmDim "}

If you set an object variable to a Range object, you can easily manipulate the range by using the
variable name.

The following procedure creates the object variable myRange and then assigns the variable to range
A1:D5 on Sheet1 in the active workbook. Subsequent statements modify properties of the range by
substituting the variable name for the range object.
Sub Random()

Dim myRange As Range
Set myRange = Worksheets("Sheet1").Range("A1:D5")
myRange.Formula = "=RAND()"
myRange.Font.Bold = True

End Sub

Referring to all the cells on the worksheet
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlhowReferringtoallthecellsontheworksheetC"}

When you apply the Cells property to a worksheet without specifying an index number, the method
returns a Range object that represents all the cells on the worksheet. The following Sub procedure
clears the contents from all the cells on Sheet1 in the active workbook.
Sub ClearSheet()

Worksheets("Sheet1").Cells.ClearContents
End Sub

Referring to multiple ranges
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlhowReferringtomultiplerangesC"}

Using the appropriate method, you can easily refer to multiple ranges. Use the Range and Union
methods to refer to any group of ranges; use the Areas property to refer to the group of ranges
selected on a worksheet.

Using the Range property
You can refer to multiple ranges with the Range property by putting commas between two or more
references. The following example clears the contents of three ranges on Sheet1.
Sub ClearRanges()

Worksheets("Sheet1").Range("C5:D9,G9:H16,B14:D18").ClearContents
End Sub
Named ranges make using the Range property to work with multiple ranges easier. The following
example works when all three named ranges are on the same sheet.
Sub ClearNamed()

Range("MyRange, YourRange, HisRange").ClearContents
End Sub

Using the Union method
You can combine multiple ranges into one Range object using the Union method. The following
example creates a Range object called myMultipleRange, defines it as the ranges A1:B2 and
C3:D4, and then formats the combined ranges as bold.
Sub MultipleRange()

Dim r1, r2, myMultipleRange As Range
Set r1 = Sheets("Sheet1").Range("A1:B2")
Set r2 = Sheets("Sheet1").Range("C3:D4")
Set myMultipleRange = Union(r1, r2)
myMultipleRange.Font.Bold = True

End Sub

Using the Areas property
You can use the Areas property to refer to the selected range or to the collection of ranges in a
multiple-area selection. The following procedure counts the areas in the selection. If there is more
than one area, a warning message is displayed.
Sub FindMultiple()

If Selection.Areas.Count > 1 Then
MsgBox "Cannot do this to a multiple selection."

End If
End Sub

Selecting and activating cells
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlhowSelectingandactivatingcellsC"}

When you work with Microsoft Excel, you usually select a cell or cells and then perform an action,
such as formatting the cells or entering values in them. In Visual Basic, it is usually not necessary to
select cells before modifying them.

For example, if you want to enter a formula in cell D6 using Visual Basic, you don't need to select the
range D6. You just need to return the Range object and then set the Formula property to the formula
you want, as shown in the following example.
Sub EnterFormula()

Worksheets("Sheet1").Range("D6").Formula = "=SUM(D2:D5)"
End Sub
For examples of using other methods to control cells without selecting them, see How to reference
cells and ranges.

Using the Select method and the Selection property
The Select method activates sheets and objects on sheets; the Selection property returns an object
that represents the current selection on the active sheet in the active workbook. Before you can use
the Selection property successfully, you must activate a workbook, activate or select a sheet, and
then select a range (or other object) using the Select method.

The macro recorder will often create a macro that uses the Select method and the Selection
property. The following Sub procedure was created using the macro recorder, and it illustrates how
Select and Selection work together.
Sub Macro1()

Sheets("Sheet1").Select
Range("A1").Select
ActiveCell.FormulaR1C1 = "Name"
Range("B1").Select
ActiveCell.FormulaR1C1 = "Address"
Range("A1:B1").Select
Selection.Font.Bold = True

End Sub
The following example accomplishes the same task without activating or selecting the worksheet or
cells.
Sub Labels()

With Worksheets("Sheet1")
.Range("A1") = "Name"
.Range("B1") = "Address"
.Range("A1:B1").Font.Bold = True

End With
End Sub

Selecting cells on the active worksheet
If you use the Select method to select cells, be aware that Select works only on the active worksheet.
If you run your Sub procedure from the module, the Select method will fail unless your procedure
activates the worksheet before using the Select method on a range of cells. For example, the
following procedure copies a row from Sheet1 to Sheet2 in the active workbook.
Sub CopyRow()

Worksheets("Sheet1").Rows(1).Copy
Worksheets("Sheet2").Select

Worksheets("Sheet2").Rows(1).Select
Worksheets("Sheet2").Paste

End Sub

Activating a cell within a selection
You can use the Activate method to activate a cell within a selection. There can be only one active
cell, even when a range of cells is selected. The following procedure selects a range and then
activates a cell within the range without changing the selection.
Sub MakeActive()

Worksheets("Sheet1").Activate
Range("A1:D4").Select
Range("B2").Activate

End Sub

Working with the active cell
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlhowWorkingwiththeactivecellC"}

The ActiveCell property returns a Range object that represents the cell that is active. You can apply
any of the properties or methods of a Range object to the active cell, as in the following example.
Sub SetValue()

Worksheets("Sheet1").Activate
ActiveCell.Value = 35

End Sub
Note You can work with the active cell only when the worksheet that it is on is the active sheet.

Moving the active cell
You can use the Activate method to designate which cell is the active cell. For example, the following
procedure makes B5 the active cell and then formats it as bold.
Sub SetActive()

Worksheets("Sheet1").Activate
Worksheets("Sheet1").Range("B5").Activate
ActiveCell.Font.Bold = True

End Sub
Note To select a range of cells, use the Select method. To make a single cell the active cell, use
the Activate method.

You can use the Offset property to move the the active cell. The following procedure inserts text into
the active cell in the selected range and then moves the active cell one cell to the right without
changing the selection.
Sub MoveActive()

Worksheets("Sheet1").Activate
Range("A1:D10").Select
ActiveCell.Value = "Monthly Totals"
ActiveCell.Offset(0, 1).Activate

End Sub

Selecting the cells surrounding the active cell
The CurrentRegion property returns a range of cells bounded by blank rows and columns. In the
following example, the selection is expanded to include the cells adjoining the active cell that contain
data. This range is then formatted with the Currency style.
Sub Region()

Worksheets("Sheet1").Activate
ActiveCell.CurrentRegion.Select
Selection.Style = "Currency"

End Sub

Working with 3-D ranges
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlhowWorkingwith3DrangesC;vafctArray "}

If you are working with the same range on more than one sheet, use the Array function to specify two
or more sheets to select. The following example formats the border of a 3-D range of cells.
Sub FormatSheets()

Sheets(Array("Sheet2", "Sheet3", "Sheet5")).Select
Range("A1:H1").Select
Selection.Borders(xlBottom).LineStyle = xlDouble

End Sub
The following example applies the FillAcrossSheets method to transfer the formats and any data
from the range on Sheet2 to the corresponding ranges on all the worksheets in the active workbook.
Sub FillAll()

Worksheets("Sheet2").Range("A1:H1") _
.Borders(xlBottom).LineStyle = xlDouble

Worksheets.FillAcrossSheets (Worksheets("Sheet2") _
.Range("A1:H1"))

End Sub

Working with shapes (drawing objects)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlhowWorkingWithShapesC"}

Shapes, or drawing objects, are represented by three different objects: the Shapes collection, the
ShapeRange collection, and the Shape object. In general, you use the Shapes collection to create
shapes and when you want to iterate through all the shapes on a slide; you use the Shape object
when you want to format or modify a single shape; and you use the ShapeRange collection when you
want to modify multiple shapes the same way you can work with multiple selected shapes in the user
interface.

Setting properties for a shape
Many formatting properties of shapes aren't set by properties that apply directly to the Shape or
ShapeRange object. Instead, related shape attributes are grouped under secondary objects, such as
the FillFormat object, which contains all the properties that relate to the shape's fill, or the
LinkFormat object, which contains all the properties that are unique to linked OLE objects. To set
properties for a shape, you must first return the object that represents the set of related shape
attributes and then set properties of that returned object. For example, you use the Fill property to
return the FillFormat object, and then you set the ForeColor property of the FillFormat object to set
the fill foreground color for the specified shape, as shown in the following example.
Worksheets(1).Shapes(1).Fill.ForeColor.RGB = RGB(255, 0, 0)

Applying a property or method to several shapes at the same time
In the user interface, there are some operations you can perform with several shapes selected; for
example, you can select several shapes and set all their individual fills at once. There are other
operations you can only perform with a single shape selected; for example, you can only edit the text
in a shape if a single shape is selected.

In Visual Basic, there are two ways to apply properties and methods to a set of shapes.These two
ways allow you to perform any operation that you can perform on a single shape on a range of
shapes, whether or not you can perform the same operation in the user interface.

· If the operation works on a multiple selected shapes in the user interface, you can perform the
same operation in Visual Basic by constructing a ShapeRange collection that contains the shapes
you want to work with, and applying the appropriate properties and methods directly to the
ShapeRange collection.

· If the operation doesn't work on multiple selected shapes in the user interface, you can still perform
the operation in Visual Basic by looping through the Shapes collection or through a ShapeRange
collection that contains the shapes you want to work with, and applying the appropriate properties
and methods to the individual Shape objects in the collection.

Many properties and methods that apply to the Shape object and ShapeRange collection fail if
applied to certain kinds of shapes. For example, the TextFrame property fails if applied to a shape
that cannot contain text. If you are not positive that each the shapes in a ShapeRange collection can
have a certain property or method applied to it, don't apply the property or method to the
ShapeRange collection. If you want to apply one of these properties or methods to a collection of
shapes, you must loop through the collection and test each individual shape to make sure it is an
appropriate type of shape before applying to property or method to it.

Creating a ShapeRange collection that contains all shapes on a sheet
You can create a ShapeRange object that contains all the Shape objects on a sheet by selecting the
shapes and then using the ShapeRange property to return a ShapeRange object containing the
selected shapes.
Worksheets(1).Shapes.Select
Set sr = Selection.ShapeRange

In Microsoft Excel, the Index argument is not optional for the Range property of the Shapes
collection, so you cannot use this property without an argument to create a ShapeRange object
containing all shapes in a Shapes collection.

Applying a property or method to a ShapeRange collection
If you can perform an operation on multiple selected shapes in the user interface at the same time,
you can do the programmatic equivalent by constructing a ShapeRange collection and then applying
the appropriate properties or methods to it. The following example constructs a shape range that
contains the shapes named "Big Star" and "Little Star" on myDocument and applies a gradient fill to
them.
Set myDocument = Worksheets(1)
Set myRange = myDocument.Shapes.Range(Array("Big Star", "Little Star"))
myRange.Fill.PresetGradient msoGradientHorizontal, 1, msoGradientBrass
The following are general guidelines for how properties and methods behave when they're applied to
a ShapeRange collection.

· Applying a method to a the collection is equivalent to applying the method to each individual Shape
object in that collection.

· Setting the value of a property of the collection is equivalent to setting the value of the property of
each individual shape in that range.

· A property of the collection that returns a constant returns the value of the property for an individual
shape in the collection if all shapes in the collection have the same value for that property. If not all
shapes in the collection have the same value for the property, it returns the "mixed" constant.

· A property of the collection that returns a simple data type (such as Long, Single, or String)
returns the value of the property for an individual shape if all shapes in the collection have the
same value for that property.

· The value of some properties can be returned or set only if there's exactly one shape in the
collection. If there's more than one shape in the collection, a run-time error occurs. This is generally
the case for returning or setting properties when the equivalent action in the user interface is
possible only with a single shape (actions such as editing text in a shape or editing the points of a
freeform).

The preceding guidelines also apply when you are setting properties of shapes that are grouped
under secondary objects of the ShapeRange collection, such as the FillFormat object. If the
secondary object represents operations that can be performed on multiple selected objects in the
user interface, you will be able to return the object from a ShapeRange collection and set its
properties. For example, you can use the Fill property to return the FillFormat object that represents
the fills of all the shapes in the ShapeRange collection. Setting the properties of this FillFormat
object will set the same properties for all the individual shapes in the ShapeRange collection.

Looping through a Shapes or ShapeRange collection
Even if you cannot perform an operation on several shapes in the user interface at the same time by
selecting them and then using a command, you can perform the equivalent action programmatically
by looping through a Shapes or ShapeRange collection that contains the shapes you want to work
with, applying the appropriate properties and methods to the individual Shape objects in the
collection. The following example loops through all the shapes on myDocument and changes the
foreground color for each shape that is an AutoShape.
Set myDocument = Worksheets(1)
For Each sh In myDocument.Shapes
 If sh.Type = msoAutoShape Then
 sh.Fill.ForeColor.RGB = RGB(255, 0, 0)
 End If
Next

The following example constructs a ShapeRange collection that contains all the currently selected
shapes in the active window and sets the foreground color for each selected shape.
For Each sh in ActiveWindow.Selection.ShapeRange
 sh.Fill.ForeColor.RGB = RGB(255, 0, 0)
Next

Aligning, distributing, and grouping shapes in a shape range
Use the Align and Distribute methods to position a set of shapes relative to one another or relative
to the document that contains them. Use the Group method or the Regroup method to form a single
grouped shape from a set of shapes.

Controlling one Microsoft Office application from another
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlhowControllingAppsC"}

If you want to run code in one Microsoft Office application that works with the objects in another
application, follow these steps.

1 Set a reference to the other application's type library in the References dialog box (Tools menu).
After you have done this, the objects, properties, and methods will show up in the Object Browser
and the syntax will be checked at compile time. You can also get context-sensitive Help on them.

2 Declare object variables that will refer to the objects in the other application as specific types. Make
sure you qualify each type with by the name of the application that is supplying the object. For
example, the following statement declares a variable that will point to a Word document and
another that refers to a Microsoft Excel workbook.
Dim appWD As Word.Application, wbXL As Excel.Workbook
Note You must follow the steps above if you want your code to be early bound.

3 Use the CreateObject function with the OLE Programmatic Identifier of the object you want to work
with in the other application, as shown in the following example. If you want to see the session of
the other application, set the Visible property to True.
Dim appWD As Word.Application

Set appWD = CreateObject("Word.Application")
appWd.Visible = True

4 Apply properties and methods to the object contained in the variable. For example, the following
instruction creates a new Word document.
Dim appWD As Word.Application

Set appWD = CreateObject("Word.Application.8")
appWD.Documents.Add

5 When you are done working with the other application, use the Quit method to close it, as shown in
the following example.
appWd.Quit

early and late binding
When you create an object variable in one application that refers to an object supplied by another
application, Visual Basic must verify that the object exists and that any properties or methods used
with the object are specified correctly. This verification process is known as binding. Binding can
occur at run time (late binding) or at compile time (early binding). Late bound code is slower than
early bound code. To make your code early bound, and therefore more efficient, you must set a
reference to the type library that contains the objects you want to refer to, and you must declare your
object variables as specific types.

Using ActiveX controls on sheets
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlhowUsingActiveXControlsSheetsC"}

This topic covers specific information about using ActiveX controls on worksheets and chart sheets.
For general information on adding and working with controls, see Using ActiveX controls on a
document and Creating a custom dialog box.

Keep the following points in mind when you are working with controls on sheets.

· In addition to the standard properties available for ActiveX controls, the following properties can be
used with ActiveX controls in Microsoft Excel: BottomRightCell, LinkedCell, ListFillRange,
Placement, PrintObject, TopLeftCell, and ZOrder.
These properties can be set and returned using the ActiveX control name. The following example
scrolls the workbook window so CommandButton1 is in the upper-left corner.
Set t = Sheet1.CommandButton1.TopLeftCell
With ActiveWindow

.ScrollRow = t.Row

.ScrollColumn = t.Column
End With

· Some Microsoft Excel Visual Basic methods and properties are disabled when an ActiveX control is
activated. For example, the Sort method cannot be used when a control is active, so the following
code fails in a button click event procedure (because the control is still active after the user clicks
it).
Private Sub CommandButton1.Click

Range("a1:a10").Sort Key1:=Range("a1")
End Sub
You can work around this problem by activating some other element on the sheet before you use
the properety or method that failed. For example, the following code sorts the range:
Private Sub CommandButton1.Click

Range("a1").Activate
Range("a1:a10").Sort Key1:=Range("a1")
CommandButton1.Activate

End Sub
· Controls on a Microsoft Excel workbook embedded in a document in another application will not

work if the user double clicks the workbook to edit it. The controls will work if the user right clicks
the workbook and selects the Open command from the shortcut menu.

· When a Microsoft Excel 97 workbook is saved using the Microsoft Excel 5.0/95 Workbook file
format, ActiveX control information is lost.

· The Me keyword in an event procedure for an ActiveX control on a sheet refers to the sheet, not to
the control.

Adding Controls With Visual Basic
In Microsoft Excel, ActiveX controls are represented by OLEObject objects in the OLEObjects
collection (all OLEObject objects are also in the Shapes collection). To programmatically add an
ActiveX control to a sheet, use the Add method of the OLEObjects collection. The following example
adds a command button to worksheet one.
Worksheets(1).OLEObjects.Add "Forms.CommandButton.1", _

Left:=10, Top:=10, Height:=20, Width:=100

Using Control Properties With Visual Basic
Most often, your Visual Basic code will refer to ActiveX controls by name. The following example
changes the caption on the control named "CommandButton1."

Sheet1.CommandButton1.Caption = "Run"
Note that when you use a control name outside the class module for the sheet containing the control,
you must qualify the control name with the sheet name.

To change the control name you use in Visual Basic code, select the control and set the (Name)
property in the Properties window.

Because ActiveX controls are also represented by OLEObject objects in the OLEObjects collection,
you can set control properties using the objects in the collection. The following example sets the left
position of the control named "CommandButton1."
Worksheets(1).OLEObjects("CommandButton1").Left = 10
Control properties that are not shown as properties of the OLEObject object can be set by returning
the actual control object using the Object property. The following example sets the caption for
CommandButton1.
Worksheets(1).OLEObjects("CommandButton1").Object.Caption = "run me"
Because all OLE objects are also members of the Shapes collection, you can use the collection to set
properties for several controls. The following example aligns the left edge of all controls on worksheet
one.
For Each s In Worksheets(1).Shapes

If s.Type = msoOLEControlObject Then s.Left = 10
Next

Using ActiveX controls on a document
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlhowUsingControlsC"}

Just as you can add ActiveX controls to custom dialog boxes, you can add controls directly to a
document when you want to provide a sophisticated way for the user to interact directly with your
macro without the distraction of dialog boxes. Use the following procedure to add ActiveX controls to
your document. For more specific information about using ActiveX controls in Microsoft Excel, see
Using ActiveX controls on sheets.

1 Add controls to the document
Display the Control Toolbox, click the control you want to add, and then click the document.

2 Set control properties
Right-click a control in design mode and click Properties to display the Properties window.

3 Initialize the controls
You can initialize controls in a procedure.

4 Write event procedures
All controls have a predefined set of events. For example, a command button has a Click event
that occurs when the user clicks the command button. You can write event procedures that run
when the events occur.

5 Use control values while code is running
Some properties can be set at run time.

Creating a custom dialog box
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlhowCreatingaCustomDialogBoxC"}

Use the following procedure to create a custom dialog box:

1 Create a UserForm
On the Insert menu in the Visual Basic Editor, click UserForm.

2 Add controls to the UserForm
Find the control you want to add in the Toolbox and drag the control onto the form.

3 Set control properties
Right-click a control in design mode and click Properties to display the Properties window.

4 Initialize the controls
You can initialize controls in a procedure before you show a form, or you can add code to the
Initialize event of the form.

5 Write event procedures
All controls have a predefined set of events. For example, a command button has a Click event
that occurs when the user clicks the command button. You can write event procedures that run
when the events occur.

6 Show the dialog box
Use the Show method to display a UserForm.

7 Use control values while code is running
Some properties can be set at run time. Changes made to the dialog box by the user are lost when
the dialog box is closed.

Creating a UserForm
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlhowCreatingAUserFormC"}

To create a custom dialog box, you must create a UserForm. To create a UserForm, click UserForm
on the Insert menu in the Visual Basic Editor.

Use the Properties window to change the name, behavior, and appearance of the form. For example,
to change the caption on a form, set the Caption property.

Adding controls to a UserForm
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlhowAddingControlstoaUserFormC"}

To add controls to a user form, find the control you want to add in the Toolbox, drag the control onto
the form, and then drag an adjustment handle on the control until the control's outline is the size and
shape you want.

Note Dragging a control (or a number of "grouped" controls) from the form back to the Toolbox
creates a template of that control, which can be reused. This is a useful feature for implementing a
standard "look and feel" for your applications.

When you've added controls to the form, use the commands on the Format menu in the Visual Basic
Editor to adjust the control alignment and spacing.

Adding controls to a document
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlhowAddingControlstoaDocumentC"}

To add controls to a document, display the Control Toolbox, click the control you want to add, and
then click on the document. Drag an adjustment handle of the control until the control's outline is the
size and shape you want.

Note Dragging a control (or a number of "grouped" controls) from the form back to the Control
Toolbox creates a template of that control, which can be reused. This is a useful feature for
implementing a standard "look and feel" for your applications.

ActiveX controls
For more information on a specific control, select an object from the following list. For information
about events, select a control and click Events at the top of the topic.

CheckBox
ComboBox
CommandButton
Frame
Image
Label
ListBox

MultiPage
OptionButton
ScrollBar
SpinButton
TabStrip
TextBox
ToggleButton

Setting control properties
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlhowSettingControlPropertiesC"}

You can set some control properties at design time (before any macro is running). In design mode,
right-click a control and click Properties to display the Properties window. Property names are shown
in the left column in the window, property values in the right column. You set a property value by
entering the new value to the right of the property name.

Initializing control properties
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlhowInitializingControlPropertiesC"}

You can initialize controls at run time by using Visual Basic code in a macro. For example, you could
fill a list box, set text values, or set option buttons.

The following example uses the AddItem method to add data to a list box. Then it sets the value of a
text box and displays the form.
Private Sub GetUserName()

With UserForm1
.lstRegions.AddItem "North"
.lstRegions.AddItem "South"
.lstRegions.AddItem "East"
.lstRegions.AddItem "West"
.txtSalesPersonID.Text = "00000"
.Show
' ...

End With
End Sub
You can also use code in the Initialize event of a form to set initial values for controls on the form. An
advantage to setting initial control values in the Initialize event is that the initialization code stays with
the form. You can copy the form to another project, and when you run the Show method to display
the dialog box, the controls will be initialized.
Private Sub UserForm_Initialize()

UserForm1.lstNames.AddItem "Test One"
UserForm1.lstNames.AddItem "Test Two"
UserForm1.txtUserName.Text = "Default Name"

End Sub

Control and dialog box events
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlhowControlandDialogBoxEventsC"}

After you have added controls to your dialog box or document, you add event procedures to
determine how the controls respond to user actions.

UserForms and controls have a predefined set of events. For example, a command button has a
Click event that occurs when the user clicks the command button, and UserForms have an Initialize
event that runs when the form is loaded.

To write a control or form event procedure, open a module by double-clicking the form or control, and
select the event from the Procedure drop-down list box.

Event procedures include the name of the control. For example, the name of the Click event
procedure for a command button named Command1 is Command1_Click.

If you add code to an event procedure and then change the name of the control, your code remains in
procedures with the previous name.

For example, assume you add code to the Click event for Commmand1 and then rename the control
to Command2. When you double-click Command2, you will not see any code in the Click event
procedure. You will need to move code from Command1_Click to Command2_Click.

To simplify development, it is a good practice to name your controls correctly before writing code.

Displaying a custom dialog box
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlhowDisplayingaDialogBoxC"}

To test your dialog box in the Visual Basic Editor, click Run Sub/UserForm on the Run menu in the
Visual Basic Editor.

To display a dialog box from Visual Basic, use the Show method. The following example displays the
dialog box named UserForm1.
Private Sub GetUserName()

UserForm1.Show
End Sub

Using control values while code is running
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlhowSetControlPropertiesDynamicC"}

Some control properties can be set and returned while Visual Basic code is running. The following
example sets the Text property of a text box to "Hello."
TextBox1.Text = "Hello"
The data entered on a form by a user is lost when the form is closed. If you return the values of
controls on a form after the form has been unloaded, you get the initial values for the controls rather
than the values the user entered.

If you want to save the data entered on a form, you can save the information to module-level
variables while the form is still running. The following example displays a form and saves the form
data.
'Code in module to declare public variables
Public strRegion As String
Public intSalesPersonID As Integer
Public blnCancelled As Boolean

'Code in form
Private Sub cmdCancel_Click()

Module1.blnCancelled = True
Unload Me

End Sub

Private Sub cmdOK_Click()
'Save data
intSalesPersonID = txtSalesPersonID.Text
strRegion = lstRegions.List(lstRegions.ListIndex)
Module1.blnCancelled = False
Unload Me

End Sub

Private Sub UserForm_Initialize()
Module1.blnCancelled = True

End Sub

'Code in module to display form
Sub LaunchSalesPersonForm()

frmSalesPeople.Show
If blnCancelled = True Then

MsgBox "Operation Cancelled!", vbExclamation
Else

MsgBox "The Salesperson's ID is: " &
intSalesPersonID & _
"The Region is: " & strRegion

End If
End Sub

design And run modes
In design mode, you can design custom dialog boxes and controls and write code. Events do not fire
and event procedures do not automatically run in design mode.

In run mode, you interact with your application the way a user would: events fire, and event
procedures run. You cannot edit code in run mode.

Using events with Microsoft Excel objects
{ewc HLP95EN.DLL, DYNALINK, "See Also":"UsingEventswithMicrosoftExcelObjectsC"}

You can write event procedures in Microsoft Excel at the worksheet, chart, workbook, or application
level. For example, the Activate event occurs at the sheet level, and the SheetActivate event is
available at both the workbook and application levels The SheetActivate event for a workbook occurs
when any sheet in the workbook is activated. At the application level, the SheetActivate event occurs
when any sheet in any open workbook is activated.

Worksheet, chart sheet, and workbook event procedures are available for any open sheet or
workbook. To write event procedures for an embedded chart or for the Application object, you must
create a new object using the WithEvents keyword in a class module.

Use the EnableEvents property to enable or disable events. For example, using the Save method to
save a workbook causes the BeforeSave event to occur. You can prevent this by setting the
EnableEvents property to False before you call the Save method.
Application.EnableEvents = False
ActiveWorkbook.Save
Application.EnableEvents = True

Worksheet object events
{ewc HLP95EN.DLL, DYNALINK, "See Also":"WorksheetEventsC"}

Events on sheets are enabled by default. To view the event procedures for a sheet, right-click the
sheet tab and click View Code on the shortcut menu. Select the event name from the Procedure
drop-down list box.

Activate
BeforeDoubleClick
BeforeRightClick
Calculate

Change
Deactivate
SelectionChange

Worksheet-level events occur when a worksheet is activated or the user changes a worksheet cell.
The following example adjusts the size of columns A through F whenever the worksheet is
recalculated.
Private Sub Worksheet_Calculate()

Columns("A:F").AutoFit
End Sub
Some events can be used to substitute an action for the default application behavior, or to make a
small change to the default behavior. The following example traps the right-click event and adds a
new menu item to the shortcut menu for cells B1:B10.
Private Sub Worksheet_BeforeRightClick(ByVal Target As Range, _
 Cancel As Boolean)
 For Each icbc In Application.CommandBars("cell").Controls
 If icbc.Tag = "brccm" Then icbc.Delete
 Next icbc
 If Not Application.Intersect(Target, Range("b1:b10")) Is Nothing Then
 With Application.CommandBars("cell").Controls _
 .Add(Type:=msoControlButton, before:=6, _
 temporary:=True)
 .Caption = "New Context Menu Item"
 .OnAction = "MyMacro"
 .Tag = "brccm"
 End With
 End If
End Sub

Chart object events
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ChartEventsC"}

Chart events occur when the user activates or changes a chart. Events on chart sheets are enabled
by default. To view the event procedures for a sheet, right-click the sheet tab and select View Code
from the shortcut menu. Select the event name from the Procedure drop-down list box.

Activate
BeforeDoubleClick
BeforeRightClick
Calculate
Deactivate
DragOver
DragPlot

MouseDown
MouseMove
MouseUp
Resize
Select
SeriesChange

Note To write event procedures for an embedded chart, you must create a new object using the
WithEvents keyword in a class module. For more information, see Using Events with Embedded
Charts.

This example changes a point's border color when the user changes the point value.
Private Sub Chart_SeriesChange(ByVal SeriesIndex As Long, _

ByVal PointIndex As Long)
 Set p = ActiveChart.SeriesCollection(SeriesIndex).Points(PointIndex)
 p.Border.ColorIndex = 3
End Sub

Workbook object events
{ewc HLP95EN.DLL, DYNALINK, "See Also":"WorkbookEventsC"}

Workbook events occur when the workbook changes or when any sheet in the workbook changes.
Events on workbooks are enabled by default. To view the event procedures for a workbook, right-click
the title bar of a restored or minimized workbook window and click View Code on the shortcut menu.
Select the event name from the Procedure drop-down list box.

AddinUninstall
BeforeClose
BeforePrint
BeforeSave
Deactivate
NewSheet
Open
SheetActivate
SheetBeforeDoubleClick

SheetBeforeRightClick
SheetCalculate
SheetChange
SheetDeactivate
SheetSelectionChange
WindowActivate
WindowDeactivate
WindowResize

This example maximizes Microsoft Excel when the workbook is opened
Sub Workbook_Open()

Application.WindowState = xlMaximized
End Sub

Application object events
{ewc HLP95EN.DLL, DYNALINK, "See Also":"ApplicationEventsC"}

Application events occur when a workbook is created or opened or when any sheet in any open
workbook changes. To write event procedures for the Application object, you must create a new object
using the WithEvents keyword in a class module. For more information, see Using Events with the
Application Object.

NewWorkbook
SheetActivate
SheetBeforeDoubleClick
SheetBeforeRightClick
SheetCalculate
SheetChange
SheetDeactivate
SheetSelectionChange
WindowActivate
WindowDeactivate

WindowResize
WorkbookActivate
WorkbookAddinInstall
WorkbookAddinUninstall
WorkbookBeforeClose
WorkbookBeforePrint
WorkbookBeforeSave
WorkbookDeactivate
WorkbookNewSheet
WorkbookOpen

AddIns Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproAddInsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproAddInsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproAddInsA "}

Returns an AddIns collection that represents all the add-ins listed in the Add-Ins dialog box (Tools
menu). Read-only.

For information about returning a single member of a collection, see Returning an Object from a
Collection.

Remarks
Using this method without an object qualifier is equivalent to Application.Addins.

AddIns Property Example

This example displays the status of the Analysis ToolPak add-in. Note that the string used as the
index to the AddIns collection is the title of the add-in, not the add-in's file name.
If AddIns("Analysis ToolPak").Installed = True Then

MsgBox "Analysis ToolPak add-in is installed"
Else

MsgBox "Analysis ToolPak add-in is not installed"
End If

Areas Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproAreasC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproAreasX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproAreasA "}

Returns an Areas collection that represents all the ranges in a multiple-area selection. Read-only.

For information about returning a single member of a collection, see Returning an Object from a
Collection.

Remarks
For a single selection, the Areas property returns a collection that contains one object ¾ the original
Range object itself. For a multiple-area selection, the Areas property returns a collection that
contains one object for each selected area.

Areas Property Example

This example displays a message if the user tries to carry out a command when more than one area
is selected. This example must be run from a worksheet.
If Selection.Areas.Count > 1 Then

MsgBox "Cannot do this to a multi-area selection."
End If

Columns Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproColumnsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproColumnsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproColumnsA "}

Application object: Returns a Range object that represents all the columns on the active worksheet.
If the active document isn't a worksheet, the Columns property fails. Read-only.

Range object: Returns a Range object that represents the columns in the specified range. Read-only.

Worksheet object: Returns a Range object that represents all the columns on the specified
worksheet. Read-only.

For information about returning a single member of a collection, see Returning an Object from a
Collection.

Remarks
Using this property without an object qualifier is equivalent to using ActiveSheet.Columns.

When applied to a Range object that's a multiple-area selection, this property returns columns from
only the first area of the range. For example, if the Range object has two areas ¾ A1:B2 and C3:D4 ¾
Selection.Columns.Count returns 2, not 4. To use this property on a range that may contain a
multiple-area selection, test Areas.Count to determine whether the range contains more than one
area. If it does, loop over each area in the range.

Columns Property Example

This example formats the font of column one (column A) on Sheet1 as bold.
Worksheets("Sheet1").Columns(1).Font.Bold = True
This example sets the value of every cell in column one in the range named "myRange" to 0 (zero).
Range("myRange").Columns(1).Value = 0
This example displays the number of columns in the selection on Sheet1. If more than one area is
selected, the example loops through each area.
Worksheets("Sheet1").Activate
areaCount = Selection.Areas.Count
If areaCount <= 1 Then

MsgBox "The selection contains " & _
Selection.Columns.Count & " columns."

Else
For i = 1 To areaCount

MsgBox "Area " & i & " of the selection contains " & _
Selection.Areas(i).Columns.Count & " columns."

Next i
End If

Dialogs Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDialogsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDialogsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDialogsA "}

Returns a Dialogs collection that represents all built-in dialog boxes. Read-only.

For information about returning a single member of a collection, see Returning an Object from a
Collection.

Dialogs Property Example

This example displays the Open dialog box (File menu).
Application.Dialogs(xlDialogOpen).Show

Excel4IntlMacroSheets Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproExcel4IntlMacroSheetsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproExcel4IntlMacroSheetsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproExcel4IntlMacroSheetsA "}

Returns a Sheets collection that represents all the Microsoft Excel 4.0 international macro sheets in
the specified workbook. Read-only.

For information about returning a single member of a collection, see Returning an Object from a
Collection.

Remarks
Using this property with the Application object or without an object qualifier is equivalent to using
ActiveWorkbook.Excel4IntlMacroSheets.

Excel4IntlMacroSheets Property Example

This example displays the number of Microsoft Excel 4.0 international macro sheets in the active
workbook.
MsgBox "There are " & ActiveWorkbook.Excel4IntlMacroSheets.Count & _

" Microsoft Excel 4.0 international macro sheets in this workbook."

Excel4MacroSheets Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproExcel4MacroSheetsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproExcel4MacroSheetsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproExcel4MacroSheetsA "}

Returns a Sheets collection that represents all the Microsoft Excel 4.0 macro sheets in the specified
workbook. Read-only.

For information about returning a single member of a collection, see Returning an Object from a
Collection.

Remarks
Using this property with the Application object or without an object qualifier is equivalent to using
ActiveWorkbook.Excel4MacroSheets.

Excel4MacroSheets Property Example

This example displays the number of Microsoft Excel 4.0 macro sheets in the active workbook.
MsgBox "There are " & ActiveWorkbook.Excel4MacroSheets.Count & _

" Microsoft Excel 4.0 macro sheets in this workbook."

Names Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproNamesC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproNamesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproNamesA "}

Application object: Returns a Names collection that represents all the names in the active workbook.
Read-only.

Workbook object: Returns a Names collection that represents all the names in the specified
workbook (including all worksheet-specific names). Read-only.

Worksheet object: Returns a Names collection that represents all the worksheet-specific names
(names defined with the "WorksheetName!" prefix). Read-only.

For information about returning a single member of a collection, see Returning an Object from a
Collection.

Remarks
Using this property without an object qualifier is equivalent to using ActiveWorkbook.Names.

Names Property Example

This example defines the name "myName" for cell A1 on Sheet1.
ActiveWorkbook.Names.Add Name:="myName", RefersToR1C1:= _

"=Sheet1!R1C1"

Offset Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproOffsetC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproOffsetExampleX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproOffsetA "}

Returns a Range object that represents a range that's offset from the specified range. Read-only.

Syntax
expression.Offset(RowOffset, ColumnOffset)
expression Required. An expression that returns a Range object.
RowOffset Optional Variant. The number of rows (positive, negative, or zero) by which the range

is to be offset. The default value is 0 (zero).
ColumnOffset Optional Variant. The number of columns (positive, negative, or zero) by which the

range is to be offset. The default value is 0 (zero).

Offset Property Example

This example activates the cell three columns to the right of and three rows down from the active cell
on Sheet1.
Worksheets("Sheet1").Activate
ActiveCell.Offset(rowOffset:=3, columnOffset:=3).Activate
This example assumes that Sheet1 contains a table that has a header row. The example selects the
table, without selecting the header row. The active cell must be somewhere in the table before the
example is run.
Set tbl = ActiveCell.CurrentRegion
tbl.Offset(1, 0).Resize(tbl.Rows.Count - 1, tbl.Columns.Count).Select

Panes Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPanesC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPanesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPanesA "}

Returns a Panes collection that represents all the panes in the specified window. Read-only.

For information about returning a single member of a collection, see Returning an Object from a
Collection.

Remarks
This property is available for a window only if the window's Split property can be set to True.

Panes Property Example

This example displays the number of panes in the active window in Book1.xls.
Workbooks("BOOK1.XLS").Worksheets("Sheet1").Activate
MsgBox "There are " & ActiveWindow.Panes.Count & _

" panes in the active window"
This example activates the pane in the upper-left corner of the active window in Book1.xls.
Workbooks("BOOK1.XLS").Worksheets("Sheet1").Activate
ActiveWindow.Panes(1).Activate

PreviousSelections Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPreviousSelectionsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPreviousSelectionsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPreviousSelectionsA "}

Returns an array of the last four ranges or names selected. Each element in the array is a Range
object. Read-only Variant.

Syntax
expression.PreviousSelections(Index)
expression Optional. An expression that returns an Application object.
Index Optional Variant. The index number (from 1 to 4) of the previous range or name.

Remarks
Each time you go to a range or cell by using the Name box or the Go To command (Edit menu), or
each time a macro calls the Goto method, the previous range is added to this array as element
number 1, and the other items in the array are moved down.

PreviousSelections Property Example

This example displays the cell addresses of all items in the array of previous selections. If there are
no previous selections, the LBound function returns an error. This error is trapped, and a message
box appears.
On Error GoTo noSelections
For i = LBound(Application.PreviousSelections) To _

UBound(Application.PreviousSelections)
MsgBox Application.PreviousSelections(i).Address

Next i
Exit Sub
On Error GoTo 0

noSelections:
MsgBox "There are no previous selections"

Rows Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproRowsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproRowsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproRowsA "}

Application object: Returns a Range object that represents all the rows on the active worksheet. If
the active document isn't a worksheet, the Rows property fails. Read-only.

Range object: Returns a Range object that represents the rows in the specified range. Read-only.

Worksheet object: Returns a Range object that represents all the rows on the specified worksheet.
Read-only.

For information about returning a single member of a collection, see Returning an Object from a
Collection.

Remarks
Using this property without an object qualifier is equivalent to using ActiveSheet.Rows.

When applied to a Range object that's a multiple selection, this property returns rows from only the
first area of the range. For example, if the Range object has two areas ¾ A1:B2 and C3:D4 ¾
Selection.Rows.Count returns 2, not 4. To use this property on a range that may contain a
multiple selection, test Areas.Count to determine whether the range is a multiple selection. If it is,
loop over each area in the range, as shown in the third example.

Rows Property Example

This example deletes row three on Sheet1.
Worksheets("Sheet1").Rows(3).Delete
This example deletes rows in the current region on worksheet one where the value of cell one in the
row is the same as the value in cell one in the previous row.
For Each rw In Worksheets(1).Cells(1, 1).CurrentRegion.Rows

this = rw.Cells(1, 1).Value
If this = last Then rw.Delete
last = this

Next
This example displays the number of rows in the selection on Sheet1. If more than one area is
selected, the example loops through each area.
Worksheets("Sheet1").Activate
areaCount = Selection.Areas.Count
If areaCount <= 1 Then

MsgBox "The selection contains " & _
Selection.Rows.Count & " rows."

Else
i = 1
For Each a In Selection.Areas

MsgBox "Area " & i & " of the selection contains " & _
a.Rows.Count & " rows."

i = i + 1
Next a

End If

SelectedSheets Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproSelectedSheetsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproSelectedSheetsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproSelectedSheetsA "}

Returns a Sheets collection that represents all the selected sheets in the specified window. Read-
only.

For information about returning a single member of a collection, see Returning an Object from a
Collection.

SelectedSheets Property Example

This example displays a message if Sheet1 is selected in Book1.xls.
For Each sh In Workbooks("BOOK1.XLS").Windows(1).SelectedSheets

If sh.Name = "Sheet1" Then
MsgBox "Sheet1 is selected"
Exit For

End If
Next

Sheets Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproSheetsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproSheetsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproSheetsA "}

Application object: Returns a Sheets collection that represents all the sheets in the active workbook.
Read-only.

Workbook object: Returns a Sheets collection that represents all the sheets in the specified
workbook. Read-only.

For information about returning a single member of a collection, see Returning an Object from a
Collection.

Remarks
Using this property without an object qualifier is equivalent to using ActiveWorkbook.Sheets.

Sheets Property Example

This example creates a new worksheet and then places a list of the active workbook's sheet names in
the first column.
Set newSheet = Sheets.Add(Type:=xlWorksheet)
For i = 1 To Sheets.Count

newSheet.Cells(i, 1).Value = Sheets(i).Name
Next i

Styles Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproStylesC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproStylesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproStylesA "}

Returns a Styles collection that represents all the styles in the specified workbook. Read-only.

For information about returning a single member of a collection, see Returning an Object from a
Collection.

Styles Property Example

This example deletes the user-defined style "Stock Quote Style" from the active workbook.
ActiveWorkbook.Styles("Stock Quote Style").Delete

Windows Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproWindowsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproWindowsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproWindowsA "}

Application object: Returns a Windows collection that represents all the windows in all the
workbooks. Read-only.

Workbook object: Returns a Windows collection that represents all the windows in the specified
workbook. Read-only.

For information about returning a single member of a collection, see Returning an Object from a
Collection.

Remarks
Using this property without an object qualifier is equivalent to using Application.Windows.

This property returns a collection of both visible and hidden windows.

Windows Property Example

This example closes the first open or hidden window in Microsoft Excel.
Application.Windows(1).Close
This example names window one in the active workbook "Consolidated Balance Sheet." This name is
then used as the index to the Windows collection.
ActiveWorkbook.Windows(1).Caption = "Consolidated Balance Sheet"
ActiveWorkbook.Windows("Consolidated Balance Sheet") _

.ActiveSheet.Calculate

Workbooks Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproWorkbooksC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproWorkbooksX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproWorkbooksA "}

Returns a Workbooks collection that represents all the open workbooks. Read-only.

For information about returning a single member of a collection, see Returning an Object from a
Collection.

Remarks
Using this property without an object qualifier is equivalent to using Application.Workbooks.

The collection returned by the Workbooks property doesn't include open add-ins, which are a special
kind of hidden workbook. You can, however, return a single open add-in if you know the file name. For
example, Workbooks("Oscar.xla") will return the open add-in named "Oscar.xla" as a
Workbook object.

Workbooks Property Example

This example activates the workbook Book1.xls.
Workbooks("BOOK1").Activate
This example opens the workbook Large.xls.
Workbooks.Open filename:="LARGE.XLS"
This example saves changes to and closes all workbooks except the one that's running the example.
For Each w In Workbooks

If w.Name <> ThisWorkbook.Name Then
w.Close savechanges:=True

End If
Next w

ActiveCell Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproActiveCellC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproActiveCellX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproActiveCellA "}

Returns a Range object that represents the active cell in the active window (the window on top) or in
the specified window. If the window isn't displaying a worksheet, this property fails. Read-only.

Remarks
If you don't specify an object qualifier, this property returns the active cell in the active window.

Be careful to distinguish between the active cell and the selection. The active cell is a single cell
inside the current selection. The selection may contain more than one cell, but only one is the active
cell.

The following expressions all return the active cell, and are all equivalent.
ActiveCell
Application.ActiveCell
ActiveWindow.ActiveCell
Application.ActiveWindow.ActiveCell

ActiveCell Property Example

This example uses a message box to display the value in the active cell. Because the ActiveCell
property fails if the active sheet isn't a worksheet, the example activates Sheet1 before using the
ActiveCell property.
Worksheets("Sheet1").Activate
MsgBox ActiveCell.Value
This example changes the font formatting for the active cell.
Worksheets("Sheet1").Activate
With ActiveCell.Font

.Bold = True

.Italic = True
End With

ActivePrinter Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproActivePrinterC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproActivePrinterX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproActivePrinterA "}

Returns or sets the name of the active printer. Read/write String.

Remarks
This property cannot be set on the Apple Macintosh.

ActivePrinter Property Example

This example displays the name of the active printer.
MsgBox "The name of the active printer is " & Application.ActivePrinter

ActiveWindow Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproActiveWindowC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproActiveWindowX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproActiveWindowA "}

Returns a Window object that represents the active window (the window on top). Read-only. Returns
Nothing if there are no windows open.

ActiveWindow Property Example

This example displays the name (Caption property) of the active window.
MsgBox "The name of the active window is " & ActiveWindow.Caption

ActiveWorkbook Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproActiveWorkbookC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproActiveWorkbookX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproActiveWorkbookA "}

Returns a Workbook object that represents the workbook in the active window (the window on top).
Read-only. Returns Nothing if there are no windows open or if either the Info window or the Clipboard
window is the active window.

ActiveWorkbook Property Example

This example displays the name of the active workbook.
MsgBox "The name of the active workbook is " & ActiveWorkbook.Name

AltStartupPath Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproAltStartupPathC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproAltStartupPathX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproAltStartupPathA "}

Returns or sets the name of the alternate startup folder. Read/write String.

AltStartupPath Property Example

This example sets the alternate startup folder.
Application.AltStartupPath = "C:\EXCEL\MACROS"
This is the same example in Microsoft Excel for the Macintosh.
Application.AltStartupPath = "HD:Excel:My Macros"

Application Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproApplicationC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproApplicationX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproApplicationA "}

Used without an object qualifier, this property returns an Application object that represents the
Microsoft Excel application. Used with an object qualifier, this property returns an Application object
that represents the creator of the specified object (you can use this property with an OLE Automation
object to return that object's application). Read-only.

Application Property Example

This example displays a message about the application that created myObject.

Set myObject = ActiveWorkbook
If myObject.Application.Value = "Microsoft Excel" Then

MsgBox "This is a Microsoft Excel object"
Else

MsgBox "This is not a Microsoft Excel object"
End If

Calculate Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthCalculateC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthCalculateX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthCalculateA "}

Calculates all open workbooks, a specific worksheet in a workbook, or a specified range of cells on a
worksheet, as shown in the following table.

To calculate Follow this example
All open workbooks Application.Calculate (or just Calculate)
A specific worksheet Worksheets(1).Calculate
A specified range Worksheets(1).Rows(2).Calculate

Syntax
expression.Calculate
expression Optional for Application, required for Worksheet and Range. An expression that

returns an object in the Applies To list.

Calculate Method Example

This example calculates the formulas in columns A, B, and C in the used range on Sheet1.
Worksheets("Sheet1").UsedRange.Columns("A:C").Calculate

CalculateBeforeSave Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproCalculateBeforeSaveC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproCalculateBeforeSaveX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproCalculateBeforeSaveA
"}

True if workbooks are calculated before they're saved to disk (if the Calculation property is set to
xlManual). This property is preserved even if you change the Calculation property. Read/write
Boolean.

CalculateBeforeSave Property Example

This example sets Microsoft Excel to calculate workbooks before they're saved to disk.
Application.Calculation = xlManual
Application.CalculateBeforeSave = True

CanPlaySounds Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproCanPlaySoundsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproCanPlaySoundsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproCanPlaySoundsA "}

This property should not be used. Sound notes have been removed from Microsoft Excel.

CanRecordSounds Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproCanRecordSoundsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproCanRecordSoundsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproCanRecordSoundsA "}

This property should not be used. Sound notes have been removed from Microsoft Excel.

CellDragAndDrop Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproCellDragAndDropC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproCellDragAndDropX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproCellDragAndDropA "}

True if dragging and dropping cells is enabled. Read/write Boolean.

CellDragAndDrop Property Example

This example enables dragging and dropping cells.
Application.CellDragAndDrop = True

CommandUnderlines Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproCommandUnderlinesC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproCommandUnderlinesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproCommandUnderlinesA
"}

Returns or sets the state of the command underlines in Microsoft Excel for the Macintosh. Can be one
of the following XlCommandUnderlines constants: xlCommandUnderlinesOn,
xlCommandUnderlinesOff, or xlCommandUnderlinesAutomatic. Read/write Long.

Remarks
In Microsoft Excel for Windows, reading this property always returns xlCommandUnderlinesOn, and
setting this property to anything other than xlCommandUnderlinesOn is an error.

CommandUnderlines Property Example

This example turns off command underlines in Microsoft Excel for the Macintosh.
Application.CommandUnderlines = xlCommandUnderlinesOff

ConstrainNumeric Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproConstrainNumericC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproConstrainNumericX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproConstrainNumericA "}

True if handwriting recognition is limited to numbers and punctuation only. Read/write Boolean.

Note This property is available only if you're using Microsoft Windows for Pen Computing. If you try
to set this property under any other operating system, an error occurs.

ConstrainNumeric Property Example

This example limits handwriting recognition to numbers and punctuation only if Microsoft Windows for
Pen Computing is running.
If Application.WindowsForPens Then

Application.ConstrainNumeric = True
End If

ConvertFormula Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthConvertFormulaC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthConvertFormulaX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthConvertFormulaA "}

Converts cell references in a formula between the A1 and R1C1 reference styles, between relative
and absolute references, or both.

Syntax
expression.ConvertFormula(Formula, FromReferenceStyle, ToReferenceStyle, ToAbsolute,

RelativeTo)
expression Required. An expression that returns an Application object.
Formula Required Variant. A string that containis the formula you want to convert. This must be a

valid formula, and it must begin with an equal sign.
FromReferenceStyle Required Long. The reference style of the formula. Can be one of the

following XLReferenceStyle constants: xlA1 or xlR1C1.
ToReferenceStyle Optional Variant. The reference style you want returned. Can be one of the

following XLReferenceStyle constants: xlA1 or xlR1C1. If this argument is omitted, the reference
style isn't changed; the formula stays in the style specified by FromReferenceStyle.

ToAbsolute Optional Variant. Specifies the converted reference type. Can be one of the following
XLReferenceType constants: xlAbsolute, xlAbsRowRelColumn, xlRelRowAbsColumn, or
xlRelative. If this argument is omitted, the reference type isn't changed.

RelativeTo Optional Variant. A Range object that contains one cell. Relative references relate to
this cell.

ConvertFormula Method Example

This example converts a SUM formula that contains R1C1-style references to an equivalent formula
that contains A1-style references, and then it displays the result.
inputFormula = "=SUM(R10C2:R15C2)"
MsgBox Application.ConvertFormula(_

formula:=inputFormula, _
fromReferenceStyle:=xlR1C1, _
toReferenceStyle:=xlA1)

Creator Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproCreatorC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproCreatorX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproCreatorA "}

Returns a 32-bit integer that indicates the application in which this object was created. If the object
was created in Microsoft Excel, this property returns the string XCEL, which is equivalent to the
hexadecimal number 5843454C. Read-only Long.

Remarks
The Creator property is designed to be used in Microsoft Excel for the Macintosh, where each
application has a four-character creator code. For example, Microsoft Excel has the creator code
XCEL.

Creator Property Example

This example displays a message about the creator of myObject.

Set myObject = ActiveWorkbook
If myObject.Creator = &h5843454c Then

MsgBox "This is a Microsoft Excel object"
Else

MsgBox "This is not a Microsoft Excel object"
End If

CutCopyMode Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproCutCopyModeC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproCutCopyModeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproCutCopyModeA "}

Returns or sets the status of Cut or Copy mode. Can be True, False, or a XLCutCopyMode
constant, as shown in the following tables. Read/write Long.

Return value Description
False Not in Cut or Copy mode
xlCopy In Copy mode
xlCut In Cut mode

Set value Description
False Cancels Cut or Copy mode and removes the moving

border.
True Cancels Cut or Copy mode and removes the moving

border. On the Macintosh, this also places the
contents of the selection on the Macintosh Clipboard.

CutCopyMode Property Example

This example uses a message box to display the status of Cut or Copy mode.
Select Case Application.CutCopyMode

Case Is = False
MsgBox "Not in Cut or Copy mode"

Case Is = xlCopy
MsgBox "In Copy mode"

Case Is = xlCut
MsgBox "In Cut mode"

End Select

DataEntryMode Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDataEntryModeC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDataEntryModeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDataEntryModeA "}

Returns or sets Data Entry mode, as shown in the following table. When in Data Entry mode, you can
enter data only in the unlocked cells in the currently selected range. Read/write Long.

Value Meaning
xlOn Data Entry mode is turned on.
xlOff Data Entry mode is turned off.
xlStrict Data Entry mode is turned on, and pressing ESC

won't turn it off.

DataEntryMode Property Example

This example turns off Data Entry mode if it's on.
If (Application.DataEntryMode = xlOn) Or _

(Application.DataEntryMode = xlStrict) Then
Application.DataEntryMode = xlOff

End If

DDEAppReturnCode Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDDEAppReturnCodeC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDDEAppReturnCodeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDDEAppReturnCodeA
"}

Returns the application-specific DDE return code that was contained in the last DDE acknowledge
message received by Microsoft Excel. Read-only Long.

DDEAppReturnCode Property Example

This example sets the variable appErrorCode to the DDE return code.

appErrorCode = Application.DDEAppReturnCode

DDEExecute Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthDDEExecuteC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthDDEExecuteX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthDDEExecuteA "}

Runs a command or performs some other action or actions in another application by way of the
specified DDE channel.

Syntax
expression.DDEExecute(Channel, String)
expression Optional. An expression that returns an Application object.
Channel Required Long. The channel number returned by the DDEInitiate method.
String Required String. The message defined in the receiving application.

Remarks
The DDEExecute method is designed to send commands to another application. You can also use it
to send keystrokes to another application, although the SendKeys method is the preferred way to
send keystrokes. The String argument can specify any single key: in Windows, any key combined
with ALT, CTRL, or SHIFT, or any combination of those keys; or on the Macintosh, any key combined
with COMMAND, CTRL, OPTION, or SHIFT, or any combination of those keys. Each key is represented by
one or more characters, such as "a" for the character a, or "{ENTER}" for the ENTER key.

To specify characters that aren't displayed when you press the corresponding key (for example,
ENTER or TAB), use the codes listed in the following table. Each code in the table represents one key
on the keyboard.

Key Code
BACKSPACE {BACKSPACE} or {BS}
BREAK {BREAK}
CAPS LOCK {CAPSLOCK}
CLEAR {CLEAR}
DELETE or DEL {DELETE} or {DEL}
DOWN ARROW {DOWN}
END {END}
ENTER (numeric keypad) {ENTER}
ENTER ~ (tilde)
ESC {ESCAPE} or {ESC}
HELP {HELP}
HOME {HOME}
INS {INSERT}
LEFT ARROW {LEFT}
NUM LOCK {NUMLOCK}
PAGE DOWN {PGDN}
PAGE UP {PGUP}
RETURN {RETURN}
RIGHT ARROW {RIGHT}
SCROLL LOCK {SCROLLLOCK}
TAB {TAB}
UP ARROW {UP}
F1 through F15 {F1} through {F15}

In Windows, you can also specify keys combined with SHIFT and/or CTRL and/or ALT. On the
Macintosh, you can also specify keys combined with SHIFT and/or CTRL and/or OPTION and/or
COMMAND. To specify a key combined with another key or keys, use the following table.

To combine a key with Precede the key code with
SHIFT + (plus sign)
CTRL ^ (caret)
ALT or OPTION % (percent sign)
COMMAND * (asterisk)

DDEExecute Method Example

This example opens a channel to Word for Windows, opens the Word document Formletr.doc, and
then sends the FilePrint command to WordBasic.
channelNumber = Application.DDEInitiate(_

app:="WinWord", _
topic:="C:\WINWORD\FORMLETR.DOC")

Application.DDEExecute channelNumber, "[FILEPRINT]"
Application.DDETerminate channelNumber
This example opens a channel to Word for the Macintosh, opens the Word document Form Letter,
and then sends the FilePrint command to WordBasic. On the Macintosh, you must use the Shell
function to start Word, because the DDEInitiate method doesn't automatically start Word as it does in
Windows. Also, because the Shell function is asynchronous, the macro may call the DDEInitiate
method before Word has started. This example demonstrates how you can program around this by
putting the DDEInitiate method call in a loop, testing channelNumber until it is no longer an error.

Shell "HD:Form Letter", 6
Do

channelNumber = Application.DDEInitiate(_
app:="MSWord", _
topic:="HD:Form Letter")

Loop Until TypeName(channelNumber) <> "Error"
Application.DDEExecute channelNumber, "[FILEPRINT]"
Application.DDETerminate channelNumber

DDEInitiate Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthDDEInitiateC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthDDEInitiateX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthDDEInitiateA "}

Opens a DDE channel to an application.

Syntax
expression.DDEInitiate(App, Topic)
expression Optional. An expression that returns an Application object.
App Required String. The application name.
Topic Required String. Describes something in the application to which you're opening a

channel ¾ usually a document of that application.

Remarks
If successful, the DDEInitiate method returns the number of the open channel. All subsequent DDE
functions use this number to specify the channel.

DDEInitiate Method Example

This example opens a channel to Word for Windows, opens the Word document Formletr.doc, and
then sends the FilePrint command to WordBasic.
channelNumber = Application.DDEInitiate(_

app:="WinWord", _
topic:="C:\WINWORD\FORMLETR.DOC")

Application.DDEExecute channelNumber, "[FILEPRINT]"
Application.DDETerminate channelNumber
This example opens a channel to Word for the Macintosh, opens the Word document Form Letter,
and then sends the FilePrint command to WordBasic. On the Macintosh, you must use the Shell
function to start Word, because the DDEInitiate method doesn't automatically start Word as it does in
Windows. Also, because the Shell function is asynchronous, the macro may call the DDEInitiate
method before Word has started. This example demonstrates how you can program around this by
putting the DDEInitiate method call in a loop, testing channelNumber until it is no longer an error.

Shell "HD:Form Letter", 6
Do

channelNumber = Application.DDEInitiate(_
app:="MSWord", _
topic:="HD:Form Letter")

Loop Until TypeName(channelNumber) <> "Error"
Application.DDEExecute channelNumber, "[FILEPRINT]"
Application.DDETerminate channelNumber

DDEPoke Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthDDEPokeC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthDDEPokeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthDDEPokeA "}

Sends data to an application.

Syntax
expression.DDEPoke(Channel, Item, Data)
expression Optional. An expression that returns an Application object.
Channel Required Long. The channel number returned by the DDEInitiate method.
Item Required Variant. The item to which the data is to be sent.
Data Required Variant. The data to be sent to the application.

Remarks
An error occurs if the method call doesn't succeed.

DDEPoke Method Example

This example opens a channel to Word for Windows, opens the Word document Sales.doc, and then
inserts the contents of cell A1 (on Sheet1) at the beginning of the document.
channelNumber = Application.DDEInitiate(_

app:="WinWord", _
topic:="C:\WINWORD\SALES.DOC")

Set rangeToPoke = Worksheets("Sheet1").Range("A1")
Application.DDEPoke channelNumber, "\StartOfDoc", rangeToPoke
Application.DDETerminate channelNumber
This example opens a channel to Word for the Macintosh, opens the Word document Sales Report,
and then inserts the contents of cell A1 (on Sheet1) at the beginning of the document. On the
Macintosh, you must use the Shell function to start Word, because the DDEInitiate method doesn't
automatically start Word as it does in Windows. Also, because the Shell function is asynchronous, the
macro may call the DDEInitiate method before Word has started. This example demonstrates how
you can program around this by putting the DDEInitiate method call in a loop, testing
channelNumber until it is no longer an error.

Shell "HD:Sales Report", 6
Do

channelNumber = Application.DDEInitiate(_
app:="WinWord", _
topic:="HD:Sales Report")

Loop Until TypeName(channelNumber) <> "Error"
Set rangeToPoke = Worksheets("Sheet1").Range("A1")
Application.DDEPoke channelNumber, "\StartOfDoc", rangeToPoke
Application.DDETerminate channelNumber

DDERequest Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthDDERequestC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthDDERequestX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthDDERequestA "}

Requests information from the specified application. This method always returns an array; for more
information, see the example.

Syntax
expression.DDERequest(Channel, Item)
expression Optional. An expression that returns an Application object.
Channel Required Long. The channel number returned by the DDEInitiate method.
Item Required String. The item to be requested.

DDERequest Method Example

This example opens a channel to the System topic in Word for Windows and then uses the Topics
item to return a list of all open documents. The list is returned in column A on Sheet1.
channelNumber = Application.DDEInitiate(_

app:="WinWord", _
topic:="System")

returnList = Application.DDERequest(channelNumber, "Topics")
For i = LBound(returnList) To UBound(returnList)

Worksheets("Sheet1").Cells(i, 1).Formula = returnList(i)
Next i
Application.DDETerminate channelNumber
This example opens a channel to the System topic in Word for the Macintosh and then uses the
Topics item to return a list of all open documents. The list is returned in column A on Sheet1. On the
Macintosh, you must use the Shell function to start Word, because the DDEInitiate method doesn't
automatically start Word as it does in Windows. Also, because the Shell function is asynchronous, the
macro may call the DDEInitiate method before Word has started. This example demonstrates how
you can program around this by putting the DDEInitiate method call in a loop, testing
channelNumber until it is no longer an error.

Shell MacID("MSWD"), 6
Do

channelNumber = Application.DDEInitiate(_
app:="MSWord", _
topic:="System")

Loop Until TypeName(channelNumber) <> "Error"
returnList = Application.DDERequest(channelNumber, "Topics")
For i = LBound(returnList) To UBound(returnList)

Worksheets("Sheet1").Cells(i, 1).Formula = returnList(i)
Next i
Application.DDETerminate channelNumber

DDETerminate Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthDDETerminateC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthDDETerminateX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthDDETerminateA "}

Closes a channel to another application.

Syntax
expression.DDETerminate(Channel)
expression Optional. An expression that returns an Application object.
Channel Required Long. The channel number returned by the DDEInitiate method.

DDETerminate Method Example

This example opens a channel to Word for Windows, opens the Word document Formletr.doc, and
then sends the FilePrint command to WordBasic.
channelNumber = Application.DDEInitiate(_

app:="WinWord", _
topic:="C:\WINWORD\FORMLETR.DOC")

Application.DDEExecute channelNumber, "[FILEPRINT]"
Application.DDETerminate channelNumber
This example opens a channel to Word for the Macintosh, opens the Word document Form Letter,
and then sends the FilePrint command to WordBasic. On the Macintosh, you must use the Shell
function to start Word, because the DDEInitiate method doesn't automatically start Word as it does in
Windows. Also, because the Shell function is asynchronous, the macro may call the DDEInitiate
method before Word has started. This example demonstrates how you can program around this by
putting the DDEInitiate method call in a loop, testing channelNumber until it is no longer an error.

Shell "HD:Form Letter", 6
Do

channelNumber = Application.DDEInitiate(_
app:="MSWord", _
topic:="HD:Form Letter")

Loop Until TypeName(channelNumber) <> "Error"
Application.DDEExecute channelNumber, "[FILEPRINT]"
Application.DDETerminate channelNumber

DisplayFormulaBar Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDisplayFormulaBarC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDisplayFormulaBarX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDisplayFormulaBarA "}

True if the formula bar is displayed. Read/write Boolean.

DisplayFormulaBar Property Example

This example hides the formula bar.
Application.DisplayFormulaBar = False

DisplayStatusBar Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDisplayStatusBarC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDisplayStatusBarX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDisplayStatusBarA "}

True if the status bar is displayed. Read/write Boolean.

DisplayStatusBar Property Example

This example saves the current state of the DisplayStatusBar property and then sets the property to
True so that the status bar is visible.
saveStatusBar = Application.DisplayStatusBar
Application.DisplayStatusBar = True

DoubleClick Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthDoubleClickC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthDoubleClickX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthDoubleClickA "}

Equivalent to double-clicking the active cell.

Syntax
expression.DoubleClick
expression Required. An expression that returns an Application object.

DoubleClick Method Example

This example double-clicks the active cell on Sheet1.
Worksheets("Sheet1").Activate
Application.DoubleClick

Evaluate Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthEvaluateC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthEvaluateX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthEvaluateA "}

Converts a Microsoft Excel name to an object or a value.

Syntax
expression.Evaluate(Name)
expression Optional for Application, required for Chart, DialogSheet, and Worksheet. An

expression that returns an object in the Applies To list.
Name Required String. The name of the object, using the naming convention of Microsoft Excel.

Remarks
The following types of names in Microsoft Excel can be used with this method:

· A1-style references. You can use any reference to a single cell in A1-style notation. All references
are considered to be absolute references.

· Ranges. You can use the range, intersect, and union operators (colon, space, and comma,
respectively) with references.

· Defined names. You can specify any name in the language of the macro.
· External references. You can use the ! operator to refer to a cell or to a name defined in another

workbook ¾ for example, Evaluate("[BOOK1.XLS]Sheet1!A1").

Note Using square brackets (for example, "[A1:C5]") is identical to calling the Evaluate method
with a string argument. For example, the following expression pairs are equivalent.

[a1].Value = 25
Evaluate("A1").Value = 25
trigVariable = [SIN(45)]
trigVariable = Evaluate("SIN(45)")
Set firstCellInSheet = Workbooks("BOOK1.XLS").Sheets(4).[A1]
Set firstCellInSheet = Workbooks("BOOK1.XLS").Sheets(4).Evaluate("A1")
The advantage of using square brackets is that the code is shorter. The advantage of using Evaluate
is that the argument is a string, so you can either construct the string in your code or use a Visual
Basic variable.

Evaluate Method Example

This example turns on bold formatting in cell A1 on Sheet1.
Worksheets("Sheet1").Activate
boldCell = "A1"
Application.Evaluate(boldCell).Font.Bold = True

ExecuteExcel4Macro Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthExecuteExcel4MacroC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthExecuteExcel4MacroX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlmthExecuteExcel4MacroA "}

Runs a Microsoft Excel 4.0 macro function and then returns the result of the function. The return type
depends on the function.

Syntax
expression.ExecuteExcel4Macro(String)
expression Optional. An expression that returns an Application object.
String Required String. A Microsoft Excel 4.0 macro language function without the equal sign. All

references must be given as R1C1 strings. If String contains embedded double quotation marks,
you must double them. For example, to run the macro function =MID("sometext",1,4), String would
have to be "MID(""sometext"",1,4)".

Remarks
The Microsoft Excel 4.0 macro isn't evaluated in the context of the current workbook or sheet. This
means that any references should be external and should specify an explicit workbook name. For
example, to run the Microsoft Excel 4.0 macro "My_Macro" in Book1 you must use "Book1!
My_Macro()". If you don't specify the workbook name, this method fails.

ExecuteExcel4Macro Method Example

This example runs the GET.CELL(42) macro function on cell C3 on Sheet1 and then displays the
result in a message box. The GET.CELL(42) macro function returns the horizontal distance from the
left edge of the active window to the left edge of the active cell. This macro function has no direct
Visual Basic equivalent.
Worksheets("Sheet1").Activate
Range("C3").Select
MsgBox ExecuteExcel4Macro("GET.CELL(42)")

FixedDecimal Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproFixedDecimalC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproFixedDecimalX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproFixedDecimalA "}

All data entered after this property is set to True will be formatted with the number of fixed decimal
places set by the FixedDecimalPlaces property. Read/write Boolean.

FixedDecimal Property Example

This example sets the FixedDecimal property to True and then sets the FixedDecimalPlaces
property to 4. Entering "30000" after running this example produces "3" on the worksheet, and
entering "12500" produces "1.25."
Application.FixedDecimal = True
Application.FixedDecimalPlaces = 4

FixedDecimalPlaces Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproFixedDecimalPlacesC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproFixedDecimalPlacesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproFixedDecimalPlacesA
"}

Returns or sets the number of fixed decimal places used when the FixedDecimal property is set to
True. Read/write Long.

FixedDecimalPlaces Property Example

This example sets the FixedDecimal property to True and then sets the FixedDecimalPlaces
property to 4. Entering "30000" after running this example produces "3" on the worksheet, and
entering "12500" produces "1.25."
Application.FixedDecimal = True
Application.FixedDecimalPlaces = 4

FullName Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproFullNameC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproFullNameX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproFullNameA "}

Returns the name of the object, including its path on disk, as a string. Read-only String.

Remarks
This property is equivalent to the Path property, followed by the current file system separator, followed
by the Name property.

FullName Property Example

This example displays the path and file name of every available add-in.
For Each a In AddIns

MsgBox a.FullName
Next a
This example displays the path and file name of the active workbook (assuming that the workbook
has been saved).
MsgBox ActiveWorkbook.FullName

Help Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthHelpC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthHelpX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthHelpA "}

Displays a Help topic.

Syntax
expression.Help(HelpFile, HelpContextID)
expression Required. An expression that returns an Application object.
helpFile Optional Variant. The name of the online Help file you want to display. If this argument

isn't specified, Microsoft Excel Help is used.
helpContextID Optional Variant. Specifies the context ID number for the Help topic. If this

argument isn't specified, the Help Topics dialog box is displayed.

Help Method Example

This example displays topic number 65527 in the Help file Otisapp.hlp.
Application.Help "OTISAPP.HLP", 65527

IgnoreRemoteRequests Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproIgnoreRemoteRequestsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproIgnoreRemoteRequestsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproIgnoreRemoteRequestsA "}

True if remote DDE requests are ignored. Read/write Boolean.

IgnoreRemoteRequests Property Example

This example sets the IgnoreRemoteRequests property to True so that remote DDE requests are
ignored.
Application.IgnoreRemoteRequests = True

InputBox Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthInputBoxC;vafctInputBox;vafctMsgBox "} {ewc HLP95EN.DLL,
DYNALINK, "Example":"xlmthInputBoxX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthInputBoxA "}

Displays a dialog box for user input. Returns the information entered in the dialog box.

Syntax
expression.InputBox(Prompt, Title, Default, Left, Top, HelpFile, HelpContextId, Type)
expression Required. An expression that returns an Application object.
Prompt Required String. The message to be displayed in the dialog box. This can be a string, a
number, a date, or a Boolean value (Microsoft Excel automatically coerces the value to a String
before it's displayed).

Title Optional Variant. The title for the input box. If this argument is omitted, the default title is
"Input."

Default Optional Variant. Specifies a value that will appear in the text box when the dialog box is
initially displayed. If this argument is omitted, the text box is left empty. This value can be a Range
object.

Left Optional Variant. Specifies an x position for the dialog box in relation to the upper-left corner
of the screen, in points.

Top Optional Variant. Specifies a y position for the dialog box in relation to the upper-left corner of
the screen, in points.

HelpFile Optional Variant. The name of the Help file for this input box. If the HelpFile and
HelpContextID arguments are present, a Help button will appear in the dialog box.

HelpContextId Optional Variant. The context ID number of the Help topic in HelpFile.
Type Optional Variant. Specifies the return data type. If this argument is omitted, the dialog box

returns text. Can be one or a sum of the following values.
Value Meaning
0 A formula
1 A number
2 Text (a string)
4 A logical value (True or False)
8 A cell reference, as a Range object
16 An error value, such as #N/A
64 An array of values

You can use the sum of the allowable values for Type. For example, for an input box that can
accept both text and numbers, set Type to 1 + 2.

Remarks
Use InputBox to display a simple dialog box so that you can enter information to be used in a macro.
The dialog box has an OK button and a Cancel button. If you choose the OK button, InputBox
returns the value entered in the dialog box. If you click the Cancel button, InputBox returns False.

If Type is 0, InputBox returns the formula in the form of text ¾ for example, "=2*PI()/360". If there are
any references in the formula, they are returned as A1-style references. (Use ConvertFormula to
convert between reference styles.)

If Type is 8, InputBox returns a Range object. You must use the Set statement to assign the result to
a Range object, as shown in the following example.
Set myRange = Application.InputBox(prompt := "Sample", type := 8)

If you don't use the Set statement, the variable is set to the value in the range, rather than the Range
object itself.

If you use the InputBox method to ask the user for a formula, you must use the FormulaLocal
property to assign the formula to a Range object. The input formula will be in the user's language.

The InputBox method differs from the InputBox function in that it allows selective validation of the
user's input, and it can be used with Microsoft Excel objects, error values, and formulas. Note that
Application.InputBox calls the InputBox method; InputBox with no object qualifier calls the
InputBox function.

InputBox Method Example

This example prompts the user for a number.
myNum = Application.InputBox("Enter a number")
This example prompts the user to select a cell on Sheet1. The example uses the Type argument to
ensure that the return value is a valid cell reference (a Range object).
Worksheets("Sheet1").Activate
Set myCell = Application.InputBox(_

prompt:="Select a cell", Type:=8)

Installed Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproInstalledC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproInstalledX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproInstalledA "}

True if the add-in is installed. Read/write Boolean.

Remarks
Setting this property to True installs the add-in and calls its Auto_Add functions. Setting this property
to False removes the add-in and calls its Auto_Remove functions.

Installed Property Example

This example uses a message box to display the installation status of the Solver add-in.
Set a = AddIns("Solver Add-In")
If a.Installed = True Then

MsgBox "The Solver add-in is installed"
Else

MsgBox "The Solver add-in is not installed"
End If

Interactive Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproInteractiveC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproInteractiveX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproInteractiveA "}

True if Microsoft Excel is in interactive mode; this property is usually True. If you set the this property
to False, Microsoft Excel will block all input from the keyboard and mouse (except input to dialog
boxes that are displayed by your code). Blocking user input will prevent the user from interfering with
the macro as it moves or activates Microsoft Excel objects. Read/write Boolean.

Remarks
This property is useful if you're using DDE, AppleEvents, or OLE Automation to communicate with
Microsoft Excel from another application.

If you set this property to False, don't forget to set it back to True. Microsoft Excel won't automatically
set this property back to True when your macro stops running.

Interactive Property Example

This example sets the Interactive property to False while it's using DDE in Windows and then sets
this property back to True when it's finished. This prevents the user from interfering with the macro.
Application.Interactive = False
Application.DisplayAlerts = False
channelNumber = Application.DDEInitiate(_

app:="WinWord", _
topic:="C:\WINWORD\FORMLETR.DOC")

Application.DDEExecute channelNumber, "[FILEPRINT]"
Application.DDETerminate channelNumber
Application.DisplayAlerts = True
Application.Interactive = True

Intersect Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthIntersectC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthIntersectX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthIntersectA "}

Returns a Range object that represents the rectangular intersection of two or more ranges.

Syntax
expression.Intersect(Arg1, Arg2, ...)
expression Optional. An expression that returns an Application object.
Arg1, Arg2, ... Required Range. The intersecting ranges. At least two Range objects must be

specified.

Intersect Method Example

This example selects the intersection of two named ranges, rg1 and rg2, on Sheet1. If the ranges
don't intersect, the example displays a message.
Worksheets("Sheet1").Activate
Set isect = Application.Intersect(Range("rg1"), Range("rg2"))
If isect Is Nothing Then

MsgBox "Ranges do not intersect"
Else

isect.Select
End If

Iteration Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproIterationC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproIterationX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproIterationA "}

True if Microsoft Excel will use iteration to resolve circular references. Read/write Boolean.

Iteration Property Example

This example sets the Iteration property to True so that circular references will be resolved by
iteration.
Application.Iteration = True

LibraryPath Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproLibraryPathC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproLibraryPathX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproLibraryPathA "}

Returns the path to the Library folder, but without the final separator. Read-only String.

LibraryPath Property Example

This example opens the file Oscar.xla in the Library folder (the Macro Library folder on the
Macintosh).
pathSep = Application.PathSeparator
f = Application.LibraryPath & pathSep & "Oscar.Xla"
Workbooks.Open filename:=f

MathCoprocessorAvailable Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproMathCoprocessorAvailableC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproMathCoprocessorAvailableX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproMathCoprocessorAvailableA "}

True if a math coprocessor is available. Read-only Boolean.

MathCoprocessorAvailable Property Example

This example displays a message box if a math coprocessor isn't available.
If Not Application.MathCoprocessorAvailable Then

MsgBox "This macro requires a math coprocessor"
End If

MaxChange Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproMaxChangeC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproMaxChangeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproMaxChangeA "}

Returns or sets the maximum amount of change between each iteration as Microsoft Excel resolves
circular references. Read/write Double.

Remarks
The MaxIterations property sets the maximum number of iterations that Microsoft Excel can use
when resolving circular references.

MaxChange Property Example

This example sets the maximum amound of change for each iteration to 0.1.
Application.MaxChange = 0.1

Parent Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproParentC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproParentX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproParentA "}

Returns the parent object for the specified object. Read-only.

Parent Property Example

This example displays the name of the chart that contains myAxis.

Set myAxis = Charts(1).Axes(xlValue)
MsgBox myAxis.Parent.Name

Run Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthRunC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthRunX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthRunA "}

Syntax 1: Runs a macro or calls a function. This can be used to run a macro written in Visual Basic or
the Microsoft Excel 4.0 macro language, or to run a function in a DLL or XLL.

Syntax 2: Runs the Microsoft Excel 4.0 macro at this location. The range must be on a macro sheet.

Syntax 1
expression.Run(Macro, Arg1, Arg2, ...)
Syntax 2
expression.Run(Arg1, Arg2, ...)
expression Optional for Application, required for Range. An expression that returns the application

that contains the macro, or a range on a macro sheet that contains a Microsoft Excel 4.0 macro.
Macro Required Variant for Syntax 1 (not used with Syntax 2). The macro to run. This can be

either a string with the macro name, a Range object indicating where the function is, or a register
ID for a registered DLL (XLL) function. If a string is used, the string will be evaluated in the context
of the active sheet.

Arg1, Arg2, ... Optional Variant. The arguments that should be passed to the function.

Remarks
You cannot use named arguments with this method. Arguments must be passed by position.

The Run method returns whatever the called macro returns. Objects passed as arguments to the
macro are converted to values (by applying the Value property to the object). This means that you
cannot pass objects to macros by using the Run method.

Run Method Example

This example shows how to call the function macro My_Func_Sum, which is defined on the macro
sheet Mycustom.xlm (the macro sheet must be open). The function takes two numeric arguments (1
and 5, in this example).
mySum = Application.Run("MYCUSTOM.XLM!My_Func_Sum", 1, 5)
MsgBox "Macro result: " & mySum

TransitionMenuKey Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproTransitionMenuKeyC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproTransitionMenuKeyX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproTransitionMenuKeyA "}

Returns or sets the alternate menu or help key, which is usually "/". Read/write String.

TransitionMenuKey Property Example

This example sets the transition menu key to "/" (which is the default).
Application.TransitionMenuKey = "/"

TransitionNavigKeys Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproTransitionNavigKeysC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproTransitionNavigKeysX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproTransitionNavigKeysA
"}

True if alternate navigation keys are active. This property is not available on the Macintosh.
Read/write Boolean.

TransitionNavigKeys Property Example

This example displays the current state of the Transition navigation keys option.
If Application.TransitionNavigKeys Then

keyState = "On"
Else

keyState = "Off"
End If
MsgBox "The Transition Navigation Keys option is " & keyState

AddReplacement Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAddReplacementC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAddReplacementX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthAddReplacementA":1}

Adds an entry to the array of AutoCorrect replacements.

Syntax
expression.AddReplacement(What, Replacement)
expression Required. An expression that returns an AutoCorrect object.
What Required String. The text to be replaced. If this string already exists in the array of

AutoCorrect replacements, the existing substitute text is replaced by the new text.
Replacement Required String. The replacement text.

AddReplacement Method Example

This example substitutes the word "Temp." for the word "Temperature" in the array of AutoCorrect
replacements.
With Application.AutoCorrect

.AddReplacement "Temperature", "Temp."
End With

AutoCorrect Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproAutoCorrectC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproAutoCorrectX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproAutoCorrectA "}

Returns an AutoCorrect object that represents the Microsoft Excel AutoCorrect attributes. Read-only.

AutoCorrect Property Example

This example substitutes the word "Temp." for the word "Temperature" in the array of AutoCorrect
replacements.
With Application.AutoCorrect

.AddReplacement "Temperature", "Temp."
End With

CapitalizeNamesOfDays Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproCapitalizeNamesOfDaysC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproCapitalizeNamesOfDaysX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproCapitalizeNamesOfDaysA":1}

True if the first letter of day names is capitalized automatically. Read/write Boolean.

CapitalizeNamesOfDays Property Example

This example sets Microsoft Excel to capitalize the first letter of the names of days.
With Application.AutoCorrect

.CapitalizeNamesOfDays = True

.ReplaceText = True
End With

DeleteReplacement Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthDeleteReplacementC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthDeleteReplacementX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlmthDeleteReplacementA":1}

Deletes an entry from the array of AutoCorrect replacements.

Syntax
expression.DeleteReplacement(What)
expression Required. An expression that returns an AutoCorrect object.
What Required String. The text to be replaced, as it appears in the row to be deleted from the

array of AutoCorrect replacements. If this string doesn't exist in the array of AutoCorrect
replacements, this method fails.

DeleteReplacement Method Example

This example removes the word "Temperature" from the array of AutoCorrect replacements.
With Application.AutoCorrect

.DeleteReplacement "Temperature"
End With

ReplaceText Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproReplaceTextC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproReplaceTextX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproReplaceTextA":1}

True if text in the list of AutoCorrect replacements is replaced automatically. Read/write Boolean.

ReplaceText Property Example

This example turns off automatic text replacement.
With Application.AutoCorrect

.CapitalizeNamesOfDays = True

.ReplaceText = False
End With

TwoInitialCapitals Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproTwoInitialCapitalsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproTwoInitialCapitalsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproTwoInitialCapitalsA":1}

True if words that begin with two capital letters are corrected automatically. Read/write Boolean.

TwoInitialCapitals Property Example

This example sets Microsoft Excel to correct words that begin with two capital letters.
With Application.AutoCorrect

.TwoInitialCapitals = True

.ReplaceText = True
End With

AskToUpdateLinks Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproAskToUpdateLinksC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproAskToUpdateLinksX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproAskToUpdateLinksA "}

True if Microsoft Excel asks the user to update links when opening files with links. False if links are
automatically updated with no dialog box. Read/write Boolean.

AskToUpdateLinks Property Example

This example sets Microsoft Excel to ask the user to update links whenever a file that contains links is
opened.
Application.AskToUpdateLinks = True

AutoUpdate Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproAutoUpdateC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproAutoUpdateX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproAutoUpdateA "}

True if the OLE object is updated automatically when the source changes. Valid only if the object is
linked (its OLEType property must be xlOLELink). Read-only Boolean.

AutoUpdate Property Example

This example displays the status of automatic updating for all OLE objects on Sheet1.
Worksheets("Sheet1").Activate
Range("A1").Value = "Name"
Range("B1").Value = "Link Status"
Range("C1").Value = "AutoUpdate Status"
i = 2
For Each obj In ActiveSheet.OLEObjects

Cells(i, 1) = obj.Name
If obj.OLEType = xlOLELink Then

Cells(i, 2) = "Linked"
Cells(i, 3) = obj.AutoUpdate

Else
Cells(i, 2) = "Embedded"

End If
i = i + 1

Next

Backward Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproBackwardC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproBackwardX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproBackwardA "}

Returns or sets the number of periods (or units on a scatter chart) that the trendline extends
backward. Read/write Long

Backward Property Example

This example sets the number of units that the trendline on Chart1 extends forward and backward.
The example should be run on a 2-D column chart that contains a single series with a trendline.
With Charts("Chart1").SeriesCollection(1).Trendlines(1)

.Forward = 5

.Backward = .5
End With

BlackAndWhite Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproBlackAndWhiteC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproBlackAndWhiteX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproBlackAndWhiteA "}

True if elements of the document will be printed in black and white. Read/write Boolean.

Remarks
This property applies only to worksheet pages.

BlackAndWhite Property Example

This example causes Sheet1 to be printed in black and white.
Worksheets("Sheet1").PageSetup.BlackAndWhite = True

Category Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproCategoryC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproCategoryX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproCategoryA "}

Returns or sets the category for the specified name in the language of the macro. The name must
refer to a custom function or command. Read/write String.

Category Property Example

This example assumes that you created a custom function or command on a Microsoft Excel 4.0
macro sheet. The example displays the function category in the language of the macro. It assumes
that the name of the custom function or command is the only name in the workbook.
With ActiveWorkbook.Names(1)

If .MacroType <> xlNone Then
MsgBox "The category for this name is " & .Category

Else
MsgBox "This name does not refer to" & _

" a custom function or command."
End If

End With

ChangeFileAccess Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthChangeFileAccessC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthChangeFileAccessX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthChangeFileAccessA "}

Changes the access permissions for the workbook. This may require an updated version to be loaded
from the disk.

Syntax
expression.ChangeFileAccess(Mode, WritePassword, Notify)
expression Required. An expression that returns a Workbook object.
Mode Optional Variant. Specifies the new access mode. Can be one of the following XlFileAccess

constants: xlReadWrite or xlReadOnly.
WritePassword Optional Variant. Specifies the write-reserved password if the file is write reserved

and Mode is xlReadWrite. Ignored if there's no password for the file or if Mode is xlReadOnly.
Notify Optional Variant. True (or omitted) to notify the user if the file cannot be immediately

accessed.

Remarks
If you have a file open in read-only mode, you don't have exclusive access to the file. If you change a
file from read-only to read/write, Microsoft Excel must load a new copy of the file to ensure that no
changes were made while you had the file open as read-only.

ChangeFileAccess Method Example

This example sets the active workbook to read-only.
ActiveWorkbook.ChangeFileAccess Mode:=xlReadOnly

ChartGroups Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthChartGroupsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthChartGroupsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthChartGroupsA "}

Returns an object that represents either a single chart group (a ChartGroup object, Syntax 1) or a
collection of all the chart groups in the chart (a ChartGroups object, Syntax 2). The returned
collection includes every type of group.

Syntax 1
expression.ChartGroups(Index)
Syntax 2
expression.ChartGroups
expression Required. An expression that returns a Chart object.
Index Optional Variant. The chart group number.

ChartGroups Method Example

This example turns on up and down bars for chart group one on Chart1 and then sets their colors.
The example should be run on a 2-D line chart containing two series that intersect at one or more
data points.
With Charts("Chart1").ChartGroups(1)

.HasUpDownBars = True

.DownBars.Interior.ColorIndex = 3

.UpBars.Interior.ColorIndex = 5
End With

ClearArrows Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthClearArrowsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthClearArrowsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthClearArrowsA "}

Clears the tracer arrows from the worksheet. Tracer arrows are added by using the auditing feature.

Syntax
expression.ClearArrows
expression Required. An expression that returns a Worksheet object.

ClearArrows Method Example

This example clears tracer arrows from Sheet1.
Worksheets("Sheet1").ClearArrows

Copy Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthCopyC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthCopyX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthCopyA "}

Syntax 1: Copies the object to the Clipboard. Copies a picture of the point or series to the Clipboard.

Syntax 2: Copies the Range to the specified range or to the Clipboard.

Syntax 3: Copies the sheet to another location in the workbook.

Syntax 1
expression.Copy
Syntax 2
expression.Copy(Destination)
Syntax 3
expression.Copy(Before, After)
expression Required. An expression that returns an object in the Applies To list. To copy an entire

chart sheet, use Syntax 3 with the Chart object. To copy only the chart area, use Syntax 1 with the
ChartArea object.

Destination Optional Variant. Specifies the new range to which the specified range will be copied.
If this argument is omitted, Microsoft Excel copies the range to the Clipboard.

Before Syntax 3: Optional Variant. The sheet before which the copied sheet will be placed. You
cannot specify Before if you specify After.

After Optional Variant. The sheet after which the copied sheet will be placed. You cannot specify
After if you specify Before.

Remarks
If you don't specify either Before or After, Microsoft Excel creates a new workbook that contains the
copied sheet.

Copy Method Example

This example copies Sheet1, placing the copy after Sheet3.
Worksheets("Sheet1").Copy after := Worksheets("Sheet3")
This example copies the used range on Sheet1, creates a new worksheet, and then pastes the values
of the copied range onto the new worksheet.
Worksheets("Sheet1").UsedRange.Copy
Set newSheet = Worksheets.Add
newSheet.Range("A1").PasteSpecial Paste:=xlValues
This example copies the formulas in cells A1:D4 on Sheet1 into cells E5:H8 on Sheet2.
Worksheets("Sheet1").Range("A1:D4").Copy _

destination:=Worksheets("Sheet2").Range("E5")

MaxIterations Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproMaxIterationsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproMaxIterationsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproMaxIterationsA "}

Returns or sets the maximum number of iterations that Microsoft Excel can use to resolve a circular
reference. Read/write Long.

Remarks
The MaxChange property sets the maximum amount of change between each iteration when
Microsoft Excel is resolving circular references.

MaxIterations Property Example

This example sets the maximum number of iterations at 1000.
Application.MaxIterations = 1000

MemoryFree Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproMemoryFreeC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproMemoryFreeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproMemoryFreeA "}

Returns the amount of memory that's still available for Microsoft Excel to use, in bytes. Read-only
Long.

MemoryFree Property Example

This example displays a message box showing the number of free bytes.
MsgBox "Microsoft Excel has " & Application.MemoryFree & " bytes free"

MemoryTotal Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproMemoryTotalC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproMemoryTotalX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproMemoryTotalA "}

Returns the total amount of memory (in bytes) that's available to Microsoft Excel, including memory
already in use. Read-only Long.

Remarks
MemoryTotal is equal to MemoryUsed + MemoryFree.

MemoryTotal Property Example

This example displays a message box showing the total number of available bytes.
MsgBox "Microsoft Excel has " & Application.MemoryTotal & _

" total bytes available"

MouseAvailable Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproMouseAvailableC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproMouseAvailableX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproMouseAvailableA "}

True if a mouse is available (always True on the Macintosh). Read-only Boolean.

MouseAvailable Property Example

This example displays a message if a mouse isn't available.
If Application.MouseAvailable = False Then

MsgBox "Your system does not have a mouse"
End If

Move Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthMoveC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthMoveX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthMoveA "}

Moves the sheet to another location in the workbook.

Syntax
expression.Move(Before, After)
expression Required. An expression that returns an object in the Applies To list.
Before Optional Variant. The sheet before which the moved sheet will be placed. You cannot

specify Before if you specify After.
After Optional Variant. The sheet after which the moved sheet will be placed. You cannot specify

After if you specify Before.

Remarks
If you don't specify either Before or After, Microsoft Excel creates a new workbook that contains the
moved sheet.

Move Method Example

This example moves Sheet1 after Sheet3 in the active workbook.
Worksheets("Sheet1").Move _

after:=Worksheets("Sheet3")

MoveAfterReturn Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproMoveAfterReturnC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproMoveAfterReturnX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproMoveAfterReturnA "}

True if the active cell will be moved as soon as the ENTER (RETURN) key is pressed. Read/write
Boolean.

Remarks
Use the MoveAfterReturnDirection property to specify the direction in which the active cell is to be
moved.

MoveAfterReturn Property Example

This example sets the MoveAfterReturn property to True.
Application.MoveAfterReturn = True

OperatingSystem Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproOperatingSystemC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproOperatingSystemX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproOperatingSystemA "}

Returns the name and version number of the current operating system ¾ for example, "Windows (32-
bit) 4.00" or "Macintosh 7.00". Read-only String.

OperatingSystem Property Example

This example displays the name of the operating system.
MsgBox "Microsoft Excel is using " & Application.OperatingSystem

OrganizationName Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproOrganizationNameC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproOrganizationNameX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproOrganizationNameA "}

Returns the registered organization name. Read-only String.

OrganizationName Property Example

This example displays the registered organization name.
MsgBox "The registered organization is " & Application.OrganizationName

Path Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPathC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPathX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPathA "}

Returns the complete path of the object, excluding the final separator and name of the object. Read-
only String.

Remarks
Using this property without an object qualifier is equivalent to Application.Path (this returns the
path to the Microsoft Excel application).

Path Property Example

This example displays the complete path to Microsoft Excel.
MsgBox "The path is " & Application.Path

PathSeparator Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPathSeparatorC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPathSeparatorX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPathSeparatorA "}

Returns the path separator character ("\" in Windows, or ":" on the Macintosh). Read-only String.

PathSeparator Property Example

This example displays the current path separator.
MsgBox "The path separator character is " & Application.PathSeparator

PrintOut Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthPrintOutC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthPrintOutX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthPrintOutA "}

Prints the object.

Syntax
expression.PrintOut(from, To, Copies, Preview, ActivePrinter, PrintToFile, Collate)
expression Required. An expression that returns an object in the Applies To list.
From Optional Variant. The number of the page at which to start printing. If this argument is

omitted, printing starts at the beginning.
To Optional Variant. The number of the last page to print. If this argument is omitted, printing ends

with the last page.
Copies Optional Variant. The number of copies to print. If this argument is omitted, one copy is

printed.
Preview Optional Variant. True to have Microsoft Excel invoke print preview before printing the

object. False (or omitted) to print the object immediately.
ActivePrinter Optional Variant. Sets the name of the active printer.
PrintToFile Optional Variant. True to print to a file. Microsoft Excel prompts the user to enter the

name of the output file. There's no way to specify the name of the output file from Visual Basic.
Collate Optional Variant. True to collate multiple copies.

Remarks
"Pages" in the descriptions of From and To refers to printed pages ¾ not overall pages in the sheet or
workbook.

This method applies to the Window object only when it's the Info window.

PrintOut Method Example

This example prints the active sheet.
ActiveSheet.PrintOut

PrintPreview Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthPrintPreviewC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthPrintPreviewX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthPrintPreviewA "}

Shows a preview of the object as it would look when printed.

Syntax
expression.PrintPreview
expression Required. An expression that returns an object in the Applies To list.

PrintPreview Method Example

This example displays Sheet1 in print preview.
Worksheets("Sheet1").PrintPreview

RecordRelative Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproRecordRelativeC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproRecordRelativeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproRecordRelativeA "}

True if macros are recorded using relative references; False if recording is absolute. Read-only
Boolean.

RecordRelative Property Example

This example displays the address of the active cell on Sheet1 in A1 style if RecordRelative is False;
otherwise, it displays the address in R1C1 style.
Worksheets("Sheet1").Activate
If Application.RecordRelative = False Then

MsgBox ActiveCell.Address(ReferenceStyle:=xlA1)
Else

MsgBox ActiveCell.Address(ReferenceStyle:=xlR1C1)
End If

ReferenceStyle Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproReferenceStyleC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproReferenceStyleX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproReferenceStyleA "}

Returns or sets how Microsoft Excel displays cell references and row and column headings in either
A1 or R1C1 reference style. Can be one of the following XlReferenceStyle constants: xlA1 or
xlR1C1. Read/write Long.

ReferenceStyle Property Example

This example displays the current reference style.
If Application.ReferenceStyle = xlR1C1 Then

MsgBox ("Microsoft Excel is using R1C1 references")
Else

MsgBox ("Microsoft Excel is using A1 references")
End If

Repeat Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthRepeatC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthRepeatX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthRepeatA "}

Repeats the last user-interface action.

Syntax
expression.Repeat
expression Required. An expression that returns an Application object.

Remarks
This method repeats only the last action taken by the user before running the macro, and it must be
the first line in the macro. It cannot be used to repeat Visual Basic commands.

Repeat Method Example

This example repeats the last user-interface command. The example must be the first line in a macro.
Application.Repeat

Save Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthSaveC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthSaveX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthSaveA "}

Saves changes to the specified workbook.

Syntax
expression.Save
expression Required. An expression that returns a Workbook object.

Remarks
To open a workbook file, use the Open method.

To mark a workbook as saved without writing it to a disk, set its Saved property to True.

The first time you save a workbook, use the SaveAs method to specify a name for the file.

Save Method Example

This example saves the active workbook.
ActiveWorkbook.Save
This example saves all open workbooks and then closes Microsoft Excel.
For Each w In Application.Workbooks

w.Save
Next w
Application.Quit

Scenarios Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthScenariosC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthScenariosX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthScenariosA "}

Returns an object that represents either a single scenario (a Scenario object, Syntax 1) or a
collection of scenarios (a Scenarios object, Syntax 2) on the worksheet.

Syntax 1
expression.Scenarios(Index)
Syntax 2
expression.Scenarios
expression Required. An expression that returns a Worksheet object.
Index Optional Variant. The name or number of the scenario. Use an array to specify more than

one scenario.

Scenarios Method Example

This example sets the comment for the first scenario on Sheet1.
Worksheets("Sheet1").Scenarios(1).Comment = _

"Worst-case July 1993 sales"

ScreenUpdating Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproScreenUpdatingC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproScreenUpdatingX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproScreenUpdatingA "}

True if screen updating is turned on. Read/write Boolean.

Remarks
Turn screen updating off to speed up your macro code. You won't be able to see what the macro is
doing, but it will run faster.

Remember to set the ScreenUpdating property back to True when your macro ends (older versions
of Microsoft Excel automatically reset this property, but Microsoft Excel 97 does not).

ScreenUpdating Property Example

This example demonstrates how turning off screen updating can make your code run faster. The
example hides every other column on Sheet1, while keeping track of the time it takes to do so. The
first time the example hides the columns, screen updating is turned on; the second time, screen
updating is turned off. When you run this example, you can compare the respective running times,
which are displayed in the message box.
Dim elapsedTime(2)
Application.ScreenUpdating = True
For i = 1 To 2

If i = 2 Then Application.ScreenUpdating = False
startTime = Time
Worksheets("Sheet1").Activate
For Each c In ActiveSheet.Columns

If c.Column Mod 2 = 0 Then
c.Hidden = True

End If
Next c
stopTime = Time
elapsedTime(i) = (stopTime - startTime) * 24 * 60 * 60

Next i
Application.ScreenUpdating = True
MsgBox "Elapsed time, screen updating on: " & elapsedTime(1) & _

" sec." & Chr(13) & _
"Elapsed time, screen updating off: " & elapsedTime(2) & _
" sec."

SendKeys Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthSendKeysC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthSendKeysX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthSendKeysA "}

Sends keystrokes to the active application. This method isn't available on the Macintosh.

Syntax
expression.SendKeys(Keys, Wait)
expression Optional. An expression that returns an Application object.
Keys Required Variant. The key or key combination you want to send to the application, as text.
Wait Optional Variant. True to have Microsoft Excel wait for the keys to be processed before

returning control to the macro. False (or omitted) to continue running the macro without waiting for
the keys to be processed.

Remarks
This method places keystrokes in a key buffer. In some cases, you must call this method before you
call the method that will use the keystrokes. For example, to send a password to a dialog box, you
must call the SendKeys method before you display the dialog box.

The Keys argument can specify any single key or any key combined with ALT, CTRL, or SHIFT (or any
combination of those keys). Each key is represented by one or more characters, such as "a" for the
character a, or "{ENTER}" for the ENTER key.

To specify characters that aren't displayed when you press the corresponding key (for example,
ENTER or TAB), use the codes listed in the following table. Each code in the table represents one key
on the keyboard.

Key Code
BACKSPACE {BACKSPACE} or {BS}
BREAK {BREAK}
CAPS LOCK {CAPSLOCK}
CLEAR {CLEAR}
DELETE or DEL {DELETE} or {DEL}
DOWN ARROW {DOWN}
END {END}
ENTER (numeric keypad) {ENTER}
ENTER ~ (tilde)
ESC {ESCAPE} or {ESC}
HELP {HELP}
HOME {HOME}
INS {INSERT}
LEFT ARROW {LEFT}
NUM LOCK {NUMLOCK}
PAGE DOWN {PGDN}
PAGE UP {PGUP}
RETURN {RETURN}
RIGHT ARROW {RIGHT}
SCROLL LOCK {SCROLLLOCK}
TAB {TAB}

UP ARROW {UP}
F1 through F15 {F1} through {F15}
You can also specify keys combined with SHIFT and/or CTRL and/or ALT. To specify a key combined
with another key or keys, use the following table.

To combine a key with Precede the key code with
SHIFT + (plus sign)
CTRL ^ (caret)
ALT % (percent sign)

SendKeys Method Example

This example uses the SendKeys method to quit Microsoft Excel for Windows.
Application.SendKeys("%fx")

StartupPath Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproStartupPathC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproStartupPathX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproStartupPathA "}

Returns the complete path of the startup folder, excluding the final separator. Read-only String.

StartupPath Property Example

This example displays the full path to the Microsoft Excel startup folder.
MsgBox Application.StartupPath

StatusBar Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproStatusBarC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproStatusBarX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproStatusBarA "}

Returns or sets the text in the status bar. Read/write String.

Remarks
This property returns False if Microsoft Excel has control of the status bar. To restore the default
status bar text, set the property to False; this works even if the status bar is hidden.

StatusBar Property Example

This example sets the status bar text to "Please be patient..." before it opens the workbook Large.xls,
and then it restores the default text.
oldStatusBar = Application.DisplayStatusBar
Application.DisplayStatusBar = True
Application.StatusBar = "Please be patient..."
Workbooks.Open filename:="LARGE.XLS"
Application.StatusBar = False
Application.DisplayStatusBar = oldStatusBar

ThisWorkbook Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproThisWorkbookC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproThisWorkbookX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproThisWorkbookA "}

Returns a Workbook object that represents the workbook where the current macro code is running.
Read-only.

Remarks
Use this property to refer to the workbook that contains your macro code. ThisWorkbook is the only
way to refer to an add-in workbook from inside the add-in itself. The ActiveWorkbook property
doesn't return the add-in workbook; it returns the workbook that's calling the add-in.The Workbooks
property may fail, as the workbook name probably changed when you created the add-in.
ThisWorkbook always returns the workbook in which the code is running.

For example, use code such as the following to activate a dialog sheet stored in your add-in
workbook.
ThisWorkbook.DialogSheets(1).Show
This property can be used only from inside Microsoft Excel. You cannot use it to access a workbook
from any other application.

ThisWorkbook Property Example

This example closes the workbook that contains the example code. Changes to the workbook, if any,
aren't saved.
ThisWorkbook.Close SaveChanges:=False

Undo Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthUndoC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthUndoX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthUndoA "}

Cancels the last user-interface action.

Syntax
expression.Undo
expression Required. An expression that returns an Application object.

Remarks
This method undoes only the last action taken by the user before running the macro, and it must be
the first line in the macro. It cannot be used to undo Visual Basic commands.

Undo Method Example

This example cancels the last user-interface action. The example must be the first line in a macro.
Application.Undo

Union Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthUnionC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthUnionX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthUnionA "}

Returns the union of two or more ranges.

Syntax
expression.Union(Arg1, Arg2, ...)
expression Optional. An expression that returns an Application object.
Arg1, Arg2, ... Required Range. At least two Range objects must be specified.

Union Method Example

This example fills the union of two named ranges, Range1 and Range2, with the formula =RAND().
Worksheets("Sheet1").Activate
Set bigRange = Application.Union(Range("Range1"), Range("Range2"))
bigRange.Formula = "=RAND()"

Unprotect Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthUnprotectC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthUnprotectX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthUnprotectA "}

Removes protection from a sheet or workbook. This method has no effect if the sheet or workbook
isn't protected.

Syntax
expression.Unprotect(Password)
expression Required. An expression that returns a Chart, Workbook, or Worksheet object.
Password Optional Variant. A string that denotes the case-sensitive password to use to unprotect

the sheet or workbook. If the sheet or workbook isn't protected with a password, this argument is
ignored. If you omit this argument for a sheet that's protected with a password, you'll be prompted
for the password. If you omit this argument for a workbook that's protected with a password, the
method fails.

Remarks
If you forget the password, you cannot unprotect the sheet or workbook. It's a good idea to keep a list
of your passwords and their corresponding document names in a safe place.

Unprotect Method Example

This example removes protection from the active workbook.
ActiveWorkbook.Unprotect

UsableHeight Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproUsableHeightC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproUsableHeightX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproUsableHeightA "}

Returns the maximum height of the space that a window can occupy in the application window area,
in points. Read-only Double.

UsableHeight Property Example

This example expands the active window to the maximum size available (assuming that the window
isn't already maximized).
With ActiveWindow

.WindowState = xlNormal

.Top = 1

.Left = 1

.Height = Application.UsableHeight

.Width = Application.UsableWidth
End With

UsableWidth Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproUsableWidthC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproUsableWidthX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproUsableWidthA "}

Returns the maximum width of the space that a window can occupy in the application window area, in
points. Read-only Double.

UsableWidth Property Example

This example expands the active window to the maximum size available (assuming that the window
isn't already maximized).
With ActiveWindow

.WindowState = xlNormal

.Top = 1

.Left = 1

.Height = Application.UsableHeight

.Width = Application.UsableWidth
End With

UserName Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproUserNameC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproUserNameX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproUserNameA "}

Returns or sets the name of the current user. Read/write String.

UserName Property Example

This example displays the name of the current user.
MsgBox "Current user is " & Application.UserName

Version Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproVersionC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproVersionX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproVersionA "}

Returns the Microsoft Excel version number. Read-only String.

Version Property Example

This example displays a message box that contains the Microsoft Excel version number and the
name of the operating system.
MsgBox "Welcome to Microsoft Excel version " & _

Application.Version & " running on " & _
Application.OperatingSystem & "!"

Wait Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthWaitC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthWaitX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthWaitA "}

Pauses a running macro until a specified time.

Important The Wait method suspends all Microsoft Excel activity and may prevent you from
performing other operations on your computer while Wait is in effect. However, background
processes such as printing and recalculation continue.

Syntax
expression.Wait(Time)
expression Required. An expression that returns an Application object.
Time Required Variant. The time at which you want the macro to resume, in Microsoft Excel date

format.

Wait Method Example

This example pauses a running macro until 6:23 P.M. today.
Application.Wait "18:23:00"
This example pauses a running macro for approximately 10 seconds.
newHour = Hour(Now())
newMinute = Minute(Now())
newSecond = Second(Now()) + 10
waitTime = TimeSerial(newHour, newMinute, newSecond)
Application.Wait waitTime

WindowsForPens Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproWindowsForPensC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproWindowsForPensX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproWindowsForPensA "}

True if the computer is running under Microsoft Windows for Pen Computing. Read-only Boolean.

WindowsForPens Property Example

This example shows how to limit handwriting recognition to numbers and punctuation only if Microsoft
Windows for Pen Computing is running.
If Application.WindowsForPens Then

Application.ConstrainNumeric = True
End If

WindowState Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproWindowStateC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproWindowStateX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproWindowStateA "}

Returns or sets the state of the window. Can be one of the following XlWindowState constants:
xlMaximized, xlMinimized, or xlNormal. Read/write Long.

WindowState Property Example

This example maximizes the application window in Microsoft Excel for Windows. (This property
cannot be set on the Macintosh.)
Application.WindowState = xlMaximized
This example expands the active window to the maximum size available (assuming that the window
isn't already maximized).
With ActiveWindow

.WindowState = xlNormal

.Top = 1

.Left = 1

.Height = Application.UsableHeight

.Width = Application.UsableWidth
End With

Area3DGroup Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproArea3DGroupC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproArea3DGroupX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproArea3DGroupA "}

Returns a ChartGroup object that represents the area chart group on a 3-D chart. Read-only.

Area3DGroup Property Example

This example turns on drop lines for the 3-D area chart group.
Charts(1).Area3DGroup.HasDropLines = True

AreaGroups Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAreaGroupsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAreaGroupsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthAreaGroupsA "}

On a 2-D chart, returns an object that represents either a single area chart group (a ChartGroup
object, Syntax 1) or a collection of the area chart groups (a ChartGroups collection, Syntax 2).

Syntax 1
expression.AreaGroups(Index)
Syntax 2
expression.AreaGroups
expression Required. An expression that returns a Chart object.
Index Optional Variant. The chart group number.

AreaGroups Method Example

This example turns on drop lines for the 2-D area chart group.
Charts(1).AreaGroups(1).HasDropLines = True

AutoScaling Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproAutoScalingC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproAutoScalingX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproAutoScalingA "}

True if Microsoft Excel scales a 3-D chart so that it's closer in size to the equivalent 2-D chart. The
RightAngleAxes property must be True. Read/write Boolean.

AutoScaling Property Example

This example automatically scales Chart1. The example should be run on a 3-D chart.
With Charts("Chart1")

.RightAngleAxes = True

.AutoScaling = True
End With

Axes Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAxesC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAxesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthAxesA "}

Returns an object that represents either a single axis (an Axis object, Syntax 1) or a collection of the
axes on the chart (an Axes collection, Syntax 2).

Syntax 1
expression.Axes(Type, AxisGroup)
Syntax 2
expression.Axes
expression Required. An expression that returns a Chart object.
Type Optional Variant. Specifies the axis to return. Can be one of the following XlAxisType

constants: xlValue, xlCategory, or xlSeriesAxis (xlSeriesAxis is valid only for 3-D charts).
AxisGroup Optional Variant. Specifies the axis group. Can be one of the following XlAxisGroup

constants: xlPrimary or xlSecondary. If this argument is omitted, the primary group is used. 3-D
charts have only one axis group.

Axes Method Example

This example adds an axis label to the category axis in Chart1.
With Charts("Chart1").Axes(xlCategory)

.HasTitle = True

.AxisTitle.Text = "July Sales"
End With
This example turns off major gridlines for the category axis in Chart1.
Charts("Chart1").Axes(xlCategory).HasMajorGridlines = False
This example turns off all gridlines for all axes in Chart1.
For Each a In Charts("Chart1").Axes

a.HasMajorGridlines = False
a.HasMinorGridlines = False

Next a

AxisBetweenCategories Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproAxisBetweenCategoriesC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproAxisBetweenCategoriesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproAxisBetweenCategoriesA "}

True if the value axis crosses the category axis between categories. Read/write Boolean.

Remarks
This property applies only to category axes, and it doesn't apply to 3-D charts.

AxisBetweenCategories Property Example

This example causes the value axis in Chart1 to cross the category axis between categories.
Charts("Chart1").Axes(xlCategory).AxisBetweenCategories = True

AxisGroup Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproAxisGroupC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproAxisGroupX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproAxisGroupA "}

Returns the group for the specified axis, chart group, or series. Can be one of the following
XlAxisGroup constants: xlPrimary or xlSecondary. Read/write Long for Series; read-only Long for
Axis and ChartGroup.

Remarks
For 3-D charts, only xlPrimary is valid.

AxisGroup Property Example

This example deletes the value axis in Chart1 if the axis is in the secondary group.
With Charts("Chart1").Axes(xlValue)

If .AxisGroup = xlSecondary Then .Delete
End With

Bar3DGroup Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproBar3DGroupC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproBar3DGroupX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproBar3DGroupA "}

Returns a ChartGroup object that represents the bar chart group on a 3-D chart. Read-only.

Bar3DGroup Property Example

This example sets the space between bar clusters in the 3-D bar chart group to be 50 percent of the
bar width.
Charts(1).BarGroup3DGroup.GapWidth = 50

BarGroups Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthBarGroupsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthBarGroupsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthBarGroupsA "}

On a 2-D chart, returns an object that represents either a single bar chart group (a ChartGroup
object, Syntax 1) or a collection of the bar chart groups (a ChartGroups collection, Syntax 2).

Syntax 1
expression.BarGroups(Index)
Syntax 2
expression.BarGroups
expression Required. An expression that returns a Chart object.
Index Optional Variant. Specifies the chart group.

BarGroups Method Example

This example sets the space between bar clusters in the 2-D bar chart group to be 50 percent of the
bar width.
Charts(1).BarGroups(1).GapWidth = 50

ChartArea Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproChartAreaC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproChartAreaX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproChartAreaA "}

Returns a ChartArea object that represents the complete chart area for the chart. Read-only.

ChartArea Property Example

This example sets the chart area interior color of Chart1 to red and sets the border color to blue.
With Charts("Chart1").ChartArea

.Interior.ColorIndex = 3

.Border.ColorIndex = 5
End With

Clear Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthClearC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthClearX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthClearA "}

ChartArea, Legend, or Range object: Clears the entire object.

ActiveX list box or combo box: Removes all entries from the list.

Syntax
expression.Clear
expression Required. An expression that returns an object in the Applies To list..

Clear Method Example

This example clears the formulas and formatting in cells A1:G37 on Sheet1.
Worksheets("Sheet1").Range("A1:G37").Clear
This example clears the chart area (the chart data and formatting) of Chart1.
Charts("Chart1").ChartArea.Clear

ClearContents Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthClearContentsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthClearContentsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthClearContentsA "}

Clears the formulas from the range. Clears the data from a chart but leaves the formatting.

Syntax
expression.ClearContents
expression Required. An expression that returns a Chart or Range object.

ClearContents Method Example

This example clears the formulas from cells A1:G37 on Sheet1 but leaves the formatting intact.
Worksheets("Sheet1").Range("A1:G37").ClearContents
This example clears the chart data from Chart1 but leaves the formatting intact.
Charts("Chart1").ChartArea.ClearContents

Column3DGroup Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproColumn3DGroupC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproColumn3DGroupX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproColumn3DGroupA "}

Returns a ChartGroup object that represents the column chart group on a 3-D chart. Read-only.

Column3DGroup Property Example

This example sets the space between column clusters in the 3-D column chart group to be 50 percent
of the column width.
Charts(1).Column3DGroup.GapWidth = 50

ColumnGroups Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthColumnGroupsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthColumnGroupsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthColumnGroupsA "}

On a 2-D chart, returns an object that represents either a single column chart group (a ChartGroup
object, Syntax 1) or a collection of the column chart groups (a ChartGroups collection, Syntax 2).

Syntax 1
expression.ColumnGroups(Index)
Syntax 2
expression.ColumnGroups
expression Required. An expression that returns a Chart object.
Index Optional Variant. Specifies the chart group.

ColumnGroups Method Example

This example sets the space between column clusters in the 2-D column chart group to be 50 percent
of the column width.
Charts(1).ColumnGroups(1).GapWidth = 50

Corners Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproCornersC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproCornersX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproCornersA "}

Returns a Corners object that represents the corners of a 3-D chart. Read-only.

Corners Property Example

This example selects the corners of Chart1. The example should be run on a 3-D chart (the Select
method fails on any other chart type).
With Charts("Chart1")

.Activate

.Corners.Select
End With

CreatePublisher Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthCreatePublisherC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthCreatePublisherX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthCreatePublisherA "}

Creates a publisher based on a Chart or a Range object. Available only on the Macintosh with
System 7 or later.

Syntax
expression.CreatePublisher(Edition, Appearance, Size, ContainsPICT, ContainsBIFF,

ContainsRTF, ContainsVALU)
expression Required. An expression that returns a Chart or Range object.
Edition Optional Variant. The filename of the edition to be created. If this argument is omitted,

"<Document Name> Edition #n" is used.
Appearance Optional Variant. One of xlPrinter or xlScreen.
Size Optional Variant (used only with Chart objects). One of xlPrinter or xlScreen.
ContainsPICT Optional Variant. True to include PICT format in the publisher. The default value is

True.
ContainsBIFF Optional Variant. True to include BIFF format in the publisher. The default value for

Range is True; the default value for Chart is False.
ContainsRTF Optional Variant. True to include RTF format in the publisher. The default value for

Range is True; the default value for Chart is False.
ContainsVALU Optional Variant. True to include VALU format in the publisher. The default value

for Range is True; the default value for Chart is False.

 CreatePublisher Method Example

This example creates a publisher based on cells A1:A20 on Sheet1.
Worksheets("Sheet1").Range("A1:A20").CreatePublisher "stock data"

Crosses Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproCrossesC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproCrossesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproCrossesA "}

Returns or sets the point on the specified axis where the other axis crosses. Read/write Long.

Can be one of the following XlAxisCrosses constants.

Constant Meaning
xlAxisCrossesAutomatic Microsoft Excel sets the axis crossing point.
xlMinimum The axis crosses at the minimum value.
xlMaximum The axis crosses at the maximum value.
xlAxisCrossesCustom The CrossesAt property specifies the axis

crossing point.

Remarks
This property isn't available for 3-D charts or radar charts.

This property can be used for both category and value axes. On the category axis, xlMinimum sets
the value axis to cross at the first category, and xlMaximum sets the value axis to cross at the last
category.

Note that xlMinimum and xlMaximum can have different meanings, depending on the axis.

Crosses Property Example

This example sets the value axis in Chart1 to cross the category axis at the maximum x value.
Charts("Chart1").Axes(xlCategory).Crosses = xlMaximum

CrossesAt Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproCrossesAtC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproCrossesAtX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproCrossesAtA "}

Returns or sets the point on the value axis where the category axis crosses it. Applies only to the
value axis. Read/write Double.

Remarks
Setting this property causes the Crosses property to change to xlAxisCrossesCustom.

This property cannot be used on 3-D charts or radar charts.

CrossesAt Property Example

This example sets the category axis in Chart1 to cross the value axis at value 3.
With Charts("Chart1").Axes(xlValue)

.Crosses = xlCustom

.CrossesAt = 3
End With

DepthPercent Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDepthPercentC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDepthPercentX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDepthPercentA "}

Returns or sets the depth of a 3-D chart as a percentage of the chart width (between 20 and 2000
percent). Read/write Long.

DepthPercent Property Example

This example sets the depth of Chart1 to be 50 percent of its width. The example should be run on a
3-D chart (the DepthPercent property fails on 2-D charts).
Charts("Chart1").DepthPercent = 50

DoughnutGroups Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthDoughnutGroupsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthDoughnutGroupsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthDoughnutGroupsA "}

On a 2-D chart, returns an object that represents either a single doughnut chart group (a ChartGroup
object, Syntax 1) or a collection of the doughnut chart groups (a ChartGroups collection, Syntax 2).

Syntax 1
expression.DoughnutGroups(Index)
Syntax 2
expression.DoughnutGroups
expression Required. An expression that returns a Chart object.
Index Optional Variant. Specifies the chart group.

DoughnutGroups Method Example

This example sets the starting angle for doughnut group one in Chart1.
Charts("Chart1").DoughnutGroups(1).FirstSliceAngle = 45

Elevation Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproElevationC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproElevationX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproElevationA "}

Returns or sets the elevation of the 3-D chart view, in degrees. Read/write Long.

Remarks
The chart elevation is the height at which you view the chart, in degrees. The default is 15 for most
chart types. The value of this property must be between -90 and 90, except for 3-D bar charts, where
it must be between 0 and 44.

Elevation Property Example

This example sets the chart elevation of Chart1 to 34 degrees. The example should be run on a 3-D
chart (the Elevation property fails on 2-D charts).
Charts("Chart1").Elevation = 34

Floor Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproFloorC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproFloorX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproFloorA "}

Returns a Floor object that represents the floor of the 3-D chart. Read-only.

For information about using the Floor worksheet function in Visual Basic, see Using Worksheet
Functions in Visual Basic.

Floor Property Example

This example sets the floor color of Chart1 to blue. The example should be run on a 3-D chart (the
Floor property fails on 2-D charts).
Charts("Chart1").Floor.Interior.ColorIndex = 5

Font Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproFontC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproFontX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproFontA "}

Returns a Font object that represents the font of the specified object. Read-only.

Font Property Example

This example sets the font in cell B5 on Sheet1 to 14-point bold italic.
With Worksheets("Sheet1").Range("B5").Font

.Size = 14

.Bold = True

.Italic = True
End With

GapDepth Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproGapDepthC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproGapDepthX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproGapDepthA "}

Returns or sets the distance between the data series in a 3-D chart, as a percentage of the marker
width. The value of this property must be between 0 and 500. Read/write Long.

GapDepth Property Example

This example sets the distance between the data series in Chart1 to 200 percent of the marker width.
The example should be run on a 3-D chart (the GapDepth property fails on 2-D charts).
Charts("Chart1").GapDepth = 200

GapWidth Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproGapWidthC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproGapWidthX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproGapWidthA "}

Bar and Column charts: Returns or sets the space between bar or column clusters, as a percentage
of the bar or column width. The value of this property must be between 0 and 500. Read/write Long.

Pie of Pie and Bar of Pie charts: Returns or sets the space between the primary and secondary
sections of the chart. The value of this property must be between 5 and 200. Read/write Long.

GapWidth Property Example

This example sets the space between column clusters in Chart1 to be 50 percent of the column width.
Charts("Chart1").ChartGroups(1).GapWidth = 50

HasMajorGridlines Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproHasMajorGridlinesC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproHasMajorGridlinesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproHasMajorGridlinesA "}

True if the axis has major gridlines. Only axes in the primary axis group can have gridlines.
Read/write Boolean.

HasMajorGridlines Property Example

This example sets the color of the major gridlines for the value axis in Chart1.
With Charts("Chart1").Axes(xlValue)

If .HasMajorGridlines Then
.MajorGridlines.Border.ColorIndex = 3 'set color to red

End If
End With

HasMinorGridlines Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproHasMinorGridlinesC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproHasMinorGridlinesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproHasMinorGridlinesA "}

True if the axis has minor gridlines. Only axes in the primary axis group can have gridlines.
Read/write Boolean.

HasMinorGridlines Property Example

This example sets the color of the minor gridlines for the value axis in Chart1.
With Charts("Chart1").Axes(xlValue)

If .HasMinorGridlines Then
.MinorGridlines.Border.ColorIndex = 4 'set color to green

End If
End With

Insert Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthInsertC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthInsertX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthInsertA "}

Syntax 1 (Range object): Inserts a cell or a range of cells into the worksheet or macro sheet and
shifts other cells away to make space.

Syntax 2 (Characters object): Inserts a string preceding the selected characters.

Syntax 1
expression.Insert(Shift)
Syntax 2
expression.Insert(String)
expression Required. An expression that returns a Characters or Range object.
Shift Optional Variant. Specifies which way to shift the cells. Can be one of the following

XlInsertShiftDirection constants: xlShiftToRight or xlShiftDown. If this argument is omitted,
Microsoft Excel decides based on the shape of the range.

String Required String. The string to insert.

Insert Method Example

This example inserts a new row before row four on Sheet1.
Worksheets("Sheet1").Rows(4).Insert
This example inserts new cells at the range A1:C5 on Sheet1 and shifts cells downward.
Worksheets("Sheet1").Range("A1:C5").Insert shift:=xlShiftDown
This example inserts a new row at the active cell. The example must be run from a worksheet.
ActiveCell.EntireRow.Insert

MajorGridlines Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproMajorGridlinesC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproMajorGridlinesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproMajorGridlinesA "}

Returns a Gridlines object that represents the major gridlines for the specified axis. Only axes in the
primary axis group can have gridlines. Read-only.

MajorGridlines Property Example

This example sets the color of the major gridlines for the value axis in Chart1.
With Charts("Chart1").Axes(xlValue)

If .HasMajorGridlines Then
.MajorGridlines.Border.ColorIndex = 5 'set color to blue

End If
End With

MajorTickMark Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproMajorTickMarkC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproMajorTickMarkX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproMajorTickMarkA "}

Returns or sets the type of major tick mark for the specified axis. Can be one of the following
XlTickMark constants: xlTickMarkNone, xlTickMarkInside, xlTickMarkOutside, or
xlTickMarkCross. Read/write Long.

MajorTickMark Property Example

This example sets the major tick marks for the value axis in Chart1 to be outside the axis.
Charts("Chart1").Axes(xlValue).MajorTickMark = xlTickMarkOutside

MajorUnit Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproMajorUnitC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproMajorUnitX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproMajorUnitA "}

Returns or sets the major units for the axis. Read/write Double.

Remarks
Setting this property sets the MajorUnitIsAuto property to False.

Use the TickMarkSpacing property to set tick mark spacing on the category axis.

MajorUnit Property Example

This example sets the major and minor units for the value axis in Chart1.
With Charts("Chart1").Axes(xlValue)

.MajorUnit = 100

.MinorUnit = 20
End With

MajorUnitIsAuto Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproMajorUnitIsAutoC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproMajorUnitIsAutoX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproMajorUnitIsAutoA "}

True if Microsoft Excel calculates the major units for the axis. Read/write Boolean.

Remarks
Setting the MajorUnit property sets this property to False.

MajorUnitIsAuto Property Example

This example automatically sets the major and minor units for the value axis in Chart1.
With Charts("Chart1").Axes(xlValue)

.MajorUnitIsAuto = True

.MinorUnitIsAuto = True
End With

MaximumScale Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproMaximumScaleC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproMaximumScaleX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproMaximumScaleA "}

Returns or sets the maximum value on the axis. Read/write Double.

Remarks
Setting this property sets the MaximumScaleIsAuto property to False.

MaximumScale Property Example

This example sets the minimum and maximum values for the value axis in Chart1.
With Charts("Chart1").Axes(xlValue)

.MinimumScale = 10

.MaximumScale = 120
End With

MaximumScaleIsAuto Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproMaximumScaleIsAutoC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproMaximumScaleIsAutoX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproMaximumScaleIsAutoA "}

True if Microsoft Excel calculates the maximum value for the axis. Read/write Boolean.

Remarks
Setting the MaximumScale property sets this property to False.

MaximumScaleIsAuto Property Example

This example automatically calculates the minimum scale and the maximum scale for the value axis
in Chart1.
With Charts("Chart1").Axes(xlValue)

.MinimumScaleIsAuto = True

.MaximumScaleIsAuto = True
End With

MinimumScale Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproMinimumScaleC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproMinimumScaleX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproMinimumScaleA "}

Returns or sets the minimum value on the axis. Read/write Double.

Remarks
Setting this property sets the MinimumScaleIsAuto property to False.

MinimumScale Property Example

This example sets the minimum and maximum values for the value axis in Chart1.
With Charts("Chart1").Axes(xlValue)

.MinimumScale = 10

.MaximumScale = 120
End With

MinimumScaleIsAuto Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproMinimumScaleIsAutoC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproMinimumScaleIsAutoX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproMinimumScaleIsAutoA
"}

True if Microsoft Excel calculates the minimum value for the axis. Read/write Boolean.

Remarks
Setting the MinimumScale property sets this property to False.

MinimumScaleIsAuto Property Example

This example automatically calculates the minimum scale and the maximum scale for the value axis
in Chart1.
With Charts("Chart1").Axes(xlValue)

.MinimumScaleIsAuto = True

.MaximumScaleIsAuto = True
End With

MinorGridlines Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproMinorGridlinesC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproMinorGridlinesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproMinorGridlinesA "}

Returns a Gridlines object that represents the minor gridlines for the specified axis. Only axes in the
primary axis group can have gridlines. Read-only.

MinorGridlines Property Example

This example sets the color of the minor gridlines for the value axis in Chart1.
With Charts("Chart1").Axes(xlValue)

If .HasMinorGridlines Then
.MinorGridlines.Border.ColorIndex = 5 'set color to blue

End If
End With

MinorTickMark Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproMinorTickMarkC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproMinorTickMarkX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproMinorTickMarkA "}

Returns or sets the type of minor tick mark for the specified axis. Can be one of the following
XlTickMark constants: xlTickMarkNone, xlTickMarkInside, xlTickMarkOutside, or
xlTickMarkCross. Read/write Long.

MinorTickMark Property Example

This example sets the minor tick marks for the value axis in Chart1 to be inside the axis.
Charts("Chart1").Axes(xlValue).MinorTickMark = xlTickMarkInside

MinorUnit Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproMinorUnitC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproMinorUnitX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproMinorUnitA "}

Returns or sets the minor units on the axis. Read/write Double.

Remarks
Setting this property sets the MinorUnitIsAuto property to False.

Use the TickMarkSpacing property to set tick mark spacing on the category axis.

MinorUnit Property Example

This example sets the major and minor units for the value axis in Chart1.
With Charts("Chart1").Axes(xlValue)

.MajorUnit = 100

.MinorUnit = 20
End With

MinorUnitIsAuto Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproMinorUnitIsAutoC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproMinorUnitIsAutoX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproMinorUnitIsAutoA "}

True if Microsoft Excel calculates minor units for the axis. Read/write Boolean.

Remarks
Setting the MinorUnit property sets this property to False.

MinorUnitIsAuto Property Example

This example automatically calculates major and minor units for the value axis in Chart1.
With Charts("Chart1").Axes(xlValue)

.MajorUnitIsAuto = True

.MinorUnitIsAuto = True
End With

ReversePlotOrder Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproReversePlotOrderC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproReversePlotOrderX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproReversePlotOrderA "}

True if Microsoft Excel plots data points from last to first. Read/write Boolean.

Remarks
This property cannot be used on radar charts.

ReversePlotOrder Property Example

This example plots data points from last to first on the value axis on Chart1.
Charts("Chart1").Axes(xlValue).ReversePlotOrder = True

ScaleType Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproScaleTypeC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproScaleTypeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproScaleTypeA "}

Returns or sets the value axis scale type. Can be one of the following XlScaleType constants:
xlScaleLinear or xlScaleLogarithmic. Applies only to the value axis. Read/write Long.

Remarks
A logarithmic scale uses base 10 logarithms.

ScaleType Property Example

This example sets the value axis in Chart1 to use a logarithmic scale.
Charts("Chart1").Axes(xlValue).ScaleType = xlScaleLogarithmic

TickLabelPosition Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproTickLabelPositionC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproTickLabelPositionX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproTickLabelPositionA "}

Describes the position of tick-mark labels on the specified axis. Can be one of the following
XlTickLabelPosition constants: xlTickLabelPositionNone, xlTickLabelPositionLow,
xlTickLabelPositionHigh, or xlTickLabelPositionNextToAxis. Read/write Long.

TickLabelPosition Property Example

This example sets tick-mark labels on the category axis in Chart1 to the high position (above the
chart).
Charts("Chart1").Axes(xlCategory) _

.TickLabelPosition = xlTickLabelPositionHigh

TickLabels Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproTickLabelsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproTickLabelsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproTickLabelsA "}

Returns a TickLabels object that represents the tick-mark labels for the specified axis. Read-only.

TickLabels Property Example

This example sets the color of the tick-mark label font for the value axis in Chart1.
Charts("Chart1").Axes(xlValue).TickLabels.Font.ColorIndex = 3

TickLabelSpacing Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproTickLabelSpacingC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproTickLabelSpacingX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproTickLabelSpacingA "}

Returns or sets the number of categories or series between tick-mark labels. Applies only to category
and series axes. Read/write Long.

Remarks
Tick-mark label spacing on the value axis is always calculated by Microsoft Excel.

TickLabelSpacing Property Example

This example sets the number of categories between tick-mark labels on the category axis in Chart1.
Charts("Chart1").Axes(xlCategory).TickLabelSpacing = 10

TickMarkSpacing Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproTickMarkSpacingC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproTickMarkSpacingX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproTickMarkSpacingA "}

Returns or sets the number of categories or series between tick marks. Applies only to category and
series axes. Read/write Long.

Remarks
Use the MajorUnit and MinorUnit properties to set tick-mark spacing on the value axis.

TickMarkSpacing Property Example

This example sets the number of categories between tick marks on the category axis in Chart1.
Charts("Chart1").Axes(xlCategory).TickMarkSpacing = 10

AutoText Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproAutoTextC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproAutoTextX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproAutoTextA "}

True if the object automatically generates appropriate text based on context. Read/write Boolean.

AutoText Property Example

This example sets the data labels for series one in Chart1 to automatically generate appropriate text.
Charts("Chart1").SeriesCollection(1).DataLabels.AutoText = True

Border Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproBorderC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproBorderX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproBorderA "}

Returns a Border object that represents the border of the object. Read-only.

Border Property Example

This example sets the color of the chart area border of Chart1 to red.
Charts("Chart1").ChartArea.Border.ColorIndex = 3

BottomRightCell Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproBottomRightCellC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproBottomRightCellX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproBottomRightCellA "}

Returns a Range object that represents the cell that lies under the the lower-right corner of the object.
Read-only.

BottomRightCell Property Example

This example displays the address of the cell beneath the lower-right corner of embedded chart one
on Sheet1.
MsgBox "The bottom right corner is over cell " & _

Worksheets("Sheet1").ChartObjects(1).BottomRightCell.Address

BringToFront Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthBringToFrontC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthBringToFrontX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthBringToFrontA "}

Brings the object to the front of the z-order.

Syntax
expression.BringToFront
expression Required. An expression that returns an object in the Applies To list.

BringToFront Method Example

This example brings embedded chart one on Sheet1 to the front of the z-order.
Worksheets("Sheet1").ChartObjects(1).BringToFront

Chart Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproChartC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproChartX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproChartA "}

Returns a Chart object that represents the chart contained in the object. Read-only.

Chart Property Example

This example adds a title to the first embedded chart on Sheet1.
With Worksheets("Sheet1").ChartObjects(1).Chart

.HasTitle = True

.ChartTitle.Text = "1995 Rainfall Totals by Month"
End With

ClearFormats Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthClearFormatsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthClearFormatsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthClearFormatsA "}

Clears the formatting of the object.

Syntax
expression.ClearFormats
expression Required. An expression that returns an object in the Applies To list.

ClearFormats Method Example

This example clears all formatting from cells A1:G37 on Sheet1.
Worksheets("Sheet1").Range("A1:G37").ClearFormats
This example clears the formatting from embedded chart one on Sheet1.
Worksheets("Sheet1").ChartObjects(1).Chart.ChartArea.ClearFormats

Close Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthCloseC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthCloseX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthCloseA "}

Closes the object. The Workbooks collection uses Syntax 1. Window and Workbook objects use
Syntax 2.

Syntax 1
expression.Close
Syntax 2
expression.Close(SaveChanges, FileName, RouteWorkbook)
expression Required. An expression that returns an object in the Applies To list.
SaveChanges Optional Variant. If there are no changes to the workbook, this argument is ignored.

If there are changes to the workbook and the workbook appears in other open windows, this
argument is ignored. If there are changes to the workbook but the workbook doesn't appear in any
other open windows, this argument specifies whether changes should be saved, as shown in the
following table.
Value Action
True Saves the changes to the workbook. If there is not yet a file

name associated with the workbook, then FileName is
used. If FileName is omitted, the user is asked to supply a
file name.

False Does not save the changes to this file.
Omitted Displays a dialog box asking the user whether or not to

save changes.

FileName Optional Variant. Save changes under this file name.
RouteWorkbook Optional Variant. If the workbook doesn't need to be routed to the next recipient

(if it has no routing slip or has already been routed), this argument is ignored. Otherwise, Microsoft
Excel routes the workbook as shown in the following table.
Value Meaning
True Sends the workbook to the next recipient.
False Doesn't send the workbook.
Omitted Displays a dialog box asking the user whether the

workbook should be sent.

Remarks
Closing a workbook from Visual Basic doesn't run any Auto_Close macros in the workbook. Use the
RunAutoMacros method to run the auto close macros.

Close Method Example

This example closes Book1.xls and discards any changes that have been made to it.
Workbooks("BOOK1.XLS").Close SaveChanges:=False
This example closes all open workbooks. If there are changes in any open workbook, Microsoft Excel
displays the appropriate prompts and dialog boxes for saving changes.
Workbooks.Close

Color Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproColorC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproColorX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproColorA "}

Returns or sets the primary color of the object, as shown in the following table. Use the RGB function
to create a color value. Read/write Long.

Object Color
Border The color of the border.
Borders The color of all four borders of a range. If they're not all the

same color, Color returns 0 (zero).
Font The color of the font.
Interior The cell shading color or the drawing object fill color.

Color Property Example

This example sets the color of the tick-mark labels on the value axis in Chart1.
Charts("Chart1").Axes(xlValue).TickLabels.Font.Color = RGB(0, 255, 0)

Count Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproCountC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproCountX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproCountA "}

Returns the number of objects in the collection. Read-only Long.

For information about using the Count worksheet function in Visual Basic, see Using Worksheet
Functions in Visual Basic.

Count Property Example

This example displays the number of columns in the selection on Sheet1. The code also tests for a
multiple-area selection; if one exists, the code loops on the areas of the multiple-area selection.
Worksheets("Sheet1").Activate
areaCount = Selection.Areas.Count
If areaCount <= 1 Then

MsgBox "The selection contains " & _
Selection.Columns.Count & " columns."

Else
For i = 1 To areaCount

MsgBox "Area " & i & " of the selection contains " & _
Selection.Areas(i).Columns.Count & " columns."

Next i
End If
This example makes the last character in cell A1 a superscript character.
n = Worksheets("Sheet1").Range("A1").Characters.Count
Worksheets("Sheet1").Range("A1").Characters(n, 1) _

.Font.Superscript = True

CustomListCount Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproCustomListCountC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproCustomListCountX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproCustomListCountA "}

Returns the number of defined custom lists (including built-in lists). Read-only Long.

CustomListCount Property Example

This example displays the number of custom lists that are currently defined.
MsgBox "There are currently " & Application.CustomListCount & _

" defined custom lists."

DefaultFilePath Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDefaultFilePathC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDefaultFilePathX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDefaultFilePathA "}

Returns or sets the default path that Microsoft Excel uses when it opens files. Read/write String.

DefaultFilePath Property Example

This example displays the current default file path.
MsgBox "The current default file path is " & _

Application.DefaultFilePath

Delete Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthDeleteC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthDeleteX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthDeleteA "}

Deletes the object. Syntax 2 applies only to Range objects.

Syntax 1
expression.Delete
Syntax 2
expression.Delete(Shift)
expression Required. An expression that returns an object in the Applies To list.
Shift Optional Variant. Used only with Range objects. Specifies how to shift cells to replace

deleted cells. Can be one of the following XlDeleteShiftDirection constants: xlShiftToLeft or
xlShiftUp. If this argument is omitted, Microsoft Excel decides based on the shape of the range.

Remarks
Deleting a Point or LegendKey object deletes the entire series.

You can delete custom document properties, but you cannot delete a built-in document property.

Delete Method Example

This example deletes cells A1:D10 on Sheet1 and shifts the remaining cells to the left.
Worksheets("Sheet1").Range("A1:D10").Delete Shift:=xlShiftToLeft
This example deletes every worksheet in the active workbook without displaying the confirmation
dialog box.
Application.DisplayAlerts = False
For Each w In Worksheets

w.Delete
Next w
Application.DisplayAlerts = True
This example sorts the data in the first column on Sheet1 and then deletes rows that contain duplicate
data.
Worksheets("Sheet1").Range("A1").Sort _
 key1:=Worksheets("Sheet1").Range("A1")
Set currentCell = Worksheets("Sheet1").Range("A1")
Do While Not IsEmpty(currentCell)
 Set nextCell = currentCell.Offset(1, 0)
 If nextCell.Value = currentCell.Value Then
 currentCell.EntireRow.Delete
 End If
 Set currentCell = nextCell
Loop

DisplayBlanksAs Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDisplayBlanksAsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDisplayBlanksAsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDisplayBlanksAsA "}

Returns or sets the way that blank cells are plotted on a chart. Can be one of the following
XlDisplayBlanksAs constants: xlNotPlotted, xlInterpolated, or xlZero. Read/write Long.

DisplayBlanksAs Property Example

This example sets Microsoft Excel to not plot blank cells in Chart1.
Charts("Chart1").DisplayBlanksAs = xlNotPlotted

DisplayEquation Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDisplayEquationC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDisplayEquationX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDisplayEquationA "}

True if the equation for the trendline is displayed on the chart (in the same data label as the R-
squared value). Setting this property to True automatically turns on data labels. Read/write Boolean.

DisplayEquation Property Example

This example displays the R-squared value and equation for trendline one in Chart1. The example
should be run on a 2-D column chart that has a trendline for the first series.
With Charts("Chart1").SeriesCollection(1).Trendlines(1)

.DisplayRSquared = True

.DisplayEquation = True
End With

DisplayExcel4Menus Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDisplayExcel4MenusC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDisplayExcel4MenusX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDisplayExcel4MenusA
"}

True if Microsoft Excel displays version 4.0 menu bars. Read/write Boolean.

DisplayExcel4Menus Property Example

This example switches the display to Microsoft Excel version 4.0 menus.
Application.DisplayExcel4Menus = True

DisplayFullScreen Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDisplayFullScreenC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDisplayFullScreenX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDisplayFullScreenA "}

True if Microsoft Excel is in full-screen mode. Read/write Boolean.

Remarks
Full-screen mode maximizes the application window so that it fills the entire screen and hides the
application title bar (in Microsoft Windows). Toolbars, the status bar, and the formula bar maintain
separate display settings for full-screen mode and normal mode.

DisplayFullScreen Property Example

This example sets Microsoft Excel to be displayed in full-screen mode.
Application.DisplayFullScreen = True

DisplayRecentFiles Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDisplayRecentFilesC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDisplayRecentFilesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDisplayRecentFilesA "}

True if the list of recently used files is displayed on the File menu. Read/write Boolean.

DisplayRecentFiles Property Example

This example turns off the list of recently used files.
Application.DisplayRecentFiles = False

DisplayRSquared Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDisplayRSquaredC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDisplayRSquaredX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDisplayRSquaredA "}

True if the R-squared value of the trendline is displayed on the chart (in the same data label as the
equation). Setting this property to True automatically turns on data labels. Read/write Boolean.

DisplayRSquared Property Example

This example displays the R-squared value and equation for trendline one in Chart1. The example
should be run on a 2-D column chart that has a trendline for the first series.
With Charts("Chart1").SeriesCollection(1).Trendlines(1)

.DisplayRSquared = True

.DisplayEquation = True
End With

Duplicate Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthDuplicateC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthDuplicateX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthDuplicateA "}

Duplicates the object and returns a reference to the new copy.

Syntax
expression.Duplicate
expression Required. An expression that returns an object in the Applies To list.

Duplicate Method Example

This example duplicates embedded chart one on Sheet1 and then selects the copy.
Set dChart = Worksheets("Sheet1").ChartObjects(1).Duplicate
dChart.Select

FindFile Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthFindFileC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthFindFileX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthFindFileA "}

Displays the Open dialog box.

Syntax
expression.FindFile
expression Required. An expression that returns an Application object.

Remarks
This method displays the Open dialog box and allows the user to open a file. If a new file is opened
successfully, this method returns True. If the user cancels the dialog box, this method returns False.

FindFile Method Example

This example displays the Open dialog box.
Application.FindFile

Forward Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproForwardC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproForwardX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproForwardA "}

Returns or sets the number of periods (or units on a scatter chart) that the trendline extends forward.
Read/write Long.

Forward Property Example

This example sets the number of units that the trendline on Chart1 extends forward and backward.
The example should be run on a 2-D column chart that contains a single series with a trendline.
With Charts("Chart1").SeriesCollection(1).Trendlines(1)

.Forward = 5

.Backward = .5
End With

Function Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproFunctionC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproFunctionX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproFunctionA "}

Returns or sets the function used to summarize the pivot field (data fields only). Can be one of the
following XlConsolidationFunction constants: xlAverage, xlCount, xlCountNums, xlMax, xlMin,
xlProduct, xlStDev, xlStDevP, xlSum, xlVar, or xlVarP. Read/write Long.

Function Property Example

This example sets the Sum of 1994 field in PivotTable1 to use the SUM function.
ActiveSheet.PivotTables("PivotTable1") _

.PivotFields("Sum of 1994").Function = xlSum

HasLegend Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproHasLegendC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproHasLegendX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproHasLegendA "}

True if the chart has a legend. Read/write Boolean.

HasLegend Property Example

This example turns on the legend for Chart1 and then sets the legend font color to blue.
With Charts("Chart1")

.HasLegend = True

.Legend.Font.ColorIndex = 5
End With

HasTitle Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproHasTitleC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproHasTitleX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproHasTitleA "}

True if the axis or chart has a visible title. Read/write Boolean.

Remarks
An axis title is represented by an AxisTitle object.

A chart title is represented by a ChartTitle object.

HasTitle Property Example

This example adds an axis label to the category axis in Chart1.
With Charts("Chart1").Axes(xlCategory)

.HasTitle = True

.AxisTitle.Text = "July Sales"
End With

HeightPercent Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproHeightPercentC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproHeightPercentX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproHeightPercentA "}

Returns or sets the height of a 3-D chart as a percentage of the chart width (between 5 and 500
percent). Read/write Long.

HeightPercent Property Example

This example sets the height of Chart1 to 80 percent of its width. The example should be run on a 3-D
chart.
Charts("Chart1").HeightPercent = 80

Intercept Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproInterceptC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproInterceptX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproInterceptA "}

Returns or sets the point where the trendline crosses the value axis. Read/write Double.

For information about using the Intercept worksheet function in Visual Basic, see Using Worksheet
Functions in Visual Basic.

Remarks
Setting this property sets the InterceptIsAuto property to False.

Intercept Property Example

This example sets trendline one in Chart1 to cross the value axis at 5. The example should be run on
a 2-D column chart that contains a single series with a trendline.
Charts("Chart1").SeriesCollection(1).Trendlines(1).Intercept = 5

InterceptIsAuto Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproInterceptIsAutoC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproInterceptIsAutoX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproInterceptIsAutoA "}

True if the point where the trendline crosses the value axis is automatically determined by the
regression. Read/write Boolean.

Remarks
Setting the Intercept property sets this property to False.

InterceptIsAuto Property Example

This example sets Microsoft Excel to automatically determine the trendline intercept point for Chart1.
The example should be run on a 2-D column chart that contains a single series with a trendline.
Charts("Chart1").SeriesCollection(1).Trendlines(1) _

.InterceptIsAuto = True

Legend Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproLegendC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproLegendX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproLegendA "}

Returns a Legend object that represents the legend for the chart. Read-only.

Legend Property Example

This example turns on the legend for Chart1 and then sets the legend font color to blue.
Charts("Chart1").HasLegend = True
Charts("Chart1").Legend.Font.ColorIndex = 5

Line3DGroup Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproLine3DGroupC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproLine3DGroupX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproLine3DGroupA "}

Returns a ChartGroup object that represents the line chart group on a 3-D chart. Read-only.

Line3DGroup Property Example

This example sets the 3-D line group in Chart1 to use a different color for each data marker.
Charts("Chart1").Line3DGroup.VaryByCategories = True

LineGroups Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthLineGroupsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthLineGroupsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthLineGroupsA "}

On a 2-D chart, returns an object that represents either a single line chart group (a ChartGroup
object, Syntax 1) or a collection of the line chart groups (a ChartGroups collection, Syntax 2).

Syntax 1
expression.LineGroups(Index)
Syntax 2
expression.LineGroups
expression Required. An expression that returns a Chart object.
Index Optional Variant. Specifies the chart group.

LineGroups Method Example

This example sets line group one in Chart1 to use a different color for each data marker. The example
should be run on a 2-D chart.
Charts("Chart1").LineGroups(1).VaryByCategories = True

MacroType Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproMacroTypeC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproMacroTypeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproMacroTypeA "}

Returns or sets what the name refers to. Read-write Long.

Can be one of the following XlMacroType constants.

Constant Meaning
xlCommand The name refers to a user-defined macro.
xlFunction The name refers to a user-defined function.
xlNotXLM The name doesn't refer to a function or macro.

MacroType Property Example

This example assumes that you created a custom function or command on a Microsoft Excel version
4.0 macro sheet. The example displays the function category, in the language of the macro. It
assumes that the name of the custom function or command is the only name in the workbook.
With ActiveWorkbook.Names(1)

If .MacroType <> xlNotXLM Then
MsgBox "The category for this name is " & .Category

Else
MsgBox "This name does not refer to" & _

" a custom function or command."
End If

End With

NameIsAuto Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproNameIsAutoC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproNameIsAutoX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproNameIsAutoA "}

True if Microsoft Excel automatically determines the name of the trendline. Read/write Boolean.

NameIsAuto Property Example

This example sets Microsoft Excel to automatically determine the name for trendline one in Chart1.
The example should be run on a 2-D column chart that contains a single series with a trendline.
Charts("Chart1").SeriesCollection(1).Trendlines(1).NameIsAuto = True

NumberFormatLinked Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproNumberFormatLinkedC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproNumberFormatLinkedX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproNumberFormatLinkedA "}

True if the number format is linked to the cells (so that the number format changes in the labels when
it changes in the cells). Read/write Boolean.

NumberFormatLinked Property Example

This example links the number format for tick-mark labels to its cells for the value axis in Chart1.
Charts("Chart1").Axes(xlValue).TickLabels.NumberFormatLinked = True

PageSetup Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPageSetupC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPageSetupX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPageSetupA "}

Returns a PageSetup object that contains all the page setup settings for the specified object. Read-
only.

PageSetup Property Example

This example sets the center header text for Chart1.
Charts("Chart1").PageSetup.CenterHeader = "December Sales"

Perspective Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPerspectiveC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPerspectiveX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPerspectiveA "}

Returns or sets the perspective for the 3-D chart view. Must be between 0 and 100. This property is
ignored if the RightAngleAxes property is True. Read/write Long.

Perspective Property Example

This example sets the perspective of Chart1 to 70. The example should be run on a 3-D chart.
Charts("Chart1").RightAngleAxes = False
Charts("Chart1").Perspective = 70

Pie3DGroup Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPie3DGroupC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPie3DGroupX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPie3DGroupA "}

Returns a ChartGroup object that represents the pie chart group on a 3-D chart. Read-only.

Pie3DGroup Property Example

This example sets the 3-D pie group in Chart1 to use a different color for each data marker.
Charts("Chart1").Pie3DGroup.VaryByCategories = True

PieGroups Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthPieGroupsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthPieGroupsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthPieGroupsA "}

On a 2-D chart, returns an object that represents either a single pie chart group (a ChartGroup
object, Syntax 1) or a collection of the pie chart groups (a ChartGroups collection, Syntax 2).

Syntax 1
expression.PieGroups(Index)
Syntax 2
expression.PieGroups
expression Required. An expression that returns a Chart object.
Index Optional Variant. Specifies the chart group.

PieGroups Method Example

This example sets pie group one in Chart1 to use a different color for each data marker. The example
should be run on a 2-D chart.
Charts("Chart1").PieGroups(1).VaryByCategories = True

Placement Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPlacementC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPlacementX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPlacementA "}

Returns or sets the way the object is attached to the cells below it. Can be one of the following
XlPlacement constants: xlMoveAndSize, xlMove, or xlFreeFloating. Can be used only on objects
on a worksheet. Read/write Long.

Placement Property Example

This example sets embedded chart one on Sheet1 to be free-floating (it neither moves nor is sized
with its underlying cells).
Worksheets("Sheet1").ChartObjects(1).Placement = xlFreeFloating

PlotArea Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPlotAreaC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPlotAreaX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPlotAreaA "}

Returns a PlotArea object that represents the plot area of a chart. Read-only.

PlotArea Property Example

This example sets the color of the plot area interior of Chart1 to cyan.
Charts("Chart1").PlotArea.Interior.ColorIndex = 8

PrintObject Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPrintObjectC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPrintObjectX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPrintObjectA "}

True if the object will be printed when the document is printed. Read/write Boolean.

PrintObject Property Example

This example sets embedded chart one on Sheet1 to be printed with the worksheet.
Worksheets("Sheet1").ChartObjects(1).PrintObject = True

RadarGroups Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthRadarGroupsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthRadarGroupsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthRadarGroupsA "}

On a 2-D chart, returns an object that represents either a single radar chart group (a ChartGroup
object, Syntax 1) or a collection of the radar chart groups (a ChartGroups collection, Syntax 2).

Syntax 1
expression.RadarGroups(Index)
Syntax 2
expression.RadarGroups
expression Required. An expression that returns a Chart object.
Index Optional Variant. Specifies the chart group.

RadarGroups Method Example

This example sets radar group one in Chart1 to use a different color for each data marker. The
example should be run on a 2-D chart.
Charts("Chart1").RadarGroups(1).VaryByCategories = True

RightAngleAxes Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproRightAngleAxesC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproRightAngleAxesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproRightAngleAxesA "}

True if the chart axes are at right angles, independent of chart rotation or elevation. Applies only to 3-
D line, column, and bar charts. Read/write Boolean.

Remarks
If this property is True, the Perspective property is ignored.

RightAngleAxes Property Example

This example sets the axes in Chart1 to intersect at right angles. The example should be run on a 3-D
chart.
Charts("Chart1").RightAngleAxes = True

RoundedCorners Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproRoundedCornersC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproRoundedCornersX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproRoundedCornersA "}

True if the embedded chart has rounded corners. Read/write Boolean.

RoundedCorners Property Example

This example adds rounded corners to embedded chart one on Sheet1.
Worksheets("Sheet1").ChartObjects(1).RoundedCorners = True

SendToBack Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthSendToBackC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthSendToBackX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthSendToBackA "}

Sends the object to the back of the z-order.

Syntax
expression.SendToBack
expression Required. An expression that returns an object in the Applies To list.

SendToBack Method Example

This example sends embedded chart one on Sheet1 to the back of the z-order.
Worksheets("Sheet1").ChartObjects(1).SendToBack

SeriesCollection Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthSeriesCollectionC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthSeriesCollectionX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthSeriesCollectionA "}

Returns an object that represents either a single series (a Series object, Syntax 1) or a collection of
all the series (a SeriesCollection object, Syntax 2) in the chart or chart group.

Syntax 1
expression.SeriesCollection(Index)
Syntax 2
expression.SeriesCollection
expression Required. An expression that returns a Chart or ChartGroup object.
Index Optional Variant. The name or number of the series.

SeriesCollection Method Example

This example turns on data labels for series one in Chart1.
Charts("Chart1").SeriesCollection(1).HasDataLabels = True

SetDefaultChart Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthSetDefaultChartC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthSetDefaultChartX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthSetDefaultChartA "}

Specifies the name of the chart template that Microsoft Excel will use when creating new charts.

Syntax
expression.SetDefaultChart(FormatName)
expression Required. An expression that returns an Application object.
FormatName Optional Variant. Specifies the name of a custom autoformat. This name can be a

string naming a custom autoformat, or it can be the special constant xlBuiltIn to specify the built-in
chart template.

SetDefaultChart Method Example

This example sets the default chart template to the custom autoformat named "Monthly Sales."
Application.SetDefaultChart FormatName:="Monthly Sales"

ShowLegendKey Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproShowLegendKeyC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproShowLegendKeyX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproShowLegendKeyA "}

True if the data label legend key is visible. Read/write Boolean.

ShowLegendKey Property Example

This example sets the data labels for series one in Chart1 to show values and the legend key.
With Charts("Chart1").SeriesCollection(1).DataLabels

.ShowLegendKey = True

.Type = xlShowValue
End With

Size Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproSizeC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproSizeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproSizeA "}

Returns or sets the size of the font. Read/write Variant.

Size Property Example

This example sets the font size for cells A1:D10 on Sheet1 to 12 points.
With Worksheets("Sheet1").Range("A1:D10")

.Value = "Test"

.Font.Size = 12
End With

SurfaceGroup Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproSurfaceGroupC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproSurfaceGroupX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproSurfaceGroupA "}

Returns a ChartGroup object that represents the surface chart group of a 3-D chart. Read-only.

SurfaceGroup Property Example

This example sets the 3-D surface group in Chart1 to use a different color for each data marker. The
example should be run on a 3-D chart.
Charts("Chart1").SurfaceGroup.VaryByCategories = True

TopLeftCell Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproTopLeftCellC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproTopLeftCellX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproTopLeftCellA "}

Returns a Range object that represents the cell that lies under the upper-left corner of the specified
object. Read-only.

TopLeftCell Property Example

This example displays the address of the cell beneath the upper-left corner of embedded chart one on
Sheet1.
MsgBox "The top left corner is over cell " & _

Worksheets("Sheet1").ChartObjects(1).TopLeftCell.Address

Visible Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproVisibleC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproVisibleX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproVisibleA "}

True if the object is visible. For a chart or worksheet, this property can be set to xlVeryHidden. This
hides the object so that the only way for you to make it visible again is by setting this property to True
(the user cannot make the object visible). Read/write Boolean or Long.

Remarks
The Visible property for a pivot item is True if the item is currently visible in the table.

If you set the Visible property for a name to False, the name won't appear in the Define Name dialog
box.

Visible Property Example

This example hides Sheet1.
Worksheets("Sheet1").Visible = False
This example makes Sheet1 visible.
Worksheets("Sheet1").Visible = True
This example makes every sheet in the active workbook visible.
For Each sh In Sheets

sh.Visible = True
Next sh
This example creates a new worksheet and then sets its Visible property to xlVeryHidden. To refer to
the sheet, use its object variable, newSheet, as shown in the last line of the example. To use the
newSheet object variable in another procedure, you must declare it as a public variable (Public
newSheet As Object) in the first line of the module preceding any Sub or Function procedure.

Set newSheet = Worksheets.Add
newSheet.Visible = xlVeryHidden
newSheet.Range("A1:D4").Formula = "=RAND()"

Walls Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproWallsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproWallsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproWallsA "}

Returns a Walls object that represents the walls of the 3-D chart. Read-only.

Remarks
This property doesn't apply to 3-D pie charts.

Walls Property Example

This example sets the color of the wall border of Chart1 to red. The example should be run on a 3-D
chart.
Charts("Chart1").Walls.Border.ColorIndex = 3

Weight Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproWeightC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproWeightX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproWeightA "}

Returns or sets the weight of the border. Can be one of the following XlBorderWeight constants:
xlHairline, xlThin, xlMedium, or xlThick. Read/write Long.

Weight Property Example

This example sets the border weight for oval one on Sheet1.
Worksheets("Sheet1").Ovals(1).Border.Weight = xlMedium

XYGroups Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthXYGroupsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthXYGroupsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthXYGroupsA "}

On a 2-D chart, returns an object that represents either a single scatter chart group (a ChartGroup
object, Syntax 1) or a collection of the scatter chart groups (a ChartGroups collection, Syntax 2).

Syntax 1
expression.XYGroups(Index)
Syntax 2
expression.XYGroups
expression Required. An expression that returns a Chart object.
Index Optional Variant. Specifies the chart group.

XYGroups Method Example

This example sets X-Y group (scatter group) one to use a different color for each data marker. The
example should be run on a 2-D chart.
Charts("Chart1").XYGroups(1).VaryByCategories = True

ZOrder Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproZOrderC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproZOrderX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproZOrderA "}

Returns the z-order position of the object. Read-only Long.

Remarks
In any collection of objects, the object at the back of the z-order is collection(1), and the object at the
front of the z-order is collection(collection.Count). For example, if there are embedded charts on the
active sheet, the chart at the back of the z-order is ActiveSheet.ChartObjects(1), and the chart
at the front of the z-order is
ActiveSheet.ChartObjects(ActiveSheet.ChartObjects.Count).

ZOrder Property Example

This example displays the z-order position of embedded chart one on Sheet1.
MsgBox "The chart's z-order position is " & _

Worksheets("Sheet1").ChartObjects(1).ZOrder

CopyObjectsWithCells Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproCopyObjectsWithCellsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproCopyObjectsWithCellsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproCopyObjectsWithCellsA "}

True if objects are cut, copied, extracted, and sorted with cells. Read/write Boolean.

CopyObjectsWithCells Property Example

This example sets Microsoft Excel to cut, copy, extract, and sort objects with cells.
Application.CopyObjectsWithCells = True

CopyFromRecordset Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthCopyFromRecordsetC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthCopyFromRecordsetX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthCopyFromRecordsetA
"}

Copies the contents of a DAO Recordset object onto a worksheet, beginning at the upper-left corner
of the specified range. If the Recordset object contains fields with OLE objects in them, this method
fails.

Syntax
expression.CopyFromRecordset(Data, MaxRows, MaxColumns)
expression Required. An expression that returns a Range object.
Data Required Void. The Recordset object to copy into the range.
MaxRows Optional Variant. The maximum number of records to copy onto the worksheet. If this

argument is omitted, all the records in the Recordset object are copied.
MaxColumns Optional Variant. The maximum number of fields to copy onto the worksheet. If this

argument is omitted, all the fields in the Recordset object are copied.

Remarks
Copying begins at the current row of the Recordset object. After copying is completed, the EOF
property of the Recordset object is True.

CopyFromRecordset Method Example

This example copies the field names from a DAO Recordset object into the first row of a worksheet
and formats the names as bold. The example then copies the recordset onto the worksheet,
beginning at cell A2.
For iCols = 0 to rs.Fields.Count - 1

ws.Cells(1, iCols + 1).Value = rs.Fields(iCols).Name
Next
ws.Range(ws.Cells(1, 1), _

ws.Cells(1, rs.Fields.Count)).Font.Bold = True
ws.Range("A2").CopyFromRecordset rs

Cursor Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproCursorC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproCursorX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproCursorA "}

Returns or sets the appearance of the mouse pointer in Microsoft Excel. Read/write Long.

Can be one of the following XlMousePointer constants.

Constant Description

xlDefault The default pointer
xlWait

The hourglass pointer
xlNorthwestArrow

The northwest-arrow pointer
xlIBeam The I-beam pointer

Remarks
The Cursor property isn't reset automatically when the macro stops running. You should reset the
pointer to xlDefault before your macro stops running.

Cursor Property Example

This example changes the mouse pointer to an I-beam, pauses, and then changes it to the default
pointer.
Sub ChangeCursor()

Application.Cursor = xlIBeam
For x = 1 To 1000

For y = 1 to 1000
Next y

Next x
Application.Cursor = xlDefault

End Sub

EnableAutoFilter Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproEnableAutoFilterC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproEnableAutoFilterX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproEnableAutoFilterA "}

True if AutoFilter arrows are enabled when user-interface-only protection is turned on. Read/write
Boolean.

Remarks
This property applies to each worksheet and isn't saved with the worksheet or session.

EnableAutoFilter Property Example

This example enables the AutoFilter arrows on a protected worksheet.
ActiveSheet.EnableAutoFilter = True
ActiveSheet.Protect contents:=True, userInterfaceOnly:=True

EnableOutlining Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproEnableOutliningC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproEnableOutliningX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproEnableOutliningA "}

True if outlining symbols are enabled when user-interface-only protection is turned on. Read/write
Boolean.

Remarks
This property applies to each worksheet and isn't saved with the worksheet or session.

EnableOutlining Property Example

This example enables outlining symbols on a protected worksheet.
ActiveSheet.EnableOutlining = True
ActiveSheet.Protect contents:=True, userInterfaceOnly:=True

EnablePivotTable Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproEnablePivotTableC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproEnablePivotTableX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproEnablePivotTableA "}

True if PivotTable controls and actions are enabled when user-interface-only protection is turned on.
Read/write Boolean.

Remarks
This property applies to each worksheet and isn't saved with the worksheet or session.

There must be a sufficient number of unlocked cells below and to the right of the PivotTable for
Microsoft Excel to recalculate and display the PivotTable.

EnablePivotTable Property Example

This example enables PivotTable controls on a protected worksheet.
ActiveSheet.EnablePivotTable = True
ActiveSheet.Protect contents:=True, userInterfaceOnly:=True

RefersToRange Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproRefersToRangeC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproRefersToRangeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproRefersToRangeA "}

Returns the Range object referred to by a Name object. Read-only.

Remarks
If the Name object doesn't refer to a range (for example, if it refers to a constant or a formula), this
property fails.

To change the range that a name refers to, use the RefersTo property.

RefersToRange Property Example

This example displays the number of rows and columns in the print area on the active worksheet.
p = Names("Print_Area").RefersToRange.Value
MsgBox "Print_Area: " & UBound(p, 1) & " rows, " & _

UBound(p, 2) & " columns"

Background Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproBackgroundC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproBackgroundX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproBackgroundA "}

Returns or sets the text background type. Can be one of the following XlBackground constants:
xlBackgroundAutomatic, xlBackgroundOpaque, or xlBackgroundTransparent. This property is
used only for text on charts. Read/write Long.

Background Property Example

This example adds a chart title to embedded chart one on Sheet1 and then sets the font size and
background type for the title.
With Worksheets("Sheet1").ChartObjects(1).Chart

.HasTitle = True

.ChartTitle.Text = "1995 Rainfall Totals by Month"
With .ChartTitle.Font

.Size = 10

.Background = xlBackgroundTransparent
End With

End With

Bold Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproBoldC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproBoldX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproBoldA "}

True if the font is bold. Read/write Variant.

Bold Property Example

This example sets the font to bold for the range A1:A5 on Sheet1.
Worksheets("Sheet1").Range("A1:A5").Font.Bold = True

CategoryLocal Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproCategoryLocalC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproCategoryLocalX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproCategoryLocalA "}

Returns or sets the category for the specified name, in the language of the user, if the name refers to
a custom function or command. Read/write String.

CategoryLocal Property Example

This example displays, in the language of the user, the function category of either a custom function
or a command created on a Microsoft Excel 4.0 macro sheet. The example assumes that the custom
function name or command name is the only name in the workbook.
With ActiveWorkbook.Names(1)

If .MacroType <> xlNone Then
MsgBox "The category for this name is " & .CategoryLocal

Else
MsgBox "This name does not refer to" & _

" a custom function or command."
End If

End With

CentimetersToPoints Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthCentimetersToPointsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthCentimetersToPointsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthCentimetersToPointsA
"}

Converts a measurement from centimeters to points (one point equals 0.035 centimeters).

Syntax
expression.CentimetersToPoints(Centimeters)
expression Required. An expression that returns an Application object.
Centimeters Required Double. Specifies the centimeter value to be converted to points.

CentimetersToPoints Method Example

This example sets the left margin of Sheet1 to 5 centimeters.
Worksheets("Sheet1").PageSetup.LeftMargin = _

Application.CentimetersToPoints(5)

ChartObjects Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthChartObjectsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthChartObjectsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthChartObjectsA "}

Returns an object that represents either a single embedded chart (a ChartObject object, Syntax 1) or
a collection of all the embedded charts (a ChartObjects object, Syntax 2) on the sheet.

Syntax 1
expression.ChartObjects(Index)
Syntax 2
expression.ChartObjects
expression Required. An expression that returns an object in the Applies To list. If you specify a

Chart object, it must be a chart sheet (it cannot be an embedded chart).
Index Opional Variant. The name or number of the chart. This argument can be an array, to specify

more than one chart.

Remarks
This method isn't equivalent to the Charts property. This method returns embedded charts; the
Charts property returns chart sheets. Use the Chart property to return the Chart object for an
embedded chart.

ChartObjects Method Example

This example adds a title to embedded chart one on Sheet1.
With Worksheets("Sheet1").ChartObjects(1).Chart

.HasTitle = True

.ChartTitle.Text = "1995 Rainfall Totals by Month"
End With
This example creates a new series in embedded chart one on Sheet1. The data source for the new
series is the range B1:B10 on Sheet1.
Worksheets("Sheet1").ChartObjects(1).Activate
ActiveChart.SeriesCollection.Add _

source:=Worksheets("Sheet1").Range("B1:B10")
This example clears the formatting of embedded chart one on Sheet1.
Worksheets("Sheet1").ChartObjects(1).Chart.ChartArea.ClearFormats

CircularReference Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproCircularReferenceC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproCircularReferenceX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproCircularReferenceA "}

Returns a Range object that represents the range containing the first circular reference on the sheet,
or returns Nothing if there's no circular reference on the sheet. The circular reference must be
removed before calculation can proceed. Read-only.

CircularReference Property Example

This example selects the first cell in the first circular reference on Sheet1.
Worksheets("Sheet1").CircularReference.Select

ColorIndex Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproColorIndexC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproColorIndexX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproColorIndexA "}

Returns or sets the color of the border, font, or interior, as shown in the following table. The color is
specified as an index value into the current color palette, or as one of the following XlColorIndex
constants: xlColorIndexAutomatic or xlColorIndexNone. Read/write Variant.
Object ColorIndex
Border The color of the border.
Borders The color of all four borders. Returns Null if all four

borders aren't the same color.
Font The color of the font. Specify

xlColorIndexAutomatic to use the automatic color.
Interior The color of the interior fill. Set this property to

xlColorIndexNone to specify that you don't want an
interior fill. Set this property to
xlColorIndexAutomatic to specify the automatic fill
(for drawing objects).

Remarks
This property specifies a color as an index into the workbook color palette. You can use the Colors
method to return the current color palette.

The following illustration shows the color-index values in the default color palette.

ColorIndex Property Example

The following examples assume that you're using the default color palette.

This example changes the font color in cell A1 on Sheet1 to red.
Worksheets("Sheet1").Range("A1").Font.ColorIndex = 3
This example sets the color of the major gridlines for the value axis in Chart1.
With Charts("Chart1").Axes(xlValue)

If .HasMajorGridlines Then
.MajorGridlines.Border.ColorIndex = 5 'set color to blue

End If
End With
This example sets the color of the chart area interior of Chart1 to red and sets the border color to
blue.
With Charts("Chart1").ChartArea

.Interior.ColorIndex = 3

.Border.ColorIndex = 5
End With

DataLabels Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthDataLabelsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthDataLabelsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthDataLabelsA "}

Returns an object that represents either a single data label (a DataLabel object, Syntax 1) or a
collection of all the data labels for the series (a DataLabels collection, Syntax 2).

Syntax 1
expression.DataLabels(Index)
Syntax 2
expression.DataLabels
expression Required. An expression that returns a Series object.
Index Optional Variant. The number of the data label.

Remarks
If the series has the Show Value option turned on for the data labels, the returned collection can
contain up to one label for each point. Data labels can be turned on or off for individual points in the
series.

If the series is on an area chart and has the Show Label option turned on for the data labels, the
returned collection contains only a single label, which is the label for the area series.

DataLabels Method Example

This example sets the data labels for series one in Chart1 to show their key, assuming that their
values are visible when the example runs.
With Charts("Chart1").SeriesCollection(1)

.HasDataLabels = True
With .DataLabels

.ShowLegendKey = True

.Type = xlValue
End With

End With

DisplayScrollBars Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDisplayScrollBarsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDisplayScrollBarsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDisplayScrollBarsA "}

True if scroll bars are visible for all workbooks. Read/write Boolean.

DisplayScrollBars Property Example

This example turns off scroll bars for all workbooks.
Application.DisplayScrollBars = False

DownBars Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDownBarsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDownBarsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDownBarsA "}

Returns a DownBars object that represents the down bars on a line chart. Applies only to line charts.
Read-only.

DownBars Property Example

This example turns on up bars and down bars for chart group one in Chart1 and then sets their
colors. The example should be run on a 2-D line chart that has two series that cross each other at one
or more data points.
With Charts("Chart1").ChartGroups(1)

.HasUpDownBars = True

.DownBars.Interior.ColorIndex = 3

.UpBars.Interior.ColorIndex = 5
End With

DropLines Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDropLinesC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDropLinesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDropLinesA "}

Returns a DropLines object that represents the drop lines for a series on a line chart or area chart.
Applies only to line charts or area charts. Read-only.

DropLines Property Example

This example turns on drop lines for chart group one in Chart1 and then sets their line style, weight,
and color. The example should be run on a 2-D line chart that has one series.
With Charts("Chart1").ChartGroups(1)

.HasDropLines = True
With .DropLines.Border

.LineStyle = xlThin

.Weight = xlMedium

.ColorIndex = 3
End With

End With

Explosion Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproExplosionC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproExplosionX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproExplosionA "}

Returns or sets the explosion value for a pie-chart or doughnut-chart slice. Returns 0 (zero) if there's
no explosion (the tip of the slice is in the center of the pie). Read/write Long.

Explosion Property Example

This example sets the explosion value for point two in Chart1. The example should be run on a pie
chart.
Charts("Chart1").SeriesCollection(1).Points(2).Explosion = 20

FirstSliceAngle Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproFirstSliceAngleC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproFirstSliceAngleX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproFirstSliceAngleA "}

Returns or sets the angle of the first pie-chart or doughnut-chart slice, in degrees (clockwise from
vertical). Applies only to pie, 3-D pie, and doughnut charts. Read/write Long.

FirstSliceAngle Property Example

This example sets the angle for the first slice in chart group one in Chart1. The example should be run
on a 2-D pie chart.
Charts("Chart1").ChartGroups(1).FirstSliceAngle = 15

FormulaLocal Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproFormulaLocalC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproFormulaLocalX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproFormulaLocalA "}

Returns or sets the formula for the object, using A1-style references in the language of the user.
Read/write Variant for Range objects, read/write String for Series objects.

Remarks
If the cell contains a constant, this property returns that constant. If the cell is empty, the property
returns an empty string. If the cell contains a formula, the property returns the formula as a string, in
the same format in which it would be displayed in the formula bar (including the equal sign).

If you set the value or formula of a cell to a date, Microsoft Excel checks to see whether that cell is
already formatted with one of the date or time number formats. If not, the number format is changed
to the default short date number format.

If the range is a one- or two-dimensional range, you can set the formula to a Visual Basic array of the
same dimensions. Similarly, you can put the formula into a Visual Basic array.

Setting the formula of a multiple-cell range fills all cells in the range with the formula.

FormulaLocal Property Example

Assume that you enter the formula =SUM(A1:A10) in cell A11 on worksheet one, using the American
English version of Microsoft Excel. If you then open the workbook on a computer that's running the
German version and run the following example, the example displays the formula =SUMME(A1:A10)
in a message box.
MsgBox Worksheets(1).Range(A11).FormulaLocal

FormulaR1C1 Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproFormulaR1C1C "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproFormulaR1C1X":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproFormulaR1C1A "}

Returns or sets the formula for the object, using R1C1-style notation in the language of the macro.
Read/write Variant for Range objects, read/write String for Series objects.

Remarks
If the cell contains a constant, this property returns the constant. If the cell is empty, the property
returns an empty string. If the cell contains a formula, the property returns the formula as a string, in
the same format in which it would be displayed in the formula bar (including the equal sign).

If you set the value or formula of a cell to a date, Microsoft Excel checks to see whether that cell is
already formatted with one of the date or time number formats. If not, the number format is changed
to the default short date number format.

If the range is a one- or two-dimensional range, you can set the formula to a Visual Basic array of the
same dimensions. Similarly, you can put the formula into a Visual Basic array.

Setting the formula of a multiple-cell range fills all cells in the range with the formula.

FormulaR1C1 Property Example

This example sets the formula for cell B1 on Sheet1.
Worksheets("Sheet1").Range("B1").FormulaR1C1 = "=SQRT(R1C1)"

FormulaR1C1Local Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproFormulaR1C1LocalC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproFormulaR1C1LocalX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproFormulaR1C1LocalA "}

Returns or sets the formula for the object, using R1C1-style notation in the language of the user.
Read/write Variant for Range objects, read/write String for Series objects.

Remarks
If the cell contains a constant, this property returns that constant. If the cell is empty, the property
returns an empty string. If the cell contains a formula, the property returns the formula as a string, in
the same format in which it would be displayed in the formula bar (including the equal sign).

If you set the value or formula of a cell to a date, Microsoft Excel checks to see whether that cell is
already formatted with one of the date or time number formats. If not, the number format is changed
to the default short date number format.

If the range is a one- or two-dimensional range, you can set the formula to a Visual Basic array of the
same dimensions. Similarly, you can put the formula into a Visual Basic array.

Setting the formula of a multiple-cell range fills all cells in the range with the formula.

FormulaR1C1Local Property Example

Assume that you enter the formula =SUM(A1:A10) in cell A11 on worksheet one, using the American
English version of Microsoft Excel. If you then open the workbook on a computer that's running the
German version and run the following example, the example displays the formula
=SUMME(Z1S1:Z10S1) in a message box.
MsgBox Worksheets(1).Range("A11").FormulaR1C1Local

GetOpenFilename Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthGetOpenFilenameC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthGetOpenFilenameX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthGetOpenFilenameA "}

Displays the standard Open dialog box and gets a file name from the user without actually opening
any files.

Syntax
expression.GetOpenFilename(FileFilter, FilterIndex, Title, ButtonText, MultiSelect)
expression Required. An expression that returns an Application object.
FileFilter Optional Variant. A string specifying file filtering criteria.

In Windows, this string consists of pairs of file filter strings followed by the MS-DOS wildcard file
filter specification, with each part and each pair separated by commas. Each separate pair is listed
in the Files of type drop-down list box. For example, the following string specifies two file filters,
text and addin: "Text Files (*.txt),*.txt,Add-In Files (*.xla),*.xla".
To use multiple MS-DOS wildcard expressions for a single file filter type, separate the wildcard
expressions with semicolons; for example, "Visual Basic Files (*.bas; *.txt),*.bas;*.txt".
If omitted in Windows, this argument defaults to "All Files (*.*),*.*".
On the Macintosh, this string is a list of comma-separated file type codes (for example,
"TEXT,XLA5,XLS4"). Spaces are significant and shouldn't be inserted before or after the comma
separators unless they're part of the file type code. If omitted, this argument defaults to all file
types.

FilterIndex Optional Variant. Windows only (ignored on the Macintosh). Specifies the index
numbers of the default file filtering criteria, from 1 to the number of filters specified in FileFilter. If
this argument is omitted or greater than the number of filters present, the first file filter is used.

Title Optional Variant. Windows only (ignored on the Macintosh). Specifies the title of the dialog
box. If this argument is omitted, the title is "Open."

ButtonText Optional Variant. Macintosh only (ignored in Windows). Specifies the text used for the
Open button in the dialog box. If this argument is omitted, the button text is "Open."

MultiSelect Optional Variant. True to allow multiple file names to be selected. False to allow only
one file name to be selected. The default value is False

Remarks
This method returns the selected file name or the name entered by the user. The returned name may
include a path specification. If MultiSelect is True, the return value is an array of the selected file
names (even if only one filename is selected). Returns False if the user cancels the dialog box.

This method may change the current drive or folder.

GetOpenFilename Method Example

This example displays the Open dialog box, with the file filter set to text files. If the user chooses a file
name, the code displays that file name in a message box.
fileToOpen = Application.GetOpenFilename("Text Files (*.txt), *.txt")
If fileToOpen <> False Then

MsgBox "Open " & fileToOpen
End If
This is the same example in Microsoft Excel for the Macintosh.
fileToOpen = Application.GetOpenFilename("TEXT")
If fileToOpen <> False Then

MsgBox "Open " & fileToOpen
End If

GetSaveAsFilename Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthGetSaveAsFilenameC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthGetSaveAsFilenameX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthGetSaveAsFilenameA
"}

Displays the standard Save As dialog box and gets a file name from the user without actually saving
any files.

Syntax
expression.GetSaveAsFilename(InitialFilename, FileFilter, FilterIndex, Title, ButtonText)
expression Required. An expression that returns an Application object.
InitialFilename Optional Variant. Specifies the suggested file name. If this argument is omitted,

Microsoft Excel uses the active workbook's name.
FileFilter Optional Variant. A string specifying file filtering criteria.

In Windows, this string consists of pairs of file filter strings followed by the MS-DOS wildcard file
filter specification, with each part and each pair separated by commas. Each separate pair is listed
in the Files of type drop-down list box. For example, the following string specifies two file filters,
text and addin: "Text Files (*.txt), *.txt, Add-In Files (*.xla), *.xla".
To use multiple MS-DOS wildcard expressions for a single file filter type, separate the wildcard
expressions with semicolons; for example, "Visual Basic Files (*.bas; *.txt),*.bas;*.txt".
If omitted in Windows, this argument defaults to "All Files (*.*),*.*".
On the Macintosh, this string is a list of comma-separated file type codes (for example,
"TEXT,XLA5,XLS4"). Spaces are significant and shouldn't be inserted before or after the comma
separators unless they're part of the file type code. If omitted, this argument defaults to all file
types.

FilterIndex Optional Variant. Windows only (ignored on the Macintosh). Specifies the index
number of the default file filtering criteria, from 1 to the number of filters specified in FileFilter. If
this argument is omitted or greater than the number of filters present, the first file filter is used.

Title Optional Variant. Specifies the title of the dialog box. If this argument is omitted, the default
title is used.

ButtonText Optional Variant. Macintosh only (ignored in Windows). Specifies the text used for the
Save button in the dialog box. If this argument is omitted, the button text is "Save".

Remarks
This method returns the selected file name or the name entered by the user. The returned name may
include a path specification. Returns False if the user cancels the dialog box.

This method may change the current drive or folder.

GetSaveAsFilename Method Example

This example displays the Save As dialog box, with the file filter set to text files. If the user chooses a
file name, the example displays that file name in a message box.
fileSaveName = Application.GetSaveAsFilename(_

fileFilter:="Text Files (*.txt), *.txt")
If fileSaveName <> False Then

MsgBox "Save as " & fileSaveName
End If
This is the same example in Microsoft Excel for the Macintosh.
fileSaveName = Application.GetSaveAsFilename(_

fileFilter:="TEXT")
If fileSaveName <> False Then

MsgBox "Save as " & FileSaveName
End If

GridlineColorIndex Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproGridlineColorIndexC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproGridlineColorIndexX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproGridlineColorIndexA "}

Returns or sets the gridline color as an index into the current color palette, or as one of the following
XlColorIndex constants: xlColorIndexAutomatic or xlColorIndexNone. Read/write Variant.

Remarks
Set this property to xlColorIndexAutomatic to specify the automatic color.

The following illustration shows the color-index values in the default color palette.

GridlineColorIndex Property Example

This example sets the gridline color in the active window to blue.
ActiveWindow.GridlineColorIndex = 5

HasDataLabels Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproHasDataLabelsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproHasDataLabelsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproHasDataLabelsA "}

True if the series has data labels. Read/write Boolean.

HasDataLabels Property Example

This example turns on data labels for series three in Chart1.
With Charts("Chart1").SeriesCollection(3)

.HasDataLabels = True

.ApplyDataLabels type:=xlValue
End With

HasDropLines Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproHasDropLinesC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproHasDropLinesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproHasDropLinesA "}

True if the line chart or area chart has drop lines. Applies only to line and area charts. Read/write
Boolean.

HasDropLines Property Example

This example turns on drop lines for chart group one in Chart1 and then sets their line style, weight,
and color. The example should be run on a 2-D line chart that has one series.
With Charts("Chart1").ChartGroups(1)

.HasDropLines = True
With .DropLines.Border

.LineStyle = xlThin

.Weight = xlMedium

.ColorIndex = 3
End With

End With

HasHiLoLines Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproHasHiLoLinesC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproHasHiLoLinesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproHasHiLoLinesA "}

True if the line chart has high-low lines. Applies only to line charts. Read/write Boolean.

HasHiLoLines Property Example

This example turns on high-low lines for chart group one in Chart1 and then sets line style, weight,
and color. The example should be run on a 2-D line chart that has three series of stock-quote-like
data (high-low-close).
With Charts("Chart1").ChartGroups(1)

.HasHiLoLines = True
With .HiLoLines.Border

.LineStyle = xlThin

.Weight = xlMedium

.ColorIndex = 3
End With

End With

HasRadarAxisLabels Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproHasRadarAxisLabelsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproHasRadarAxisLabelsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproHasRadarAxisLabelsA
"}

True if a radar chart has axis labels. Applies only to radar charts. Read/write Boolean.

HasRadarAxisLabels Property Example

This example turns on radar axis labels for chart group one in Chart1 and sets their color. The
example should be run on a radar chart.
With Charts("Chart1").ChartGroups(1)

.HasRadarAxisLabels = True

.RadarAxisLabels.Font.ColorIndex = 3
End With

HasSeriesLines Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproHasSeriesLinesC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproHasSeriesLinesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproHasSeriesLinesA "}

True if a stacked column chart or bar chart has series lines or if a Pie of Pie chart or Bar of Pie chart
has connector lines between the two sections. Applies only to stacked column charts, bar charts, Pie
of Pie charts, or Bar of Pie charts. Read/write Booean.

HasSeriesLines Property Example

This example turns on series lines for chart group one in Chart1 and then sets their line style, weight,
and color. The example should be run on a 2-D stacked column chart that has two or more series.
With Charts("Chart1").ChartGroups(1)

.HasSeriesLines = True
With .SeriesLines.Border

.LineStyle = xlThin

.Weight = xlMedium

.ColorIndex = 3
End With

End With

HasUpDownBars Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproHasUpDownBarsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproHasUpDownBarsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproHasUpDownBarsA "}

True if a line chart has up and down bars. Applies only to line charts. Read/write Boolean

HasUpDownBars Property Example

This example turns on up and down bars for chart group one in Chart1 and then sets their colors. The
example should be run on a 2-D line chart containing two series that cross each other at one or more
data points.
With Charts("Chart1").ChartGroups(1)

.HasUpDownBars = True

.DownBars.Interior.ColorIndex = 3

.UpBars.Interior.ColorIndex = 5
End With

HiLoLines Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproHiLoLinesC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproHiLoLinesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproHiLoLinesA "}

Returns a HiLoLines object that represents the high-low lines for a series on a line chart. Applies only
to line charts. Read-only.

HiLoLines Property Example

This example turns on high-low lines for chart group one in Chart1 and then sets their line style,
weight, and color. The example should be run on a 2-D line chart that has three series of stock-quote-
like data (high-low-close).
With Charts("Chart1").ChartGroups(1)

.HasHiLoLines = True
With .HiLoLines.Border

.LineStyle = xlThin

.Weight = xlMedium

.ColorIndex = 3
End With

End With

InchesToPoints Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthInchesToPointsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthInchesToPointsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthInchesToPointsA "}

Converts a measurement from inches to points.

Syntax
expression.InchesToPoints(Inches)
expression Required. An expression that returns an Application object.
Inches Required Double. Specifies the inch value to be converted to points.

InchesToPoints Method Example

This example sets the left margin of Sheet1 to 2.5 inches.
Worksheets("Sheet1").PageSetup.LeftMargin = _

Application.InchesToPoints(2.5)

Italic Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproItalicC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproItalicX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproItalicA "}

True if the font style is italic. Read/write Boolean.

Italic Property Example

This example sets the font style to italic for the range A1:A5 on Sheet1.
Worksheets("Sheet1").Range("A1:A5").Font.Italic = True

LargeScroll Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthLargeScrollC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthLargeScrollX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthLargeScrollA "}

Scrolls the contents of the window by pages.

Syntax
expression.LargeScroll(Down, Up, ToRight, ToLeft)
expression Required. An expression that returns a Window object.
Down Optional Variant. The number of pages to scroll the contents down.
Up Optional Variant. The number of pages to scroll the contents up.
ToRight Optional Variant. The number of pages to scroll the contents to the right.
ToLeft Optional Variant. The number of pages to scroll the contents to the left.

Remarks
If Down and Up are both specified, the contents of the window are scrolled by the difference of the
arguments. For example, if Down is 3 and Up is 6, the contents are scrolled up three pages.

If ToLeft and ToRight are both specified, the contents of the window are scrolled by the difference of
the arguments. For example, if ToLeft is 3 and ToRight is 6, the contents are scrolled to the right
three pages.

Any of the arguments can be a negative number.

LargeScroll Method Example

This example scrolls the contents of the active window of Sheet1 down three pages.
Worksheets("Sheet1").Activate
ActiveWindow.LargeScroll down:=3

Outline Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproOutlineC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproOutlineX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproOutlineA "}

Returns an Outline object that represents the outline for the specified worksheet. Read-only.

Outline Property Example

This example sets the outline on Sheet1 to use automatic styles.
Worksheets("Sheet1").Outline.AutomaticStyles = True

Overlap Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproOverlapC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproOverlapX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproOverlapA "}

Specifies how bars and columns are positioned. Can be a value between – 100 and 100. Applies
only to 2-D bar and 2-D column charts. Read/write Long.

Remarks
If this property is set to – 100, bars are positioned so that there's one bar width between them. If the
overlap is 0 (zero), there's no space between bars (one bar starts immediately after the preceding
bar). If the overlap is 100, bars are positioned on top of each other.

Overlap Property Example

This example sets the overlap for chart group one to – 50. The example should be run on a 2-D
column chart that has two or more series.
Charts("Chart1").ChartGroups(1).Overlap = -50

RadarAxisLabels Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproRadarAxisLabelsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproRadarAxisLabelsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproRadarAxisLabelsA "}

Returns a TickLabels object that represents the radar axis labels for the specified chart group. Read-
only.

RadarAxisLabels Property Example

This example turns on radar axis labels for chart group one in Chart1 and then sets the color for the
labels. The example should be run on a radar chart.
With Charts("Chart1").ChartGroups(1)

.HasRadarAxisLabels = True

.RadarAxisLabels.Font.ColorIndex = 3
End With

RefersToLocal Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproRefersToLocalC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproRefersToLocalX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproRefersToLocalA "}

Returns or sets the formula that the name refers to. The formula is in the language of the user, and it's
in A1-style notation, beginning with an equal sign. Read/write String.

 RefersToLocal Property Example

This example creates a new worksheet and then inserts a list of all the names in the active workbook,
including their formulas (in A1-style notation and in the language of the user).
Set newSheet = ActiveWorkbook.Worksheets.Add
i = 1
For Each nm In ActiveWorkbook.Names

newSheet.Cells(i, 1).Value = nm.NameLocal
newSheet.Cells(i, 2).Value = "'" & nm.RefersToLocal
i = i + 1

Next

RefersToR1C1 Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproRefersToR1C1C "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproRefersToR1C1X":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproRefersToR1C1A "}

Returns or sets the formula that the name refers to. The formula is in the language of the macro, and
it's in R1C1-style notation, beginning with an equal sign. Read/write String.

RefersToR1C1 Property Example

This example creates a new worksheet and then inserts a list of all the names in the active workbook,
including their formulas (in R1C1-style notation and in the language of the macro).
Set newSheet = ActiveWorkbook.Worksheets.Add
i = 1
For Each nm In ActiveWorkbook.Names

newSheet.Cells(i, 1).Value = nm.Name
newSheet.Cells(i, 2).Value = "'" & nm.RefersToR1C1
i = i + 1

Next

RefersToR1C1Local Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproRefersToR1C1LocalC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproRefersToR1C1LocalX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproRefersToR1C1LocalA "}

Returns or sets the formula that the name refers to. This formula is in the language of the user, and
it's in R1C1-style notation, beginning with an equal sign. Read/write String.

RefersToR1C1Local Property Example

This example creates a new worksheet and then inserts a list of all the names in the active workbook,
including their formulas (in R1C1-style notation and in the language of the user).
Set newSheet = ActiveWorkbook.Worksheets.Add
i = 1
For Each nm In ActiveWorkbook.Names

newSheet.Cells(i, 1).Value = nm.NameLocal
newSheet.Cells(i, 2).Value = "'" & nm.RefersToR1C1Local
i = i + 1

Next

SeriesLines Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproSeriesLinesC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproSeriesLinesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproSeriesLinesA "}

Returns a SeriesLines object that represents the series lines for a stacked bar chart or a stacked
column chart. Applies only to stacked bar and stacked column charts. Read-only.

SeriesLines Property Example

This example turns on series lines for chart group one in Chart1 and then sets their line style, weight,
and color. The example should be run on a 2-D stacked column chart that has two or more series.
With Charts("Chart1").ChartGroups(1)

.HasSeriesLines = True
With .SeriesLines.Border

.LineStyle = xlThin

.Weight = xlMedium

.ColorIndex = 3
End With

End With

SmallScroll Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthSmallScrollC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthSmallScrollX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthSmallScrollA "}

Scrolls the contents of the window by rows or columns.

Syntax
expression.SmallScroll(Down, Up, ToRight, ToLeft)
expression Required. An expression that returns a Window object.
Down Optional Variant. The number of rows to scroll the contents down.
Up Optional Variant. The number of rows to scroll the contents up.
ToRight Optional Variant. The number of columns to scroll the contents to the right.
ToLeft Optional Variant. The number of columns to scroll the contents to the left.

Remarks
If Down and Up are both specified, the contents of the window are scrolled by the difference of the
arguments. For example, if Down is 3 and Up is 6, the the contents are scrolled up three rows.

If ToLeft and ToRight are both specified, the contents of the window are scrolled by the difference of
the arguments. For example, if ToLeft is 3 and ToRight is 6, the contents are scrolled to the right
three columns.

Any of these arguments can be a negative number.

SmallScroll Method Example

This example scrolls the contents of the active window of Sheet1 down three rows.
Worksheets("Sheet1").Activate
ActiveWindow.SmallScroll down:=3

SortSpecial Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthSortSpecialC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthSortSpecialX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthSortSpecialA "}

Syntax 1: Uses Far East sorting methods to sort the range, or uses the current region if the range
contains only one cell.

Syntax 2: Uses Far East sorting methods to sort a PivotTable. For more information, see the
argument list.

Syntax 1
expression.SortSpecial(SortMethod, Key1, Order1, Key2, Type, Order2, Key3, Order3, Header,

OrderCustom, MatchCase, Orientation)
Syntax 2
expression.SortSpecial(SortMethod, Key1, Order1, Type, OrderCustom, Orientation)
expression Required. An expression that returns a Range object.
SortMethod Optional Variant. Specifies how to sort. Can be one of the following XlSortMethod

constants: xlSyllabary (to sort phonetically) or xlCodePage (to sort by code page). The default
value is xlSyllabary.

Key1 Optional Variant. The first sort field, as either text (a pivot field or range name) or a Range
object ("Dept" or Cells(1, 1), for example).

Order1 Optional Variant. Can be one of the following XlSortOrder constants: xlAscending or
xlDescending. Use xlAscending to sort Key1 in ascending order. Use xlDescending to sort
Key1 in descending order. The default value is xlAscending.

Key2 Optional Variant. The second sort field, as either text (a pivot field or range name) or a
Range object. If this argument is omitted, there's no second sort field. Not used when sorting
PivotTables.

Type Optional Variant. Specifies which elements are sorted. Can be one of the following
XlSortType constants: xlSortValues or xlSortLabels. Used only when sorting PivotTables.

Order2 Optional Variant. Can be one of the following XlSortOrder constants: xlAscending or
xlDescending. Use xlAscending to sort Key2 in ascending order. Use xlDescending to sort
Key2 in descending order. The default value is xlAscending. Not used when sorting PivoTables.

Key3 Optional Variant. The third sort field, as either text (a range name) or a Range object. If this
argument is omitted, there's no third sort field. Not used when sorting PivotTables.

Order3 Optional Variant. Can be one of the following XlSortOrder constants: xlAscending or
xlDescending. Use xlAscending to sort Key3 in ascending order. Use xlDescending to sort
Key3 in descending order. The default value is xlAscending. Not used when sorting PivotTables.

Header Optional Variant. Specifies whether the first row contains headers. Can be one of the
following XlYesNoGuess constants: xlYes, xlNo, or xlGuess. Use xlYes if the first row contains
headers (it shouldn't be sorted). Use xlNo if there are no headers (the entire range should be
sorted). Use xlGuess to let Microsoft Excel determine whether there's a header, and to determine
where it is, if there is one. The default value is xlNo. Not used when sorting PivotTables.

OrderCustom Optional Variant. 1-based integer offset into the list of custom sort orders. If this
argument is omitted, 1 (Normal) is used.

MatchCase Optional Variant. True to do a case-sensitive sort; False to do a sort that's not case
sensitive. Not used when sorting PivotTables.

Orientation Optional Variant. If xlTopToBottom or omitted, the sort is done from top to bottom (by
row). If xlLeftToRight, the sort is done from left to right (by column).

SortSpecial Method Example

This example sorts the range A1:G37 on Sheet1, using cell A1 as the first sort key and cell C1 as the
second sort key. The sort is done in ascending code page order by row, and there are no headers.
Worksheets("Sheet1").Range("A1:G37").SortSpecial _

sortMethod:=xlCodePage, _
key1:=Range("A1"), order1:=xlAscending, _
key2:=Range("C1"), order2:=xlAscending

SourceData Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproSourceDataC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproSourceDataX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproSourceDataA "}

Returns the data source for the PivotTable, as shown in the following table. Read-only Variant.
Data source Return value
Microsoft Excel list or database The cell reference, as text.
External data source An array. Each row consists of an SQL

connection string with the remaining
elements as the query string, broken
down into 200-character segments.

Multiple consolidation ranges A two-dimensional array. Each row
consists of a reference and its
associated page field items.

Another PivotTable One of the above three kinds of
information.

SourceData Property Example

Assume that you used an external data source to create a PivotTable on Sheet1. This example inserts
the SQL connection string and query string into a new worksheet.
Set newSheet = ActiveWorkbook.Worksheets.Add
sdArray = Worksheets("Sheet1").UsedRange.PivotTable.SourceData
For i = LBound(sdArray) To UBound(sdArray)

newSheet.Cells(i, 1) = sdArray(i)
Next i

Strikethrough Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproStrikethroughC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproStrikethroughX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproStrikethroughA "}

True if the font is struck through with a horizontal line. Read/write Boolean.

Strikethrough Property Example

This example sets the font in the active cell on Sheet1 to strikethrough.
Worksheets("Sheet1").Activate
ActiveCell.Font.Strikethrough = True

Underline Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproUnderlineC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproUnderlineX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproUnderlineA "}

Returns or sets the type of underline applied to the font. Can be one of the following
XlUnderlineStyle constants: xlUnderlineStyleNone, xlUnderlineStyleSingle,
xlUnderlineStyleDouble, xlUnderlineStyleSingleAccounting, or
xlUnderlineStyleDoubleAccounting. Read/write Long.

Underline Property Example

This example sets the font in the active cell on Sheet1 to single underline.
Worksheets("Sheet1").Activate
ActiveCell.Font.Underline = xlUnderlineStyleSingle

UpBars Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproUpBarsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproUpBarsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproUpBarsA "}

Returns an UpBars object that represents the up bars on a line chart. Applies only to line charts.
Read-only.

UpBars Property Example

This example turns on up and down bars for chart group one in Chart1 and then sets their colors. The
example should be run on a 2-D line chart containing two series that cross each other at one or more
data points.
With Charts("Chart1").ChartGroups(1)

.HasUpDownBars = True

.DownBars.Interior.ColorIndex = 3

.UpBars.Interior.ColorIndex = 5
End With

VaryByCategories Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproVaryByCategoriesC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproVaryByCategoriesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproVaryByCategoriesA "}

True if Microsoft Excel assigns a different color or pattern to each data marker. The chart must
contain only one series. Read/write Boolean.

VaryByCategories Property Example

This example assigns a different color or pattern to each data marker in chart group one. The
example should be run on a 2-D line chart that has data markers on a series.
Charts("Chart1").ChartGroups(1).VaryByCategories = True

ExclusiveAccess Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthExclusiveAccessC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthExclusiveAccessX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthExclusiveAccessA "}

Assigns the current user exclusive access to the workbook that's open as a shared list.

Syntax
expression.ExclusiveAccess
expression Required. An expression that returns a Workbook object.

Remarks
The ExclusiveAccess method saves any changes you've made to the workbook and requires other
users who have the workbook open to save their changes to a different file.

If the specified workbook isn't open as a shared list, this method fails. To determine whether a
workbook is open as a shared list, use the MultiUserEditing property.

ExclusiveAccess Method Example

This example determines whether the active workbook is open as a shared list. If it is, the example
gives the current user exclusive access.
If ActiveWorkbook.MultiUserEditing Then

ActiveWorkbook.ExclusiveAccess
End If

MultiUserEditing Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproMultiUserEditingC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproMultiUserEditingX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproMultiUserEditingA "}

True if the workbook is open as a shared list. Read-only Boolean.

Remarks
To save a workbook as a shared list, use the SaveAs method. To switch the workbook from shared
mode to exclusive mode, use the ExclusiveAccess method.

MultiUserEditing Property Example

This example determines whether the active workbook is open in exclusive mode. If it is, the example
saves the workbook as a shared list.
If Not ActiveWorkbook.MultiUserEditing Then

ActiveWorkbook.SaveAs fileName:=ActiveWorkbook.FullName, _
accessMode:=xlShared

End If

RevisionNumber Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproRevisionNumberC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproRevisionNumberX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproRevisionNumberA "}

Returns the number of times the workbook has been saved while open as a shared list. If the
workbook is open in exclusive mode, this property returns 0 (zero). Read-only Long.

Remarks
The RevisionNumber property is updated only when the local copy of the workbook is saved, not
when remote copies are saved.

RevisionNumber Property Example

This example uses the revision number to determine whether the active workbook is open in
exclusive mode. If it is, the example saves the workbook as a shared list.
If ActiveWorkbook.RevisionNumber = 0 Then
 ActiveWorkbook.SaveAs filename:=ActiveWorkbook.FullName, _
 accessMode:=xlShared, conflictResolution:=xlOtherSessionChanges
End If

ShowConflictHistory Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproShowConflictHistoryC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproShowConflictHistoryX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproShowConflictHistoryA "}

True if the Conflict History worksheet is visible in the workbook that's open as a shared list.
Read/write Boolean.

Remarks
If the specified workbook isn't open as a shared list, this property fails. To determine whether a
workbook is open as a shared list, use the MultiUserEditing property.

ShowConflictHistory Property Example

This example determines whether the active workbook is open as a shared list. If it is, the example
displays the Conflict History worksheet.
If ActiveWorkbook.MultiUserEditing Then

ActiveWorkbook.ShowConflictHistory = True
End If

UserStatus Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproUserStatusC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproUserStatusX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproUserStatusA "}

Returns a 1-based, two-dimensional array that provides information about each user who has the
workbook open as a shared list. The first element of the second dimension is the name of the user,
the second element is the date and time when the user last opened the workbook, and the third
element is a number indicating the type of list (1 indicates exclusive, and 2 indicates shared). Read-
only Variant.

Remarks
The UserStatus property doesn't return information about users who have the specified workbook
open as read-only.

UserStatus Property Example

This example creates a new workbook and inserts into it information about all users who have the
active workbook open as a shared list.
users = ActiveWorkbook.UserStatus
With Workbooks.Add.Sheets(1)

For row = 1 To UBound(users, 1)
.Cells(row, 1) = users(row, 1)
.Cells(row, 2) = users(row, 2)
Select Case users(row, 3)

Case 1
.Cells(row, 3).Value = "Exclusive"

Case 2
.Cells(row, 3).Value = "Shared"

End Select
Next

End With

ActivateMicrosoftApp Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthActivateMicrosoftAppC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthActivateMicrosoftAppX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlmthActivateMicrosoftAppA "}

Activates a Microsoft application. If the application is already running, this method activates the
running application. If the application isn't running, this method starts a new instance of the
application.

Syntax
expression.ActivateMicrosoftApp(index)
expression Required. An expression that returns an Application object.
index Required Long. Specifies the Microsoft application to activate. Can be one of the following

XlMSApplication constants: xlMicrosoftWord, xlMicrosoftPowerPoint, xlMicrosoftMail,
xlMicrosoftAccess, xlMicrosoftFoxPro, xlMicrosoftProject, or xlMicrosoftSchedulePlus.

ActivateMicrosoftApp Method Example

This example starts and activates Word.
Application.ActivateMicrosoftApp xlMicrosoftWord

ActivateNext Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthActivateNextC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthActivateNextX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthActivateNextA "}

Activates the specified window and then sends it to the back of the window z-order.

Syntax
expression.ActivateNext
expression Required. An expression that returns a Window object.

ActivateNext Method Example

This example sends the active window to the back of the z-order.
ActiveWindow.ActivateNext

ActivatePrevious Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthActivatePreviousC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthActivatePreviousX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthActivatePreviousA "}

Activates the specified window and then activates the window at the back of the window z-order.

Syntax
expression.ActivatePrevious
expression Required. An expression that returns a Window object.

ActivatePrevious Method Example

This example activates the window at the back of the z-order.
ActiveWindow.ActivatePrevious

AxisTitle Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproAxisTitleC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproAxisTitleX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproAxisTitleA "}

Returns an AxisTitle object that represents the title of the specified axis. Read-only.

AxisTitle Property Example

This example adds an axis label to the category axis in Chart1.
With Charts("Chart1").Axes(xlCategory)

.HasTitle = True

.AxisTitle.Text = "July Sales"
End With

BCCRecipients Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproBCCRecipientsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproBCCRecipientsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproBCCRecipientsA "}

Returns or sets the recipients of a blind carbon copy of the mailer. Available only in Microsoft Excel for
the Macintosh, with the PowerTalk mail system extension installed. Read/write Variant.

Remarks
This property uses an array of strings specifying the address of each recipient, in one of the following
formats:

· A record in the Preferred Personal Catalog. These names are one level deep ("Fred" or "June," for
example).

· A full path specifying either a record in a personal catalog ("HD:Excel Folder:My Catalog:Barney")
or a plain record ("HD:Folder:Martin").

· A relative path from the current working folder specifying either a personal catalog record ("My
Catalog:Barney") or a plain record ("Martin").

· A path in a PowerShare catalog tree, in the form "CATALOG_NAME:<node>:RECORD_NAME",
where <node> is a path to a PowerShare catalog. An example of a complete path is
"AppleTalk:North Building Zone:George's Mac".

BCCRecipients Property Example

This example sets up the Mailer object for workbook one and then sends the workbook.
With Workbooks(1)

.HasMailer = True
With .Mailer

.Subject = "Here is the workbook"

.ToRecipients = Array("Jean")

.CCRecipients = Array("Adam", "Bernard")

.BCCRecipients = Array("Chris")

.Enclosures = Array("TestFile")
End With
.SendMailer

End With

CategoryNames Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproCategoryNamesC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproCategoryNamesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproCategoryNamesA "}

Returns or sets all the category names for the specified axis, as a text array. When you set this
property, you can set it to either an array or a Range object that contains the category names.
Read/write Variant.

Remarks
Category names are really a property of the "special" series in an axis grouping. Deleting or modifying
that special series will change the category names for all series using the axis.

CategoryNames Property Example

This example sets the category names for Chart1 to the values in cells B1:B5 on Sheet1.
Set Charts("Chart1").Axes(xlCategory).CategoryNames = _

Worksheets("Sheet1").Range("B1:B5")
This example uses an array to set individual category names for Chart1.
Charts("Chart1").Axes(xlCategory).CategoryNames = _

Array ("1985", "1986", "1987", "1988", "1989")

CCRecipients Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproCCRecipientsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproCCRecipientsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproCCRecipientsA "}

Returns or sets the recipients of a carbon copy (an indirect copy) of the mailer. Available only in
Microsoft Excel for the Macintosh, with the PowerTalk mail system extension installed. Read/write
Variant.

Remarks
This property uses an array of strings specifying the address, in one of the following formats:

· A record in the Preferred Personal Catalog. These names are one level deep ("Fred" or "June," for
example).

· A full path specifying either a record in a personal catalog ("HD:Excel Folder:My Catalog:Barney")
or a plain record ("HD:Folder:Martin").

· A relative path from the current working folder specifying either a personal catalog record ("My
Catalog:Barney") or a plain record ("Martin").

· A path in a PowerShare catalog tree, in the form "CATALOG_NAME:<node>:RECORD_NAME",
where <node> is a path to a PowerShare catalog. An example of a complete path is
"AppleTalk:North Building Zone:George's Mac".

CCRecipients Property Example

This example sets up the Mailer object for workbook one and then sends the workbook.
With Workbooks(1)

.HasMailer = True
With .Mailer

.Subject = "Here is the workbook"

.ToRecipients = Array("Jean")

.CCRecipients = Array("Adam", "Bernard")

.BCCRecipients = Array("Chris")

.Enclosures = Array("TestFile")
End With
.SendMailer

End With

ChartTitle Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproChartTitleC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproChartTitleX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproChartTitleA "}

Returns a ChartTitle object that represents the title of the specified chart. Read-only.

ChartTitle Property Example

This example sets the text for the title of Chart1.
With Charts("Chart1")

.HasTitle = True

.ChartTitle.Text = "First Quarter Sales"
End With

Deselect Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthDeselectC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthDeselectX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthDeselectA "}

Cancels the selection for the specified chart.

Syntax
expression.Deselect
expression Required. An expression that returns a Chart object.

Deselect Method Example

This example is equivalent to pressing ESC while working on the active chart. The example should be
run on a chart that has a component (such as an axis) selected.
ActiveChart.Deselect

DoughnutHoleSize Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDoughnutHoleSizeC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDoughnutHoleSizeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDoughnutHoleSizeA "}

Returns or sets the size of the hole in a doughnut chart group. The hole size is expressed as a
percentage of the chart size, between 10 and 90 percent. Read/write Long.

DoughnutHoleSize Property Example

This example sets the hole size for doughnut group one in Chart1. The example should be run on a 2-
D doughnut chart.
Charts("Chart1").DoughnutGroups(1).DoughnutHoleSize = 10

EnableCancelKey Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproEnableCancelKeyC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproEnableCancelKeyX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproEnableCancelKeyA "}

Controls how Microsoft Excel handles CTRL+BREAK (or ESC or COMMAND+PERIOD) user
interruptions to the running procedure. Read/write Long.

Can be one of the following XlEnableCancelKey constants.

Constant Meaning
xlDisabled Cancel key trapping is completely disabled.
xlInterrupt The current procedure is interrupted, and the user can

debug or end the procedure.
xlErrorHandler The interrupt is sent to the running procedure as an error,

trappable by an error handler set up with an On Error
GoTo statement. The trappable error code is 18.

Remarks
Use this property very carefully. If you use xlDisabled, there's no way to interrupt a runaway loop or
other non – self-terminating code. Likewise, if you use xlErrorHandler but your error handler always
returns using the Resume statement, there's no way to stop runaway code.

The EnableCancelKey property is always reset to xlInterrupt whenever Microsoft Excel returns to
the idle state and there's no code running. To trap or disable cancellation in your procedure, you must
explicitly change the EnableCancelKey property every time the procedure is called.

EnableCancelKey Property Example

This example shows how you can use the EnableCancelKey property to set up a custom
cancellation handler.
On Error GoTo handleCancel
Application.EnableCancelKey = xlErrorHandler
MsgBox "This may take a long time: press ESC to cancel"
For x = 1 To 1000000 ' Do something 1,000,000 times (long!)

' do something here
Next x

handleCancel:
If Err = 18 Then

MsgBox "You cancelled"
End If

Enclosures Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproEnclosuresC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproEnclosuresX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproEnclosuresA "}

Returns or sets the enclosed files that are attached to the workbook mailer, as an array of strings,
with each string indicating the path of a file to attach as an enclosure. Relative paths are allowed;
they're assumed to be based on the current folder. Available only in Microsoft Excel for the Macintosh,
with the PowerTalk mail system extension installed. Read/write Variant.

Enclosures Property Example

This example sets up the Mailer object for workbook one and then sends the workbook.
With Workbooks(1)

.HasMailer = True
With .Mailer

.Subject = "Here is the workbook"

.ToRecipients = Array("Jean")

.CCRecipients = Array("Adam", "Bernard")

.BCCRecipients = Array("Chris")

.Enclosures = Array("TestFile")
End With
.SendMailer

End With

EndStyle Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproEndStyleC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproEndStyleX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproEndStyleA "}

Returns or sets the end style for the error bars. Can be one of the following XlEndStyleCap
constants: xlCap or xlNoCap. Read/write Long.

EndStyle Property Example

This example sets the end style for the error bars for series one in Chart1. The example should be run
on a 2-D line chart that has Y error bars for the first series.
Charts("Chart1").SeriesCollection(1).ErrorBars.EndStyle = xlCap

ForwardMailer Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthForwardMailerC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthForwardMailerX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthForwardMailerA "}

Sets up the workbook mailer for forwarding by creating a new mailer that is preset with the subject
and enclosures of the existing mailer. Valid only when the workbook has a received mailer attached
(you can only forward a workbook you've received). Available only in Microsoft Excel for the
Macintosh, with the PowerTalk mail system extension installed.

Syntax
expression.ForwardMailer
expression Required. An expression that returns a Workbook object.

Remarks
After you use this method to set up a workbook mailer for forwarding, you can change the mailer
settings (if necessary) by using the Mailer property and then use the SendMailer method to forward
the workbook.

This method generates an error if it's used in Microsoft Windows.

ForwardMailer Method Example

This example forwards the active workbook.
ActiveWorkbook.ForwardMailer

HasMailer Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproHasMailerC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproHasMailerX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproHasMailerA "}

True if the workbook has a mailer. Available only in Microsoft Excel for the Macintosh, with the
PowerTalk mail system extension installed. Read/write Boolean.

HasMailer Property Example

This example replies to the sender of the active workbook.
Set original = ActiveWorkbook
If original.HasMailer Then

original.Reply
original.Mailer.Subject = "Here's my reply"
ActiveWorkbook.SendMailer

End If

HasRoutingSlip Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproHasRoutingSlipC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproHasRoutingSlipX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproHasRoutingSlipA "}

True if the workbook has a routing slip. Read/write Boolean.

Remarks
Setting this property to True creates a routing slip with default values. Setting the property to False
deletes the routing slip.

HasRoutingSlip Property Example

This example creates a routing slip for Book1.xls and then sends the workbook to three recipients,
one after another.
Workbooks("BOOK1.XLS").HasRoutingSlip = True
With Workbooks("BOOK1.XLS").RoutingSlip

.Delivery = xlOneAfterAnother

.Recipients = Array("Adam Bendel", "Jean Selva", "Bernard Gabor")

.Subject = "Here is BOOK1.XLS"

.Message = "Here is the workbook. What do you think?"
End With
Workbooks("BOOK1.XLS").Route

Mailer Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproMailerC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproMailerX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproMailerA "}

Returns a Mailer object that represents the PowerTalk mailer attached to the workbook. Available only
in Microsoft Excel for the Macintosh, with the PowerTalk mail system extension installed. Read-only.

Remarks
The Mailer object contains the properties needed to mail workbooks with PowerTalk. To mail a
workbook, turn on the mailer by using the HasMailer property, set the mailer properties, and then
send the workbook and mailer by using the SendMailer method.

Mailer Property Example

This example sets up the Mailer object for workbook one and then sends the workbook.
With Workbooks(1)

.HasMailer = True
With .Mailer

.Subject = "Here is the workbook"

.ToRecipients = Array("Jean")

.CCRecipients = Array("Adam", "Bernard")

.BCCRecipients = Array("Chris")

.Enclosures = Array("TestFile")
End With
.SendMailer

End With

MarkerBackgroundColor Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproMarkerBackgroundColorC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproMarkerBackgroundColorX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproMarkerBackgroundColorA "}

Returns or sets the marker background color as an RGB value. Applies only to line, scatter, and radar
charts. Read/write Long

MarkerBackgroundColor Property Example

This example sets the marker background and foreground colors for the second point in series one in
Chart1.
With Charts("Chart1").SeriesCollection(1).Points(2)

.MarkerBackgroundColor = RGB(0,255,0) ' green

.MarkerForegroundColor = RGB(255,0,0) ' red
End With

MarkerBackgroundColorIndex Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproMarkerBackgroundColorIndexC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproMarkerBackgroundColorIndexX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproMarkerBackgroundColorIndexA "}

Returns or sets the marker background color as an index into the current color palette, or as one of
the following XlColorIndex constants: xlColorIndexAutomatic or xlColorIndexNone. Applies only
to line, scatter, and radar charts. Read/write Long.

Remarks
The following illustration shows the color-index values in the default color palette.

MarkerBackgroundColorIndex Property Example

This example sets the marker background and foreground colors for the second point in series one in
Chart1.
With Charts("Chart1").SeriesCollection(1).Points(2)

.MarkerBackgroundColorIndex = 4 'green

.MarkerForegroundColorIndex = 3 'red
End With

MarkerForegroundColor Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproMarkerForegroundColorC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproMarkerForegroundColorX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproMarkerForegroundColorA "}

Returns or sets the foreground color of the marker as an RGB value. Applies only to line, scatter, and
radar charts. Read/write Long.

MarkerForegroundColor Property Example

This example sets the marker background and foreground colors for the second point in series one in
Chart1.
With Charts("Chart1").SeriesCollection(1).Points(2)

.MarkerBackgroundColor = RGB(0,255,0) ' green

.MarkerForegroundColor = RGB(255,0,0) ' red
End With

MarkerForegroundColorIndex Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproMarkerForegroundColorIndexC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproMarkerForegroundColorIndexX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproMarkerForegroundColorIndexA "}

Returns or sets the marker foreground color as an index into the current color palette, or as one of the
following XlColorIndex constants: xlColorIndexAutomatic or xlColorIndexNone. Applies only to
line, scatter, and radar charts. Read/write Long.

Remarks
The following illustration shows the color-index values in the default color palette.

MarkerForegroundColorIndex Property Example

This example sets the marker background and foreground colors for the second point in series one in
Chart1.
With Charts("Chart1").SeriesCollection(1).Points(2)

.MarkerBackgroundColorIndex = 4 'green

.MarkerForegroundColorIndex = 3 'red
End With

NavigateArrow Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthNavigateArrowC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthNavigateArrowX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthNavigateArrowA "}

Navigates a tracer arrow for the specified range to the precedent, dependent, or error-causing cell or
cells. Selects the precedent, dependent, or error cells and returns a Range object that represents the
new selection. This method causes an error if it's applied to a cell without visible tracer arrows.

Syntax
expression.NavigateArrow(TowardPrecedent, ArrowNumber, LinkNumber)
expression Required. An expression that returns a Range object.
TowardPrecedent Optional Variant. Specifies the direction to navigate: True to navigate toward

precedents, False to navigate toward dependent.
ArrowNumber Optional Variant. Specifies the arrow number to navigate; corresponds to the

numbered reference in the cell's formula.
LinkNumber Optional Variant. If the arrow is an external reference arrow, this argument indicates

which external reference to follow. If this argument is omitted, the first external reference is
followed.

NavigateArrow Method Example

This example navigates along the first tracer arrow from cell A1 on Sheet1 toward the precedent cell.
The example should be run on a worksheet containing a formula in cell A1 that includes references to
cells D1, D2, and D3 (for example, the formula =D1*D2*D3). Before running the example, display the
Auditing toolbar, select cell A1, and click the Trace Precedents button.
Worksheets("Sheet1").Activate
Range("A1").Select
ActiveCell.NavigateArrow True, 1

OpenText Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthOpenTextC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthOpenTextX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthOpenTextA "}

Loads and parses a text file as a new workbook with a single sheet that contains the parsed text-file
data.

Syntax
expression.OpenText(Filename, Origin, StartRow, DataType, TextQualifier,

ConsecutiveDelimiter, Tab, Semicolon, Comma, Space, Other, OtherChar, FieldInfo)
expression Required. An expression that returns a Workbooks object.
Filename Required String. Specifies the file name of the text file to be opened and parsed.
Origin Optional Variant. Specifies the origin of the text file. Can be one of the following XlPlatform

constants: xlMacintosh, xlWindows, or xlMSDOS. If this argument is omitted, the method uses
the current setting of the File Origin option in the Text Import Wizard.

StartRow Optional Variant. The row number at which to start parsing text. The default value is 1.
DataType Optional Variant. Specifies the column format of the data in the file. Can be one of the

following XlTextParsingType constants: xlDelimited or xlFixedWidth. The default value is
xlDelimited.

TextQualifier Optional Variant. Specifies the text qualifier. Can be one of the following
XlTextQualifier constants: xlTextQualifierDoubleQuote, xlTextQualifierSingleQuote, or
xlTextQualifierNone. The default value is xlTextQualifierDoubleQuote.

ConsecutiveDelimiter Optional Variant. True to have consecutive delimiters considered one
delimiter. The default is False.

Tab Optional Variant. True to have the tab character be the delimiter (DataType must be
xlDelimited). The default value is False.

Semicolon Optional Variant. True to have the semicolon character be the delimiter (DataType
must be xlDelimited). The default value is False.

Comma Optional Variant. True to have the comma character be the delimiter (DataType must be
xlDelimited). The default value is False.

Space Optional Variant. True to have the space character be the delimiter (DataType must be
xlDelimited). The default value is False.

Other Optional Variant. True to have the character specified by the OtherChar argument be the
delimiter (DataType must be xlDelimited). The default value is False.

OtherChar Optional Variant (required if Other is True). Specifies the delimiter character when
Other is True. If more than one character is specified, only the first character of the string is used;
the remaining characters are ignored.

FieldInfo Optional Variant. An array containing parse information for individual columns of data.
The interpretation depends on the value of DataType.
When the data is delimited, this argument is an array of two-element arrays, with each two-element
array specifying the conversion options for a particular column. The first element is the column
number (1-based), and the second element is one of the following numbers, specifying how the
column in parsed.
1 General
2 Text
3 MDY date
4 DMY date
5 YMD date
6 MYD date

7 DYM date
8 YDM date
9 Skip the column

The column specifiers can be in any order. If there's no column specifier for a particular column in
the input data, the column is parsed with the General setting. This example causes the third
column to be skipped, the first column to be parsed as text, and the remaining columns in the
source data to be parsed with the General setting.
Array(Array(3, 9), Array(1, 2))
If the source data has fixed-width columns, the first element in each two-element array specifies
the position of the starting character in the column (as an integer; character 0 (zero) is the first
character). The second element in the two-element array specifies the parse option for the column
as a number between 1 and 9, as listed in the preceding table.
The following example parses two columns from a fixed-width text file. The first column includes
characters 1 through 10. Characters 11, 12, 13, 14, and 15 are skipped. The second column
includes character 16 through the last character in the line.
Array(Array(0, 1), Array(10, 9), Array(15, 1))

OpenText Method Example

This example opens the file Data.txt and uses tab delimiters to parse the text file into a worksheet.
Workbooks.OpenText filename:="DATA.TXT", _

dataType:=xlDelimited, tab:=True

OutlineFont Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproOutlineFontC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproOutlineFontX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproOutlineFontA "}

True if the font is an outline font. Read/write Boolean.

Remarks
This property has no effect in Windows, but its value is retained (it can be set and returned).

OutlineFont Property Example

This example sets the font for cell A1 on Sheet1 to an outline font.
Worksheets("Sheet1").Range("A1").Font.OutlineFont = True

PatternColor Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPatternColorC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPatternColorX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPatternColorA "}

Returns or sets the color of the interior pattern as an RGB value. Read/write Variant.

PatternColor Property Example

This example sets the color of the interior pattern for rectangle one on Sheet1.
With Worksheets("Sheet1").Rectangles(1).Interior

.Pattern = xlGrid

.PatternColor = RGB(255,0,0)
End With

PatternColorIndex Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPatternColorIndexC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPatternColorIndexX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPatternColorIndexA "}

Returns or sets the color of the interior pattern as an index into the current color palette, or as one of
the following XlColorIndex constants: xlColorIndexAutomatic or xlColorIndexNone. Read/write
Long.

Remarks
Set this property to xlColorIndexAutomatic to specify the automatic pattern for cells or the automatic
fill style for drawing objects. Set this property to xlColorIndexNone to specify that you don't want a
pattern (this is the same as setting the Pattern property of the Interior object to xlPatternNone).

Remarks
The following illustration shows the color-index values in the default color palette.

PatternColorIndex Property Example

This example sets the color of the interior pattern for rectangle one on Sheet1.
With Worksheets("Sheet1").Rectangles(1).Interior

.Pattern = xlChecker

.PatternColorIndex = 5
End With

Received Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproReceivedC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproReceivedX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproReceivedA "}

True if the workbook mailer has been received (if it's been sent by another user to the current user)
and the current user hasn't modified the mailer by using the Reply, ReplyAll, or ForwardMailer
method. PowerTalk requires that mailers be received before they can be forwarded or replied to.
Available only in Microsoft Excel for the Macintosh, with the PowerTalk mail system extension
installed. Read-only Boolean.

Received Property Example

This example displays the current status of the Received property.
With ActiveWorkbook

If .HasMailer Then
If .Mailer.Received Then

state = "True"
Else

state = "False"
End If
MsgBox "Received property is " & state

Else
MsgBox "The workbook has no mailer"

End If
End With

RegisterXLL Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthRegisterXLLC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthRegisterXLLX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthRegisterXLLA "}

Loads an XLL code resource and automatically registers the functions and commands contained in
the resource.

Syntax
expression.RegisterXLL(Filename)
expression Required. An expression that returns an Application object.
Filename Required String. Specifies the name of the XLL to be loaded.

Remarks
This method returns True if the code resource is successfully loaded; otherwise, the method returns
False.

RegisterXLL Method Example

This example loads an XLL file and registers the functions and commands in the file.
Application.RegisterXLL "XLMAPI.XLL"

Reply Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthReplyC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthReplyX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthReplyA "}

Replies to the workbook by creating a copy of the workbook and pre-initializing the new workbook's
mailer to send to the originator of the workbook. Valid only when the workbook has a received mailer
attached (you can only reply to a workbook you've received). Available only in Microsoft Excel for the
Macintosh, with the PowerTalk mail system extension installed.

Syntax
expression.Reply
expression Required. An expression that returns a Workbook object.

Remarks
To reply to a workbook, use this method to set up the mailer, use the Mailer property to adjust the
mailer settings (if necessary), and then use the SendMailer method to send the reply.

This method generates an error if it's used in Windows.

Reply Method Example

This example replies to the sender of the active workbook.
Set original = ActiveWorkbook
If original.HasMailer Then

original.Reply
original.Mailer.Subject = "Here's my reply"
ActiveWorkbook.SendMailer

End If

ReplyAll Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthReplyAllC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthReplyAllX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthReplyAllA "}

Replies to the workbook by creating a copy of the workbook and pre-initializing the new workbook's
mailer to send to all recipients of the workbook. Valid only when the workbook has a received mailer
attached (you can only reply to a workbook you've received). Available only in Microsoft Excel for the
Macintosh, with the PowerTalk mail system extension installed.

Syntax
expression.ReplyAll
expression Required. An expression that returns a Workbook object.

Remarks
To reply to all recipients of a workbook, use this method to set up the mailer, use the Mailer property
to adjust the mailer settings (if necessary), and then use the SendMailer method to send the reply.

This method generates an error if it's used in Windows.

ReplyAll Method Example

This example replies to all recipients of the active workbook.
Set original = ActiveWorkbook
If original.HasMailer Then

original.ReplyAll
original.Mailer.Subject = "Here's my reply"
ActiveWorkbook.SendMailer

End If

Route Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthRouteC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthRouteX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthRouteA "}

Routes the workbook, using the workbook's current routing slip.

Syntax
expression.Route
expression Required. An expression that returns a Workbook object.

Remarks
Routing a workbook sets the Routed property to True.

Route Method Example

This example creates a routing slip for Book1.xls and then sends the workbook to three recipients,
one after another.
Workbooks("BOOK1.XLS").HasRoutingSlip = True
With Workbooks("BOOK1.XLS").RoutingSlip

.Delivery = xlOneAfterAnother

.Recipients = Array("Adam Bendel", "Jean Selva", "Bernard Gabor")

.Subject = "Here is BOOK1.XLS"

.Message = "Here is the workbook. What do you think?"
End With
Workbooks("BOOK1.XLS").Route

Routed Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproRoutedC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproRoutedX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproRoutedA "}

True if the workbook has been routed to the next recipient. False if the workbook needs to be routed.
Read-only Boolean.

Remarks
If the workbook wasn't routed to the current recipient, this property is always False (for example, if the
document has no routing slip, or if a routing slip was just created).

Routed Property Example

This example sends the workbook to the next recipient.
If ActiveWorkbook.HasRoutingSlip And _

Not ActiveWorkbook.Routed Then
ActiveWorkbook.Route

End If

RoutingSlip Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproRoutingSlipC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproRoutingSlipX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproRoutingSlipA "}

Returns a RoutingSlip object that represents the routing slip for the workbook. Reading this property
if there's no routing slip causes an error (check the HasRoutingSlip property first). Read-only.

RoutingSlip Property Example

This example creates a routing slip for Book1.xls and then sends the workbook to three recipients,
one after another.
Workbooks("BOOK1.XLS").HasRoutingSlip = True
With Workbooks("BOOK1.XLS").RoutingSlip

.Delivery = xlOneAfterAnother

.Recipients = Array("Adam Bendel", "Jean Selva", "Bernard Gabor")

.Subject = "Here is BOOK1.XLS"

.Message = "Here is the workbook. What do you think?"
End With
Workbooks("BOOK1.XLS").Route

SaveCopyAs Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthSaveCopyAsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthSaveCopyAsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthSaveCopyAsA "}

Saves a copy of the workbook to a file but doesn't modify the open workbook in memory.

Syntax
expression.SaveCopyAs(Filename)
expression Required. An expression that returns a Workbook object.
Filename Required. Specifies the file name for the copy.

SaveCopyAs Method Example

This example saves a copy of the active workbook.
ActiveWorkbook.SaveCopyAs "C:\TEMP\XXXX.XLS"
This is the same example in Microsoft Excel for the Macintosh.
ActiveWorkbook.SaveCopyAs "HD:Temporary Folder:Temporary Workbook File"

SendDateTime Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproSendDateTimeC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproSendDateTimeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproSendDateTimeA "}

Returns the date and time that the mailer was sent. For this property to be valid, the mailer must have
already been sent. Available only in Microsoft Excel for the Macintosh, with the PowerTalk mail
system extension installed. Read-only Date.

SendDateTime Property Example

This example displays the sender of the workbook, plus the date and time it was sent.
If ActiveWorkbook.HasMailer Then

MsgBox "This workbook was sent by " & _
ActiveWorkbook.Mailer.Sender & " at " & _
Format(ActiveWorkbook.Mailer.SendDateTime, "General Date")

End If

Sender Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproSenderC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproSenderX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproSenderA "}

Returns the name of the user who sent this workbook mailer. Available only in Microsoft Excel for the
Macintosh, with the PowerTalk mail system extension installed. Read-only String.

Sender Property Example

This example displays the sender of the workbook, plus the date and time it was sent.
If ActiveWorkbook.HasMailer Then

MsgBox "This workbook was sent by " & _
ActiveWorkbook.Mailer.Sender & " at " & _
Format(ActiveWorkbook.Mailer.SendDateTime, "General Date")

End If

SendMail Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthSendMailC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthSendMailX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthSendMailA "}

Sends the workbook by using the installed mail system.

Syntax
expression.SendMail(Recipients, Subject, ReturnReceipt)
expression Required. An expression that returns a Workbook object.
Recipients Required Variant. Specifies the name of the recipient as text, or as an array of text

strings if there are multiple recipients. At least one recipient must be specified, and all recipients
are added as To recipients.

Subject Optional Variant. Specifies the subject of the message. If this argument is omitted, the
document name is used.

ReturnReceipt Optional Variant. True to request a return receipt. False to not request a return
receipt. The default value is False.

Remarks
Use the SendMail method in Microsoft Mail (MAPI or Microsoft Mail for the Macintosh) e-mail
systems. Pass addressing information as parameters.

Use the SendMailer method in PowerTalk e-mail systems on the Macintosh. The Mailer object
contains the addressing information for PowerTalk.

SendMail Method Example

This example sends the active workbook to a single recipient.
ActiveWorkbook.SendMail recipients:="Jean Selva"

SendMailer Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthSendMailerC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthSendMailerX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthSendMailerA "}

Sends the workbook by using the PowerTalk mailer. This method is available only on the Macintosh,
with the PowerTalk system extension installed, and it can only be used on a workbook that has a
mailer attached.

Syntax
expression.SendMailer(FileFormat, Priority)
expression Required. An expression that returns a Workbook object.
FileFormat Optional Variant. Specifies the file format to use for the workbook that's sent. See the

FileFormat property for a list of valid types.
Priority Optional Variant. Specifies the delivery priority of the message. Can be one of the

following XlPriority constants: xlPriorityNormal, xlPriorityHigh, or xlPriorityLow. The default
value is xlPriorityNormal.

Remarks
Use the SendMail method in Microsoft Mail (MAPI or Microsoft Mail for the Macintosh) e-mail
systems. Pass addressing information as parameters.

Use the SendMailer method in PowerTalk e-mail systems on the Macintosh. The Mailer object
contains the addressing information for PowerTalk.

SendMailer Method Example

This example sets up the Mailer object for workbook one and then sends the workbook.
With Workbooks(1)

.HasMailer = True
With .Mailer

.Subject = "Here is the workbook"

.ToRecipients = Array("Jean")

.CCRecipients = Array("Adam", "Bernard")

.BCCRecipients = Array("Chris")

.Enclosures = Array("TestFile")
End With
.SendMailer

End With

ToRecipients Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproToRecipientsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproToRecipientsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproToRecipientsA "}

Returns or sets the direct recipients of the mailer. Available only in Microsoft Excel for the Macintosh,
with the PowerTalk mail system extension installed. Read/write Variant.

Remarks
This property is an array of strings specifying the address, in one of the following formats:

· A record in the Preferred Personal Catalog. These names are one level deep ("Fred" or "June," for
example).

· A full path specifying either a record in a personal catalog ("HD:Excel Folder:My Catalog:Barney")
or a plain record ("HD:Folder:Martin").

· A relative path from the current working folder specifying either a personal catalog record ("My
Catalog:Barney") or a plain record ("Martin").

· A path in a PowerShare catalog tree, in the form "CATALOG_NAME:<node>:RECORD_NAME",
where <node> is a path to a PowerShare catalog. An example of a complete path is
"AppleTalk:North Building Zone:George's Mac".

ToRecipients Property Example

This example sets up the Mailer object for workbook one and then sends the workbook.
With Workbooks(1)

.HasMailer = True
With .Mailer

.Subject = "Here is the workbook"

.ToRecipients = Array("Jean")

.CCRecipients = Array("Adam", "Bernard")

.BCCRecipients = Array("Chris")

.Enclosures = Array("TestFile")
End With
.SendMailer

End With

UpdateFromFile Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthUpdateFromFileC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthUpdateFromFileX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthUpdateFromFileA "}

Updates a read-only workbook from the saved disk version of the workbook if the disk version is more
recent than the copy of the workbook that is loaded in memory. If the disk copy hasn't changed since
the workbook was loaded, the in-memory copy of the workbook isn't reloaded.

Syntax
expression.UpdateFromFile
expression Required. An expression that returns a Workbook object.

Remarks
This method is useful when a workbook is opened as read-only by user A and opened as read/write
by user B. If user B saves a newer version of the workbook to disk while user A still has the workbook
open, user A cannot get the updated copy without closing and reopening the workbook and losing
view settings. The UpdateFromFile method updates the in-memory copy of the workbook from the
disk file.

UpdateFromFile Method Example

This example updates the active workbook from the disk version of the file.
ActiveWorkbook.UpdateFromFile

Volatile Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthVolatileC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthVolatileX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthVolatileA "}

Marks a user-defined function as volatile. A volatile function must be recalculated whenever
calculation occurs in any cells on the worksheet. A nonvolatile function is recalculated only when the
input variables change. This method has no effect if it's not inside a user-defined function used to
calculate a worksheet cell.

Syntax
expression.Volatile(Volatile)
expression Required. An expression that returns an Application object.
Volatile Optional Variant. True to mark the function as volatile. False to mark the function as

nonvolatile. The default value is True

Volatile Method Example

This example marks the user-defined function "My_Func" as volatile. The function will be recalculated
whenever calculation occurs in any cells on the worksheet on which this function appears.
Function My_Func()

Application.Volatile
'
' Remainder of the function
'

End Function

WindowNumber Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproWindowNumberC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproWindowNumberX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproWindowNumberA "}

Returns the window number. For example, a window named "Book1.xls:2" has 2 as its window
number. Most windows have the window number 1. Read-only Long.

Remarks
The window number isn't the same as the window index (the return value of the Index property),
which is the position of the window within the Windows collection.

WindowNumber Property Example

This example creates a new window of the active window and then displays the window number of
the new window.
ActiveWindow.NewWindow
MsgBox ActiveWindow.WindowNumber

XValues Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproXValuesC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproXValuesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproXValuesA "}

Returns or sets an array of x values for a chart series. The XValues property can be set to a range on
a worksheet or to an array of values, but it cannot be a combination of both. Read/write Variant.

XValues Property Example

This example sets the x values for series one in Chart1 to the range B1:B5 on Sheet1.
Charts("Chart1").SeriesCollection(1).XValues = _

Worksheets("Sheet1").Range("B1:B5")
This example uses an array to set values for the individual points in series one in Chart1.
Charts("Chart1").SeriesCollection(1).XValues = _

Array(5.0, 6.3, 12.6, 28, 50)

Formatting Codes for Headers and Footers
The following special formatting codes can be included as a part of the header and footer properties
(LeftHeader, CenterHeader, RightHeader, LeftFooter, CenterFooter, RightFooter).
Format code Description
&L Left aligns the characters that follow.
&C Centers the characters that follow.
&R Right aligns the characters that follow.
&E Turns double-underline printing on or off.
&X Turns superscript printing on or off.
&Y Turns subscript printing on or off.
&B Turns bold printing on or off.
&I Turns italic printing on or off.
&U Turns underline printing on or off.
&S Turns strikethrough printing on or off.
&O Turns outline printing on or off (Macintosh only).
&H Turns shadow printing on or off (Macintosh only).
&D Prints the current date.
&T Prints the current time.
&F Prints the name of the document.
&A Prints the name of the workbook tab.
&P Prints the page number.
&P+number Prints the page number plus the specified number.
&P-number Prints the page number minus the specified number.
&& Prints a single ampersand.
& "fontname" Prints the characters that follow in the specified font. Be

sure to include the double quotation marks.
&nn Prints the characters that follow in the specified font size.

Use a two-digit number to specify a size in points.
&N Prints the total number of pages in the document.

AddCustomList Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAddCustomListC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAddCustomListX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthAddCustomListA "}

Adds a custom list for custom autofill and/or custom sort.

Syntax
expression.AddCustomList(ListArray, ByRow)
expression Required. An expression that returns an Application object.
ListArray Required Variant. Specifies the source data, as either an array of strings or a Range

object.
ByRow Optional Variant. Only used if ListArray is a Range object. True to create a custom list

from each row in the range. False to create a custom list from each column in the range. If this
argument is omitted and there are more rows than columns (or an equal number of rows and
columns) in the range, Microsoft Excel creates a custom list from each column in the range. If this
argument is omitted and there are more columns than rows in the range, Microsoft Excel creates a
custom list from each row in the range.

Remarks
If the list you're trying to add already exists, this method does nothing.

AddCustomList Method Example

This example adds an array of strings as a custom list.
Application.AddCustomList Array("cogs", "sprockets", _

"widgets", "gizmos")

AlertBeforeOverwriting Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproAlertBeforeOverwritingC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproAlertBeforeOverwritingX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproAlertBeforeOverwritingA "}

True if Microsoft Excel displays a message before overwriting nonblank cells during a drag-and-drop
editing operation. Read/write Boolean.

AlertBeforeOverwriting Property Example

This example causes Microsoft Excel to display an alert before overwriting nonblank cells during
drag-and-drop editing.
Application.AlertBeforeOverwriting = True

AutoFilter Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAutoFilterC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAutoFilterX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthAutoFilterA "}

Syntax 1: Displays or hides the AutoFilter drop-down arrows.

Syntax 2: Filters a list using the AutoFilter.

Syntax 1
expression.AutoFilter

Syntax 2
expression.AutoFilter(Field, Criteria1, Operator, Criteria2)
expression Required. An expression that returns a Range object.
Field Optional Variant. The integer offset of the field on which you want to base the filter (from the

left of the list; the leftmost field is field one).
Criteria1 Optional Variant. The criteria (a string; for example, "101"). Use "=" to find blank fields, or

use "<>" to find nonblank fields. If this argument is omitted, the criteria is All. If Operator is
xlTop10Items, Criteria1 specifies the number of items (for example, "10").

Operator Optional Variant. Can be one of the following XlAutoFilterOperator constants: xlAnd,
xlBottom10Items, xlBottom10Percent, xlOr, xlTop10Items, or xlTop10Percent. Use xlAnd and
xlOr with Criteria1 and Criteria2 to construct compound criteria.

Criteria2 Optional Variant. The second criteria (a string). Used with Criteria1 and Operator to
construct compound criteria.

AutoFilter Method Example

This example filters a list starting in cell A1 on Sheet1 to displayonly the entries in which field one is
equal to the string "Otis".
Worksheets("Sheet1").Range("A1").AutoFilter _

field:=1, _
criteria1:="Otis"

AutomaticStyles Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproAutomaticStylesC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproAutomaticStylesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproAutomaticStylesA "}

True if the outline uses automatic styles. Read/write Boolean.

AutomaticStyles Property Example

This example sets the outline on Sheet1 to use automatic styles.
Worksheets("Sheet1").Outline.AutomaticStyles = True

BottomMargin Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproBottomMarginC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproBottomMarginX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproBottomMarginA "}

Returns or sets the size of the bottom margin, in points. Read/write Double.

Remarks
Margins are set or returned in points. Use either the InchesToPoints method or the
CentimetersToPoints method to do the conversion.

BottomMargin Property Example

These two examples set the bottom margin of Sheet1 to 0.5 inch (36 points).
Worksheets("Sheet1").PageSetup.BottomMargin = _

Application.InchesToPoints(0.5)

Worksheets("Sheet1").PageSetup.BottomMargin = 36
This example displays the current setting for the bottom margin on Sheet1.
marginInches = Worksheets("Sheet1").PageSetup.BottomMargin / _

Application.InchesToPoints(1)
MsgBox "The current bottom margin is " & marginInches & " inches"

CenterFooter Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproCenterFooterC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproCenterFooterX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproCenterFooterA "}

Returns or sets the center part of the footer. Read/write String.

Remarks
Special format codes can be used in the footer text.

CenterFooter Property Example

This example prints the workbook name and page number at the bottom of each page.
Worksheets("Sheet1").PageSetup.CenterFooter = "&F page &P"

CenterHeader Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproCenterHeaderC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproCenterHeaderX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproCenterHeaderA "}

Returns or sets the center part of the header. Read/write String.

Remarks
Special format codes can be used in the header text.

CenterHeader Property Example

This example prints the date and page number at the top of each page.
Worksheets("Sheet1").PageSetup.CenterHeader = "&D page &P of &N"

CenterHorizontally Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproCenterHorizontallyC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproCenterHorizontallyX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproCenterHorizontallyA "}

True if the sheet is centered horizontally on the page when it's printed. Read/write Boolean.

CenterHorizontally Property Example

This example centers Sheet1 horizontally when it'sprinted.
Worksheets("Sheet1").PageSetup.CenterHorizontally = True

CenterVertically Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproCenterVerticallyC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproCenterVerticallyX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproCenterVerticallyA "}

True if the sheet is centered vertically on the page when it's printed. Read/write Boolean.

CenterVertically Property Example

This example centers Sheet1 vertically when it's printed.
Worksheets("Sheet1").PageSetup.CenterVertically = True

ChartSize Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproChartSizeC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproChartSizeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproChartSizeA "}

Returns or sets the way a chart is scaled to fit on a page. Read/write Long.

Can be one of the following XlObjectSize constants.

Constant Meaning
xlScreenSize Print the chart the same size as it appears on the screen.
xlFitToPage Print the chart as large as possible, while retaining the

chart's height-to-width ratio as shown on the screen.
xlFullPage Print the chart to fit the page, adjusting the height-to-width

ratio as necessary.

Remarks
This property applies only to chart sheets (it cannot be used with embedded charts).

ChartSize Property Example

This example scales the first chart in the active workbook to fit a full page.
ActiveWorkbook.Charts(1).PageSetup.ChartSize = xlFullPage

DeleteCustomList Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthDeleteCustomListC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthDeleteCustomListX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthDeleteCustomListA "}

Deletes a custom list.

Syntax
expression.DeleteCustomList(ListNum)
expression Required. An expression that returns an Application object.
ListNum Required Long. The custom list number. This number must be greater than or equal to 5

(Microsoft Excel has four built-in custom lists that cannot be deleted).

Remarks
This method generates an error if the list number is less than 5 or if there's no matching custom list.

DeleteCustomList Method Example

This example deletes a custom list.
n = Application.GetCustomListNum(Array("cogs", "sprockets", _

"widgets", "gizmos"))
Application.DeleteCustomList n

DisplayHorizontalScrollBar Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDisplayHorizontalScrollBarC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDisplayHorizontalScrollBarX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproDisplayHorizontalScrollBarA "}

True if the horizontal scroll bar is displayed. Read/write Boolean.

DisplayHorizontalScrollBar Property Example

This example turns on the horizontal scroll bar for the active window.
ActiveWindow.DisplayHorizontalScrollBar = True

DisplayVerticalScrollBar Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDisplayVerticalScrollBarC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDisplayVerticalScrollBarX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproDisplayVerticalScrollBarA "}

True if the vertical scroll bar is displayed. Read/write Boolean.

DisplayVerticalScrollBar Property Example

This example turns on the vertical scroll bar for the active window.
ActiveWindow.DisplayVerticalScrollBar = True

DisplayWorkbookTabs Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDisplayWorkbookTabsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDisplayWorkbookTabsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproDisplayWorkbookTabsA "}

True if the workbook tabs are displayed. Read/write Boolean.

DisplayWorkbookTabs Property Example

This example turns on the workbook tabs.
ActiveWindow.DisplayWorkbookTabs = True

Draft Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDraftC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDraftX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDraftA "}

True if the sheet will be printed without graphics. Read/write Boolean.

Remarks
Setting this property to True makes printing faster (at the expense of not printing graphics).

Draft Property Example

This example turns off graphics printing for Sheet1.
Worksheets("Sheet1").PageSetup.Draft = True

EditDirectlyInCell Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproEditDirectlyInCellC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproEditDirectlyInCellX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproEditDirectlyInCellA "}

True if Microsoft Excel allows editing in cells. Read/write Boolean.

EditDirectlyInCell Property Example

This example enables editing in cells.
Application.EditDirectlyInCell = True

FilterMode Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproFilterModeC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproFilterModeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproFilterModeA "}

True if the worksheet is in filter mode. Read-only Boolean.

Remarks
This property is True if the worksheet contains a filtered list in which there are hidden rows.

FilterMode Property Example

This example displays the filter status of Sheet1 in a message box.
If Worksheets("Sheet1").FilterMode = True Then

MsgBox "Filter mode is on"
Else

MsgBox "Filter mode is off"
End If

FirstPageNumber Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproFirstPageNumberC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproFirstPageNumberX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproFirstPageNumberA "}

Returns or sets the first page number that will be used when this sheet is printed. If xlAutomatic,
Microsoft Excel chooses the first page number. The default is xlAutomatic. Read/write Long.

FirstPageNumber Property Example

This example sets the first page number of Sheet1 to 100.
Worksheets("Sheet1").PageSetup.FirstPageNumber = 100

FitToPagesTall Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproFitToPagesTallC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproFitToPagesTallX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproFitToPagesTallA "}

Returns or sets the number of pages tall the worksheet will be scaled to when it's printed. Applies only
to worksheets. Read/write Variant.

Remarks
If this property is False, Microsoft Excel scales the worksheet according to the FitToPagesWide
property.

If the Zoom property is True, the FitToPagesTall property is ignored.

FitToPagesTall Property Example

This example causes Microsoft Excel to print Sheet1 exactly one page tall and wide.
With Worksheets("Sheet1").PageSetup

.Zoom = False

.FitToPagesTall = 1

.FitToPagesWide = 1
End With

FitToPagesWide Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproFitToPagesWideC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproFitToPagesWideX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproFitToPagesWideA "}

Returns or sets the number of pages wide the worksheet will be scaled to when it's printed. Applies
only to worksheets. Read/write Variant.

Remarks
If this property is False, Microsoft Excel scales the worksheet according to the FitToPagesTall
property.

If the Zoom property is True, the FitToPagesWide property is ignored.

FitToPagesWide Property Example

This example causes Microsoft Excel to print Sheet1 exactly one page wide and tall.
With Worksheets("Sheet1").PageSetup

.Zoom = False

.FitToPagesTall = 1

.FitToPagesWide = 1
End With

FontStyle Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproFontStyleC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproFontStyleX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproFontStyleA "}

Returns or sets the font style. Read/write String.

Remarks
Changing this property may affect other Font properties (such as Bold and Italic).

FontStyle Property Example

This example sets the font style for cell A1 on Sheet1 to bold and italic.
Worksheets("Sheet1").Range("A1").Font.FontStyle = "Bold Italic"

FooterMargin Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproFooterMarginC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproFooterMarginX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproFooterMarginA "}

Returns or sets the distance from the bottom of the page to the footer, in points. Read/write Double.

FooterMargin Property Example

This example sets the footer margin of Sheet1 to 0.5 inch.
Worksheets("Sheet1").PageSetup.FooterMargin = _

Application.InchesToPoints(0.5)

GetCustomListContents Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthGetCustomListContentsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthGetCustomListContentsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlmthGetCustomListContentsA "}

Returns a custom list (an array of strings).

Syntax
expression.GetCustomListContents(ListNum)
expression Required. An expression that returns an Application object.
ListNum Required Long. The list number.

GetCustomListContents Method Example

This example writes the elements of the first custom list in column one on Sheet1.
listArray = Application.GetCustomListContents(1)
For i = LBound(listArray, 1) To UBound(listArray, 1)

Worksheets("sheet1").Cells(i, 1).Value = listArray(i)
Next i

GetCustomListNum Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthGetCustomListNumC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthGetCustomListNumX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthGetCustomListNumA "}

Returns the custom list number for an array of strings. You can use this method to match both built-in
lists and custom-defined lists.

Syntax
expression.GetCustomListNum(ListArray)
expression Required. An expression that returns an Application object.
ListArray Required Variant. An array of strings.

Remarks
This method generates an error if there's no corresponding list.

GetCustomListNum Method Example

This example deletes a custom list.
n = Application.GetCustomListNum(Array("cogs", "sprockets", _

"widgets", "gizmos"))
Application.DeleteCustomList n

HeaderMargin Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproHeaderMarginC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproHeaderMarginX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproHeaderMarginA "}

Returns or sets the distance from the top of the page to the header, in points. Read/write Double.

Remarks
Margins are set or returned in points. Use the InchesToPoints method or the CentimetersToPoints
method to convert measurements from inches or centimeters.

HeaderMargin Property Example

This example sets the header margin of Sheet1 to 0.5 inch.
Worksheets("Sheet1").PageSetup.HeaderMargin = _

Application.InchesToPoints(0.5)

LeftFooter Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproLeftFooterC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproLeftFooterX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproLeftFooterA "}

Returns or sets the left part of the footer. Read/write String.

Remarks
Special format codes can be used in the footer text.

LeftFooter Property Example

This example prints the page number in the lower-left corner of every page.
Worksheets("Sheet1").PageSetup.LeftFooter = "&P"

LeftHeader Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproLeftHeaderC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproLeftHeaderX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproLeftHeaderA "}

Returns or sets the left part of the header. Read/write String.

Remarks
Special format codes can be used in the header text.

LeftHeader Property Example

This example prints the date in the upper-left corner of every page.
Worksheets("Sheet1").PageSetup.LeftHeader = "&D"

LeftMargin Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproLeftMarginC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproLeftMarginX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproLeftMarginA "}

Returns or sets the size of the left margin, in points. Read/write Double.

Remarks
Margins are set or returned in points. Use the InchesToPoints method or the CentimetersToPoints
method to convert measurements from inches or centimeters.

LeftMargin Property Example

This example sets the left margin of Sheet1 to 1.5 inches.
Worksheets("Sheet1").PageSetup.LeftMargin = _

Application.InchesToPoints(1.5)
This example sets the left margin of Sheet1 to 2 centimeters.
Worksheets("Sheet1").PageSetup.LeftMargin = _

Application.CentimetersToPoints(2)
This example displays the current left-margin setting for Sheet1.
marginInches = Worksheets("Sheet1").PageSetup.LeftMargin / _

Application.InchesToPoints(1)
MsgBox "The current left margin is " & marginInches & " inches"

MailLogoff Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthMailLogoffC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthMailLogoffX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthMailLogoffA "}

Closes a MAPI mail session established by Microsoft Excel.

Syntax
expression.MailLogoff
expression Required. An expression that returns an Application object.

Remarks
You cannot use this method to close or log off Microsoft Mail.

MailLogoff Method Example

This example closes the established mail session, if there is one.
If Not IsNull(Application.MailSession) Then Application.MailLogoff

MailLogon Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthMailLogonC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthMailLogonX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthMailLogonA "}

Logs in to MAPI Mail or Microsoft Exchange and establishes a mail session. If Microsoft Mail isn't
already running, you must use this method to establish a mail session before mail or document
routing functions can be used.

Syntax
expression.MailLogon(Name, Password, DownloadNewMail)
expression Required. An expression that returns an Application object.
Name Optional Variant. The mail account name or Microsoft Exchange profile name. If this

argument is omitted, the default mail account name is used.
Password Optional Variant. The mail account password. This argument is ignored in Microsoft

Exchange.
DownloadNewMail Optional Variant. True to download new mail immediately.

Remarks
Microsoft Excel logs off any mail sessions it previously established before attempting to establish the
new session.

To piggyback on the system default mail session, omit both the name and password parameters.

MailLogon Method Example

This example logs in to mail and downloads any new mail immediately.
If IsNull(Application.MailSession) Then

Application.MailLogon "oscarx", "mypassword", True
End If

MailSession Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproMailSessionC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproMailSessionX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproMailSessionA "}

Returns the MAPI mail session number as a hexadecimal string (if there's an active session), or
returns Null if there's no session. Read-only Variant.

Remarks
This property applies only to mail sessions created by Microsoft Excel (it doesn't return a mail session
number for Microsoft Mail).

This property isn't used on PowerTalk mail systems.

MailSession Property Example

This example closes the established mail session, if there is one.
If Not IsNull(Application.MailSession) Then Application.MailLogoff

MailSystem Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproMailSystemC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproMailSystemX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproMailSystemA "}

Returns the mail system that's installed on the host machine. Can be one of the following
XlMailSystem constants: xlNoMailSystem, xlMAPI, or xlPowerTalk. Read-only Long.

MailSystem Property Example

This example displays the name of the mail system that's installed on the computer.
Select Case Application.MailSystem

Case xlMAPI
MsgBox "Mail system is Microsoft Mail"

Case xlPowerTalk
MsgBox "Mail system is PowerTalk"

Case xlNoMailSystem
MsgBox "No mail system installed"

End Select

NextLetter Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthNextLetterC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthNextLetterX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthNextLetterA "}

Opens the oldest unread Microsoft Excel letter from the In Tray. Available only in Microsoft Excel for
the Macintosh, with the PowerTalk mail system extension installed.

Syntax
expression.NextLetter
expression Required. An expression that returns an Application object.

Remarks
This method returns a Workbook object for the newly opened workbook, or it returns Null if there are
no more workbooks to open.

This method generates an error if it's used in Windows.

NextLetter Method Example

This example opens the oldest unread Microsoft Excel letter from the In Tray.
If Application.MailSystem = xlPowerTalk Then _

Application.NextLetter

Order Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproOrderC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproOrderX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproOrderA "}

PageSetup object: Returns or sets the order that Microsoft Excel uses to number pages when
printing a large worksheet. Can be one of the following XlOrder constants: xlDownThenOver or
xlOverThenDown. Applies only to worksheets. Read/write Long.

Trendline object: Returns or sets the trendline order (an integer greater than 1) when the trendline
type is xlPolynomial. Read/write Long.

Order Property Example

This example breaks Sheet1 into pages when the worksheet is printed. Numbering and printing
proceed from the first page to the pages to the right, and then move down and continue printing
across the sheet.
Worksheets("Sheet1").PageSetup.Order = xlOverThenDown

PaperSize Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPaperSizeC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPaperSizeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPaperSizeA "}

Windows only. Returns or sets the size of the paper. Read/write Long.

Can be one of the following XlPaperSize constants. (Some printers may not support all of these
paper sizes.)

Constant Meaning
xlPaperLetter Letter (8-1/2 in. x 11 in.)
xlPaperLetterSmall Letter Small (8-1/2 in. x 11 in.)
xlPaperTabloid Tabloid (11 in. x 17 in.)
xlPaperLedger Ledger (17 in. x 11 in.)
xlPaperLegal Legal (8-1/2 in. x 14 in.)
xlPaperStatement Statement (5-1/2 in. x 8-1/2 in.)
xlPaperExecutive Executive (7-1/2 in. x 10-1/2 in.)
xlPaperA3 A3 (297 mm x 420 mm)
xlPaperA4 A4 (210 mm x 297 mm)
xlPaperA4Small A4 Small (210 mm x 297 mm)
xlPaperA5 A5 (148 mm x 210 mm)
xlPaperB4 B4 (250 mm x 354 mm)
xlPaperB5 B5 (182 mm x 257 mm)
xlPaperFolio Folio (8-1/2 in. x 13 in.)
xlPaperQuarto Quarto (215 mm x 275 mm)
xlPaper10x14 10 in. x 14 in.
xlPaper11x17 11 in. x 17 in.
xlPaperNote Note (8-1/2 in. x 11 in.)
xlPaperEnvelope9 Envelope #9 (3-7/8 in. x 8-7/8 in.)
xlPaperEnvelope10 Envelope #10 (4-1/8 in. x 9-1/2 in.)
xlPaperEnvelope11 Envelope #11 (4-1/2 in. x 10-3/8 in.)
xlPaperEnvelope12 Envelope #12 (4-1/2 in. x 11 in.)
xlPaperEnvelope14 Envelope #14 (5 in. x 11-1/2 in.)
xlPaperCsheet C size sheet
xlPaperDsheet D size sheet
xlPaperEsheet E size sheet
xlPaperEnvelopeDL Envelope DL (110 mm x 220 mm)
xlPaperEnvelopeC3 Envelope C3 (324 mm x 458 mm)
xlPaperEnvelopeC4 Envelope C4 (229 mm x 324 mm)
xlPaperEnvelopeC5 Envelope C5 (162 mm x 229 mm)
xlPaperEnvelopeC6 Envelope C6 (114 mm x 162 mm)
xlPaperEnvelopeC65 Envelope C65 (114 mm x 229 mm)
xlPaperEnvelopeB4 Envelope B4 (250 mm x 353 mm)
xlPaperEnvelopeB5 Envelope B5 (176 mm x 250 mm)
xlPaperEnvelopeB6 Envelope B6 (176 mm x 125 mm)
xlPaperEnvelopeItaly Envelope (110 mm x 230 mm)
xlPaperEnvelopeMonarch Envelope Monarch (3-7/8 in. x 7-1/2 in.)

xlPaperEnvelopePersonal Envelope (3-5/8 in. x 6-1/2 in.)
xlPaperFanfoldUS U.S. Standard Fanfold (14-7/8 in. x 11 in.)
xlPaperFanfoldStdGerman German Standard Fanfold (8-1/2 in. x 12

in.)
xlPaperFanfoldLegalGerman German Legal Fanfold (8-1/2 in. x 13 in.)
xlPaperUser User-defined

PaperSize Property Example

This example sets the paper size to legal for Sheet1.
Worksheets("Sheet1").PageSetup.PaperSize = xlPaperLegal

PrintGridlines Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPrintGridlinesC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPrintGridlinesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPrintGridlinesA "}

True if cell gridlines are printed on the page. Applies only to worksheets. Read/write Boolean.

PrintGridlines Property Example

This example prints cell gridlines when Sheet1 is printed.
Worksheets("Sheet1").PageSetup.PrintGridlines = True

PrintHeadings Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPrintHeadingsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPrintHeadingsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPrintHeadingsA "}

True if row and column headings are printed with this page. Applies only to worksheets. Read/write
Boolean.

Remarks
The DisplayHeadings property controls the on-screen display of headings.

PrintHeadings Property Example

This example turns off the printing of headings for Sheet1.
Worksheets("Sheet1").PageSetup.PrintHeadings = False

PrintNotes Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPrintNotesC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPrintNotesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPrintNotesA "}

True if cell notes are printed as end notes with the sheet. Applies only to worksheets. Read/write
Boolean.

Remarks
Use the PrintComments property to print comments as text boxes or end notes.

PrintNotes Property Example

This example turns off the printing of notes.
Worksheets("Sheet1").PageSetup.PrintNotes = False

PromptForSummaryInfo Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPromptForSummaryInfoC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPromptForSummaryInfoX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproPromptForSummaryInfoA "}

True if Microsoft Excel asks for summary information when files are first saved. Read/write Boolean.

PromptForSummaryInfo Property Example

This example displays a prompt that asks for summary information when files are first saved.
Application.PromptForSummaryInfo = True

RightFooter Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproRightFooterC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproRightFooterX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproRightFooterA "}

Returns or sets the right part of the footer. Read/write String.

Remarks
Special format codes can be used in the footer text.

RightFooter Property Example

This example prints the page number in the lower-right corner of every page.
Worksheets("Sheet1").PageSetup.RightFooter = "&P"

RightHeader Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproRightHeaderC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproRightHeaderX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproRightHeaderA "}

Returns or sets the right part of the header. Read/write String.

Remarks
Special format codes can be used in the header text.

RightHeader Property Example

This example prints the filename in the upper-right corner of every page.
Worksheets("Sheet1").PageSetup.RightHeader = "&F"

RightMargin Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproRightMarginC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproRightMarginX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproRightMarginA "}

Returns or sets the size of the right margin, in points. Read/write Double.

Remarks
Margins are set or returned in points. Use the InchesToPoints method or the CentimetersToPoints
method to convert measurements from inches or centimeters.

RightMargin Property Example

This example sets the right margin of Sheet1 to 1.5 inches.
Worksheets("Sheet1").PageSetup.RightMargin = _

Application.InchesToPoints(1.5)
This example sets the right margin of Sheet1 to 2 centimeters.
Worksheets("Sheet1").PageSetup.RightMargin = _

Application.CentimetersToPoints(2)
This example displays the current right-margin setting for Sheet1.
marginInches = Worksheets("Sheet1").PageSetup.RightMargin / _

Application.InchesToPoints(1)
MsgBox "The current right margin is " & marginInches & " inches"

ScrollColumn Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproScrollColumnC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproScrollColumnX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproScrollColumnA "}

Returns or sets the number of the leftmost column in the pane or window. Read/write Long.

Remarks
If the window is split, the ScrollColumn property of the Window object refers to the upper-left pane.
If the panes are frozen, the ScrollColumn property of the Window object excludes the frozen areas.

ScrollColumn Property Example

This example moves column three so that it's the leftmost column in the window.
Worksheets("Sheet1").Activate
ActiveWindow.ScrollColumn = 3

ScrollRow Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproScrollRowC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproScrollRowX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproScrollRowA "}

Returns or sets the number of the row that appears at the top of the pane or window. Read/write
Long.

Remarks
If the window is split, the ScrollRow property of the Window object refers to the upper-left pane. If
the panes are frozen, the ScrollRow property of the Window object excludes the frozen areas.

ScrollRow Property Example

This example moves row ten to the top of the window.
Worksheets("Sheet1").Activate
ActiveWindow.ScrollRow = 10

ScrollWorkbookTabs Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthScrollWorkbookTabsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthScrollWorkbookTabsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthScrollWorkbookTabsA
"}

Scrolls through the workbook tabs at the bottom of the window. Doesn't affect the active sheet in the
workbook.

Syntax
expression.ScrollWorkbookTabs(Sheets, Position)
expression Required. An expression that returns a Window object.
Sheets Optional Variant. The number of sheets to scroll by. Use a positive number to scroll

forward, a negative number to scroll backward, or 0 (zero) to not scroll at all. You must specify
Sheets if you don't specify Position.

Position Optional Variant. Use xlFirst to scroll to the first sheet, or use xlLast to scroll to the last
sheet. You must specify Position if you don't specify Sheets.

ScrollWorkbookTabs Method Example

This example scrolls through the workbook tabs to the last sheet in the workbook.
ActiveWindow.ScrollWorkbookTabs position:=xlLast

SheetsInNewWorkbook Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproSheetsInNewWorkbookC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproSheetsInNewWorkbookX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproSheetsInNewWorkbookA "}

Returns or sets the number of sheets that Microsoft Excel automatically inserts into new workbooks.
Read/write Long.

SheetsInNewWorkbook Property Example

This example displays the number of sheets automatically inserted into new workbooks.
MsgBox "Microsoft Excel inserts " & _

Application.SheetsInNewWorkbook & _
" sheet(s) in each new workbook"

ShowLevels Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthShowLevelsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthShowLevelsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthShowLevelsA "}

Displays the specified number of row and/or column levels of an outline.

Syntax
expression.ShowLevels(RowLevels, ColumnLevels)
expression Required. An expression that returns an Outline object.
RowLevels Optional Variant. Specifies the number of row levels of an outline to display. If the

outline has fewer levels than the number specified, Microsoft Excel displays all the levels. If this
argument is 0 (zero) or is omitted, no action is taken on rows.

ColumnLevels Optional Variant. Specifies the number of column levels of an outline to display. If
the outline has fewer levels than the number specified, Microsoft Excel displays all the levels. If this
argument is 0 (zero) or is omitted, no action is taken on columns.

Remarks
You must specify at least one argument.

ShowLevels Method Example

This example displays row levels one through three and column level one of the outline on Sheet1.
Worksheets("Sheet1").Outline.ShowLevels rowLevels:=3, columnLevels:=1

StandardFont Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproStandardFontC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproStandardFontX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproStandardFontA "}

Returns or sets the name of the standard font. Read/write String.

Remarks
If you change the standard font by using this property, the change doesn't take effect until you restart
Microsoft Excel.

StandardFont Property Example

This example sets the standard font to Geneva (on the Macintosh) or Arial (in Windows).
If Application.OperatingSystem Like "*Macintosh*" Then

Application.StandardFont = "Geneva"
Else

Application.StandardFont = "Arial"
End If

StandardFontSize Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproStandardFontSizeC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproStandardFontSizeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproStandardFontSizeA "}

Returns or sets the standard font size, in points. Read/write Long.

Remarks
If you change the standard font size by using this property, the change doesn't take effect until you
restart Microsoft Excel.

StandardFontSize Property Example

This example sets the standard font size to 12 points.
Application.StandardFontSize = 12

Subscript Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproSubscriptC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproSubscriptX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproSubscriptA "}

True if the font is formatted as subscript. False by default. Read/write Variant.

Subscript Property Example

This example makes the second character in cell A1 a subscript character.
Worksheets("Sheet1").Range("A1").Characters(2, 1).Font.Subscript = True

SummaryColumn Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproSummaryColumnC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproSummaryColumnX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproSummaryColumnA "}

Returns or sets the location of the summary columns in the outline, as shown in the following table.
Read/write Long.

Value Meaning
xlLeft The summary column will be positioned to the left of the detail

columns in the outline.
xlRight The summary column will be positioned to the right of the

detail columns in the outline.

SummaryColumn Property Example

This example creates an outline with automatic styles, with the summary row above the detail rows,
and with the summary column to the right of the detail columns.
Worksheets("Sheet1").Activate
Selection.AutoOutline
With ActiveSheet.Outline

.SummaryRow = xlAbove

.SummaryColumn = xlRight

.AutomaticStyles = True
End With

SummaryRow Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproSummaryRowC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproSummaryRowX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproSummaryRowA "}

Returns or sets the location of the summary rows in the outline, as shown in the following table.
Read/write Long.

Value Meaning
xlAbove The summary row will be positioned above the detail rows in

the outline.
xlBelow The summary row will be positioned below the detail rows in

the outline.

Remarks
Set SummaryRow to xlAbove for Microsoft Word-style outlines, where category headers are above
the detailed information. Set SummaryRow to xlBelow for accounting-style outlines, where
summations are below the detailed information.

SummaryRow Property Example

This example creates an outline with automatic styles, with the summary row above the detail rows,
and with the summary column to the right of the detail columns.
Worksheets("Sheet1").Activate
Selection.AutoOutline
With ActiveSheet.Outline

.SummaryRow = xlAbove

.SummaryColumn = xlRight

.AutomaticStyles = True
End With

Superscript Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproSuperscriptC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproSuperscriptX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproSuperscriptA "}

True if the font is formatted as superscript; False by default. Read/write Variant.

Superscript Property Example

This example makes the last character in cell A1 a superscript character.
n = Worksheets("Sheet1").Range("A1").Characters.Count
Worksheets("Sheet1").Range("A1").Characters(n, 1).Font.Superscript = _

True

TabRatio Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproTabRatioC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproTabRatioX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproTabRatioA "}

Returns or sets the ratio of the width of the workbook's tab area to the width of the window's
horizontal scroll bar (as a number between 0 (zero) and 1; the default value is 0.75). Read/write
Double.

Remarks
This property has no effect when DisplayWorkbookTabs is set to False (its value is retained, but it
has no effect on the display).

TabRatio Property Example

This example makes the workbook tabs half the width of the horizontal scroll bar.
ActiveWindow.TabRatio = 0.5

TopMargin Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproTopMarginC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproTopMarginX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproTopMarginA "}

Returns or sets the size of the top margin, in points. Read/write Double.

Remarks
Margins are set or returned in points. Use the InchesToPoints method or the CentimetersToPoints
method to convert measurements from inches or centimeters.

TopMargin Property Example

These two examples set the top margin of Sheet1 to 0.5 inch (36 points).
Worksheets("Sheet1").PageSetup.TopMargin = _

Application.InchesToPoints(0.5)

Worksheets("Sheet1").PageSetup.TopMargin = 36
This example displays the current top-margin setting.
marginInches = ActiveSheet.PageSetup.TopMargin / _

Application.InchesToPoints(1)
MsgBox "The current top margin is " & marginInches & " inches"

Zoom Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproZoomC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproZoomX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproZoomA "}

PageSetup object:

Returns or sets a percentage (between 10 and 400 percent) by which Microsoft Excel will scale the
worksheet for printing. Applies only to worksheets. Read/write Variant.
If this property is False, the FitToPagesWide and FitToPagesTall properties control how the
worksheet is scaled.

Window object:

Returns or sets the display size of the window, as a percentage (100 equals normal size, 200 equals
double size, and so on). Read/write Variant.
You can also set this property to True to make the window size fit the current selection.

Remarks
PageSetup object:

All scaling retains the aspect ratio of the original document.

Window object:

This function affects only the sheet that's currently active in the window. To use this property on other
sheets, you must first activate them.

Zoom Property Example

This example scales Sheet1 by 150 percent when the worksheet is printed.
Worksheets("Sheet1").PageSetup.Zoom = 150

point
A unit of measurement equal to 1/72 inch.

ActiveChart Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproActiveChartC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproActiveChartX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproActiveChartA "}

Returns a Chart object that represents the active chart (either an embedded chart or a chart sheet).
An embedded chart is considered active when it's either selected or activated. When no chart is
active, this property returns Nothing. Read-only.

Remarks
If you don't specify an object qualifier, this property returns the active chart in the active workbook.

ActiveChart Property Example

This example turns on the legend for the active chart.
ActiveChart.HasLegend = True

AddChartAutoFormat Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAddChartAutoFormatC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAddChartAutoFormatX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlmthAddChartAutoFormatA "}

Adds a custom chart autoformat to the list of available chart autoformats.

Syntax
expression.AddChartAutoFormat(Chart, Name, Description)
expression Required. An expression that returns an Application object.
Chart Required Chart. A chart that contains the format that will be applied when the new chart

autoformat is applied.
Name Required String. The name of the autoformat.
Description Optional String. A description of the custom autoformat.

AddChartAutoFormat Method Example

This example adds a new autoformat based on Chart1.
Application.AddChartAutoFormat _

Chart:=Charts("Chart1"), Name:="Presentation Chart"

AdvancedFilter Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAdvancedFilterC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAdvancedFilterX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthAdvancedFilterA "}

Filters or copies data from a list based on a criteria range. If the initial selection is a single cell, that
cell's current region is used.

Syntax
expression.AdvancedFilter(Action, CriteriaRange, CopyToRange, Unique)
expression Required. An expression that returns a Range object.
Action Required Long. The filter operation. Can be one of the following XlFilterAction constants:

xlFilterInPlace or xlFilterCopy.
CriteriaRange Optional Variant. The criteria range. If this argument is omitted, there are no

criteria.
CopyToRange Optional Variant. The destination range for the copied rows if Action is

xlFilterCopy. Otherwise, this argument is ignored.
Unique Optional Variant. True to filter unique records only. False to filter all records that meet the

criteria. The default value is False.

AdvancedFilter Method Example

This example filters a database (named "Database") based on a criteria range named "Criteria."
Range("Database").AdvancedFilter _

Action:=xlFilterInPlace, _
CriteriaRange:=Range("Criteria")

AutoFilterMode Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproAutoFilterModeC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproAutoFilterModeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproAutoFilterModeA "}

True if the AutoFilter drop-down arrows are currently displayed on the sheet. This property is
independent of the FilterMode property. Read/write Boolean.

Remarks
This property returns True if the drop-down arrows are currently displayed. You can set this property
to False to remove the arrows, but you cannot set it to True. Use the AutoFilter method to filter a list
and display the drop-down arrows.

AutoFilterMode Property Example

This example displays the current status of the AutoFilterMode property on Sheet1.
If Worksheets("Sheet1").AutoFilterMode Then

isOn = "On"
Else

isOn = "Off"
End If
MsgBox "AutoFilterMode is " & isOn

AutoOutline Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAutoOutlineC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAutoOutlineX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthAutoOutlineA "}

Automatically creates an outline for the specified range. If the range is a single cell, Microsoft Excel
creates an outline for the entire sheet. The new outline replaces any existing outline.

Syntax
expression.AutoOutline
expression Required. An expression that returns a Range object.

AutoOutline Method Example

This example creates an outline for the range A1:G37 on Sheet1. The range must contain either a
summary row or a summary column.
Worksheets("Sheet1").Range("A1:G37").AutoOutline

BorderAround Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthBorderAroundC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthBorderAroundX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthBorderAroundA "}

Adds a border to a range and sets the Color, LineStyle, and Weight properties for the new border.

Syntax
expression.BorderAround(LineStyle, Weight, ColorIndex, Color)
expression Required. An expression that returns a Range object.
LineStyle Optional Variant. The line style for the border. Can be one of the following

XlBorderLineStyle constants: xlBorderLineStyleNone, xlBorderLineStyleContinuous,
xlBorderLineStyleDash, xlBorderLineStyleDot, or xlBorderLineStyleDouble. The default value
is xlBorderLineStyleContinuous.

Weight Optional Variant. The border weight. Can be one of the following XlBorderWeight
constants: xlHairline, xlThin, xlMedium, or xlThick. The default value is xlThin.

ColorIndex Optional Variant. The border color, as an index into the current color palette, or as one
of the following XlColorIndex constants: xlColorIndexAutomatic or xlColorIndexNone.

Color Optional Variant. The border color, as an RGB value.

Remarks
You can specify either ColorIndex or Color, but not both. If you don't specify either argument,
Microsoft Excel uses the xlAutomatic color index.

Similarly, you can specify either LineStyle or Weight, but not both. If you don't specify either
argument, Microsoft Excel creates a default border.

This method outlines the entire range without filling it in. To set the borders of all the cells, you must
set the Color, LineStyle, and Weight properties for the Borders collection. To clear the border, you
must set the LineStyle property to xlBorderLineStyleNone for all the cells in the range.

BorderAround Method Example

This example adds a thick red border around the range A1:D4 on Sheet1.
Worksheets("Sheet1").Range("A1:D4").BorderAround _

ColorIndex:=3, Weight:=xlThick

ChangeLink Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthChangeLinkC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthChangeLinkX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthChangeLinkA "}

Changes a link from one document to another.

Syntax
expression.ChangeLink(Name, NewName, Type)
expression Required. An expression that returns a Workbook object.
Name Required String. The name of the Microsoft Excel or DDE/OLE link to be changed, as it was

returned from the LinkSources method.
NewName Required String. The new name of the link.
Type Optional Variant. The link type. Can be one of the following XlLinkType constants:

xlLinkTypeExcelLinks or xlLinkTypeOLELinks. The default value is xlLinkTypeExcelLinks. Use
xlLinkTypeOLELinks for both DDE and OLE links.

ChangeLink Method Example

This example changes a Microsoft Excel link.
ActiveWorkbook.ChangeLink "c:\excel\book1.xls", _

"c:\excel\book2.xls", xlExcelLinks

ChartWizard Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthChartWizardC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthChartWizardX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthChartWizardA "}

Modifies the properties of the given chart.You can use this method toquickly format a chart without
setting all the individual properties. This method is noninteractive, and it changes only the specified
properties.

Syntax
expression.ChartWizard(Source, Gallery, Format, PlotBy, CategoryLabels, SeriesLabels,

HasLegend, Title, CategoryTitle, ValueTitle, ExtraTitle)
expression Required. An expression that returns a Chart object.
Source Optional Variant. The range that contains the source data for the new chart. If this

argument is omitted, Microsoft Excel edits the active chart sheet or the selected chart on the active
worksheet.

Gallery Optional Variant. The chart type. Can be one of the following XlChartType constants:
xlArea, xlBar, xlColumn, xlLine, xlPie, xlRadar, xlXYScatter, xlCombination, xl3DArea,
xl3DBar, xl3DColumn, xl3DLine, xl3DPie, xl3DSurface, xlDoughnut, or xlDefaultAutoFormat.

Format Optional Variant. The option number for the built-in autoformats. Can be a number from 1
through 10, depending on the gallery type. If this argument is omitted, Microsoft Excel chooses a
default value based on the gallery type and data source.

PlotBy Optional Variant. Specifies whether the data for each series is in rows or columns. Can be
one of the following XlRowCol constants: xlRows or xlColumns.

CategoryLabels Optional Variant. An integer specifying the number of rows or columns within the
source range that contain category labels. Legal values are from 0 (zero) through one less than the
maximum number of the corresponding categories or series.

SeriesLabels Optional Variant. An integer specifying the number of rows or columns within the
source range that contain series labels. Legal values are from 0 (zero) through one less than the
maximum number of the corresponding categories or series.

HasLegend Optional Variant. True to include a legend.
Title Optional Variant. The chart title text.
CategoryTitle Optional Variant. The category axis title text.
ValueTitle Optional Variant. The value axis title text.
ExtraTitle Optional Variant. The series axis title for 3-D charts or the second value axis title for 2-D

charts.

Remarks
If Source is omitted and either the selection isn't an embedded chart on the active worksheet or the
active sheet isn't an existing chart, this method fails and an error occurs.

ChartWizard Method Example

This example reformats Chart1 as a line chart, adds a legend, and adds category and value axis
titles.
Charts("Chart1").ChartWizard _

Gallery:=xlLine, _
HasLegend:=True, CategoryTitle:="Year", ValueTitle:="Sales"

ClearOutline Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthClearOutlineC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthClearOutlineX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthClearOutlineA "}

Clears the outline for the specified range.

Syntax
expression.ClearOutline
expression Required. An expression that returns a Range object.

ClearOutline Method Example

This example clears the outline for the range A1:G37 on Sheet1.
Worksheets("Sheet1").Range("A1:G37").ClearOutline

ConsolidationFunction Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproConsolidationFunctionC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproConsolidationFunctionX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproConsolidationFunctionA "}

Returns the function code used for the current consolidation. Can be one of the following
XlConsolidationFunction constants: xlAverage, xlCount, xlCountNums, xlMax, xlMin, xlProduct,
xlStDev, xlStDevP, xlSum, xlVar, or xlVarP. Read-only Long.

ConsolidationFunction Property Example

This example displays a message box if the current consolidation is using the SUM function.
If Worksheets("Sheet1").ConsolidationFunction = xlSum Then

MsgBox "Sheet1 uses the SUM function for consolidation."
End If

ConsolidationOptions Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproConsolidationOptionsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproConsolidationOptionsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproConsolidationOptionsA "}

Returns a three-element array of consolidation options, as shown in the following table. If the element
is True, that option is set. Read-only Variant.
Element Meaning
1 Use labels in top row
2 Use labels in left column
3 Create links to source data

ConsolidationOptions Property Example

This example displays the consolidation options for Sheet1. The list appears on a new worksheet
created by the example.
Set newSheet = Worksheets.Add
aOptions = Worksheets("Sheet1").ConsolidationOptions
newSheet.Range("A1").Value = "Use labels in top row"
newSheet.Range("A2").Value = "Use labels in left column"
newSheet.Range("A3").Value = "Create links to source data"
For i = 1 To 3

If aOptions(i) = True Then
newSheet.Cells(i, 2).Value = "True"

Else
newSheet.Cells(i, 2).Value = "False"

End If
Next i
newSheet.Columns("A:B").AutoFit

ConsolidationSources Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproConsolidationSourcesC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproConsolidationSourcesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproConsolidationSourcesA "}

Returns an array of string values that name the source sheets for the worksheet's current
consolidation. Returns Empty if there's no consolidation on the sheet. Read-only Variant.

ConsolidationSources Property Example

This example displays the names of the source ranges for the consolidation on Sheet1. The list
appears on a new worksheet created by the example.
Set newSheet = Worksheets.Add
newSheet.Range("A1").Value = "Consolidation Sources"
aSources = Worksheets("Sheet1").ConsolidationSources
If IsEmpty(aSources) Then

newSheet.Range("A2").Value = "none"
Else

For i = 1 To UBound(aSources)
newSheet.Cells(i + 1, 1).Value = aSources(i)

Next i
End If
newSheet.Columns("A:B").AutoFit

DeleteChartAutoFormat Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthDeleteChartAutoFormatC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthDeleteChartAutoFormatX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlmthDeleteChartAutoFormatA "}

Removes a custom chart autoformat from the list of available chart autoformats.

Syntax
expression.DeleteChartAutoFormat(Name)
expression Required. An expression that returns an Application object.
Name Required String. The name of the custom autoformat to be removed.

DeleteChartAutoFormat Method Example

This example deletes the custom autoformat named "Presentation Chart."
Application.DeleteChartAutoFormat name:="Presentation Chart"

DisplayClipboardWindow Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDisplayClipboardWindowC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDisplayClipboardWindowX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproDisplayClipboardWindowA "}

Macintosh only. True if the Clipboard window is displayed. Read/write Boolean.

Remarks
In Windows, this property retains its value but does nothing.

DisplayClipboardWindow Property Example

This example displays the Clipboard window.
Application.DisplayClipboardWindow = True

DisplayRightToLeft Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDisplayRightToLeftC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDisplayRightToLeftX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDisplayRightToLeftA "}

True if the window displays from right to left instead of from left to right. Available only in the Arabic
and Hebrew versions of Microsoft Excel. Read/write Boolean.

DisplayRightToLeft Property Example

This example sets window one to display from right to left.
ActiveWorkbook.Windows(1).DisplayRightToLeft = True

EditionOptions Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthEditionOptionsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthEditionOptionsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthEditionOptionsA "}

Sets options for publishers and subscribers in the workbook. Available only on the Macintosh running
System 7.

Syntax
expression.EditionOptions(Type, Option, Name, Reference, Appearance, ChartSize, Formats)
expression Required. An expression that returns a Workbook object.
Type Required Long. The edition type to be changed. Can be one of the following XlEditionType

constants: xlPublisher or xlSubscriber.
Option Required Long. The type of information to set for the edition. If Type is xlPublisher,

Option can be one of the following XlEditionOptionsOption constants: xlCancel,
xlSendPublisher, xlSelect, xlAutomaticUpdate, xlManualUpdate, or xlChangeAttributes. If
Type is xlSubscriber, Option can be one of the following XlEditionOptionsOption constants:
xlCancel, xlUpdateSubscriber, xlOpenSource, xlAutomaticUpdate, or xlManualUpdate.

Name Optional Variant. The name of the edition, as returned from the LinkSources method. If
Name is omitted, Reference must be specified.

Reference Optional Variant (required if Name isn't specified). The edition reference, as text in
R1C1 style. This argument is required if there's more than one publisher or subscriber with the
same edition name in the workbook, or if the Name argument isn't specified.

Appearance Optional Variant. If Option is xlChangeAttributes, this argument specifies whether
the edition is published as shown on screen or as shown when printed. Can be one of the following
XlPictureAppearance constants: xlPrinter or xlScreen.

ChartSize Optional Variant. If Option is xlChangeAttributes and the published object is a chart,
this argument specifies the size of the edition. Can be one of the following XlPictureAppearance
constants: xlPrinter or xlScreen. If the edition isn't a chart, this argument isn'tused.

Formats Optional Variant. If Option is xlChangeAttributes, this argument specifies the format of
the published edition. Can be any combination of the following XlEditionFormat constants:
xlPICT, xlBIFF, xlRTF, or xlVALU.

Extend Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthExtendC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthExtendX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthExtendA "}

Adds new data points to an existing series collection.

Syntax
expression.Extend(Source, Rowcol, CategoryLabels)
expression Required. An expression that returns a SeriesCollection object.
Source Required Variant. The new data to be added to the SeriesCollection object, either as a

Range object or an array of data points.
Rowcol Optional Variant. Ignored if Source is an array. Specifies whether the new values are in

the rows or columns of the given range source. Can be one of the following XlRowCol constants:
xlRows or xlColumns. If this argument is omitted, Microsoft Excel attempts to determine where
the values are by the size and orientation of the selected range or by the dimensions of the array.

CategoryLabels Optional Variant. Ignored if Source is an array. True to have the the first row or
column contain the name of the category labels. False to have the first row or column contain the
first data point of the series. If this argument is omitted, Microsoft Excel attempts to determine the
location of the category label from the contents of the first row or column.

Extend Method Example

This example extends the series on Chart1 by adding the data in cells B1:B6 on Sheet1.
Charts("Chart1").SeriesCollection.Extend _

Source:=Worksheets("Sheet1").Range("B1:B6")

FillAcrossSheets Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthFillAcrossSheetsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthFillAcrossSheetsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthFillAcrossSheetsA "}

Copies a range to the same area on all other worksheets in a collection.

Syntax
expression.FillAcrossSheets(Range, Type)
expression Required. An expression that returns a Sheets or Worksheets object.
Range Required Range. The range to fill on all the worksheets in the collection. The range must be

from a worksheet within the collection.
Type Optional Variant. Specifies how to copy the range. Can be one of the following XlFillWith

constants: xlFillWithAll, xlFillWithContents, or xlFillWithFormulas. The default value is
xlFillWithAll.

FillAcrossSheets Method Example

This example fills the range A1:C5 on Sheet1, Sheet5, and Sheet7 with the contents of the same
range on Sheet1.
x = Array("Sheet1", "Sheet5", "Sheet7")
Sheets(x).FillAcrossSheets _

Worksheets("Sheet1").Range("A1:C5")

LegendEntries Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthLegendEntriesC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthLegendEntriesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthLegendEntriesA "}

Returns an object that represents either a single legend entry (a LegendEntry object, Syntax 1) or a
collection of legend entries (a LegendEntries object, Syntax 2) for the legend.

Syntax 1
expression.LegendEntries(Index)
Syntax 2
expression.LegendEntries
expression Required. An expression that returns a Legend object.
Index Optional Variant. The number of the legend entry.

LegendEntries Method Example

This example sets the font for legend entry one on Chart1.
Charts("Chart1").Legend.LegendEntries(1).Font.Name = "Arial"

LegendKey Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproLegendKeyC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproLegendKeyX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproLegendKeyA "}

Returns a LegendKey object that represents the legend key associated with the entry.

LegendKey Property Example

This example sets the legend key for legend entry one on Chart1 to be a triangle. The example
should be run on a 2-D line chart.
Charts("Chart1").Legend.LegendEntries(1).LegendKey _

.MarkerStyle = xlMarkerStyleTriangle

LinkInfo Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthLinkInfoC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthLinkInfoX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthLinkInfoA "}

Returns the link date and update status.

Syntax
expression.LinkInfo(Name, LinkInfo, Type, EditionRef)
expression Required. An expression that returns a Workbook object.
Name Required String. The name of the link, as returned from the LinkSources method.
LinkInfo Required Long. The type of information to be returned. Can be one of the following

XlLinkInfo constants: xlUpdateState or xlEditionDate. xlEditionDate applies only to editions. For
xlUpdateState, this method returns 1 if the link updates automatically, or it returns 2 if the link must
be updated manually.

Type Optional Variant. The type of link to return. Can be one of the following XlLinkInfoType
constants: xlLinkInfoOLELinks (also handles DDE links), xlLinkInfoPublishers, or
xlLinkInfoSubscribers.

EditionRef Optional Variant. If the link is an edition, this argument specifies the edition reference
as a string in R1C1 style. This argument is required if there's more than one publisher or subscriber
with the same name in the workbook.

LinkInfo Method Example

This example displays a message box if the link is updated automatically.
If ActiveWorkbook.LinkInfo(_

"Word.Document|Document1!'!DDE_LINK1", xlUpdateState, _
xlOLELinks) = 1 Then

MsgBox "Link updates automatically"
End If

LinkSources Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthLinkSourcesC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthLinkSourcesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthLinkSourcesA "}

Returns an array of links in the workbook. The names in the array are the names of the linked
documents, editions, or DDE or OLE servers. Returns Empty if there are no links.

Syntax
expression.LinkSources(Type)
expression Required. An expression that returns a Workbook object.
Type Optional. The type of link to return. Can be one of the following XlLink constants:

xlExcelLinks, xlOLELinks (also handles DDE links), xlPublishers, or xlSubscribers.

Remarks
The format of the array is a one-dimensional array for all types but publisher and subscriber. The
returned strings contain the name of the link source, in the appropriate notation for the link type. For
example, DDE links use the "Server|Document!Item" syntax.

For publisher and subscriber links, the returned array is two-dimensional. The first column of the array
contains the names of the edition, and the second column contains the references of the editions as
text.

LinkSources Method Example

This example displays a list of OLE and DDE links in the active workbook. The example should be run
on a workbook that contains one or more linked Word objects.
aLinks = ActiveWorkbook.LinkSources(xlOLELinks)
If Not IsEmpty(aLinks) Then

For i = 1 To UBound(aLinks)
MsgBox "Link " & i & ":" & Chr(13) & aLinks(i)

Next i
End If

NameLocal Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproNameLocalC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproNameLocalX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproNameLocalA "}

Returns or sets the name of the object, in the language of the user. Read/write String for Name,
read-only String for Style.

Remarks
If the style is a built-in style, this property returns the name of the style in the language of the current
locale.

NameLocal Property Example

This example displays the name and localized name of style one in the active workbook.
With ActiveWorkbook.Styles(1)

MsgBox "The name of the style is " & .Name
MsgBox "The localized name of the style is " & .NameLocal

End With

NumberFormatLocal Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproNumberFormatLocalC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproNumberFormatLocalX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproNumberFormatLocalA
"}

Returns or sets the format code for the object as a string in the language of the user. Read/write
String.

Remarks
The Format function uses different format code strings than do the NumberFormat and
NumberFormatLocal properties.

NumberFormatLocal Property Example

This example displays the number format for cell A1 on Sheet1, in the language of the user.
MsgBox "The number format for cell A1 is " & _

Worksheets("Sheet1").Range("A1").NumberFormatLocal

Object Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproObjectC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproObjectX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproObjectA "}

Returns the OLE Automation object associated with this OLE object. Read-only Object.

Object Property Example

This example inserts text at the beginning of an embedded Word document object on Sheet1. Note
that the three statements in the With control structure are WordBasic statements.
Set wordObj = Worksheets("Sheet1").OLEObjects(1)
wordObj.Activate
With wordObj.Object.Application.WordBasic

.StartOfDocument

.Insert "This is the beginning"

.InsertPara
End With

OLEObjects Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthOLEObjectsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthOLEObjectsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthOLEObjectsA "}

Returns an object that represents either a single OLE object (an OLEObject, Syntax 1) or a collection
of all OLE objects (an OLEObjects collection, Syntax 2) on the chart or sheet. Read-only.

Syntax 1
expression.OLEObjects(Index)
Syntax 2
expression.OLEObjects
expression Required. An expression that returns a Chart or Worksheet object.
Index Optional Variant. The name or number of the OLE object.

OLEObjects Method Example

This example creates a list of link types for OLE objects on Sheet1. The list appears on a new
worksheet created by the example.
Set newSheet = Worksheets.Add
i = 2
newSheet.Range("A1").Value = "Name"
newSheet.Range("B1").Value = "Link Type"
For Each obj In Worksheets("Sheet1").OLEObjects

newSheet.Cells(i, 1).Value = obj.Name
If obj.OLEType = xlOLELink Then

newSheet.Cells(i, 2) = "Linked"
Else

newSheet.Cells(i, 2) = "Embedded"
End If
i = i + 1

Next

OLEType Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproOLETypeC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproOLETypeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproOLETypeA "}

Returns the OLE object type. Can be one of the following XlOLEType constants: xlOLELink or
xlOLEEmbed. Returns xlOLELink if the object is linked (it exists outside of the file), or returns
xlOLEEmbed if the object is embedded (it's entirely contained within the file). Read-only Long.

OLEType Property Example

This example creates a list of link types for OLE objects on Sheet1. The list appears on a new
worksheet created by the example.
Set newSheet = Worksheets.Add
i = 2
newSheet.Range("A1").Value = "Name"
newSheet.Range("B1").Value = "Link Type"
For Each obj In Worksheets("Sheet1").OLEObjects

newSheet.Cells(i, 1).Value = obj.Name
If obj.OLEType = xlOLELink Then

newSheet.Cells(i, 2) = "Linked"
Else

newSheet.Cells(i, 2) = "Embedded"
End If
i = i + 1

Next

OpenLinks Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthOpenLinksC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthOpenLinksX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthOpenLinksA "}

Opens the supporting documents for a link or links.

Syntax
expression.OpenLinks(Name, ReadOnly, Type)
expression Required. An expression that returns a Workbook object.
Name Required String. The name of the Microsoft Excel or DDE/OLE link, as returned from the

LinkSources method.
ReadOnly Optional Variant. True to open documents as read-only. The default value is False.
Type Optional. The link type. Can be one of the following XlLink constants: xlExcelLinks,

xlOLELinks (also handles DDE links), xlPublishers, or xlSubscribers.

OpenLinks Method Example

This example opens OLE link one in the active workbook.
linkArray = ActiveWorkbook.LinkSources(xlOLELinks)
ActiveWorkbook.OpenLinks linkArray(1)
This example opens all supporting Microsoft Excel documents for the active workbook.
ActiveWorkbook.OpenLinks _

name:=ActiveWorkbook.LinkSources(xlExcelLinks)

OutlineLevel Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproOutlineLevelC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproOutlineLevelX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproOutlineLevelA "}

Returns or sets the current outline level of the specified row or column. Read/write Variant.

Remarks
Level one is the outermost summary level.

OutlineLevel Property Example

This example sets the outline level for row two on Sheet1.
Worksheets("Sheet1").Rows(2).OutlineLevel = 1

Parse Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthParseC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthParseX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthParseA "}

Parses a range of data and breaks it into multiple cells. Distributes the contents of the range to fill
several adjacent columns; the range can be no more than one column wide.

Syntax
expression.Parse(ParseLine, Destination)
expression Required. An expression that returns a Range object.
ParseLine Optional Variant. A string that contains left and right brackets to indicate where the cells

should be split. For example, "[xxx][xxx]" would insert the first three characters into the first
column of the destination range, and it would insert the next three characters into the second
column. If this argument is omitted, Microsoft Excel guesses where to split the columns based on
the spacing of the top left cell in the range. If you want to use a different range to guess the parse
line, use a Range object as the ParseLine argument. That range must be one of the cells that's
being parsed. The ParseLine argument cannot be longer than 255 characters, including the
brackets and spaces.

Destination Optional Variant. A Range object that represents the upper-left corner of the
destination range for the parsed data. If this argument is omitted, Microsoft Excel parses in place.

Parse Method Example

This example divides telephone numbers of the form 206-555-1212 into two columns. The first
column contains only the area code, and the second column contains the seven-digit telephone
number with the embedded hyphen.
Worksheets("Sheet1").Columns("A").Parse _

parseLine:="[xxx] [xxxxxxxx]", _
destination:=Worksheets("Sheet1").Range("B1")

Period Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPeriodC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPeriodX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPeriodA "}

Returns or sets the period for the moving-average trendline. Read/write Long.

Period Property Example

This example sets the period for the moving-average trendline on Chart1. The example should be run
on a 2-D column chart with a single series that contains 10 data points and a moving-average
trendline.
With Charts("Chart1").SeriesCollection(1).Trendlines(1)

If .Type = xlMovingAvg Then .Period = 5
End With

PlotVisibleOnly Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPlotVisibleOnlyC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPlotVisibleOnlyX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPlotVisibleOnlyA "}

True if only visible cells are plotted. False if both visible and hidden cells are plotted. Read/write
Boolean.

PlotVisibleOnly Property Example

This example causes Microsoft Excel to plot only visible cells in Chart1.
Charts("Chart1").PlotVisibleOnly = True

Precedents Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPrecedentsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPrecedentsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPrecedentsA "}

Returns a Range object that represents all the precedents of a cell. This can be a multiple selection
(a union of Range objects) if there's more than one precedent. Read-only.

Precedents Property Example

This example selects the precedents of cell A1 on Sheet1.
Worksheets("Sheet1").Activate
Range("A1").Precedents.Select

PrefixCharacter Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPrefixCharacterC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPrefixCharacterX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPrefixCharacterA "}

Returns the prefix character for the cell. Read-only Variant.

Remarks
If the TransitionNavigKeys property is False, this prefix character will be ' for a text label, or blank. If
the TransitionNavigKeys property is True, this character will be ' for a left-justified label, " for a right-
justified label, ^ for a centered label, \ for a repeated label, or blank.

PrefixCharacter Property Example

This example displays the prefix character for cell A1 on Sheet1.
MsgBox "The prefix character is " & _

Worksheets("Sheet1").Range("A1").PrefixCharacter

PrintArea Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPrintAreaC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPrintAreaX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPrintAreaA "}

Returns or sets the range to be printed, as a string using A1-style references in the language of the
macro. Read/write String.

Remarks
Set this property to False or to the empty string ("") to set the print area to the entire sheet.

This property applies only to worksheet pages.

PrintArea Property Example

This example sets the print area to cells A1:C5 on Sheet1.
Worksheets("Sheet1").PageSetup.PrintArea = "A1:C5"
This example sets the print area to the current region on Sheet1. Note that you use the Address
property to return an A1-style address.
Worksheets("Sheet1").Activate
ActiveSheet.PageSetup.PrintArea = _

ActiveCell.CurrentRegion.Address

PrintTitleColumns Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPrintTitleColumnsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPrintTitleColumnsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPrintTitleColumnsA "}

Returns or sets the columns that contain the cells to be repeated on the left side of each page, as a
string in A1-style notation in the language of the macro. Read/write String.

Remarks
If you specify only part of a column or columns, Microsoft Excel expands the range to full columns.

Set this property to False or to the empty string ("") to turn off title columns.

This property applies only to worksheet pages.

PrintTitleColumns Property Example

This example defines row three as the title row, and it defines columns one through three as the title
columns.
Worksheets("Sheet1").Activate
ActiveSheet.PageSetup.PrintTitleRows = ActiveSheet.Rows(3).Address
ActiveSheet.PageSetup.PrintTitleColumns = _

ActiveSheet.Columns("A:C").Address

PrintTitleRows Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPrintTitleRowsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPrintTitleRowsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPrintTitleRowsA "}

Returns or sets the rows that contain the cells to be repeated at the top of each page, as a string in
A1-style notation in the language of the macro. Read/write String.

Remarks
If you specify only part of a row or rows, Microsoft Excel expands the range to full rows.

Set this property to False or to the empty string ("") to turn off title rows.

This property applies only to worksheet pages.

PrintTitleRows Property Example

This example defines row three as the title row, and it defines columns one through three as the title
columns.
Worksheets("Sheet1").Activate
ActiveSheet.PageSetup.PrintTitleRows = ActiveSheet.Rows(3).Address
ActiveSheet.PageSetup.PrintTitleColumns = _

ActiveSheet.Columns("A:C").Address

ProtectScenarios Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproProtectScenariosC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproProtectScenariosX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproProtectScenariosA "}

True if the worksheet scenarios are protected. Read-only Boolean.

ProtectScenarios Property Example

This example displays a message box if scenarios are protected on Sheet1.
If Worksheets("Sheet1").ProtectScenarios Then _

MsgBox "Scenarios are protected on this worksheet."

RefersTo Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproRefersToC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproRefersToX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproRefersToA "}

Returns or sets the formula that the name is defined to refer to, in the language of the macro and in
A1-style notation, beginning with an equal sign. Read/write String.

RefersTo Property Example

This example creates a list of all the names in the active workbook, and it shows their formulas in A1-
style notation in the language of the macro. The list appears on a new worksheet created by the
example.
Set newSheet = Worksheets.Add
i = 1
For Each nm In ActiveWorkbook.Names

newSheet.Cells(i, 1).Value = nm.Name
newSheet.Cells(i, 2).Value = "'" & nm.RefersTo
i = i + 1

Next
newSheet.Columns("A:B").AutoFit

ShortcutKey Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproShortcutKeyC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproShortcutKeyX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproShortcutKeyA "}

Returns or sets the shortcut key for a name defined as a custom Microsoft Excel 4.0 macro
command. Read/write String.

ShortcutKey Property Example

This example sets the shortcut key for name one in the active workbook. The example should be run
on a workbook in which name one refers to a Microsoft Excel 4.0 command macro.
ActiveWorkbook.Names(1).ShortcutKey = "K"

ShowAllData Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthShowAllDataC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthShowAllDataX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthShowAllDataA "}

Makes all rows of the currently filtered list visible. If AutoFilter is in use, this method changes the
arrows to "All."

Syntax
expression.ShowAllData
expression Required. An expression that returns a Worksheet object.

ShowAllData Method Example

This example makes all data on Sheet1 visible. The example should be run on a worksheet that
contains a list you filtered using the AutoFilter command.
Worksheets("Sheet1").ShowAllData

ShowToolTips Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproShowToolTipsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproShowToolTipsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproShowToolTipsA "}

True if ToolTips are turned on. Read/write Boolean.

ShowToolTips Property Example

This example causes Microsoft Excel to display ToolTips.
Application.ShowToolTips = True

SizeWithWindow Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproSizeWithWindowC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproSizeWithWindowX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproSizeWithWindowA "}

True if Microsoft Excel resizes the chart to match the size of the chart sheet window. False if the chart
size isn't attached to the window size. Applies only to chart sheets (doesn't apply to embedded
charts). Read/write Boolean.

SizeWithWindow Property Example

This example sets Chart1 to be sized to its window.
Charts("Chart1").SizeWithWindow = True

TextToColumns Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthTextToColumnsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthTextToColumnsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthTextToColumnsA "}

Parses a column of cells that contain text into several columns.

Syntax
expression.TextToColumns(Destination, DataType, TextQualifier, ConsecutiveDelimiter, Tab,

Semicolon, Comma, Space, Other, OtherChar, FieldInfo)
expression Required. An expression that returns a Range object.
Destination Optional Variant. A Range object that specifies where Microsoft Excel will place the

results. If the range is larger than a single cell, the top left cell is used.
DataType Optional Variant. The format of the text to be split into columns. Can be one of the

following XlTextParsingType constants: xlDelimited or xlFixedWidth. The default value is
xlDelimited.

TextQualifier Optional Variant. The text qualifier. Can be one of the following XlTextQualifier
constants: xlTextQualifierDoubleQuote, xlTextQualifierSingleQuote, or xlTextQualifierNone.
The default value is xlTextQualifierDoubleQuote.

ConsecutiveDelimiter Optional Variant. True to have Microsoft Excel consider consecutive
delimiters as one delimiter. The default value is False.

Tab Optional Variant. True to have DataType be xlDelimited and to have the tab character be a
delimiter. The default value is False.

Semicolon Optional Variant. True to have DataType be xlDelimited and to have the semicolon
be a delimiter. The default value is False.

Comma Optional Variant. True to have DataType be xlDelimited and to have the comma be a
delimiter. The default value is False.

Space Optional Variant. True to have DataType be xlDelimited and to have the space character
be a delimiter. The default value is False.

Other Optional Variant. True to have DataType be xlDelimited and to have the character be
specified by the OtherChar argument be a delimiter. The default value is False.

OtherChar Optional Variant. (required if Other is True). The delimiter character when Other is
True. If more than one character is specified, only the first character of the string is used; the
remaining characters are ignored.

FieldInfo Optional Variant. An array containing parse information for the individual columns of
data. The interpretation depends on the value of DataType.
When the data is delimited, this argument is an array of two-element arrays, with each two-element
array specifying the conversion options for a particular column. The first element is the column
number (1-based), and the second element is one of the following numbers, specifying how the
column is parsed:
1 General
2 Text
3 MDY date
4 DMY date
5 YMD date
6 MYD date
7 DYM date
8 YDM date
9 Skip the column

The column specifiers can be in any order. If a given column specifier is not present for a particular

column in the input data, the column is parsed with the General setting. This example causes the
third column to be skipped, the first column to be parsed as text, and the remaining columns in the
source data to be parsed with the General setting.
Array(Array(3, 9), Array(1, 2))
If the source data has fixed-width columns, the first element of each two-element array specifies
the starting character position in the column (as an integer; 0 (zero) is the first character). The
second element of the two-element array specifies the parse option for the column as a number
from 1 through 9, as listed above.
The following example parses two columns from a fixed-width file, with the first column starting at
the beginning of the line and extending for 10 characters. The second column starts at position 15
and goes to the end of the line. To avoid including the characters between position 10 and position
15, Microsoft Excel adds a skipped column entry.
Array(Array(0, 1), Array(10, 9), Array(15, 1))

TextToColumns Method Example

This example converts the contents of the Clipboard, which contains a space-delimited text table, into
separate columns on Sheet1. You can create a simple space-delimited table in Notepad or WordPad
(or another text editor), copy the text table to the Clipboard, switch to Microsoft Excel, and then run
this example.
Worksheets("Sheet1").Activate
ActiveSheet.Paste
Selection.TextToColumns DataType:=xlDelimited, _

ConsecutiveDelimiter:=True, Space:=True

TransitionMenuKeyAction Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproTransitionMenuKeyActionC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproTransitionMenuKeyActionX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproTransitionMenuKeyActionA "}

Returns or sets the action taken when the alternate menu key is pressed. Can be either
xlExcelMenus or xlLotusHelp. This property cannot be set to xlLotusHelp on the Macintosh.
Read/write Long.

TransitionMenuKeyAction Property Example

This example sets the alternate menu key to run Lotus 1-2-3 Help when it's pressed. This property
cannot be set to xlLotusHelp on the Macintosh.
Application.TransitionMenuKeyAction = xlLotusHelp

Update Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthUpdateC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthUpdateX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthUpdateA "}

Updates the link or PivotTable.

Syntax
expression.Update
expression Required. An expression that returns an OLEObject or PivotTable object.

Update Method Example

This example updates the link to OLE object one on Sheet1.
Worksheets("Sheet1").OLEObjects(1).Update

UpdateLink Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthUpdateLinkC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthUpdateLinkX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthUpdateLinkA "}

Updates a Microsoft Excel, DDE, or OLE link (or links).

Syntax
expression.UpdateLink(Name, Type)
expression Required. An expression that returns a Workbook object.
Name Required String. The name of the Microsoft Excel or DDE/OLE link to be updated, as

returned from the LinkSources method.
Type Optional Variant. The link type. Can be one of the following XlLinkType constants:

xlLinkTypeExcelLinks or xlLinkTypeOLELinks (also used for DDE links). The default value is
xlLinkTypeExcelLinks.

UpdateLink Method Example

This example updates all links in the active workbook.
ActiveWorkbook.UpdateLink Name:=ActiveWorkbook.LinkSources

Verb Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthVerbC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthVerbX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthVerbA "}

Sends a verb to the server of the specified OLE object.

Syntax
expression.Verb(Verb)
expression Required. An expression that returns an OLEObject object.
Verb Optional Variant. The verb that the server of the OLE object should act on. If this argument is

omitted, the default verb is sent. The available verbs are determined by the object's source
application. Typical verbs for an OLE object are Open and Primary (represented by the XlOLEVerb
constants xlOpen and xlPrimary).

Verb Method Example

This example sends the default verb to the server for OLE object one on Sheet1.
Worksheets("Sheet1").OLEObjects(1).Verb

VisibleRange Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproVisibleRangeC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproVisibleRangeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproVisibleRangeA "}

Returns a Range object that represents the range of cells that are visible in the window or pane. If a
column or row is partially visible, it's included in the range. Read-only.

VisibleRange Property Example

This example displays the number of cells visible on Sheet1.
Worksheets("Sheet1").Activate
MsgBox "There are " & Windows(1).VisibleRange.Cells.Count _

& " cells visible"

WallsAndGridlines2D Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproWallsAndGridlines2DC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproWallsAndGridlines2DX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproWallsAndGridlines2DA
"}

True if gridlines are drawn two-dimensionally on a 3-D chart. Read/write Boolean.

WallsAndGridlines2D Property Example

This example causes Microsoft Excel to draw 2-D gridlines on Chart1.
Charts("Chart1").WallsAndGridlines2D = True

Paste Method (Chart Object)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthPasteChartObjC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthPasteChartObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthPasteChartObjA "}

Pastes chart data from the Clipboard into the specified chart.

Syntax
expression.Paste(Type)
expression Required. An expression that returns a Chart object.
Type Optional Variant. Specifies the chart information to paste if a chart is on the Clipboard. Can

be one of the following XlPasteType constants: xlFormats, xlFormulas, or xlAll. The default
value is xlAll. If there's data other than a chart on the Clipboard, this argument cannot be used.

Remarks
This method changes the current selection.

Paste Method (Chart Object) Example

This example pastes data from the range B1:B5 on Sheet1 into Chart1.
Worksheets("Sheet1").Range("B1:B5").Copy
Charts("Chart1").Paste

Paste Method (Point or Series Object)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthPastePointObjC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthPastePointObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthPastePointObjA "}

Pastes a picture from the Clipboard as the marker on the selected point or series. This method can be
used on column, bar, line, or radar charts, and it sets the MarkerStyle property to
xlMarkerStylePicture.

Syntax
expression.Paste
expression Required. An expression that returns a Point or Series object.

Paste Method (Point or Series Object) Example

This example pastes a picture from the Clipboard into series one in Chart1.
Charts("Chart1").SeriesCollection(1).Paste

Paste Method (SeriesCollection Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthPasteSeriesCollectionObjC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthPasteSeriesCollectionObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlmthPasteSeriesCollectionObjA "}

Pastes data from the Clipboard into the specified series collection.

Syntax
expression.Paste(Rowcol, SeriesLabels, CategoryLabels, Replace, NewSeries)
expression Required. An expression that returns a SeriesCollection object.
Rowcol Optional Variant. Specifies whether the values corresponding to a particular data series

are in rows or columns. Can be one of the following XlRowCol constants: xlRows or xlColumns.
The default value is xlColumns.

SeriesLabels Optional Variant. True to use the contents of the cell in the first column of each row
(or the first row of each column) as the name of the data series in that row (or column). False to
use the contents of the cell in the first column of each row (or the first row of each column) as the
first data point in the data series. The default value is False.

CategoryLabels Optional Variant. True to use the contents of the first row (or column) of the
selection as the categories for the chart. False to use the contents of the first row (or column) as
the first data series in the chart. The default value is False.

Replace Optional Variant. True to apply categories while replacing existing categories with
information from the copied range. False to insert new categories without replacing any old ones.
The default value is True.

NewSeries Optional Variant. True to paste the data as a new series. False to paste the data as
new points in an existing series. The default value is True.

Paste Method (SeriesCollection Collection) Example

This example copies data to the Clipboard from cells C1:C5 on Sheet1 and then pastes the data into
Chart1 as a new series.
Worksheets("Sheet1").Range("C1:C5").Copy
Charts("Chart1").SeriesCollection.Paste

Paste Method (Worksheet Object)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthPasteWorksheetObjC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthPasteWorksheetObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthPasteWorksheetObjA
"}

Pastes the contents of the Clipboard onto the sheet.

Syntax
expression.Paste(Destination, Link)
expression Required. An expression that returns a Worksheet object.
Destination Optional Variant. A Range object that specifies where the Clipboard contents should

be pasted. If this argument is omitted, the current selection is used. This argument can be specified
only if the contents of the Clipboard can be pasted into a range. If this argument is specified, the
Link argument cannot be used.

Link Optional Variant. True to establish a link to the source of the pasted data. If this argument is
specified, the Destination argument cannot be used. The default value is False.

Remarks
If you don't specify the Destination argument, you must select the destination range before you use
this method.

This method may modify the sheet selection, depending on the contents of the Clipboard.

Paste Method (Worksheet Object) Example

This example copies data from cells C1:C5 on Sheet1 to cells D1:D5 on Sheet1.
Worksheets("Sheet1").Range("C1:C5").Copy
ActiveSheet.Paste Destination:=Worksheets("Sheet1").Range("D1:D5")

PasteSpecial Method

Range object: Pastes data from the Clipboard into the specified range.

Worksheet object: Pastes data from the Clipboard onto the sheet, using a specified format. Use this
method to paste data from other applications or to paste data in a specific format.

PasteSpecial Method (Range Object)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthPasteSpecialRangeObjC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthPasteSpecialRangeObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlmthPasteSpecialRangeObjA "}

Pastes a Range from the Clipboard into the specified range.

Syntax
expression.PasteSpecial(Paste, Operation, SkipBlanks, Transpose)
expression Required. An expression that returns a Range object.
Paste Optional Variant. The part of the range to be pasted. Can be one of the following

XlPasteType constants: xlPasteAll, xlPasteFormulas, xlPasteValues, xlPasteFormats,
xlPasteNotes, or xlPasteAllExceptBorders. The default value is xlPasteAll.

Operation Optional Variant. The paste operation. Can be one of the following
XlPasteSpecialOperation constants: xlPasteSpecialOperationNone,
xlPasteSpecialOperationAdd, xlPasteSpecialOperationSubtract,
xlPasteSpecialOperationMultiply, or xlPasteSpecialOperationDivide. The default value is
xlPasteSpecialOperationNone.

SkipBlanks Optional Variant. True to have blank cells in the range on the Clipboard not be pasted
into the destination range. The default value is False.

Transpose Optional Variant. True to transpose rows and columns when the range is pasted.The
default value is False.

PasteSpecial Method (Range Object) Example

This example replaces the data in cells D1:D5 on Sheet1 with the sum of the existing contents and
cells C1:C5 on Sheet1.
With Worksheets("Sheet1")

.Range("C1:C5").Copy

.Range("D1:D5").PasteSpecial Operation:=xlPasteSpecialOperationAdd
End With

PasteSpecial Method (Worksheet Object)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthPasteSpecialWorksheetObjC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthPasteSpecialWorksheetObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlmthPasteSpecialWorksheetObjA "}

Pastes the contents of the Clipboard onto the sheet, using a specified format. Use this method to
paste data from other applications or to paste data in a specific format.

Syntax
expression.PasteSpecial(Format, Link, DisplayAsIcon, IconFileName, IconIndex, IconLabel)
expression Required. An expression that returns a DialogSheet or Worksheet object.
Format Optional Variant. A string that specifies the Clipboard format of the data.
Link Optional Variant. True to establish a link to the source of the pasted data. If the source data

isn't suitable for linking or the source application doesn't support linking, this parameter is ignored.
The default value is False.

DisplayAsIcon Optional Variant. True to display the pasted as an icon. The default value is False.
IconFileName Optional Variant. The name of the file that contains the icon to use if

DisplayAsIcon is True.
IconIndex Optional Variant. The index number of the icon within the icon file.
IconLabel Optional Variant. The text label of the icon.

Remarks
You must select the destination range before you use this method.

This method may modify the sheet selection, depending on the contents of the Clipboard.

PasteSpecial Method (Worksheet Object) Example

This example pastes a Microsoft Word document object from the Clipboard to cell D1 on Sheet1.
Worksheets("Sheet1").Range("D1").Select
ActiveSheet.PasteSpecial format:="Microsoft Word 8.0 Document Object"
This example pastes the same Microsoft Word document object and displays it as an icon.
Worksheets("Sheet1").Range("F5").Select
ActiveSheet.PasteSpecial _

Format:="Microsoft Word 8.0 Document Object", _
DisplayAsIcon:=True

ApplyDataLabels Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthApplyDataLabelsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthApplyDataLabelsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthApplyDataLabelsA "}

Applies data labels to a point, a series, or all the series in a chart.

Syntax
expression.ApplyDataLabels(Type, LegendKey)
expression Required. An expression that returns a Chart, Point, or Series object.
Type Optional Variant. The data label type. Can be one of the following XlDataLabelsType

constants.
Constant Description
xlDataLabelsShowNone No data labels.
xlDataLabelsShowValue Value for the point (assumed if

this argument isn't specified).
xlDataLabelsShowPercent Percentage of the total. Available

only for pie charts and doughnut
charts.

xlDataLabelsShowLabel Category for the point. This is the
default value.

xlDataLabelsShowLabelAndPercent Percentage of the total, and
category for the point. Available
only for pie charts and doughnut
charts.

LegendKey Optional Variant. True to show the legend key next to the point. The default value is
False.

ApplyDataLabels Method Example

This example applies category labels to series one in Chart1.
Charts("Chart1").SeriesCollection(1). _

ApplyDataLabels Type:=xlDataLabelsShowLabel

DataLabel Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDataLabelC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDataLabelX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDataLabelA "}

Returns a DataLabel object that represents the data label associated with the point or trendline.
Read-only.

DataLabel Property Example

This example turns on the data label for point seven in series three in Chart1, and then it sets the
data label color to blue.
With Charts("Chart1").SeriesCollection(3).Points(7)

.HasDataLabel = True

.ApplyDataLabels type:=xlValue

.DataLabel.Font.ColorIndex = 5
End With

HasDataLabel Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproHasDataLabelC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproHasDataLabelX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproHasDataLabelA "}

True if the point has a data label. Read/write Boolean.

HasDataLabel Property Example

This example turns on the data label for point seven in series three in Chart1, and then it sets the
data label color to blue.
With Charts("Chart1").SeriesCollection(3).Points(7)

.HasDataLabel = True

.ApplyDataLabels type:=xlValue

.DataLabel.Font.ColorIndex = 5
End With

MarkerStyle Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproMarkerStyleC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproMarkerStyleX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproMarkerStyleA "}

Returns or sets the marker style for a point or series in a line chart, scatter chart, or radar chart.
Read/write Long.

Can be one of the following XlMarkerStyle constants.

Constant Description
xlMarkerStyleNone No markers
xlMarkerStyleAutomatic Automatic markers
xlMarkerStyleSquare Square markers
xlMarkerStyleDiamond Diamond-shaped markers
xlMarkerStyleTriangle Triangular markers
xlMarkerStyleX Square markers with an X
xlMarkerStyleStar Square markers with an asterisk
xlMarkerStyleDot Short bar markers
xlMarkerStyleDash Long bar markers
xlMarkerStyleCircle Circular markers
xlMarkerStylePlus Square markers with a plus sign
xlMarkerStylePicture Picture markers

MarkerStyle Property Example

This example sets the marker style for series one in Chart1. The example should be run on a 2-D line
chart.
Charts("Chart1").SeriesCollection(1).MarkerStyle = xlMarkerStyleCircle

ApplyNames Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthApplyNamesC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthApplyNamesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthApplyNamesA "}

Applies names to the cells in the specified range.

Syntax
expression.ApplyNames(Names, IgnoreRelativeAbsolute, UseRowColumnNames, OmitColumn,

OmitRow, Order, AppendLast)
expression Required. An expression that returns a Range object.
Names Optional Variant. An array of the names to be applied. If this argument is omitted, all

names on the sheet are applied to the range.
IgnoreRelativeAbsolute Optional Variant. True to replace references with names, regardless of

the reference types of either the names or references. False to replace absolute references only
with absolute names, relative references only with relative names, and mixed references only with
mixed names. The default value is True.

UseRowColumnNames Optional Variant. True to use the names of row and column ranges that
contain the specified range if names for the range cannot be found. False to ignore the
OmitColumn and OmitRow arguments. The default value is True.

OmitColumn Optional Variant. True to replace the entire reference with the row-oriented name.
The column-oriented name can be omitted only if the referenced cell is in the same column as the
formula and is within a row-oriented named range. The default value is True.

OmitRow Optional Variant. True to replace the entire reference with the column-oriented name.
The row-oriented name can be omitted only if the referenced cell is in the same row as the formula
and is within a column-oriented named range. The default value is True.

Order Optional Variant. Determines which range name is listed first when a cell reference is
replaced by a row-oriented and column-oriented range name. Can be one of the following
XlApplyNamesOrder constants: xlRowThenColumn or xlColumnThenRow.

AppendLast Optional Variant. True to replace the definitions of the names in Names and also
replace the definitions of the last names that were defined. False to replace the definitions of the
names in Names only. The default value is False.

Remarks
You can use the Array function to create the list of names for the Names argument.

If you want to apply names to the entire sheet, use Cells.ApplyNames.

You cannot "unapply" names; to delete names, use the Delete method.

ApplyNames Method Example

This example applies names to the entire sheet.
Cells.ApplyNames Names:=Array("Sales", "Profits")

ApplyOutlineStyles Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthApplyOutlineStylesC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthApplyOutlineStylesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthApplyOutlineStylesA "}

Applies outlining styles to the specified range.

Syntax
expression.ApplyOutlineStyles
expression Required. An expression that returns a Range object.

ApplyOutlineStyles Method Example

The following example applies automatic outlining styles to the selection. The selection must include
the entire outline range on a worksheet.
Selection.ApplyOutlineStyles

AutoFill Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAutoFillC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAutoFillX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthAutoFillA "}

Performs an autofill on the cells in the specified range.

Syntax
expression.AutoFill(Destination, Type)
expression Required. An expression that returns a Range object.
Destination Required Range object. The cells to be filled. The destination must include the source

range.
Type Optional Variant. Specifies the fill type. Can be one of the following XlFillType constants:

xlFillDefault, xlFillSeries, xlFillCopy, xlFillFormats, xlFillValues, xlFillDays, xlFillWeekdays,
xlFillMonths, xlFillYears, xlLinearTrend, or xlGrowthTrend. If this argument is xlFillDefault or
omitted, Microsoft Excel selects the most appropriate fill type, based on the source range.

AutoFill Method Example

This example performs an autofill on cells A1:A20 on Sheet1, based on the source range A1:A2 on
Sheet1. Before running this example, type 1 in cell A1 and type 2 in cell A2.
Set sourceRange = Worksheets("Sheet1").Range("A1:A2")
Set fillRange = Worksheets("Sheet1").Range("A1:A20")
sourceRange.AutoFill Destination:=fillRange

AutoFormat Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAutoFormatC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAutoFormatX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthAutoFormatA "}

Automatically formats a range of cells, using a predefined format.

Syntax
expression.AutoFormat(Format, Number, Font, Alignment, Border, Pattern, Width)
expression Required. An expression that returns a Range object.
Format Optional Variant. The autoformat. Can be one of the following XlRangeAutoFormat

constants:
xlRangeAutoFormat3DEffects1
xlRangeAutoFormat3DEffects2
xlRangeAutoFormatAccounting1
xlRangeAutoFormatAccounting2
xlRangeAutoFormatAccounting3
xlRangeAutoFormatAccounting4
xlRangeAutoFormatClassic1
xlRangeAutoFormatClassic2
xlRangeAutoFormatClassic3
xlRangeAutoFormatColor1
xlRangeAutoFormatColor2

xlRangeAutoFormatColor3
xlRangeAutoFormatList1
xlRangeAutoFormatList2
xlRangeAutoFormatList3
xlRangeAutoFormatLocalFormat1
xlRangeAutoFormatLocalFormat2
xlRangeAutoFormatLocalFormat3
xlRangeAutoFormatLocalFormat4
xlRangeAutoFormatNone
xlRangeAutoFormatSimple

The default value is xlRangeAutoFormatClassic1. The xlRangeAutoFormatLocalFormat1,
xlRangeAutoFormatLocalFormat2, xlRangeAutoFormatLocalFormat3, and
xlRangeAutoFormatLocalFormat4 constants are not used in U.S. English Microsoft Excel.

Number Optional Variant. True to include number formats in the autoformat. The default value is
True.

Font Optional Variant. True to include font formats in the autoformat. The default value is True.
Alignment Optional Variant. True to include alignment in the autoformat. The default value is

True.
Border Optional Variant. True to include border formats in the autoformat. The default value is

True.
Pattern Optional Variant. True to include pattern formats in the autoformat. The default value is

True.
Width Optional Variant. True to include column width and row height in the autoformat. The default

value is True.

Remarks
If the range is a single cell, this method also formats the current region surrounding the cell. In other
words, the following two statements are equivalent:
Cells("A1").AutoFormat
Cells("A1").CurrentRegion.AutoFormat

AutoFormat Method Example

This example formats cells A1:D8 on Sheet1, using a predefined format.
Worksheets("Sheet1").Range("A1:D8"). _

AutoFormat Format:=xlRangeAutoFormatClassic1

AutoFit Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAutoFitC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAutoFitX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthAutoFitA "}

Changes the width of the columns in the range or the height of the rows in the range to achieve the
best fit.

Syntax
expression.AutoFit
expression Required. An expression that returns a Range object. Must be a row or a range of rows,

or a column or a range of columns. Otherwise, this method generates an error.

Remarks
One unit of column width is equal to the width of one character in the Normal style.

AutoFit Method Example

This example changes the width of columns A through I on Sheet1 to achieve the best fit.
Worksheets("Sheet1").Columns("A:I").AutoFit
This example changes the width of columns A through E on Sheet1 to achieve the best fit, based only
on the contents of cells A1:E1.
Worksheets("Sheet1").Range("A1:E1").Columns.AutoFit

ClearNotes Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthClearNotesC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthClearNotesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthClearNotesA "}

Clears notes and sound notes from all the cells in the specified range.

Syntax
expression.ClearNotes
expression Required. An expression that returns a Range object.

ClearNotes Method Example

This example clears all notes and sound notes from columns A through C on Sheet1.
Worksheets("Sheet1").Columns("A:C").ClearNotes

Column Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproColumnC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproColumnX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproColumnA "}

Returns the number of the first column in the first area in the specified range. Read-only Long.

Remarks
Column A returns 1, column B returns 2, and so on.

To return the number of the last column in the range, use the following expression.
myRange.Columns(myRange.Columns.Count).Column

Column Property Example

This example sets the column width of every other column on Sheet1 to 4 points.
For Each col In Worksheets("Sheet1").Columns

If col.Column Mod 2 = 0 Then
col.ColumnWidth = 4

End If
Next col

ColumnDifferences Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthColumnDifferencesC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthColumnDifferencesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthColumnDifferencesA "}

Returns a Range object that represents all the cells whose contents are different from the comparison
cell in each column.

Syntax
expression.ColumnDifferences(Comparison)
expression Required. An expression that returns a Range object containing the cells to compare.
Comparison Required Variant. A single cell to compare to the specified range.

ColumnDifferences Method Example

This example selects the cells in column A on Sheet1 whose contents are different from cell A4.
Worksheets("Sheet1").Activate
Set r1 = ActiveSheet.Columns("A").ColumnDifferences(_

Comparison:=ActiveSheet.Range("A4"))
r1.Select

ColumnWidth Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproColumnWidthC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproColumnWidthX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproColumnWidthA "}

Returns or sets the width of all columns in the specified range. Read/write Variant.

Remarks
One unit of column width is equal to the width of one character in the Normal style. For proportional
fonts, the width of the character 0 (zero) is used.

Use the Width property to return the width of a column in points.

If all columns in the range have the same width, the ColumnWidth property returns the width. If
columns in the range have different widths, this property returns Null.

ColumnWidth Property Example

This example doubles the width of column A on Sheet1.
With Worksheets("Sheet1").Columns("A")

.ColumnWidth = .ColumnWidth * 2
End With

Consolidate Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthConsolidateC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthConsolidateX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthConsolidateA "}

Consolidates data from multiple ranges on multiple worksheets into a single range on a single
worksheet.

Syntax
expression.Consolidate(Sources, Function, TopRow, LeftColumn, CreateLinks)
expression Required. An expression that returns a Range object.
Sources Optional Variant. The sources of the consolidation as an array of text reference strings in

R1C1-style notation. The references must include the full path of sheets to be consolidated.
Function Optional Variant. The consolidation function. Can be one of the following

XlConsolidationFunction constants: xlAverage, xlCount, xlCountNums, xlMax, xlMin,
xlProduct, xlStDev, xlStDevP, xlSum, xlVar, or xlVarP. The default value is xlAverage.

TopRow Optional Variant. True to consolidate data based on column titles in the top row of the
consolidation ranges. False to consolidate data by position. The default value is False.

LeftColumn Optional Variant. True to consolidate data based on row titles in the left column of the
consolidation ranges. False to consolidate data by position. The default value is False.

CreateLinks Optional Variant. True to have the consolidation use worksheet links. False to have
the consolidation copy the data. The default value is False.

Consolidate Method Example

This example consolidates data from Sheet2 and Sheet3 onto Sheet1, using the SUM function.
Worksheets("Sheet1").Range("A1").Consolidate _

Sources:=Array("Sheet2!R1C1:R37C6", "Sheet3!R1C1:R37C6"), _
Function:=xlSum

CreateNames Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthCreateNamesC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthCreateNamesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthCreateNamesA "}

Creates names in the specified range, based on text labels in the sheet.

Syntax
expression.CreateNames(Top, Left, Bottom, Right)
expression Required. An expression that returns a Range object.
Top Optional Variant. True to create names by using labels in the top row. The default value is

False.
Left Optional Variant. True to create names by using labels in the left column. The default value is

False.
Bottom Optional Variant.True to create names by using labels in the bottom row. The default value

is False.
Right Optional Variant.True to create names by using labels in the right column. The default value

is False.

Remarks
If you don't specify one of Top, Left, Bottom, or Right, Microsoft Excel guesses the location of the
text labels, based on the shape of the specified range.

CreateNames Method Example

This example creates names for cells B1:B3 based on the text in cells A1:A3. Note that you must
include the cells that contain the names in the range, even though the names are created only for
cells B1:B3.
Set rangeToName = Worksheets("Sheet1").Range("A1:B3")
rangeToName.CreateNames Left:=True

CurrentArray Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproCurrentArrayC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproCurrentArrayX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproCurrentArrayA "}

If the specified cell is part of an array, returns a Range object that represents the entire array. Read-
only.

CurrentArray Property Example

This example assumes that cell A1 on Sheet1 is the active cell and that the active cell is part of an
array that includes cells A1:A10. The example selects cells A1:A10 on Sheet1.
ActiveCell.CurrentArray.Select

CurrentRegion Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproCurrentRegionC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproCurrentRegionX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproCurrentRegionA "}

Returns a Range object that represents the current region. The current region is a range bounded by
any combination of blank rows and blank columns. Read-only.

Remarks
This property is useful for many operations that automatically expand the selection to include the
entire current region, such as the AutoFormat method.

CurrentRegion Property Example

This example selects the current region on Sheet1.
Worksheets("Sheet1").Activate
ActiveCell.CurrentRegion.Select
This example assumes that you have a table on Sheet1 that has a header row. The example selects
the table, without selecting the header row. The active cell must be somewhere in the table before you
run the example.
Set tbl = ActiveCell.CurrentRegion
tbl.Offset(1, 0).Resize(tbl.Rows.Count - 1, tbl.Columns.Count).Select

DataSeries Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthDataSeriesC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthDataSeriesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthDataSeriesA "}

Creates a data series in the specified range.

Syntax
expression.DataSeries(Rowcol, Type, Date, Step, Stop, Trend)
expression Required. An expression that returns a Range object.
Rowcol Optional Variant. Can be the xlRows or xlColumns constant to have the data series

entered in rows or columns, respectively. If this argument is omitted, the size and shape of the
range is used.

Type Optional Variant. Can be one of the following XlDataSeriesType constants:
xlDataSeriesLinear, xlGrowth, xlChronological, or xlAutoFill. The default value is
xlDataSeriesLinear.

Date Optional Variant. If the Type argument is xlChronological, the Date argument indicates the
step date unit. Can be one of the following XlDataSeriesDate constants: xlDay, xlWeekday,
xlMonth, or xlYear. The default value is xlDay.

Step Optional Variant. The step value for the series. The default value is 1.
Stop Optional Variant. The stop value for the series. If this argument is omitted, Microsoft Excel

fills to the end of the range.
Trend Optional Variant. True to create a linear trend or growth trend. False to create a standard

data series. The default value is False.

DataSeries Method Example

This example creates a series of 12 dates. The series contains the last day of every month in 1996
and is created in the range A1:A12 on Sheet1.
Set dateRange = Worksheets("Sheet1").Range("A1:A12")
Worksheets("Sheet1").Range("A1").Formula = "31-JAN-1996"
dateRange.DataSeries Type:=xlChronological, Date:=xlMonth

Dependents Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDependentsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDependentsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDependentsA "}

Returns a Range object that represents the range containing all the dependents of a cell. This can be
a multiple selection (a union of Range objects) if there's more than one dependent. Read-only.

Dependents Property Example

This example selects the dependents of cell A1 on Sheet1.
Worksheets("Sheet1").Activate
Range("A1").Dependents.Select

DialogBox Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthDialogBoxC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthDialogBoxX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthDialogBoxA "}

Displays a dialog box defined by a dialog box definition table on a Microsoft Excel 4.0 macro sheet.
Returns the number of the chosen control, or returns False if the user clicks the Cancel button.

Syntax
expression.DialogBox
expression Required. An expression that returns a Range object. The Range must refer to a dialog

box definition table on a Microsoft Excel 4.0 macro sheet.

DialogBox Method Example

This example runs a Microsoft Excel 4.0 dialog box and then displays the return value in a message
box. The dialogRange variable refers to the dialog box definition table on the Microsoft Excel 4.0
macro sheet named "Macro1."
Set dialogRange = Excel4MacroSheets("Macro1").Range("myDialogBox")
result = dialogRange.DialogBox
MsgBox result

DirectDependents Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDirectDependentsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDirectDependentsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDirectDependentsA "}

Returns a Range object that represents the range containing all the direct dependents of a cell. This
can be a multiple selection (a union of Range objects) if there's more than one dependent. Read-only.

DirectDependents Property Example

This example selects the direct dependents of cell A1 on Sheet1.
Worksheets("Sheet1").Activate
Range("A1").DirectDependents.Select

DirectPrecedents Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDirectPrecedentsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDirectPrecedentsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDirectPrecedentsA "}

Returns a Range object that represents the range containing all the direct precedents of a cell. This
can be a multiple selection (a union of Range objects) if there's more than one precedent. Read-only.

DirectPrecedents Property Example

This example selects the direct precedents of cell A1 on Sheet1.
Worksheets("Sheet1").Activate
Range("A1").DirectPrecedents.Select

EntireColumn Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproEntireColumnC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproEntireColumnX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproEntireColumnA "}

Returns a Range object that represents the entire column (or columns) that contains the specified
range. Read-only.

EntireColumn Property Example

This example sets the value of the first cell in the column that contains the active cell. The example
must be run from a worksheet.
ActiveCell.EntireColumn.Cells(1, 1).Value = 5

EntireRow Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproEntireRowC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproEntireRowX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproEntireRowA "}

Returns a Range object that represents the entire row (or rows) that contains the specified range.
Read-only.

EntireRow Property Example

This example sets the value of the first cell in the row that contains the active cell. The example must
be run from a worksheet.
ActiveCell.EntireRow.Cells(1, 1).Value = 5

FillDown Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthFillDownC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthFillDownX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthFillDownA "}

Fills down from the top cell or cells in the specified range to the bottom of the range. The contents and
formatting of the cell or cells in the top row of a range are copied into the rest of the rows in the range.

Syntax
expression.FillDown
expression Required. An expression that returns a Range object.

FillDown Method Example

This example fills the range A1:A10 on Sheet1, based on the contents of cell A1.
Worksheets("Sheet1").Range("A1:A10").FillDown

FillLeft Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthFillLeftC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthFillLeftX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthFillLeftA "}

Fills left from the rightmost cell or cells in the specified range. The contents and formatting of the cell
or cells in the rightmost column of a range are copied into the rest of the columns in the range.

Syntax
expression.FillLeft
expression Required. An expression that returns a Range object.

FillLeft Method Example

This example fills the range A1:M1 on Sheet1, based on the contents of cell M1.
Worksheets("Sheet1").Range("A1:M1").FillLeft

FillRight Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthFillRightC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthFillRightX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthFillRightA "}

Fills right from the leftmost cell or cells in the specified range. The contents and formatting of the cell
or cells in the leftmost column of a range are copied into the rest of the columns in the range.

Syntax
expression.FillRight
expression Required. An expression that returns a Range object.

FillRight Method Example

This example fills the range A1:M1 on Sheet1, based on the contents of cell A1.
Worksheets("Sheet1").Range("A1:M1").FillRight

FillUp Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthFillUpC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthFillUpX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthFillUpA "}

Fills up from the bottom cell or cells in the specified range to the top of the range. The contents and
formatting of the cell or cells in the bottom row of a range are copied into the rest of the rows in the
range.

Syntax
expression.FillUp
expression Required. An expression that returns a Range object.

FillUp Method Example

This example fills the range A1:A10 on Sheet1, based on the contents of cell A10.
Worksheets("Sheet1").Range("A1:A10").FillUp

Find Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthFindC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthFindX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthFindA "}

Finds specific information in a range, and returns a Range object that represents the first cell where
that information is found. Returns Nothing if no match is found. Doesn't affect the selection or the
active cell.

For information about using the Find worksheet function in Visual Basic, see Using Worksheet
Functions in Visual Basic.

Syntax
expression.Find(What, After, LookIn, LookAt, SearchOrder, SearchDirection, MatchCase,

MatchByte)
expression Required. An expression that returns a Range object.
What Required Variant. The data to search for. Can be a string or any Microsoft Excel data type.
After Optional Variant. The cell after which you want to search. This corresponds to the position of

the active cell when a search is done from the user interface. Note that After must be a single cell
in the range. Remember that the search begins after this cell; the specified cell isn't searched until
the method wraps back around to this cell. If this argument isn't specified, the search starts after
the cell in the upper-left corner of the range.

LookIn Optional Variant. Can be one of the following XlFindLookIn constants: xlFormulas,
xlValues, or xlNotes.

LookAt Optional Variant. Can be one of the following XlLookAt constants: xlWhole or xlPart.
SearchOrder Optional Variant. Can be one of the following XlSearchOrder constants: xlByRows

or xlByColumns.
SearchDirection Optional Variant. Can be one of the following XlSearchDirection constants:

xlNext or xlPrevious. The default value is xlNext.
MatchCase Optional Variant. True to make the search case sensitive.
MatchByte Optional Variant. Used only in the Far East version of Microsoft Excel. True to have

double-byte characters match only double-byte characters. False to have double-byte characters
match their single-byte equivalents.

Remarks
The settings for LookIn, LookAt, SearchOrder, MatchCase, and MatchByte are saved each time
you use this method. If you don't specify values for these arguments the next time you call the
method, the saved values are used. Setting these arguments changes the settings in the Find dialog
box, and changing the settings in the Find dialog box changes the saved values that are used if you
omit the arguments. To avoid problems, set these arguments explicitly each time you use this method.

The FindNext and FindPrevious methods can be used to repeat the search.

When the search reaches the end of the specified search range, it wraps around to the beginning of
the range. To stop a search when this wraparound occurs, save the address of the first found cell, and
then test each successive found-cell address against this saved address.

To find cells that match more complicated patterns, use For Each...Next with the Like operator. For
example, the following code searches for all cells in the range A1:C5 that use a font whose name
starts with the letters "Cour". When Microsoft Excel finds a match, it changes the font to Times New
Roman.
For Each c In [A1:C5]

If c.Font.Name Like "Cour*" Then
c.Font.Name = "Times New Roman"

End If

Next

Find Method Example

This example finds all cells in the range A1:A500 that contain the value 2 and makes those cells gray.
With Worksheets(1).Range("a1:a500")
 Set c = .Find(2, lookin:=xlValues)
 If Not c Is Nothing Then
 firstAddress = c.Address
 Do
 c.Interior.Pattern = xlPatternGray50
 Set c = .FindNext(c)
 Loop While Not c Is Nothing And c.Address <> firstAddress
 End If
End With

FindNext Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthFindNextC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthFindNextX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthFindNextA "}

Continues a search that was begun with the Find method. Finds the next cell that matches those
same conditions and returns a Range object that represents that cell. Doesn't affect the selection or
the active cell.

Syntax
expression.FindNext(After)
expression Required. An expression that returns a Range object.
After Optional Variant. The cell after which you want to search. This corresponds to the position of

the active cell when a search is done from the user interface. Note that After must be a single cell
in the range. Remember that the search begins after this cell; the specified cell isn't searched until
the method wraps back around to this cell. If this argument isn't specified, the search starts after
the cell in the upper-left corner of the range.

Remarks
When the search reaches the end of the specified search range, it wraps around to the beginning of
the range. To stop a search when this wraparound occurs, save the address of the first found cell, and
then test each successive found-cell address against this saved address.

FindNext Method Example

This example finds all cells in the range A1:A500 that contain the value 2 and makes those cells gray.
With Worksheets(1).Range("a1:a500")
 Set c = .Find(2, lookin:=xlValues)
 If Not c Is Nothing Then
 firstAddress = c.Address
 Do
 c.Interior.Pattern = xlPatternGray50
 Set c = .FindNext(c)
 Loop While Not c Is Nothing And c.Address <> firstAddress
 End If
End With

FindPrevious Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthFindPreviousC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthFindPreviousX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthFindPreviousA "}

Continues a search that was begun with the Find method. Finds the previous cell that matches those
same conditions and returns a Range object that represents that cell. Doesn't affect the selection or
the active cell.

Syntax
expression.FindPrevious(After)
expression Required. An expression that returns a Range object.
After Optional Variant. The cell before which you want to search. This corresponds to the position

of the active cell when a search is done from the user interface. Note that After must be a single
cell in the range. Remember that the search begins before this cell; the specified cell isn't searched
until the method wraps back around to this cell. If this argument isn't specified, the search starts
before the upper- left cell in the range.

Remarks
When the search reaches the beginning of the specified search range, it wraps around to the end of
the range. To stop a search when this wraparound occurs, save the address of the first found cell, and
then test each successive found-cell address against this saved address.

FindPrevious Method Example

This example shows how the FindPrevious method is used with the Find and FindNext methods.
Before running this example, make sure that Sheet1 contains at least two occurrences of the word
"Phoenix" in column B.
Set fc = Worksheets("Sheet1").Columns("B").Find(what:="Phoenix")

MsgBox "The first occurrence is in cell " & fc.Address
Set fc = Worksheets("Sheet1").Columns("B").FindNext(after:=fc)

MsgBox "The next occurrence is in cell " & fc.Address
Set fc = Worksheets("Sheet1").Columns("B").FindPrevious(after:=fc)

MsgBox "The previous occurrence is in cell " & fc.Address

FormulaArray Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproFormulaArrayC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproFormulaArrayX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproFormulaArrayA "}

Returns or sets the array formula of a range. Returns (or can be set to) a single formula or a Visual
Basic array. If the specified range doesn't contain an array formula, this property returns Null.
Read/write Variant.

Remarks
If you use this property to enter an array formula, the formula must use the R1C1 reference style, not
the A1 reference style (see the second example).

FormulaArray Property Example

This example enters the number 3 as an array constant in cells A1:C5 on Sheet1.
Worksheets("Sheet1").Range("A1:C5").FormulaArray = "=3"
This example enters the array formula =SUM(R1C1:R3C3) in cells E1:E3 on Sheet1.
Worksheets("Sheet1").Range("E1:E3").FormulaArray = _

"=Sum(R1C1:R3C3)"

FormulaHidden Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproFormulaHiddenC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproFormulaHiddenX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproFormulaHiddenA "}

True if the formula will be hidden when the workbook or worksheet is protected. Read/write Boolean.

Remarks
Don't confuse this property with the Hidden property.

FormulaHidden Property Example

This example hides the formulas in column A on Sheet1 when the worksheet is protected.
Worksheets("Sheet1").Columns("A").FormulaHidden = True

GoalSeek Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthGoalSeekC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthGoalSeekX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthGoalSeekA "}

Calculates the values necessary to achieve a specific goal. If the goal is an amount returned by a
formula, this calculates a value that, when supplied to your formula, causes the formula to return the
number you want. Returns True if the goal seek is successful.

Syntax
expression.GoalSeek(Goal, ChangingCell)
expression Required. An expression that returns a Range object. Must be a single cell.
Goal Required Variant. The value you want returned in this cell.
ChangingCell Required Range. Specifies which cell should be changed to achieve the target

value.

GoalSeek Method Example

This example assumes that Sheet1 has a cell named "Polynomial" that contains the formula
=(X^3)+(3*X^2)+6 and another cell named "X" that's empty. The example finds a value for X so that
Polynomial contains the value 15.
Worksheets("Sheet1").Range("Polynomial").GoalSeek _

Goal:=15, _
ChangingCell:=Worksheets("Sheet1").Range("X")

Goto Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthGotoC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthGotoX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthGotoA "}

Selects any range or Visual Basic procedure in any workbook, and activates that workbook if it's not
already active.

Syntax
expression.Goto(Reference, Scroll)
expression Required. An expression that returns an Application object.
Reference Optional Variant. The destination. Can be a Range object, a string that contains a cell

reference in R1C1-style notation, or a string that contains a Visual Basic procedure name. If this
argument is omitted, the destination is the last range you used the Goto method to select.

Scroll Optional Variant. True to scroll through the window so that the upper-left corner of the range
appears in the upper-left corner of the window. False to not scroll through the window. The default
is False.

Remarks
This method differs from the Select method in the following ways:

· If you specify a range on a sheet that's not on top, Microsoft Excel will switch to that sheet before
selecting. (If you use Select with a range on a sheet that's not on top, the range will be selected
but the sheet won't be activated).

· This method has a Scroll argument that lets you scroll through the destination window.
· When you use the Goto method, the previous selection (before the Goto method runs) is added to

the array of previous selections (for more information, see the PreviousSelections property). You
can use this feature to quickly jump between as many as four selections.

· The Select method has a Replace argument; the Goto method doesn't.

Goto Method Example

This example selects cell A154 on Sheet1 and then scrolls through the worksheet to display the
range.
Application.Goto Reference:=Worksheets("Sheet1").Range("A154"), _

scroll:=True

HasArray Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproHasArrayC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproHasArrayX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproHasArrayA "}

True if the specified cell is part of an array formula. Read-only Variant.

HasArray Property Example

This example displays a message if the active cell on Sheet1 is part of an array.
Worksheets("Sheet1").Activate
If ActiveCell.HasArray =True Then

MsgBox "The active cell is part of an array"
End If

HasFormula Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproHasFormulaC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproHasFormulaX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproHasFormulaA "}

True if all cells in the range contain formulas; False if none of the cells in the range contains a
formula; Null otherwise. Read-only Variant.

HasFormula Property Example

This example prompts the user to select a range on Sheet1. If every cell in the selected range
contains a formula, the example displays a message.
Worksheets("Sheet1").Activate
Set rr = Application.InputBox(_

prompt:="Select a range on this worksheet", _
Type:=8)

If rr.HasFormula = True Then
MsgBox "Every cell in the selection contains a formula"

End If

Hidden Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproHiddenC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproHiddenX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproHiddenA "}

Range object: True if the rows or columns are hidden. The specified range must span an entire
column or row. Read/write Variant.
Scenario object: True if the scenario is hidden. The default value is False. Read/write Boolean.

Remarks
Don't confuse this property with the FormulaHidden property.

Hidden Property Example

This example hides column C on Sheet1.
Worksheets("Sheet1").Columns("C").Hidden = True

Justify Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthJustifyC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthJustifyX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthJustifyA "}

Rearranges the text in a range so that it fills the range evenly.

Syntax
expression.Justify
expression Required. An expression that returns a Range object.

Remarks
If the range isn't large enough, Microsoft Excel displays a message telling you that text will extend
below the range. If you click the OK button, justified text will replace the contents in cells that extend
beyond the selected range. To prevent this message from appearing, set the DisplayAlerts property
to False. After you set this property, text will always replace the contents in cells below the range.

Justify Method Example

This example justifies the text in cell A1 on Sheet1.
Worksheets("Sheet1").Range("A1").Justify

ListNames Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthListNamesC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthListNamesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthListNamesA "}

Pastes a list of all nonhidden names onto the worksheet, beginning with the first cell in the range.

Syntax
expression.ListNames
expression Required. An expression that returns a Worksheet object.

Remarks
Use the Names property to return a collection of all the names on a worksheet.

ListNames Method Example

This example pastes a list of defined names into cell A1 on Sheet1. The example pastes both
workbook-level names and sheet-level names defined on Sheet1.
Worksheets("Sheet1").Range("A1").ListNames

Next Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproNextC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproNextX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproNextA "}

Returns a Chart, Range, or Worksheet object that represents the next sheet or cell. Read-only.

Remarks
If the object is a range, this property emulates the TAB key, although the property returns the next cell
without selecting it.

On a protected sheet, this property returns the next unlocked cell. On an unprotected sheet, this
property always returns the cell immediately to the right of the specified cell.

Next Property Example

This example selects the next unlocked cell on Sheet1. If Sheet1 is unprotected, this is the cell
immediately to the right of the active cell.
Worksheets("Sheet1").Activate
ActiveCell.Next.Select

ChangeScenario Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthChangeScenarioC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthChangeScenarioX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthChangeScenarioA "}

Changes the scenario to have a new set of changing cells and (optionally) scenario values.

Syntax
expression.ChangeScenario(ChangingCells, Values)
expression Required. An expression that returns a Scenario object.
ChangingCells Required Variant. A Range object that specifies the new set of changing cells for

the scenario. The changing cells must be on the same sheet as the scenario.
Values Optional Variant. An array that contains the new scenario values for the changing cells. If

this argument is omitted, the scenario values are assumed to be the current values in the changing
cells.

Remarks
If you specify Values, the array must contain an element for each cell in the ChangingCells range;
otherwise, Microsoft Excel generates an error.

ChangeScenario Method Example

This example sets the changing cells for scenario one to the range A1:A10 on Sheet1.
Worksheets("Sheet1").Scenarios(1).ChangeScenario _

Worksheets("Sheet1").Range("A1:A10")

ChangingCells Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproChangingCellsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproChangingCellsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproChangingCellsA "}

Returns a Range object that represents the changing cells for a scenario. Read-only.

ChangingCells Property Example

This example selects the changing cells for scenario one on Sheet1.
Worksheets("Sheet1").Activate
ActiveSheet.Scenarios(1).ChangingCells.Select

CopyPicture Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthCopyPictureC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthCopyPictureX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthCopyPictureA "}

Copies the selected object to the Clipboard as a picture.

Syntax
expression.CopyPicture(Appearance, Format, Size)
expression Required. An expression that returns an object in the Applies To list.
Appearance Optional Variant. Specifies how the picture should be copied. Can be one of the

following XlPictureAppearance constants: xlScreen or xlPrinter. If xlScreen is used, the picture
is copied to resemble its display on the screen as closely as possible. If xlPrinter is used, the
picture is copied as it will look when it's printed. The default value is xlScreen.

Format Optional Variant. The format of the picture. Can be one of the following
XlCopyPictureFormat constants: xlPicture or xlBitmap. The default value is xlPicture.

Size Optional Variant. Used only with Chart objects. The size of the copied picture when the object
is a chart on a chart sheet (not embedded on a worksheet). Can be one of the following
XlPictureAppearance constants: xlScreen or xlPrinter. If xlScreen is used, the picture is copied
to match the size of its display on the screen as closely as possible. If xlPrinter is used, the picture
is copied to match its printed size as closely as possible. The default value is xlPrinter.

Remarks
If you copy a range, it must be made up of adjacent cells.

CopyPicture Method Example

This example copies a screen image of cells A1:D4 on Sheet1 to the Clipboard, and then it pastes the
bitmap to another location on Sheet1.
Worksheets("Sheet1").Range("A1:D4").CopyPicture xlScreen, xlBitmap
Worksheets("Sheet1").Paste _

Destination:=Worksheets("Sheet1").Range("E6")

CreateSummary Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthCreateSummaryC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthCreateSummaryX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthCreateSummaryA "}

Creates a new worksheet that contains a summary report for the scenarios on the specified
worksheet.

Syntax
expression.CreateSummary(ReportType, ResultCells)
expression Required. An expression that returns a Scenarios collection.
ReportType Optional Variant. The report type. Can be one of the following

XlSummaryReportType constants: xlStandardSummary or xlSummaryPivotTable.The default
value is xlStandardSummary.

ResultCells Optional Variant. A Range object that represents the result cells on the specified
worksheet. Normally, this range refers to one or more cells containing the formulas that depend on
the changing cell values for your model ¾ that is, the cells that show the results of a particular
scenario. If this argument is omitted, there are no result cells included in the report.

CreateSummary Method Example

This example creates a summary of the scenarios on Sheet1, with result cells in the range C4:C9 on
Sheet1.
Worksheets("Sheet1").Scenarios.CreateSummary _

ResultCells := Worksheets("Sheet1").Range("C4:C9")

Cut Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthCutC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthCutX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthCutA "}

Cuts the object to the Clipboard or pastes it into a specified destination.

Syntax
expression.Cut(Destination)
expression Required. An expression that returns an object in the Applies To list.
Destination Optional Variant. Used only with Range objects. The range where the object should

be pasted. If this argument is omitted, the object is cut to the Clipboard.

Remarks
The cut range must be made up of adjacent cells.

Only embedded charts can be cut.

Cut Method Example

This example cuts the range A1:G37 on Sheet1 and places it on the Clipboard.
Worksheets("Sheet1").Range("A1:G37").Cut

Delivery Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDeliveryC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDeliveryX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDeliveryA "}

Returns or sets the routing delivery method. Can be one of the following XlRoutingSlipDelivery
constants: xlOneAfterAnother or xlAllAtOnce. Read/write Long.

Remarks
You cannot set this property if routing is in progress

Delivery Property Example

This example sends Book1.xls to three recipients, one after another.
Workbooks("BOOK1.XLS").HasRoutingSlip = True
With Workbooks("BOOK1.XLS").RoutingSlip

.Delivery = xlOneAfterAnother

.Recipients = Array("Adam Bendel", "Jean Selva", "Bernard Gabor")

.Subject = "Here is BOOK1.XLS"

.Message = "Here is the workbook. What do you think?"
End With
Workbooks("BOOK1.XLS").Route

ErrorBar Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthErrorBarC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthErrorBarX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthErrorBarA "}

Applies error bars to the series.

Syntax
expression.ErrorBar(Direction, Include, Type, Amount, MinusValues)
expression Required. An expression that returns a Series object.
Direction Optional Variant. The error bar direction. Can be one of the following

XlErrorBarDirection constants: xlX or xlY. xlX can only be used with scatter charts.The default
value is xlY.

Include Optional Variant. The error bar parts to include. Can be one of the following
XlErrorBarInclude constants: xlErrorBarIncludePlusValues, xlErrorBarIncludeMinusValues,
xlErrorBarIncludeNone, or xlErrorBarIncludeBoth. The default value is
xlErrorBarIncludeBoth.

Type Optional Variant. The error bar type. Can be one of the following XlErrorBarType constants:
xlErrorBarTypeFixedValue, xlErrorBarTypePercent, xlErrorBarTypeStDev,
xlErrorBarTypeStError, or xlErrorBarTypeCustom.

Amount Optional Variant. The error amount. Used for only the positive error amount when Type is
xlErrorBarTypeCustom.

MinusValues Optional Variant. The negative error amount when Type is xlErrorBarTypeCustom.

ErrorBar Method Example

This example applies standard error bars in the Y direction for series one in Chart1. The error bars
are applied in the positive and negative directions. The example should be run on a 2-D line chart.
Charts("Chart1").SeriesCollection(1).ErrorBar _

Direction:=xlY, Include:=xlErrorBarIncludeBoth, _
Type:=xlErrorBarTypeStError

ErrorBars Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproErrorBarsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproErrorBarsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproErrorBarsA "}

Returns an ErrorBars object that represents the error bars for the series. Read-only.

ErrorBars Property Example

This example sets the error bar color for series one in Chart1. The example should be run on a 2-D
line chart that has error bars for series one.
With Charts("Chart1").SeriesCollection(1)

.ErrorBars.Border.ColorIndex = 8
End With

Formula Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproFormulaC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproFormulaX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproFormulaA "}

Returns or sets the object's formula, in A1-style notation and in the language of the macro. Read/write
Variant for Range objects, read/write String for all other objects.

Remarks
If the cell contains a constant, this property returns the constant. If the cell is empty, Formula returns
an empty string. If the cell contains a formula, Formula returns the formula as a string, in the same
format in which it would be displayed in the formula bar (including the equal sign).

If you set the value or formula of a cell to a date, Microsoft Excel checks to see whether that cell is
already formatted with one of the date or time number formats. If not, Microsoft Excel changes the
number format to the default short date number format.

If the range is a one- or two-dimensional range, you can set the formula to a Visual Basic array of the
same dimensions. Similarly, you can put the formula into a Visual Basic array.

Setting the formula for a multiple-cell range fills all cells in the range with the formula.

Formula Property Example

This example sets the formula for cell A1 on Sheet1.
Worksheets("Sheet1").Range("A1").Formula = "=A4+A10"

FunctionWizard Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthFunctionWizardC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthFunctionWizardX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthFunctionWizardA "}

Starts the Function Wizard for the upper-left cell of the range.

Syntax
expression.FunctionWizard
expression Required. An expression that returns a Range object.

 FunctionWizard Method Example

This example starts the Function Wizard for the active cell on Sheet1.
Worksheets("Sheet1").Activate
ActiveCell.FunctionWizard

HasErrorBars Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproHasErrorBarsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproHasErrorBarsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproHasErrorBarsA "}

True if the series has error bars. This property isn't available for 3-D charts. Read/write Boolean.

HasErrorBars Property Example

This example removes error bars from series one in Chart1. The example should be run on a 2-D line
chart that has error bars for series one.
Charts("Chart1").SeriesCollection(1).HasErrorBars = False

HorizontalAlignment Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproHorizontalAlignmentC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproHorizontalAlignmentX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproHorizontalAlignmentA "}

Returns or sets the horizontal alignment for the object. For all objects, this can be one of the following
XlHAlign constants: xlHAlignCenter, xlHAlignDistributed, xlHAlignJustify, xlHAlignLeft, or
xlHAlignRight. In addition, for the Range or Style object, this property can be set to
xlHAlignCenterAcrossSelection, xlHAlignFill, or xlHAlignGeneral. Read/write Long.

Remarks
The xlHAlignDistributed alignment style works only in Far East versions of Microsoft Excel.

HorizontalAlignment Property Example

This example left aligns the range A1:A5 on Sheet1.
Worksheets("Sheet1").Range("A1:A5").HorizontalAlignment = xlLeft

Import Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthImportC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthImportX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthImportA "}

This method should not be used. Sound notes have been removed from Microsoft Excel.

Interior Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproInteriorC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproInteriorX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproInteriorA "}

Returns an Interior object that represents the interior of the specified object. Read-only.

Interior Property Example

This example sets the interior color for cell A1 on Sheet1 to cyan.
Worksheets("Sheet1").Range("A1").Interior.ColorIndex = 8

InvertIfNegative Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproInvertIfNegativeC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproInvertIfNegativeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproInvertIfNegativeA "}

True if Microsoft Excel inverts the pattern in the item when it corresponds to a negative number.
Read/write Variant for the Interior object, read/write Boolean for all other objects.

InvertIfNegative Property Example

This example inverts the pattern for negative values in series one in Chart1. The example should be
run on a 2-D column chart.
Charts("Chart1").SeriesCollection(1).InvertIfNegative = True

Locked Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproLockedC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproLockedX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproLockedA "}

True if the object is locked, False if the object can be modified when the sheet is protected. Returns
Null if the specified range contains both locked and unlocked cells. Read/write Variant for the Range
object; read/write Boolean for all other objects.

Locked Property Example

This example unlocks cells A1:G37 on Sheet1 so that they can be modified when the sheet is
protected.
Worksheets("Sheet1").Range("A1:G37").Locked = False
Worksheets("Sheet1").Protect

Message Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproMessageC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproMessageX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproMessageA "}

Returns or sets the message text for the routing slip. This text is used as the body text of mail
messages that are used to route the workbook. Read/write String.

Message Property Example

This example sends Book1.xls to three recipients, one after another.
Workbooks("BOOK1.XLS").HasRoutingSlip = True
With Workbooks("BOOK1.XLS").RoutingSlip

.Delivery = xlOneAfterAnother

.Recipients = Array("Adam Bendel", "Jean Selva", "Bernard Gabor")

.Subject = "Here is BOOK1.XLS"

.Message = "Here is the workbook. What do you think?"
End With
Workbooks("BOOK1.XLS").Route

NumberFormat Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproNumberFormatC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproNumberFormatX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproNumberFormatA "}

Returns or sets the format code for the object. Returns Null if all cells in the specified range don't
have the same number format. Read/write Variant for the Range object, read/write String for all
other objects.

Remarks
For the PivotField object, you can set the NumberFormat property only for a data field.

The format code is the same string as the Format Codes option in the Format Cells dialog box. The
Format function uses different format code strings than do the NumberFormat and
NumberFormatLocal properties.

NumberFormat Property Example

These examples set the number format for cell A17, row one, and column C (respectively) on Sheet1.
Worksheets("Sheet1").Range("A17").NumberFormat = "General"
Worksheets("Sheet1").Rows(1).NumberFormat = "hh:mm:ss"
Worksheets("Sheet1").Columns("C"). _

NumberFormat = "$#,##0.00_);[Red]($#,##0.00)"

Play Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthPlayC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthPlayX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthPlayA "}

This method should not be used. Sound notes have been removed from Microsoft Excel.

PlotOrder Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPlotOrderC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPlotOrderX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPlotOrderA "}

Returns or sets the plot order for the selected series within the chart group. Read/write Long.

Remarks
You can set plot order only within a chart group (you cannot set the plot order for the entire chart if
you have more than one chart type). A chart group is a collection of series with the same chart type.

Changing the plot order of one series will cause the plot orders of the other series in the chart group
to be adjusted, as necessary.

PlotOrder Property Example

This example makes series two in Chart1 appear third in the plot order. The example should be run
on a 2-D column chart that contains three or more series.
Charts("Chart1").ChartGroups(1).SeriesCollection(2).PlotOrder = 3

Points Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthPointsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthPointsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthPointsA "}

Returns an object that represents a single point (a Point object, Syntax 1) or a collection of all the
points (a Points object, Syntax 2) in the series. Read-only.

Syntax 1
expression.Points(Index)
Syntax 2
expression.Points
expression Required. An expression that returns a Series object.
Index Optional Variant. The name or number of the point.

Points Method Example

This example applies a data label to point one in series one in Chart1.
Charts("Chart1").SeriesCollection(1).Points(1).ApplyDataLabels

Previous Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPreviousC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPreviousX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPreviousA "}

Returns a Chart, Range, or Worksheet object that represents the previous sheet or cell. Read-only.

Remarks
If the object is a range, this property emulates pressing SHIFT+TAB; unlike the key combination,
however, the property returns the previous cell without selecting it.

On a protected sheet, this property returns the previous unlocked cell. On an unprotected sheet, this
property always returns the cell immediately to the left of the specified cell.

Previous Property Example

This example selects the previous unlocked cell on Sheet1. If Sheet1 is unprotected, this is the cell
immediately to the left of the active cell.
Worksheets("Sheet1").Activate
ActiveCell.Previous.Select

Record Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthRecordC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthRecordX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthRecordA "}

This method should not be used. Sound notes have been removed from Microsoft Excel.

RemoveSubtotal Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthRemoveSubtotalC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthRemoveSubtotalX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthRemoveSubtotalA "}

Removes subtotals from a list.

Syntax
expression.RemoveSubtotal
expression Required. An expression that returns a Range object.

RemoveSubtotal Method Example

This example removes subtotals from the range A1:G37 on Sheet1. The example should be run on a
list that has subtotals.
Worksheets("Sheet1").Range("A1:G37").RemoveSubtotal

Replace Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthReplaceC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthReplaceX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthReplaceA "}

Finds and replaces characters in cells within a range. Doesn't change the selection or the active cell.

For information about using the Replace worksheet function in Visual Basic, see Using Worksheet
Functions in Visual Basic.

Syntax
expression.Replace(What, Replacement, LookAt, SearchOrder, MatchCase, MatchByte)
expression Required. An expression that returns a Range object.
What Required String. The string to search for.
Replacement Required String. The replacement string.
LookAt Optional Variant. Can be one of the following XlLookAt constants: xlWhole or xlPart.
SearchOrder Optional Variant. Can be one of the following XlSearchOrder constants: xlByRows

or xlByColumns.
MatchCase Optional Variant. True to make the search case sensitive.
MatchByte Optional Variant. Used only in Far East versions of Microsoft Excel. True to have

double-byte characters match only double-byte characters. False to have double-byte characters
match their single-byte equivalents.

Remarks
The settings for LookAt, SearchOrder, MatchCase, and MatchByte are saved each time you use
this method. If you don't specify values for these arguments the next time you call the method, the
saved values are used. Setting these arguments changes the settings in the Find dialog box, and
changing the settings in the Find dialog box changes the saved values that are used if you omit the
arguments. To avoid problems, set these arguments explicitly each time you use this method.

If the contents of the What argument are found in at least one cell on the sheet, this method returns
True.

Replace Method Example

This example replaces every occurrence of the function SIN with the function COS. The replacement
range is column A on Sheet1.
Worksheets("Sheet1").Columns("A").Replace _

What:="SIN", Replacement:="COS", _
SearchOrder:=xlByColumns, MatchCase:=True

Reset Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthResetC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthResetX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthResetA "}

Resets the routing slip so that a new routing can be initiated with the same slip (using the same
recipient list and delivery information). The routing must be completed before you use this method.
Using this method at other times causes an error.

Syntax
expression.Reset
expression Required. An expression that returns a RoutingSlip object.

Reset Method Example

This example resets the routing slip for Book1.xls if routing has been completed.
With Workbooks("BOOK1.XLS").RoutingSlip

If .Status = xlRoutingComplete Then
.Reset

Else
MsgBox "Cannot reset routing; not yet complete"

End If
End With

Resize Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproResizeC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproResizeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproResizeA "}

Resizes the specified range. Returns a Range object that represents the resized range.

Syntax
expression.Resize(RowSize, ColumnSize)
expression Required. An expression that returns a Range object to be resized.
RowSize Optional Variant. The number of rows in the new range. If this argument is omitted, the

number of rows in the range remains the same.
ColumnSize Optional Variant. The number of columns in the new range. If this argument is

omitted, the number of columns in the range remains the same.

Resize Property Example

This example resizes the selection on Sheet1 to extend it by one row and one column.
Worksheets("Sheet1").Activate
numRows = Selection.Rows.Count
numColumns = Selection.Columns.Count
Selection.Resize(numRows + 1, numColumns + 1).Select
This example assumes that you have a table on Sheet1 that has a header row. The example selects
the table, without selecting the header row. The active cell must be somewhere in the table before you
run the example.
Set tbl = ActiveCell.CurrentRegion
tbl.Offset(1, 0).Resize(tbl.Rows.Count - 1, tbl.Columns.Count).Select

ReturnWhenDone Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproReturnWhenDoneC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproReturnWhenDoneX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproReturnWhenDoneA "}

True if the workbook is returned to the sender when routing is finished. Read/write Boolean.

Remarks
You cannot set this property if routing is in progress

ReturnWhenDone Property Example

This example sends Book1.xls to three recipients, one after another, and then it returns the workbook
to the sender when routing has been completed.
Workbooks("BOOK1.XLS").HasRoutingSlip = True
With Workbooks("BOOK1.XLS").RoutingSlip

.Delivery = xlOneAfterAnother

.Recipients = Array("Adam Bendel", "Jean Selva", "Bernard Gabor")

.Subject = "Here is BOOK1.XLS"

.Message = "Here is the workbook. What do you think?"

.ReturnWhenDone = True
End With
Workbooks("BOOK1.XLS").Route

Row Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproRowC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproRowX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproRowA "}

Returns the number of the first row of the first area in the range. Read-only Long.

Row Property Example

This example sets the row height of every other row on Sheet1 to 4 points.
For Each rw In Worksheets("Sheet1").Rows

If rw.Row Mod 2 = 0 Then
rw.RowHeight = 4

End If
Next rw

RowDifferences Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthRowDifferencesC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthRowDifferencesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthRowDifferencesA "}

Returns a Range object that represents all the cells whose contents are different from those of the
comparison cell in each row.

Syntax
expression.RowDifferences(Comparison)
expression Required. An expression that returns a range containing the cells to be compared.
Comparison Required Variant. A single cell to compare with the specified range.

RowDifferences Method Example

This example selects the cells in row one on Sheet1 whose contents are different from those of cell
D1.
Worksheets("Sheet1").Activate
Set c1 = ActiveSheet.Rows(1).RowDifferences(_

comparison:=ActiveSheet.Range("D1"))
c1.Select

RowHeight Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproRowHeightC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproRowHeightX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproRowHeightA "}

Returns the height of all the rows in the range specified, measured in points. Returns Null if the rows
in the specified range aren't all the same height. Read/write Variant.

Remarks
For a single row, the value of the Height property is equal to the value of the RowHeight property.
However, you can also use the Height property to return the total height of a range of cells.

Other differences between RowHeight and Height include the following:

· Height is read-only.
· If you return the RowHeight property of several rows, you will either get the row height of each of

the rows (if all the rows are the same height) or Null (if they're different heights). If you return the
Height property of several rows, you will get the total height of all the rows.

RowHeight Property Example

This example doubles the height of row one on Sheet1.
With Worksheets("Sheet1").Rows(1)

.RowHeight = .RowHeight * 2
End With

ShowDependents Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthShowDependentsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthShowDependentsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthShowDependentsA "}

Draws tracer arrows to the direct dependents of the range.

Syntax
expression.ShowDependents(Remove)
expression Required. An expression that returns a Range object. Must be a single cell.
Remove Optional Variant. True to remove one level of tracer arrows to direct dependents. False to

expand one level of tracer arrows. The default value is False.

ShowDependents Method Example

This example draws tracer arrows to dependents of the active cell on Sheet1.
Worksheets("Sheet1").Activate
ActiveCell.ShowDependents
This example removes the tracer arrow for one level of dependents of the active cell on Sheet1.
Worksheets("Sheet1").Activate
ActiveCell.ShowDependents Remove:=True

ShowErrors Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthShowErrorsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthShowErrorsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthShowErrorsA "}

Draws tracer arrows through the precedents tree to the cell that's the source of the error, and returns
the range that contains that cell.

Syntax
expression.ShowErrors
expression Required. An expression that returns a Range object.

ShowErrors Method Example

This example displays a red tracer arrow if there's an error in the active cell on Sheet1.
Worksheets("Sheet1").Activate
If IsError(ActiveCell.Value) Then

ActiveCell.ShowErrors
End If

ShowPrecedents Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthShowPrecedentsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthShowPrecedentsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthShowPrecedentsA "}

Draws tracer arrows to the direct precedents of the range.

Syntax
expression.ShowPrecedents(Remove)
expression Required. An expression that returns a Range object. Must be a single cell.
Remove Optional Variant. True to remove one level of tracer arrows to direct precedents. False to

expand one level of tracer arrows. The default value is False.

ShowPrecedents Method Example

This example draws tracer arrows to the precedents of the active cell on Sheet1.
Worksheets("Sheet1").Activate
ActiveCell.ShowPrecedents
This example removes the tracer arrow for one level of precedents of the active cell on Sheet1.
Worksheets("Sheet1").Activate
ActiveCell.ShowPrecedents remove:=True

Smooth Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproSmoothC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproSmoothX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproSmoothA "}

True if curve smoothing is turned on for the line chart or scatter chart. Applies only to line and scatter
charts. Read/write.

Smooth Property Example

This example turns on curve smoothing for series one in Chart1. The example should be run on a 2-D
line chart.
Charts("Chart1").SeriesCollection(1).Smooth = True

Sort Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthSortC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthSortX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthSortA "}

Sorts a PivotTable, a range, or the current region (if the specified range contains only one cell).

Syntax
expression.Sort(Key1, Order1, Key2, Type, Order2, Key3, Order3, Header, OrderCustom,

MatchCase, Orientation, SortMethod, IgnoreControlCharacters, IgnoreDiacritics,
IgnoreKashida)

expression Required. An expression that returns a Range object.
Key1 Optional Variant. The first sort field, as either text (a pivot field or range name) or a Range

object ("Dept" or Cells(1, 1), for example).
Order1 Optional Variant. Can be one of the following XlSortOrder constants: xlAscending or

xlDescending. Use xlAscending to sort Key1 in ascending order. Use xlDescending to sort
Key1 in descending order. The default value is xlAscending.

Key2 Optional Variant. The second sort field, as either text (a pivot field or range name) or a
Range object. If this argument is omitted, there's no second sort field. Not used when sorting
PivotTables.

Type Optional Variant. Specifies which elements are sorted. Can be one of the following
XlSortType constants: xlSortValues or xlSortLabels. Used only when sorting PivotTables.

Order2 Optional Variant. Can be one of the following XlSortOrder constants: xlAscending or
xlDescending. Use xlAscending to sort Key2 in ascending order. Use xlDescending to sort
Key2 in descending order. The default value is xlAscending. Not used when sorting PivotTables.

Key3 Optional Variant. The third sort field, as either text (a range name) or a Range object. If this
argument is omitted, there's no third sort field. Not used when sorting PivotTables.

Order3 Optional Variant. Can be one of the following XlSortOrder constants: xlAscending or
xlDescending. Use xlAscending to sort Key3 in ascending order. Use xlDescending to sort
Key3 in descending order. The default value is xlAscending. Not used when sorting PivotTables.

Header Optional Variant. Specifies whether the first row contains headers. Can be one of the
following XlYesNoGuess constants: xlYes, xlNo, or xlGuess. Use xlYes if the first row contains
headers (it shouldn't be sorted). Use xlNo if there are no headers (the entire range should be
sorted). Use xlGuess to let Microsoft Excel determine whether there's a header, and to determine
where it is, if there is one. The default value is xlNo. Not used when sorting PivotTables.

OrderCustom Optional Variant. A 1-based integer offset nto the list of custom sort orders. If this
argument is omitted, 1 (Normal) is used.

MatchCase Optional Variant. True to do a case-sensitive sort; False to do a sort that's not case
sensitive. Not used when sorting PivotTables.

Orientation Optional Variant. If xlTopToBottom is used, the sort is done from top to bottom (by
row). If xlLeftToRight is used, the sort is done from left to right (by column).

SortMethod Optional Variant. The type of sort. Can be one of the following XlSortMethod
constants: xlSyllabary (to sort phonetically) or xlCodePage (to sort by code page). The default
value is xlSyllabary.

IgnoreControlCharacters Optional Variant. Not used in US/English Microsoft Excel.
IgnoreDiacritics Optional Variant. Not used in US/English Microsoft Excel.
IgnoreKashida Optional Variant. Not used in US/English Microsoft Excel.

Sort Method Example

This example sorts the range A1:C20 on Sheet1, using cell A1 as the first sort key and cell B1 as the
second sort key. The sort is done in ascending order by row, and there are no headers.
Worksheets("Sheet1").Range("A1:C20").Sort _

Key1:=Worksheets("Sheet1").Range("A1"), _
Key2:=Worksheets("Sheet1").Range("B1")

This example sorts the current region that contains cell A1 on Sheet1, sorting by the data in the first
column and automatically using a header row if one exists. The Sort method determines the current
region automatically.
Worksheets("Sheet1").Range("A1").Sort _

Key1:=Worksheets("Sheet1").Columns("A"), _
Header:=xlGuess

SoundNote Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproSoundNoteC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproSoundNoteX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproSoundNoteA "}

This property should not be used. Sound notes have been removed from Microsoft Excel.

Status Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproStatusC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproStatusX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproStatusA "}

Indicates the status of the routing slip. Can be one of the following XlRoutingSlipStatus constants:
xlNotYetRouted, xlRoutingInProgress, or xlRoutingComplete. Read-only Long.

Status Property Example

This example resets the routing slip for Book1.xls if routing has been completed.
With Workbooks("BOOK1.XLS").RoutingSlip

If .Status = xlRoutingComplete Then
.Reset

Else
MsgBox "Cannot reset routing; not yet complete."

End If
End With

Style Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproStyleC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproStyleX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproStyleA "}

Returns a Style object that represents the style of the specified range. Read-only.

Style Property Example

This example applies the Normal style to cell A1 on Sheet1.
Worksheets("Sheet1").Range("A1").Style.Name = "Normal"
If cell B4 on Sheet1 currently has the Normal style applied, this example applies the Percent style.
If Worksheets("Sheet1").Range("B4").Style.Name = "Normal" Then

Worksheets("Sheet1").Range("B4").Style.Name = "Percent"
End If

SubscribeTo Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthSubscribeToC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthSubscribeToX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthSubscribeToA "}

Macintosh only. Subscribes to a published edition.

Syntax
expression.SubscribeTo(Edition, Format)
expression Required. An expression that returns a Range object.
Edition Required String. The name of the edition to which you want to subscribe.
Format Optional Variant. Can be one of the following XlSubscribeToFormat constants:

xlSubscribeToPicture or xlSubscribeToText.

SubscribeTo Method Example

This example subscribes to the "stock data" publisher.
Worksheets("Sheet1").Range("D1").SubscribeTo "stock data"

Subtotal Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthSubtotalC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthSubtotalX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthSubtotalA "}

Creates subtotals for the range (or the current region, if the range is a single cell).

For information about using the Subtotal worksheet function in Visual Basic, see Using Worksheet
Functions in Visual Basic.

Syntax
expression.Subtotal(GroupBy, Function, TotalList, Replace, PageBreaks, SummaryBelowData)
expression Required. An expression that returns a Range object.
GroupBy Required Long. The field to group by, as a 1-based integer offset. For more information,

see the example.
Function Required Long. The subtotal function. Can be one of the following

XlConsolidationFunction constants: xlAverage, xlCount, xlCountNums, xlMax, xlMin,
xlProduct, xlStDev, xlStDevP, xlSum, xlVar, or xlVarP.

TotalList Required Variant. An array of 1-based field offsets, indicating the fields to which the
subtotals are added. For more information, see the example.

Replace Optional Variant. True to replace existing subtotals. The default value is False.
PageBreaks Optional Variant. True to add page breaks after each group. The default value is

False.
SummaryBelowData Optional Variant. Can be one of the following xlSummaryRow constants:

xlSummaryAbove or xlSummaryBelow. The default value is xlSummaryBelow.

Subtotal Method Example

This example creates subtotals for the selection on Sheet1. The subtotals are sums grouped by each
change in field one, with the subtotals added to fields two and three.
Worksheets("Sheet1").Activate
Selection.Subtotal groupBy:=1, function:=xlSum, _

totalList:=Array(2, 3)

Summary Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproSummaryC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproSummaryX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproSummaryA "}

True if the range is an outlining summary row or column. The range should be a row or a column.
Read-only Variant.

Summary Property Example

This example formats row four on Sheet1 as bold and italic if it's an outlining summary column.
With Worksheets("Sheet1").Rows(4)

If .Summary = True Then
.Font.Bold = True
.Font.Italic = True

End If
End With

Table Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthTableC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthTableX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthTableA "}

Creates a data table based on input values and formulas that you define on a worksheet.

Syntax
expression.Table(RowInput, ColumnInput)
expression Required. An expression that returns an object in the Applies To list.
RowInput Optional Variant. A single cell to use as the row input for your table.
ColumnInput Optional Variant. A single cell to use as the column input for your table.

Remarks
Use data tables to perform a what-if analysis by changing certain constant values on your worksheet
to see how values in other cells are affected.

Table Method Example

This example creates a formatted multiplication table in cells A1:K11 on Sheet1.
Set dataTableRange = Worksheets("Sheet1").Range("A1:K11")
Set rowInputCell = Worksheets("Sheet1").Range("A12")
Set columnInputCell = Worksheets("Sheet1").Range("A13")

Worksheets("Sheet1").Range("A1").Formula = "=A12*A13"
For i = 2 To 11

Worksheets("Sheet1").Cells(i, 1) = i - 1
Worksheets("Sheet1").Cells(1, i) = i - 1

Next i
dataTableRange.Table rowInputCell, columnInputCell
With Worksheets("Sheet1").Range("A1").CurrentRegion

.Rows(1).Font.Bold = True

.Columns(1).Font.Bold = True

.Columns.AutoFit
End With

TrackStatus Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproTrackStatusC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproTrackStatusX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproTrackStatusA "}

True if status tracking is enabled for the routing slip. Read/write Boolean.

Remarks
You cannot set this property if routing is in progress

TrackStatus Property Example

This example sends Book1.xls to three recipients, with status tracking enabled.
Workbooks("BOOK1.XLS").HasRoutingSlip = True
With Workbooks("BOOK1.XLS").RoutingSlip

.Delivery = xlOneAfterAnother

.Recipients = Array("Adam Bendel", "Jean Selva", "Bernard Gabor")

.Subject = "Here is BOOK1.XLS"

.Message = "Here is the workbook. What do you think?"

.ReturnWhenDone = True

.TrackStatus = True
End With
Workbooks("BOOK1.XLS").Route

Trendlines Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthTrendlinesC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthTrendlinesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthTrendlinesA "}

Returns an object that represents a single trendline (a Trendline object, Syntax 1) or a collection of
all the trendlines (a Trendlines object, Syntax 2) for the series.

Syntax 1
object.Trendlines(Index)
Syntax 2
object.Trendlines
object Required. The Series object.
Index Optional Variant. The name or number of the trendline.

Trendlines Method Example

This example adds a linear trendline to series one in Chart1.
Charts("Chart1").SeriesCollection(1).Trendlines.Add Type:=xlLinear

UseStandardHeight Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproUseStandardHeightC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproUseStandardHeightX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproUseStandardHeightA "}

True if the row height of the Range object equals the standard height of the sheet. Returns Null if the
range contains more than one row and the rows aren't all the same height. Read/write Variant.

UseStandardHeight Property Example

This example sets the height of row one on Sheet1 to the standard height.
Worksheets("Sheet1").Rows(1).UseStandardHeight = True

UseStandardWidth Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproUseStandardWidthC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproUseStandardWidthX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproUseStandardWidthA "}

True if the column width of the Range object equals the standard width of the sheet. Returns Null if
the range contains more than one column and the columns aren't all the same width. Read/write
Variant.

UseStandardWidth Property Example

This example sets the width of column A on Sheet1 to the standard width.
Worksheets("Sheet1").Columns("A").UseStandardWidth = True

Values Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproValuesC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproValuesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproValuesA "}

Scenario object: Returns an array that contains the current values of the changing cells for the
scenario. Read-only Variant.
Series object: Returns or sets a collection of all the values in the series. This can be a range on a
worksheet or an array of constant values, but not a combination of both. See the examples for details.
Read/write Variant.

Values Property Example

This example sets the series values from a range.
Charts("Chart1").SeriesCollection(1).Values = _

Worksheets("Sheet1").Range("C5:T5")
To assign a constant value to each individual data point, you must use an array.
Charts("Chart1").SeriesCollection(1).Values = _

Array(1, 3, 5, 7, 11, 13, 17, 19)

VerticalAlignment Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproVerticalAlignmentC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproVerticalAlignmentX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproVerticalAlignmentA "}

Returns or sets the vertical alignment of the object. Can be one of the following XlVAlign constants:
xlVAlignBottom, xlVAlignCenter, xlVAlignDistributed, xlVAlignJustify, or xlVAlignTop.
Read/write Long.

Remarks
The xlVAlignDistributed alignment style works only in Far East versions of Microsoft Excel.

VerticalAlignment Property Example

This example sets the height of row two on Sheet1 to twice the standard height and then centers the
contents of the row vertically.
Worksheets("Sheet1").Rows(2).RowHeight = _

2 * Worksheets("Sheet1").StandardHeight
Worksheets("Sheet1").Rows(2).VerticalAlignment = xlVAlignCenter

Worksheet Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproWorksheetC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproWorksheetX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproWorksheetA "}

Returns a Worksheet object that represents the worksheet containing the specified range. Read-only.

Worksheet Property Example

This example displays the name of the worksheet that contains the active cell. The example must be
run from a worksheet.
MsgBox ActiveCell.Worksheet.Name
This example displays the name of the worksheet that contains the range named "testRange."
MsgBox Range("testRange").Worksheet.Name

WrapText Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproWrapTextC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproWrapTextX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproWrapTextA "}

True if Microsoft Excel wraps the text in the object. Returns Null if the specified range contains some
cells that wrap text and other cells that don't. Read/write Variant for the Range object, read/write
Boolean for the Style object.

Remarks
Microsoft Excel will change the row height of the range, if necessary, to accommodate the text in the
range.

WrapText Property Example

This example formats cell B2 on Sheet1 so that the text wraps within the cell.
Worksheets("Sheet1").Range("B2").Value = _

"This text should wrap in a cell."
Worksheets("Sheet1").Range("B2").WrapText = True

Using Microsoft Excel Worksheet Functions in Visual Basic
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmscUsingWorksheetFunctionsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmscUsingWorksheetFunctionsX":1}

You can use most Microsoft Excel worksheet functions in your Visual Basic statements. To see a list
of the worksheet functions you can use, see List of Worksheet Functions Available to Visual Basic.

Note Some worksheet functions aren't useful in Visual Basic. For example, the Concatenate
function isn't needed because in Visual Basic you can use the & operator to join multiple text values.

Calling a Worksheet Function from Visual Basic
In Visual Basic, the Microsoft Excel worksheet functions are available through the
WorksheetFunction object.

The following Sub procedure uses the Min worksheet function to determine the smallest value in a
range of cells. First, the variable myRange is declared as a Range object, and then it's set to range
A1:C10 on Sheet1. Another variable, answer, is assigned the result of applying the Min function to
myRange. Finally, the value of answer is displayed in a message box.

Sub UseFunction()
Dim myRange As Range
Set myRange = Worksheets("Sheet1").Range("A1:C10")
answer = Application.WorksheetFunction.Min(myRange)
MsgBox answer

End Sub
If you use a worksheet function that requires a range reference as an argument, you must specify a
Range object. For example, you can use the Match worksheet function to search a range of cells. In
a worksheet cell, you would enter a formula such as =MATCH(9,A1:A10,0). However, in a Visual
Basic procedure, you would specify a Range object to get the same result.
Sub FindFirst()

myVar = Application.WorksheetFunction _
.Match(9, Worksheets(1).Range("A1:A10"), 0)

MsgBox myVar
End Sub
Note Visual Basic functions don't use the WorksheetFunction qualifier. A function may have the
same name as a Microsoft Excel function and yet work differently. For example,
Application.WorksheetFunction.Log and Log will return different values.

Inserting a Worksheet Function into a Cell
To insert a worksheet function into a cell, you specify the function as the value of the Formula
property of the corresponding Range object. In the following example, the RAND worksheet function
(which generates a random number) is assigned to the Formula property of range A1:B3 on Sheet1
in the active workbook.
Sub InsertFormula()

Worksheets("Sheet1").Range("A1:B3").Formula = "=RAND()"
End Sub

Example of Using Worksheet Functions in Visual Basic

This example uses the worksheet function Pmt to calculate a home mortgage loan payment. Notice
that this example uses the InputBox method instead of the InputBox function so that the method can
perform type checking. The Static statements cause Visual Basic to retain the values of the three
variables; these are displayed as default values the next time you run the program.
Static loanAmt
Static loanInt
Static loanTerm
loanAmt = Application.InputBox _

(Prompt:="Loan amount (100,000 for example)", _
Default:=loanAmt, Type:=1)

loanInt = Application.InputBox _
(Prompt:="Annual interest rate (8.75 for example)", _

Default:=loanInt, Type:=1)
loanTerm = Application.InputBox _

(Prompt:="Term in years (30 for example)", _
Default:=loanTerm, Type:=1)

payment = Application.WorksheetFunction _
.Pmt(loanInt / 1200, loanTerm * 12, loanAmt)

MsgBox "Monthly payment is " & Format(payment, "Currency")

List of Worksheet Functions Available to Visual Basic

{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmscListOfWorksheetFunctionsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmscListOfWorksheetFunctionsX":1}

A
Acos

Acosh

And

Asin

Asinh

Atan2

Atanh

AveDev

Average

B
BetaDist

BetaInv

BinomDist

C
Ceiling

ChiDist

ChiInv

ChiTest

Choose

Clean

Combin

Confidence

Correl

Cosh

Count

CountA

CountBlank

CountIf

Covar

CritBinom

D
DAverage

Days360

Db

DCount

DCountA

Ddb

Degrees

DevSq

DGet

DMax

DMin

Dollar

DProduct

DStDev

DStDevP

DSum

DVar

DVarP

E
Even

ExponDist

F
Fact

FDist

Find

FindB

FInv

Fisher

FisherInv

Fixed

Floor

Forecast

Frequency

FTest

Fv

G
GammaDist

GammaInv

GammaLn

GeoMean

Growth

H
HarMean

HLookup

HypGeomDist

I
Index

Intercept

Ipmt

Irr

IsErr

IsError

IsLogical

IsNA

IsNonText

IsNumber

Ispmt

IsText

J

K
Kurt

L
Large

LinEst

Ln

Log

Log10

LogEst

LogInv

LogNormDist

Lookup

M
Match

Max

MDeterm

Median

Min

MInverse

MIrr

MMult

Mode

N
NegBinomDist

NormDist

NormInv

NormSDist

NormSInv

NPer

Npv

O
Odd

Or

P
Pearson

Percentile

PercentRank

Permut

Pi

Pmt

Poisson

Power

Ppmt

Prob

Product

Proper

Pv

Q
Quartile

R
Radians

Rank

Rate

Replace

ReplaceB

Rept

Roman

Round

RoundDown

RoundUp

RSq

S

Search

SearchB

Sinh

Skew

Sln

Slope

Small

Standardize

StDev

StDevP

StEyx

Substitute

Subtotal

Sum

SumIf

SumProduct

SumSq

SumX2MY2

SumX2PY2

SumXMY2

Syd

T
Tanh

TDist

Text

TInv

Transpose

Trend

Trim

TrimMean

TTest

U
USDollar

V
Var

VarP

Vdb

VLookup

W
Weekday

Weibull

X

Y

Z
ZTest

This is a worksheet function that's available only in Far East versions of Microsoft Excel.

ActivePane Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproActivePaneC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproActivePaneX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproActivePaneA "}

Returns a Pane object that represents the active pane in the window. Read-only.

Remarks
This property can be used only on worksheets and macro sheets.

This property returns a Pane object. You must use the Index property to obtain the index of the active
pane.

ActivePane Property Example

This example activates the next pane of the active window in Book1.xls. You cannot activate the next
pane if the panes are frozen. The example must be run from a workbook other than Book1.xls. Before
running the example, make sure that Book1.xls has either two or four panes in the active worksheet.
Workbooks("BOOK1.XLS").Activate
If not ActiveWindow.FreezePanes Then

With ActiveWindow
i = .ActivePane.Index
If i = .Panes.Count Then

.Panes(1).Activate
Else

.Panes(i+1).Activate
End If

End With
End If

Arrange Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthArrangeC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthArrangeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthArrangeA "}

Arranges the windows on the screen.

Syntax
expression.Arrange(ArrangeStyle, ActiveWorkbook, SyncHorizontal, SyncVertical)
expression Required. An expression that returns a Windows object.
ArrangeStyle Optional Variant. Can be one of the following XlArrangeStyle constants.

Constant Description
xlArrangeStyleTiled Windows are tiled (the default value).
xlArrangeStyleCascade Windows are cascaded.
xlArrangeStyleHorizontal Windows are arranged horizontally.
xlArrangeStyleVertical Windows are arranged vertically.

ActiveWorkbook Optional Variant. True to arrange only the visible windows of the active
workbook. False to arrange all windows. The default value is False.

SyncHorizontal Optional Variant. Ignored if ActiveWorkbook is False or omitted. True to
synchronize the windows of the active workbook when scrolling horizontally. False to not
synchronize the windows. The default value is False.

SyncVertical Optional Variant. Ignored if ActiveWorkbook is False or omitted. True to
synchronize the windows of the active workbook when scrolling vertically. False to not synchronize
the windows. The default value is False.

Arrange Method Example

This example tiles all the windows in the application.
Application.Windows.Arrange ArrangeStyle:=xlArrangeStyleTiled

Cell Error Values
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmscCellErrorValuesC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmscCellErrorValuesX ":1}

You can insert a cell error value into a cell or test the value of a cell for an error value by using the
CVErr function. The cell error values can be one of the following XlCVError constants.

Constant Error number Cell error value
xlErrDiv0 2007 #DIV/0!
xlErrNA 2042 #N/A
xlErrName 2029 #NAME?
xlErrNull 2000 #NULL!
xlErrNum 2036 #NUM!
xlErrRef 2023 #REF!
xlErrValue 2015 #VALUE!

Cell Error Values Example

This example inserts the seven cell error values into cells A1:A7 on Sheet1.
myArray = Array(xlErrDiv0, xlErrNA, xlErrName, xlErrNull, _

xlErrNum, xlErrRef, xlErrValue)
For i = 1 To 7

Worksheets("Sheet1").Cells(i, 1).Value = CVErr(myArray(i - 1))
Next i
This example displays a message if the active cell on Sheet1 contains a cell error value. You can use
this example as a framework for a cell-error-value error handler.
Worksheets("Sheet1").Activate
If IsError(ActiveCell.Value) Then

errval = ActiveCell.Value
Select Case errval

Case CVErr(xlErrDiv0)
MsgBox "#DIV/0! error"

Case CVErr(xlErrNA)
MsgBox "#N/A error"

Case CVErr(xlErrName)
MsgBox "#NAME? error"

Case CVErr(xlErrNull)
MsgBox "#NULL! error"

Case CVErr(xlErrNum)
MsgBox "#NUM! error"

Case CVErr(xlErrRef)
MsgBox "#REF! error"

Case CVErr(xlErrValue)
MsgBox "#VALUE! error"

Case Else
MsgBox "This should never happen!!"

End Select
End If

Date1904 Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDate1904C "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDate1904X":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDate1904A "}

True if the workbook uses the 1904 date system. Read/write Boolean.

Date1904 Property Example

This example causes Microsoft Excel to use the 1904 date system for the active workbook.
ActiveWorkbook.Date1904 = True

DeleteNumberFormat Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthDeleteNumberFormatC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthDeleteNumberFormatX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlmthDeleteNumberFormatA "}

Deletes a custom number format from the workbook.

Syntax
expression.DeleteNumberFormat(NumberFormat)
expression Required. An expression that returns a Workbook object.
NumberFormat Required String. Names the number format to be deleted.

DeleteNumberFormat Method Example

This example deletes the number format "000-00-0000" from the active workbook.
ActiveWorkbook.DeleteNumberFormat("000-00-0000")

DisplayDrawingObjects Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDisplayDrawingObjectsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDisplayDrawingObjectsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproDisplayDrawingObjectsA "}

Returns or sets how shapes are displayed. Read/write Long.

Can be one of the following XlDisplayShapes constants.

Constant Description
xlDisplayShapes Show all shapes.
xlPlaceholders Show only placeholders.
xlHide Hide all shapes.

DisplayDrawingObjects Property Example

This example hides all the shapes in the active workbook.
ActiveWorkbook.DisplayDrawingObjects = xlHide

DisplayFormulas Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDisplayFormulasC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDisplayFormulasX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDisplayFormulasA "}

True if the window is displaying formulas, False if the window is displaying values. Read/write
Boolean.

Remarks
This property applies only to worksheets and macro sheets.

DisplayFormulas Property Example

This example changes the active window in Book1.xls to display formulas.
Workbooks("BOOK1.XLS").Worksheets("Sheet1").Activate
ActiveWindow.DisplayFormulas = True

DisplayGridlines Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDisplayGridlinesC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDisplayGridlinesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDisplayGridlinesA "}

True if gridlines are displayed. Read/write Boolean.

Remarks
This property applies only to worksheets and macro sheets.

This property affects only displayed gridlines. Use the PrintGridlines property to control the printing
of gridlines.

DisplayGridlines Property Example

This example toggles the display of gridlines in the active window in Book1.xls.
Workbooks("BOOK1.XLS").Worksheets("Sheet1").Activate
ActiveWindow.DisplayGridlines = Not(ActiveWindow.DisplayGridlines)

DisplayHeadings Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDisplayHeadingsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDisplayHeadingsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDisplayHeadingsA "}

True if both row and column headings are displayed, False if there are no headings displayed.
Read/write Boolean.

Remarks
This property applies only to worksheets and macro sheets.

This property affects only displayed headings. Use the PrintHeadings property to control the printing
of headings.

DisplayHeadings Property Example

This example turns off the display of row and column headings in the active window in Book1.xls.
Workbooks("BOOK1.XLS").Worksheets("Sheet1").Activate
ActiveWindow.DisplayHeadings = False

DisplayOutline Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDisplayOutlineC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDisplayOutlineX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDisplayOutlineA "}

True if outline symbols are displayed. Read/write Boolean.

Remarks
This property applies only to worksheets and macro sheets.

DisplayOutline Property Example

This example displays outline symbols for the active window in Book1.xls.
Workbooks("BOOK1.XLS").Worksheets("Sheet1").Activate
ActiveWindow.DisplayOutline = True

DisplayZeros Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDisplayZerosC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDisplayZerosX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDisplayZerosA "}

True if zero values are displayed. Read/write Boolean.

Remarks
This property applies only to worksheets and macro sheets.

DisplayZeros Property Example

This example sets the active window in Book1.xls to display zero values.
Workbooks("BOOK1.XLS").Worksheets("Sheet1").Activate
ActiveWindow.DisplayZeros = True

FreezePanes Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproFreezePanesC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproFreezePanesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproFreezePanesA "}

True if split panes are frozen. Read/write Boolean.

Remarks
It's possible for FreezePanes to be True and Split to be False, or vice versa.

This property applies only to worksheets and macro sheets.

FreezePanes Property Example

This example freezes split panes in the active window in Book1.xls.
Workbooks("BOOK1.XLS").Worksheets("Sheet1").Activate
ActiveWindow.FreezePanes = True

GridlineColor Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproGridlineColorC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproGridlineColorX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproGridlineColorA "}

Returns or sets the gridline color as an RGB value. Read/write Long.

GridlineColor Property Example

This example sets the gridline color in the active window in Book1.xls to red.
Workbooks("BOOK1.XLS").Worksheets("Sheet1").Activate
ActiveWindow.GridlineColor = RGB(255,0,0)

IncludeAlignment Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproIncludeAlignmentC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproIncludeAlignmentX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproIncludeAlignmentA "}

True if the style includes the AddIndent, HorizontalAlignment, VerticalAlignment, WrapText, and
Orientation properties. Read/write Boolean.

IncludeAlignment Property Example

This example sets the style attached to cell A1 on Sheet1 to include alignment format.
Worksheets("Sheet1").Range("A1").Style.IncludeAlignment = True

IncludeBorder Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproIncludeBorderC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproIncludeBorderX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproIncludeBorderA "}

True if the style includes the Color, ColorIndex, LineStyle, and Weight border properties.
Read/write Boolean.

IncludeBorder Property Example

This example sets the style attached to cell A1 on Sheet1 to include border format.
Worksheets("Sheet1").Range("A1").Style.IncludeBorder = True

IncludeFont Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproIncludeFontC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproIncludeFontX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproIncludeFontA "}

True if the style includes the Background, Bold, Color, ColorIndex, FontStyle, Italic, Name,
OutlineFont, Shadow, Size, Strikethrough, Subscript, Superscript, and Underline font properties.
Read/write Boolean.

IncludeFont Property Example

This example sets the style attached to cell A1 on Sheet1 to include font format.
Worksheets("Sheet1").Range("A1").Style.IncludeFont = True

IncludeNumber Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproIncludeNumberC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproIncludeNumberX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproIncludeNumberA "}

True if the style includes the NumberFormat property. Read/write Boolean

IncludeNumber Property Example

This example sets the style attached to cell A1 on Sheet1 to include number format.
Worksheets("Sheet1").Range("A1").Style.IncludeNumber = True

IncludePatterns Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproIncludePatternsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproIncludePatternsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproIncludePatternsA "}

True if the style includes the Color, ColorIndex, InvertIfNegative, Pattern, PatternColor, and
PatternColorIndex interior properties. Read/write Boolean.

IncludePatterns Property Example

This example sets the style attached to cell A1 on Sheet1 to include pattern format.
Worksheets("Sheet1").Range("A1").Style.IncludePatterns = True

IncludeProtection Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproIncludeProtectionC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproIncludeProtectionX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproIncludeProtectionA "}

True if the style includes the FormulaHidden and Locked protection properties. Read/write
Boolean.

IncludeProtection Property Example

This example sets the style attached to cell A1 on Sheet1 to include protection format.
Worksheets("Sheet1").Range("A1").Style.IncludeProtection = True

PrecisionAsDisplayed Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPrecisionAsDisplayedC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPrecisionAsDisplayedX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproPrecisionAsDisplayedA "}

True if calculations in this workbook will be done using only the precision of the numbers as they're
displayed. Read/write Boolean.

PrecisionAsDisplayed Property Example

This example causes calculations in the active workbook to use only the precision of the numbers as
they're displayed.
ActiveWorkbook.PrecisionAsDisplayed = True

SaveLinkValues Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproSaveLinkValuesC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproSaveLinkValuesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproSaveLinkValuesA "}

True if Microsoft Excel saves external link values with the workbook. Read/write Boolean.

SaveLinkValues Property Example

This example causes Microsoft Excel to save external link values with the active workbook.
ActiveWorkbook.SaveLinkValues = True

ShowDataForm Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthShowDataFormC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthShowDataFormX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthShowDataFormA "}

Displays the data form associated with the worksheet.

Syntax
expression.ShowDataForm
expression Required. An expression that returns a Worksheet object.

Remarks
The macro pauses while you're using the data form. When you close the data form, the macro
resumes at the line following the ShowDataForm method.

This method runs the custom data form, if one exists.

ShowDataForm Method Example

This example displays the data form for Sheet1.
Worksheets(1).ShowDataForm

SpecialCells Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthSpecialCellsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthSpecialCellsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthSpecialCellsA "}

Returns a Range object that represents all the cells that match the specified type and value.

Syntax
expression.SpecialCells(Type, Value)
expression Required. An expression that returns a Range object.
Type Required Long. The cells to include. Can be one of the following XlCellType constants.

Constant Description
xlCellTypeNotes Cells containing notes
xlCellTypeConstants Cells containing constants
xlCellTypeFormulas Cells containing formulas
xlCellTypeBlanks Empty cells
xlCellTypeLastCell The last cell in the used range
xlCellTypeVisible All visible cells

Value Optional Variant. If Type is either xlCellTypeConstants or xlCellTypeFormulas, this
argument is used to determine which types of cells to include in the result. These values can be
added together to return more than one type. The default is to select all constants or formulas, no
matter what the type. Can be one of the following XlSpecialCellsValues constants: xlErrors,
xlLogical, xlNumbers, xlTextValues, xlAllFormatConditions, or xlSameFormatConditions.

SpecialCells Method Example

This example selects the last cell in the used range of Sheet1.
Worksheets("Sheet1").Activate
ActiveSheet.Cells.SpecialCells(xlCellTypeLastCell).Activate

Split Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproSplitC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproSplitX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproSplitA "}

True if the window is split. Read/write Boolean.

Remarks
It's possible for FreezePanes to be True and Split to be False, or vice versa.

This property applies only to worksheets and macro sheets.

Split Property Example

This example splits the active window in Book1.xls at cell B2, without freezing panes. This causes the
Split property to return True.
Workbooks("BOOK1.XLS").Worksheets("Sheet1").Activate
With ActiveWindow

.SplitColumn = 2

.SplitRow = 2
End With
This example illustrates two ways of removing the split added by the preceding example.
Workbooks("BOOK1.XLS").Worksheets("Sheet1").Activate
ActiveWindow.Split = False 'method one
Workbooks("BOOK1.XLS").Worksheets("Sheet1").Activate
ActiveWindow.SplitColumn = 0 'method two
ActiveWindow.SplitRow = 0
This example removes the window split. Before you can remove the split, you must set FreezePanes
to False to remove frozen panes.
Workbooks("BOOK1.XLS").Worksheets("Sheet1").Activate
With ActiveWindow

.FreezePanes = False

.Split = False
End With

SplitColumn Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproSplitColumnC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproSplitColumnX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproSplitColumnA "}

Returns or sets the column number where the window is split into panes (the number of columns to
the left of the split line). Read/write Long.

SplitColumn Property Example

This example splits the window and leaves 1.5 columns to the left of the split line.
Workbooks("BOOK1.XLS").Worksheets("Sheet1").Activate
ActiveWindow.SplitColumn = 1.5

SplitHorizontal Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproSplitHorizontalC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproSplitHorizontalX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproSplitHorizontalA "}

Returns or sets the location of the horizontal window split, in points. Read/write Double.

SplitHorizontal Property Example

This example sets the horizontal split for the active window to 216 points (3 inches).
Workbooks("BOOK1.XLS").Worksheets("Sheet1").Activate
ActiveWindow.SplitHorizontal = 216

SplitRow Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproSplitRowC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproSplitRowX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproSplitRowA "}

Returns or sets the row number where the window is split into panes (the number of rows above the
split). Read/write Long.

SplitRow Property Example

This example splits the active window so that there are 10 rows above the split line.
Workbooks("BOOK1.XLS").Worksheets("Sheet1").Activate
ActiveWindow.SplitRow = 10

SplitVertical Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproSplitVerticalC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproSplitVerticalX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproSplitVerticalA "}

Returns or sets the location of the vertical window split, in points. Read/write Double.

SplitVertical Property Example

This example sets the vertical split for the active window to 216 points (3 inches).
Workbooks("BOOK1.XLS").Worksheets("Sheet1").Activate
ActiveWindow.SplitVertical = 216

StandardHeight Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproStandardHeightC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproStandardHeightX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproStandardHeightA "}

Returns the standard (default) height of all the rows in the worksheet, in points. Read-only Double.

StandardHeight Property Example

This example sets the height of row one on Sheet1 to the standard height.
Worksheets("Sheet1").Rows(1).RowHeight = _

Worksheets("Sheet1").StandardHeight

StandardWidth Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproStandardWidthC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproStandardWidthX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproStandardWidthA "}

Returns or sets the standard (default) width of all the columns in the worksheet. Read/write Double.

Remarks
One unit of column width is equal to the width of one character in the Normal style. For proportional
fonts, the width of the character 0 (zero) is used.

StandardWidth Property Example

This example sets the width of column one on Sheet1 to the standard width.
Worksheets("Sheet1").Columns(1).ColumnWidth = _

Worksheets("Sheet1").StandardWidth

TransitionExpEval Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproTransitionExpEvalC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproTransitionExpEvalX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproTransitionExpEvalA "}

True if Microsoft Excel uses Lotus 1-2-3 expression evaluation rules for the worksheet. Read/write
Boolean.

TransitionExpEval Property Example

This example causes Microsoft Excel to use Lotus 1-2-3 expression evaluation rules for Sheet1.
Worksheets("Sheet1").TransitionExpEval = True

TransitionFormEntry Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproTransitionFormEntryC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproTransitionFormEntryX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproTransitionFormEntryA
"}

True if Microsoft Excel uses Lotus 1-2-3 formula entry rules for the worksheet. Read/write Boolean.

Remarks
This property isn't available on the Macintosh.

TransitionFormEntry Property Example

This example causes Microsoft Excel to use Lotus 1-2-3 formula entry rules for Sheet1.
Worksheets("Sheet1").TransitionFormEntry = True

UpdateRemoteReferences Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproUpdateRemoteReferencesC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproUpdateRemoteReferencesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproUpdateRemoteReferencesA "}

True if Microsoft Excel updates remote references in for the workbook. Read/write Boolean.

UpdateRemoteReferences Property Example

This example causes remote references to be updated in the active workbook.
ActiveWorkbook.UpdateRemoteReferences = True

UsedRange Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproUsedRangeC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproUsedRangeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproUsedRangeA "}

Returns a Range object that represents the used range on the specified worksheet. Read-only.

UsedRange Property Example

This example selects the used range on Sheet1.
Worksheets("Sheet1").Activate
ActiveSheet.UsedRange.Select

AutoComplete Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAutoCompleteC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAutoCompleteX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthAutoCompleteA "}

Returns an AutoComplete match from the list. If there's no AutoComplete match or if more than one
entry in the list matches the string to complete, this method returns an empty string.

Syntax
expression.AutoComplete(String)
expression Required. An expression that returns a Range object (must be a single cell).
String Required String. The string to complete.

Remarks
This method works even if the AutoComplete feature is disabled.

AutoComplete Method Example

This example returns the AutoComplete match for the string segment "Ap." An AutoComplete match is
made if the column containing cell A5 contains a contiguous list and one of the entries in the list
contains a match for the string.
s = Worksheets(1).Range("A5").AutoComplete("Ap")
If Len(s) > 0 Then

MsgBox "Completes to " & s
Else

MsgBox "Has no completion"
End If

Container Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproContainerC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproContainerX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproContainerA "}

Returns the object that contains the specified embedded workbook. Read-only Object.

Remarks
Use this property with a contained workbook to return the container object. If the container doesn't
support OLE Automation or the workbook isn't embedded, this property fails.

Container Property Example

This example hides the second section in the binder that contains the active Microsoft Excel
workbook and then sets the value of cell A1 to 345.67. In this example, the binder is Binder1.obd.
Set myBinder = GetObject("Binder1.obd", "Office.Binder")
Set myWorkbook = myBinder.Sections(1).Object
With myWorkbook

.Container.Sections(2).Visible = False

.Sheets(1).Cells(1, 1).Value = 345.67
End With

EnableAnimations Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproEnableAnimationsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproEnableAnimationsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproEnableAnimationsA "}

True if animated insertion and deletion is enabled. Read/write Boolean.

Remarks
When animation is enabled, inserted worksheet rows and columns appear slowly, and deleted
worksheet rows and columns disappear slowly.

EnableAnimations Property Example

This example turns off animated insertion and deletion.
Application.EnableAnimations = False

EnableAutoComplete Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproEnableAutoCompleteC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproEnableAutoCompleteX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproEnableAutoCompleteA
"}

True if the AutoComplete feature is enabled. Read/write Boolean.

EnableAutoComplete Property Example

This example enables the AutoComplete feature.
Application.EnableAutoComplete = True

ListHeaderRows Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproListHeaderRowsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproListHeaderRowsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproListHeaderRowsA "}

Returns the number of header rows for the specified range. Read-only Long.

Remarks
Before you use this property, use the CurrentRegion property to find the boundaries of the range.

ListHeaderRows Property Example

This example sets the rTbl variable to the range represented by the current region for the active cell,
not including any header rows.
Set rTbl = ActiveCell.CurrentRegion
' remove the headers from the range
iHdrRows = rTbl.ListHeaderRows
If iHdrRows > 0 Then

' resize the range minus n rows
Set rTbl = rTbl.Resize(rTbl.Rows.Count - iHdrRows)
' and then move the resized range down to
' get to the first non-header row
Set rTbl = rTbl.Offset(iHdrRows)

End If

MoveAfterReturnDirection Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproMoveAfterReturnDirectionC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproMoveAfterReturnDirectionX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproMoveAfterReturnDirectionA "}

Returns or sets the direction in which the active cell is moved when the user presses ENTER. Can be
one of the following XlDirection constants: xlToLeft, xlToRight, xlUp, or xlDown. Read/write Long.

Remarks
If the MoveAfterReturn property is False, the selection doesn't move at all, regardless of how the
MoveAfterReturnDirection property is set.

MoveAfterReturnDirection Property Example

This example causes the active cell to move to the right when the user presses ENTER.
Application.MoveAfterReturn = True
Application.MoveAfterReturnDirection = xlToRight

NetworkTemplatesPath Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproNetworkTemplatesPathC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproNetworkTemplatesPathX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproNetworkTemplatesPathA "}

Returns the network path where templates are stored. If the network path doesn't exist, this property
returns an empty string. Read-only String.

NetworkTemplatesPath Property Example

This example displays the network path where templates are stored.
Msgbox Application.NetworkTemplatesPath

ProtectionMode Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproProtectionModeC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproProtectionModeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproProtectionModeA "}

True if user-interface-only protection is turned on. To turn on user interface protection, use the
Protect method with the UserInterfaceOnly argument set to True. Read-only Boolean.

ProtectionMode Property Example

This example displays the status of the ProtectionMode property.
MsgBox ActiveSheet.ProtectionMode

RangeSelection Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproRangeSelectionC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproRangeSelectionX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproRangeSelectionA "}

Returns a Range object that represents the selected cells on the worksheet in the specified window
even if a graphic object is active or selected on the worksheet. Read-only.

Remarks
When a graphic object is selected on a worksheet, the Selection property returns the graphic object
instead of a Range object; the RangeSelection property returns the range of cells that was selected
before the graphic object was selected.

This property and the Selection property return identical values when a range (not a graphic object)
is selected on the worksheet.

If the active sheet in the specified window isn't a worksheet, this property fails.

RangeSelection Property Example

This example displays the address of the selected cells on the worksheet in the active window.
MsgBox ActiveWindow.RangeSelection.Address

SetBackgroundPicture Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthSetBackgroundPictureC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthSetBackgroundPictureX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlmthSetBackgroundPictureA "}

Sets the background graphic for a worksheet or chart.

Syntax
expression.SetBackgroundPicture(FileName)
expression Required. An expression that returns a Worksheet or Chart object.
FileName Required String. The name of the graphic file.

SetBackgroundPicture Method Example

This example sets the background graphic for worksheet one.
Worksheets(1).SetBackgroundPicture "c:\graphics\watrmark.bmp"

TemplatesPath Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproTemplatesPathC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproTemplatesPathX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproTemplatesPathA "}

Returns the local path where templates are stored. Read-only String.

TemplatesPath Property Example

This example returns the local path where templates are stored.
Msgbox Application.TemplatesPath

CreateBackup Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproCreateBackupC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproCreateBackupX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproCreateBackupA "}

True if a backup file is created when this file is saved. Read-only Boolean.

CreateBackup Property Example

This example displays a message if a backup file is created when the active workbook is saved.
If ActiveWorkbook.CreateBackup = True Then

MsgBox "Remember, there is a backup copy of this workbook"
End If

FileFormat Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproFileFormatC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproFileFormatX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproFileFormatA "}

Returns the file format and/or type of the workbook. Read-only Long.

Can be one of the following XlFileFormat constants:

xlAddIn
xlCSV
xlCSVMac
xlCSVMSDOS
xlCSVWindows
xlDBF2
xlDBF3
xlDBF4
xlDIF
xlExcel2
xlExcel2FarEast
xlExcel3
xlExcel4
xlExcel5
xlExcel4Workbook
xlIntlAddIn
xlIntlMacro
xlWorkbookNormal
xlSYLK

xlTemplate
xlCurrentPlatformText
xlTextMac
xlTextMSDOS
xlTextPrinter
xlTextWindows
xlWJ2WD1
xlWK1
xlWK1ALL
xlWK1FMT
xlWK3
xlWK4
xlWK3FM3
xlWKS
xlWorks2FarEast
xlWQ1
xlWJ3
xlWJ3FJ3

Remarks
The following additional formats are available in the Far East version of Microsoft Excel: xlWJ2WD1,
xlExcel2FarEast, and xlWorks2FarEast.

FileFormat Property Example

This example saves the active workbook in Normal file format if its current file format is WK3.
If ActiveWorkbook.FileFormat = xlWK3 Then

ActiveWorkbook.SaveAs fileFormat:=xlNormal
End If

HasPassword Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproHasPasswordC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproHasPasswordX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproHasPasswordA "}

True if the workbook has a protection password. Read-only Boolean.

Remarks
You can assign a protection password to a workbook by using the SaveAs method.

HasPassword Property Example

This example displays a message if the active workbook has a protection password.
If ActiveWorkbook.HasPassword = True Then

MsgBox "Remember to obtain the workbook password" & Chr(13) & _
" from the Network Administrator."

End If

NewWindow Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthNewWindowC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthNewWindowX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthNewWindowA "}

Creates a new window or a copy of the specified window.

Syntax
expression.NewWindow
expression Required. An expression that returns a Window or Workbook object.

NewWindow Method Example

This example creates a new window for the active workbook.
ActiveWorkbook.NewWindow

ProtectStructure Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproProtectStructureC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproProtectStructureX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproProtectStructureA "}

True if the order of the sheets in the workbook is protected. Read-only Boolean.

ProtectStructure Property Example

This example displays a message if the order of the sheets in the active workbook is protected.
If ActiveWorkbook.ProtectStructure = True Then

MsgBox "Remember, you cannot delete, add, or change " & Chr(13) & _
"the location of any sheets in this workbook."

End If

ProtectWindows Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproProtectWindowsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproProtectWindowsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproProtectWindowsA "}

True if the windows of the workbook are protected. Read-only Boolean.

ProtectWindows Property Example

This example displays a message if the windows in the active workbook are protected.
If ActiveWorkbook.ProtectWindows = True Then

MsgBox "Remember, you cannot rearrange any window in this workbook."
End If

ReadOnly Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproReadOnlyC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproReadOnlyX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproReadOnlyA "}

True if the workbook has been opened as read-only. Read-only Boolean.

ReadOnly Property Example

If the active workbook is read-only, this example saves it as Newfile.xls.
If ActiveWorkbook.ReadOnly Then

ActiveWorkbook.SaveAs fileName:="NEWFILE.XLS"
End If

ReadOnlyRecommended Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproReadOnlyRecommendedC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproReadOnlyRecommendedX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproReadOnlyRecommendedA "}

True if the workbook was saved as read-only recommended. Read-only Boolean.

Remarks
When you open a workbook that was saved as read-only recommended, Microsoft Excel displays a
message recommending that you open the workbook as read-only.

Use the SaveAs method to change this property.

ReadOnlyRecommended Property Example

This example displays a message if the active workbook is saved as read-only recommended.
If ActiveWorkbook.ReadOnlyRecommended = True Then

MsgBox "This workbook is saved as read-only recommended"
End If

Saved Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproSavedC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproSavedX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproSavedA "}

True if no changes have been made to the specified workbook since it was last saved. Read/write
Boolean.

Remarks
If a workbook has never been saved, its Path property returns an empty string ("").

You can set this property to True if you want to close a modified workbook without either saving it or
being prompted to save it.

Saved Property Example

This example displays a message if the active workbook contains unsaved changes.
If Not ActiveWorkbook.Saved Then

MsgBox "This workbook contains unsaved changes."
End If
This example closes the workbook that contains the example code and discards any changes to the
workbook by setting the Saved property to True.
ThisWorkbook.Saved = True
ThisWorkbook.Close

WriteReserved Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproWriteReservedC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproWriteReservedX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproWriteReservedA "}

True if the workbook is write-reserved. Read-only Boolean.

Remarks
Use the SaveAs method to set this property.

WriteReserved Property Example

If the active workbook is write-reserved, this example displays a message that contains the name of
the user who saved the workbook as write-reserved.
With ActiveWorkbook

If .WriteReserved = True Then
MsgBox "Please contact " & .WriteReservedBy & Chr(13) & _

" if you need to insert data in this workbook."
End If

End With

WriteReservedBy Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproWriteReservedByC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproWriteReservedByX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproWriteReservedByA "}

Returns the name of the user who currently has write permission for the workbook. Read-only String.

WriteReservedBy Property Example

If the active workbook is write-reserved, this example displays a message that contains the name of
the user who saved the workbook as write-reserved.
With ActiveWorkbook

If .WriteReserved = True Then
MsgBox "Please contact " & .WriteReservedBy & Chr(13) & _

" if you need to insert data in this workbook."
End If

End With

Clone Method Example (Microsoft Excel)

This example displays a custom dialog box that contains the lists of data from the CONTACTS and
CUSTMR_ID fields in the Customer recordset of the Nwindex.mdb database.

To create the Nwindex.mdb database, run the Microsoft Excel example for the CreateDatabase
method.
Dim db As Database
Dim rs1 As Recordset, rs2 As Recordset
Set db = Workspaces(0).OpenDatabase(Application.Path & "\NWINDEX.MDB")
Set rs1 = db.OpenRecordset("SELECT * FROM Customer" _

& " WHERE [REGION] = 'WA' ORDER BY [CUSTMR_ID];")
Set theDialog = DialogSheets.Add
Set list1 = theDialog.ListBoxes.Add(78, 42, 84, 80)
Set list2 = theDialog.ListBoxes.Add(183, 42, 84, 80)
Set rs2 = rs1.Clone()
rs2.MoveFirst
Do Until rs1.EOF

list1.AddItem (rs1.Fields("CONTACT").Value)
rs1.MoveNext

Loop
Do Until rs2.EOF

list2.AddItem (rs2.Fields("CUSTMR_ID").Value)
rs2.MoveNext

Loop
rs1.Close
rs2.Close
db.Close

Close Method Example (Microsoft Excel)

This example opens the Customer recordset of the Nwindex.mdb database, counts how many
records are available, and enters this number on Sheet1.

To create the Nwindex.mdb database, run the Microsoft Excel example for the CreateDatabase
method.
Dim db As Database, rs As Recordset
Set db = Workspaces(0).OpenDatabase(Application.Path & "\NWINDEX.MDB")
Set rs = db.OpenRecordset("Customer")
Set resultsSheet = Sheets("Sheet1")
resultsSheet.Activate
With resultsSheet.Cells(1, 1)

.Value = "Records in " & rs.Name & " table:"

.Font.Bold = True

.EntireColumn.AutoFit
End With
rs.MoveLast
resultsSheet.Cells(1, 2).Value = rs.RecordCount
rs.Close
db.Close

CreateDatabase, CreateTableDef, Append Methods Example (Microsoft Excel)

This example creates a new database, Nwindex.mdb. The example attaches two tables from the C:\
Program Files\Common Files\Microsoft Shared\MSquery folder to the database. (In Windows NT, the
two tables are located in the C:\Windows\Msapps\Msquery folder.)
Dim nWindEx As Database, customerTable As TableDef, supplierTable As
TableDef
Dim dataSource As String
dataSource = _
"dBASE IV;DATABASE=C:\Program Files\Common Files\Microsoft Shared\MSquery"
appPath = Application.Path
Set nWindEx = Workspaces(0).CreateDatabase(Application.Path _

& "\NWINDEX.MDB", dbLangGeneral)
Set customerTable = nWindEx.CreateTableDef("Customer")
customerTable.Connect = dataSource
customerTable.SourceTableName = "Customer"
nWindEx.TableDefs.Append customerTable
Set supplierTable = nWindEx.CreateTableDef("Supplier")
supplierTable.Connect = dataSource
supplierTable.SourceTableName = "Supplier"
nWindEx.TableDefs.Append supplierTable
MsgBox "The database " & nWindEx.Name & " has been created."
nWindEx.Close

Delete Method Example (Microsoft Excel)

This example adds a new record to Product.dbf (a dBASE IV table located in the C:\Program Files\
Common Files\Microsoft Shared\MSquery folder) and then deletes the record. (In Windows NT,
Product.dbf is located in the C:\Windows\Msapps\Msquery folder.)
Dim db As Database, rs As Recordset
Sheets("Sheet1").Activate
Set theID = ActiveSheet.Cells(1, 2)
Set theCategory = ActiveSheet.Cells(2, 2)
theID.Value = 200
theCategory.Value = "BEVR"
Set db = OpenDatabase("C:\Program Files\Common Files\Microsoft Shared\
MSquery", False, _

False, "dBASE IV")
Set rs = db.OpenRecordset("PRODUCT.DBF", dbOpenTable)
rs.AddNew
rs("PRODUCT_ID") = theID.Value
rs("CATEGORY") = theCategory.Value
rs.Update
MsgBox "The new record has been created with " & theID.Value _

& " and " & theCategory.Value
rs.Move 0, rs.LastModified
rs.Delete
MsgBox "The record you just created has been deleted"
rs.Close
db.Close

OpenRecordset Method Example (Microsoft Excel)

This example displays a custom dialog box that contains a list of all the available recordsets in the
Nwindex.mdb database. The example opens a new recordset based on the recordset selected by the
user and then copies the records onto Sheet1.

To create the Nwindex.mdb database, run the Microsoft Excel example for the CreateDatabase
method.
Dim db As Database, rs1 As Recordset
Set db = Workspaces(0).OpenDatabase(Application.Path & "\NWINDEX.MDB")
Application.ScreenUpdating = False
Set theDialog = DialogSheets.Add
Set list1 = theDialog.ListBoxes.Add(78, 42, 84, 80)
Set label1 = theDialog.Labels.Add(78, 125, 240, 25)
label1.Text = "Recordsets for " & db.Name
i = 0
Do Until i = db.TableDefs.Count

list1.AddItem (db.TableDefs(i).Name)
i = i + 1

Loop
Sheets("Sheet1").Activate
Application.ScreenUpdating = True
If theDialog.Show = True Then

If list1.Value = 0 Then
MsgBox "You have not selected an item from the list."

Else
Set rs1 = db.OpenRecordset(db.TableDefs(list1.Value - 1).Name)
ActiveCell.CopyFromRecordset rs1

End If
End If
rs1.Close
db.Close

GetRows Method Example (Microsoft Excel)

This example copies selected records from the Customer recordset in the Nwindex.mdb database to
Sheet1.

To create the Nwindex.mdb database, run the Microsoft Excel example for the CreateDatabase
method.
Dim db As Database, rs As Recordset
Dim data As Variant
Set db = Workspaces(0).OpenDatabase(Application.Path & "\NWINDEX.MDB")
Set rs = db.OpenRecordset("SELECT CUSTMR_ID, CONTACT FROM Customer;")
data = rs.GetRows(6)
Sheets("Sheet1").Activate
For r = 1 to UBound(data, 2) + 1

For c = 1 to 2
Cells(r, c).Value = data(c - 1, r - 1)

Next
Next
rs.Close
db.Close

Move Method Example (Microsoft Excel)

This example prompts the user to select a record number. The example then copies the selected
record from the Customer recordset in the Nwindex.mdb database to Sheet1.
Dim db As Database, rs As Recordset
Set db = Workspaces(0).OpenDatabase(Application.Path & "\NWINDEX.MDB")
Set rs = db.OpenRecordset("SELECT [CUSTMR_ID], [CONTACT], [REGION] " _

& "FROM Customer")
Sheets("Sheet1").Activate
aDistance = Application.InputBox("What record # you want to copy", _

Type:=2)
If aDistance = False Then ' user cancelled InputBox

Exit Sub
End If
rs.MoveFirst
rs.Move aDistance
For i = 0 To 2

ActiveCell.Offset(, i).Value = rs.Fields(i).Value
Next
rs.Close
db.Close

MoveNext Method Example (Microsoft Excel)

This example replaces values in the CON_TITLE field of the records in the Customer recordset in the
Nwindex.mdb database, and then it displays the number of replacements that were made.

To create the Nwindex.mdb database, run the Microsoft Excel example for the CreateDatabase
method.
Dim db As Database, rs As Recordset, sQLText As String
Set db = Workspaces(0).OpenDatabase(Application.Path & "\NWINDEX.MDB")
sQLText = "SELECT * FROM Customer WHERE " _

& "CON_TITLE = 'Sales Representative';"
Set rs = db.OpenRecordset(sQLText)
i = 0
Do Until rs.EOF

With rs
.Edit
.Fields("CON_TITLE").Value = "Account Executive"
.Update
.MoveNext

End With
i = i + 1

Loop
MsgBox i & " replacements were made."
rs.Close
db.Close

OpenDatabase Method Example (Microsoft Excel)

This example displays a custom dialog box that contains a list of all the databases with the file name
extension .mdb that are located in the Microsoft Excel folder, and then it opens the database selected
by the user.
Dim a(100), db As Database
i = 0
ChDrive "C"
ChDir Application.Path
a(i) = Dir("*.MDB")
If a(i) = "" Then

MsgBox "You have no databases in the Microsoft Excel folder"
Exit Sub

End If
Do

i = i + 1
a(i) = Dir()

Loop Until a(i) = ""
Set theDialog = DialogSheets.Add
Set list1 = theDialog.ListBoxes.Add(78, 42, 84, 80)
For counter = 0 To i - 1

list1.AddItem a(counter)
Next
Application.ScreenUpdating = True
theDialog.Show
Set db = Workspaces(0).OpenDatabase(a(list1.Value - 1))
MsgBox "The " & db.Name & " database is now open"
' use database here
db.Close

Seek Method Example (Microsoft Excel)

This example opens Product.dbf (a dBASE IV table located in the C:\Program Files\Common Files\
Microsoft Shared\MSquery folder), locates a record, and then copies the the record's values into cells
B2:C2 on Sheet1. (In Windows NT, Product.dbf is located in the C:\Windows\Msapps\Msquery folder.)
Dim db As Database, rs As Recordset
Sheets("Sheet1").Activate
Set db = OpenDatabase("C:\Program Files\Common Files\Microsoft Shared\
MSquery", _

False, False, "dBASE IV")
Set rs = db.OpenRecordset("PRODUCT.DBF", dbOpenTable)
rs.Index = "PRODUCT"
rs.Seek "=", "1"
If rs.NoMatch Then

MsgBox "Couldn't find any records"
Else

ActiveSheet.Cells(2, 2) = rs.Fields("CATEGORY").Value
ActiveSheet.Cells(3, 2) = rs.Fields("PROD_NAME").Value

End If
rs.Close
db.Close

Update Method Example (Microsoft Excel)

This example opens Product.dbf (a dBASE IV table located in the C:\Program Files\Common Files\
Microsoft Shared\MSquery folder), finds a record with the PRODUCT value 1, and then sets the
CATEGORY field to the value in cell B2 on Sheet1. (In Windows NT, Product.dbf is located in the C:\
Windows\Msapps\Msquery folder.)
Dim db As Database, rs As Recordset, categoryCell As Range
Sheets("Sheet1").Activate
Set categoryCell = ActiveSheet.Cells(2, 2)
categoryCell.Value = "BEVR"
Set db = OpenDatabase("C:\Program Files\Common Files\Microsoft Shared\
MSquery", _

False, False, "dBASE IV")
Set rs = db.OpenRecordset("PRODUCT.DBF", dbOpenTable)
With rs

.Index = "PRODUCT"

.Seek "=", "1"

.Edit

.Fields("CATEGORY").Value = categoryCell.Value

.Update
End With
MsgBox "The field has been updated with " & categoryCell.Value
rs.Close
db.Close

AbsolutePosition Property Example (Microsoft Excel)

This example prompts the user for a record number. The example uses this number to move to a
record in the Customer recordset in the Nwindex.mdb database, and then it copies the values for
three specified fields to Sheet1.

To create the Nwindex.mdb database, run the Microsoft Excel example for the CreateDatabase
method.
Dim db As Database, rs As Recordset
Sheets("Sheet1").Activate
recordNumber = Application.InputBox(Prompt:="Record number to copy " _

& "to Sheet1", Title:="Record to copy", Type:=1)
If recordNumber = False Then ' user cancelled InputBox

Exit Sub
End If
Set db = Workspaces(0).OpenDatabase(Application.Path & "\NWINDEX.MDB")
Set rs = db.OpenRecordset("Customer", dbOpenSnapshot)
rs.MoveLast
If rs.RecordCount > recordNumber Then

rs.AbsolutePosition = recordNumber
ActiveCell.Value = rs.Fields("CONTACT").Value
ActiveCell.Offset(, 1).Value = rs.Fields("ADDRESS").Value
ActiveCell.Offset(, 2).Value = rs.Fields("CITY").Value

Else
MsgBox "The record #" & recordNumber & " doesn't exist."

End If
rs.Close
db.Close

Bookmark, Bookmarkable Properties Example (Microsoft Excel)

This example prompts the user for a two-letter abbreviation for a state. The example uses this value
to find up to 101 matching records in the Customer recordset in the Nwindex.mdb database. It then
marks each record with a bookmark and copies the values of the first and third fields to Sheet1.

To create the Nwindex.mdb database, run the Microsoft Excel example for the CreateDatabase
method.
Dim Found(100)
i = 0
Set db = Workspaces(0).OpenDatabase(Application.Path & "\NWINDEX.MDB")
Set rs = db.OpenRecordset("Customer")
Sheets("Sheet1").Activate
regionWanted = Application.InputBox("What state do you want data from?", _

"Specify two letters (e.g. 'WA')", Type:=2)
If regionWanted = False Then ' user cancelled InputBox

Exit Sub
End If
criteria = "[REGION] = '" & regionWanted & "'"
rs.FindFirst criteria
If rs.NoMatch Or rs.Bookmarkable = False Then

MsgBox "No records for this state"
Exit Sub

Else
Do Until rs.NoMatch = True

i = i + 1
Found(i) = rs.Bookmark
rs.FindNext criteria

Loop
End If
For n = 1 To i

rs.Bookmark = Found(n)
Cells(n + 1, 1).Value = rs.fields(0).Value
Cells(n + 1, 2).Value = rs.fields(2).Value

Next
MsgBox "There are " & i & " records from this region"
rs.Close
db.Close

Connect, SourceTableName Properties Example (Microsoft Excel)

This example attaches the table Product.dbf (a dBASE IV table located in the C:\Program Files\
Common Files\Microsoft Shared\MSquery folder) to the Nwindex.mdb database. (In Windows NT,
Product.dbf is located in the C:\Windows\Msapps\Msquery folder.)

To create the Nwindex.mdb database, run the Microsoft Excel example for the CreateDatabase
method.
Dim nWindEx As Database, tDef As TableDef
Dim dataSource As String
dataSource = _

"dBASE IV;DATABASE=C:\Program Files\Common Files\Microsoft Shared\
MSquery"
Set nWindEx = Workspaces(0).OpenDatabase(Application.Path _

& "\NWINDEX.MDB")
Set tDef = nWindEx.CreateTableDef("Product")
tDef.Connect = dataSource
tDef.SourceTableName = "Product"
nWindEx.TableDefs.Append tDef
nWindEx.Close

Count Property Example (Microsoft Excel)

This example displays the number of recordsets in the Nwindex.mdb database and then enters their
names on Sheet1.

To create the Nwindex.mdb database, run the Microsoft Excel example for the CreateDatabase
method.
Dim db As Database, i As Integer
Sheets("Sheet1").Activate
Set db = Workspaces(0).OpenDatabase(Application.Path & "\NWINDEX.MDB")
Cells(1, 1).Value = "TableDef list for " & db.Name
Cells(1, 1).EntireColumn.AutoFit
For i = 0 To db.TableDefs.Count - 1

Cells(i + 2, 1).Value = db.TableDefs(i).Name
Next i
MsgBox "There are " & db.TableDefs.Count & " TableDefs"
db.Close

DateCreated, LastUpdated Properties Example (Microsoft Excel)

This example displays the dates and times when the Customer recordset in the Nwindex.mdb
database was created and last updated.

To create the Nwindex.mdb database, run the Microsoft Excel example for the CreateDatabase
method.
Dim creation As Variant, changed As Variant
Dim db As Database, td As TableDef
Set db = Workspaces(0).OpenDatabase(Application.Path & "\NWINDEX.MDB")
Set td = db.TableDefs("Customer")
creation = td.DateCreated
changed = td.LastUpdated
MsgBox "The " & td.Name & " table was created on " & creation _

& " and updated on " & changed
db.Close

EditMode Property Example (Microsoft Excel)

This example checks to see whether the Customer recordset in the Nwindex.mdb database can be
edited. If so, the example updates the value of the first field in the first record with the value in cell C3
on Sheet1.

To create the Nwindex.mdb database, run the Microsoft Excel example for the CreateDatabase
method.
Dim db As Database, rs As Recordset
Set db = Workspaces(0).OpenDatabase(Application.Path & "\NWINDEX.MDB")
Set rs = db.OpenRecordset("Customer")
If Not ((rs.EditMode = dbEditAdd) Or _

(rs.EditMode = dbEditInProgress)) Then
rs.Edit
rs.Fields(0).Value = Worksheets(1).Cells(3, 3).Value
rs.Update

Else
MsgBox ("Cannot update database with cell value")

End If
rs.Close
db.Close

Filter Property Example (Microsoft Excel)

This example creates a new recordset that contains records from the Supplier recordset in the
Nwindex.mdb database, and then it copies the recordset contents to Sheet1. These records contain
only data on suppliers located in Canada. The example copies a new, sorted recordset to Microsoft
Excel.

To create the Nwindex.mdb database, run the Microsoft Excel example for the CreateDatabase
method.
Dim db As Database, rs As Recordset, sortedSet As Recordset
Set db = Workspaces(0).OpenDatabase(Application.Path & "\NWINDEX.MDB")
Set rs = db.OpenRecordset("Supplier", dbOpenDynaset)
rs.Filter = "[COUNTRY] = 'Canada'"
Set sortedSet = rs.OpenRecordset()
Sheets("Sheet1").Activate
ActiveCell.CopyFromRecordset sortedSet
sortedSet.Close
rs.Close
db.Close

LockEdits Property Example (Microsoft Excel)

This example locks the Customer recordset in the Nwindex.mdb database before updating the value
in the CUSTMR_ID field of the first record with the value in cell A1 on Sheet1. Locking the recordset
ensures that no other user can modify the record while it's being updated.

To create the Nwindex.mdb database, run the Microsoft Excel example for the CreateDatabase
method.
Dim db As Database, rs As Recordset
Sheets("Sheet1").Cells(1, 1).Value = "ACRIM"
databasePath = Application.Path & "\NWINDEX.MDB"
Set db = DBEngine.Workspaces(0).OpenDatabase(databasePath)
Set rs = db.OpenRecordset("Customer")
valueToAdd = Sheets("Sheet1").Cells(1, 1).Value
rs.LockEdits = False
rs.Edit
rs.fields("CUSTMR_ID").Value = valueToAdd
rs.Update
MsgBox "The new value of CUSTMR_ID is " & rs.fields("CUSTMR_ID").Value
rs.Close
db.Close

Name Property Example (Microsoft Excel)

This example enters in the active cell on Sheet1 the name of the first recordset in the Nwindex.mdb
database.

To create the Nwindex.mdb database, run the Microsoft Excel example for the CreateDatabase
method.
Dim db As Database, td As TableDef
Set db = Workspaces(0).OpenDatabase(Application.Path & "\NWINDEX.MDB")
Set td = db.TableDefs(0)
Sheets("Sheet1").Activate
ActiveCell.Value = td.Name
db.Close

NoMatch Property Example (Microsoft Excel)

This example adds all the names of contacts for the state of Washington to a list on worksheet one.
The data is drawn from the Customer recordset in the Nwindex.mdb database.

To create the Nwindex.mdb database, run the Microsoft Excel example for the CreateDatabase
method.
Dim db As Database
Dim rs As Recordset
rw = 0
Set db = Workspaces(0).OpenDatabase(Application.Path & "\NWINDEX.MDB")
Set rs = db.OpenRecordset("SELECT * FROM Customer")
criteria = "[REGION] = 'WA'"
Set wk = Worksheets.Add
rs.FindFirst criteria
Do Until rs.NoMatch

rw = rw + 1
wk.Range(rw, 1).Value = rs.fields("CONTACT").Value
rs.FindNext criteria

Loop
rs.Close
db.Close

PercentPosition Property Example (Microsoft Excel)

This example selects and changes records in the Customer recordset in the Nwindex.mdb database,
and then it copies the recordset to Sheet1. The status bar shows the percentage of records that have
been changed.

To create the Nwindex.mdb database, run the Microsoft Excel example for the CreateDatabase
method.
Dim db As Database, rs As Recordset, sQLText as String
Set db = Workspaces(0).OpenDatabase(Application.Path & "\NWINDEX.MDB")
sQLText = "SELECT [CON_TITLE], [CONTACT], [COMPANY] FROM Customer " _

& "WHERE [CON_TITLE] = 'Owner';"
Set rs = db.OpenRecordset(sQLText, dbOpenDynaset)
rs.MoveFirst
Sheets("Sheet1").Activate
Do While Not rs.EOF

rs.Edit
rs.Fields("CON_TITLE").Value = "Account Excecutive"
rs.Update
Application.StatusBar = rs.PercentPosition & "% of the" _

& " records have been replaced."
rs.MoveNext

Loop
Application.StatusBar = "Done"
rs.MoveFirst
numberOfRows = ActiveCell.CopyFromRecordset(rs)
MsgBox numberOfRows & " Records have been changed"
rs.Close
db.Close

RecordCount Property Example (Microsoft Excel)

This example displays the number of records in the Customer recordset in the Nwindex.mdb
database.

To create the Nwindex.mdb database, run the Microsoft Excel example for the CreateDatabase
method.
Dim db As Database, rs As Recordset
Set db = Workspaces(0).OpenDatabase(Application.Path _

& "\NWINDEX.MDB")
Set rs = db.OpenRecordset("Customer")
On Error GoTo errorHandler
rs.MoveLast
MsgBox "There are " & rs.RecordCount & " records in " _

& rs.Name
rs.Close
db.Close

Exit Sub
errorHandler:

MsgBox "There are no records in " & rs.Name
rs.Close
db.Close

Size, Type Properties Example (Microsoft Excel)

This example copies to Sheet1 all fields of the Double type from Orddtail.dbf, a dBASE IV table
located in the C:\Program Files\Common Files\Microsoft Shared\MSquery folder. (In Windows NT,
Orddtail.dbf is located in the C:\Windows\Msapps\Msquery folder.)
Dim db As Database, recordsToCopy As Recordset, tDef As Recordset
Dim fieldsToStore(1000), fileName As String
fileName = "ORDDTAIL.DBF"
Set db = _
Workspaces(0).OpenDatabase("C:\Program Files\Common Files\Microsoft Shared\
MSquery", _

False, False, "dBASE IV")
Set tDef = db.OpenRecordset(fileName)
n = 0
Sheets("Sheet1").Activate
For i = 0 To tDef.Fields.Count - 1

If tDef.Fields(i).Type = dbDouble Then
fieldsToStore(n) = tDef.fields(i).Name
n = n + 1

End If
Next
If fieldsToStore(0) = "" Then

MsgBox "There are no number fields in this table."
Exit Sub

End If
For i = 0 To n - 1

records = "SELECT " & "[" & fieldsToStore(i) & "]" _
& " from " & db.Recordsets(fileName).Name & ";"

Set recordsToCopy = db.OpenRecordset(records)
With ActiveSheet.Cells(1, i + 1)

.CopyFromRecordset recordsToCopy

.ColumnWidth = recordsToCopy.fields(0).Size
End With

Next
recordsToCopy.Close
tDef.Close
db.Close

Sort Property Example (Microsoft Excel)

This example creates a new recordset from the Supplier recordset in the Nwindex.mdb database, and
then it copies the new recordset to Sheet1. The new recordset is sorted on the COUNTRY field, in
ascending order.

To create the Nwindex.mdb database, run the Microsoft Excel example for the CreateDatabase
method.
Dim db As Database, rs As Recordset, sortedSet As Recordset
Set db = Workspaces(0).OpenDatabase(Application.Path & "\NWINDEX.MDB")
Set rs = db.OpenRecordset("Supplier", dbOpenDynaset)
rs.Sort = "[COUNTRY]"
Set sortedSet = rs.OpenRecordset()
Sheets("Sheet1").Activate
ActiveCell.CopyFromRecordset sortedSet
sortedSet.Close
rs.Close
db.Close

CreateQueryDef Method and SQL Property Example (Microsoft Excel)

This example creates a new query based on the Customer recordset in the Nwindex.mdb database.
The query selects a snapshot of all customers in the state of Washington and then copies it to
Sheet1.

To create the Nwindex.mdb database, run the Microsoft Excel example for the CreateDatabase
method.
Dim db As Database, qDef As QueryDef, rs As Recordset
Set db = Workspaces(0).OpenDatabase(Application.Path & "\NWINDEX.MDB")
Set qDef = db.CreateQueryDef("WA Region")
qDef.SQL = "SELECT * FROM Customer WHERE [Region] = 'WA';"
Set rs = db.OpenRecordset("WA Region")
numberOfRows = Sheets("Sheet1").Cells(1, 1).CopyFromRecordset(rs)
Sheets("Sheet1").Activate
MsgBox numberOfRows & " records have been copied."
rs.Close
db.Close

Updatable Property Example (Microsoft Excel)

This example prompts the user to select a cell that contains a value for the CONTACT field of the
Customer recordset in the Nwindex.mdb database. The example then checks to see whether the
recordset can be updated. If so, the example adds a new record to the recordset, using the value in
the selected cell.

To create the Nwindex.mdb database, run the Microsoft Excel example for the CreateDatabase
method.
Dim db As Database, rs As Recordset
Sheets("Sheet1").Activate
cellToCopy = Application.InputBox("What cell value do you want" _

& " to update as contact?", Type:=8)
If cellToCopy = False Then ' user cancelled InputBox

Exit Sub
End If
Set db = Workspaces(0).OpenDatabase(Application.Path & "\NWINDEX.MDB")
Set rs = db.OpenRecordset("Customer")
If rs.Updatable = True Then

rs.AddNew
rs("CONTACT") = cellToCopy
rs.Update
rs.MoveLast
MsgBox "The new contact is " & rs("CONTACT").Value

Else
MsgBox "The recordset cannot be modified."

End If
rs.Close
db.Close

InputBox Function (Microsoft Excel)

In Microsoft Excel, the prompt string cannot contain more than 256 characters.

MsgBox Function (Microsoft Excel)

In Microsoft Excel, the prompt string cannot contain more than 256 characters.

Trappable Errors (Microsoft Excel)

Microsoft Excel uses the trappable errors listed in the following table, in addition to those used by
Visual Basic. You can also work with Microsoft Excel cell error values in Visual Basic. For more
information, see Cell Error Values.

Code Message
1000 '[Object]' does not have '[property name]' property

The property doesn't exist for this object. For more information,
search Help for the object name.

1001 '[Object]' does not have '[method name]' method
The method doesn't exist for this object. For more information,
search Help for the object name.

1002 Missing required argument '[argument]'
The method expected a required argument that wasn't specified.
Add the argument to the code. To see a list of required arguments,
search Help for the method name.

1003 Invalid number of arguments
The method has the wrong number of arguments. This usually
occurs when you specify arguments by position instead of by name
and you have too many arguments. To see the a list of valid
arguments for the method, search Help for the method name.

1004 '[Method name]' method of '[object]' class failed
The method cannot be used on the object. Possible reasons for this
include the following:
· An argument contains a value that isn't valid. A common cause

of this problem is an attempt to access an object that doesn't
exist (for example, you tried to use Workbooks(5) when there
were only three workbooks open).

· The method cannot be used in the applied context. For example,
some Range object methods require that the range contain data;
if the range doesn't contain data, the method fails.

· An external error occurred, such as a failure to read from or write
to a file.

For more information about the method, search Help for the
method name.

1005 Unable to set the '[property name]' property of the '[object]'
class
The property cannot be changed. Possible reasons for this include
the following:
· The value you're using for the property isn't valid (for example,

you set a property to a string value, but the property requires a
Boolean value).

· The property is read-only.
For more information about the property, search Help for the
property name.

1006 Unable to get the '[property name]' property of the '[object]'
class
The property cannot be read. A possible reason for this is that the

property cannot be used in the applied context. For example, the
code ActiveChart.Legend.Font.Color = RGB(255, 0,
0) will cause this error if the active chart doesn't contain a legend.
For more information about the property, search Help for the
property name.

Built-In Dialog Box Argument Lists
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmscDialogArgListsC "}

Dialog box constant Argument list(s)
xlDialogActivate window_text, pane_num
xlDialogActiveCellFont font, font_style, size, strikethrough, superscript, subscript, outline, shadow,

underline, color, normal, background, start_char, char_count
xlDialogAddChartAutoformat name_text, desc_text
xlDialogAddinManager operation_num, addinname_text, copy_logical
xlDialogAlignment horiz_align, wrap, vert_align, orientation, add_indent
xlDialogApplyNames name_array, ignore, use_rowcol, omit_col, omit_row, order_num, append_last
xlDialogApplyStyle style_text
xlDialogAppMove x_num, y_num
xlDialogAppSize x_num, y_num
xlDialogArrangeAll arrange_num, active_doc, sync_horiz, sync_vert
xlDialogAssignToObject macro_ref
xlDialogAssignToTool bar_id, position, macro_ref
xlDialogAttachText attach_to_num, series_num, point_num
xlDialogAttachToolbars
xlDialogAutoCorrect correct_initial_caps, capitalize_days
xlDialogAxes x_primary, y_primary, x_secondary, y_secondary
xlDialogAxes x_primary, y_primary, z_primary
xlDialogBorder outline, left, right, top, bottom, shade, outline_color, left_color, right_color, top_color,

bottom_color
xlDialogCalculation type_num, iter, max_num, max_change, update, precision, date_1904, calc_save,

save_values, alt_exp, alt_form
xlDialogCellProtection locked, hidden
xlDialogChangeLink old_text, new_text, type_of_link
xlDialogChartAddData ref, rowcol, titles, categories, replace, series
xlDialogChartTrend type, ord_per, forecast, backcast, intercept, equation, r_squared, name
xlDialogChartWizard long, ref, gallery_num, type_num, plot_by, categories, ser_titles, legend, title,

x_title, y_title, z_title, number_cats, number_titles
xlDialogCheckboxProperties value, link, accel_text, accel2_text, 3d_shading
xlDialogClear type_num
xlDialogColorPalette file_text
xlDialogColumnWidth width_num, reference, standard, type_num, standard_num
xlDialogCombination type_num
xlDialogConsolidate source_refs, function_num, top_row, left_col, create_links
xlDialogCopyChart size_num
xlDialogCopyPicture appearance_num, size_num, type_num
xlDialogCreateNames top, left, bottom, right
xlDialogCreatePublisher file_text, appearance, size, formats
xlDialogCustomizeToolbar category
xlDialogDataDelete
xlDialogDataLabel show_option, auto_text, show_key
xlDialogDataSeries rowcol, type_num, date_num, step_value, stop_value, trend
xlDialogDefineName name_text, refers_to, macro_type, shortcut_text, hidden, category, local
xlDialogDefineStyle style_text, number, font, alignment, border, pattern, protection
xlDialogDefineStyle style_text, attribute_num, additional_def_args, ...
xlDialogDeleteFormat format_text
xlDialogDeleteName name_text
xlDialogDemote row_col
xlDialogDisplay formulas, gridlines, headings, zeros, color_num, reserved, outline, page_breaks,

object_num

xlDialogDisplay cell, formula, value, format, protection, names, precedents, dependents, note
xlDialogEditboxProperties validation_num, multiline_logical, vscroll_logical, password_logical
xlDialogEditColor color_num, red_value, green_value, blue_value
xlDialogEditDelete shift_num
xlDialogEditionOptions edition_type, edition_name, reference, option, appearance, size, formats
xlDialogEditSeries series_num, name_ref, x_ref, y_ref, z_ref, plot_order
xlDialogErrorbarX include, type, amount, minus
xlDialogErrorbarY include, type, amount, minus
xlDialogExtract unique
xlDialogFileDelete file_text
xlDialogFillGroup type_num
xlDialogFillWorkgroup type_num
xlDialogFilterAdvanced operation, list_ref, criteria_ref, copy_ref, unique
xlDialogFindFile
xlDialogFont name_text, size_num
xlDialogFontProperties font, font_style, size, strikethrough, superscript, subscript, outline, shadow,

underline, color, normal, background, start_char, char_count
xlDialogFormatAuto format_num, number, font, alignment, border, pattern, width
xlDialogFormatChart layer_num, view, overlap, angle, gap_width, gap_depth, chart_depth,

doughnut_size, axis_num, drop, hilo, up_down, series_line, labels, vary
xlDialogFormatCharttype apply_to, group_num, dimension, type_num
xlDialogFormatFont color, backgd, apply, name_text, size_num, bold, italic, underline, strike, outline,

shadow, object_id, start_num, char_num
xlDialogFormatFont name_text, size_num, bold, italic, underline, strike, color, outline, shadow
xlDialogFormatFont name_text, size_num, bold, italic, underline, strike, color, outline, shadow,

object_id_text, start_num, char_num
xlDialogFormatLegend position_num
xlDialogFormatMain type_num, view, overlap, gap_width, vary, drop, hilo, angle, gap_depth,

chart_depth, up_down, series_line, labels, doughnut_size
xlDialogFormatMove x_offset, y_offset, reference
xlDialogFormatMove x_pos, y_pos
xlDialogFormatMove explosion_num
xlDialogFormatNumber format_text
xlDialogFormatOverlay type_num, view, overlap, gap_width, vary, drop, hilo, angle, series_dist,

series_num, up_down, series_line, labels, doughnut_size
xlDialogFormatSize width, height
xlDialogFormatSize x_off, y_off, reference
xlDialogFormatText x_align, y_align, orient_num, auto_text, auto_size, show_key, show_value,

add_indent
xlDialogFormulaFind text, in_num, at_num, by_num, dir_num, match_case, match_byte
xlDialogFormulaGoto reference, corner
xlDialogFormulaReplace find_text, replace_text, look_at, look_by, active_cell, match_case, match_byte
xlDialogFunctionWizard
xlDialogGallery3dArea type_num
xlDialogGallery3dBar type_num
xlDialogGallery3dColumn type_num
xlDialogGallery3dLine type_num
xlDialogGallery3dPie type_num
xlDialogGallery3dSurface type_num
xlDialogGalleryArea type_num, delete_overlay
xlDialogGalleryBar type_num, delete_overlay
xlDialogGalleryColumn type_num, delete_overlay
xlDialogGalleryCustom name_text
xlDialogGalleryDoughnut type_num, delete_overlay
xlDialogGalleryLine type_num, delete_overlay
xlDialogGalleryPie type_num, delete_overlay

xlDialogGalleryRadar type_num, delete_overlay
xlDialogGalleryScatter type_num, delete_overlay
xlDialogGoalSeek target_cell, target_value, variable_cell
xlDialogGridlines x_major, x_minor, y_major, y_minor, z_major, z_minor, 2D_effect
xlDialogInsert shift_num
xlDialogInsertObject object_class, file_name, link_logical, display_icon_logical, icon_file, icon_number,

icon_label
xlDialogInsertPicture file_name, filter_number
xlDialogInsertTitle chart, y_primary, x_primary, y_secondary, x_secondary
xlDialogLabelProperties accel_text, accel2_text, 3d_shading
xlDialogListboxProperties range, link, drop_size, multi_select, 3d_shading
xlDialogMacroOptions macro_name, description, menu_on, menu_text, shortcut_on, shortcut_key,

function_category, status_bar_text, help_id, help_file
xlDialogMailEditMailer to_recipients, cc_recipients, bcc_recipients, subject, enclosures, which_address
xlDialogMailLogon name_text, password_text, download_logical
xlDialogMailNextLetter
xlDialogMainChart type_num, stack, 100, vary, overlap, drop, hilo, overlap%, cluster, angle
xlDialogMainChartType type_num
xlDialogMenuEditor
xlDialogMove x_pos, y_pos, window_text
xlDialogNew type_num, xy_series, add_logical
xlDialogNote add_text, cell_ref, start_char, num_chars
xlDialogObjectProperties placement_type, print_object
xlDialogObjectProtection locked, lock_text
xlDialogOpen file_text, update_links, read_only, format, prot_pwd, write_res_pwd, ignore_rorec,

file_origin, custom_delimit, add_logical, editable, file_access, notify_logical,
converter

xlDialogOpenLinks document_text1, document_text2, ..., read_only, type_of_link
xlDialogOpenMail subject, comments
xlDialogOpenText file_name, file_origin, start_row, file_type, text_qualifier, consecutive_delim, tab,

semicolon, comma, space, other, other_char, field_info
xlDialogOptionsCalculation type_num, iter, max_num, max_change, update, precision, date_1904, calc_save,

save_values
xlDialogOptionsChart display_blanks, plot_visible, size_with_window
xlDialogOptionsEdit incell_edit, drag_drop, alert, entermove, fixed, decimals, copy_objects,

update_links, move_direction, autocomplete, animations
xlDialogOptionsGeneral R1C1_mode, dde_on, sum_info, tips, recent_files, old_menus, user_info,

font_name, font_size, default_location, alternate_location, sheet_num,
enable_under

xlDialogOptionsListsAdd string_array
xlDialogOptionsListsAdd import_ref, by_row
xlDialogOptionsTransition menu_key, menu_key_action, nav_keys, trans_eval, trans_entry
xlDialogOptionsView formula, status, notes, show_info, object_num, page_breaks, formulas, gridlines,

color_num, headers, outline, zeros, hor_scroll, vert_scroll, sheet_tabs
xlDialogOutline auto_styles, row_dir, col_dir, create_apply
xlDialogOverlay type_num, stack, 100, vary, overlap, drop, hilo, overlap%, cluster, angle,

series_num, auto
xlDialogOverlayChartType type_num
xlDialogPageSetup head, foot, left, right, top, bot, hdng, grid, h_cntr, v_cntr, orient, paper_size, scale,

pg_num, pg_order, bw_cells, quality, head_margin, foot_margin, notes, draft
xlDialogPageSetup head, foot, left, right, top, bot, size, h_cntr, v_cntr, orient, paper_size, scale,

pg_num, bw_chart, quality, head_margin, foot_margin, draft
xlDialogPageSetup head, foot, left, right, top, bot, orient, paper_size, scale, quality, head_margin,

foot_margin, pg_num
xlDialogParse parse_text, destination_ref
xlDialogPasteSpecial paste_num, operation_num, skip_blanks, transpose

xlDialogPasteSpecial rowcol, titles, categories, replace, series
xlDialogPasteSpecial paste_num
xlDialogPasteSpecial format_text, pastelink_logical, display_icon_logical, icon_file, icon_number,

icon_label
xlDialogPatterns apattern, afore, aback, newui
xlDialogPatterns lauto, lstyle, lcolor, lwt, hwidth, hlength, htype
xlDialogPatterns bauto, bstyle, bcolor, bwt, shadow, aauto, apattern, afore, aback, rounded, newui
xlDialogPatterns bauto, bstyle, bcolor, bwt, shadow, aauto, apattern, afore, aback, invert, apply,

newfill
xlDialogPatterns lauto, lstyle, lcolor, lwt, tmajor, tminor, tlabel
xlDialogPatterns lauto, lstyle, lcolor, lwt, apply, smooth
xlDialogPatterns lauto, lstyle, lcolor, lwt, mauto, mstyle, mfore, mback, apply, smooth
xlDialogPatterns type, picture_units, apply
xlDialogPivotFieldGroup start, end, by, periods
xlDialogPivotFieldProperties name, pivot_field_name, new_name, orientation, function, formats
xlDialogPivotFieldUngroup
xlDialogPivotShowPages name, page_field
xlDialogPivotTableWizard type, source, destination, name, row_grand, col_grand, save_data,

apply_auto_format, auto_page, reserved
xlDialogPlacement placement_type
xlDialogPrint range_num, from, to, copies, draft, preview, print_what, color, feed, quality,

y_resolution, selection, printer_text, print_to_file, collate
xlDialogPrinterSetup printer_text
xlDialogPrintPreview
xlDialogPromote rowcol
xlDialogProperties title, subject, author, keywords, comments
xlDialogProtectDocument contents, windows, password, objects, scenarios
xlDialogPushbuttonProperties default_logical, cancel_logical, dismiss_logical, help_logical, accel_text, accel_text2
xlDialogReplaceFont font_num, name_text, size_num, bold, italic, underline, strike, color, outline, shadow
xlDialogRoutingSlip recipients, subject, message, route_num, return_logical, status_logical
xlDialogRowHeight height_num, reference, standard_height, type_num
xlDialogRun reference, step
xlDialogSaveAs document_text, type_num, prot_pwd, backup, write_res_pwd, read_only_rec
xlDialogSaveCopyAs document_text
xlDialogSaveNewObject
xlDialogSaveWorkbook document_text, type_num, prot_pwd, backup, write_res_pwd, read_only_rec
xlDialogSaveWorkspace name_text
xlDialogScale cross, cat_labels, cat_marks, between, max, reverse
xlDialogScale min_num, max_num, major, minor, cross, logarithmic, reverse, max
xlDialogScale cat_labels, cat_marks, reverse, between
xlDialogScale series_labels, series_marks, reverse
xlDialogScale min_num, max_num, major, minor, cross, logarithmic, reverse, min
xlDialogScenarioAdd scen_name, value_array, changing_ref, scen_comment, locked, hidden
xlDialogScenarioCells changing_ref
xlDialogScenarioEdit scen_name, new_scenname, value_array, changing_ref, scen_comment, locked,

hidden
xlDialogScenarioMerge source_file
xlDialogScenarioSummary result_ref, report_type
xlDialogScrollbarProperties value, min, max, inc, page, link, 3d_shading
xlDialogSelectSpecial type_num, value_type, levels
xlDialogSendMail recipients, subject, return_receipt
xlDialogSeriesAxes axis_num
xlDialogSeriesOrder chart_num, old_series_num, new_series_num

xlDialogSeriesX x_ref
xlDialogSeriesY name_ref, y_ref
xlDialogSetControlValue value
xlDialogSetPrintTitles titles_for_cols_ref, titles_for_rows_ref
xlDialogSetUpdateStatus link_text, status, type_of_link
xlDialogShowDetail rowcol, rowcol_num, expand, show_field
xlDialogShowToolbar bar_id, visible, dock, x_pos, y_pos, width, protect, tool_tips, large_buttons,

color_buttons
xlDialogSize width, height, window_text
xlDialogSort orientation, key1, order1, key2, order2, key3, order3, header, custom, case
xlDialogSort orientation, key1, order1, type, custom
xlDialogSortSpecial sort_by, method, key1, order1, key2, order2, key3, order3, header, order, case
xlDialogSplit col_split, row_split
xlDialogStandardFont name_text, size_num, bold, italic, underline, strike, color, outline, shadow
xlDialogStandardWidth standard_num
xlDialogStyle bold, italic
xlDialogSubscribeTo file_text, format_num
xlDialogSubtotalCreate at_change_in, function_num, total, replace, pagebreaks, summary_below
xlDialogSummaryInfo title, subject, author, keywords, comments
xlDialogTable row_ref, column_ref
xlDialogTabOrder
xlDialogTextToColumns destination_ref, data_type, text_delim, consecutive_delim, tab, semicolon, comma,

space, other, other_char, field_info
xlDialogUnhide window_text
xlDialogUpdateLink link_text, type_of_link
xlDialogVbaInsertFile filename_text
xlDialogVbaMakeAddin filename_text
xlDialogVbaProcedureDefinitio
n
xlDialogView3d elevation, perspective, rotation, axes, height%, autoscale
xlDialogWindowMove x_pos, y_pos, window_text
xlDialogWindowSize width, height, window_text
xlDialogWorkbookAdd name_array, dest_book, position_num
xlDialogWorkbookCopy name_array, dest_book, position_num
xlDialogWorkbookInsert type_num
xlDialogWorkbookMove name_array, dest_book, position_num
xlDialogWorkbookName oldname_text, newname_text
xlDialogWorkbookNew
xlDialogWorkbookOptions sheet_name, bound_logical, new_name
xlDialogWorkbookProtect structure, windows, password
xlDialogWorkbookTabSplit ratio_num
xlDialogWorkbookUnhide sheet_text
xlDialogWorkgroup name_array
xlDialogWorkspace fixed, decimals, r1c1, scroll, status, formula, menu_key, remote, entermove,

underlines, tools, notes, nav_keys, menu_key_action, drag_drop, show_info
xlDialogZoom magnification

LinkSource Property (Microsoft Excel)

For Microsoft Excel, the source is a name in the workbook.

Add Method (Microsoft Excel)

For Microsoft Excel, the linkSource argument specifies a name in the workbook.

Add Method Example (Microsoft Excel)

This example adds a static custom property named "Complete."
With ActiveWorkbook.CustomDocumentProperties

.Add name := "Complete", linkToContent := False, _
type := offPropertyTypeBoolean, value := False

End With
This example adds a property linked to the name "Grand_Total."
With ActiveWorkbook.CustomDocumentProperties

.Add name := "Total Sales", linkToContent := True, _
linkSource := "Grand_Total"

End With

Count Property Example (Microsoft Excel)

This example displays the number of custom document properties in the active workbook.
MsgBox ActiveWorkbook.CustomDocumentProperties.Count

Delete Method Example (Microsoft Excel)

This example deletes the "Total Sales" custom document property from the active workbook.
ActiveWorkbook.CustomDocumentProperties("Total Sales").Delete

Item Method Example (Microsoft Excel)

This example creates a list that contains the names of all the built-in document properties in the active
workbook.
Set wk = Worksheets(1)
Set builtinProps = ActiveWorkbook.BuiltinDocumentProperties
For i = 1 To builtinProps.Count

wk.Cells(i, 1).Value = builtinProps.Item(i).Name
Next

LinkToContent Property Example (Microsoft Excel)

This example displays the linked status for each custom document property in the active workbook as
a list on worksheet one.
rw = 1
With Worksheets(1)

For Each pro In ActiveWorkbook.CustomDocumentProperties
.Cells(rw, 1) = pro.Name
.Cells(rw, 2) = pro.LinkToContent
If pro.LinkToContent Then

.Cells(rw, 3) = pro.LinkSource
End If
rw = rw + 1

Next
End With

LinkSource Property Example (Microsoft Excel)

This example links the custom document property named "TotalSales" to the named range
"SalesNumbers" in the active workbook.
ActiveWorkbook.CustomDocumentProperties _

.Item("TotalSales").LinkSource = "SalesNumbers"

Name Property Example (Microsoft Excel)

This example displays the name of custom document property one in the active workbook.
MsgBox ActiveWorkbook.CustomDocumentProperties(1).Name

Type Property Example (Microsoft Excel)

This example displays the type of custom document property one in the active workbook.
MsgBox ActiveWorkbook.CustomDocumentProperties(1).Type

Value Property Example (Microsoft Excel)

This example displays the value of the first custom document property in the active workbook.
MsgBox ActiveWorkbook.CustomDocumentProperties(1).Value

Array Function Example (Microsoft Excel)

This example fills the range A1:C5 on Sheet1, Sheet5, and Sheet7 with the contents of the same
range on Sheet1.
x = Array("Sheet1", "Sheet5", "Sheet7")
Sheets(x).FillAcrossSheets _

Worksheets("Sheet1").Range("A1:C5")
This example consolidates data from Sheet2 and Sheet3 onto Sheet1, using the SUM function.
Worksheets("Sheet1").Range("A1").Consolidate _

sources:=Array("Sheet2!R1C1:R37C6", "Sheet3!R1C1:R37C6"), _
Function:=xlSum

This example adds an array of strings as a custom list.
Application.AddCustomList Array("cogs", "sprockets", _

"widgets", "gizmos")
This example hides Chart1, Chart3, and Chart5. Note that in this example, the Charts property
returns a Sheets object instead of a Charts object.
Charts(Array("Chart1", "Chart3", "Chart5")).Visible = False
This example sets the entries in list box one on Dialog1.
DialogSheets("Dialog1").ListBoxes(1).List = _

Array("cogs", "widgets", "sprockets", "gizmos")
This example creates a group that includes drawing objects one, three, and five on Sheet1.
Set myGroup = Worksheets("Sheet1").DrawingObjects(Array(1, 3, 5)).Group
Worksheets("Sheet1").Activate
myGroup.Select

Chr Function Example (Microsoft Excel)

This example fills list box one on Dialog1 with the letters A through Z.
For i = 65 To 90

DialogSheets("Dialog1").ListBoxes(1).AddItem Text:=Chr(i)
Next i
This example creates a line break in a message box by using the Chr function.
msgText = "The current folder is:" & Chr(13) & CurDir()
MsgBox msgText

CVErr Function Example (Microsoft Excel)

This example inserts the seven cell error values into cells A1:A7 on Sheet1.
myArray = Array(xlErrDiv0, xlErrNA, xlErrName, xlErrNull, _

xlErrNum, xlErrRef, xlErrValue)
For i = 1 To 7

Worksheets("Sheet1").Cells(i, 1).Value = CVErr(myArray(i - 1))
Next i
This example displays a message if the active cell on Sheet1 contains a cell error value. You can use
this example as a framework for a cell-error-value error handler.
Worksheets("Sheet1").Activate
If IsError(ActiveCell.Value) Then

errval = ActiveCell.Value
Select Case errval

Case CVErr(xlErrDiv0)
MsgBox "#DIV/0! error"

Case CVErr(xlErrNA)
MsgBox "#N/A error"

Case CVErr(xlErrName)
MsgBox "#NAME? error"

Case CVErr(xlErrNull)
MsgBox "#NULL! error"

Case CVErr(xlErrNum)
MsgBox "#NUM! error"

Case CVErr(xlErrRef)
MsgBox "#REF! error"

Case CVErr(xlErrValue)
MsgBox "#VALUE! error"

Case Else
MsgBox "This should never happen!!"

End Select
End If

Do...Loop Statement Example (Microsoft Excel)

This example sorts the data in the first column on Sheet1 and then deletes any rows that contain
duplicate data.
Worksheets("Sheet1").Range("A1").Sort _

key1:=Worksheets("Sheet1").Range("A1")
Set currentCell = Worksheets("Sheet1").Range("A1")
Do While Not IsEmpty(currentCell)

Set nextCell = currentCell.Offset(1, 0)
If nextCell.Value = currentCell.Value Then

currentCell.EntireRow.Delete
End If
Set currentCell = nextCell

Loop

For Each...Next Statement Example (Microsoft Excel)

This example loops on cells A1:D10 on Sheet1. If one of the cells has a value less than 0.001, the
code replaces the value with 0 (zero).
For Each c in Worksheets("Sheet1").Range("A1:D10")

If c.Value < .001 Then
c.Value = 0

End If
Next c
This example loops on the range named "TestRange" and then displays the number of empty cells in
the range.
numBlanks = 0
For Each c In Range("TestRange")

If c.Value = "" Then
numBlanks = numBlanks + 1

End If
Next c
MsgBox "There are " & numBlanks & " empty cells in this range."
This example closes and saves changes to all workbooks except the one that's running the example.
For Each w In Workbooks

If w.Name <> ThisWorkbook.Name Then
w.Close savechanges:=True

End If
Next w
This example deletes every worksheet in the active workbook without displaying the confirmation
dialog box. There must be at least one other visible sheet in the workbook.
Application.DisplayAlerts = False
For Each w In Worksheets

w.Delete
Next w
Application.DisplayAlerts = True
This example creates a new worksheet and then inserts into it a list of all the names in the active
workbook, including their formulas in A1-style notation in the language of the user.
Set newSheet = ActiveWorkbook.Worksheets.Add
i = 1
For Each nm In ActiveWorkbook.Names

newSheet.Cells(i, 1).Value = nm.NameLocal
newSheet.Cells(i, 2).Value = "'" & nm.RefersToLocal
i = i + 1

Next nm

For...Next Statement Example (Microsoft Excel)

This example displays the number of columns in the selection on Sheet1. The code also tests for a
multiple-area selection; if one exists, the code loops on the areas of the selection.
Worksheets("Sheet1").Activate
areaCount = Selection.Areas.Count
If areaCount <= 1 Then

MsgBox "The selection contains " & _
Selection.Columns.Count & " columns."

Else
For i = 1 To areaCount

MsgBox "Area " & i & " of the selection contains " & _
Selection.Areas(i).Columns.Count & " columns."

Next i
End If
This example creates a new worksheet and then inserts a list of the active workbook's sheet names
into the first column of the worksheet.
Set newSheet = Sheets.Add(Type:=xlWorksheet)
For i = 1 To Sheets.Count

newSheet.Cells(i, 1).Value = Sheets(i).Name
Next i
This example selects every other item in list box one on Sheet1.
Dim items() As Boolean
Set lbox = Worksheets("Sheet1").ListBoxes(1)
ReDim items(1 To lbox.ListCount)
For i = 1 To lbox.ListCount

If i Mod 2 = 1 Then
items(i) = True

Else
items(i) = False

End If
Next
lbox.MultiSelect = xlExtended
lbox.Selected = items

If...Then...Else Statement Example (Microsoft Excel)

This example loops on cells A1:D10 on Sheet1. If one of the cells has a value less than 0.001, the
code replaces the value with 0 (zero).
For Each c in Worksheets("Sheet1").Range("A1:D10")

If c.Value < .001 Then
c.Value = 0

End If
Next c
This example loops on the range named "TestRange" and then displays the number of empty cells in
the range.
numBlanks = 0
For Each c In Range("TestRange")

If c.Value = "" Then
numBlanks = numBlanks + 1

End If
Next c
MsgBox "There are " & numBlanks & " empty cells in this range."
This example sets the standard font to Geneva (on the Macintosh) or Arial (in Windows).
If Application.OperatingSystem Like "*Macintosh*" Then

Application.StandardFont = "Geneva"
Else

Application.StandardFont = "Arial"
End If

Is Operator Example (Microsoft Excel)

This example selects the intersection of two named ranges ("rg1" and "rg2") on Sheet1. If the ranges
don't intersect, the example displays a message.
Worksheets("Sheet1").Activate
Set isect = Application.Intersect(Range("rg1"), Range("rg2"))
If isect Is Nothing Then

MsgBox "Ranges do not intersect"
Else

isect.Select
End If
This example finds the first occurrence of the word "Phoenix" in column B on Sheet1 and then
displays the address of the cell that contains this word. If the word isn't found, the example diplays a
message.
Set foundCell = Worksheets("Sheet1").Columns("B").Find("Phoenix")
If foundCell Is Nothing Then

MsgBox "The word was not found"
Else

MsgBox "The word was found in cell " & foundCell.Address
End If

IsEmpty Function Example (Microsoft Excel)

This example sorts the data in the first column on Sheet1 and then deletes any rows that contain
duplicate data.
Worksheets("Sheet1").Range("A1").Sort _

key1:=Worksheets("Sheet1").Range("A1")
Set currentCell = Worksheets("Sheet1").Range("A1")
Do While Not IsEmpty(currentCell)

Set nextCell = currentCell.Offset(1, 0)
If nextCell.Value = currentCell.Value Then

currentCell.EntireRow.Delete
End If
Set currentCell = nextCell

Loop

IsNull Function Example (Microsoft Excel)

This example creates a list of registered functions, placing each one in a separate row on Sheet1.
Column A contains the full path and file name of the DLL or code resource, column B contains the
function name, and column C contains the code for the argument data type.
theArray = Application.RegisteredFunctions
If IsNull(theArray) Then

MsgBox "No registered functions"
Else

For i = LBound(theArray) To UBound(theArray)
For j = 1 To 3

Worksheets("Sheet1").Cells(i, j).Formula = theArray(i, j)
Next j

Next i
End If

LBound Function Example (Microsoft Excel)

This example writes the elements of the first custom list in column one on Sheet1.
listArray = Application.GetCustomListContents(1)
For i = LBound(listArray, 1) To UBound(listArray, 1)

Worksheets("sheet1").Cells(i, 1).Value = listArray(i)
Next i
This example assumes that you used an external data source to create a PivotTable on Sheet1 in the
active workbook. The example inserts the SQL connection string and query string into a new
worksheet.
Set newSheet = ActiveWorkbook.Worksheets.Add
sdArray = Worksheets("Sheet1").UsedRange.PivotTable.SourceData
For i = LBound(sdArray) To UBound(sdArray)

newSheet.Cells(i, 1) = sdArray(i)
Next i

Like Operator Example (Microsoft Excel)

This example deletes every defined name that contains "temp". The Option Compare Text
statement must be included at the top of any module that contains this example.
For Each nm In ActiveWorkbook.Names

If nm.Name Like "*temp*" Then
nm.Delete

End If
Next nm
This example adds an arrowhead to every shape on Sheet1 that has the word "Line" in its name.
For Each d In Worksheets("Sheet1").DrawingObjects

If d.Name Like "*Line*" Then
d.ArrowHeadLength = xlLong
d.ArrowHeadStyle = xlOpen
d.ArrowHeadWidth = xlNarrow

End If
Next

Mod Operator Example (Microsoft Excel)

This example sets the column width of every other column on Sheet1 to 4 points.
For Each col In Worksheets("Sheet1").Columns

If col.Column Mod 2 = 0 Then
col.ColumnWidth = 4

End If
Next col
This example sets the row height of every other row on Sheet1 to 4 points.
For Each rw In Worksheets("Sheet1").Rows

If rw.Row Mod 2 = 0 Then
rw.RowHeight = 4

End If
Next rw
This example selects every other item in list box one on Sheet1.
Dim items() As Boolean
Set lbox = Worksheets("Sheet1").ListBoxes(1)
ReDim items(1 To lbox.ListCount)
For i = 1 To lbox.ListCount

If i Mod 2 = 1 Then
items(i) = True

Else
items(i) = False

End If
Next
lbox.MultiSelect = xlExtended
lbox.Selected = items

RGB Function Example (Microsoft Excel)

This example sets the gridline color in the active window in Book1.xls to red.
Workbooks("BOOK1.XLS").Worksheets("Sheet1").Activate
ActiveWindow.GridlineColor = RGB(255,0,0)
This example sets the color of the tick labels on the value axis in Chart1 to green.
Charts("Chart1").Axes(xlValue).TickLabels.Font.Color = RGB(0, 255, 0)
This example sets the marker background and foreground colors for the second point in series one in
Chart1 to green and red, respectively.
With Charts("Chart1").SeriesCollection(1).Points(2)

.MarkerBackgroundColor = RGB(0,255,0) ' green

.MarkerForegroundColor = RGB(255,0,0) ' red
End With
This example sets the interior pattern color for rectangle one on Sheet1 to red.
With Worksheets("Sheet1").Rectangles(1).Interior

.Pattern = xlGrid

.PatternColor = RGB(255,0,0)
End With

Select Case Statement Example (Microsoft Excel)

This example displays the name of the mail system installed on the computer.
Select Case Application.MailSystem

Case Is = xlMAPI
MsgBox "Mail system is Microsoft Mail"

Case Is = xlPowerTalk
MsgBox "Mail system is PowerTalk"

Case Is = xlNoMailSystem
MsgBox "No mail system installed"

End Select
This example displays a message box that indicates the location of the active cell in the PivotTable.
Worksheets("Sheet1").Activate
Select Case ActiveCell.LocationInTable
Case Is = xlRowHeader

MsgBox "Active cell is part of a row header"
Case Is = xlColumnHeader

MsgBox "Active cell is part of a column header"
Case Is = xlPageHeader

MsgBox "Active cell is part of a page header"
Case Is = xlDataHeader

MsgBox "Active cell is part of a data header"
Case Is = xlRowItem

MsgBox "Active cell is part of a row item"
Case Is = xlColumnItem

MsgBox "Active cell is part of a column item"
Case Is = xlPageItem

MsgBox "Active cell is part of a page item"
Case Is = xlDataItem

MsgBox "Active cell is part of a data item"
Case Is = xlTableBody

MsgBox "Active cell is part of the table body"
End Select
This example displays a message if the active cell on Sheet1 contains a cell error value. You can use
this example as a framework for a cell-error-value error handler.
Worksheets("Sheet1").Activate
If IsError(ActiveCell.Value) Then

errval = ActiveCell.Value
Select Case errval

Case CVErr(xlErrDiv0)
MsgBox "#DIV/0! error"

Case CVErr(xlErrNA)
MsgBox "#N/A error"

Case CVErr(xlErrName)
MsgBox "#NAME? error"

Case CVErr(xlErrNull)
MsgBox "#NULL! error"

Case CVErr(xlErrNum)
MsgBox "#NUM! error"

Case CVErr(xlErrRef)
MsgBox "#REF! error"

Case CVErr(xlErrValue)
MsgBox "#VALUE! error"

Case Else
MsgBox "This should never happen!!"

End Select
End If

Set Statement Example (Microsoft Excel)

This example adds a new worksheet to the active workbook and then sets the name of the worksheet.
Set newSheet = Worksheets.Add
newSheet.Name = "1995 Budget"
This example creates a new worksheet and then inserts into it a list of all the names in the active
workbook, including their formulas in A1-style notation in the language of the user.
Set newSheet = ActiveWorkbook.Worksheets.Add
i = 1
For Each nm In ActiveWorkbook.Names

newSheet.Cells(i, 1).Value = nm.NameLocal
newSheet.Cells(i, 2).Value = "'" & nm.RefersToLocal
i = i + 1

Next

Static Statement Example (Microsoft Excel)

This example uses the worksheet function Pmt to calculate a home mortgage loan payment. Note
that this example uses the InputBox method instead of the InputBox function so that the method can
perform type checking. The Static statements cause Visual Basic to retain the values of the three
variables; these are displayed as default values the next time you run the example.
Static loanAmt
Static loanInt
Static loanTerm
loanAmt = Application.InputBox _

(Prompt:="Loan amount (100,000 for example)", _
Default:=loanAmt, Type:=1)

loanInt = Application.InputBox _
(Prompt:="Annual interest rate (8.75 for example)", _

Default:=loanInt, Type:=1)
loanTerm = Application.InputBox _

(Prompt:="Term in years (30 for example)", _
Default:=loanTerm, Type:=1)

payment = Application.Pmt(loanInt / 1200, loanTerm * 12, loanAmt)
MsgBox "Monthly payment is " & Format(payment, "Currency")

TypeName Function Example (Microsoft Excel)

This example displays the Visual Basic object type of the selection. You can run this example with
cells selected, with a single oval selected, or with several different graphic objects selected.
Worksheets("Sheet1").Activate
MsgBox "The selection object type is " & TypeName(Selection)

UBound Function Example (Microsoft Excel)

This example writes the elements of the first custom list in column one on Sheet1.
listArray = Application.GetCustomListContents(1)
For i = LBound(listArray, 1) To UBound(listArray, 1)

Worksheets("sheet1").Cells(i, 1).Value = listArray(i)
Next i
This example assumes that you used an external data source to create a PivotTable on Sheet1. The
example inserts the SQL connection string and query string into a new worksheet.
Set newSheet = ActiveWorkbook.Worksheets.Add
sdArray = Worksheets("Sheet1").UsedRange.PivotTable.SourceData
For i = LBound(sdArray) To UBound(sdArray)

newSheet.Cells(i, 1) = sdArray(i)
Next i

With Statement Example (Microsoft Excel)

This example creates a formatted multiplication table in cells A1:K11 on Sheet1.
Set dataTableRange = Worksheets("Sheet1").Range("A1:K11")
Set rowInputCell = Worksheets("Sheet1").Range("A12")
Set columnInputCell = Worksheets("Sheet1").Range("A13")

Worksheets("Sheet1").Range("A1").Formula = "=A12*A13"
For i = 2 To 11

Worksheets("Sheet1").Cells(i, 1) = i - 1
Worksheets("Sheet1").Cells(1, i) = i - 1

Next i
dataTableRange.Table rowInputCell, columnInputCell
With Worksheets("Sheet1").Range("A1").CurrentRegion

.Rows(1).Font.Bold = True

.Columns(1).Font.Bold = True

.Columns.AutoFit
End With

Add Method (AddIns Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAddAddInsObjC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAddAddInsObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthAddAddInsObjA "}

Adds a new add-in file to the list of add-ins. Returns an AddIn object.

Syntax
expression.Add(Filename, CopyFile)
expression Required. An expression that returns an AddIns object.
Filename Required String. The name of the file that contains the add-in you want to add to the list

in the add-in manager.
CopyFile Optional Variant. Ignored if the add-in file is on a hard disk. True to copy the add-in to

your hard disk, if the add-in is on a removable medium (a floppy disk or compact disc). False to
have the add-in remain on the removable medium. If this argument is omitted, Microsoft Excel
displays a dialog box and asks you to choose.

Remarks
This method doesn't install the new add-in. You must set the Installed property to install the add-in.

Add Method (AddIns Collection) Example

This example inserts the add-in Myaddin.xla from drive A. When you run this example, Microsoft
Excel copies the file A:\Myaddin.xla to the Library folder on your hard disk and adds the add-in title to
the list in the Add-Ins dialog box.
Set myAddIn = AddIns.Add(Filename:="A:\MYADDIN.XLA", _

CopyFile:=True)
MsgBox myAddIn.Title & " has been added to the list"
On the Macintosh, this example copies the add-in from the disk labeled "Add-In Disk" to the Macro
Library folder.
Set myAddIn = AddIns.Add(Filename:="Add-In Disk:My Add-In", _

CopyFile:=True)
MsgBox myAddIn.Title & " has been added to the list"

Add Method (Charts Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAddChartsObjC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAddChartsObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthAddChartsObjA "}

Creates a new chart sheet. Returns a Chart object.

Syntax
expression.Add(Before, After, Count)
expression Required. An expression that returns a Charts object.
Before Optional Variant. An object that specifies the sheet before which the new sheet is added.
After Optional Variant. An object that specifies the sheet after which the new sheet is added.
Count Optional Variant. The number of sheets to be added. The default value is one.

Remarks
If Before and After are both omitted, the new chart is inserted before the active sheet.

Add Method (Charts Collection) Example

This example creates an empty chart sheet and inserts it before the last worksheet.
ActiveWorkbook.Charts.Add Before:=Worksheets(Worksheets.Count)

Add Method (Names Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAddNamesObjC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAddNamesObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthAddNamesObjA "}

Defines a new name. Returns a Name object.

Syntax
expression.Add(Name, RefersTo, Visible, MacroType, ShortcutKey, Category, NameLocal,

RefersToLocal, CategoryLocal, RefersToR1C1, RefersToR1C1Local)
expression Required. An expression that returns a Names object.
Name Optional Variant. Required if NameLocal isn't specified. The text to use as the name (in the

language of the macro). Names cannot include spaces and cannot look like cell references.
RefersTo Optional Variant. Required unless one of the other RefersTo arguments is specified.

Describes what the name refers to (in the language of the macro, using A1-style notation).
Visible Optional Variant. True to define the name normally. False to define the name as a hidden

name (that is, it doesn't appear in either the Define Name, Paste Name, or Goto dialog box). The
default value is True.

MacroType Optional Variant. The macro type, as shown in the following table.
Value Meaning
1 User-defined function (Function procedure)
2 Macro (also known as Sub procedure)
3 or omitted None (that is, the name doesn't refer to a user-defined

function or macro)

ShortcutKey Optional Variant. The macro shortcut key. Must be a single letter, such as "z" or "Z".
Applies only for command macros.

Category Optional Variant. The category of the macro or function if MacroType is 1 or 2. The
category is used in the Function Wizard. Existing categories can be referred to either by number
(starting at 1) or by name (in the language of the macro). Microsoft Excel creates a new category if
the specified category doesn't already exist.

NameLocal Optional Variant. Required if Name isn't specified. The text to use as the name (in the
language of the user). Names cannot include spaces and cannot look like cell references.

RefersToLocal Optional Variant. Required unless one of the other RefersTo arguments is
specified. Describes what the name refers to (in the language of the user, using A1-style notation).

CategoryLocal Optional Variant. Required if Category isn't specified. Text identifying the category
of a custom function in the language of the user.

RefersToR1C1 Optional Variant. Required unless one of the other RefersTo arguments is
specified. Describes what the name refers to (in the language of the macro, using R1C1-style
notation).

RefersToR1C1Local Optional Variant. Required unless one of the other RefersTo arguments is
specified. Describes what the name refers to (in the language of the user, using R1C1-style
notation).

Add Method (Names Collection) Example

This example defines a new name for the range A1:D3 on Sheet1 in the active workbook.
ActiveWorkbook.Names.Add _

Name:="tempRange", _
RefersTo:="=Sheet1!A1:D3"

Add Method (Scenarios Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAddScenariosObjC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAddScenariosObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthAddScenariosObjA "}

Creates a new scenario and adds it to the list of scenarios that are available for the current
worksheet. Returns a Scenario object.

Syntax
expression.Add(Name, ChangingCells, Values, Comment, Locked, Hidden)
expression Required. An expression that returns a Scenarios object.
Name Required String. The scenario name.
ChangingCells Required Variant. A Range object that refers to the changing cells for the scenario.
Values Optional Variant. An array that contains the scenario values for the cells in ChangingCells.

If this argument is omitted, the scenario values are assumed to be the current values in the cells
inChangingCells.

Comment Optional Variant. A string that specifies comment text for the scenario. When a new
scenario is added, the author name and date are automatically added at the beginning of the
comment text.

Locked Optional Variant. True to lock the scenario to prevent changes. The default value is True.
Hidden Optional Variant. True to hide the scenario. The default value is False.

Remarks
A scenario name must be unique; Microsoft Excel generates an error if you try to create a scenario
with a name that's already in use.

Add Method (Scenarios Collection) Example

This example adds a new scenario to Sheet1.
Worksheets("Sheet1").Scenarios.Add Name:="Best Case", _

ChangingCells:=Worksheets("Sheet1").Range("A1:A4"), _
Values:=Array(23, 5, 6, 21), _
Comment:="Most favorable outcome."

Add Method (Sheets Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAddSheetsObjC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAddSheetsObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthAddSheetsObjA "}

Creates a new worksheet, chart, or macro sheet.

Syntax
expression.Add(Before, After, Count, Type)
expression Required. An expression that returns a Sheets object.
Before Optional Variant. An object that specifies the sheet before which the new sheet is added.
After Optional Variant. An object that specifies the sheet after which the new sheet is added.
Count Optional Variant. The number of sheets to be added. The default value is one.
Type Optional Variant. Specifies the sheet type. Can be one of the following XlSheetType

constants: xlWorksheet, xlChart, xlExcel4MacroSheet, or xlExcel4IntlMacroSheet. The default
value is xlWorksheet.

Remarks
If Before and After are both omitted, the new sheet is inserted before the active sheet.

Add Method (Sheets Collection) Example

This example inserts a new worksheet before the last worksheet in the active workbook.
ActiveWorkbook.Sheets.Add Before:=Worksheets(Worksheets.Count)

Add Method (Styles Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAddStylesObjC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAddStylesObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthAddStylesObjA "}

Creates a new style and adds it to the list of styles that are available for the current workbook.
Returns a Style object.

Syntax
expression.Add(Name, BasedOn)
expression Required. An expression that returns a Styles object.
Name Required String. The new style name.
BasedOn Optional Variant. A Range object that refers to a cell that's used as the basis for the new

style. If this argument is omitted, the newly created style is based on the Normal style.

Remarks
If a style with the specified name already exists, this method redefines the existing style based on the
cell specified in BasedOn. The following example redefines the Normal style based on the active cell.
ActiveWorkbook.Styles.Add Name := "Normal", _

BasedOn := ActiveCell

Add Method (Styles Collection) Example

This example defines a new style based on cell A1 on Sheet1.
Worksheets("Sheet1").Activate
ActiveWorkbook.Styles.Add Name:="myNewStyle", _

BasedOn:=ActiveSheet.Range("A1")
This example defines a new style that includes only font properties.
With ActiveWorkbook.Styles.Add(Name:="theNewStyle")

.IncludeNumber = False

.IncludeFont = True

.IncludeAlignment = False

.IncludeBorder = False

.IncludePatterns = False

.IncludeProtection = False

.Font.Name = "Arial"

.Font.Size = 18
End With

Add Method (Trendlines Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAddTrendlinesObjC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAddTrendlinesObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthAddTrendlinesObjA "}

Creates a new trendline. Returns a Trendline object.

Syntax
expression.Add(Type, Order, Period, Forward, Backward, Intercept, DisplayEquation,

DisplayRSquared, Name)
expression Required. An expression that returns a Trendlines object.
Type Optional Variant. The trendline type. Can be one of the following XlTrendlineType constants:

xlLinear, xlLogarithmic, xlExponential, xlPolynomial, xlMovingAvg, or xlPower. The default
value is xlLinear.

Order Optional Variant. Required if Type is xlPolynomial. The trendline order. Must be an integer
from 2 to 6, inclusive.

Period Optional Variant. Required if Type is xlMovingAvg. The trendline period. Must be an
integer greater than 1 and less than the number of data points in the series you're adding a
trendline to.

Forward Optional Variant. The number of periods (or units on a scatter chart) that the trendline
extends forward.

Backward Optional Variant. The number of periods (or units on a scatter chart) that the trendline
extends backward.

Intercept Optional Variant. The trendline intercept. If this argument is omitted, the intercept is
automatically set by the regression.

DisplayEquation Optional Variant. True to display the equation of the trendline on the chart (in the
same data label as the R-squared value). The default value is False.

DisplayRSquared Optional Variant. True to display the R-squared value of the trendline on the
chart (in the same data label as the equation). The default value is False.

Name Optional Variant. The name of the trendline as text. If this argument is omitted, Microsoft
Excel generates a name.

Add Method (Trendlines Collection) Example

This example creates a new linear trendline in Chart1.
ActiveWorkbook.Charts("Chart1").SeriesCollection(1).Trendlines.Add

Add Method (Workbooks Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAddWorkbooksObjC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAddWorkbooksObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthAddWorkbooksObjA "}

Creates a new workbook. The new workbook becomes the active workbook. Returns a Workbook
object.

Syntax
expression.Add(Template)
expression Required. An expression that returns a Workbooks object.
Template Optional Variant. Determines how the new workbook is created. If this argument is a

string specifying the name of an existing Microsoft Excel file, the new workbook is created with the
specified file as a template. If this argument is a constant, the new workbook contains a single
sheet of the specified type. Can be one of the following XlWBATemplate constants:
xlWBATChart, xlWBATExcel4IntlMacroSheet, xlWBATExcel4MacroSheet, or
xlWBATWorksheet. If this argument is omitted, Microsoft Excel creates a new workbook with a
number of blank sheets (the number of sheets is set by the SheetsInNewWorkbook property).

Remarks
If the Template argument specifies a file, the file name can include a path.

Add Method (Workbooks Collection) Example

This example creates a new workbook.
Workbooks.Add

Add Method (Worksheets Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAddWorksheetsObjC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAddWorksheetsObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthAddWorksheetsObjA "}

Creates a new worksheet. The new worksheet becomes the active sheet. Returns a Worksheet
object.

Syntax
expression.Add(Before, After, Count, Type)
expression Required. An expression that returns a Worksheets object.
Before Optional Variant. An object that specifies the sheet before which the new sheet is added.
After Optional Variant. An object that specifies the sheet after which the new sheet is added.
Count Optional Variant. The number of sheets to be added. The default value is one.
Type Optional Variant. The sheet type. Can be one of the following XlSheetType constants:

xlWorksheet, xlExcel4MacroSheet, or xlExcel4IntlMacroSheet. The default value is
xlWorksheet.

Remarks
If Before and After are both omitted, the new sheet is inserted before the active sheet.

Add Method (Worksheets Collection) Example

This example creates a new worksheet and inserts it before the active sheet.
ActiveWorkbook.Worksheets.Add
This example adds a new worksheet after the last worksheet in the active workbook.
Worksheets.Add.Move after:=Worksheets(Worksheets.Count)

Add Method (SeriesCollection Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAddSeriesCollectionObjC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAddSeriesCollectionObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlmthAddSeriesCollectionObjA "}

Adds one or more new series to the SeriesCollection collection.

Syntax
expression.Add(Source, Rowcol, SeriesLabels, CategoryLabels, Replace)
expression Required. An expression that returns a SeriesCollection object.
Source Required Variant. The new data, either as a Range object or an array of data points.
Rowcol Optional Variant. Specifies whether the new values are in the rows or columns of the

specified range. Can be one of the following XlRowCol constants: xlRows or xlColumns. The
default value is xlColumns.

SeriesLabels Optional Variant. Ignored if Source is an array. True if the first row or column
contains the name of the data series. False if the first row or column contains the first data point of
the series. If this argument is omitted, Microsoft Excel attempts to determine the location of the
series name from the contents of the first row or column.

CategoryLabels Optional Variant. Ignored if Source is an array. True if the first row or column
contains the name of the category labels. False if the first row or column contains the first data
point of the series. If this argument is omitted, Microsoft Excel attempts to determine the location of
the category label from the contents of the first row or column.

Replace Optional Variant. If CategoryLabels is True and Replace is True, the specified
categories replace the categories that currently exist for the series. If Replace is False, the existing
categories will not be replaced. The default value is False.

Add Method (SeriesCollection Collection) Example

This example creates a new series in Chart1. The data source for the new series is range B1:B10 on
Sheet1.
Charts("Chart1").SeriesCollection.Add _

Source:=ActiveWorkbook.Worksheets("Sheet1").Range("B1:B10")
This example creates a new series on the embedded chart on Sheet1.
Worksheets("Sheet1").ChartObjects(1).Activate
ActiveChart.SeriesCollection.Add _

Source:=Worksheets("Sheet1").Range("B1:B10")

BuiltIn Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproBuiltInC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproBuiltInX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproBuiltInA "}

True if the style is a built-in style. Read-only Boolean.

BuiltIn Property Example

This example creates a list on worksheet one that contains the names and built-in status of all the
styles in the active workbook.
r = 0
Worksheets(1).Activate
For Each s In ActiveWorkbook.Styles

r = r + 1
Cells(r, 1).Value = s.Name
Cells(r, 2).Value = s.BuiltIn

Next

Enabled Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproEnabledC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproEnabledX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproEnabledA "}

True if the object is enabled. Read/write Boolean.

Enabled Property Example

This example disables embedded chart one on worksheet one.
Worksheets(1).ChartObjects(1).Enabled = False

Item
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproItemC "}

Returns a single member of a collection. Read-only.

Item is the default member for a collection. For example, the following two lines of code are
equivalent.
ActiveWorkbook.Worksheets.Item(1)
ActiveWorkbook.Worksheets(1)
For more information about returning a single member of a collection, see Returning an Object from a
Collection..

For specific information about the Item method or property for a given collection, select the name of
the collection in the following list.

AddIns Areas Axes
Borders CalculatedFields CalculatedItems
ChartGroups ChartObjects Charts
Comments CustomViews DataLabels
Dialogs FormatConditions GroupShapes
HPageBreaks LegendEntries Names
ODBCErrors OLEObjects Panes
Parameters PivotCaches PivotFields
PivotFormulas PivotItems PivotTables
Points QueryTables Range
RecentFiles Scenarios SeriesCollection
ShapeRange Shapes Sheets
Styles Trendlines VPageBreaks
Windows Workbooks Worksheets

Item Property (Borders Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproItemBordersObjC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproItemBordersObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproItemBordersObjA "}

Returns a Border object that represents one of the borders of either a range of cells or a style. Read-
only.

Syntax
expression.Item(Index)
expression Required. An expression that returns a Borders collection.
Index Required Long. The border to return. Can be one of the following XlBorderType constants:

xlInsideHorizontal, xlInsideVertical, xlDiagonalDown, xlDiagonalUp, xlEdgeBottom,
xlEdgeLeft, xlEdgeRight, or xlEdgeTop.

Item Property (Borders Collection) Example

This following example sets the color of the bottom border of cells A1:G1.
Worksheets("Sheet1").Range("a1:g1"). _
 Borders.Item(xlEdgeBottom).Color = RGB(255, 0, 0)

Item Property (Range Object)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproItemRangeObjC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproItemRangeObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproItemRangeObjA "}

Returns a Range object that represents a range at an offset to the specified range. Read-only.

Syntax 1
expression.Item(RowIndex, ColumnIndex)
Syntax 2
expression.Item(RowIndex)
expression Required. An expression that returns a Range object.
RowIndex Syntax 1: Required Variant. The row number of the cell you want to access, starting

with 1 for the first row in the range.
Syntax 2: Required Variant. The index number of the cell you want to access, in order from left to
right, then down. Range.Item(1) returns the upper-left cell in the range; Range.Item(2)
returns the cell immediately to the right of the upper-left cell.

ColumnIndex Optional Variant. A number or string that indicates the column number of the cell
you want to access, starting with either 1 or "A" for the first column in the range.

Remarks
Syntax 1 uses a row number and a column number or letter as index arguments. For more
information about this syntax, see the Range object.The RowIndex and ColumnIndex arguments
are relative offsets. In other words, specifying a RowIndex of 1 returns cells in the first row of the
range, not the first row of the worksheet. For example, if the selection is cell C3,
Selection.Cells(2, 2) returns cell D4 (you can use the Item property to index outside the
original range).

Item Property (Range Object) Example

This example fills the range A1:A10 on Sheet1, based on the contents of cell A1.
Worksheets("Sheet1").Range.Item("A1:A10").FillDown

Item Property (Dialogs Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproItemDialogsObjC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproItemDialogsObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproItemDialogsObjA "}

Returns a Dialog object that represents a single built-in dialog box. Read-only.

Syntax
expression.Item(Index)
expression Required. An expression that returns a Dialogs collection.
Index Required Long. The built-in dialog box to return. Can be any one of the XlBuiltInDialog

constants.

Remarks
Using the Item property of the Dialogs collection and the Show method, you can display
approximately 200 built-in dialog boxes. Each dialog box has a constant assigned to it; these
constants all begin with "xlDialog."

For a table of the available constants and their corresponding argument lists, see Built-In Dialog Box
Argument Lists.

The Item property of the Dialogs collection may fail if you try to show a dialog box in an incorrect
context. For example, to display the Data Labels dialog box (using the Visual Basic expression
Application.Dialogs(xlDialogDataLabel).Show), the active sheet must be a chart;
otherwise, the property fails.

Item Property (Dialogs Collection) Example

This example displays the Open dialog box and selects the Read-Only option.
Application.Dialogs.Item(xlDialogOpen).Show arg3:=True

SQLBind Function
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlfctSQLBindC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlfctSQLBindX":1}

Don't use SQLBind and the other ODBC functions in the Xlodbc.xla add-in; use the objects, methods,
and properties in the Data Access Objects (DAO) library instead. For more information about Data
Access Objects, see Data Access Overview.

SQLBind specifies where results are placed when they're retrieved with SQLRetrieve or
SQLRetrieveToFile. Use SQLBind to change the column order of the result set from a query, or to
place the result set columns in nonadjacent worksheet columns.

This function is contained in the Xlodbc.xla add-in (ODBC Add-In on the Macintosh). Before you use
the function, you must establish a reference to the add-in by using the References command (Tools
menu).

Syntax
SQLBind(ConnectionNum, Column, Reference)
ConnectionNum Required. The unique connection ID (returned by SQLOpen) of the data source

for which you want to bind results.
Column Optional. The column number of the result set you want to bind. Columns in the result set

are numbered from left to right, starting with 1. If you omit Column, all bindings for
ConnectionNum are removed.
Column 0 (zero) contains row numbers for the result set. You can return the row numbers by
binding column 0 (zero).

Reference Optional. A Range object that specifies the location of a single cell on a worksheet
where you want the results to be bound. If Reference is omitted, binding is removed for the
column.

Return Value
This function returns an array that lists the bound columns for the current connection, by column
number.

If SQLBind is unable to bind the column to the cell in the specified reference, it returns Error 2042.

If ConnectionNum isn't valid or if you try to bind a cell that isn't available, SQLBind returns Error
2015.

If Reference refers to more than a single cell, SQLBind returns Error 2023.

If SQLRetrieve doesn't have a destination parameter, SQLBind places the result set in the location
indicated by Reference.

Remarks
SQLBind tells the ODBC Control Panel Administrator where to place results when they're received by
way of SQLRetrieve The results are placed in the reference cell and the cells immediately below it.

Use SQLBind if you want the results from different columns to be placed in disjoint worksheet areas.

Use SQLBind for each column in the result set. A binding remains valid as long as the connection
specified by ConnectionNum is open.

Call SQLBind after you call SQLOpen and SQLExecQuery, but before you call SQLRetrieve or
SQLRetrieveToFile. Calls to SQLBind don't affect results that have already been retrieved.

SQLBind Function Example

This example runs a query on the NWind sample database, and then it uses the SQLBind function to
display only the fourth and ninth columns of the query result set (the product name and the quantity
on order) on Sheet1.
If Application.OperatingSystem Like "*Win*" Then

databaseName = "NWind"
Else 'Macintosh

databaseName = "NorthWind"
End If
queryString = "SELECT * FROM product.dbf WHERE (product.ON_ORDER<>0)"
chan = SQLOpen("DSN=" & databaseName)
SQLExecQuery chan, queryString
Set output1 = Worksheets("Sheet1").Range("A1")
Set output2 = Worksheets("Sheet1").Range("B1")
SQLBind chan, 4, output1
SQLBind chan, 9, output2
SQLRetrieve chan
SQLClose chan

SQLClose Function
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlfctSQLCloseC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlfctSQLCloseX":1}

Don't use SQLClose and the other ODBC functions in the Xlodbbc.xla add-in; use the objects,
methods, and properties in the Data Access Objects (DAO) library instead. For more information
about Data Access Objects, see Data Access Overview.

SQLClose closes a connection to an external data source.

This function is contained in the Xlodbc.xla add-in (ODBC Add-In on the Macintosh). Before you use
the function, you must establish a reference to the add-in by using the References command (Tools
menu).

Syntax
SQLClose(ConnectionNum)
ConnectionNum Required. The unique connection ID of the data source you want to disconnect

from.

Return Value
If the connection is successfully closed, this function returns 0 (zero) and the connection ID is no
longer valid.

If ConnectionNum isn't valid, this function returns Error 2015.

If SQLClose is unable to disconnect from the data source, it returns Error 2042.

SQLClose Function Example

This example runs a query on the NWind sample database. The result of the query, displayed on
Sheet1, is a list of all products that are currently on order.
If Application.OperatingSystem Like "*Win*" Then

databaseName = "NWind"
Else 'Macintosh

databaseName = "NorthWind"
End If
queryString = "SELECT * FROM product.dbf WHERE (product.ON_ORDER<>0)"
chan = SQLOpen("DSN=" & databaseName)
SQLExecQuery chan, queryString
Set output = Worksheets("Sheet1").Range("A1")
SQLRetrieve chan, output, , , True
SQLClose chan

SQLError Function
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlfctSQLErrorC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlfctSQLErrorX":1}

Don't use SQLError and the other ODBC functions in the Xlodbc.xla add-in; use the objects,
methods, and properties in the Data Access Objects (DAO) library instead. For more information
about Data Access Objects, see Data Access Overview.

SQLError returns detailed error information when it's called after one of the other ODBC functions
fails. If SQLError itself fails, it cannot return error information.

Error information is defined and stored in memory whenever an ODBC function fails. To make the
error information available, call the SQLError function.

SQLError provides detailed error information only about errors that occur when an ODBC function
fails. It doesn't provide information about Microsoft Excel errors.

This function is contained in the Xlodbc.xla add-in (ODBC Add-In on the Macintosh). Before you use
the function, you must establish a reference to the add-in by using the References command (Tools
menu).

Syntax
SQLError()

Return Value
If there are errors, SQLError returns detailed error information in a two-dimensional array in which
each row describes one error.

Each row has the following three fields for information obtained through the SQLError function call in
ODBC:

· A character string that indicates the ODBC error class and subclass
· A numeric value that indicates the data source native error code.
· A text message that describes the error.

If a function call generates multiple errors, SQLError creates a row for each error.

If there are no errors from a previous ODBC function call, this function returns only Error 2042.

SQLError Function Example

This example generates an intentional error by attempting to open a connection to the NWind sample
database by using an incorrect connection string (NWind is misspelled). The error information is
displayed on Sheet1.
chan = SQLOpen("DSN=NWin")
returnArray = SQLError()
For i = LBound(returnArray, 1) To UBound(returnArray, 1)

Worksheets("Sheet1").Cells(1, i).Formula = returnArray(i)
Next i
SQLClose chan

SQLExecQuery Function
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlfctSQLExecQueryC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlfctSQLExecQueryX":1}

Don't use SQLExecQuery and the other ODBC functions in the XLODBC.XLA add-in; use the
objects, methods, and properties in the Data Access Objects (DAO) library instead. For more
information about Data Access Objects, see Data Access Overview.

SQLExecQuery executes a query on a data source with a connection that has been established with
SQLOpen.

SQLExecQuery executes only the query. Use SQLRetrieve or SQLRetrieveToFile to get the results.

This function is contained in the Xlodbc.xla add-in (ODBC Add-In on the Macintosh). Before you use
the function, you must establish a reference to the add-in by using the References command (Tools
menu).

Syntax
SQLExecQuery(ConnectionNum, QueryText)
ConnectionNum Required. The unique connection ID returned by SQLOpen that identifies the

data source you want to query.
QueryText Required. The query to be executed on the data source. The query must follow the SQL

syntax guidelines for the specific driver.

Return Value
The value returned by SQLExecQuery depends on the SQL statement, as shown in the following
table.

SQL statement Return value
SELECT The number of columns in the result set
UPDATE, INSERT, or DELETE The number of rows affected by the

statement
Any other valid SQL statement 0 (zero)

If SQLExecQuery is unable to execute the query on the specified data source, it returns Error 2042.

If ConnectionNum isn't valid, SQLExecQuery returns Error 2015.

Remarks
Before calling SQLExecQuery, you must establish a connection to a data source by using SQLOpen
The unique connection ID returned by SQLOpen is used by SQLExecQuery to send queries to the
data source.

If you call SQLExecQuery using a previously used connection ID, any pending results on that
connection are replaced by the new results.

SQLExecQuery Function Example

This example runs a query on the NWind sample database. The result of the query, displayed on
Sheet1, is a list of all products that are currently on order.
If Application.OperatingSystem Like "*Win*" Then

databaseName = "NWind"
Else 'Macintosh

databaseName = "NorthWind"
End If
queryString = "SELECT * FROM product.dbf WHERE (product.ON_ORDER<>0)"
chan = SQLOpen("DSN=" & databaseName)
SQLExecQuery chan, queryString
Set output = Worksheets("Sheet1").Range("A1")
SQLRetrieve chan, output, , , True
SQLClose chan

SQLGetSchema Function
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlfctSQLGetSchemaC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlfctSQLGetSchemaX":1}

Don't use SQLGetSchema and the other ODBC functions in the Xlodbbc.xla add-in; use the objects,
methods, and properties in the Data Access Objects (DAO) library instead. For more information
about Data Access Objects, see Data Access Overview.

SQLGetSchema returns information about the structure of the data source on a particular
connection.

This function is contained in the Xlodbc.xla add-in (ODBC Add-In on the Macintosh). Before you use
the function, you must establish a reference to the add-in by using the References command (Tools
menu).

Syntax
SQLGetSchema(ConnectionNum, TypeNum, QualifierText)
ConnectionNum Required. The unique connection ID of the data source you connected to by

using SQLOpen and for which you want information.
TypeNum Required. Specifies the type of information you want returned, as shown in the following

table.
Value Meaning
1 A list of all the available data sources.
2 A list of databases on the current connection.
3 A list of owners in a database on the current connection.
4 A list of tables for a given owner and database on the

current connection.
5 A list of columns in a particular table and their ODBC SQL

data types, in a two-dimensional array. The first field
contains the name of the column; the second field is the
column's ODBC SQL data type.

6 The user ID of the current user.
7 The name of the current database.
8 The name of the data source defined during setup or

defined by using the ODBC Control Panel Administrator.
9 The name of the DBMS that the data source uses ¾ for

example, ORACLE or SQL Server.
10 The server name for the data source.
11 The terminology used by the data source to refer to the

owners ¾ for example "owner", "Authorization ID", or
"Schema".

12 The terminology used by the data source to refer a table ¾
for example, "table" or "file".

13 The terminology used by the data source to refer to a
qualifier ¾ for example, "database" or "folder".

14 The terminology used by the data source to refer to a
procedure ¾ for example, "database procedure", "stored
procedure", or "procedure".

QualifierText Optional. Included only for the TypeNum values 3, 4, and 5. A string that qualifies
the search, as shown in the following table.

TypeNum QualifierText

3 The name of the database in the current data source.
SQLGetSchema returns the names of the table owners in
that database.

4 Both a database name and an owner name. The syntax
consists of the database name followed by the owner's
name, with a period separating the two; for example,
"DatabaseName.OwnerName". This function returns an
array of table names that are located in the given database
and owned by the given owner.

 5 The name of a table. SQLGetSchema returns information
about the columns in the table.

Return Value
The return value from a successful call to SQLGetSchema depends on the type of information that's
requested.

If SQLGetSchema cannot find the requested information, it returns Error 2042.

If ConnectionNum isn't valid, this function returns Error 2015.

Remarks
SQLGetSchema uses the ODBC API functions SQLGetInfo and SQLTables to find the requested
information.

SQLGetSchema Function Example

This example retrieves the database name and DBMS name for the NWind sample database and
then displays these names in a message box.
If Application.OperatingSystem Like "*Win*" Then

databaseName = "NWind"
Else 'Macintosh

databaseName = "NorthWind"
End If
chan = SQLOpen("DSN=" & databaseName)
dsName = SQLGetSchema(chan, 8)
dsDBMS = SQLGetSchema(chan, 9)
MsgBox "Database name is " & dsName & ", and its DBMS is " & dsDBMS
SQLClose chan

SQLOpen Function
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlfctSQLOpenC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlfctSQLOpenX":1}

Don't use SQLOpen and the other ODBC functions in the Xlodbc.xla add-in; use the objects,
methods, and properties in the Data Access Objects (DAO) library instead. For more information
about Data Access Objects, see Data Access Overview.

SQLOpen establishes a connection to a data source.

This function is contained in the Xlodbc.xla add-in (ODBC Add-In on the Macintosh). Before you use
the function, you must establish a reference to the add-in by using the References command (Tools
menu).

Syntax
SQLOpen(ConnectionStr, OutputRef, DriverPrompt)
ConnectionStr Required. Supplies the information required by the driver being used to connect to

a data source; must follow the driver's format.
ConnectionStr supplies the data source name and other information ¾ such as user ID and
passwords ¾ that the driver requires to make a connection.
You must define the data source name (DSN) used in ConnectionStr before you try to connect to
it.

OutputRef Optional. A Range object (must be a single cell) that contains the completed connection
string.
Use OutputRef when you want SQLOpen to return the completed connection string to a
worksheet.

DriverPrompt Optional. Specifies whether the driver dialog box is displayed and, if it is, which
options are available in it. Use one of the values described in the following table. If DriverPrompt
is omitted, SQLOpen uses 2 as the default.
Value Meaning
1 The driver dialog box is always displayed.
2 The driver dialog box is displayed only if information

provided by the connection string and the data source
specification aren't sufficient to complete the connection. All
dialog box options are available.

3 The same as 2 except that dialog box options that aren't
required are dimmed (unavailable).

4 The driver dialog box isn't displayed. If the connection isn't
successful, SQLOpen returns an error.

Return Value
If successful, SQLOpen returns a unique connection ID number. Use the connection ID number with
the other ODBC functions.

If SQLOpen is unable to connect using the information you provide, it returns Error 2042. Additional
error information is placed in memory for use by SQLError.

SQLOpen Function Example

This example runs a query on the NWind sample database. The result of the query, displayed on
Sheet1, is a list of all products that are currently on order.
If Application.OperatingSystem Like "*Win*" Then

databaseName = "NWind"
Else 'Macintosh

databaseName = "NorthWind"
End If
queryString = "SELECT * FROM product.dbf WHERE (product.ON_ORDER<>0)"
chan = SQLOpen("DSN=" & databaseName)
SQLExecQuery chan, queryString
Set output = Worksheets("Sheet1").Range("A1")
SQLRetrieve chan, output, , , True
SQLClose chan

SQLRequest Function
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlfctSQLRequestC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlfctSQLRequestX":1}

Don't use SQLRequest and the other ODBC functions in the Xlodbc.xla add-in; use the objects,
methods, and properties in the Data Access Objects (DAO) library instead. For more information
about Data Access Objects, see Data Access Overview.

SQLRequest connects to an external data source and runs a query from a worksheet, and then it
returns the result of the query as an array.

This function is contained in the Xlodbc.xla add-in (ODBC Add-In on the Macintosh). Before you use
the function, you must establish a reference to the add-in by using the References command (Tools
menu).

Syntax
SQLRequest(ConnectionStr, QueryText, OutputRef, DriverPrompt, ColNamesLogical)
ConnectionStr Required. Supplies information ¾ such as the data source name, user ID, and

passwords ¾ required by the driver being used to connect to a data source; must follow the driver's
format.
You must define the data source name (DSN) used in ConnectionStr before you try to connect to
it.
If SQLRequest is unable to access the data source using ConnectionStr, it returns Error 2042.

QueryText Required. The SQL statement you want to execute on the data source.
If SQLRequest is unable to execute QueryText on the specified data source, it returns Error 2042.

OutputRef Optional. A Range object (must be a single cell) where you want the completed
connection string to be placed.

DriverPrompt Optional. Specifies whether the driver dialog box is displayed and which options are
available. Use one of the values described in the following table. If DriverPrompt is omitted,
SQLRequest uses 2 as the default.
Value Meaning
1 The driver dialog box is always displayed.
2 The driver dialog box is displayed only if information

provided by the connection string and the data source
specification isn't sufficient to complete the connection. All
dialog box options are available.

3 The driver dialog box is displayed only if information
provided by the connection string and the data source
specification isn't sufficient to complete the connection.
Dialog box options that aren't required are dimmed
(unavailable).

4 The dialog box isn't displayed. If the connection isn't
successful, it returns an error.

ColNamesLogical Optional. True to have the column names be returned as the first row of results.
False to not have the column names be returned. If ColNamesLogical is omitted, the default value
is False.

Remarks
The arguments to the SQLRequest function are in a different order than the arguments to the
SQL.REQUEST macro function.

Return Value

If this function completes all of its actions, it returns an array of query results or the number of rows
affected by the query.

If SQLRequest is unable to complete all of its actions, it returns an error value and places the error
information in memory for SQLError.
If SQLRequest is unable to access the data source using connectionStr, it returns Error 2042.

SQLRequest Function Example

This example runs a query on the NWind sample database. The result of the query, displayed on
Sheet1, is a list of all products that are currently on order. The SQLRequest function also writes the
full connection string to Sheet2.
If Application.OperatingSystem Like "*Win*" Then

databaseName = "NWind"
Else 'Macintosh

databaseName = "NorthWind"
End If
queryString = "SELECT * FROM product.dbf WHERE (product.ON_ORDER<>0)"
returnArray = SQLRequest("DSN=" & databaseName, _

queryString, _
Worksheets("Sheet1").Range("A1"), _
2, True)

For i = LBound(returnArray, 1) To UBound(returnArray, 1)
For j = LBound(returnArray, 2) To UBound(returnArray, 2)

Worksheets("Sheet1").Cells(i, j).Formula = returnArray(i, j)
Next j

Next i

SQLRetrieve Function
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlfctSQLRetrieveC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlfctSQLRetrieveX":1}

Don't use SQLRetrieve and the other ODBC functions in the Xlodbc.xla add-in; use the objects,
methods, and properties in the Data Access Objects (DAO) library instead. For more information
about Data Access Objects, see Data Access Overview.

SQLRetrieve retrieves all or part of the results from a previously executed query.

Before using SQLRetrieve, you must establish a connection with SQLOpen, execute a query with
SQLExecQuery, and have the results pending.

This function is contained in the Xlodbc.xla add-in (ODBC Add-In on the Macintosh). Before you use
the function, you must establish a reference to the add-in by using the References command (Tools
menu).

Syntax
SQLRetrieve(ConnectionNum, DestinationRef, MaxColumns, MaxRows, ColNamesLogical,

RowNumsLogical, NamedRngLogical, FetchFirstLogical)
ConnectionNum Required. The unique connection ID returned by SQLOpen and for which you

have pending query results that were generated by SQLExecQuery.
If ConnectionNum isn't valid, SQLExecQuery returns Error 2015.

DestinationRef Optional. A Range object that specifies where the results should be placed. This
function overwrites any values in the cells, without confirmation.
If DestinationRef refers to a single cell, SQLRetrieve returns all the pending results in that cell
and in the cells to the right of and below it.
If DestinationRef is omitted, the bindings established by previous calls to SQLBind are used to
return results. If no bindings exist for the current connection, SQLRetrieve returns Error 2023.
If a particular result column hasn't been bound and DestinationRef is omitted, the results are
discarded.

MaxColumns Optional. The maximum number of columns returned to the worksheet, starting at
DestinationRef.
If MaxColumns specifies more columns than are available in the result, SQLRetrieve places data
in the columns for which data is available and clears the additional columns.
If MaxColumns specifies fewer columns than are available in the result, SQLRetrieve discards the
rightmost result columns until the results fit the specified size.
The order in which the data source returns the columns determines column position.
If MaxColumns is omitted, all the results are returned.

MaxRows Optional. The maximum number of rows to be returned to the worksheet, starting at
DestinationRef.
If MaxRows specifies more rows than are available in the results, SQLRetrieve places data in the
rows for which data is available and clears the additional rows.
If MaxRows specifies fewer rows than are available in the results, SQLRetrieve places data in the
selected rows but doesn't discard the additional rows. You can retrieve extra rows by using
SQLRetrieve again and setting FetchFirstLogical to False.
If MaxRows is omitted, all the rows in the results are returned.

ColNamesLogical Optional. True to have the column names be returned as the first row of results.
False or omitted to have the column names not be returned.

RowNumsLogical Optional. Used only when DestinationRef is included in the function call. True
to have the first column in the result set contain row numbers. False or omitted to have the row
numbers not be returned. You can also retrieve row numbers by binding column 0 (zero) with

SQLBind.
NamedRngLogical Optional. True to have each column of the results be declared as a named

range on the worksheet. The name of each range is the result column name. The named range
includes only the rows that are returned with SQLRetrieve. The default value is False.

FetchFirstLogical Optional. Allows you to request results from the beginning of the result set. If
FetchFirstLogical is False, SQLRetrieve can be called repeatedly to return the next set of rows
until all the result rows have been returned. When there are no more rows in the result set,
SQLRequest returns 0 (zero). If you want to retrieve results from the beginning of the result set,
set FetchFirstLogical to True. To retrieve additional rows from the result set, set
FetchFirstLogical to False in subsequent calls. The default value is False.

Return Value
SQLRetrieve returns the number of rows in the result set.

If SQLRetrieve is unable to retrieve the results on the specified data source or if there are no results
pending, it returns Error 2042. If no data is found, SQLRetrieve returns 0 (zero).

Remarks
Before calling SQLRetrieve, you must do the following:

1. Establish a connection with a data source by using SQLOpen.
2. Use the connection ID returned in SQLOpen to send a query with SQLExecQuery.

SQLRetrieve Function Example

This example runs a query on the NWind sample database. The result of the query, displayed on
Sheet1, is a list of all products that are currently on order.
If Application.OperatingSystem Like "*Win*" Then

databaseName = "NWind"
Else 'Macintosh

databaseName = "NorthWind"
End If
queryString = "SELECT * FROM product.dbf WHERE (product.ON_ORDER<>0)"
chan = SQLOpen("DSN=" & databaseName)
SQLExecQuery chan, queryString
Set output = Worksheets("Sheet1").Range("A1")
SQLRetrieve chan, output, , , True
SQLClose chan

SQLRetrieveToFile Function
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlfctSQLRetrieveToFileC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlfctSQLRetrieveToFileX":1}

Don't use SQLRetrieveToFile and the other ODBC functions in the Xlodbc.xla add-in; use the
objects, methods, and properties in the Data Access Objects (DAO) library instead. For more
information about Data Access Objects, see Data Access Overview.

SQLRetrieveToFile retrieves all the results from a previously executed query and places them in a
file.

To use this function, you must have established a connection with a data source by using SQLOpen,
executed a query by using SQLExecQuery, and have the results of the query pending.

This function is contained in the Xlodbc.xla add-in (ODBC Add-In on the Macintosh). Before you use
the function, you must establish a reference to the add-in by using the References command (Tools
menu).

Syntax
SQLRetrieveToFile(ConnectionNum, Destination, ColNamesLogical, ColumnDelimiter)
ConnectionNum Required. The unique connection ID returned by SQLOpen and for which you

have pending query results that were generated by SQLExecQuery.
If ConnectionNum isn't valid, SQLExecQuery returns Error 2015.

Destination Required. A string that specifies the name and path of the file where you want to place
the results. If the file exists, its contents are replaced with the query results. If the file doesn't exist,
SQLRetrieveToFile creates and opens the file and fills it with the results.
The format of the data in the file is compatible with the Microsoft Excel .csv (comma-separated
value) file format.
Columns are separated by the character specified by ColumnDelimiter, and the individual rows
are separated by a carriage return.
If the file specified by Destination cannot be opened, SQLRetrieveToFile returns Error 2042.

ColNamesLogical Optional. True to have the column names be returned as the first row of data.
False or omitted to have the column names not be returned.

ColumnDelimiter Optional. A string that specifies the character used to separate the elements in
each row. For example, use "," to specify a comma delimiter, or use ";" to specify a semicolon
delimiter. If you omit ColumnDelimiter, the list separator character is used.

Return Value
If successful, SQLRetrieveToFile returns the query results, writes them to a file, and then returns the
number of rows that were written to the file.

If SQLRetrieveToFile is unable to retrieve the results, it returns Error 2042 and doesn't write the file.

If there are no pending results on the connection, SQLRetrieveToFile returns Error 2042.

Remarks
Before calling SQLRetrieveToFile, you must do the following:

1. Establish a connection with a data source by using SQLOpen.
2. Use the connection ID returned by SQLOpen to send a query with SQLExecQuery.

SQLRetrieveToFile Function Example

This example runs a query on the NWind sample database. The result of the query, which is a list of
all products that are currently on order, is written as the delimited text file Output.txt in the current
folder.
If Application.OperatingSystem Like "*Win*" Then

databaseName = "NWind"
Else 'Macintosh

databaseName = "NorthWind"
End If
queryString = "SELECT * FROM product.dbf WHERE (product.ON_ORDER<>0)"
chan = SQLOpen("DSN=" & databaseName)
SQLExecQuery chan, queryString
SQLRetrieveToFile chan, "OUTPUT.TXT", True
SQLClose chan

SolverAdd Function
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlfctSolverAddC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlfctSolverAddX":1}

Adds a constraint to the current problem. Equivalent to clicking Solver on the Tools menu and then
clicking Add in the Solver Parameters dialog box.

Before you use this function, you must establish a reference to the Solver add-in. With a Visual Basic
module active, click References on the Tools menu, and then select the Solver.xla check box under
Available References. If Solver.xla doesn't appear under Available References, click Browse and
open Solver.xla in the \Excel\Library\Solver folder.

Syntax
SolverAdd(CellRef, Relation, FormulaText)
CellRef Required Variant. A reference to a cell or a range of cells that forms the left side of a

constraint.
Relation Required Integer. The arithmetic relationship between the left and right sides of the

constraint. If you choose 4 or 5, CellRef must refer to adjustable (changing) cells, and
FormulaText shouldn't be specified.
Relation Arithmetic relationship
1 <=
2 =
3 >=
4 Cells referenced by CellRef must have final values

that are integers.
5 Cells referenced by CellRef must have final values

of either 0 (zero) or 1.

FormulaText Optional Variant. The right side of the constraint.

Remarks
After constraints are added, you can manipulate them with the SolverChange and SolverDelete
functions.

SolverAdd Function Example

This example uses the Solver functions to maximize gross profit in a business problem. The
SolverAdd function is used to add three constraints to the current problem.
Worksheets("Sheet1").Activate
SolverReset
SolverOptions precision:=0.001
SolverOK setCell:=Range("TotalProfit"), _

maxMinVal:=1, _
byChange:=Range("C4:E6")

SolverAdd cellRef:=Range("F4:F6"), _
relation:=1, _
formulaText:=100

SolverAdd cellRef:=Range("C4:E6"), _
relation:=3, _
formulaText:=0

SolverAdd cellRef:=Range("C4:E6"), _
relation:=4

SolverSolve userFinish:=False
SolverSave saveArea:=Range("A33")

SolverChange Function
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlfctSolverChangeC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlfctSolverChangeX":1}

Changes an existing constraint. Equivalent to clicking Solver on the Tools menu and then clicking
Change in the Solver Parameters dialog box.

Before you use this function, you must establish a reference to the Solver add-in. With a Visual Basic
module active, click References on the Tools menu, and then select the Solver.xla check box under
Available References. If Solver.xla doesn't appear under Available References, click Browse and
open Solver.xla in the \Excel\Library\Solver folder.

Syntax
SolverChange(CellRef, Relation, FormulaText)
CellRef Required Variant. A reference to a cell or a range of cells that forms the left side of a

constraint.
Relation Required Integer. The arithmetic relationship between the left and right sides of the

constraint. If you choose 4 or 5 , CellRef must refer to adjustable (changing) cells, and
FormulaText shouldn't be specified.
Relation Arithmetic relationship
1 <=
2 =
3 >=
4 Cells referenced by CellRef must have final values

that are integers.
5 Cells referenced by CellRef must have final values

of either 0 (zero) or 1.

FormulaText Optional Variant. The right side of the constraint.

Remarks
If CellRef and Relation don't match an existing constraint, you must use the SolverDelete and
SolverAdd functions to change the constraint.

SolverChange Function Example

This example loads the previously calculated Solver model stored on Sheet1, changes one of the
constraints, and then solves the model again.
Worksheets("Sheet1").Activate
SolverLoad loadArea:=Range("A33:A38")
SolverChange cellRef:=Range("F4:F6"), _

relation:=1, _
formulaText:=200

SolverSolve userFinish:=False

SolverDelete Function
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlfctSolverDeleteC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlfctSolverDeleteX":1}

Deletes an existing constraint. Equivalent to clicking Solver on the Tools menu and then clicking
Delete in the Solver Parameters dialog box.

Before you use this function, you must establish a reference to the Solver add-in. With a Visual Basic
module active, click References on the Tools menu, and then select the Solver.xla check box under
Available References. If Solver.xla doesn't appear under Available References, click Browse and
open Solver.xla in the \Excel\Library\Solver folder.

Syntax
SolverDelete(CellRef, Relation, FormulaText)
CellRef Required Variant. Reference to a cell or a range of cells that forms the left side of a

constraint.
Relation Required Integer. The arithmetic relationship between the left and right sides of the

constraint. If you choose 4 or 5, CellRef must refer to adjustable (changing) cells, and
FormulaText shouldn't be specified.
Relation Arithmetic relationship
1 <=
2 =
3 >=
4 Cells referenced by CellRef must have final values

that are integers.
5 Cells referenced by CellRef must have final values

of either 0 (zero) or 1.

FormulaText Optional Variant. The right side of the constraint.

SolverDelete Function Example

This example loads the previously calculated Solver model stored on Sheet1, deletes one of the
constraints, and then solves the model again.
Worksheets("Sheet1").Activate
SolverLoad loadArea:=Range("A33:A38")
SolverDelete cellRef:=Range("C4:E6"), _

relation:=4
SolverSolve userFinish:=False

SolverFinish Function
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlfctSolverFinishC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlfctSolverFinishX":1}

Tells Microsoft Excel what to do with the results and what kind of report to create when the solution
process is completed.

Before you use this function, you must establish a reference to the Solver add-in. With the Visual
Basic Editor active, click References on the Tools menu, and then select the Solver.xla check box
under Available References. If Solver.xla doesn't appear under Available References, click
Browse and open Solver.xla in the Library\Solver folder.

Syntax
SolverFinish(KeepFinal, ReportArray)
KeepFinal Optional Variant. Can be either 1 or 2. If KeepFinal is 1 or omitted, the final solution

values are kept in the changing cells, replacing any former values. If KeepFinal is 2, the final
solution values are discarded, and the former values are restored.

ReportArray Optional Variant. The kind of report Microsoft Excel will create when Solver is
finished: 1 creates an answer report, 2 creates a sensitivity report, and 3 creates a limit report. Use
the Array function to specify the reports you want to display ¾ for example, ReportArray:=
Array(1,3).

SolverFinish Function Example

This example loads the previously calculated Solver model stored on Sheet1, solves the model again,
and then generates an answer report on a new worksheet.
Worksheets("Sheet1").Activate
SolverLoad loadArea:=Range("A33:A38")
SolverSolve userFinish:=True
SolverFinish keepFinal:=1, reportArray:=Array(1)

SolverFinishDialog Function
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlfctSolverFinishDialogC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlfctSolverFinishDialogX":1}

Tells Microsoft Excel what to do with the results and what kind of report to create when the solution
process is completed. Equivalent to the SolverFinish function, but also displays the Solver Results
dialog box after solving a problem.

Before you use this function, you must establish a reference to the Solver add-in. With a Visual Basic
module active, click References on the Tools menu, and then select the Solver.xla check box under
Available References. If Solver.xla doesn't appear under Available References, click Browse and
open Solver.xla in the \Excel\Library\Solver folder.

Syntax
SolverFinishDialog(KeepFinal, ReportArray)
KeepFinal Optional Variant. Can be either 1 or 2. If KeepFinal is 1 or omitted, the final solution

values are kept in the changing cells, replacing any former values. If KeepFinal is 2, the final
solution values are discarded, and the former values are restored.

ReportArray Optional Variant. The kind of report Microsoft Excel will create when Solver is
finished: 1 creates an answer report, 2 creates a sensitivity report, and 3 creates a limit report. Use
the Array function to specify the reports you want to display ¾ for example, ReportArray:=
Array(1,3).

SolverFinishDialog Function Example

This example loads the previously calculated Solver model stored on Sheet1, solves the model again,
and then displays the Finish dialog box with two preset options.
Worksheets("Sheet1").Activate
SolverLoad loadArea:=Range("A33:A38")
SolverSolve userFinish:=True
SolverFinishDialog keepFinal:=1, reportArray:=Array(1)

SolverGet Function
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlfctSolverGetC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlfctSolverGetX":1}

Returns information about current settings for Solver. The settings are specified in the Solver
Parameters and Solver Options dialog boxes.

Before you use this function, you must establish a reference to the Solver add-in. With a Visual Basic
module active, click References on the Tools menu, and then select the Solver.xla check box under
Available References. If Solver.xla doesn't appear under Available References, click Browse and
open Solver.xla in the \Excel\Library\Solver folder.

Syntax
SolverGet(TypeNum, SheetName)
TypeNum Required Integer. A number specifying the type of information you want. The following

settings are specified in the Solver Parameters dialog box.
TypeNum Returns

1 The reference in the Set Target Cell box, or the #N/A error
value if Solver hasn't been used on the active sheet.

2 A number corresponding to the Equal To option: 1
represents Max, 2 represents Min, and 3 represents Value
Of.

3 The value in the Value Of box.
4 The reference (as a multiple reference, if necessary) in the

By Changing Cells box.
5 The number of constraints.
6 An array of the left sides of the constraints, in text form.
7 An array of numbers corresponding to the relationships

between the left and right sides of the constraints: 1
represents <=, 2 represents =, 3 represents >=, 4
represents int, and 5 represents bin.

8 An array of the right sides of the constraints, in text form.

The following settings are specified in the Solver Options dialog box.
TypeNum Returns

9 The maximum calculation time.
10 The maximum number of iterations.
11 The precision.
12 The integer tolerance value.
13 True if the Assume Linear Model check box is

selected; False if it's cleared.
14 True if the Show Iteration Results check box is

selected; False if it's cleared.
15 True if the Use Automatic Scaling check box is

selected; False if it's cleared.
16 A number corresponding to the type of estimates: 1

represents Tangent, and 2 represents Quadratic.
17 A number corresponding to the type of derivatives: 1

represents Forward, and 2 represents Central.
18 A number corresponding to the type of search: 1

represents Quasi-Newton, and 2 represents
Conjugate Gradient.

19 The convergence value.
20 True if the Assume Non-Negative check box is

selected.

SheetName Optional Variant. The name of the sheet that contains the Solver model for which you
want information. If SheetName is omitted, this sheet is assumed to be the active sheet.

SolverGet Function Example

This example displays a message if you haven't used Solver on Sheet1.
Worksheets("Sheet1").Activate
state = SolverGet(typeNum:=1)
If IsError(state) Then

MsgBox "You have not used Solver on the active sheet"
End If

SolverLoad Function
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlfctSolverLoadC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlfctSolverLoadX":1}

Loads existing Solver model parameters that have been saved to the worksheet.

Before you use this function, you must establish a reference to the Solver add-in. With a Visual Basic
module active, click References on the Tools menu, and then select the Solver.xla check box under
Available References. If Solver.xla doesn't appear under Available References, click Browse and
open Solver.xla in the \Excel\Library\Solver folder.

Syntax
SolverLoad(LoadArea)
LoadArea Required Variant. A reference on the active worksheet to a range of cells from which

you want to load a complete problem specification. The first cell in the LoadArea contains a
formula for the Set Target Cell box in the Solver Parameters dialog box; the second cell contains
a formula for the By Changing Cells box; subsequent cells contain constraints in the form of
logical formulas. The last cell optionally contains an array of Solver option values. For more
information, see SolverOptions. The range represented by the argument LoadArea can be on
any worksheet, but you must specify the worksheet if it's not the active sheet. For example,
SolverLoad("Sheet2!A1:A3") loads a model from Sheet2 even if it's not the active sheet.

SolverLoad Function Example

This example loads the previously calculated Solver model stored on Sheet1, changes one of the
constraints, and then solves the model again.
Worksheets("Sheet1").Activate
SolverLoad loadArea:=Range("A33:A38")
SolverChange cellRef:=Range("F4:F6"), _

relation:=1, _
formulaText:=200

SolverSolve userFinish:=False

SolverOk Function
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlfctSolverOkC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlfctSolverOkX":1}

Defines a basic Solver model. Equivalent to clicking Solver on the Tools menu and then specifying
options in the Solver Parameters dialog box.

Before you use this function, you must establish a reference to the Solver add-in. With a Visual Basic
module active, click References on the Tools menu, and then select the Solver.xla check box under
Available References. If Solver.xla doesn't appear under Available References, click Browse and
open Solver.xla in the \Excel\Library\Solver folder.

Syntax
SolverOk(SetCell, MaxMinVal, ValueOf, ByChange)
SetCell Optional Variant. Refers to a single cell on the active worksheet. Corresponds to the Set

Target Cell box in the Solver Parameters dialog box.
MaxMinVal Optional Variant. Corresponds to the Max, Min, and Value Of options in the Solver

Parameters dialog box.
MaxMinVal Specifies

1 Maximize.
2 Minimize.
3 Match a specific value.

ValueOf Optional Variant. If MaxMinVal is 3, you must specify the value to which the target cell is
matched.

ByChange Optional Variant. The cell or range of cells that will be changed so that you'll obtain the
desired result in the target cell. Corresponds to the By Changing Cells box in the Solver
Parameters dialog box.

SolverOK Function Example

This example uses the Solver functions to maximize gross profit in a business problem. The
SolverOK function defines a problem by specifying the SetCell, MaxMinVal, and ByChange
arguments.
Worksheets("Sheet1").Activate
SolverReset
SolverOptions precision:=0.001
SolverOK setCell:=Range("TotalProfit"), _

maxMinVal:=1, _
byChange:=Range("C4:E6")

SolverAdd cellRef:=Range("F4:F6"), _
relation:=1, _
formulaText:=100

SolverAdd cellRef:=Range("C4:E6"), _
relation:=3, _
formulaText:=0

SolverAdd cellRef:=Range("C4:E6"), _
relation:=4

SolverSolve userFinish:=False
SolverSave saveArea:=Range("A33")

SolverOkDialog Function
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlfctSolverOkDialogC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlfctSolverOkDialogX":1}

Same as the SolverOK function, but also displays the Solver dialog box.

Before you use this function, you must establish a reference to the Solver add-in. With a Visual Basic
module active, click References on the Tools menu, and then select the Solver.xla check box under
Available References. If Solver.xla doesn't appear under Available References, click Browse and
open Solver.xla in the \Excel\Library\Solver folder.

Syntax
SolverOkDialog(SetCell, MaxMinVal, ValueOf, ByChange)
SetCell Optional Variant. Refers to a single cell on the active worksheet. Corresponds to the Set

Target Cell box in the Solver Parameters dialog box.
MaxMinVal Optional Variant. Corresponds to the Max, Min, and Value Of options in the Solver

Parameters dialog box.
MaxMinVal Specifies

1 Maximize.
2 Minimize.
3 Match a specific value.

ValueOf Optional Variant. If MaxMinVal is 3, you must specify the value that the target cell is
matched to.

ByChange Optional Variant. The cell or range of cells that will be changed so that you'll obtain the
desired result in the target cell. Corresponds to the By Changing Cells box in the Solver
Parameters dialog box.

SolverOKDialog Function Example

This example loads the previously calculated Solver model stored on Sheet1, resets all Solver
options, and then displays the Solver Parameters dialog box. From this point on, you can use Solver
manually.
Worksheets("Sheet1").Activate
SolverLoad loadArea:=Range("A33:A38")
SolverReset
SolverOKDialog setCell:=Range("TotalProfit")
SolverSolve userFinish:=False

SolverOptions Function
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlfctSolverOptionsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlfctSolverOptionsX":1}

Allows you to specify advanced options for your Solver model. This function and its arguments
correspond to the options in the Solver Options dialog box.

Before you use this function, you must establish a reference to the Solver add-in. With a Visual Basic
module active, click References on the Tools menu, and then select the Solver.xla check box under
Available References. If Solver.xla doesn't appear under Available References, click Browse and
open Solver.xla in the \Excel\Library\Solver folder.

Syntax
SolverOptions(MaxTime, Iterations, Precision, AssumeLinear, StepThru, Estimates,

Derivatives, Search, IntTolerance, Scaling, Convergence, AssumeNonNeg)
MaxTime Optional Variant. The maximum amount of time (in seconds) Microsoft Excel will spend

solving the problem. The value must be a positive integer. The default value 100 is adequate for
most small problems, but you can enter a value as high as 32,767.

Iterations Optional Variant. The maximum number of iterations Microsoft Excel will use in solving
the problem. The value must be a positive integer. The default value 100 is adequate for most
small problems, but you can enter a value as high as 32,767.

Precision Optional Variant. A number between 0 (zero) and 1 that specifies the degree of
precision to be used in solving the problem. The default precision is 0.000001. A smaller number of
decimal places (for example, 0.0001) indicates a lower degree of precision. In general, the higher
the degree of precision you specify (the smaller the number), the more time Solver will take to
reach solutions.

AssumeLinear Optional Variant. True to have Solver assume that the underlying model is linear.
This speeds the solution process, but it should be used only if all the relationships in the model are
linear. The default value is False.

StepThru Optional Variant. True to have Solver pause at each trial solution. You can pass Solver a
macro to run at each pause by using the ShowRef argument of the SolverSolve function. False to
not have Solver pause at each trial solution. The default value if False.

Estimates Optional Variant. Specifies the approach used to obtain initial estimates of the basic
variables in each one-dimensional search: 1 represents tangent estimates, and 2 represents
quadratic estimates. Tangent estimates use linear extrapolation from a tangent vector. Quadratic
estimates use quadratic extrapolation; this may improve the results for highly nonlinear problems.
The default value is 1 (tangent estimates).

Derivatives Optional Variant. Specifies forward differencing or central differencing for estimates of
partial derivatives of the objective and constraint functions: 1 represents forward differencing, and 2
represents central differencing. Central differencing requires more worksheet recalculations, but it
may help with problems that generate a message saying that Solver couldn't improve the solution.
With constraints whose values change rapidly near their limits, you should use central differencing.
The default value is 1 (forward differencing).

Search Optional Variant. Use the Search options to specify the search algorithm that will be used
at each iteration to decide which direction to search in: 1 represents the Newton search method,
and 2 represents the conjugate search method. Newton, which uses a quasi-Newton method, is
the default search method. This method typically requires more memory than the conjugate search
method, but it requires fewer iterations. Conjugate gradient searching requires less memory than
the Newton search method, but it typically requires more iterations to reach a particular level of
accuracy. You can try this method if you have a large problem and memory usage is a concern.
Conjugate searching is especially useful if stepping through the iterations reveals slow progress
between successive trial points.

IntTolerance Optional Variant. A decimal number between 0 (zero) and 1 that specifies the degree

of integer tolerance. This argument applies only if integer constraints have been defined. You can
adjust the tolerance figure, which represents the percentage of error allowed in the optimal solution
when an integer constraint is used on any element of the problem. A higher degree of tolerance
(allowable percentage of error) would tend to speed up the solution process.

Scaling Optional Variant. If two or more constraints differ by several orders of magnitude, True to
have Solver scale the constraints to similar orders of magnitude during computation. This is useful
when the inputs (in the By Changing Cells box in the Solver Parameters dialog box) and outputs
(in the Set Target Cell and Subject to the Constraints boxes in the Solver Parameters dialog
box) have large differences in magnitude ¾ for example, maximizing percentage of profit based on
million-dollar investments. False to have Solver calculate without scaling the constraints. The
default value is False.

Convergence Optional Variant. A number between 0 (zero) and 1 that specifies the degree of
convergence tolerance for the nonlinear Solver. When the relative change in the target cell value is
less than this tolerance for the last five iterations, Solver stops and displays the message "Solver
converged to the current solution. All constraints are satisfied."

AssumeNonNeg Optional Variant. True to have Solver assume a lower limit of 0 (zero) for all
adjustable (changing) cells that don't have explicit lower limits in the Constraint list box (the cells
must contain nonnegative values). False to have Solver use only the limits specified in the
Constraint list box.

SolverOptions Function Example

This example sets the Precision option to .001.
Worksheets("Sheet1").Activate
SolverReset
SolverOptions Precision:=0.001
SolverOK SetCell:=Range("TotalProfit"), _

MaxMinVal:=1, _
ByChange:=Range("C4:E6")

SolverAdd CellRef:=Range("F4:F6"), _
Relation:=1, _
FormulaText:=100

SolverAdd CellRef:=Range("C4:E6"), _
Relation:=3, _
FormulaText:=0

SolverAdd CellRef:=Range("C4:E6"), _
Relation:=4

SolverSolve UserFinish:=False
SolverSave SaveArea:=Range("A33")

SolverSave Function
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlfctSolverSaveC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlfctSolverSaveX":1}

Saves the Solver problem specifications on the worksheet.

Before you use this function, you must establish a reference to the Solver add-in. With a Visual Basic
module active, click References on the Tools menu, and then select the Solver.xla check box under
Available References. If Solver.xla doesn't appear under Available References, click Browse and
open Solver.xla in the \Excel\Library\Solver folder.

Syntax
SolverSave(SaveArea)
SaveArea Required Variant. The range of cells where the Solver model is to be saved. The range

represented by the SaveArea argument can be on any worksheet, but you must specify the
worksheet if it's not the active sheet. For example, SolverSave("Sheet2!A1:A3") saves the
model on Sheet2 even if Sheet2 isn't the active sheet.

SolverSave Function Example

This example uses the Solver functions to maximize gross profit in a business problem. The
SolverSave function saves the current problem to a range on the active worksheet.
Worksheets("Sheet1").Activate
SolverReset
SolverOptions Precision:=0.001
SolverOK SetCell:=Range("TotalProfit"), _

MaxMinVal:=1, _
ByChange:=Range("C4:E6")

SolverAdd CellRef:=Range("F4:F6"), _
Relation:=1, _
FormulaText:=100

SolverAdd CellRef:=Range("C4:E6"), _
Relation:=3, _
FormulaText:=0

SolverAdd CellRef:=Range("C4:E6"), _
Relation:=4

SolverSolve UserFinish:=False
SolverSave SaveArea:=Range("A33")

SolverSolve Function
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlfctSolverSolveC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlfctSolverSolveX":1}

Begins a Solver solution run. Equivalent to clicking Solve in the Solver Parameters dialog box.

Before you use this function, you must establish a reference to the Solver add-in. With a Visual Basic
module active, click References on the Tools menu, and then select the Solver.xla check box under
Available References. If Solver.xla doesn't appear under Available References, click Browse and
open Solver.xla in the \Excel\Library\Solver folder.

Syntax
SolverSolve(UserFinish, ShowRef)
UserFinish Optional Variant. True to return the results without displaying the Solver Results

dialog box. False or omitted to return the results and display the Solver Results dialog box.
ShowRef Optional Variant. Used only if True is passed to the StepThru argument of the

SolverOptions function. You can pass the name of a macro (as a string) as the ShowRef
argument. This macro is then called whenever Solver returns an intermediate solution.

SolverSolve Function Example

This example uses the Solver functions to maximize gross profit in a business problem. The
SolverSolve function begins the Solver solution run.
Worksheets("Sheet1").Activate
SolverReset
SolverOptions Precision:=0.001
SolverOK SetCell:=Range("TotalProfit"), _

MaxMinVal:=1, _
ByChange:=Range("C4:E6")

SolverAdd CellRef:=Range("F4:F6"), _
Relation:=1, _
FormulaText:=100

SolverAdd CellRef:=Range("C4:E6"), _
Relation:=3, _
FormulaText:=0

SolverAdd CellRef:=Range("C4:E6"), _
Relation:=4

SolverSolve UserFinish:=False
SolverSave SaveArea:=Range("A33")

SolverReset Function
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlfctSolverReserC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlfctSolverResetX":1}

Resets all cell selections and constraints in the Solver Parameters dialog box and restores all the
settings in the Solver Options dialog box to their defaults. Equivalent to clicking Reset All in the
Solver Parameters dialog box. The SolverReset function is called automatically when you call the
SolverLoad function.

Before you use this function, you must establish a reference to the Solver add-in. With a Visual Basic
module active, click References on the Tools menu, and then select the Solver.xla check box under
Available References. If Solver.xla doesn't appear under Available References, click Browse and
open Solver.xla in the \Excel\Library\Solver folder.

Syntax
SolverReset()

SolverReset Function Example

This example resets the Solver settings to their defaults before defining a new problem.
Worksheets("Sheet1").Activate
SolverReset
SolverOptions Precision:=0.001
SolverOK SetCell:=Range("TotalProfit"), _

MaxMinVal:=1, _
ByChange:=Range("C4:E6")

SolverAdd CellRef:=Range("F4:F6"), _
Relation:=1, _
FormulaText:=100

SolverAdd CellRef:=Range("C4:E6"), _
Relation:=3, _
FormulaText:=0

SolverAdd CellRef:=Range("C4:E6"), _
Relation:=4

SolverSolve UserFinish:=False
SolverSave SaveArea:=Range("A33")

Help topic not available
The Help topic cannot be displayed because Visual Basic for Applications Reference Help cannot be
found or wasn't installed.

To install Visual Basic for Applications Reference Help
1. Run Microsoft Office Setup, and then click Add/Remove.
2. Click Microsoft Excel, and then click Change Option.
3. Click Online Help and sample files, and then click Change Option.
4. Make sure that the Online Help for Visual Basic check box is selected.
5. Continue running Setup.

Help topic not available
The Help topic cannot be displayed because Microsoft Excel Help cannot be found or wasn't installed.

To install Microsoft Excel Help
1. Run Microsoft Office Setup, and then click Add/Remove.
2. Click Microsoft Excel, and then click Change Option.
3. Click Online Help and sample files, and then click Change Option.
4. Make sure that the Online Help for Microsoft Excel check box is selected.
5. Continue running Setup.

Help topic not available
The Help topic cannot be displayed because Data Access Objects Help cannot be found or wasn't
installed.

To install Data Access Objects Help
1. Run Microsoft Office Setup, and then click Add/Remove.
2. Click Converters, Filters, and Data Access, and then click Change Option.
3. Click Data Access, and then click Change Option.
4. Make sure that the Online Help for Data Access Objects check box is selected.
5. Continue running Setup.

AddFields Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAddFieldsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAddFieldsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthAddFieldsA "}

Adds row, column, and page fields to a PivotTable.

Syntax
expression.AddFields(RowFields, ColumnFields, PageFields, AddToTable)
expression Required. An expression that returns a PivotTable object.
RowFields Optional Variant. Specifies a pivot field name (or an array of pivot field names) to be

added as rows.
ColumnFields Optional Variant. Specifies a pivot field name (or an array of pivot field names) to

be added as columns.
PageFields Optional Variant. Specifies a pivot field name (or an array of pivot field names) to be

added as pages.
AddToTable Optional Variant. True to add the fields to the PivotTable (none of the existing fields

are replaced). False to replace existing fields with the new fields. The default value is False.

Remarks
You must specify one of the field arguments.

AddFields Method Example

This example replaces the existing column fields in PivotTable one on Sheet1 with the Status and
Closed_By fields.
Worksheets("Sheet1").PivotTables(1).AddFields _

ColumnFields:=Array("Status", "Closed_By")

BaseField Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproBaseFieldC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproBaseFieldX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproBaseFieldA "}

Returns or sets the base field for a custom calculation. Valid only for data fields. Read/write Variant.

BaseField Property Example

This example sets the data field in the PivotTable on Sheet1 to calculate the difference from the base
field, sets the base field to the field named "ORDER_DATE," and sets the base item to the item
named "5/16/89."
With Worksheets("Sheet1").Range("A3").PivotField

.Calculation = xlDifferenceFrom

.BaseField = "ORDER_DATE"

.BaseItem = "5/16/89"
End With

BaseItem Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproBaseItemC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproBaseItemX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproBaseItemA "}

Returns or sets the item in the base field for a custom calculation. Valid only for data fields.
Read/write Variant.

BaseItem Property Example

This example sets the data field in the PivotTable on Sheet1 to calculate the difference from the base
field, sets the base field to the field named "ORDER_DATE," and sets the base item to the item
named "5/16/89."
With Worksheets("Sheet1").Range("A3").PivotField

.Calculation = xlDifferenceFrom

.BaseField = "ORDER_DATE"

.BaseItem = "5/16/89"
End With

Calculation Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproCalculationC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproCalculationX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproCalculationA "}

Application object: Returns or sets the calculation mode. Can be one of the following XlCalculation
constants: xlCalculationAutomatic, xlCalculationManual, or xlCalculationSemiautomatic.

PivotField object: Returns or sets the type of calculation done by the specified pivot field. Can be one
of the following XlPivotFieldCalculation constants: xlDifferenceFrom, xlIndex, xlNormal,
xlPercentDifferenceFrom, xlPercentOf, xlPercentOfColumn, xlPercentOfRow, xlPercentOfTotal,
or xlRunningTotal. Valid only for data fields. Read/write Long.

Calculation Property Example

This example causes Microsoft Excel to calculate workbooks before they are saved to disk.
Application.Calculation = xlCalculateManual
Application.CalculateBeforeSave = True
This example sets the data field in the PivotTable on Sheet1 to calculate the difference from the base
field, sets the base field to the field named "ORDER_DATE," and sets the base item to the item
named "5/16/89."
With Worksheets("Sheet1").Range("A3") .PivotField

.Calculation = xlDifferenceFrom

.BaseField = "ORDER_DATE"

.BaseItem = "5/16/89"
End With

ChildField Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproChildFieldC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproChildFieldX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproChildFieldA "}

Returns a PivotField object that represents the child pivot field for the specified field (if the field is
grouped and has a child field). Read-only.

Remarks
If the specified field has no child field, this property causes an error.

ChildField Property Example

This example displays the name of the child field for the field named "REGION2."
Set pvtTable = Worksheets("Sheet1").Range("A3").PivotTable
MsgBox "The name of the child field is " & _

pvtTable.PivotFields("REGION2").ChildField.Name

ChildItems Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproChildItemsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproChildItemsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproChildItemsA "}

Returns an object that represents either a single pivot item (a PivotItem object, Syntax 1) or a
collection of all the pivot items (a PivotItems object, Syntax 2) that are group children in the specified
field, or children of the specified item. Read-only.

Syntax 1
expression.ChildItems(Index)
Syntax 2
expression.ChildItems
expression Required. An expression that returns a PivotField or PivotItem object.
Index Optional Variant. The pivot item name or number (can be an array to specify more than one

item).

ChildItems Property Example

This example adds the names of all the child items of the item named "vegetables" to a list on a new
worksheet.
Set nwSheet = Worksheets.Add
nwSheet.Activate
Set pvtTable = Worksheets("Sheet2").Range("A1").PivotTable
rw = 0
For Each pvtItem In
pvtTable.PivotFields("product").PivotItems("vegetables").ChildItems
 rw = rw + 1
 nwSheet.Cells(rw, 1).Value = pvtItem.Name
Next pvtItem

ColumnFields Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproColumnFieldsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproColumnFieldsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproColumnFieldsA "}

Returns an object that represents either a single pivot field (a PivotField object, Syntax 1) or a
collection of all the pivot fields (a PivotFields object, Syntax 2) that are currently shown as column
fields. Read-only.

Syntax 1
expression.ColumnFields(Index)
Syntax 2
expression.ColumnFields
expression Required. An expression that returns a PivotTable object.
Index Optional Variant. The pivot field name or number (can be an array to specify more than one

field).

ColumnFields Property Example

This example adds the field names of the PivotTable columns to a list on a new worksheet.
Set nwSheet = Worksheets.Add
nwSheet.Activate
Set pvtTable = Worksheets("Sheet2").Range("A1").PivotTable
rw = 0
For Each pvtField In pvtTable.ColumnFields
 rw = rw + 1
 nwSheet.Cells(rw, 1).Value = pvtField.Name
Next pvtField

ColumnGrand Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproColumnGrandC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproColumnGrandX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproColumnGrandA "}

True if the PivotTable shows grand totals for columns. Read/write Boolean.

ColumnGrand Property Example

This example sets the PivotTable to show grand totals for columns.
Set pvtTable = Worksheets("Sheet1").Range("A3").PivotTable
pvtTable.ColumnGrand = True

ColumnRange Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproColumnRangeC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproColumnRangeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproColumnRangeA "}

Returns a Range object that represents the range that contains the PivotTable column area. Read-
only.

ColumnRange Property Example

This example selects the column headers for the PivotTable.
Worksheets("Sheet1").Activate
Range("A3").Select
ActiveCell.PivotTable.ColumnRange.Select

CurrentPage Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproCurrentPageC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproCurrentPageX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproCurrentPageA "}

Returns or sets the current page showing for the page field (only valid for page fields). Read/write
String.

Remarks
To set this property, set it to the name of the page. Set it to "All" to set all pages that are showing.

CurrentPage Property Example

This example sets the current page for the PivotTable on Sheet1 to the page named "Canada."
Set pvtTable = Worksheets("Sheet1").Range("A3").PivotTable
pvtTable.PivotFields("Country").CurrentPage = "Canada"

DataBodyRange Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDataBodyRangeC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDataBodyRangeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDataBodyRangeA "}

Returns a Range object that represents the range that contains the PivotTable data area. Read-only.

DataBodyRange Property Example

This example selects the active PivotTable data.
Worksheets("Sheet1").Activate
Range("A3").Select
ActiveCell.PivotTable.DataBodyRange.Select

DataFields Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDataFieldsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDataFieldsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDataFieldsA "}

Returns an object that represents either a single pivot field (a PivotField object, Syntax 1) or a
collection of all the pivot fields (a PivotFields object, Syntax 2) that are currently shown as data
fields. Read-only.

Syntax 1
expression.DataFields(Index)
Syntax 2
expression.DataFields
expression Required. An expression that returns a PivotTable object.
Index Optional Variant. The pivot field name or number (can be an array to specify more than one

field).

DataFields Property Example

This example adds the names for the PivotTable data fields to a list on a new worksheet.
Set nwSheet = Worksheets.Add
nwSheet.Activate
Set pvtTable = Worksheets("Sheet2").Range("A1").PivotTable
rw = 0
For Each pvtField In pvtTable.DataFields
 rw = rw + 1
 nwSheet.Cells(rw, 1).Value = pvtField.Name
Next pvtField

DataLabelRange Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDataLabelRangeC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDataLabelRangeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDataLabelRangeA "}

Returns a Range object that represents the range that contains the labels for the PivotTable data
fields. Read-only.

DataLabelRange Property Example

This example selects the data field labels in the PivotTable.
Worksheets("Sheet1").Activate
Range("A3").Select
ActiveCell.PivotTable.DataLabelRange.Select

DataRange Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDataRangeC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDataRangeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDataRangeA "}

Returns a Range object as shown in the following table. Read-only.

Object Data range
Data field Data contained in the field
Row, column, or page field Items in the field
Item Data qualified by the item

DataRange Property Example

This example selects the pivot items in the field named "REGION."
Set pvtTable = Worksheets("Sheet1").Range("A3").PivotTable
Worksheets("Sheet1").Activate
pvtTable.PivotFields("REGION").DataRange.Select

DataType Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDataTypeC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDataTypeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDataTypeA "}

PivotField object: Returns a constant describing the type of data in the pivot field. Can be one of the
following XlPivotFieldDataType constants: xlText, xlNumber, or xlDate. Read-only Long.

Parameter object: Returns or sets the data type of the specified query parameter. Read/write Long.

Can be one of the following XlParameterDataType constants:

xlParamTypeBigInt
xlParamTypeBinary
xlParamTypeBit
xlParamTypeChar
xlParamTypeDate
xlParamTypeDecimal
xlParamTypeDouble
xlParamTypeFloat
xlParamTypeInteger
xlParamTypeLongVarBinary

xlParamTypeLongVarChar
xlParamTypeNumeric
xlParamTypeReal
xlParamTypeSmallInt
xlParamTypeTime
xlParamTypeTimeStamp
xlParamTypeTinyInt
xlParamTypeUnknown
xlParamTypeVarBinary
xlParamTypeVarChar

DataType Property Example

This example displays the data type of the field named "ORDER_DATE."
Set pvtTable = Worksheets("Sheet1").Range("A3").PivotTable
Select Case pvtTable.PivotFields("ORDER_DATE").DataType

Case Is = xlText
MsgBox "The field contains text data"

Case Is = xlNumber
MsgBox "The field contains numeric data"

Case Is = xlDate
MsgBox "The field contains date data"

End Select

GroupLevel Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproGroupLevelC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproGroupLevelX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproGroupLevelA "}

Returns the placement of the specified field within a group of fields (if the field is a member of a
grouped set of fields). Read-only.

Remarks
The highest-level parent field (leftmost parent field) is level one, its child is level two, and so on.

GroupLevel Property Example

This example displays a message box if the field that contains the active cell is the highest-level
parent field.
Worksheets("Sheet1").Activate
If ActiveCell.PivotField.GroupLevel = 1 Then

MsgBox "This is the highest-level parent field."
End If

HasAutoFormat Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproHasAutoFormatC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproHasAutoFormatX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproHasAutoFormatA "}

True if the PivotTable is automatically formatted when it's refreshed or when fields are moved.
Read/write Boolean.

HasAutoFormat Property Example

This example causes the PivotTable to be automatically reformatted when it's refreshed or when fields
are moved.
Set pvtTable = Worksheets("Sheet1").Range("A3").PivotTable
pvtTable.HasAutoFormat = True

HiddenFields Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproHiddenFieldsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproHiddenFieldsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproHiddenFieldsA "}

Returns an object that represents either a single pivot field (a PivotField object, Syntax 1) or a
collection of all the pivot fields (a PivotFields object, Syntax 2) that are currently not shown as row,
column, page, or data fields. Read-only.

Syntax 1
expression.HiddenFields(Index)
Syntax 2
expression.HiddenFields
expression Required. An expression that returns a PivotTable object.
Index Optional Variant. The name or number of the pivot field to be returned (can be an array to

specify more than one field).

HiddenFields Property Example

This example adds the hidden field names to a list on a new worksheet.
Set nwSheet = Worksheets.Add
nwSheet.Activate
Set pvtTable = Worksheets("Sheet2").Range("A1").PivotTable
rw = 0
For Each pvtField In pvtTable.HiddenFields
 rw = rw + 1
 nwSheet.Cells(rw, 1).Value = pvtField.Name
Next pvtField

HiddenItems Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproHiddenItemsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproHiddenItemsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproHiddenItemsA "}

Returns an object that represents either a single hidden pivot item (a PivotItem object, Syntax 1) or a
collection of all the hidden pivot items (a PivotItems object, Syntax 2) in the specified field. Read-
only.

Syntax 1
expression.HiddenItems(Index)
Syntax 2
expression.HiddenItems
expression Required. An expression that returns a PivotField object.
Index Optional Variant. The number or name of the pivot item to be returned (can be an array to

specify more than one item).

HiddenItems Property Example

This example adds the names of all the hidden items in the field named "product" to a list on a new
worksheet.
Set nwSheet = Worksheets.Add
nwSheet.Activate
Set pvtTable = Worksheets("Sheet2").Range("A1").PivotTable
rw = 0
For Each pvtItem In pvtTable.PivotFields("product").HiddenItems
 rw = rw + 1
 nwSheet.Cells(rw, 1).Value = pvtItem.Name
Next pvtItem

InnerDetail Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproInnerDetailC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproInnerDetailX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproInnerDetailA "}

Returns or sets the name of the field that will be shown as detail when the ShowDetail property is
True for the innermost row or column field. Read/write String.

InnerDetail Property Example

This example displays the name of the field that will be shown as detail when the ShowDetail
property is True for the innermost row field or column field.
Set pvtTable = Worksheets("Sheet1").Range("A3").PivotTable
MsgBox pvtTable.InnerDetail

LabelRange Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproLabelRangeC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproLabelRangeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproLabelRangeA "}

PivotField object: Returns a Range object that represents the cell (or cells) that contain the field
label. Read-only.

PivotItem object: Returns a Range object that represents all the PivotTable cells that contain the
item. Read-only.

LabelRange Property Example

This example selects the field button for the field named "ORDER_DATE."
Set pvtTable = Worksheets("Sheet1").Range("A3").PivotTable
Set pvtField = pvtTable.PivotFields("ORDER_DATE")
Worksheets("Sheet1").Activate
pvtField.LabelRange.Select

LocationInTable Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproLocationInTableC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproLocationInTableX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproLocationInTableA "}

Returns a constant that describes the part of the PivotTable that contains the upper-left corner of the
specified range. Can be one of the following XlLocationInTable constants: xlRowHeader,
xlColumnHeader, xlPageHeader, xlDataHeader, xlRowItem, xlColumnItem, xlPageItem,
xlDataItem, or xlTableBody. Read-only Long.

LocationInTable Property Example

This example displays a message box that describes the location of the active cell within the
PivotTable.
Worksheets("Sheet1").Activate
Select Case ActiveCell.LocationInTable
Case Is = xlRowHeader

MsgBox "Active cell is part of a row header"
Case Is = xlColumnHeader

MsgBox "Active cell is part of a column header"
Case Is = xlPageHeader

MsgBox "Active cell is part of a page header"
Case Is = xlDataHeader

MsgBox "Active cell is part of a data header"
Case Is = xlRowItem

MsgBox "Active cell is part of a row item"
Case Is = xlColumnItem

MsgBox "Active cell is part of a column item"
Case Is = xlPageItem

MsgBox "Active cell is part of a page item"
Case Is = xlDataItem

MsgBox "Active cell is part of a data item"
Case Is = xlTableBody

MsgBox "Active cell is part of the table body"
End Select

PageFields Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPageFieldsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPageFieldsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPageFieldsA "}

Returns an object that represents either a single pivot field (a PivotField object, Syntax 1) or a
collection of all the pivot fields (a PivotFields object, Syntax 2) that are currently showing as page
fields. Read-only.

Syntax 1
expression.PageFields(Index)
Syntax 2
expression.PageFields
expression Required. An expression that returns a PivotTable object.
Index Optional Variant. The name or number of the pivot field to be returned (can be an array to

specify more than one field).

PageFields Property Example

This example adds the page field names to a list on a new worksheet.
Set nwSheet = Worksheets.Add
nwSheet.Activate
Set pvtTable = Worksheets("Sheet2").Range("A1").PivotTable
rw = 0
For Each pvtField In pvtTable.PageFields
 rw = rw + 1
 nwSheet.Cells(rw, 1).Value = pvtField.Name
Next pvtField

PageRange Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPageRangeC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPageRangeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPageRangeA "}

Returns a Range object that represents the range that contains the PivotTable page area. Read-only.

PageRange Property Example

This example selects the PivotTable page headers.
Worksheets("Sheet1").Activate
Range("A3").Select
ActiveCell.PivotTable.PageRange.Select

ParentField Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproParentFieldC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproParentFieldX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproParentFieldA "}

Returns a PivotField object that represents the pivot field that's the group parent of the object. The
field must be grouped and have a parent field. Read-only.

ParentField Property Example

This example displays the name of the field that's the group parent of the field that contains the active
cell.
Worksheets("Sheet1").Activate
MsgBox "The active field is a child of the field " & _

ActiveCell.PivotField.ParentField.Name

ParentItem Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproParentItemC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproParentItemX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproParentItemA "}

Returns a PivotItem object that represents the parent pivot item in the parent PivotField object (the
field must be grouped so that it has a parent). Read-only.

ParentItem Property Example

This example displays the name of the parent item for the item that contains the active cell.
Worksheets("Sheet1").Activate
MsgBox "This item is a subitem of " & _

ActiveCell.PivotItem.ParentItem.Name

ParentItems Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproParentItemsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproParentItemsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproParentItemsA "}

Returns an object that represents either a single pivot item (a PivotItem object, Syntax 1) or a
collection of all the pivot items (a PivotItems object, Syntax 2) that are group parents in the specified
field. The specified field must be a group parent of another field. Read-only.

Syntax 1
expression.ParentItems(Index)
Syntax 2
expression.ParentItems
expression Required. An expression that returns a PivotField object.
Index Optional Variant. The number or name of the pivot item to be returned (can be an array to

specify more than one item).

ParentItems Property Example

This example creates a list containing the names of all the items that are group parents in the field
named "product.".
Set nwSheet = Worksheets.Add
nwSheet.Activate
Set pvtTable = Worksheets("Sheet2").Range("A1").PivotTable
rw = 0
For Each pvtItem In pvtTable.PivotFields("product").ParentItems
 rw = rw + 1
 nwSheet.Cells(rw, 1).Value = pvtItem.Name
Next pvtItem

ParentShowDetail Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproParentShowDetailC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproParentShowDetailX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproParentShowDetailA "}

True if the specified item is showing because one of its parents is showing detail. False if the
specified item isn't showing because one of its parents is hiding detail. This property is available only
if the item is grouped. Read-only Boolean.

ParentShowDetail Property Example

This example displays a message if the pivot item that contains the active cell is visible because its
parent item is showing detail.
Worksheets("Sheet1").Activate
Set pvtItem = ActiveCell.PivotItem
If pvtItem.ParentShowDetail = True Then

MsgBox "Parent item is showing detail"
End If

PivotField Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPivotFieldC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPivotFieldX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPivotFieldA "}

Returns a PivotField object that represents the pivot field containing the upper-left corner of the
specified range. Read-only.

PivotField Property Example

This example displays the name of the pivot field that contains the active cell.
Worksheets("Sheet1").Activate
MsgBox "The active cell is in the field " & _

ActiveCell.PivotField.Name

PivotFields Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthPivotFieldsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthPivotFieldsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthPivotFieldsA "}

Returns an object that represents either a single pivot field (a PivotField object, Syntax 1) or a
collection of both the visible and hidden pivot fields (a PivotFields object, Syntax 2) in the PivotTable.
Read-only.

Syntax 1
expression.PivotFields(Index)
Syntax 2
expression.PivotFields
expression Required. An expression that returns a PivotTable object.
Index Optional Variant. The name or number of the pivot field to be returned (can be an array to

specify more than one field).

PivotFields Method Example

This example adds the PivotTable field names to a list on a new worksheet.
Set nwSheet = Worksheets.Add
nwSheet.Activate
Set pvtTable = Worksheets("Sheet2").Range("A1").PivotTable
rw = 0
For Each pvtField In pvtTable.PivotFields
 rw = rw + 1
 nwSheet.Cells(rw, 1).Value = pvtField.Name
Next pvtField

PivotItem Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPivotItemC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPivotItemX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPivotItemA "}

Returns a PivotItem object that represents the pivot item containing the upper-left corner of the
specified range. Read-only.

PivotItem Property Example

This example displays the name of the pivot item that contains the active cell on Sheet1.
Worksheets("Sheet1").Activate
MsgBox "The active cell is in the item " & _

ActiveCell.PivotItem.Name

PivotItems Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthPivotItemsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthPivotItemsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthPivotItemsA "}

Returns an object that represents either a single pivot item (a PivotItem object, Syntax 1) or a
collection of all the visible and hidden pivot items (a PivotItems object, Syntax 2) in the specified
field. Read-only.

Syntax 1
expression.PivotItems(Index)
Syntax 2
expression.PivotItems
expression Required. An expression that returns a PivotField object.
Index Optional Variant. The name or number of the pivot item to be returned (can be an array to

specify more than one item).

PivotItems Method Example

This example adds the names of all items in the field named "product" to a list on a new worksheet.
Set nwSheet = Worksheets.Add
nwSheet.Activate
Set pvtTable = Worksheets("Sheet2").Range("A1").PivotTable
rw = 0
For Each pvtitem In pvtTable.PivotFields("product").PivotItems
 rw = rw + 1
 nwSheet.Cells(rw, 1).Value = pvtitem.Name
Next

PivotTable Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPivotTableC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPivotTableX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPivotTableA "}

Returns a PivotTable object that represents the PivotTable containing the upper-left corner of the
specified range. Read-only.

PivotTable Property Example

This example sets the current page for the PivotTable on Sheet1 to the page named "Canada."
Set pvtTable = Worksheets("Sheet1").Range("A3").PivotTable
pvtTable.PivotFields("Country").CurrentPage = "Canada"

PivotTables Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthPivotTablesC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthPivotTablesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthPivotTablesA "}

Returns an object that represents either a single PivotTable (a PivotTable object, Syntax 1) or a
collection of all the PivotTables (a PivotTables object, Syntax 2) on a worksheet. Read-only.

Syntax 1
expression.PivotTables(Index)
Syntax 2
expression.PivotTables
expression Required. An expression that returns a Worksheet object.
Index Optional Variant. The name or number of the PivotTable (can be an array to specify more

than one PivotTable).

PivotTables Method Example

This example sets the Sum of 1994 field in PivotTable1 to use the SUM function.
ActiveSheet.PivotTables("PivotTable1"). _

PivotFields("Sum of 1994").Function = xlSum

PivotTableWizard Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthPivotTableWizardC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthPivotTableWizardX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthPivotTableWizardA "}

Creates a PivotTable. This method doesn't display the PivotTable Wizard.

Syntax
expression.PivotTableWizard(SourceType, SourceData, TableDestination, TableName,

RowGrand, ColumnGrand, SaveData, HasAutoFormat, AutoPage, Reserved,
BackgroundQuery, OptimizeCache, PageFieldOrder, PageFieldWrapCount, ReadData,
Connection)

expression Required. An expression that returns a Worksheet or PivotTable object.
SourceType Optional Variant. The source of the PivotTable data. Can be one of the following

XlPivotTableSourceType constants.
Constant Description
xlConsolidation Multiple consolidation ranges
xlDatabase Microsoft Excel list or database
xlExternal Data from another application
xlPivotTable Same source as another PivotTable

If you specify this argument, you must also specify SourceData. If SourceType and SourceData
omitted, Microsoft Excel assumes that the source type is xlDatabase, and the source data comes
from the named range "Database." If this named range doesn't exist, Microsoft Excel uses the
current region if the current selection is in a range of more than 10 cells that contain data. If this
isn't true, this method will fail.

SourceData Optional Variant. The data for the new PivotTable. Can be a Range object, an array
of ranges, or a text constant that represents the name of another PivotTable. For an external
database, this is a two-element array. The first element is the connection string specifying the
ODBC source for the data. The second element is the SQL query string used to get the data. If you
specify this argument, you must specify SourceType. If the active cell is inside the SourceData
range, you must specify TableDestination.

TableDestination Optional Variant. A Range object specifying where the PivotTable should be
placed on the worksheet. If this argument is omitted, the PivotTable is placed at the active cell.

TableName Optional Variant. A string that specifies the name of the new PivotTable.
RowGrand Optional Variant. True to show grand totals for rows in the PivotTable. False to omit

grand totals for rows.
ColumnGrand Optional Variant. True to show grand totals for columns in the PivotTable. False to

omit grand totals for columns.
SaveData Optional Variant. True to save data with the PivotTable. False to save only the

PivotTable definition.
HasAutoFormat Optional Variant. True to have Microsoft Excel automatically format the

PivotTable when it's refreshed or when fields are moved.
AutoPage Optional Variant. Valid only if SourceType is xlConsolidation. True to have Microsoft

Excel create a page field for the consolidation. If False, you must create the page field or fields.
Reserved Optional Variant. Not used by Microsoft Excel.
BackgroundQuery Optional Variant. True if queries for the PivotTable are performed

asynchronously (in the background). The default value is False.
OptimizeCache Optional Variant. True to optimize the PivotTable cache when it's constructed. The

default value is False.
PageFieldOrder Optional Variant. The order in which page fields are added to the PivotTable

layout. Can be one of the following XlOrder constants: xlDownThenOver or xlOverThenDown.
The default value is xlDownThenOver.

PageFieldWrapCount Optional Variant. The number of PivotTable page fields in each column or
row. The default value is 0 (zero).

ReadData Optional Variant. True to create a pivot cache containing all records from the external
database; this cache may be very large. If False, some fields can be set to be server-based page
fields before the data is actually read.

Connection Optional Variant. A string that contains ODBC settings that allow Microsoft Excel to
connect to an ODBC data source; a URL that allows Microsoft Excel to connect to a Web data
source; or a file that specifies a database or Web query. Overrides any previous setting of the
Connection property of the PivotCache object.

PivotTableWizard Method Example

This example creates a new PivotTable from a Microsoft Excel database (contained in the range
A1:C100).
ActiveSheet.PivotTableWizard xlDatabase, Range("A1:C100")

RefreshDate Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproRefreshDateC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproRefreshDateX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproRefreshDateA "}

Returns the date on which the PivotTable or pivot cache was last refreshed. Read-only Date.

RefreshDate Property Example

This example displays the date on which the PivotTable was last refreshed.
Set pvtTable = Worksheets("Sheet1").Range("A3").PivotTable
dateString = Format(pvtTable.RefreshDate, "Long Date")
MsgBox "The data was last refreshed on " & dateString

RefreshName Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproRefreshNameC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproRefreshNameX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproRefreshNameA "}

Returns the name of the person who last refreshed the PivotTable data or pivot cache. Read-only
String.

RefreshName Property Example

This example displays the name of the person who last refreshed the PivotTable.
Set pvtTable = Worksheets("Sheet1").Range("A3").PivotTable
MsgBox "The data was last refreshed by " & pvtTable.RefreshName

RefreshTable Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthRefreshTableC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthRefreshTableX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthRefreshTableA "}

Refreshes the PivotTable from the source data. Returns True if it's successful.

Syntax
expression.RefreshTable
expression Required. An expression that returns a PivotTable object.

RefreshTable Method Example

This example refreshes the PivotTable.
Set pvtTable = Worksheets("Sheet1").Range("A3").PivotTable
pvtTable.RefreshTable

RowFields Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproRowFieldsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproRowFieldsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproRowFieldsA "}

Returns an object that represents either a single pivot field (a PivotField object, Syntax 1) or a
collection of all the pivot fields (a PivotFields object, Syntax 2) that are currently showing as row
fields. Read-only.

Syntax 1
expression.RowFields(Index)
Syntax 2
expression.RowFields
expression Required. An expression that returns a PivotTable object.
Index Optional Variant. The name or number of the pivot field to be returned (can be an array to

specify more than one field).

RowFields Property Example

This example adds the PivotTable row field names to a list on a new worksheet.
Set nwSheet = Worksheets.Add
nwSheet.Activate
Set pvtTable = Worksheets("Sheet2").Range("A1").PivotTable
rw = 0
For Each pvtField In pvtTable.RowFields
 rw = rw + 1
 nwSheet.Cells(rw, 1).Value = pvtField.Name
Next pvtField

RowGrand Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproRowGrandC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproRowGrandX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproRowGrandA "}

True if the PivotTable shows grand totals for rows. Read/write Boolean.

RowGrand Property Example

This example sets the PivotTable to show grand totals for rows.
Set pvtTable = Worksheets("Sheet1").Range("A3").PivotTable
pvtTable.RowGrand = True

RowRange Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproRowRangeC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproRowRangeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproRowRangeA "}

Returns a Range object that represents the range including the PivotTable row area. Read-only.

RowRange Property Example

This example selects the PivotTable row headers.
Worksheets("Sheet1").Activate
Range("A3").Select
ActiveCell.PivotTable.RowRange.Select

SaveData Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproSaveDataC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproSaveDataX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproSaveDataA "}

True if data for the PivotTable is saved with the workbook. False if only the PivotTable definition is
saved. Read/write Boolean.

SaveData Property Example

This example sets the PivotTable to save data with the workbook.
Set pvtTable = Worksheets("Sheet1").Range("A3").PivotTable
pvtTable.SaveData = True

ShowDetail Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproShowDetailC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproShowDetailX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproShowDetailA "}

True if the outline is expanded for the specified range (so that the detail of the column or row is
visible). The specified range must be a single summary column or row in an outline. Read/write
Variant.
For the PivotItem object (or the Range object if the range is in a PivotTable), this property is True if
the pivot item is showing detail.

Remarks
If the specified range isn't in a PivotTable, the following remarks apply:

· The range must be in a single summary row or column.
· This property returns False if any of the children of the row or column are hidden.
· Setting this property to True is equivalent to unhiding all the children of the summary row or

column.
· Setting this property to False is equivalent to hiding all the children of the summary row or column.

If the specified range is in a PivotTable, it's possible to set this property for more than one cell at a
time if the range is contiguous. This property can be returned only if the range is a single cell.

ShowDetail Property Example

This example shows detail for the summary row of an outline on Sheet1. Before running this example,
create a simple outline that contains a single summary row, and then collapse the outline so that only
the summary row is showing. Select one of the cells in the summary row, and then run the example.
Worksheets("Sheet1").Activate
Set myRange = ActiveCell.CurrentRegion
lastRow = myRange.Rows.Count
myRange.Rows(lastRow).ShowDetail = True

ShowPages Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthShowPagesC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthShowPagesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthShowPagesA "}

Creates a new PivotTable for each item in the page field. Each new PivotTable is created on a new
worksheet.

Syntax
expression.ShowPages(PageField)
expression Required. An expression that returns a PivotTable object.
PageField Optional Variant. A string that names a single page field in the PivotTable.

ShowPages Method Example

This example creates a new PivotTable for each item in the page field, which is the field named
"Country."
Set pvtTable = Worksheets("Sheet1").Range("A3").PivotTable
pvtTable.ShowPages "Country"

TableRange1 Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproTableRange1C "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproTableRange1X":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproTableRange1A "}

Returns a Range object that represents the range containing the entire PivotTable, but doesn't
include page fields. Read-only.

Remarks
The TableRange2 property includes page fields.

TableRange1 Property Example

This example selects all of the PivotTable except its page fields.
Worksheets("Sheet1").Activate
Range("A3").PivotTable.TableRange1.Select

TableRange2 Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproTableRange2C "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproTableRange2X":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproTableRange2A "}

Returns a Range object that represents the range containing the entire PivotTable, including page
fields. Read-only.

Remarks
The TableRange1 property doesn't include page fields.

TableRange2 Property Example

This example selects the entire PivotTable, including its page fields.
Worksheets("Sheet1").Activate
Range("A3").PivotTable.TableRange2.Select

TotalLevels Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproTotalLevelsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproTotalLevelsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproTotalLevelsA "}

Returns the total number of fields in the current field group. If the field is not grouped, TotalLevels
returns the value 1. Read-only Long.

Remarks
All fields in a set of grouped fields have the same TotalLevels value.

TotalLevels Property Example

This example displays the total number of fields in the group that contains the active cell.
Worksheets("Sheet1").Activate
MsgBox "This group has " & _

ActiveCell.PivotField.TotalLevels & " levels."

VisibleFields Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproVisibleFieldsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproVisibleFieldsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproVisibleFieldsA "}

Returns an object that represents either a single pivot field (a PivotField object, Syntax 1) or a
collection of all the visible pivot fields (a PivotFields object, Syntax 2). Visible pivot fields are shown
as row, column, page or data fields. Read-only.

Syntax 1
expression.VisibleFields(Index)
Syntax 2
expression.VisibleFields
expression Required. An expression that returns a PivotTable object.
Index Optional Variant. The name or number of the pivot field to be returned (can be an array to

specify more than one field).

VisibleFields Property Example

This example adds the visible field names to a list on a new worksheet.
Set nwSheet = Worksheets.Add
nwSheet.Activate
Set pvtTable = Worksheets("Sheet2").Range("A1").PivotTable
rw = 0
For Each pvtField In pvtTable.VisibleFields
 rw = rw + 1
 nwSheet.Cells(rw, 1).Value = pvtField.Name
Next pvtField

VisibleItems Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproVisibleItemsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproVisibleItemsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproVisibleItemsA "}

Returns an object that represents either a single visible pivot item (a PivotItem object, Syntax 1) or a
collection of all the visible pivot items (a PivotItems object, Syntax 2) in the specified field. Read-only.

Syntax 1
expression.VisibleItems(Index)
Syntax 2
expression.VisibleItems
expression Required. An expression that returns a PivotField object.
Index Optional Variant. The number or name of the pivot item to be returned (can be an array to

specify more than one item).

VisibleItems Property Example

This example adds the names of all visible items in the field named "Product" to a list on a new
worksheet.
Set nwSheet = Worksheets.Add
nwSheet.Activate
Set pvtTable = Worksheets("Sheet2").Range("A1").PivotTable
rw = 0
For Each pvtItem In pvtTable.PivotFields("Product").VisibleItems
 rw = rw + 1
 nwSheet.Cells(rw, 1).Value = pvtItem.Name
Next

PageFieldStyle Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPageFieldStyleC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPageFieldStyleX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPageFieldStyleA"}

Returns or sets the style used in the bound page field area. The default value is a null string (no style
is applied by default). Read/write String.

Remarks
This style is used as the default style for the background area, and it's applied before any user
formatting. Cells vacated when a field is pivoted from the page field area to another location retain
this style.

PageFieldStyle Property Example

This example sets the page field area of the PivotTable to the PurpleAndGold style.
Worksheets(1).PivotTables("Pivot1").PageFieldStyle = "PurpleAndGold"

TableStyle Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproTableStyleC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproTableStyleX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproTableStyleA"}

Returns or sets the style used in the PivotTable body. The default value is a null string (no style is
applied by default). Read/write String.

Remarks
This style is used as the default style for the background area, and it's applied before any user
formatting.

TableStyle Property Example

This example sets the body of the PivotTable to the PurpleAndGold style.
Worksheets(1).PivotTables("Pivot1").TableStyle = "PurpleAndGold"

VacatedStyle Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproVacatedStyleC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproVacatedStyleX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproVacatedStyleA"}

Returns or sets the style applied to cells vacated when the PivotTable is refreshed. The default value
is a null string (no style is applied by default). Read/write String.

VacatedStyle Property Example

This example sets the vacated cells in the PivotTable to the BlackAndBlue style.
Worksheets(1).PivotTables("Pivot1").VacatedStyle = "BlackAndBlue"

PreserveFormatting Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPreserveFormattingC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPreserveFormattingX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPreserveFormattingA"}

True if PivotTable formatting is preserved when the PivotTable is refreshed or recalculated by
operations such as pivoting, sorting, or changing page field items. Read/write Boolean.

PreserveFormatting Property Example

This example causes the PivotTable to preserve formatting.
Worksheets(1).PivotTables("Pivot1").PreserveFormatting = True

ManualUpdate Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproManualUpdateC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproManualUpdateX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproManualUpdateA"}

True if the PivotTable is recalculated only at the user's request. The default value is False. Read/write
Boolean.

ManualUpdate Property Example

This example causes the PivotTable to recalculate only at the user's request and before the workbook
is saved.
With Worksheets(1).PivotTables("Pivot1")

.ManualUpdate = True

.UpdateBeforeSave = True
End With

DisplayErrorString Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDisplayErrorStringC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDisplayErrorStringX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDisplayErrorStringA"}

True if the PivotTable displays a custom error string in cells that contain errors. The default value is
False. Read/write Boolean.

Remarks
Use the ErrorString property to set the custom error string.

This property is particularly useful for suppressing divide-by-zero errors when calculated fields are
pivoted.

DisplayErrorString Property Example

This example causes the PivotTable to display a hyphen in cells that contain errors.
With Worksheets(1).PivotTables("Pivot1")

.ErrorString = "-"

.DisplayErrorString = True
End With

DisplayNullString Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDisplayNullStringC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDisplayNullStringX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDisplayNullStringA"}

True if the PivotTable displays a custom string in cells that contain null values. The default value is
True. Read/write Boolean.

Remarks
Use the NullString property to set the custom null string.

DisplayNullString Property Example

This example causes the PivotTable to display "NA" in cells that contain null values.
With Worksheets(1).PivotTables("Pivot1")

.NullString = "NA"

.DisplayNullString = True
End With
This example causes the PivotTable to display 0 (zero) in cells that contain null values.
Worksheets(1).PivotTables("Pivot1").DisplayNullString = False

ErrorString Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproErrorStringC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproErrorStringX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproErrorStringA"}

PivotTable object: Returns or sets the string displayed in cells that contain errors when the
DisplayErrorString property is True. The default value is an empty string (""). Read/write String.

ODBCError object: Returns the ODBC error string. Read-only String.

ErrorString Property Example

This example causes the PivotTable to display a hyphen in cells that contain errors.
With Worksheets(1).PivotTables("Pivot1")

.ErrorString = "-"

.DisplayErrorString = True
End With

NullString Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproNullStringC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproNullStringX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproNullStringA"}

Returns or sets the string displayed in cells that contain null values when the DisplayNullString
property is True. The default value is an empty string (""). Read/write String.

NullString Property Example

This example causes the PivotTable to display "NA" in cells that contain null values.
With Worksheets(1).PivotTables("Pivot1")

.NullString = "NA"

.DisplayNullString = True
End With

ShowAllItems Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproShowAllItemsC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproShowAllItemsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproShowAllItemsA"}

True if all items in the PivotTable are displayed, even if they don't contain summary data. The default
value is False. Read/write Boolean.

ShowAllItems Property Example

This example causes the PivotTable to display all rows for the Month field, including months for which
there's no data.
Worksheets(1).PivotTables("Pivot1") _

.PivotFields("Month").ShowAllItems = True

SubtotalHiddenPageItems Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproSubtotalHiddenPageItemsC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproSubtotalHiddenPageItemsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproSubtotalHiddenPageItemsA"}

True if hidden page field items in the PivotTable are included in row and column subtotals, block
totals, and grand totals. The default value is False. Read/write Boolean.

SubtotalHiddenPageItems Property Example

This example sets Pivot1 on worksheet one to exclude hidden page field items in subtotals.
Worksheets(1).PivotTables("Pivot1").SubtotalHiddenPageItems = True

PageFieldOrder Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPageFieldOrderC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPageFieldOrderX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPageFieldOrderA"}

Returns or sets the order in which page fields are added to the PivotTable layout. Can be one of the
following XlOrder constants: xlDownThenOver or xlOverThenDown. The default constant is
xlDownThenOver. Read/write Long.

PageFieldOrder Property Example

This example causes the PivotTable to draw three page fields in a row before starting a new row.
With Worksheets(1).PivotTables("Pivot1")

.PageFieldOrder = xlOverThenDown

.PageFieldWrapCount = 3
End With

PageFieldWrapCount Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPageFieldWrapCountC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPageFieldWrapCountX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproPageFieldWrapCountA"}

Returns or sets the number of PivotTable page fields in each column or row. Read/write Long.

PageFieldWrapCount Property Example

This example causes the PivotTable to draw three page fields in a row before starting a new row.
With Worksheets(1).PivotTables("Pivot1")

.PageFieldOrder = xlOverThenDown

.PageFieldWrapCount = 3
End With

CacheIndex Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproCacheIndexC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproCacheIndexX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproCacheIndexA"}

Returns or sets the index number of the PivotTable cache. Read/write Long.

Remarks
If you set the CacheIndex property so that one PivotTable uses the cache for a second PivotTable,
the first PivotTable's fields must be a valid subset of the fields in the second PivotTable.

CacheIndex Property Example

This example sets the cache for the PivotTable named "Pivot1" to the cache of the PivotTable named
"Pivot2."
Worksheets(1).PivotTables("Pivot1").CacheIndex = _

Worksheets(1).PivotTables("Pivot2").CacheIndex

RecordCount Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproRecordCountC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproRecordCountX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproRecordCountA"}

Returns the number of records in the PivotTable cache or the number of cache records that contain
the specified item. Read-only Long.

RecordCount Property Example

This example displays the number of cache records that contain "Kiwi" in the "Products" field.
MsgBox Worksheets(1).PivotTables("Pivot1") _

.PivotFields("Product").PivotItems("Kiwi").RecordCount

RefreshOnFileOpen Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproRefreshOnFileOpenC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproRefreshOnFileOpenX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproRefreshOnFileOpenA"}

True if the PivotTable cache or query table is automatically updated each time the workbook is
opened. The default value is False. Read/write Boolean.

Remarks
Query tables and PivotTables are not automatically refreshed when you open the workbook by using
the Open method in Visual Basic. Use the Refresh method to refresh the data after the workbook is
open.

RefreshOnFileOpen Property Example

This example causes the PivotTable cache to automatically update each time the workbook is
opened.
ActiveWorkbook.PivotCaches(1).RefreshOnFileOpen = True

EnableRefresh Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproEnableRefreshC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproEnableRefreshX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproEnableRefreshA"}

True if the PivotTable cache or query table can be refreshed by the user. The default value is True.
Read/write Boolean.

Remarks
The RefreshOnFileOpen property is ignored if the EnableRefresh property is set to False.

EnableRefresh Property Example

This example sets the PivotTable so that it cannot be refreshed.
Worksheets(1).PivotTables("Pivot1") _

.PivotCache.EnableRefresh = False

BackgroundQuery Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproBackgroundQueryC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproBackgroundQueryX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproBackgroundQueryA"}

True if queries for the PivotTable or query table are performed asynchronously (in the background).
Read/write Boolean.

BackgroundQuery Property Example

This example causes queries for the PivotTable to be performed in the background.
Worksheets(1).PivotTables("Pivot1").PivotCache.BackgroundQuery = True

OptimizeCache Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproOptimizeCacheC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproOptimizeCacheX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproOptimizeCacheA"}

True if the PivotTable cache is optimized when it's constructed. The default value is False. Read/write
Boolean.

Remarks
Cache optimization results in additional queries and degrades initial performance of the PivotTable.

OptimizeCache Property Example

This example causes the PivotTable cache to be optimized when it's constructed.
Worksheets(1).PivotTables("Pivot1") _

.PivotCache.OptimizeCache = True

Tag Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproTagC"} {ewc HLP95EN.DLL, DYNALINK, "Example":"xlproTagX":1}
{ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproTagA"}

Returns or sets a string saved with the PivotTable. Read/write String.

Tag Property Example

This example sets the PivotTable Tag property.
Worksheets(1).PivotTables("Pivot1").Tag = "Product Sales by Region"

MemoryUsed Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproMemoryUsedC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproMemoryUsedX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproMemoryUsedA"}

Application object: Returns the amount of memory that Microsoft Excel is currently using, in bytes.
Read-only Long.

PivotCache or PivotField object: Returns the amount of memory currently being used by the object,
in bytes. Read-only Long.

MemoryUsed Property Example

This example displays a message box showing the number of bytes that Microsoft Excel is currently
using.
MsgBox "Microsoft Excel is currently using " & _

Application.MemoryUsed & " bytes"

DragToColumn Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDragToColumnC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDragToColumnX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDragToColumnA"}

True if the pivot field can be dragged to the column position. The default value is True. Read/write
Boolean.

DragToColumn Property Example

This example prevents the Year field from being dragged to the column position.
Worksheets(1).PivotTables("Pivot1") _

.PivotFields("Year").DragToColumn = False

DragToHide Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDragToHideC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDragToHideX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDragToHideA"}

True if the field can be hidden by being dragged off the PivotTable. The default value is True.
Read/write Boolean.

DragToHide Property Example

This example prevents the Year field from being dragged off the PivotTable.
Worksheets(1).PivotTables("Pivot1") _

.PivotFields("Year").DragToHide = False

DragToPage Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDragToPageC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDragToPageX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDragToPageA"}

True if the field can be dragged to the page position. The default value is True. Read/write Boolean.

DragToPage Property Example

This example prevents the Year field from being dragged to the page position.
Worksheets(1).PivotTables("Pivot1") _

.PivotFields("Year").DragToPage = False

DragToRow Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDragToRowC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDragToRowX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDragToRowA"}

True if the field can be dragged to the row position. The default value is True. Read/write Boolean.

DragToRow Property Example

This example prevents the Year field from being dragged to the row position.
Worksheets(1).PivotTables("Pivot1") _

.PivotFields("Year").DragToRow = False

EnableDrilldown Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproEnableDrilldownC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproEnableDrilldownX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproEnableDrilldownA"}

True if drilldown is enabled. The default value is True. Read/write Boolean.

Remarks
Setting this property for a PivotTable sets it for all fields in that PivotTable.

EnableDrilldown Property Example

This example disables drilldown for all fields in the PivotTable.
Worksheets(1).PivotTables("Pivot1").EnableDrilldown = False

EnableFieldDialog Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproEnableFieldDialogC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproEnableFieldDialogX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproEnableFieldDialogA"}

True if the PivotTable Field dialog box is available when the user double-clicks the PivotTable field.
The default value is True. Read/write Boolean.

Remarks
Setting this property for a PivotTable sets it for all fields in that PivotTable.

EnableFieldDialog Property Example

This example disables the PivotTable Field dialog box for the Year field.
Worksheets(1).PivotTables("Pivot1") _

.PivotFields("Year").EnableFieldDialog = False

EnableWizard Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproEnableWizardC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproEnableWizardX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproEnableWizardA"}

True if the PivotTable Wizard is available. The default value is True. Read/write Boolean.

EnableWizard Property Example

This example disables the PivotTable Wizard for the PivotTable named "Pivot1."
Worksheets(1).PivotTables("Pivot1").EnableWizard = False

IsCalculated Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproIsCalculatedC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproIsCalculatedX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproIsCalculatedA"}

True if the pivot field or item is a calculated field or item. Read/write Boolean.

IsCalculated Property Example

This example disables the PivotTable Field dialog box if the PivotTable contains any calculated
fields.
set pt = Worksheets(1).PivotTables("Pivot1")
For Each fld in pt.PivotFields

If fld.IsCalculated Then pt.EnableFieldDialog = False
Next

PivotCaches Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthPivotCachesC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthPivotCachesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthPivotCachesA"}

Returns a PivotCaches collection that represents all the PivotTable caches in the specified
workbook. Read-only.

Syntax
expression.PivotCaches
expression Required. An expression that returns a Workbook object.

PivotCaches Method Example

This example causes the PivotTable cache to update automatically each time the workbook is
opened.
ActiveWorkbook.PivotCaches(1).RefreshOnFileOpen = True

Refresh Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthRefreshC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthRefreshX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthRefreshA"}

Updates the PivotTable cache or query table.

Syntax
expression.Refresh(BackgroundQuery)
expression Required. An expression that returns a PivotCache or QueryTable object.
BackgroundQuery Optional Variant. Used only with query tables. True to return control to the

procedure as soon as a database connection is made and the the query is submitted (the query is
updated in the background). False to return control to the procedure only after all data has been
fetched to the worksheet. If this argument isn't specified, the setting of the BackgroundQuery
property determines the query mode.

Remarks
The following remarks apply to the QueryTable object.

The Refresh method causes Microsoft Excel to connect to the query table's data source, execute the
SQL query, and return data to the query table destination range. Until this method is called, the query
table doesn't communicate with the data source.

When making the connection to the ODBC data source, Microsoft Excel uses the connection string
specified by the Connection property. If the specified connection string is missing required values,
the ODBC driver manager or the ODBC driver (or both) will display modal dialog boxes to prompt the
user for the required information. If the DisplayAlerts property is False, dialog boxes aren't displayed
and the Refresh method fails with the Insufficient Connection Information exception.

After Microsoft Excel makes a successful connection, it stores the completed connection string so that
prompts won't be displayed for subsequent calls to the Refresh method during the same editing
session. You can obtain the completed connection string by examining the value of the Connection
property.

After the database connection is made, the SQL query is validated. If the query isn't valid, the
Refresh method fails with the SQL Syntax Error exception.

If the query requires parameters, the Parameters collection must have been initialized with parameter
binding information. If not enough parameters have been bound, the Refresh method fails with the
Parameter Error exception. If parameters are set to prompt for their values, dialog boxes are
displayed to the user regardless of the setting of the DisplayAlerts property. If the user cancels a
parameter dialog box, the Refresh method halts and returns False. If there are extra parameters
bound with the Parameters collection, the extra parameters are ignored.

The Refresh method returns True if the query is successfully completed or started; it returns False if
the user cancels a connection or parameter dialog box.

To see whether the number of fetched rows exceeded the number of available rows on the worksheet,
examine the FetchedRowOverflow property. This property is initialized every time the Refresh
method is called.

Refresh Method Example

This example refreshes the PivotTable.
Worksheets(1).PivotTables(1).PivotCache.Refresh

SelectionMode Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproSelectionModeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproSelectionModeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproSelectionModeA"}

Returns or sets the PivotTable structured selection mode. Can be one of the following
XlPTSelectionMode constants: xlLabelOnly, xlDataAndLabel, or xlDataOnly. Read/write Long.

SelectionMode Property Example

This example enables structured selection mode and then sets PivotTable one to allow only data to
be selected.
Application.PivotTableSelection = True
Worksheets(1).PivotTables(1).SelectionMode = xlDataOnly

CalculatedFields Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthCalculatedFieldsC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthCalculatedFieldsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthCalculatedFieldsA"}

Returns a CalculatedFields collection that represents all the calculated fields in the specified
PivotTable. Read-only.

Syntax
expression.CalculatedFields
expression Required. An expression that returns a PivotTable object.

CalculatedFields Method Example

This example prevents the calculated fields from being dragged to the row position.
For Each fld in Worksheets(1).PivotTables("Pivot1").CalculatedFields

fld.DragToRow = False
Next

CalculatedItems Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthCalculatedItemsC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthCalculatedItemsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthCalculatedItemsA"}

Returns a CalculatedItems collection that represents all the calculated items in the specified
PivotTable. Read-only.

Syntax
expression.CalculatedItems
expression Required. An expression that returns a PivotField object.

CalculatedItems Method Example

This example creates a list of calculated items and their formulas.
Set pt = Worksheets(1).PivotTables(1)
For Each ci In pt.PivotFields("Sales").CalculatedItems

r = r + 1
With Worksheets(2)

.Cells(r, 1).Value = ci.Name

.Cells(r, 2).Value = ci.Formula
End With

Next

PivotCache Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthPivotCacheC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthPivotCacheX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthPivotCacheA"}

Returns a PivotCache object that represents the cache for the specified PivotTable. Read-only.

Syntax
expression.PivotCache
expression Required. An expression that returns a PivotTable object.

PivotCache Method Example

This example causes the PivotTable cache to be optimized when it's constructed.
Worksheets(1).PivotTables("Pivot1") _

.PivotCache.OptimizeCache = True

ShowChartTipNames Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproShowChartTipNamesC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproShowChartTipNamesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproShowChartTipNamesA"}

True if charts show chart tip names. The default value is True. Read/write Boolean.

ShowChartTipNames Property Example

This example turns off chart tip names and values.
With Application

.ShowChartTipNames = False

.ShowChartTipValue = False
End With

ShowChartTipValues Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproShowChartTipValuesC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproShowChartTipValuesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproShowChartTipValuesA"}

True if charts show chart tip values. The default value is True. Read/write Boolean.

ShowChartTipValues Property Example

This example turns off chart tip names and values.
With Application

.ShowChartTipNames = False

.ShowChartTipValue = False
End With

ShowWindow Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproShowWindowC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproShowWindowX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproShowWindowA"}

True if the embedded chart is displayed in a separate window. The Chart object used with this
property must refer to an embedded chart. Read/write Boolean.

ShowWindow Property Example

This example causes the embedded chart to be displayed in a separate window.
Worksheets(1).ChartObjects(1).Chart.ShowWindow = True

AcceptAllChanges Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAcceptAllChangesC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAcceptAllChangesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthAcceptAllChangesA"}

Accepts all changes in the specified shared workbook.

Syntax
expression.AcceptAllChanges
expression Required. An expression that returns a Workbook object.

AcceptAllChanges Method Example

This example accepts all changes in the active workbook.
ActiveWorkbook.AcceptAllChanges

RejectAllChanges Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthRejectAllChangesC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthRejectAllChangesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthRejectAllChangesA"}

Rejects all changes in the specified shared workbook.

Syntax
expression.RejectAllChanges
expression Required. An expression that returns a Workbook object.

RejectAllChanges Method Example

This example rejects all changes in the active workbook.
ActiveWorkbook.RejectAllChanges

AcceptLabelsInFormulas Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproAcceptLabelsInFormulasC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproAcceptLabelsInFormulasX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproAcceptLabelsInFormulasA"}

True if labels can be used in worksheet formulas. The default value is True. Read/write Boolean.

AcceptLabelsInFormulas Property Example

This example sets the AcceptLabelsInFormulas property for the active workbook and then sets cells
B1:D1 on worksheet one to be column labels.
ActiveWorkbook.AcceptLabelsInFormulas = True
Worksheets(1).Range("b1:d1").FormulaLabel = xlColumnLabels

Add Method (Validation Object)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAddValidationObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAddValidationObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthAddValidationObjA"}

Adds data validation to the specified range.

Syntax
expression.Add(Type, AlertStyle, Operator, Formula1, Formula2)
expression Required. An expression that returns a Validation object.
Type Required Long. The validation type. Can be one of the following XlDVType constants:

xlValidateCustom, xlValidateDate, xlValidateDecimal, xlValidateInputOnly, xlValidateList,
xlValidateTextLength, xlValidateTime, or xlValidateWholeNumber.

AlertStyle Optional Variant. The validation alert style. Can be one of the following XlDVAlertStyle
constants: xlValidAlertInformation, xlValidAlertStop, or xlValidAlertWarning.

Operator Optional Variant. The data validation operator. Can be one of the following
XlFormatConditionOperator constants: xlBetween, xlEqual, xlGreater, xlGreaterEqual,
xlLess, xlLessEqual, xlNotBetween, or xlNotEqual.

Formula1 Optional Variant. The first part of the data validation equation.
Formula2 Optional Variant. The second part of the data validation when Operator is xlBetween or

xlNotBetween (otherwise, this argument is ignored).

Remarks
The Add method requires different arguments, depending on the validation type, as shown in the
following table.

Validation type Arguments
xlValidateCustom Formula1 is required, Formula2 is ignored.

Formula1 must contain an expression that
evaluates to True when data entry is valid
and False when data entry is invalid.

xlInputOnly AlertStyle, Formula1, or Formula2 are used.
xlValidateList Formula1 is required, Formula2 is ignored.

Formula1 must contain either a comma-
delimited list of values or a worksheet
reference to this list.

xlValidateWholeNumber,
xlValidateDate,
xlValidateDecimal,
xlValidateTextLength, or
xlValidateTime

One of either Formula1 or Formula2 must be
specified, or both may be specified.

Add Method (Validation Object) Example

This example adds data validation to cell E5.
With Range("e5").Validation

.Add Type:=xlValidateWholeNumber, _
AlertStyle:= xlValidAlertStop, _
Operator:=xlBetween, Formula1:="5", Formula2:="10"

.InputTitle = "Integers"

.ErrorTitle = "Integers"

.InputMessage = "Enter an integer from five to ten"

.ErrorMessage = "You must enter a number from five to ten"
End With

AlertStyle Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproAlertStyleC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproAlertStyleX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproAlertStyleA"}

Returns the validation alert style. Can be one of the following XlDVAlertStyle constants:
xlValidAlertInformation, xlValidAlertStop, or xlValidAlertWarning. Read-only Long.

Remarks
Use the Add method to set the alert style for a range. If the range already has data validation, use the
Modify method to change the alert style.

AlertStyle Property Example

This example displays the alert style for cell E5.
MsgBox Range("e5").Validation.AlertStyle

AutoScaleFont Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproAutoScaleFontC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproAutoScaleFontX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproAutoScaleFontA"}

True if the text in the object changes font size when the object size changes. The default value is
True. Read/write Variant.

AutoScaleFont Property Example

This example adds a title to embedded chart one on the active worksheet, and it causes the title font
to remain the same size whenever the chart size changes.
With ActiveSheet.ChartObjects(1).Chart

.HasTitle = True

.ChartTitle.Text = "1996 sales"

.ChartTitle.AutoScaleFont = False
End With

BaseUnit Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproBaseUnitC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproBaseUnitX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproBaseUnitA"}

Returns or sets the base unit for the specified category axis. Can be one of the following XlTimeUnit
constants: xlDays, xlMonths, or xlYears. Read/write Long.

Remarks
Setting this property has no visible effect if the CategoryType property for the specified axis is set to
xlCategoryScale. The set value is retained, however, and takes effect when the CategoryType
property is set to xlTimeScale.

You cannot set this property for a value axis.

BaseUnit Property Example

This example sets the category axis in embedded chart one on worksheet one to use a time scale,
with months as the base unit.
With Worksheets(1).ChartObjects(1).Chart

With .Axes(xlCategory)
.CategoryType = xlTimeScale
.BaseUnit = xlMonths

End With
End With

BaseUnitIsAuto Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproBaseUnitIsAutoC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproBaseUnitIsAutoX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproBaseUnitIsAutoA"}

True if Microsoft Excel chooses appropriate base units for the specified category axis. The default
value is True. Read/write Boolean.

Remarks
You cannot set this property for a value axis.

BaseUnitIsAuto Property Example

This example sets the category axis in embedded chart one on worksheet one to use a time scale
with automatic base units.
With Worksheets(1).ChartObjects(1).Chart

With .Axes(xlCategory)
.CategoryType = xlTimeScale
.BaseUnitIsAuto = True

End With
End With

BubbleScale Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproBubbleScaleC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproBubbleScaleX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproBubbleScaleA"}

Returns or sets the scale factor for bubbles in the specified chart group. Can be an integer value from
0 (zero) to 300, corresponding to a percentage of the default size. Applies only to bubble charts.
Read/write Long.

BubbleScale Property Example

This example sets the bubble size in chart group one to 200% of the default size.
With Worksheets(1).ChartObjects(1).Chart

.ChartGroups(1).BubbleScale = 200
End With

BubbleSizes Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproBubbleSizesC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproBubbleSizesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproBubbleSizesA"}

Returns or sets a string in A1-style notation that refers to the worksheet cells containing the size data
for the bubble chart. Applies only to bubble charts. Read/write Variant.

BubbleSizes Property Example

This example displays the cell reference for the cells that contain the bubble chart size data.
MsgBox Worksheets(1).ChartObjects(1).Chart _

.SeriesCollection(1).BubbleSizes

Build Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproBuildC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproBuildX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproBuildA"}

Returns the Microsoft Excel build number. Read-only Long.

Remarks
It's usually safer to test the Version property, unless you're sure you need to know the build number.

Build Property Example

This example tests the Build property.
If Application.Build > 2500 Then

' build-dependent code here
End If

CategoryType Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproCategoryTypeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproCategoryTypeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproCategoryTypeA"}

Returns or sets the category axis type. Can be one of the following XlCategoryType constants:
xlCategoryScale, xlTimeScale, or xlAutomaticScale. Read/write Long.

Remarks
You cannot set this property for a value axis.

CategoryType Property Example

This example sets the category axis in embedded chart one on worksheet one to use a time scale,
with months as the base unit.
With Worksheets(1).ChartObjects(1).Chart

With .Axes(xlCategory)
.CategoryType = xlTimeScale
.BaseUnit = xlMonths

End With
End With

ChartType Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproChartTypeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproChartTypeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproChartTypeA"}

Returns or sets the chart type. Read/write Long.

Can be one of the following XlChartType constants.

Chart type Description Constant
Column Clustered Column xlColumnClustered

3D Clustered Column xl3DColumnClustered
Stacked Column xlColumnStacked
3D Stacked Column xl3DColumnStacked
100% Stacked Column xlColumnStacked100
3D 100% Stacked Column xl3DColumnStacked100
3D Column xl3DColumn

Bar Clustered Bar xlBarClustered
3D Clustered Bar xl3DBarClustered
Stacked Bar xlBarStacked
3D Stacked Bar xl3DBarStacked
100% Stacked Bar xlBarStacked100
3D 100% Stacked Bar xl3DBarStacked100

Line Line xlLine
Line with Markers xlLineMarkers
Stacked Line xlLineStacked
Stacked Line with Markers xlLineMarkersStacked
100% Stacked Line xlLineStacked100
100% Stacked Line with Markers xlLIneMarkersStacked100
3D Line xl3DLine

Pie Pie xlPie
Exploded Pie xlPieExploded
3D Pie xl3Dpie
Exploded 3D Pie xl3DPieExploded
Pie of Pie xlPieOfPie
Bar of Pie xlBarOfPie

XY (Scatter) Scatter xlXYScatter
Scatter with Smoothed Lines xlXYScatterSmooth
Scatter with Smoothed Lines and No
Data Markers

xlXYScatterSmoothNoMarkers

Scatter with Lines xlXYScatterLines
Scatter with Lines and No Data
Markers

xlXYScatterLinesNoMarkers

Bubble Bubble xlBubble
Bubble with 3D effects xlBubble3DEffect

Area Area xlArea
3D Area xl3DArea
Stacked Area xlAreaStacked

3D Stacked Area xl3DAreaStacked
100% Stacked Area xlAreaStacked100
3D 100% Stacked Area xl3DAreaStacked100

Doughnut Doughnut xlDoughnut
Exploded Doughnut xlDoughnutExploded

Radar Radar xlRadar
Radar with Data Markers xlRadarMarkers
Filled Radar xlRadarFilled

Surface 3D Surface xlSurface
Surface (Top View) xlSurfaceTopView
 3D Surface (wireframe) xlSurfaceWireframe
Surface (Top View wireframe) xlSurfaceTopViewWireframe

Stock Quotes High-Low-Close xlStockHLC
Volume-High-Low-Close xlStockVHLC
Open-High-Low-Close xlStockOHLC
Volume-Open-High-Low-Close xlStockVOHLC

Cylinder Clustered Cylinder Column xlCylinderColClustered
Clustered Cylinder Bar xlCylinderBarClustered
Stacked Cylinder Column xlCylinderColStacked
Stacked Cylinder Bar xlCylinderBarStacked
100% Stacked Cylinder Column xlCylinderColStacked100
100% Stacked Cylinder Bar xlCylinderBarStacked100
3D Cylinder Column xlCylinderCol

Cone Clustered Cone Column xlConeColClustered
Clustered Cone Bar xlConeBarClustered
Stacked Cone Column xlConeColStacked
Stacked Cone Bar xlConeBarStacked
100% Stacked Cone Column xlConeColStacked100
100% Stacked Cone Bar xlConeBarStacked100
3D Cone Column xlConeCol

Pyramid Clustered Pyramid Column xlPyramidColClustered
Clustered Pyramid Bar xlPyramidBarClustered
Stacked Pyramid Column xlPyramidColStacked
Stacked Pyramid Bar xlPyramidBarStacked
100% Stacked Pyramid Column xlPyramidColStacked100
100% Stacked Pyramid Bar xlPyramidBarStacked100
3D Pyramid Column xlPyramidCol

ChartType Property Example

This example sets the bubble size in chart group one to 200% of the default size if the chart is a 2D
bubble chart.
With Worksheets(1).ChartObjects(1).Chart

If .ChartType = xlBubble Then
.ChartGroups(1).BubbleScale = 200

End If
End With

CircleInvalid Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthCircleInvalidC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthCircleInvalidX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthCircleInvalidA"}

Circles invalid entries on the worksheet.

Syntax
expression.CircleInvalid
expression Required. An expression that returns a Worksheet object.

CircleInvalid Method Example

This example circles invalid entries on worksheet one.
Worksheets(1).CircleInvalid

ClearCircles Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthClearCirclesC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthClearCirclesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthClearCirclesA"}

Clears circles from invalid entries on the worksheet.

Syntax
expression.ClearCircles
expression Required. An expression that returns a Worksheet object.

Remarks
Use the CircleInvalid method to circle cells that contain invalid data.

ClearCircles Method Example

This example clears circles from invalid entries on worksheet one.
Worksheets(1).ClearCircles

DisplayPageBreaks Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDisplayPageBreaksC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDisplayPageBreaksX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDisplayPageBreaksA"}

True if page breaks (both automatic and manual) on the specified worksheet are displayed.
Read/write Boolean.

Remarks
You can't set this property if you don't have a printer installed.

DisplayPageBreaks Property Example

This example causes Sheet1 to display page breaks.
Worksheets("Sheet1").DisplayPageBreaks = True

ErrorMessage Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproErrorMessageC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproErrorMessageX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproErrorMessageA"}

Returns or sets the data validation error message. Read/write String.

ErrorMessage Property Example

This example adds data validation to cell E5 and specifies both the input and error messages.
With Range("e5").Validation

.Add Type:=xlValidateWholeNumber, _
AlertStyle:= xlValidAlertStop, _
Operator:=xlBetween, Formula1:="5", Formula2:="10"

.InputTitle = "Integers"

.ErrorTitle = "Integers"

.InputMessage = "Enter an integer from five to ten"

.ErrorMessage = "You must enter a number from five to ten"
End With

FormulaLabel Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproFormulaLabelC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproFormulaLabelX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproFormulaLabelA"}

Returns or sets the formula label type for the specified range. Can be xlNone if the range contains no
labels, or one of the following XlFormulaLabel constants: xlRowLabels, xlColumnLabels, or
xlMixedLabels. Read/write Variant.

FormulaLabel Property Example

This example topic sets the AcceptLabelsInFormulas property and then sets cells B1:D1 to be
column labels.
ActiveWorkbook.AcceptLabelsInFormulas = True
Worksheets(1).Range("b1:d1").FormulaLabel = xlColumnLabels

Has3DEffect Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproHas3DEffectC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproHas3DEffectX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproHas3DEffectA"}

True if the series has a three-dimensional appearance. Applies only to bubble charts. Read/write
Boolean.

Has3DEffect Property Example

This example gives series one on the embedded bubble chart a three-dimensional appearance.
With Worksheets(1).ChartObjects(1).Chart

.SeriesCollection(1).Has3DEffect = True
End With

InputMessage Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproInputMessageC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproInputMessageX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproInputMessageA"}

Returns or sets the data validation input message. Read/write String.

InputMessage Property Example

This example adds data validation to cell E5 and specifies both the input and error messages.
With Range("e5").Validation

.Add Type:=xlValidateWholeNumber, _
AlertStyle:= xlValidAlertStop, _
Operator:=xlBetween, Formula1:="5", Formula2:="10"

.InputTitle = "Integers"

.ErrorTitle = "Integers"

.InputMessage = "Enter an integer from five to ten"

.ErrorMessage = "You must enter a number from five to ten"
End With

InsideHeight Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproInsideHeightC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproInsideHeightX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproInsideHeightA"}

Returns the inside height of the plot area, in points. Read-only Double.

Remarks
The plot area used for this measurement doesn't include the axis labels. The Height property for the
plot area uses the bounding rectangle that includes the axis labels.

InsideHeight Property Example

This example draws a dotted rectangle around the inside of the plot area in Chart1.
With Charts("chart1")

Set pa = .PlotArea
With .Shapes.AddShape(msoShapeRectangle, _

pa.InsideLeft, pa.InsideTop, pa.InsideWidth, pa.InsideHeight)
.Fill.Transparency = 1
.Line.DashStyle = msoLineDashDot

End With
End With

InsideLeft Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproInsideLeftC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproInsideLeftX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproInsideLeftA"}

Returns the distance from the chart edge to the inside left edge of the plot area, in points. Read-only
Double.

Remarks
The plot area used for this measurement doesn't include the axis labels. The Left property for the plot
area uses the bounding rectangle that includes the axis labels.

InsideLeft Property Example

This example draws a dotted rectangle around the inside of the plot area in Chart1.
With Charts("chart1")

Set pa = .PlotArea
With .Shapes.AddShape(msoShapeRectangle, _

pa.InsideLeft, pa.InsideTop, pa.InsideWidth, pa.InsideHeight)
.Fill.Transparency = 1
.Line.DashStyle = msoLineDashDot

End With
End With

InsideTop Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproInsideTopC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproInsideTopX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproInsideTopA"}

Returns the distance from the chart edge to the inside top edge of the plot area, in points. Read-only
Double.

Remarks
The plot area used for this measurement doesn't include the axis labels. The Top property for the plot
area uses the bounding rectangle that includes the axis labels.

InsideTop Property Example

This example draws a dotted rectangle around the inside of the plot area in Chart1.
With Charts("chart1")

Set pa = .PlotArea
With .Shapes.AddShape(msoShapeRectangle, _

pa.InsideLeft, pa.InsideTop, pa.InsideWidth, pa.InsideHeight)
.Fill.Transparency = 1
.Line.DashStyle = msoLineDashDot

End With
End With

InsideWidth Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproInsideWidthC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproInsideWidthX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproInsideWidthA"}

Returns the inside width of the plot area, in points. Read-only Double.

Remarks
The plot area used for this measurement doesn't include the axis labels. The Width property for the
plot area uses the bounding rectangle that includes the axis labels.

InsideWidth Property Example

This example draws a dotted rectangle around the inside of the plot area in Chart1.
With Charts("chart1")

Set pa = .PlotArea
With .Shapes.AddShape(msoShapeRectangle, _

pa.InsideLeft, pa.InsideTop, pa.InsideWidth, pa.InsideHeight)
.Fill.Transparency = 1
.Line.DashStyle = msoLineDashDot

End With
End With

PlotBy Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPlotByC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPlotByX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPlotByA"}

Returns or sets the way columns or rows are used as data series on the chart. Can be one of the
following XlRowCol constants: xlColumns or xlRows. Read/write Long.

PlotBy Property Example

This example causes the embedded chart to plot data by columns.
Worksheets(1).ChartObjects(1).Chart.PlotBy = xlColumns

ProtectChartObject Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproProtectChartObjectC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproProtectChartObjectX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproProtectChartObjectA"}

True if the embedded chart frame cannot be moved, resized, or deleted. Read/write Boolean.

ProtectChartObject Property Example

This example protects embedded chart one on worksheet one.
Worksheets(1).ChartObjects(1).ProtectChartObject = True

ProtectData Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproProtectDataC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproProtectDataX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproProtectDataA"}

True if series formulas cannot be modified by the user. Read/write Boolean.

ProtectData Property Example

This example protects the data on embedded chart one on worksheet one.
Worksheets(1).ChartObjects(1).Chart.ProtectData = True

ProtectFormatting Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproProtectFormattingC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproProtectFormattingX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproProtectFormattingA"}

True if chart formatting cannot be modified by the user. Read/write Boolean.

Remarks
When this property is True, the Object command on the Format menu is disabled and chart
elements cannot be added, moved, resized, or deleted.

ProtectFormatting Property Example

This example protects the formatting of embedded chart one on worksheet one.
Worksheets(1).ChartObjects(1).Chart.ProtectFormatting = True

ProtectGoalSeek Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproProtectGoalSeekC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproProtectGoalSeekX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproProtectGoalSeekA"}

True if the user cannot modify chart data points with mouse actions. Read/write Boolean.

ProtectGoalSeek Property Example

This example protects the data points on embedded chart one on worksheet one.
Worksheets(1).ChartObjects(1).Chart.ProtectGoalSeek = True

ProtectSelection Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproProtectSelectionC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproProtectSelectionX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproProtectSelectionA"}

True if chart elements cannot be selected. Read/write Boolean.

Remarks
When this property is True, shapes cannot be added to the chart, and the Click and DoubleClick
events for chart elements don't occur.

ProtectSelection Property Example

This example prevents chart elements from being selected on embedded chart one on worksheet
one.
Worksheets(1).ChartObjects(1).Chart.ProtectSelection = True

ShrinkToFit Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproShrinkToFitC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproShrinkToFitX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproShrinkToFitA"}

True if text automatically shrinks to fit in the available column width. Returns Null if this property isn't
set to the same value for all cells in the specified range. Read/write Variant.

ShrinkToFit Property Example

This example causes text in row one to automatically shrink to fit in the available column width.
Rows(1).ShrinkToFit = True

SplitValue Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproSplitValueC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproSplitValueX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproSplitValueA"}

Returns or sets the threshold value separating the two sections of either a pie of pie chart or a bar of
pie chart. Read/write Variant.

SplitValue Property Example

This example must be run on either a pie of pie chart or a bar of pie chart. The example splits the two
sections of the chart by value, combining all values under 10 in the primary pie and displaying them in
the secondary section.
With Worksheets(1).ChartObjects(1).Chart.ChartGroups(1)

.SplitType = xlSplitByValue

.SplitValue = 10

.VaryByCategories = True
End With

SplitType Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproSplitTypeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproSplitTypeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproSplitTypeA"}

Returns or sets the way the two sections of either a pie of pie chart or a bar of pie chart are split. Can
be one of the following XlChartSplitType constants: xlSplitByPosition, xlSplitByPercentValue,
xlSplitByCustomSplit, or xlSplitByValue. Read/write Long.

SplitType Property Example

This example must be run on either a pie of pie chart or a bar of pie chart. The example splits the two
sections of the chart by value, combining all values under 10 in the primary pie and displaying them in
the secondary section.
With Worksheets(1).ChartObjects(1).Chart.ChartGroups(1)

.SplitType = xlSplitByValue

.SplitValue = 10

.VaryByCategories = True
End With

SecondPlotSize Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproSecondPlotSizeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproSecondPlotSizeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproSecondPlotSizeA"}

Returns or sets the size of the secondary section of either a pie of pie chart or a bar of pie chart, as a
percentage of the size of the primary pie. Can be a value from 5 to 200. Read/write Long.

SecondPlotSize Property Example

This example must be run on either a pie of pie chart or a bar of pie chart. The example splits the two
sections of the chart by value, combining all values under 10 in the primary pie and displaying them in
the secondary section. The secondary section is 50 percent of the size of the primary pie.
With Worksheets(1).ChartObjects(1).Chart.ChartGroups(1)

.SplitType = xlSplitByValue

.SplitValue = 10

.VaryByCategories = True

.SecondPlotSize = 50
End With

SecondaryPlot Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproSecondaryPlotC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproSecondaryPlotX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproSecondaryPlotA"}

True if the point is in the secondary section of either a pie of pie chart or a bar of pie chart. Applies
only to points on pie of pie charts or bar of pie charts. Read/write Boolean.

SecondaryPlot Property Example

This example must be run on either a pie of pie chart or a bar of pie chart. The example moves point
four to the secondary section of the chart.
With Worksheets(1).ChartObjects(1).Chart.SeriesCollection(1)

.Points(4).SecondaryPlot = True
End With

Validation Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproValidationC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproValidationX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproValidationA"}

Returns the Validation object that represents data validation for the specified range. Read-only.

Validation Property Example

This example causes data validation for cell E5 to allow blank values.
Range("e5").Validation.IgnoreBlank = True

WorksheetFunction Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproWorksheetFunctionC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproWorksheetFunctionX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproWorksheetFunctionA"}

Returns the WorksheetFunction object. Read-only.

WorksheetFunction Property Example

This example displays the result of applying the Min worksheet function to the range A1:A10.
Set myRange = Worksheets("Sheet1").Range("A1:C10")
answer = Application.WorksheetFunction.Min(myRange)
MsgBox answer

IgnoreBlank Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproIgnoreBlankC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproIgnoreBlankX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproIgnoreBlankA"}

True if blank values are permitted by the range data validation. Read/write Boolean.

Remarks
If the IgnoreBlank property is True, cell data is considered valid if the cell is blank, or if a cell
referenced by either the MinVal or MaxVal property is blank.

IgnoreBlank Property Example

This example causes data validation for cell E5 to allow blank values.
Range("e5").Validation.IgnoreBlank = True

InCellDropdown Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproInCellDropdownC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproInCellDropdownX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproInCellDropdownA"}

True if data validation displays a drop-down list that contains acceptable values. Read/write Boolean.

Remarks
This property is ignored if the validation type isn't xlValidateList.
Use the Minimum argument of the Add or Modify method of the Validation object to specify the
range that contains valid data.

InCellDropdown Property Example

This example adds data validation to cell E5. The range A1:A10 contains the acceptable values for
the cell and the cell displays a drop-down list that contains those values.
With Range("e5").Validation

.Add xlValidateList, xlValidAlertStop, xlBetween, "=A1:A10"

.InCellDropdown = True
End With

Modify Method (Validation Object)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthModifyValidationObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthModifyValidationObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthModifyValidationObjA"}

Modifies data validation for a range.

Syntax
expression.Modify(Type, AlertStyle, Minimum, Maximum)
expression Required. An expression that returns a Validation object.
Type Required Long. The validation type. Can be one of the following XlDVType constants:

xlValidateCustom, xlValidateDate, xlValidateDecimal, xlValidateInputOnly, xlValidateList,
xlValidateTextLength, xlValidateTime, or xlValidateWholeNumber.

AlertStyle Optional Variant. The validation alert style. Can be one of the following XlDVAlertStyle
constants: xlValidAlertInformation, xlValidAlertStop, or xlValidAlertWarning.

Operator Optional Variant. The data validation operator. Can be one of the following
XlFormatConditionOperator constants: xlBetween, xlEqual, xlGreater, xlGreaterEqual,
xlLess, xlLessEqual, xlNotBetween, or xlNotEqual.

Formula1 Optional Variant. The first part of the data validation equation.
Formula2 Optional Variant. The second part of the data validation when Operator is xlBetween or

xlNotBetween (otherwise, this argument is ignored).

Remarks
The Modify method requires different arguments, depending on the validation type, as shown in the
following table.

Validation type Arguments
xlValidateCustom Formula1 is required; Formula2 is ignored.

Formula1 must contain an expression that
evaluates to True when data entry is valid
and False when data entry is invalid.

xlInputOnly AlertStyle, Formula1, and Formula2 are not
used.

xlValidateList Formula1 is required; Formula2 is ignored.
Formula1 must contain either a comma-
delimited list of values or a worksheet
reference to the list.

xlValidateWholeNumber,
xlValidateDate,
xlValidateDecimal,
xlValidateTextLength, or
xlValidateTime

Formula1 or Formula2, or both, must be
specified.

Modify Method (Validation Object) Example

This example changes data validation for cell E5.
Range("e5").Validation _

.Modify xlValidateList, xlValidAlertStop, xlBetween, "=A1:A10"

Name Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproNameC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproNameX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproNameA "}

Returns or sets the name of the object. The name of a Range object is a Name object. For every
other type of object, the name is a string.

Name Property Example

This example displays the name of style one in the active workbook, first in the language of the macro
and then in the language of the user.
With ActiveWorkbook.Styles(1)

MsgBox "The name of the style is " & .Name
MsgBox "The localized name of the style is " & .NameLocal

End With

ActiveSheet Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproActiveSheetC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproActiveSheetX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproActiveSheetA "}

Returns an object that represents the active sheet (the sheet on top) in the active workbook or in the
specified window or workbook. Returns Nothing if no sheet is active. Read-only.

Remarks
If you don't specify an object qualifier, this property returns the active sheet in the active workbook.

If a workbook appears in more than one window, the ActiveSheet property may be different in
different windows.

ActiveSheet Property Example

This example displays the name of the active sheet.
MsgBox "The name of the active sheet is " & ActiveSheet.Name

Address Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproAddressC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproAddressX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproAddressA "}

Hyperlink object (Syntax 1): Returns or sets the address of the target document. Read/write String.

Range object (Syntax 2): Returns the range reference in the language of the macro. Read-only
String.

Syntax 1
expression.Address
Syntax 2
expression.Address(RowAbsolute, ColumnAbsolute, ReferenceStyle, External, RelativeTo)
expression Required. An expression that returns a Hyperlink object (Syntax 1) or a Range object

(Syntax 2).
RowAbsolute Optional Variant. True to return the row part of the reference as an absolute

reference. The default value is True.
ColumnAbsolute Optional Variant. True to return the column part of the reference as an absolute

reference. The default value is True.
ReferenceStyle Optional Variant. Can be one of the following XlReferenceStyle constants: xlA1

or xlR1C1. Use xlA1 to return an A1-style reference. Use xlR1C1 to return an R1C1-style
reference. The default value is xlA1

External Optional Variant. True to return an external reference. False to return a local reference.
The default value is False.

RelativeTo Optional Variant. If RowAbsolute and ColumnAbsolute are False, and
ReferenceStyle is xlR1C1, you must include a starting point for the relative reference. This
argument is a Range object that defines the starting point.

Remarks
If the reference contains more than one cell, RowAbsolute and ColumnAbsolute apply to all rows
and columns.

Address Property Example

The following example displays four different representations of the same cell address on Sheet1.
The comments in the example are the addresses that will be displayed in the message boxes.
Set mc = Worksheets("Sheet1").Cells(1, 1)
MsgBox mc.Address() ' A1
MsgBox mc.Address(RowAbsolute:=False) ' $A1
MsgBox mc.Address(ReferenceStyle:=xlR1C1) ' R1C1
MsgBox mc.Address(ReferenceStyle:=xlR1C1, _

RowAbsolute:=False, _
ColumnAbsolute:=False, _
RelativeTo:=Worksheets(1).Cells(3, 3)) ' R[-2]C[-2]

AddressLocal Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproAddressLocalC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproAddressLocalX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproAddressLocalA "}

Returns the range reference in the language of the user. Read-only String.

Syntax
expression.AddressLocal(RowAbsolute, ColumnAbsolute, ReferenceStyle, External,

RelativeTo)
RowAbsolute Optional Variant. True to return the row part of the reference as an absolute

reference. The default value is True.
ColumnAbsolute Optional Variant. True to return the column part of the reference as an absolute

reference. The default value is True.
ReferenceStyle Optional Variant. Can be one of the following XlReferenceStyle constants: xlA1

or xlR1C1. Use xlA1 to return an A1-style reference. Use xlR1C1 to return an R1C1-style
reference. The default value is xlA1

External Optional Variant. True to return an external reference. False to return a local reference.
The default value is False.

RelativeTo Optional Variant. If RowAbsolute and ColumnAbsolute are False, and
ReferenceStyle is xlR1C1, you must include a starting point for the relative reference. This
argument is a Range object that defines the starting point.

Remarks
If the reference contains more than one cell, RowAbsolute and ColumnAbsolute apply to all rows
and columns.

AddressLocal Property Example

Assume that the following example was created in the American English version of Microsoft Excel
and was then run in the German version. The example displays the text shown in the comments.
Set mc = Worksheets(1).Cells(1, 1)
MsgBox mc.AddressLocal() ' A1
MsgBox mc.AddressLocal(RowAbsolute:=False) ' $A1
MsgBox mc.AddressLocal(ReferenceStyle:=xlR1C1) ' Z1S1
MsgBox mc.AddressLocal(ReferenceStyle:=xlR1C1, _
 RowAbsolute:=False, _
 ColumnAbsolute:=False, _
 RelativeTo:=Worksheets(1).Cells(3, 3)) ' Z(-2)S(-2)

Author Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproAuthorC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproAuthorX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproAuthorA "}

Returns or sets the author of the comment. Read-only String.

Author Property Example

This example deletes all comments added by Jean Selva on the active sheet.
For Each c in ActiveSheet.Comments

If c.Author = "Jean Selva" Then c.Delete
Next

Caller Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproCallerC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproCallerX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproCallerA "}

Returns information about how Visual Basic was called (for more information, see the Remarks
section).

Syntax
expression.Caller(Index)
expression Required. An expression that returns an Application object.
Index Optional Variant. An index to the array. This argument is used only when the property

returns an array (for more information, see the Remarks section).

Remarks
This property returns information about how Visual Basic was called, as shown in the following table.

Caller Return value
A custom function entered in a single
cell

A Range object specifying that cell

A custom function that is part of an
array formula in a range of cells

A Range object specifying that range
of cells

An Auto_Open, Auto_Close,
Auto_Activate, or Auto_Deactivate
macro

The name of the document as text

A macro set by either the
OnDoubleClick or OnEntry property

The name of the chart object
identifier or cell reference (if
applicable) to which the macro
applies

The Macro dialog box (Tools menu),
or any caller not described above

The #REF! error value

Caller Property Example

This example displays information about how Visual Basic was called.
Select Case TypeName(Application.Caller)

Case "Range"
v = Application.Caller.Address

Case "String"
v = Application.Caller

Case "Error"
v = "Error"

Case Else
v = "unknown"

End Select
MsgBox "caller = " & v

Caption Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproCaptionC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproCaptionX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproCaptionA "}

Returns text with one of several different meanings, depending on the object type to which it's
applied. Read/write String, except as noted in the following table.

Object type Meaning
Application The name that appears in the title bar of the main

Microsoft Excel window. If you don't set a name, or if you
set the name to Empty, this property returns "Microsoft
Excel." Read-only on the Macintosh.

AxisTitle The axis title text.
Characters The text of this range of characters.
ChartTitle The chart title text.
DataLabel The data label text.
Window The name that appears in the title bar of the document

window. When you set the name, you can use that name
as the index to the Windows property (see the second
example).

Caption Property Example

This example sets the name that appears in the title bar of the main Microsoft Excel window to be a
custom name (this can be done only in Windows; on the Macintosh, the Caption property of the
Application object is read-only).
Application.Caption = "Blue Sky Airlines Reservation System"
This example sets the name of the first window in the active workbook to be "Consolidated Balance
Sheet." This name is then used as the index to the Windows property.
ActiveWorkbook.Windows(1).Caption = "Consolidated Balance Sheet"
ActiveWorkbook.Windows("Consolidated Balance Sheet") _

.ActiveSheet.Calculate

Charts Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproChartsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproChartsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproChartsA "}

Application object: Returns a Sheets collection that represents all the chart sheets in the active
workbook. Read-only.

Workbook object: Returns a Sheets collection that represents all the chart sheets in the specified
workbook. Read-only.

Using this property without an object qualifier returns all chart sheets in the active workbook.

For information about returning a single member of a collection, see Returning an Object from a
Collection.

Charts Property Example

This example sets the text for the title of Chart1.
With Charts("Chart1")

.HasTitle = True

.ChartTitle.Text = "First Quarter Sales"
End With
This example deletes every chart sheet in the active workbook.
ActiveWorkbook.Charts.Delete
This example hides Chart1, Chart3, and Chart5.
Charts(Array("Chart1", "Chart3", "Chart5")).Visible = False

ClipboardFormats Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproClipboardFormatsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproClipboardFormatsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproClipboardFormatsA "}

Returns the formats that are currently on the Clipboard, as an array of numeric values. To determine
whether a particular format is on the Clipboard, compare each element in the array with the
appropriate constant listed in the Remarks section.

Syntax
expression.ClipboardFormats(Index)
expression Required. An expression that returns an Application object.
Index Optional Variant. The array element to be returned. If this argument is omitted, the property

returns the entire array of formats that are currently on the Clipboard. For more information, see
the Remarks section.

Remarks
This property is available both in Windows and on the Macintosh. Some formats may be available
only in Windows or only on the Macintosh.

This property returns an array of numeric values. To determine whether a particular format is on the
Clipboard compare each element of the array with one of the following XlClipboardFormat
constants:

xlClipboardFormatBIFF
xlClipboardFormatBIFF2
xlClipboardFormatBIFF3
xlClipboardFormatBIFF4
xlClipboardFormatBinary
xlClipboardFormatBitmap
xlClipboardFormatCGM
xlClipboardFormatCSV
xlClipboardFormatDIF
xlClipboardFormatDspText
xlClipboardFormatEmbeddedObject
xlClipboardFormatEmbedSource
xlClipboardFormatLink
xlClipboardFormatLinkSource
xlClipboardFormatLinkSourceDesc
xlClipboardFormatMovie
xlClipboardFormatNative

xlClipboardFormatObjectDesc
xlClipboardFormatObjectLink
xlClipboardFormatOwnerLink
xlClipboardFormatPICT
xlClipboardFormatPrintPICT
xlClipboardFormatRTF
xlClipboardFormatScreenPICT
xlClipboardFormatStandardFont
xlClipboardFormatStandardScale
xlClipboardFormatSYLK
xlClipboardFormatTable
xlClipboardFormatText
xlClipboardFormatToolFace
xlClipboardFormatToolFacePICT
xlClipboardFormatVALU
xlClipboardFormatWK1

ClipboardFormats Property Example

This example displays a message box if the Clipboard contains a rich-text format (RTF) object. You
can create an RTF object by copying text from a Word document.
aFmts = Application.ClipboardFormats
For Each fmt In aFmts

If fmt = xlClipboardFormatRTF Then
MsgBox "Clipboard contains rich text"

End If
Next

Colors Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproColorsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproColorsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproColorsA "}

Returns or sets colors in the palette for the workbook. The palette has 56 entries, each represented
by an RGB value. Read/write Variant.

Syntax
expression.Colors(Index)
expression Required. An expression that returns a Workbook object.
Index Optional Variant. The color number (from 1 to 56). If this argument isn't specified, this

method returns an array that contains all 56 of the colors in the palette.

Colors Property Example

This example sets the color palette for the active workbook to be the same as the palette for
Book2.xls.
ActiveWorkbook.Colors = Workbooks("BOOK2.XLS").Colors
This example sets color five in the color palette for the active workbook.
ActiveWorkbook.Colors(5) = RGB(255, 0, 0)

Comment Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproCommentC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproCommentX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproCommentA "}

Range object: Returns a Comment object that represents the comment associated with the cell in the
upper-left corner of the range. Read-only.

Scenario object: Returns or sets the comment associated with the scenario. The comment text
cannot exceed 255 characters. Read/write String.

Comment Property Example

This example sets the comment for scenario one on Sheet1.
Worksheets("Sheet1").Scenarios(1).Comment = _

"Worst case July 1993 sales"

Comments Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproCommentsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproCommentsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproCommentsA "}

Returns a Comments collection that represents all the comments for the specified worksheet. Read-
only.

For information about returning a single member of a collection, see Returning an Object from a
Collection.

Comments Property Example

This example deletes all comments added by Jean Selva on the active sheet.
For Each c in ActiveSheet.Comments

If c.Author = "Jean Selva" Then c.Delete
Next

DisplayAlerts Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDisplayAlertsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDisplayAlertsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDisplayAlertsA "}

True if Microsoft Excel displays certain alerts and messages while a macro is running. Read/write
Boolean.

Remarks
The default value is True. Set this property to False if you don't want to be disturbed by prompts and
alert messages while a macro is running; any time a message requires a response, Microsoft Excel
chooses the default response.

If you set this property to False, Microsoft Excel doesn't automatically set it back to True when your
macro stops running. Your macro should always set the property back to True when it stops running.

Note This behavior is different from previous versions of Microsoft Excel. In earlier versions, the
DisplayAlerts property was automatically reset to True when the macro stopped running. If you have
old code that relies on this behavior, you should change your code to explicitly set the property back
to True at the end of the macro.

DisplayAlerts Property Example

This example closes the workbook Book1.xls and doesn't prompt the user to save changes. Any
changes to Book1.xls aren't saved.
Application.DisplayAlerts = False
Workbooks("BOOK1.XLS").Close
Application.DisplayAlerts = True
This example suppresses the message that otherwise appears when you initiate a DDE channel to an
application that's not running.
Application.DisplayAlerts = False
channelNumber = Application.DDEInitiate(_

app:="WinWord", _
topic:="C:\WINWORD\FORMLETR.DOC")

Application.DisplayAlerts = True
Application.DDEExecute channelNumber, "[FILEPRINT]"
Application.DDETerminate channelNumber
Application.DisplayAlerts = True

DisplayNoteIndicator Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDisplayNoteIndicatorC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDisplayNoteIndicatorX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDisplayNoteIndicatorA
"}

True if cells containing notes display cell tips and contain note indicators (small dots in their upper-
right corners). Read/write Boolean.

DisplayNoteIndicator Property Example

This example hides note indicators.
Application.DisplayNoteIndicator = False

End Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmproEndC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproEndX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproEndA "}

Returns a Range object that represents the cell at the end of the region that contains the source
range. Equivalent to pressing END+UP ARROW, END+DOWN ARROW, END+LEFT ARROW, or END+RIGHT
ARROW. Read-only.

Syntax
expression.End(Direction)
expression Required. An expression that returns a Range object.
Direction Required Long. The direction in which to move. Can be one of the following XlDirection

constants: xlToLeft, xlToRight, xlUp, or xlDown.

End Property Example

This example selects the cell at the top of column B in the region that contains cell B4.
Range("B4").End(xlUp).Select
This example selects the cell at the end of row 4 in the region that contains cell B4.
Range("B4").End(xlToRight).Select
This example extends the selection from cell B4 to the last cell in row four that contains data.
Worksheets("Sheet1").Activate
Range("B4", Range("B4").End(xlToRight)).Select

FileConverters Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproFileConvertersC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproFileConvertersX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproFileConvertersA "}

Returns information about installed file converters. Returns Null if there are no converters installed.
Read-only Variant.

Syntax
expression.FileConverters(Index1, Index2)
expression Required. An expression that returns an Application object.
Index1 Optional Variant. The long name of the converter, including the file-type search string in

Windows (for example, "Lotus 1-2-3 Files (*.wk*)").
Index2 Optional Variant. The path of the converter DLL or code resource.

Remarks
If you don't specify the index arguments, this property returns an array that containing information
about all the installed file converters. Each row in the array contains information about a single file
converter, as shown in the following table.

Column Contents
1 The long name of the converter
2 The path of the converter DLL or code resource
3 The file-extension search string in Windows, or the four-character file

type on the Macintosh

FileConverters Property Example

This example displays a message if the Multiplan file converter is installed.
installedCvts = Application.FileConverters
foundMultiplan = False
If Not IsNull(installedCvts) Then

For arrayRow = 1 To UBound(installedCvts, 1)
If installedCvts(arrayRow, 1) Like "*Multiplan*" Then

foundMultiplan = True
Exit For

End If
Next arrayRow

End If
If foundMultiplan = True Then

MsgBox "Multiplan converter is installed"
Else

MsgBox "Multiplan converter is not installed"
End If

Height Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproHeightC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproHeightX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproHeightA "}

Returns or sets the height of an object, in points. Read/write Long, except as shown in the following
table.

Remarks
The meaning of the Height property depends on the specified object.

Object type Height
Application The height of the main application window. On the Macintosh,

this is always equal to the total height of the screen, in points.
Setting this value to something else on the Macintosh will have
no effect. In Windows, if the window is minimized, this property
is read-only and refers to the height of the icon. If the window
is maximized, this property cannot be set. Use the
WindowState property to determine the window state.

Axis, LegendEntry,
LegendKey

The height of the object. Read-only.

Range The height of the range. Read-only.
Window The height of the window. Use the UsableHeight property to

determine the maximum size for the window.
You cannot set this property if the window is maximized or
minimized. Use the WindowState property to determine the
window state.

ChartArea,
ChartObject,
Legend, OLEObject,
PlotArea, Shape,
ShapeRange

The height of the object.

Height Property Example

This example sets the height of the emdbedded chart.
Worksheets("Sheet1").ChartObjects(1).Height = 288

International Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproInternationalC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproInternationalX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproInternationalA "}

Returns information about the current country and international settings. Read-only Variant.

Syntax
expression.International(Index)

Elements
expression Required. An expression that returns an Application object.
Index Required Long. The setting to be returned. Can be one of the following

XlApplicationInternational constants.
Index Type Meaning
xlCountryCode Long Country version of Microsoft Excel.
xlCountrySetting Long Current country setting in the Windows

Control Panel, or the country number as
determined by your Macintosh system
software.

xlDecimalSeparator String Decimal separator.
xlThousandsSeparator String Zero or thousands separator.
xlListSeparator String List separator.
xlUpperCaseRowLetter String Uppercase row letter (for R1C1-style

references).
xlUpperCaseColumnLetter String Uppercase column letter.
xlLowerCaseRowLetter String Lowercase row letter.
xlLowerCaseColumnLetter String Lowercase column letter.
xlLeftBracket String Character used instead of the left bracket ([)

in R1C1-style relative references.
xlRightBracket String Character used instead of the right bracket

(]) in R1C1-style references.
xlLeftBrace String Character used instead of the left brace ({)

in array literals.
xlRightBrace String Character used instead of the right brace (})

in array literals.
xlColumnSeparator String Character used to separate columns in

array literals.
xlRowSeparator String Character used to separate rows in array

literals.
xlAlternateArraySeparator String Alternate array item separator to use if the

current array separator is the same as the
decimal separator.

xlDateSeparator String Date separator (/ in U.S. version).
xlTimeSeparator String Time separator (: in U.S. version).
xlYearCode String Year symbol in number formats (y in U.S.

version).
xlMonthCode String Month symbol (m in U.S. version).
xlDayCode String Day symbol (d in U.S. version).

xlHourCode String Hour symbol (h in U.S. version).
xlMinuteCode String Minute symbol (m in U.S. version).
xlSecondCode String Second symbol (s in U.S. version).
xlCurrencyCode String Currency symbol ($ in U.S. version).
xlGeneralFormatName String Name of the General number format.
xlCurrencyDigits Long Number of decimal digits to use in currency

formats.
xlCurrencyNegative Long Currency format for negative currency

values:
0 = ($x) or (x$)
1 = -$x or -x$
2 = $-x or x-$
3 = $x- or x$-
Note that the position of the currency
symbol is determined by
xlCurrencyBefore.

xlNoncurrencyDigits Long Number of decimal digits to use in
noncurrency formats.

xlMonthNameChars Long Always returns three for backwards
compatibility. In Microsoft Excel 97, short
month names are read from Microsoft
Windows and can have any length.

xlWeekdayNameChars Long Always returns three for backwards
compatibility. In Microsoft Excel 97, short
weekday names are read from Microsoft
Windows and can have any length.

xlDateOrder Long Order of date elements:
0 = month-day-year
1 = day-month-year
2 = year-month-day

xl24HourClock Boolean True if using 24-hour time, False if using
12-hour time.

xlNonEnglishFunctions Boolean True if not displaying functions in English.
xlMetric Boolean True if using the metric system, False if

using the English measurement system.
xlCurrencySpaceBefore Boolean True if a space is added before the currency

symbol.
xlCurrencyBefore Boolean True if the currency symbol precedes the

currency values, False if it follows them.
xlCurrencyMinusSign Boolean True if using a minus sign for negative

numbers, False if using parentheses.
xlCurrencyTrailingZeros Boolean True if trailing zeros are displayed for zero

currency values.
xlCurrencyLeadingZeros Boolean True if leading zeros are displayed for zero

currency values.
xlMonthLeadingZero Boolean True if a leading zero is displayed in months

(when months are displayed as numbers).
xlDayLeadingZero Boolean True if a leading zero is displayed in days.
xl4DigitYears Boolean True if using four-digit years, False if using

two-digit years.
xlMDY Boolean True if the date order is month-day-year for

dates displayed in the long form, False if the
date order is day-month-year.

xlTimeLeadingZero Boolean True if a leading zero is displayed in times.

International Property Example

This example displays the international decimal separator.
MsgBox "The decimal separator is " & _

Application.International(xlDecimalSeparator)

Left Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproLeftC "} {ewc HLP95EN.DLL, DYNALINK, "Example":"xlproLeftX":1}
{ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproLeftA "}

Returns or sets the position of the specified object, in points. Read/write Long, except as shown in
the following table.

Remarks
The meaning of the Left property depends on the specified object.

Object Meaning
Application The distance from the left edge of the screen to

the left edge of the main Microsoft Excel window.
Axis, LegendEntry,
LegendKey

The distance from the left edge of the object to the
left edge of the chart area. Read-only.

Range The distance from the left edge of column A to the
left edge of the range. If the range is
discontinuous, the first area is used. If the range is
more than one column wide, the leftmost column in
the range is used. Read-only.

Window The distance from the left edge of the client area to
the left edge of the window

AxisTitle, ChartArea,
ChartTitle, DataLabel,
Legend, OLEObject,
PlotArea, Shape,
ShapeRange

The distance from the left edge of the object to the
left edge of column A (on a worksheet) or the left
edge of the chart area (on a chart).

If the window is maximized, Application.Left returns a negative number that varies based on the
width of the window border. Setting Application.Left to 0 (zero) will make the window a tiny bit
smaller than it would be if the application window were maximized. In other words, if
Application.Left is 0 (zero), the left border of the main Microsoft Excel window will just barely be
visible on the screen.

On the Macintosh, Application.Left is always 0 (zero). Setting this value to something else on
the Macintosh will have no effect.

In Windows, if the Microsoft Excel window is minimized, Application.Left controls the position of
the window icon.

Left Property Example

This example aligns the left edge of the embedded chart with the left edge of column B.
With Worksheets("Sheet1")

.ChartObjects(1).Left = .Columns("B").Left
End With

PrintQuality Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthPrintQualityC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthPrintQualityX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthPrintQualityA "}

Returns or sets the print quality.

Syntax
expression.PrintQuality(Index)
expression Required. An expression that returns a PageSetup object.
Index Optional Variant. Horizontal print quality (1) or vertical print quality (2). Some printers may

not support vertical print quality. If you don't specify this argument, the PrintQuality method returns
(or can be set to) a two-element array that contains both horizontal and vertical print quality.

PrintQuality Method Example

This example sets print quality on a printer with nonsquare pixels. The array specifies both horizontal
and vertical print quality. This example may cause an error, depending on the printer driver you're
using.
Worksheets("Sheet1").PageSetup.PrintQuality = Array(240, 140)
This example displays the current setting for horizontal print quality.
MsgBox "Horizontal Print Quality is " & _

Worksheets("Sheet1").PageSetup.PrintQuality(1)

Recipients Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthRecipientsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthRecipientsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthRecipientsA "}

Returns or sets the recipients on the routing slip.

Syntax
expression.Recipients(Index)
expression Required. An expression that returns a RoutingSlip object.
Index Optional Variant. The recipient. If this argument isn't specified, the method returns (or can be

set to) an array that contains all recipients.

Remarks
The order of the recipient list defines the delivery order if the routing delivery option is
xlOneAfterAnother.
If a routing slip is in progress, only those recipients who haven't already received and routed the
document are returned or set.

Recipients Method Example

This example sends the open workbook to three recipients, one after the other.
With ThisWorkbook

.HasRoutingSlip = True
With .RoutingSlip

.Delivery = xlOneAfterAnother

.Recipients = Array("Adam Bendel", "Jean Selva", "Bernard Gabor")

.Subject = "Here is the workbook"

.Message = "Here is the workbook. What do you think?"

.ReturnWhenDone = True
End With

.Route
End With

RegisteredFunctions Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproRegisteredFunctionsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproRegisteredFunctionsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproRegisteredFunctionsA
"}

Returns information about functions in either dynamic-link libraries (DLLs) or code resources that
were registered with the REGISTER or REGISTER.ID macro functions. Read-only Variant.

Syntax
expression.RegisteredFunctions(Index1, Index2)
expression Required. An expression that returns an Application object.
Index1 Optional Variant. The name of the DLL or code resource.
Index2 Optional Variant. The name of the function.

Remarks
If you don't specify the index arguments, this property returns an array that contains a list of all
registered functions. Each row in the array contains information about a single function, as shown in
the following table.

Column Contents
1 The name of the DLL or code resource
2 The name of the procedure in the DLL or code resource
3 Strings specifying the data types of the return values, and the

number and data types of the arguments

If there are no registered functions, this property returns Null.

RegisteredFunctions Property Example

This example creates a list of registered functions, placing one registered function in each row on
Sheet1. Column A contains the full path and file name of the DLL or code resource, column B
contains the function name, and column C contains the argument data type code.
theArray = Application.RegisteredFunctions
If IsNull(theArray) Then

MsgBox "No registered functions"
Else

For i = LBound(theArray) To UBound(theArray)
For j = 1 To 3

Worksheets("Sheet1").Cells(i, j).Formula = theArray(i, j)
Next j

Next i
End If

ReplacementList Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthReplacementListC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthReplacementListX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthReplacementListA":1}

Returns the array of AutoCorrect replacements.

Syntax
expression.ReplacementList(Index)
expression Required. An expression that returns an AutoCorrect object.
Index Optional Variant. The row of the array of AutoCorrect replacements to be returned. The row

is returned as a one-dimensional array with two elements: The first element is the text in column 1,
and the second element is the text in column 2. If Index is out of range, this method fails.
If Index is not specified, this method returns a two-dimensional array. Each row in the array
contains one replacement, as shown in the following table.
Column Contents
1 The text to be replaced
2 The replacement text

Remarks
Use the AddReplacement method to add an entry to the replacement list.

ReplacementList Method Example

This example searches the replacement list for "Temperature" and displays the replacement entry if it
exists.
repl = Application.AutoCorrect.ReplacementList
For x = 1 To UBound(repl)

If repl(x, 1) = "Temperature" Then MsgBox repl(x, 2)
Next

Subject Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproSubjectC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproSubjectX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproSubjectA "}

Returns or sets the subject for the mailer or routing slip. Read/write String.

Remarks
The subject for the RoutingSlip object is used as the subject for mail messages used to route the
workbook.

On the Macintosh, PowerTalk requires that there be a subject before the mailer can be sent.

Subject Property Example

This example sets the subject for a routing slip for the open workbook. To run this example, you must
have Microsoft Exchange or Microsoft Mail for the Macintosh installed.
With ThisWorkbook

.HasRoutingSlip = True
With .RoutingSlip

.Delivery = xlOneAfterAnother

.Recipients = Array("Adam Bendel", "Jean Selva", "Bernard Gabor")

.Subject = "Here is the workbook"

.Message = "Here is the workbook. What do you think?"

.ReturnWhenDone = True
End With

.Route
End With
This example sets the subject for a mailer in the PowerTalk mail system (Macintosh only). To run this
example, you must have the PowerTalk mail system installed.
With Workbooks(1)

.HasMailer = True
With .Mailer

.Subject = "Here is the workbook"

.ToRecipients = Array("Jean")

.CCRecipients = Array("Adam", "Bernard")

.BCCRecipients = Array("Chris")

.Enclosures = Array("TestFile")
End With
.SendMailer

End With

Top Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproTopC "} {ewc HLP95EN.DLL, DYNALINK, "Example":"xlproTopX":1}
{ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproTopA "}

Returns or sets the position of the specified object, in points. Read/write Long, except as shown in
the following table.

Remarks
The meaning of the Top property depends on the specified object.

Object Meaning
Application The distance from the top edge of the screen to the

top edge of the main Microsoft Excel window. In
Windows, if the application window is minimized,
this property controls the position of the window
icon (anywhere on the screen). On the Macintosh,
the value is always 0 (zero); setting the value to
something else will have no effect.

Range The distance from the top edge of row 1 to the top
edge of the range. If the range is discontinuous,
the first area is used. If the range is more than one
row high, the top (lowest numbered) row in the
range is used. Read-only.

Window The distance from the top edge of the window to
the top edge of the usable area (below the menus,
any toolbars docked at the top, and the formula
bar). You cannot set this property for a maximized
window. Use the WindowState property to return
or set the state of the window.

Axis, AxisTitle,
ChartArea,
ChartObject,
ChartTitle, DataLabel,
Legend, LegendEntry,
LegendKey,
OLEObject, PlotArea

The distance from the top edge of the object to the
top of row 1 (on a worksheet) or the top of the
chart area (on a chart). Read-only for Axis,
LegendEntry, and LegendKey.

Top Property Example

This example aligns the top of the embedded chart with the top of row two.
With Worksheets("Sheet1")

.ChartObjects(1).Top = .Rows(2).Top
End With
This example expands the active window to the maximum size available (assuming that the window
isn't already maximized).
With ActiveWindow

.WindowState = xlNormal

.Top = 1

.Left = 1

.Height = Application.UsableHeight

.Width = Application.UsableWidth
End With

Width Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproWidthC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproWidthX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproWidthA "}

Returns or sets an object's width, in points. Read/write Long, except as shown in the following table.

Remarks
The meaning of the Width property depends on the specified object.

Object Description
Application The distance from the left edge of the application

window to the right edge of the application window.
Axis, LegendEntry,
LegendKey

The width of the object. Read-only.

Range The width of the range.
Window The width of the window. Use the UsableWidth

property to determine the maximum size for the
window.
You cannot set this property if the window is
maximized or minimized. Use the WindowState
property to determine the window state.

ChartArea,
ChartObject, Legend,
OLEObject, PlotArea,
Shape, ShapeRange,
Window

The width of the object.

On the Macintosh, Application.Width is always equal to the total width of the screen, in points.
Setting this value to any other value has no effect.

In Windows, if the window is minimized, Application.Width is read-only and returns the width of
the window icon.

Width Property Example

This example sets the width of the embedded chart.
Worksheets("Sheet1").ChartObjects(1).Width = 360
This example expands the active window to the maximum size available (assuming that the window
isn't maximized).
With ActiveWindow

.WindowState = xlNormal

.Top = 1

.Left = 1

.Height = Application.UsableHeight

.Width = Application.UsableWidth
End With

Worksheets Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproWorksheetsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproWorksheetsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproWorksheetsA "}

Application object: Returns a Sheets collection that represents all the worksheets in the active
workbook. Read-only.

Workbook object: Returns a Sheets collection that represents all the worksheets in the specified
workbook. Read-only.

For information about returning a single member of a collection, see Returning an Object from a
Collection.

Remarks
Using this property without an object qualifier returns all the worksheets in the active workbook.

This property doesn't return macro sheets; use the Excel4MacroSheets property or the
Excel4IntlMacroSheets property to return those sheets.

Worksheets Property Example

This example displays the value in cell A1 on Sheet1 in the active workbook.
MsgBox Worksheets("Sheet1").Range("A1").Value
This example displays the name of each worksheet in the active workbook.
For Each ws In Worksheets

MsgBox ws.Name
Next ws
This example adds a new worksheet to the active workbook and then sets the name of the worksheet.
Set newSheet = Worksheets.Add
newSheet.Name = "current Budget"

Quit Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthQuitC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthQuitX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthQuitA "}

Quits Microsoft Excel. Doesn't run any Auto_Close macros before quitting.

Syntax
expression.Quit
expression Required. An expression that returns an Application object.

Remarks
If unsaved workbooks are open when you use this method, Microsoft Excel displays a dialog box
asking whether you want to save the changes. You can prevent this by saving all workbooks before
using the Quit method or by setting the DisplayAlerts property to False. When this property is False,
Microsoft Excel doesn't display the dialog box when you quit with unsaved workbooks; it quits without
saving them.

If you set the Saved property for a workbook to True without saving the workbook to the disk,
Microsoft Excel will quit without asking you to save the workbook.

Quit Method Example

This example saves all open workbooks and then quits Microsoft Excel.
For Each w In Application.Workbooks

w.Save
Next w
Application.Quit

Subtotals Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthSubtotalsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthSubtotalsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthSubtotalsA "}

Returns or sets subtotals displayed with the specified field. Valid only for nondata fields.

Syntax
expression.Subtotals(Index)
expression Required. An expression that returns a PivotField object.
Index Optional Variant. A subtotal index, as shown in the following table. If this argument is

omitted, the Subtotals method returns an array that contains a Boolean value for each subtotal.
Index Meaning
1 Automatic
2 Sum
3 Count
4 Average
5 Max
6 Min
7 Product
8 Count Nums
9 StdDev
10 StdDevp
11 Var
12 Varp

If an index is True, the field shows that subtotal. If index 1 (Automatic) is True, all other values are
set to False.

Subtotals Method Example

This example sets the field that contains the active cell to show Sum subtotals.
Worksheets("Sheet1").Activate
ActiveCell.PivotField.Subtotals(2) = True

Protect Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthProtectC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthProtectX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthProtectA "}

Protects a chart or worksheet (Syntax 1) or a workbook (Syntax 2) so that it cannot be modified.

Syntax 1
expression.Protect(Password, DrawingObjects, Contents, Scenarios, UserInterfaceOnly)
Syntax 2
expression.Protect(Password, Structure, Windows)
expression Required. An expression that returns a Chart or Worksheet object (Syntax 1) or a

Workbook object (Syntax 2).
Password Optional Variant. A string that specifies a case-sensitive password for the sheet or

workbook. If this argument is omitted, you can unprotect the sheet or workbook without using a
password. Otherwise, you must specify the password to unprotect the sheet or workbook. If you
forget the password, you cannot unprotect the sheet or workbook. It's a good idea to keep a list of
your passwords and their corresponding document names in a safe place.

DrawingObjects Optional Variant. True to protect shapes. The default value is False.
Contents Optional Variant. True to protect contents. For a chart, this protects the entire chart. For

a worksheet, this protects the individual cells. The default value is True.
Scenarios Optional Variant. True to protect scenarios. This argument is valid only for worksheets.

The default value is True.
Structure Optional Variant. True to protect the structure of the workbook (the relative position of

the sheets). The default value is False.
UserInterfaceOnly Optional Variant. True to protect the user interface, but not macros. If this

argument is omitted, protection applies both to macros and to the user interface.
Windows Optional Variant. True to protect the workbook windows. If this argument is omitted, the

windows aren't protected.

Remarks
If you apply the Protect method with the UserInterfaceOnly argument set to True to a worksheet
and then save the workbook, the entire worksheet (not just the interface) will be fully protected when
you reopen the workbook. To unprotect the worksheet but re-enable user interface protection after the
workbook is opened, you must again apply the Protect method with UserInterfaceOnly set to True.

Protect Method Example

This example protects the active workbook.
ActiveWorkbook.Protect Password := "drowssap"

ProtectContents Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproProtectContentsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproProtectContentsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproProtectContentsA "}

True if the contents of the sheet are protected. For a chart, this protects the entire chart. For a
worksheet, this protects the individual cells. Read-only Boolean.

ProtectContents Property Example

This example displays a message box if the contents of Sheet1 are protected.
If Worksheets("Sheet1").ProtectContents = True Then

MsgBox "The contents of Sheet1 are protected."
End If

ProtectDrawingObjects Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproProtectDrawingObjectsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproProtectDrawingObjectsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproProtectDrawingObjectsA "}

True if shapes are protected. Read-only Boolean.

ProtectDrawingObjects Property Example

This example displays a message box if the shapes on Sheet1 are protected.
If Worksheets("Sheet1").ProtectDrawingObjects = True Then

MsgBox "The shapes on Sheet1 are protected."
End If

Text Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproTextC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproTextX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproTextA "}

Returns or sets the text for the specified object. Read-only String for the Range object, read/write
String for all other objects.

For information about using the Text worksheet function in Visual Basic, see Using Worksheet
Functions in Visual Basic.

Text Property Example

This example sets the text for the chart title of Chart1.
With Charts("Chart1")

.HasTitle = True

.ChartTitle.Text = "First Quarter Sales"
End With
This example sets the axis title text for the category axis in Chart1.
With Charts("Chart1").Axes(xlCategory)

.HasTitle = True

.AxisTitle.Text = "Month"
End With
This example illustrates the difference between the Text and Value properties of cells that contain
formatted numbers.
Set c = Worksheets("Sheet1").Range("B14")
c.Value = 1198.3
c.NumberFormat = "$#,##0_);($#,##0)"
MsgBox c.Value
MsgBox c.Text

Activate Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthActivateC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthActivateX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthActivateA "}

Activates the object, as shown in the following table.

Object Description
Chart, ChartObject Makes this chart the active chart.
Worksheet Makes this sheet the active sheet. Equivalent to

clicking the sheet's tab.
OLEObject Activates the object.
Pane Activates the pane. If the pane isn't in the active

window, the window that the pane belongs to will also
be activated. You cannot activate a frozen pane.

Range Activates a single cell, which must be inside the
current selection. To select a range of cells, use the
Select method.

Window Brings the window to the front of the z-order. This
won't run any Auto_Activate or Auto_Deactivate
macros that might be attached to the workbook (use
the RunAutoMacros method to run those macros).

Workbook Activates the first window associated with the
workbook. This won't run any Auto_Activate or
Auto_Deactivate macros that might be attached to the
workbook (use the RunAutoMacros method to run
those macros).

Syntax
expression.Activate
expression Required. An expression that returns an object in the Applies To list.

Activate Method Example

This example activates Sheet1.
Worksheets("Sheet1").Activate
This example selects cells A1:C3 on Sheet1 and then makes cell B2 the active cell.
Worksheets("Sheet1").Activate
Range("A1:C3").Select
Range("B2").Activate
This example activates Book4.xls. If Book4.xls has multiple windows, the example activates the first
window, Book4.xls:1.
Workbooks("BOOK4.XLS").Activate

Index Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproIndexC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproIndexX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproIndexA "}

Returns the index number of the object within the collection of similar objects. Read-only Long.

For information about using the Index worksheet function in Visual Basic, see Using Worksheet
Functions in Visual Basic.

Index Property Example

This example displays the tab number of the sheet name that you type. For example, if Chart1 is the
third tab in the active workbook, the example displays "3" in a message box.
sheetname = InputBox("Type a sheet name, such as Sheet12")
MsgBox "This sheet is tab number " & Sheets(sheetname).Index

Cells Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproCellsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproCellsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproCellsA "}

Application object: Returns a Range object that represents all the cells on the active worksheet. If
the active document isn't a worksheet, this property fails. Read-only.

Range object: Returns a Range object that represents the cells in the specified range (in other words,
it does nothing). Read-only.

Worksheet object: Returns a Range object that represents all the cells on the worksheet (not just the
cells that are currently in use). Read-only.

Remarks
Because the Item property is the default property for the Range object, you can specify the row and
column index immediately after the Cells keyword. For more information, see the Item property and
the examples for this topic.

Using this property without an object qualifier returns a Range object that represents all the cells on
the active worksheet.

Cells Property Example

This example sets the font size for cell C5 on Sheet1 to 14 points.
Worksheets("Sheet1").Cells(5, 3).Font.Size = 14
This example clears the formula in cell one on Sheet1.
Worksheets("Sheet1").Cells(1).ClearContents
This example sets the font and font size for every cell on Sheet1 to 8-point Arial.
With Worksheets("Sheet1").Cells.Font

.Name = "Arial"

.Size = 8
End With
This example loops through cells A1:J4 on Sheet1. If a cell contains a value less than 0.001, the
example replaces that value with 0 (zero).
For rwIndex = 1 to 4

For colIndex = 1 to 10
With Worksheets("Sheet1").Cells(rwIndex, colIndex)

If .Value < .001 Then .Value = 0
End With

Next colIndex
Next rwIndex
This example sets the font style for cells A1:C5 on Sheet1 to italic.
Worksheets("Sheet1").Activate
Range(Cells(1, 1), Cells(5, 3)).Font.Italic = True
This example scans a column of data named "myRange." If a cell has the same value as the cell
immediately above it, the example displays the address of the cell that contains the duplicate data.
Set r = Range("myRange")
For n = 1 To r.Rows.Count

If r.Cells(n, 1) = r.Cells(n + 1, 1) Then
MsgBox "Duplicate data in " & r.Cells(n + 1, 1).Address

End If
Next n

Returning an Object from a Collection
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlhowReturningAnObjectC"}

The Item property returns a single object from a collection. The following example sets the
firstBook variable to a Workbook object that represents workbook one.

Set firstBook = Workbooks.Item(1)
The Item property is the default property for most collections, so you can write the same statement
more concisely by omitting the Item keyword.
Set firstBook = Workbooks(1)
For more information about a specific collection, see the Help topic for that collection or the Item
property for the collection.

Named Objects
Although you can usually specify an integer value with the Item property, it may be more convenient
to return an object by name. Before you can use a name with the Item property, you must name the
object. Most often, this is done by setting the object's Name property. The following example creates
a named worksheet in the active workbook and then refers to the worksheet by name.
ActiveWorkbook.Worksheets.Add.Name = "a new sheet"
With Worksheets("a new sheet")

.Range("a5:a10").Formula = "=rand()"
End With

Predefined Index Values
Some collections have predefined index values you can use to return single objects. Each predefined
index value is represented by a constant. For example, you specify an XlBordersIndex constant with
the Item property of the Borders collection to return a single border.

The following example sets the bottom border of cells A1:G1 on Sheet1 to a double line.
Worksheets("Sheet1").Range("a1:g1"). _
 Borders.Item(xlEdgeBottom).LineStyle = xlDouble

Default Properties and Methods
Many objects have a default property or method. Visual Basic applies the default property or method
to a given object to resolve an expression that wouldn't otherwise be valid. You can write statements
that use default properties or methods more concisely by omitting the default keywords. For example,
the Item property is the default property for most collections in Microsoft Excel, so the following two
statements are identical:
ActiveWorkbook.Worksheets.Item(1).Cells.Item(1, 1).Value = 5
ActiveWorkbook.Worksheets(1).Cells(1, 1).Value = 5
Note Default properties and methods are indicated by an asterisk following their names in the
Object Browser.

Add Method (FormatConditions Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAddFormatConditionsObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAddFormatConditionsObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlmthAddFormatConditionsObjA"}

Adds a new conditional format. Returns a FormatCondition object that represents the new
conditional format.

Syntax
expression.Add(Type, Operator, Formula1, Formula2)
expression Required. An expression that returns a FormatConditions object.
Type Required Long. Specifies whether the conditional format is based on a cell value or an

expression. Can be either of the following XlFormatConditionType constants: xlCellValue or
xlExpression.

Operator Optional Variant. The conditional format operator. Can be one of the following
XlFormatConditionOperator constants: xlBetween, xlEqual, xlGreater, xlGreaterEqual,
xlLess, xlLessEqual, xlNotBetween, or xlNotEqual. If Type is xlExpression, the Operator
argument is ignored.

Formula1 Optional Variant. The value or expression associated with the conditional format. Can
be a constant value, a string value, a cell reference, or a formula.

Formula2 Optional Variant. The value or expression associated with the second part of the
conditional format when Operator is xlBetween or xlNotBetween (otherwise, this argument is
ignored). Can be a constant value, a string value, a cell reference, or a formula.

Remarks
You cannot define more than three conditional formats for a range. Use the Modify method to modify
an existing conditional format, or use the Delete method to delete an existing format before adding a
new one.

Add Method (FormatConditions Collection) Example

This example adds a conditional format to cells E1:E10.
With Worksheets(1).Range("e1:e10").FormatConditions _
 .Add(xlCellValue, xlGreater, "=a1")
 With .Borders
 .LineStyle = xlContinuous
 .Weight = xlThin
 .ColorIndex = 6
 End With
 With .Font
 .Bold = True
 .ColorIndex = 3
 End With
End With

Modify Method (FormatCondition Object)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthModifyFormatConditionObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthModifyFormatConditionObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlmthModifyFormatConditionObjA"}

Modifies an existing conditional format.

Syntax
expression.Modify(Type, Operator, Formula1, Formula2)
expression Required. An expression that returns a FormatCondition object.
Type Required Long. Specifies whether the conditional format is based on a cell value or an

expression. Can be either of the following XlFormatConditionType constants: xlCellValue or
xlExpression.

Operator Optional Variant. The conditional format operator. Can be one of the following
XlFormatConditionOperator constants: xlBetween, xlEqual, xlGreater, xlGreaterEqual,
xlLess, xlLessEqual, xlNotBetween, or xlNotEqual. If Type is xlExpression, the Operator
argument is ignored.

Formula1 Optional Variant. The value or expression associated with the conditional format. Can
be a constant value, a string value, a cell reference, or a formula.

Formula2 Optional Variant. The value or expression associated with the second part of the
conditional format when Operator is xlBetween or xlNotBetween. Can be a constant value, a
string value, a cell reference, or a formula.

Modify Method (FormatCondition Object) Example

This example modifies an existing conditional format for cells E1:E10.
Worksheets(1).Range("e1:e10").FormatConditions(1) _
 .Modify xlCellValue, xlLess, "=a1"

FormatConditions Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproFormatConditionsC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproFormatConditionsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproFormatConditionsA"}

Returns a FormatConditions collection that represents all the conditional formats for the specified
range. Read-only.

For more information about returning an individual member of a collection, see Returning an Object
from a Collection.

FormatConditions Property Example

This example modifies an existing conditional format for cells E1:E10.
Worksheets(1).Range("e1:e10").FormatConditions(1) _
 .Modify xlCellValue, xlLess, "=a1"

Formula1 Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproFormula1C"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproFormula1X":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproFormula1A"}

Returns the value or expression associated with the conditional format or data validation. Can be a
constant value, a string value, a cell reference, or a formula. Read-only String.

Formula1 Property Example

This example changes the formula for conditional format one for cells E1:E10 if the formula specifies
"less than 5."
With Worksheets(1).Range("e1:e10").FormatConditions(1)

If .Operator = xlLess And .Formula1 = "5" Then
.Modify xlCellValue, xlLess, "10"

End If
End With

Formula2 Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproFormula2C"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproFormula2X":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproFormula2A"}

Returns the value or expression associated with the second part of a conditional format or data
validation. Used only when the data validation conditional format Operator property is xlBetween or
xlNotBetween. Can be a constant value, a string value, a cell reference, or a formula. Read-only
String.

Formula2 Property Example
This example changes the formula for conditional format one for cells E1:E10 if the formula specifies
"between 5 and 10"
With Worksheets(1).Range("e1:e10").FormatConditions(1)

If .Operator = xlBetween And .Formula1 = "5" And .Formula2 = "10" Then
.Modify xlCellValue, xlLess, "10"

End If
End With

Operator Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproOperatorC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproOperatorX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproOperatorA"}

Returns the operator for the conditional format or data validation. Can be one of the following
XlFormatConditionOperator constants: xlBetween, xlEqual, xlGreater, xlGreaterEqual, xlLess,
xlLessEqual, xlNotBetween, or xlNotEqual. Read-only Long.

Operator Property Example

This example changes the formula for conditional format one for cells E1:E10 if the formula specifies
"less than 5."
With Worksheets(1).Range("e1:e10").FormatConditions(1)

If .Operator = xlLess And .Formula1 = "5" Then
.Modify xlCellValue, xlBetween, "5", "15"

End If
End With

GetChartElement Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthGetChartElementC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthGetChartElementX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthGetChartElementA"}

Returns information about the chart element at specified X and Y coordinates. This method is unusual
in that you specify values for only the first two arguments. Microsoft Excel fills in the other arguments,
and your code should examine those values when the method returns.

Syntax
expression.GetChartElement(X, Y, ElementID, Arg1, Arg2)
expression Required. An expression that returns a Chart object.
X Required Long. The X coordinate of the chart element.
Y Required Long. The Y coordinate of the chart element.
ElementID Required Long. When the method returns, this argument contains the XLChartItem

value of the chart element at the specified coordinates. For more information, see the "Remarks"
section.

Arg1 Required Long. When the method returns, this argument contains information related to the
chart element. For more information, see the "Remarks" section.

Arg2 Required Long. When the method returns, this argument contains information related to the
chart element. For more information, see the "Remarks" section.

Remarks
The value of ElementID after the method returns determines whether Arg1 and Arg2 contain any
information, as shown in the following table.

ElementID Arg1 Arg2
xlChartArea None None
xlChartTitle None None
xlPlotArea None None
xlLegend None None
xlFloor None None
xlWalls None None
xlCorners None None
xlDataTable None None
xlSeries SeriesIndex PointIndex
xlDataLabel SeriesIndex PointIndex
xlTrendline SeriesIndex TrendLineIndex
xlErrorBars SeriesIndex None
xlXErrorBars SeriesIndex None
xlYErrorBars SeriesIndex None
xlLegendEntry SeriesIndex None
xlLegendKey SeriesIndex None
xlAxis AxisIndex AxisType
xlMajorGridlines AxisIndex AxisType
xlMinorGridlines AxisIndex AxisType
xlAxisTitle AxisIndex AxisType
xlUpBars GroupIndex None
xlDownBars GroupIndex None

xlSeriesLines GroupIndex None
xlHiLoLines GroupIndex None
xlDropLines GroupIndex None
xlRadarAxisLabels GroupIndex None
xlShape ShapeIndex None
xlNothing None None

The following table describes the meaning of Arg1 and Arg2 after the method returns.

Argument Description
SeriesIndex Specifies the offset within the Series collection for a

specific series.
PointIndex Specifies the offset within the Points collection for a

specific point within a series. A value of – 1 indicates
that all data points are selected.

TrendlineIndex Specifies the offset within the Trendlines collection for
a specific trendline within a series.

AxisIndex Specifies whether the axis is primary (0) or secondary
(1).

AxisType Specifies the axis type: Category (0), Value (1), or
Series (2).

GroupIndex Specifies the offset within the ChartGroups collection
for a specific chart group.

ShapeIndex Specifies the offset within the Shapes collection for a
specific shape.

GetChartElement Method Example

This example warns the user if she moves the mouse over the chart legend.
Private Sub Chart_MouseMove(ByVal Button As Long, _
 ByVal Shift As Long, ByVal X As Long, ByVal Y As Long)
 Dim IDNum As Long
 Dim a As Long
 Dim b As Long

 ActiveChart.GetChartElement X, Y, IDNum, a, b
 If IDNum = xlLegendEntry Then _
 MsgBox "WARNING: Move away from the legend"
End Sub

HasBorderHorizontal Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproHasBorderHorizontalC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproHasBorderHorizontalX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproHasBorderHorizontalA"}

True if the chart data table has horizontal cell borders. Read/write Boolean.

HasBorderHorizontal Property Example

This example causes the embedded chart data table to be displayed with an outline border and no
cell borders.
With Worksheets(1).ChartObjects(1).Chart
 .HasDataTable = True
 With .DataTable
 .HasBorderHorizontal = False
 .HasBorderVertical = False
 .HasBorderOutline = True
 End With
End With

HasBorderOutline Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproHasBorderOutlineC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproHasBorderOutlineX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproHasBorderOutlineA"}

True if the chart data table has outline borders. Read/write Boolean.

HasBorderOutline Property Example

This example causes the embedded chart data table to be displayed with an outline border and no
cell borders.
With Worksheets(1).ChartObjects(1).Chart
 .HasDataTable = True
 With .DataTable
 .HasBorderHorizontal = False
 .HasBorderVertical = False
 .HasBorderOutline = True
 End With
End With

HasBorderVertical Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproHasBorderVerticalC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproHasBorderVerticalX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproHasBorderVerticalA"}

True if the chart data table has vertical cell borders. Read/write Boolean.

HasBorderVertical Property Example

This example causes the embedded chart data table to be displayed with an outline border and no
cell borders.
With Worksheets(1).ChartObjects(1).Chart
 .HasDataTable = True
 With .DataTable
 .HasBorderHorizontal = False
 .HasBorderVertical = False
 .HasBorderOutline = True
 End With
End With

HasDataTable Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproHasDataTableC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproHasDataTableX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproHasDataTableA"}

True if the chart has a data table. Read/write Boolean.

HasDataTable Property Example

This example causes the embedded chart data table to be displayed with an outline border and no
cell borders.
With Worksheets(1).ChartObjects(1).Chart
 .HasDataTable = True
 With .DataTable
 .HasBorderHorizontal = False
 .HasBorderVertical = False
 .HasBorderOutline = True
 End With
End With

HasLeaderLines Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproHasLeaderLinesC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproHasLeaderLinesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproHasLeaderLinesA"}

True if the series has leader lines. Read/write Boolean.

HasLeaderLines Property Example

This example adds data labels and blue leader lines to series one on the pie chart.
With Worksheets(1).ChartObjects(1).Chart.SeriesCollection(1)

.HasDataLabels = True

.DataLabels.Position = xlLabelPositionBestFit

.HasLeaderLines = True

.LeaderLines.Border.ColorIndex = 5
End With

LeaderLines Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproLeaderLinesC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproLeaderLinesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproLeaderLinesA"}

Returns a LeaderLines object that represents the leader lines for the series. Read-only.

LeaderLines Property Example

This example adds data labels and blue leader lines to series one on the pie chart.
With Worksheets(1).ChartObjects(1).Chart.SeriesCollection(1)

.HasDataLabels = True

.DataLabels.Position = xlLabelPositionBestFit

.HasLeaderLines = True

.LeaderLines.Border.ColorIndex = 5
End With

Location Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthLocationC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthLocationX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthLocationA"}

Moves the chart to a new location.

Syntax
expression.Location(Where, Name)
expression Required. An expression that returns a Chart object.
Where Required Long. Where to move the chart. Can be one of the following XlChartLocation

constants: xlLocationAsNewSheet, xlLocationAsObject, or xlLocationAutomatic.
Name Optional Variant; required if Where is xlLocationAsObject. The name of the sheet where

the chart will be embedded if Where is xlLocationAsObject or the name of the new sheet if
Where is xlLocationAsNewSheet.

Location Method Example

This example moves the embedded chart to a new chart sheet named "Monthly Sales."
Worksheets(1).ChartObjects(1).Chart _

.Location xlLocationAsNewSheet, "Monthly Sales"

MajorUnitScale Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproMajorUnitScaleC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproMajorUnitScaleX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproMajorUnitScaleA"}

Returns or sets the major unit scale value for the category axis when the CategoryType property is
set to xlTimeScale. Can be one of the following XlTimeUnit constants: xlDays, xlMonths, or
xlYears. Read/write Long.

MajorUnitScale Property Example

This example sets the category axis to use a time scale and sets the major and minor units.
With Charts(1).Axes(xlCategory)
 .CategoryType = xlTimeScale
 .MajorUnit = 5
 .MajorUnitScale = xlDays
 .MinorUnit = 1
 .MinorUnitScale = xlDays
End With

MarkerSize Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproMarkerSizeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproMarkerSizeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproMarkerSizeA"}

Returns or sets the data-marker size, in points. Read/write Long.

MarkerSize Property Example

This example sets the data-marker size for all data markers on series one.
Worksheets(1).ChartObjects(1).Chart.SeriesCollection(1).MarkerSize = 10

MinorUnitScale Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproMinorUnitScaleC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproMinorUnitScaleX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproMinorUnitScaleA"}

Returns or sets the minor unit scale value for the category axis when the CategoryType property is
set to xlTimeScale. Can be one of the following XlTimeUnit constants: xlDays, xlMonths, or
xlYears. Read/write Long.

MinorUnitScale Property Example

This example sets the category axis to use a time scale and sets the major and minor units.
With Charts(1).Axes(xlCategory)
 .CategoryType = xlTimeScale
 .MajorUnit = 5
 .MajorUnitScale = xlDays
 .MinorUnit = 1
 .MinorUnitScale = xlDays
End With

NewSeries Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthNewSeriesC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthNewSeriesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthNewSeriesA"}

Creates a new series. Returns a Series object that represents the new series.

Syntax
expression.NewSeries()
expression Required. An expression that returns a SeriesCollection object.

NewSeries Method Example

This example adds a new series to chart one.
Set ns = Charts(1).SeriesCollection.NewSeries

PersonalViewListSettings Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPersonalViewListSettingsC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPersonalViewListSettingsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproPersonalViewListSettingsA"}

True if filter and sort settings for lists are included in the user's personal view of the shared workbook.
Read/write Boolean.

PersonalViewListSettings Property Example

This example removes print settings and filter and sort settings from the user's personal view of
workbook two.
With Workbooks(2)

.PersonalViewListSettings = False

.PersonalViewPrintSettings = False
End With

PersonalViewPrintSettings Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPersonalViewPrintSettingsC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPersonalViewPrintSettingsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproPersonalViewPrintSettingsA"}

True if print settings are included in the user's personal view of the shared workbook. Read-write
Boolean.

PersonalViewPrintSettings Property Example

This example removes print settings and filter and sort settings from the user's personal view of
workbook two.
With Workbooks(2)

.PersonalViewListSettings = False

.PersonalViewPrintSettings = False
End With

PrintComments Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPrintCommentsC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPrintCommentsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPrintCommentsA"}

Returns or sets the way comments are printed with the sheet. Can be one of the following
XlPrintLocation constants: xlPrintInPlace, xlPrintNoComments, or xlPrintSheetEnd. Read-write
Long.

PrintComments Property Example

This example causes comments to be printed as end notes when worksheet one is printed.
Worksheets(1).PageSetup.PrintComments = xlPrintSheetEnd

RemoveUser Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthRemoveUserC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthRemoveUserX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthRemoveUserA"}

Disconnects the specified user from the shared workbook.

Syntax
expression.RemoveUser(Index)
expression Required. An expression that returns a Workbook object.
Index Required Long. The user index.

RemoveUser Method Example

This example disconnects user two from the shared workbook.
Workbooks(2).RemoveUser 2

ResetAllPageBreaks Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthResetAllPageBreaksC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthResetAllPageBreaksX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlmthResetAllPageBreaksA"}

Resets all page breaks on the specified worksheet.

Syntax
expression.ResetAllPageBreaks()
expression Required. An expression that returns a Worksheet object.

ResetAllPageBreaks Method Example

This example resets all page breaks on worksheet one.
Worksheets(1).ResetAllPageBreaks

SaveWorkspace Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthSaveWorkspaceC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthSaveWorkspaceX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthSaveWorkspaceA"}

Saves the current workspace.

Syntax
expression.SaveWorkspace(Filename)
expression Required. An expression that returns an Application object.
Filename Optional Variant. The saved file name.

SaveWorkspace Method Example

This example saves the current workspace as "saved workspace.xlw".
Application.SaveWorkspace "saved workspace"

ScrollArea Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproScrollAreaC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproScrollAreaX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproScrollAreaA"}

Returns or sets the range where scrolling is allowed, as an A1-style range reference. Cells outside the
scroll area cannot be selected. Read/write String.

Remarks
Set this property to the empty string ("") to enable cell selection for the entire sheet.

ScrollArea Property Example

This example sets the scroll area for worksheet one.
Worksheets(1).ScrollArea = "a1:f10"

ShowNegativeBubbles Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproShowNegativeBubblesC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproShowNegativeBubblesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproShowNegativeBubblesA"}

True if negative bubbles are shown for the chart group. Valid only for bubble charts. Read/write
Boolean.

ShowNegativeBubbles Property Example

This example makes negative bubbles visible for chart group one.
Worksheets(1).ChartObjects(1).Chart _

.ChartGroups(1).ShowNegativeBubbles = True

UserControl Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproUserControlC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproUserControlX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproUserControlA"}

True if the application was created or started by the user. False if the application was created or
started programmatically using the CreateObject or GetObject functions. Read/write Boolean.

Remarks
When the UserControl property is False for an object, that object is released when the last
programmatic reference to the object is released. If this property is False, Microsoft Excel quits when
the last object in the session is released.

UserControl Property Example

This example displays the status of the UserControl property.
If ThisWorkbook.UserControl Then

MsgBox "This workbook was created by the user"
Else

MsgBox "This workbook was created programmatically"
End If

HPageBreaks Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproHPageBreaksC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproHPageBreaksX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproHPageBreaksA"}

Returns an HPageBreaks collection that represents the horizontal page breaks on the sheet. Read-
only.

For information about returning a single member of a collection, see Returning an Object from a
Collection.

HPageBreaks Property Example

This example displays the number of full-screen and print-area horizontal page breaks.
For Each pb in Worksheets(1).HPageBreaks

If pb.Extent = xlPageBreakFull Then
cFull = cFull + 1

Else
cPartial = cPartial + 1

End If
Next
MsgBox cFull & " full-screen page breaks, " & cPartial & _

" print-area page breaks"

Extent Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproExtentC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproExtentX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproExtentA"}

Returns the type of the specified page break: full-screen or only within a print area. Can be either of
the following XlPageBreakExtent constants: xlPageBreakFull or xlPageBreakPartial. Read-only
Long.

Extent Property Example

This example displays the total number of full-screen and print-area horizontal page breaks.
For Each pb in Worksheets(1).HPageBreaks

If pb.Extent = xlPageBreakFull Then
cFull = cFull + 1

Else
cPartial = cPartial + 1

End If
Next
MsgBox cFull & " full-screen page breaks, " & cPartial & _

" print-area page breaks"

Location Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproLocationC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproLocationX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproLocationA"}

Returns or sets the cell (a Range object) that defines the page-break location. Horizontal page breaks
are aligned with the top edge of the location cell; vertical page breaks are aligned with the left edge of
the location cell. Read/write Range.

Location Property Example

This example moves the horizontal page-break location.
Worksheets(1).HPageBreaks(1).Location = Worksheets(1).Range("e5")

VPageBreaks Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproVPageBreaksC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproVPageBreaksX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproVPageBreaksA"}

Returns a VPageBreaks collection that represents the vertical page breaks on the sheet. Read-only.

For information about returning a single member of a collection, see Returning an Object from a
Collection.

VPageBreaks Property Example

This example displays the total number of full-screen and print-area vertical page breaks.
For Each pb in Worksheets(1).VPageBreaks

If pb.Extent = xlPageBreakFull Then
cFull = cFull + 1

Else
cPartial = cPartial + 1

End If
Next
MsgBox cFull & " full-screen page breaks, " & cPartial & _

" print-area page breaks"

MergeWorkbook Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthMergeWorkbookC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthMergeWorkbookX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthMergeWorkbookA"}

Merges changes from one workbook into an open workbook.

Syntax
expression.MergeWorkbook(Filename)
expression Required. An expression that returns a Workbook object.
Filename Required String. The file name of the workbook that contains the changes to be merged

into the open workbook.

MergeWorkbook Method Example

This example merges changes from Book1. xls into the active workbook.
ActiveWorkbook.MergeWorkbook "Book1.xls"

IndentLevel Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproIndentLevelC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproIndentLevelX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproIndentLevelA"}

Returns or sets the indent level for the range or style. Can be an integer from 0 to 15. Read/write
Variant.

Remarks
Using this property to set the indent level to a number less than 0 (zero) or greater than 15 causes an
error.

IndentLevel Property Example

This example increases the indent level to 15 in cell A10.
With Range("a10")

.IndentLevel = 15
End With

InsertIndent Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthInsertIndentC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthInsertIndentX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthInsertIndentA"}

Adds an indent to the specified range.

Syntax
expression.InsertIndent(InsertAmount)
expression Required. An expression that returns a Range object.
InsertAmount Required Long. The amount to be added to the current indent.

Remarks
Using this method to set the indent level to a number less than 0 (zero) or greater than 15 causes an
error.

Use the IndentLevel property to return the indent level for a range.

InsertIndent Method Example

This example decreases the indent level in cell A10.
With Range("a10")

.InsertIndent -1
End With

MergeArea Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproMergeAreaC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproMergeAreaX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproMergeAreaA"}

Returns a Range object that represents the merged range containing the specified cell. If the
specified cell isn't in a merged range, this property returns the specified cell. Read-only Variant.

MergeArea Property Example

This example sets the value of the merged range that contains cell A3.
Set ma = Range("a3").MergeArea
If ma.Address = "A3" Then

MsgBox "not merged"
Else

ma.Cells(1, 1).Value = "42"
End If

MergeCells Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproMergeCellsC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproMergeCellsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproMergeCellsA"}

True if the range or style contains merged cells. Read/write Variant.

Remarks
When you select a range that contains merged cells, the resulting selection may be different from the
intended selection. Use the Address property to check the address of the selected range.

MergeCells Property Example

This example sets the value of the merged range that contains cell A3.
Set ma = Range("a3").MergeArea
If Range("a3").MergeCells Then

ma.Cells(1, 1).Value = "42"
End If

UnMerge Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthUnMergeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthUnMergeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthUnMergeA"}

Separates a merged area into individual cells.

Syntax
expression.UnMerge
expression Required. An expression that returns a Range object.

UnMerge Method Example

This example separates the merged range that contains cell A3.
With Range("a3")

If .MergeCells Then
.MergeArea.UnMerge

Else
MsgBox "not merged"

End If
End With

AddIndent Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproAddIndentC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproAddIndentX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproAddIndentA "}

This property is not used in U.S./English Microsoft Excel.

Merge Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthMergeC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthMergeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthMergeA "}

Syntax 1: Merges the scenarios from another sheet into the Scenarios collection.

Syntax 2: Merges the styles from another workbook into the Styles collection.

Syntax 3: Creates a merged cell from the specified Range object.

Syntax 1
expression.Merge(Source)
Syntax 2
expression.Merge(Workbook)
Syntax 3
expression.Merge(Across)
expression Required. An expression that returns a Scenarios object (Syntax 1), Styles object

(Syntax 2), or Range object (Syntax 3).
Source Required Variant. The name of the sheet that contains scenarios to be merged, or a

Worksheet object that represents that sheet.
Workbook Required Variant. A Workbook object that represents the workbook containing styles

to be merged.
Across Optional Variant. True to merge cells in each row in the specified range as separate

merged cells. The default value is False.

Remarks
The value of a merged range is the value specified for the cell in the upper-left corner of the merged
range.

Merge Method Example

This example merges the styles from the workbook Template.xls into the active workbook.
ActiveWorkbook.Styles.Merge Workbook:=Workbooks("TEMPLATE.XLS")

Borders Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproBordersC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproBordersX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproBordersA "}

Returns a Borders collection that represents the four borders of a style or a range of cells (including
a range defined as part of a conditional format). Read-only.

For information about returning a single member of a collection, see Returning an Object from a
Collection.

Borders Property Example

This example sets the color of the bottom border of cell B2 on Sheet1 to red.
With Worksheets("Sheet1").Range("B2").Borders(xlBottom)

.LineStyle = xlBorderLineStyleContinuous

.Weight = xlThin

.ColorIndex = 3
End With

Rotation Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproRotationC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproRotationX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproRotationA "}

Chart object: Returns or sets the rotation of the 3-D chart view (the rotation of the plot area around
the z-axis, in degrees). The value of this property must be from 0 to 360, except for 3-D bar charts,
where the value must be from 0 to 44. The default value is 20. Applies only to 3-D charts. Read/write
Variant.
Shape or ShapeRange object: Returns or sets the rotation of the shape, in degrees. Read/write
Single.

Rotation Property Example

This example sets the rotation of Chart1 to 30 degrees. The example should be run on a 3-D chart.
Charts("Chart1").Rotation = 30

SizeRepresents Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproSizeRepresentsC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproSizeRepresentsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproSizeRepresentsA"}

Returns or sets what the bubble size represents on a bubble chart. Can be either of the following
XlSizeRepresents constants: xlSizeIsArea or xlSizeIsWidth. Read/write Long.

SizeRepresents Property Example

This example sets what the bubble size represents for chart group one.
Charts(1).ChartGroups(1).SizeRepresents = xlSizeIsWidth

ApplyPictToEnd Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproApplyPictToEndC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproApplyPictToEndX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproApplyPictToEndA"}

True if a picture is applied to the end of the point or all points in the series. Read/write Boolean.

ApplyPictToEnd Property Example

This example applies pictures to the end of all points in series one. The series must already have
pictures applied to it (setting this property changes the picture orientation).
Charts(1).SeriesCollection(1).ApplyPictToEnd = True

ApplyPictToFront Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproApplyPictToFrontC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproApplyPictToFrontX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproApplyPictToFrontA"}

True if a picture is applied to the front of the point or all points in the series. Read/write Boolean.

ApplyPictToFront Property Example

This example applies pictures to the front of all points in series one. The series must already have
pictures applied to it (setting this property changes the picture orientation).
Charts(1).SeriesCollection(1).ApplyPictToFront = True

ApplyPictToSides Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproApplyPictToSidesC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproApplyPictToSidesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproApplyPictToSidesA"}

True if a picture is applied to the sides of the point or all points in the series. Read/write Boolean.

ApplyPictToSides Property Example

This example applies pictures to the sides of all points in series one. The series must already have
pictures applied to it (setting this property changes the picture orientation).
Charts(1).SeriesCollection(1).ApplyPictToSides = True

Assistant Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproAssistantC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproAssistantX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproAssistantA"}

Returns an Assistant object for Microsoft Excel.

Remarks
Using this property without an object qualifier is equivalent to using Application.Assistant.

Assistant Property Example

This example makes the Office Assistant visible.
Assistant.Visible = True

AutoUpdateFrequency Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproAutoUpdateFrequencyC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproAutoUpdateFrequencyX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproAutoUpdateFrequencyA"}

Returns or sets the number of minutes between automatic updates to the shared workbook. If this
property is set to zero (0), updates occur only when the workbook is saved. Read/write Long.

AutoUpdateFrequency Property Example

This example causes the shared workbook to be automatically updated every three minutes.
ActiveWorkbook.AutoUpdateFrequency = 3

AutoUpdateSaveChanges Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproAutoUpdateSaveChangesC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproAutoUpdateSaveChangesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproAutoUpdateSaveChangesA"}

True if current changes to the shared workbook are posted to other users whenever the workbook is
automatically updated. False if changes aren't posted (this workbook is still synchronized with
changes made by other users). The default value is True. Read/write Boolean.

Remarks
The AutoUpdateFrequency property must be set to a value from 5 to 1440 for this property to take
effect.

AutoUpdateSaveChanges Property Example

This example causes changes to the shared workbook to be posted to other users whenever the
workbook is automatically updated.
ActiveWorkbook.AutoUpdateSaveChanges = True

CommandBars Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproCommandBarsC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproCommandBarsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproCommandBarsA"}

Returns a CommandBars object that represents the Microsoft Excel command bars. Read-only.

Remarks
Used with the Application object, this property returns the set of built-in and custom command bars
available to the application.

When a workbook is embedded in another application and activated by the user by double-clicking
the workbook, using this property with a Workbook object returns the set of Microsoft Excel
command bars available within the other application. At all other times, using this property with a
Workbook object returns Nothing.

There is no programmatic way to return the set of command bars attached to a workbook.

CommandBars Property Example

This example deletes all custom command bars that aren't visible.
For Each bar In Application.CommandBars
 If Not bar.BuiltIn And Not bar.Visible Then bar.Delete
Next

ConflictResolution Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproConflictResolutionC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproConflictResolutionX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproConflictResolutionA"}

Returns or sets the way conflicts are to be resolved whenever a shared workbook is updated.
Read/write Long.

Can be one of the following XlSaveConflictResolution constants.

Constant Description
xlLocalSessionChanges The local user's changes are always accepted.
xlOtherSessionChanges The local user's changes are always rejected.
xlUserResolution A dialog box asks the user to resolve the

conflict.

ConflictResolution Property Example

This example causes the local user's changes to be accepted whenever there's a conflict in the
shared workbook.
ActiveWorkbook.ConflictResolution = xlLocalSessionChanges

DataTable Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDataTableC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDataTableX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDataTableA"}

Returns a DataTable object that represents the chart data table. Read-only.

DataTable Property Example

This example adds a data table with an outline border to the embedded chart.
With Worksheets(1).ChartObjects(1).Chart

.HasDataTable = True

.DataTable.HasBorderOutline = True
End With

EnableEvents Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproEnableEventsC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproEnableEventsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproEnableEventsA"}

True if events are enabled for the specified object. Read/write Boolean.

EnableEvents Property Example

This example disables events before a file is saved so that the BeforeSave event doesn't occur.
Application.EnableEvents = False
ActiveWorkbook.Save
Application.EnableEvents = True

EnableResize Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproEnableResizeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproEnableResizeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproEnableResizeA"}

True if the window can be resized. Read/write Boolean.

EnableResize Property Example

This example sets the active window so that it cannot be resized.
ActiveWindow.EnableResize = False

EnableSelection Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproEnableSelectionC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproEnableSelectionX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproEnableSelectionA"}

Returns or sets what can be selected on the sheet. Can be one of the following XlEnableSelection
constants: xlNoRestrictions, xlNoSelection, or xlUnlockedCells. Read/write Long.

Remarks
This property takes effect only when the worksheet is protected: xlNoSelection prevents any
selection on the sheet, xlUnlockedCells allows only those cells whose Locked property is False to
be selected, and xlNoRestrictions allows any cell to be selected.

EnableSelection Property Example

This example sets worksheet one so that nothing on it can be selected.
With Worksheets(1)

.EnableSelection = xlNoSelection

.Protect Contents:=True, UserInterfaceOnly:=True
End With

MergeLabels Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproMergeLabelsC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproMergeLabelsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproMergeLabelsA"}

True if PivotTable outer-row item, column item, subtotal, and grand total labels use merged cells.
Read-write Boolean.

MergeLabels Property Example

This example causes the PivotTable to use merged-cell outer-row item, column item, subtotal, and
grand total labels.
Worksheets(1).PivotTables(1).MergeLabels = True

AutoShow Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAutoShowC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAutoShowX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthAutoShowA"}

Displays the number of top or bottom items for a PivotTable row, page, or column field.

Syntax
expression.AutoShow(Type, Range, Count, Field)
expression Required. An expression that returns a PivotField object.
Type Required Long. Use xlAutomatic to cause the PivotTable to show the items that match the

specified criteria. Use xlManual to disable this feature.
Range Required Long. The location at which to start showing items. Can be either of the following

constants: xlTop or xlBottom.
Count Required Long. The number of items to be shown.
Field Required String. The name of the base data field.

AutoShow Method Example

This example shows only the top two companies, based on the sum of sales:
ActiveSheet.PivotTables("Pivot1").PivotFields("Company") _

.AutoShow xlAutomatic, xlTop, 2, "Sum of Sales"

ServerBased Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproServerBasedC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproServerBasedX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproServerBasedA"}

True if the PivotTable's data source is external and only the items matching the page field selection
are retrieved. Read/write Boolean.

When this property is True, only records in the database that match the selected page field item are
retrieved. From then on, whenever the user changes the page field selection, the newly selected page
field item is passed to the query as a parameter, and the cache is refreshed.

This property cannot be set if any of the following conditions are true:

· The field is grouped.
· The data source isn't external.
· The cache is shared by two or more PivotTables.
· The field is a data type that cannot be server based (a memo field or an OLE object).

ServerBased Property Example

This example lists all the server-based page fields.
For Each fld in ActiveSheet.PivotTables(1).PageFields

If fld.ServerBased = True Then
r = r + 1
Worksheets(2).Cells(r, 1).Value = fld.Name

End If
Next

PivotFormulas Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthPivotFormulasC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthPivotFormulasX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthPivotFormulasA"}

Returns a PivotFormulas object that represents the collection of pivot formulas for the PivotTable.
Read-only.

Syntax
expression.PivotFormulas()
expression Required. An expression that returns a PivotTable object.

PivotFormulas Method Example

This example creates a list of pivot formulas for PivotTable one.
For Each pf in ActiveSheet.PivotTables(1).PivotFormulas

r = r + 1
Cells(r, 1).Value = pf.Formula

Next

AutoSort Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAutoSortC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAutoSortX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthAutoSortA"}

Establishes automatic PivotTable field-sorting rules.

Syntax
expression.AutoSort(Order, Field)
expression Required. An expression that returns a PivotField object.
Order Required Long. The sort order. Can be either of the following XlSortOrder constants:

xlAscending or xlDescending. Can also be xlManual to disable automatic sorting.
Field Required String. The name of the sort key field.

AutoSort Method Example

This example sorts the Company field in descending order, based on the sum of sales.
ActiveSheet.PivotTables(1).PivotField("Company") _

.AutoSort xlDescending, "Sum of Sales"

Selection Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproSelectionC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproSelectionX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproSelectionA "}

Application object: Returns the selected object in the active window.

Window object: Returns the selected object in the specified window.

Remarks
The returned object type depends on the current selection (for example, if a cell is selected, this
property returns a Range object). The Selection property returns Nothing if nothing is selected.

Using this property with no object qualifier is equivalent to using Application.Selection.

Selection Property Example

This example clears the selection on Sheet1 (assuming that the selection is a range of cells).
Worksheets("Sheet1").Activate
Selection.Clear
This example displays the Visual Basic object type of the selection.
Worksheets("Sheet1").Activate
MsgBox "The selection object type is " & TypeName(Selection)

PageBreak Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPageBreakC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPageBreakX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPageBreakA "}

Returns or sets the location of a page break. Can be one of the following XlPageBreak constants:
xlPageBreakAutomatic, xlPageBreakManual, or xlPageBreakNone. Read/write Long.

Remarks
This property can return the location of either automatic or manual page breaks, but it can only set the
location of manual breaks (it can only be set to xlPageBreakManual or xlPageBreakNone).

To remove all manual page breaks on a worksheet, set Cells.PageBreak to xlPageBreakNone.

PageBreak Property Example

This example sets a manual page break above row 25 on Sheet1.
Worksheets("Sheet1").Rows(25).PageBreak = xlPageBreakManual
This example sets a manual page break to the left of column J on Sheet1.
Worksheets("Sheet1").Columns("J").PageBreak = xlPageBreakManual
This example deletes the two page breaks that were set in the preceding examples.
Worksheets("Sheet1").Rows(25).PageBreak = xlPageBreakNone
Worksheets("Sheet1").Columns("J").PageBreak = xlNone

RecordMacro Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthRecordMacroC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthRecordMacroX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthRecordMacroA "}

Records code if the macro recorder is on.

Syntax
expression.RecordMacro(BasicCode, XlmCode)
expression Required. An expression that returns an Application object.
BasicCode Optional Variant. A string that specifies the Visual Basic code that will be recorded if

the macro recorder is recording into a Visual Basic module. The string will be recorded on one line.
If the string contains a carriage return (ASCII character 10, or Chr$(10) in code), it will be
recorded on more than one line.

XlmCode Optional Variant. This argument is ignored.

Remarks
The RecordMacro method cannot record into the active module (the module in which the
RecordMacro method exists).

If BasicCode is omitted and the application is recording into Visual Basic, Microsoft Excel will record
a suitable Application.Run statement.

To prevent recording (for example, if the user cancels your dialog box), call this function with two
empty strings.

RecordMacro Method Example

This example records Visual Basic code.
Application.RecordMacro BasicCode:="Application.Run ""MySub"" "

CheckSpelling Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthCheckSpellingC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthCheckSpellingX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthCheckSpellingA "}

Syntax 1: Checks the spelling of an object. This form has no return value; Microsoft Excel displays the
Spelling dialog box.

Syntax 2: Checks the spelling of a single word. Returns True if the word is found in one of the
dictionaries, False if it isn't.

Syntax 1
expression.CheckSpelling(CustomDictionary, IgnoreUppercase, AlwaysSuggest,

IgnoreInitialAlefHamza, IgnoreFinalYaa, SpellScript)
Syntax 2
expression.CheckSpelling(Word, CustomDictionary, IgnoreUppercase)
expression Required. An expression that returns an object in the Applies To list. Use the

Application object to check a single word (Syntax 2).
CustomDictionary Optional Variant. A string that indicates the file name of the custom dictionary

to examine if the word isn't found in the main dictionary. If this argument is omitted, the currently
specified dictionary is used.

IgnoreUppercase Optional Variant. True to have Microsoft Excel ignore words that are all
uppercase. False to have Microsoft Excel check words that are all uppercase. If this argument is
omitted, the current setting will be used.

AlwaysSuggest Optional Variant. True to have Microsoft Excel display a list of suggested
alternate spellings when an incorrect spelling is found. False to have Microsoft Excel wait for you
to input the correct spelling. If this argument is omitted, the current setting will be used.

Word Required String (used with Application object only). The word you want to check.
IgnoreInitialAlefHamza Opional Variant. Not used in U.S./English Microsoft Excel.
IgnoreFinalYaa Opional Variant. Not used in U.S./English Microsoft Excel.
SpellScript Opional Variant. Not used in U.S./English Microsoft Excel.

Remarks
To check headers, footers, and objects on a worksheet, use this method on a Worksheet object.

To check only cells and notes, use this method with the object returned by the Cells method.

CheckSpelling Method Example

This example checks the spelling on Sheet1.
Worksheets("Sheet1").CheckSpelling

Ungroup Method (Range Object)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthUngroupRangeObjC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthUngroupRangeObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthUngroupRangeObjA "}

Promotes a range in an outline (that is, decreases its outline level). The specified range must be a
row or column, or a range of rows or columns. If the range is in a PivotTable, this method ungroups
the items contained in the range.

Syntax
expression.Ungroup
expression Required. An expression that returns a Range object.

Remarks
If the active cell is in a field header of a parent field, all the groups in that field are ungrouped and the
field is removed from the PivotTable. When the last group in a parent field is ungrouped, the entire
field is removed from the PivotTable.

Ungroup Method (Range Object) Example

This example ungroups the ORDER_DATE field.
Set pvtTable = Worksheets("Sheet1").Range("A3").PivotTable
Set groupRange = pvtTable.PivotFields("ORDER_DATE").DataRange
groupRange.Cells(1).Ungroup

Position Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPositionC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPositionX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPositionA "}

Returns or sets the position of the specified object, as shown in the following table. Read/write Long.

Object Position
DataLabel,
DataLabels

Position of the data label. Can be one of the following
XlDataLabelPosition constants: xlLabelPositionAbove,
xlLabelPositionBelow, xlLabelPositionBestFit,
xlLabelPositionCenter, xlLabelPositionCustom,
xlLabelPositionInsideBase, xlLabelPositionInsideEnd,
xlLabelPositionLeft, xlLabelPositionMixed,
xlLabelPositionOutsideEnd, or xlLabelPositionRight.

Legend Position of the legend on the chart. Can be one of the
following XlLegendPosition constants:
xlLegendPositionBottom, xlLegendPositionCorner,
xlLegendPositionLeft, xlLegendPositionRight, or
xlLegendPositionTop.

PivotField Position of the field (first, second, third, and so on) among
all the fields in its orientation (Rows, Columns, Pages,
Data).

PivotItem Position of the item in its field, if the item is currently
showing.

Position Property Example

This example moves the chart legend to the bottom of the chart.
Charts(1).Legend.Position = xlLegendPositionBottom
This example displays the position number of the pivot item that contains the active cell.
Worksheets("Sheet1").Activate
MsgBox "The active item is in position number " & _

ActiveCell.PivotItem.Position

Orientation Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproOrientationC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproOrientationX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproOrientationA "}

Returns or sets the object's orientation, as shown in the following table. Read-write Long.

Object Orientation
ChartObject,
ChartObjects

Embedded chart placement. Can be one of the following
XlPlacement constants: xlFreeFloating, xlMove, or
xlMoveAndSize.

PageSetup Portrait or landscape printing mode. Can be either of the
following XlPageOrientation constants: xlLandscape or
xlPortrait.

PivotField The location of the field in the PivotTable. Can be one of
the following XlPivotFieldOrientation constants:
xlColumnField, xlDataField, xlHidden, xlPageField, or
xlRowField.

AxisTitle,
ChartTitle,
DataLabel,
Range, Style,
TextFrame

The text orientation. Can be an integer value from – 90 to
90 degrees or one of the following XlOrientation
constants: xlDownward, xlHorizontal, xlUpward, or
xlVertical.

TickLabels The text orientation. Can be an integer value from – 90 to
90 degrees or one of the following XlTickLabelOrientation
constants: xlTickLabelOrientationAutomatic,
xlTickLabelOrientationDownward,
xlTickLabelOrientationHorizontal,
xlTickLabelOrientationUpward, or
xlTickLabelOrientationVertical.

Orientation Property Example

This example displays the orientation for the ORDER_DATE field.
Set pvtTable = Worksheets("Sheet1").Range("A3").PivotTable
Set pvtField = pvtTable.PivotFields("ORDER_DATE")
Select Case pvtField.Orientation

Case xlHidden
MsgBox "Hidden field"

Case xlRowField
MsgBox "Row field"

Case xlColumnField
MsgBox "Column field"

Case xlPageField
MsgBox "Page field"

Case xlDataField
MsgBox "Data field"

End Select
This example sets Sheet1 to be printed in landscape orientation.
Worksheets("Sheet1").PageSetup.Orientation = xlLandscape

BuiltinDocumentProperties Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproBuiltinDocumentPropertiesC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproBuiltinDocumentPropertiesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproBuiltinDocumentPropertiesA "}

Returns a DocumentProperties collection that represents all the built-in document properties for the
specified workbook. Read-only.

Remarks
This property returns the entire collection of built-in document properties. Use the Item method to
return a single member of the collection (a DocumentProperty object) by specifying either the name
of the property or the collection index (as a number).

You can refer to document properties either by index value or by name. The following list shows the
available built-in document property names:

Title
Subject
Author
Keywords
Comments
Template
Last Author
Revision Number
Application Name
Last Print Date

Creation Date
Last Save Time
Total Editing Time
Number of Pages
Number of Words
Number of Characters
Security
Category
Format
Manager

Company
Number of Bytes
Number of Lines
Number of Paragraphs
Number of Slides
Number of Notes
Number of Hidden Slides
Number of Multimedia Clips
Hyperlink Base
Number of Characters (with spaces)

Container applications aren't required to define values for every built-in document property. If
Microsoft Excel doesn't define a value for one of the built-in document properties, reading the Value
property for that document property causes an error.

Because the Item method is the default method for the DocumentProperties collection, the following
statements are identical:
BuiltinDocumentProperties.Item(1)
BuiltinDocumentProperties(1)
Use the CustomDocumentProperties property to return the collection of custom document
properties.

BuiltinDocumentProperties Property Example

This example displays the names of the built-in document properties as a list on worksheet one.
rw = 1
Worksheets(1).Activate
For Each p In ActiveWorkbook.BuiltinDocumentProperties
 Cells(rw, 1).Value = p.Name
 rw = rw + 1
Next

CustomDocumentProperties Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproCustomDocumentPropertiesC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproCustomDocumentPropertiesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproCustomDocumentPropertiesA "}

Returns a DocumentProperties collection that represents all the custom document properties for the
specified workbook. Read-only.

Remarks
This property returns the entire collection of custom document properties. Use the Item method to
return a single member of the collection (a DocumentProperty object) by specifying either the name
of the property or the collection index (as a number).

Because the Item method is the default method for the DocumentProperties collection, the following
statements are identical:
CustomDocumentProperties.Item("Complete")
CustomDocumentProperties("Complete")
Use the BuiltinDocumentProperties property to return the collection of built-in document properties.

CustomDocumentProperties Property Example

This example displays the names and values of the custom document properties as a list on
worksheet one.
rw = 1
Worksheets(1).Activate
For Each p In ActiveWorkbook.CustomDocumentProperties
 Cells(rw, 1).Value = p.Name
 Cells(rw, 2).Value = p.Value
 rw = rw + 1
Next

Post Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthPostC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthPostX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthPostA "}

Posts the specified workbook to a public folder. This method works only with a Microsoft Exchange
client connected to a Microsoft Exchange server.

Syntax
expression.Post(DestName)
expression Required. An expression that returns a Workbook object.
DestName Optional Variant. This argument is ignored. The Post method prompts the user to

specify the destination for the workbook.

Post Method Example

This example posts the active workbook.
ActiveWorkbook.Post

SaveAs Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthSaveAsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthSaveAsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthSaveAsA "}

Saves changes to the sheet (Syntax 1) or workbook (Syntax 2) in a different file.

Syntax 1
expression.SaveAs(Filename, FileFormat, Password, WriteResPassword,

ReadOnlyRecommended, CreateBackup, AddToMru, TextCodePage, TextVisualLayout)
Syntax 2
expression.SaveAs(Filename, FileFormat, Password, WriteResPassword,

ReadOnlyRecommended, CreateBackup, AccessMode, ConflictResolution, AddToMru,
TextCodePage, TextVisualLayout)

expression Required. An expression that returns a Chart or Worksheet object (Syntax 1) or a
Workbook object (Syntax 2).

Filename Optional Variant. A string that indicates the name of the file to be saved. You can include
a full path; if you don't, Microsoft Excel saves the file in the current folder.

FileFormat Optional Variant. The file format to use when you save the file. For a list of valid
choices, see the FileFormat property.

Password Optional Variant. A case-sensitive string (no more than 15 characters) that indicates the
protection password to be given to the file.

WriteResPassword Optional Variant. A string that indicates the write-reservation password for this
file. If a file is saved with the password and the password isn't supplied when the file is opened, the
file is opened as read-only.

ReadOnlyRecommended Optional Variant. True to display a message when the file is opened,
recommending that the file be opened as read-only.

CreateBackup Optional Variant. True to create a backup file.
AccessMode Optional Variant. The workbook access mode. Can be one of the following

XlSaveAsAccessMode constants: xlShared (shared list), xlExclusive (exclusive mode), or
xlNoChange (don't change the access mode). If this argument is omitted, the access mode isn't
changed. This argument is ignored if you save a shared list without changing the file name. To
change the access mode, use the ExclusiveAccess method.

ConflictResolution Optional Variant. Specifies the way change conflicts are resolved if the
workbook is a shared list. Can be one of the following XlSaveConflictResolution constants:
xlUserResolution (display the conflict-resolution dialog box), xlLocalSessionChanges
(automatically accept the local user's changes), or xlOtherSessionChanges (accept other
changes instead of the local user's changes). If this argument is omitted, the conflict-resolution
dialog box is displayed.

AddToMru Optional Variant. True to add this workbook to the list of recently used files. The default
value is False.

TextCodePage Optional Variant. Not used in U.S. English Microsoft Excel.
TextVisualLayout Optional Variant. Not used in U.S. English Microsoft Excel.

SaveAs Method Example

This example creates a new workbook, prompts the user for a file name, and then saves the
workbook.
Set NewBook = Workbooks.Add
Do

fName = Application.GetSaveAsFilename
Loop Until fName <> False
NewBook.SaveAs Filename:=fName

Open Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthOpenC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthOpenX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthOpenA "}

Opens a workbook.

Syntax
expression.Open(FileName, UpdateLinks, ReadOnly, Format, Password, WriteResPassword,

IgnoreReadOnlyRecommended, Origin, Delimiter, Editable, Notify, Converter, AddToMRU)
expression Required. An expression that returns a Workbooks or RecentFile object.
FileName Required String. The file name of the workbook to be opened.
UpdateLinks Optional Variant. Specifies the way links in the file are updated. If this argument is

omitted, the user is prompted to specify how links will be updated. Otherwise, this argument is one
of the values listed in the following table.
Value Meaning
0 Doesn't update any references
1 Updates external references but not remote references
2 Updates remote references but not external references
3 Updates both remote and external references

If Microsoft Excel is opening a file in the WKS, WK1, or WK3 format and the UpdateLinks
argument is 2, Microsoft Excel generates charts from the graphs attached to the file. If the
argument is 0, no charts are created.

ReadOnly Optional Variant. True to open the workbook in read-only mode.
Format Optional Variant. If Microsoft Excel is opening a text file, this argument specifies the

delimiter character, as shown in the following table. If this argument is omitted, the current delimiter
is used.
Value Delimiter
1 Tabs
2 Commas
3 Spaces
4 Semicolons
5 Nothing
6 Custom character (see the Delimiter argument)

Password Optional Variant. A string that contains the password required to open a protected
workbook. If this argument is omitted and the workbook requires a password, the user is prompted
for the password.

WriteResPassword Optional Variant. A string that contains the password required to write to a
write-reserved workbook. If this argument is omitted and the workbook requires a password, the
user will be prompted for the password.

IgnoreReadOnlyRecommended Optional Variant. True to have Microsoft Excel not display the
read-only recommended message (if the workbook was saved with the Read-Only
Recommended option).

Origin Optional Variant. If the file is a text file, this argument indicates where it originated (so that
code pages and Carriage Return/Line Feed (CR/LF) can be mapped correctly). Can be one of the
following XlPlatform constants: xlMacintosh, xlWindows, or xlMSDOS. If this argument is
omitted, the current operating system is used.

Delimiter Optional Variant. If the file is a text file and the Format argument is 6, this argument is a
string that specifies the character to be used as the delimiter. For example, use Chr(9) for tabs,

use "," for commas, use ";" for semicolons, or use a custom character. Only the first character of
the string is used.

Editable Optional Variant. If the file is a Microsoft Excel 4.0 add-in, this argument is True to open
the add-in so that it's a visible window. If this argument is False or omitted, the add-in is opened as
hidden, and it cannot be unhidden. This option doesn't apply to add-ins created in Microsoft Excel
5.0 or later. If the file isn't an add-in, True prevents the running of any Auto_Open macros.

Notify Optional Variant. If the file cannot be opened in read/write mode, this argument is True to
add the file to the file notification list. Microsoft Excel will open the file as read-only, poll the file
notification list, and then notify the user when the file becomes available. If this argument is False
or omitted, no notification is requested, and any attempts to open an unavailable file will fail.

Converter Optional Variant. The index of the first file converter to try when opening the file. The
specified file converter is tried first; if this converter doesn't recognize the file, all other converters
are tried. The converter index consists of the row numbers of the converters returned by the
FileConverters property.

AddToMru Optional Variant. True to add this workbook to the list of recently used files. The default
value is False.

Remarks
If the workbook being opened has any Auto_Open macros in it, they won't be run when you open the
file from Visual Basic. If you want to run the Auto_Open macro, you must use the RunAutoMacros
method.

Open Method Example

This example opens the workbook Analysis.xls and then runs its Auto_Open macro.
Workbooks.Open "ANALYSIS.XLS"
ActiveWorkbook.RunAutoMacros xlAutoOpen

MacroOptions Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthMacroOptionsC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthMacroOptionsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthMacroOptionsA "}

Corresponds to options in the Macro Options dialog box.

Syntax
expression.MacroOptions(Macro, Description, HasMenu, MenuText, HasShortcutKey,

ShortcutKey, Category, StatusBar, HelpContextID, HelpFile)
expression Required. An expression that returns an Application object.
Macro Optional Variant. The macro name.
Description Optional Variant. The macro description.
HasMenu Optional Variant. This argument is ignored.
MenuText Optional Variant. This argument is ignored.
HasShortcutKey Optional Variant. True to assign a shortcut key to the macro (ShortcutKey must

also be specified). If this argument is False, no shortcut key is assigned to the macro. If the macro
already has a shortcut key, setting this argument to False removes the shortcut key. The default
value is False.

ShortcutKey Optional Variant. Required if HasShortcutKey is True; ignored otherwise. The
shortcut key.

Category Optional Variant. An integer that specifies the macro function category (Financial, Date &
Time, or User Defined, for example).

StatusBar Optional Variant. The status bar text for the macro.
HelpContextId Optional Variant. An integer that specifies the context ID for the Help topic

assigned to the macro.
HelpFile Optional Variant. The name of the Help file that contains the Help topic defined by

HelpContextId.

MacroOptions Method Example

This example adds a shortcut key for the DoRand macro.
Application.MacroOptions Macro:="DoRand", _

HasShortcutKey:=True, ShortcutKey:="Z"

NoteText Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthNoteTextC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthNoteTextX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthNoteTextA "}

Returns or sets the cell note associated with the cell in the upper-left corner of the range. Read/write
String.

Cell notes have been replaced by range comments. For more information, see the Comment object.

Syntax
expression.NoteText(Text, Start, Length)
expression Required. An expression that returns a Range object.
Text Optional Variant. The text to add to the note (up to 255 characters). The text is inserted

starting at position Start, replacing Length characters of the existing note. If this argument is
omitted, this method returns the current text of the note starting at position Start, for Length
characters.

Start Optional Variant. The starting position for the text that's set or returned. If this argument is
omitted, this method starts at the first character. To append text to the note, specify a number
larger than the number of characters in the existing note.

Length Optional Variant. The number of characters to be set or returned. If this argument is
omitted, Microsoft Excel sets or returns characters from the starting position to the end of the note
(up to 255 characters). If there are more than 255 characters from Start to the end of the note, this
method returns only 255 characters.

Remarks
To add a note that contains more than 255 characters, use this method once to specify the first 255
characters, and then use it again to append the remainder of the note (no more than 255 characters
at a time).

NoteText Method Example

This example sets the cell note text for cell A1 on Sheet1.
Worksheets("Sheet1").Range("A1").NoteText "This may change!"

PictureType Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPictureTypeC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPictureTypeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPictureTypeA "}

Returns or sets the way pictures are displayed on a column or bar picture chart or on the walls and
faces of a 3-D chart. Read/write Variant.
Can be one of the following XlPictureType constants.

Value Meaning
xlStretch Stretch the picture to reach the necessary value.
xlStack Stack the pictures to reach the necessary value.
xlScale Stack the pictures, but use the PictureUnit property to

determine what unit each picture represents.
xlTile Tile the pictures.

PictureType Property Example

This example sets series one in Chart1 to stretch pictures. The example should be run on a 2-D
column chart with picture data markers.
Charts("Chart1").SeriesCollection(1).PictureType = xlStretch

PictureUnit Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPictureUnitC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPictureUnitX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPictureUnitA "}

Returns or sets the unit for each picture on the chart if the PictureType property is set to xlScale (if
not, this property is ignored). Read/write Long.

PictureUnit Property Example

This example sets series one in Chart1 to stack pictures and uses each picture to represent five units.
The example should be run on a 2-D column chart with picture data markers.
With Charts("Chart1").SeriesCollection(1)

.PictureType = xlScale

.PictureUnit = 5
End With

Paste Method

Object Description
Chart Pastes chart data from the Clipboard into the

specified chart.
Point or Series Pastes a picture from the Clipboard as the marker on

the selected point or series. Paste can be used on
column, bar, line, or radar charts; it sets the
MarkerStyle property to xlPicture.

SeriesCollection Pastes data from the Clipboard into the specified
series collection.

Worksheet Pastes the contents of the Clipboard onto the sheet.
Walls or Floor Pastes a picture from the Clipboard onto the walls or

floor.

Group Method (Range Object)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthGroupRangeObjC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthGroupRangeObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthGroupRangeObjA "}

When the Range object is in an outline, the Group method (Syntax 1) demotes the range (in other
words, increases its outline level). The range should be an entire row or column, or a range of rows or
columns.

When the Range object is a discontinuous range in a PivotTable, the Group method (Syntax 1)
groups the range.

When the Range object represents a single cell in the pivot field's data range, the Group method
(Syntax 2) performs numeric or date-based grouping in a pivot field.

Syntax 1
expression.Group
Syntax 2
expression.Group(Start, End, By, Periods)
expression Required. An expression that returns a Range object. For Syntax 2, the Range object

must be a single cell in the pivot field's data range. If you attempt to apply this method to more than
one cell, it will fail (without displaying an error message). To see how to use the Group method in
this way, see the second example in the accompanying example topic.

Start Optional Variant. The first value to be grouped. If this argument is omitted or True, the first
value in the field is used.

End Optional Variant. The last value to be grouped. If this argument is omitted or True, the last
value in the field is used.

By Optional Variant. If the field is numeric, this argument specifies the size of each group.
If the field is a date, this argument specifies the number of days in each group if element 4 in the
Periods array is True and all the other elements are False. Otherwise, this argument is ignored.
If this argument is omitted, Microsoft Excel automatically chooses a default group size.

Periods Optional Variant. An array of Boolean values that specify the period for the group, as
shown in the following table.
Array element Period
1 Seconds

2 Minutes
3 Hours
4 Days
5 Months
6 Quarters
7 Years

If an element in the array is True, a group is created for the corresponding time; if the element is
False, no group is created. If the field isn't a date field, this argument is ignored.

Group Method (Range Object) Example

This example groups the field named "ORDER_DATE" by 10-day periods.
Set pvtTable = Worksheets("Sheet1").Range("A3").PivotTable
Set groupRange = pvtTable.PivotFields("ORDER_DATE").DataRange
groupRange.Cells(1).Group by:=10, periods:=Array(False, False, False, True,
False, False, False)

Pattern Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPatternC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPatternX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPatternA "}

Interior object: Returns or sets the interior pattern. Read/write Long.

Can be one of the following XlPattern constants:

xlPatternAutomatic
xlPatternChecker
xlPatternCrissCross
xlPatternDown
xlPatternGray16
xlPatternGray25
xlPatternGray50
xlPatternGray75
xlPatternGray8
xlPatternGrid

xlPatternHorizontal
xlPatternLightDown
xlPatternLightHorizontal
xlPatternLightUp
xlPatternLightVertical
xlPatternNone
xlPatternSemiGray75
xlPatternSolid
xlPatternUp
xlPatternVertical

FillFormat object: Returns or sets the fill pattern. Read-only Long.

Can be one of the following MsoPatternType constants:

msoPattern10Percent
msoPattern20Percent
msoPattern25Percent
msoPattern30Percent
msoPattern40Percent
msoPattern50Percent
msoPattern5Percent
msoPattern60Percent
msoPattern70Percent
msoPattern75Percent
msoPattern80Percent
msoPattern90Percent
msoPatternDarkDownwardDiagonal
msoPatternDarkHorizontal
msoPatternDarkUpwardDiagonal
msoPatternDarkVertical
msoPatternDashedDownwardDiagonal
msoPatternDashedHorizontal
msoPatternDashedUpwardDiagonal
msoPatternDashedVertical
msoPatternDiagonalBrick
msoPatternDivits
msoPatternDottedGrid
msoPatternHorizontalBrick
msoPatternLargeCheckerBoard

msoPatternLargeConfetti
msoPatternLargeGrid
msoPatternLightDiamonds
msoPatternLightDownwardDiagonal
msoPatternLightHorizontal
msoPatternLightUpwardDiagonal
msoPatternLightVertical
msoPatternMixed
msoPatternNarrowHorizontal
msoPatternNarrowVertical
msoPatternOutlinedDiamonds
msoPatternPlaid
msoPatternShingles
msoPatternSmallCheckerBoard
msoPatternSmallConfetti
msoPatternSmallGrid
msoPatternSolidDiamonds
msoPatternSpheres
msoPatternTrellis
msoPatternWaves
msoPatternWavyLines
msoPatternWeave
msoPatternWideDownwardDiagonal
msoPatternWideUpwardDiagonal

Pattern Property Example

This example adds a crisscross pattern to the interior of cell A1 on Sheet1.
Worksheets("Sheet1").Range("A1").Interior.Pattern = xlPatternCrissCross

Value Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproValueC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproValueX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproValueA "}

The meaning of the Value property depends on the object to which it is applied, as shown in the
following table.

Object Value
Application Always returns "Microsoft Excel". Read-only.
Borders Synonym for Borders.LineStyle.
Name A string containing the formula that the name is

defined to refer to. The string is in A1-style notation in
the language of the macro, and it begins with an
equal sign. Read-only.

Parameter The parameter value. For more information, see the
Parameter object.

PivotField The name of the specified field in the PivotTable.
PivotItem The name of the specified item in the PivotTable field.
PivotTable The name of the PivotTable.
Range The value of the specified cell. If the cell is empty,

Value returns the value Empty (use the IsEmpty
function to test for this case). If the Range object
contains more than one cell, returns an array of
values (use the IsArray function to test for this case).

Style The name of the specified style.
Validation True if all the validation criteria are met (that is, if the

range contains valid data).

Value Property Example

This example sets the value of cell A1 on Sheet1 to 3.14159.
Worksheets("Sheet1").Range("A1").Value = 3.14159
This example loops on cells A1:D10 on Sheet1. If one of the cells has a value less than 0.001, the
code replaces the value with 0 (zero).
For Each c in Worksheets("Sheet1").Range("A1:D10")

If c.Value < .001 Then
c.Value = 0

End If
Next c

Show Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthShowC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthShowX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthShowA "}

CustomView object (Syntax 1): Displays the custom view.

Range object (Syntax 1): Scrolls through the contents of the active window to move the range into
view. The range must consist of a single cell in the active document.

Scenario object (Syntax 1): Shows the scenario by inserting its values on the worksheet. The
affected cells are the changing cells of the scenario.

Dialog object (Syntax 2): Displays the built-in dialog box and waits for the user to input data.

Syntax 1
expression.Show
Syntax 2
object.Show(arg1, arg2, ..., arg30)
expression Required. For Syntax 1, an expression that returns an object in the Applies To list.
arg1, arg2, ..., arg30 Optional Variant. For built-in dialog boxes only, the initial arguments for the

command. For more information, see the "Remarks" section.

Remarks
For built in dialog boxes, this method returns True if the user clicks OK, or it returns False if the user
clicks Cancel.

You can use a single dialog box to change many properties at the same time. For example, you can
use the Format Cells dialog box to change all the properties of the Font object.

For some built-in dialog boxes (the Open dialog box, for example), you can set initial values using
arg1, arg2, ..., arg30. To find the arguments to set, locate the corresponding dialog box constant in
Built-In Dialog Box Argument Lists. For example, search for the xlDialogOpen constant to find the
arguments for the Open dialog box. For more information about built-in dialog boxes, see the Dialogs
collection.

Show Method Example

This example displays the Open dialog box.
Application.Dialogs(xlDialogOpen).Show

LineStyle Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproLineStyleC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproLineStyleX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproLineStyleA "}

Returns or sets the line style for the border. Can be one of the following XlLineStyle constants:
xlContinuous, xlDash, xlDashDot, xlDashDotDot, xlDot, xlDouble, xlSlantDashDot, or
xlLineStyleNone. Read/write Variant.

LineStyle Property Example

This example puts a border around the chart area and the plot area of Chart1.
With Charts("Chart1")

.ChartArea.Border.LineStyle = xlDasDot
With .PlotArea.Border

.LineStyle = xlDashDotDot

.Weight = xlThick
End With

End With

Shadow Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproShadowC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproShadowX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproShadowA "}

True if the font is a shadow font or if the object has a shadow. Read/write Boolean.

Remarks
For the Font object, this property has no effect in Microsoft Windows, but its value is retained (it can
be set and returned).

Shadow Property Example

This example adds a shadow to the title of Chart1.
Charts("Chart1").ChartTitle.Shadow = True

Range Property (Application, Range, or Worksheet Object)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproRangeWorksheetObjC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproRangeWorksheetObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproRangeWorksheetObjA
"}

Returns a Range object that represents a cell or a range of cells.

Syntax 1
expression.Range(Cell1)
Syntax 2
expression.Range(Cell1, Cell2)
expression Optional for Application, required for Range and Worksheet. An expression that

returns an object in the Applies To list.
Cell1 Syntax 1: Required Variant. The name of the range. This must be an A1-style reference in

the language of the macro. It can include the range operator (a colon), the intersection operator (a
space), or the union operator (a comma). It can also include dollar signs, but they're ignored. You
can use a local defined name in any part of the range. If you use a name, the name is assumed to
be in the language of the macro.
Syntax 2: Required Variant. The cell in the upper-left corner of the range. Can be a Range object
that contains a single cell, an entire column, or entire row), or it can be a string that names a single
cell in the language of the macro.

Cell1, Cell2 Optional Variant. The cell in the upper-left and lower-right corner of the range. Can be
a Range object that contains a single cell, an entire column, or entire row, or it can be a string that
names a single cell in the language of the macro.

Remarks
When used without an object qualifier, this property is a shortcut for ActiveSheet.Range (it returns
a range from the active sheet; if the active sheet isn't a worksheet, the property fails).

When applied to a Range object, the property is relative to the Range object. For example, if the
selection is cell C3, then Selection.Range("B1") returns cell D3 because it's relative to the
Range object returned by the Selection property. On the other hand, the code
ActiveSheet.Range("B1") always returns cell B1.

Range Property (Application, Range, or Worksheet Object) Example

This example sets the value of cell A1 on Sheet1 to 3.14159.
Worksheets("Sheet1").Range("A1").Value = 3.14159
This example creates a formula in cell A1 on Sheet1.
Worksheets("Sheet1").Range("A1").Formula = "=10*RAND()"
This example loops on cells A1:D10 on Sheet1. If one of the cells has a value less than 0.001, the
code replaces that value with 0 (zero).
For Each c in Worksheets("Sheet1").Range("A1:D10")

If c.Value < .001 Then
c.Value = 0

End If
Next c
This example loops on the range named "TestRange" and displays the number of empty cells in the
range.
numBlanks = 0
For Each c In Range("TestRange")

If c.Value = "" Then
numBlanks = numBlanks + 1

End If
Next c
MsgBox "There are " & numBlanks & " empty cells in this range"
This example sets the font style in cells A1:C5 on Sheet1 to italic. The example uses Syntax 2 of the
Range property.
Worksheets("Sheet1").Range(Cells(1, 1), Cells(5, 3)).Font.Italic = True

RecentFiles Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproRecentFilesC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproRecentFilesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproRecentFilesA"}

Returns a RecentFiles collection that represents the list of recently used files.

For information about returning a single object from a collection, see Returning an Object from a
Collection.

RecentFiles Property Example

This example sets the maximum number of files in the list of recently used files to 6.
Application.RecentFiles.Maximum = 6

Maximum Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproMaximumC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproMaximumX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproMaximumA"}

Returns or sets the maximum number of files in the list of recently used files. Can be a value from 0
(zero) through 9. Read/write Long.

Maximum Property Example

This example sets the maximum number of files in the list of recently used files to 6.
Application.RecentFiles.Maximum = 6

CustomViews Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproCustomViewsC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproCustomViewsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproCustomViewsA"}

Returns a CustomViews collection that represents all the custom views for the workbook.

For more information about returning a single object from a collection, see Returning an Object from a
Collection.

CustomViews Property Example

This example creates a new custom view named "Summary" in the active workbook.
ActiveWorkbook.CustomViews.Add "Summary", True, True

View Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproViewC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproViewX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproViewA"}

Returns or sets the view showing in the window. Can be either of the following XlWindowView
constants: xlNormalView or xlPageBreakPreview. Read/write Long.

View Property Example

This example switches the view in the active window to page break preview.
ActiveWindow.View = xlPageBreakPreview

PrintSettings Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPrintSettingsC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPrintSettingsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPrintSettingsA"}

True if print settings are included in the custom view. Read-only Boolean.

PrintSettings Property Example

This example creates a list of the custom views in the active workbook and their print settings and row
and column settings.
With Worksheets(1)

.Cells(1,1).Value = "Name"

.Cells(1,2).Value = "Print Settings"

.Cells(1,3).Value = "RowColSettings"
rw = 0
For Each v In ActiveWorkbook.CustomViews

rw = rw + 1
.Cells(rw, 1).Value = v.Name
.Cells(rw, 2).Value = v.PrintSettings
.Cells(rw, 3).Value = v.RowColSettings

Next
End With

DragOff Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthDragOffC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthDragOffX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthDragOffA"}

Drags a page break out of the print area.

Syntax
expression.DragOff(Direction, RegionIndex)
expression Required. An expression that returns an HPageBreak or VPageBreak object.
Direction Required Long. The direction in which the page break is dragged. Can be one of the

following XlDirection constants: xlDown, xlToLeft, xlToRight, or xlUp.
RegionIndex Required Long. The print-area region index for the page break (the region where the

mouse pointer is located when the mouse button is pressed if the user drags the page break). If the
print area is contiguous, there's only one print region. If the print area is discontiguous, there's
more than one print region.

Remarks
This method exists primarily for the macro recorder. You can use the Delete method to delete a page
break in Visual Basic.

DragOff Method Example

This example deletes vertical page break one from the active sheet by dragging it off the right edge of
print region one.
ActiveSheet.VPageBreaks(1).DragOff xlToRight, 1

Add Method (CustomViews Object)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAddCustomViewsObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAddCustomViewsObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlmthAddCustomViewsObjA"}

Creates a new custom view. Returns a CustomView object that represents the new view.

Syntax
expression.Add(ViewName, PrintSettings, RowColSettings)
expression Required. An expression that returns a CustomViews object.
ViewName Required String. The name of the new view.
PrintSettings Optional Variant. True to include print settings in the custom view.
RowColSettings Optional Variant. True to include settings for hidden rows and columns (including

filter information) in the custom view.

Add Method (CustomViews Object) Example

This example creates a new custom view named "Summary" in the active workbook.
ActiveWorkbook.CustomViews.Add "Summary", True, True

RowColSettings Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproRowColSettingsC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproRowColSettingsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproRowColSettingsA"}

True if the custom view includes settings for hidden rows and columns (including filter information).
Read-only Boolean.

RowColSettings Property Example

This example creates a list of the custom views in the active workbook and their print settings and row
and column settings.
With Worksheets(1)

.Cells(1,1).Value = "Name"

.Cells(1,2).Value = "Print Settings"

.Cells(1,3).Value = "RowColSettings"
rw = 0
For Each v In ActiveWorkbook.CustomViews

rw = rw + 1
.Cells(rw, 1).Value = v.Name
.Cells(rw, 2).Value = v.PrintSettings
.Cells(rw, 3).Value = v.RowColSettings

Next
End With

AddToFavorites Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAddToFavoritesC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAddToFavoritesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthAddToFavoritesA"}

Adds a shortcut to the workbook or hyperlink to the Favorites folder.

Syntax
expression.AddToFavorites
expression Required. An expression that returns a Workbook or Hyperlink object.

AddToFavorites Method Example

This example adds a shortcut to the active workbook to the Favorites folder.
ActiveWorkbook.AddToFavorites

Follow Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthFollowC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthFollowX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthFollowA"}

Displays a cached document, if it's already been downloaded. Otherwise, this method resolves the
hyperlink, downloads the target document, and displays the document in the appropriate application.

Syntax
expression.Follow(NewWindow, AddHistory, ExtraInfo, Method, HeaderInfo)
expression Required. An expression that returns a Hyperlink object.
NewWindow Optional Variant. True to display the target application in a new window. The default

value is False.
AddHistory Optional Variant. Not used. Reserved for future use.
ExtraInfo Optional Variant. A String or byte array that specifies additional information for HTTP to

use to resolve the hyperlink. For example, you can use ExtraInfo to specify the coordinates of an
image map, the contents of a form, or a FAT file name.

Method Optional Variant. Specifies the way ExtraInfo is attached. Can be one of the following
MsoExtraInfoMethod constants.
Constant Description

msoMethodGet ExtraInfo is a String that's appended to the
address.

msoMethodPost ExtraInfo is posted as a String or byte array.

HeaderInfo Optional Variant. A String that specifies header information for the HTTP request. The
defaut value is an empty string.

Follow Method Example

This example loads the document attached to the hyperlink on shape one on worksheet one.
Worksheets(1).Shapes(1).Hyperlink.Follow NewWindow:=True

FollowHyperlink Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthFollowHyperlinkC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthFollowHyperlinkX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthFollowHyperlinkA"}

Displays a cached document, if it's already been downloaded. Otherwise, this method resolves the
hyperlink, downloads the target document, and displays the document in the appropriate application.

Syntax
expression.FollowHyperlink(Address, SubAddress, NewWindow, AddHistory, ExtraInfo,

Method, HeaderInfo)
expression Required. An expression that returns a Workbook object.
Address Required String. The address of the target document.
SubAddress Optional Variant. The location within the target document. The default value is the

empty string.
NewWindow Optional Variant. True to display the target application in a new window. The default

value is False.
AddHistory Optional Variant. Not used. Reserved for future use.
ExtraInfo Optional Variant. A String or byte array that specifies additional information for HTTP to

use to resolve the hyperlink. For example, you can use ExtraInfo to specify the coordinates of an
image map, the contents of a form, or a FAT file name.

Method Optional Variant. Specifies the way ExtraInfo is attached. Can be one of the following
MsoExtraInfoMethod constants.
Constant Description

msoMethodGet ExtraInfo is a String that's appended to the
address.

msoMethodPost ExtraInfo is posted as a String or byte array.
msoMethodPostFile ExtraInfo specifies a FAT file name; the file

content is posted.

HeaderInfo Optional Variant. A String that specifies header information for the HTTP request. The
defaut value is an empty string.

FollowHyperlink Method Example

This example loads the document at www.gohere.com in a new window and adds it to the History
folder.
ActiveWorkbook.FollowHyperlink Address:="http://www.gohere.com", _

NewWindow:=True

Hyperlink Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproHyperlinkC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproHyperlinkX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproHyperlinkA"}

Returns a Hyperlink object that represents the hyperlink for the shape.

Hyperlink Property Example

This example loads the document attached to the hyperlink on shape one.
Worksheets(1).Shapes(1).Hyperlink.Follow NewWindow:=True

Hyperlinks Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproHyperlinksC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproHyperlinksX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproHyperlinksA"}

Returns a Hyperlinks collection that represents the hyperlinks for the range or worksheet.

For more information about returning an object from a collection, see Returning an Object from a
Collection.

Hyperlinks Property Example

This example checks to see whether any of the hyperlinks on worksheet one contain the word
"Microsoft."
For Each h in Worksheets(1).Hyperlinks

If Instr(h.Name, "Microsoft") <> 0 Then h.Follow
Next

Reload Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthReloadC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthReloadX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthReloadA"}

Reloads a cached workbook by resolving the hyperlink to the workbook and downloading it.

Syntax
expression.Reload
expression Required. An expression that returns a Workbook object.

Reload Method Example

This example reloads the active workbook.
ActiveWorkbook.Reload

SubAddress Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproSubAddressC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproSubAddressX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproSubAddressA"}

Returns or sets the location within the document associated with the hyperlink. Read/write String.

SubAddress Property Example

This example topic adds a range location to the hyperlink for shape one.
Worksheets(1).Shapes(1).Hyperlink.SubAddress = "A1:B10"

AddComment Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAddCommentC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAddCommentX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthAddCommentA"}

Adds a comment to the range.

Syntax
expression.AddComment(Text)
expression Required. An expression that returns a Range object.
Text Optional Variant. The comment text.

AddComment Method Example

This example adds a comment to cell E5 on worksheet one.
Worksheets(1).Range("E5").AddComment "Current Sales"

AutoLoad Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproAutoLoadC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproAutoLoadX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproAutoLoadA"}

True if the OLE object is automatically loaded when the workbook that contains it is opened.
Read/write Boolean.

Remarks
This property is ignored by ActiveX controls. ActiveX controls are always loaded when a workbook is
opened.

For most OLE object types, this property shouldn't be set to True. By default, the AutoLoad property
is set to False for new OLE objects; this saves time and memory when Microsoft Excel is loading
workbooks. The benefit of automatically loading OLE objects is that, for objects that represent volatile
data, links to source data can be reestablished immediately and the objects can be rendered again, if
necessary.

AutoLoad Property Example

This example sets the AutoLoad property for OLE object one on the active sheet.
ActiveSheet.OLEObjects(1).AutoLoad = False

CorrectCapsLock Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproCorrectCapsLockC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproCorrectCapsLockX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproCorrectCapsLockA"}

True if Microsoft Excel automatically corrects accidental use of the CAPS LOCK key. Read/write
Boolean.

CorrectCapsLock Property Example

This example enables Microsoft Excel to automatically correct accidental use of the CAPS LOCK key.
Application.AutoCorrect.CorrectCapsLock = True

CorrectSentenceCap Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproCorrectSentenceCapC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproCorrectSentenceCapX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproCorrectSentenceCapA"}

True if Microsoft Excel automatically corrects sentence (first word) capitalization. Read/write
Boolean.

CorrectSentenceCap Property Example

This example enables Microsoft Excel to automatically correct sentence capitalization.
Application.AutoCorrect.CorrectSentenceCap = True

DefaultSaveFormat Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDefaultSaveFormatC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDefaultSaveFormatX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDefaultSaveFormatA"}

Returns or sets the default format for saving files. For a list of valid constants, see the FileFormat
property. Read/write Long.

DefaultSaveFormat Property Example

This example sets the default format for saving files.
Application.DefaultSaveFormat = xlExcel4Workbook

DisplayCommentIndicator Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDisplayCommentIndicatorC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDisplayCommentIndicatorX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproDisplayCommentIndicatorA"}

Returns or sets the way cells display comments and indicators. Can be one of the following
XlCommentDisplayMode constants: xlNoIndicator, xlCommentIndicatorOnly, or
xlCommentAndIndicator. Read/write Long.

DisplayCommentIndicator Property Example

This example hides cell tips but retains comment indicators.
Application.DisplayCommentIndicator = xlCommentIndicatorOnly

EnableCalculation Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproEnableCalculationC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproEnableCalculationX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproEnableCalculationA"}

True if Microsoft Excel automatically recalculates the worksheet when necessary. False if the user
must request a recalculation (Microsoft Excel never recalculates the sheet automatically). Read/write
Boolean.

Remarks
When you change this property from False to True, Microsoft Excel recalculates the worksheet.

EnableCalculation Property Example

This example sets Microsoft Excel to not recalculate worksheet one automatically.
Worksheets(1).EnableCalculation = False

EnableSound Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproEnableSoundC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproEnableSoundX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproEnableSoundA"}

True if sound is enabled for Microsoft Office. Read/write Boolean.

EnableSound Property Example

This example disables sound feedback.
Application.EnableSound = False

Export Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthExportC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthExportX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthExportA"}

Exports the chart in a graphic format.

Syntax
expression.Export(FileName, FilterName, Interactive)
expression Required. An expression that returns a Chart object.
FileName Required String. The name of the exported file.
FilterName Optional Variant. The language-independent name of the graphic filter as it appears in

the registry.
Interactive Optional Variant. True to display the dialog box that contains the filter-specific options.

If this argument is False, Microsoft Excel uses the default values for the filter. The default value is
False.

Export Method Example

This example exports chart one as a GIF file.
Charts(1).Export _

OutputFileName:="current_sales.gif", FilterName:="GIF"

FileFind Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproFileFindC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproFileFindX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproFileFindA"}

Returns a FileFind object for use with file searches. This property is available only on the Macintosh.

FileSearch Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproFileSearchC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproFileSearchX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproFileSearchA"}

Returns a FileSearch object for use with file searches. This property is available only in Microsoft
Windows.

FileSearch Property Example

This example creates a FoundFiles object that represents all the Microsoft Excel workbooks in the
My Documents folder.
With Application.FileSearch

.LookIn = "c:\my documents"

.FileType = msoFileTypeExcelWorkbooks

.Execute
End With

PageRangeCells Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPageRangeCellsC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPageRangeCellsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPageRangeCellsA"}

Returns a Range object that represents the cells in the PivotTable containing only the page fields and
item drop-down lists.

PageRangeCells Property Example

This example selects only the PivotTable cells that contain page fields and item drop-down lists.
Worksheets(1).PivotTables(1).PageRangeCells.Select

GetData Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthGetDataC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthGetDataX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthGetDataA"}

Syntax
expression.GetData(Name)
expression Required. An expression that returns a PivotTable object.
Name Required String. Describes a single cell in the PivotTable, using syntax similar to the

PivotSelect method or the PivotTable references in calculated item formulas.

GetData Method Example

This example shows the sum of revenues for apples in January (Data field = Revenue, Product =
Apples, Month = January).
Msgbox ActiveSheet.PivotTables(1) _

.GetData("'Sum of Revenue' Apples January")

PivotTableSelection Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPivotTableSelectionC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPivotTableSelectionX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPivotTableSelectionA"}

True if PivotTables use structured selection. Read/write Boolean.

PivotTableSelection Property Example

This example enables structured selection mode and then sets PivotTable one to allow only data to
be selected.
Application.PivotTableSelection = True
Worksheets(1).PivotTables(1).SelectionMode = xlDataOnly

ListFormulas Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthListFormulasC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthListFormulasX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthListFormulasA"}

Creates a list of calculated PivotTable items and fields on a separate worksheet.

Syntax
expression.ListFormulas
expression Required. An expression that returns a PivotTable object.

ListFormulas Method Example

This example creates a list of calculated items and fields for PivotTable one
Worksheets(1).PivotTables(1).ListFormulas

Has3DShading Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproHas3DShadingC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproHas3DShadingX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproHas3DShadingA"}

True if the chart group has three-dimensional shading. Read/write Boolean.

Has3DShading Property Example

This example adds three-dimensional shading to chart group one on chart one.
Charts(1).ChartGroups(1).Has3DShading = True

HasAxis Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproHasAxisC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproHasAxisX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproHasAxisA"}

Returns or sets which axes exist on the chart. Read/write Variant.

Syntax
expression.HasAxis(Index1, Index2)
expression Required. An expression that returns a Chart object.
Index1 Optional Variant. The axis type. Can be one of the following XlAxisType constants:

xlCategory, xlValue, or xlSeriesAxis. Series axes apply only to 3-D charts.
Index2 Optional Variant. The axis group. Can be either of the following XlAxisGroup constants:

xlPrimary or xlSecondary. 3-D charts have only one set of axes.

Remarks
Microsoft Excel may create or delete axes if you change the chart type or change the AxisGroup
property.

HasAxis Property Example

This example turns on the primary value axis for Chart1.
Charts("Chart1").HasAxis(xlValue, xlPrimary) = True

ErrorTitle Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproErrorTitleC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproErrorTitleX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproErrorTitleA"}

Returns or sets the title of the data-validation error dialog box. Read/write String.

ErrorTitle Property Example

This example adds data validation to cell E5.
With Range("e5").Validation

.Add xlValidateWholeNumber, xlValidAlertInformation, xlBetween, "5",
"10"

.InputTitle = "Integers"

.ErrorTitle = "Integers"

.InputMessage = "Enter an integer from five to ten"

.ErrorMessage = "You must enter a number from five to ten"
End With

InputTitle Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproInputTitleC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproInputTitleX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproInputTitleA"}

Returns or sets the title of the data-validation input dialog box. Read/write String.

InputTitle Property Example

This example turns on data validation for cell E5.
With Range("e5").Validation

.Add xlValidateWholeNumber, xlValidAlertInformation, xlBetween, "5",
"10"

.InputTitle = "Integers"

.ErrorTitle = "Integers"

.InputMessage = "Enter an integer from five to ten"

.ErrorMessage = "You must enter a number from five to ten"
End With

IsAddin Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproIsAddinC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproIsAddinX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproIsAddinA"}

True if the workbook is running as an add-in. Read/write Boolean.

Remarks
When you set this property to True, the workbook has the following characteristics:

· You won't be prompted to save the workbook if changes are made while the workbook is open.
· The workbook window won't be visible.
· Any macros in the workbook won't be visible in the Macro dialog box (displayed by pointing to

Macro on the Tools menu and clicking Macros).
· Macros in the workbook can still be run from the Macro dialog box even though they're not visible.

In addition, macro names don't need to be qualified with the workbook name.
· Holding down the SHIFT key when you open the workbook has no effect.

IsAddin Property Example

This example runs a section of code if the workbook is an add-in.
If ThisWorkbook.IsAddin Then

' this code runs when the workbook is an add-in
End If

Next Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthNextC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthNextX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthNextA"}

Returns a Comment object that represents the next comment.

Syntax
expression.Next
expression Required. An expression that returns a Comment object.

Remarks
This method works only on one sheet. Using this method on the last comment on a sheet returns Null
(not the next comment on the next sheet).

Next Method Example

This example hides the next comment.
Range("a1").Comment.Next.Visible = False

Previous Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthPreviousC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthPreviousX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthPreviousA"}

Returns a Comment object that represents the previous comment.

Syntax
expression.Previous
expression Required. An expression that returns a Comment object.

Remarks
This method works only on one sheet. Using this method on the first comment on a sheet returns Null
(not the last comment on the previous sheet).

Previous Method Example

This example hides the previous comment.
Range("a1").Comment.Previous.Visible = False

HighlightChangesOnScreen Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproHighlightChangesOnScreenC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproHighlightChangesOnScreenX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproHighlightChangesOnScreenA"}

True if changes to the shared workbook are highlighted on-screen. Read/write Boolean.

HighlightChangesOnScreen Property Example

This example highlights changes to the shared workbook.
ThisWorkbook.HighlightChangesOnScreen

ListChangesOnNewSheet Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproListChangesOnNewSheetC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproListChangesOnNewSheetX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproListChangesOnNewSheetA"}

True if changes to the shared workbook are shown on a separate worksheet. Read/write Boolean.

ListChangesOnNewSheet Property Example

This example shows changes to the shared workbook on a separate worksheet.
With ActiveWorkbook

.HighlightChangesOptions When:=xlSinceMyLastSave, Who:="Everyone"

.ListChangesOnNewSheet = True
End With

HighlightChangesOptions Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthHighlightChangesOptionsC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthHighlightChangesOptionsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlmthHighlightChangesOptionsA"}

Controls how changes are shown in a shared workbook.

Syntax
expression.HighlightChangesOptions(When, Who, Where)
expression Required. An expression that returns a Workbook object.
When Optional Variant. The changes that are shown. Can be one of the following

XlHighlightChangesTime constants: xlSinceMyLastSave, xlAllChanges, or xlNotYetReviewed.
Who Optional Variant. The user or users whose changes are shown. Can be "Everyone,"

"Everyone but Me," or the name of one of the users of the shared workbook.
Where Optional Variant. An A1-style range reference that specifies the area to check for changes.

HighlightChangesOptions Method Example

This example shows changes to the shared workbook on a separate worksheet.
With ActiveWorkbook

.HighlightChangesOptions When:=xlSinceMyLastSave, Who:="Everyone"

.ListChangesOnNewSheet = True
End With

RefreshAll Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthRefreshAllC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthRefreshAllX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthRefreshAllA"}

Refreshes all external data ranges and PivotTables in the workbook.

Syntax
expression.RefreshAll
expression Required. An expression that returns a Workbook object.

Remarks
The refresh order is undefined.

RefreshAll Method Example

This example refreshes all external data ranges and PivotTables in the workbook.
ThisWorkbook.RefreshAll

ReadingOrder Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproReadingOrderC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproReadingOrderX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproReadingOrderA"}

This property isn't used in U.S. English Microsoft Excel.

ControlCharacters Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproControlCharactersC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproControlCharactersX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproControlCharactersA"}

This property isn't used in U.S. English Microsoft Excel.

CursorMovement Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproCursorMovementC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproCursorMovementX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproCursorMovementA"}

This property isn't used in U.S. English Microsoft Excel.

DefaultSheetDirection Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDefaultSheetDirectionC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDefaultSheetDirectionX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproDefaultSheetDirectionA"}

This property isn't used in U.S. English Microsoft Excel.

IMEMode Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproIMEModeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproIMEModeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproIMEModeA"}

This property isn't used in U.S. English Microsoft Excel.

UILanguage Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproUILanguageC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproUILanguageX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproUILanguageA"}

This property isn't used in U.S. English Microsoft Excel.

Add Method (OLEObjects Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAddOLEObjectsObjC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAddOLEObjectsObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthAddOLEObjectsObjA "}

Adds a new OLE object to a sheet. Returns an OLEObject object.

Syntax
expression.Add(ClassType, FileName, Link, DisplayAsIcon, IconFileName, IconIndex,

IconLabel, Left, Top, Width, Height)
expression Required. An expression that returns an OLEObjects collection.
ClassType Optional Variant. (you must specify either ClassType or FileName). A string that

contains the programmatic identifier for the object to be created. If ClassType is specified,
FileName and Link are ignored. For more information about programmatic identifiers, see OLE
Programmatic Identifiers.

FileName Optional Variant. (you must specify either ClassType or FileName). A string that
specifies the file to be used to create the OLE object.

Link Optional Variant. True to have the new OLE object based on FileName be linked to that file.
If the object isn't linked, the object is created as a copy of the file. The default value is False.

DisplayAsIcon Optional Variant. True to display the new OLE object either as an icon or as its
regular picture. If this argument is True, IconFileName and IconIndex can be used to specify an
icon.

IconFileName Optional Variant. A string that specifies the file that contains the icon to be
displayed. This argument is used only if DisplayAsIcon is True. If this argument isn't specified or
the file contains no icons, the default icon for the OLE class is used.

IconIndex Optional Variant. The number of the icon in the icon file. This is used only if
DisplayAsIcon is True and IconFileName refers to a valid file that contains icons. If an icon with
the given index number doesn't exist in the file specified by IconFileName, the first icon in the file
is used.

IconLabel Optional Variant. A string that specifies a label to display beneath the icon. This is used
only if DisplayAsIcon is True. If this argument is omitted or is an empty string (""), no caption is
displayed.

Left, Top Optional Variant. The initial coordinates of the new object, in points, relative to the upper-
left corner of cell A1 on a worksheet, or to the upper-left corner of a chart.

Width, Height Optional Variant. The initial size of the new object, in points.

Add Method (OLEObjects Collection) Example

This example creates a new Microsoft Word OLE object on Sheet1.
ActiveWorkbook.Worksheets("Sheet1").OLEObjects.Add _

ClassType:="Word.Document"
This example adds a command button to sheet one.
Worksheets(1).OLEObjects.Add ClassType:="Forms.CommandButton.1", _

Link:=False, DisplayAsIcon:=False, Left:=40, Top:=40, _
Width:=150, Height:=10

ProgId Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproProgIdC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproProgIdX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproProgIdA"}

Returns the programmatic identifiers for the object. Read-only String.

For more information about programmatic identifiers, see OLE Programmatic Identifiers.

ProgId Property Example

This example creates a list of the programmatic identifiers for the OLE objects on worksheet one.
rw = 0
For Each o in Worksheets(1).OLEObjects

With Worksheets(2)
rw = rw + 1
.cells(rw, 1).Value = o.ProgId

End With
Next

SetLinkOnData Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthSetLinkOnDataC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthSetLinkOnDataX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthSetLinkOnDataA"}

Sets the name of a procedure that runs whenever a DDE link is updated.

Syntax
expression.SetLinkOnData(Name, Procedure)
expression Required. An expression that returns a Workbook object.
Name Required String. The name of the DDE/OLE link, as returned from the LinkSources

method.
Procedure Required String. The name of the procedure to be run when the link is updated. This

can be either a Microsoft Excel 4.0 macro or a Visual Basic procedure. Set this argument to an
empty string ("") to indicate that no procedure should run when the link is updated.

SetLinkOnData Method Example

This example sets the name of the procedure that runs whenever the DDE link is updated.
ActiveWorkbook.SetLinkOnData "WinWord|'C:\MSGFILE.DOC'!DDE_LINK1", _

"my_Link_Update_Macro"

SetSourceData Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthSetSourceDataC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthSetSourceDataX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthSetSourceDataA"}

Sets the source data range for the chart.

Syntax
expression.SetSourceData(Source, PlotBy)
expression Required. An expression that returns a Chart object.
Source Required Range. The range that contains the source data.
PlotBy Optional Variant. Specifies the way the data is to be plotted. Can be either of the following

XlRowCol constants: xlColumns or xlRows.

SetSourceData Method Example

This example sets the source data range for chart one.
Charts(1).SetSourceData Source:=Sheets(1).Range("a1:a10"), _

PlotBy:=xlColumns

TemplateRemoveExtData Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproTemplateRemoveExtDataC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproTemplateRemoveExtDataX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproTemplateRemoveExtDataA"}

True if external data references are removed when the workbook is saved as a template. Read/write
Boolean.

TemplateRemoveExtData Property Example

This example saves the workbook as a template that contains no external data.
With ThisWorkbook

.TemplateRemoveExtData = True

.SaveAs "current", xlTemplate

.TemplateRemoveExtData = False
End With

Text Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthTextC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthTextX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthTextA"}

Sets comment text.

Syntax
expression.Text(Text, Start, Overwrite)
expression Required. An expression that returns a Comment object.
Text Optional Variant. The text to be added.
Start Optional Variant. The character number where the added text will be placed. If this argument

is omitted, any existing text in the comment is deleted.
Overwrite Optional Variant. True to overwrite the existing text. The default value is False (text is

inserted).

Text Method Example

This example adds a comment to cell E5 on sheet one.
With Worksheets(1).Range("e5").AddComment

.Visible = False

.Text "reviewed on " & Date
End With

Select Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthSelectC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthSelectX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthSelectA "}

Selects the object.

Syntax
expression.Select(Replace)
expression Required. An expression that returns an object in the Applies To list.
Replace Optional Variant (used only with sheets). True to replace the current selection with the

specified object. False to extend the current selection to include any previously selected objects
and the specified object.

Remarks
To select a cell or a range of cells, use the Select method. To make a single cell the active cell, use
the Activate method.

Select Method Example

This example selects cells A1:B3 on Sheet1.
Worksheets("Sheet1").Activate
Range("A1:B3").Select

ResetColors Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthResetColorsC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthResetColorsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthResetColorsA"}

Resets the color palette to the default colors.

Syntax
expression.ResetColors
expression Required. An expression that returns a Workbook object.

ResetColors Method Example

This example resets the color palette in the active workbook.
ActiveWorkbook.ResetColors

BackColor Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproBackColorC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproBackColorX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproBackColorA"}

ChartFillFormat object: Returns a ChartColorFormat object that represents the specified fill
background color. Read-only.

All other objects: Returns a ColorFormat object that represents the specified fill background color.
Read-only.

BackColor Property Example

This example sets the foreground color, background color, and gradient for the chart area fill on chart
one.
With Charts(1).ChartArea.Fill

.Visible = True

.ForeColor.SchemeColor = 15

.BackColor.SchemeColor = 17

.TwoColorGradient msoGradientHorizontal, 1
End With

ForeColor Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproForeColorC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproForeColorX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproForeColorA"}

ChartFillFormat object: Returns a ChartColorFormat object that represents the specified fill
foreground or solid color. Read-only.

All other objects: Returns a ColorFormat object that represents the specified fill foreground or solid
color. Read-only.

ForeColor Property Example

This example sets the foreground color, background color, and gradient for the chart area fill on chart
one.
With Charts(1).ChartArea.Fill

.Visible = True

.ForeColor.SchemeColor = 15

.BackColor.SchemeColor = 17

.TwoColorGradient msoGradientHorizontal, 1
End With

GradientColorType Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproGradientColorTypeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproGradientColorTypeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproGradientColorTypeA"}

Returns the gradient color type for the specified fill. Can be one of the following
MsoGradientColorType constants: msoGradientColorMixed, msoGradientOneColor,
msoGradientPresetColors, or msoGradientTwoColors. Read-only Long.

GradientColorType Property Example

This example sets the fill format for chart two to the same style used for chart one.
Set c1f = Charts(1).ChartArea.Fill
If c1f.Type = msoFillGradient And _
 c1f.GradientColorType = msoGradientOneColor Then
 With Charts(2).ChartArea.Fill
 .Visible = True
 .OneColorGradient c1f.GradientStyle, _
 c1f.GradientVariant, c1f.GradientDegree
 End With
End If

GradientDegree Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproGradientDegreeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproGradientDegreeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproGradientDegreeA"}

Returns the gradient degree of the specified one-color shaded fill as a floating-point value from 0.0
(dark) through 1.0 (light). Read-only Single.

This property is read-only. Use the OneColorGradient method to set the gradient degree for the fill.

GradientDegree Property Example

This example sets the fill format for chart two to the same style used for chart one.
Set c1f = Charts(1).ChartArea.Fill
If c1f.Type = msoFillGradient And _
 c1f.GradientColorType = msoGradientOneColor Then
 With Charts(2).ChartArea.Fill
 .Visible = True
 .OneColorGradient c1f.GradientStyle, _
 c1f.GradientVariant, c1f.GradientDegree
 End With
End If

GradientStyle Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproGradientStyleC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproGradientStyleX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproGradientStyleA"}

Returns the gradient style for the specified fill. Can be one of the following MsoGradientStyle
constants: msoGradientDiagonalDown, msoGradientDiagonalUp, msoGradientFromCenter,
msoGradientFromCorner, msoGradientFromTitle, msoGradientHorizontal, msoGradientMixed,
or msoGradientVertical. The msoGradientFromTitle constant is not used in Microsoft Excel. Read-
only Long.

This property is read-only. Use the OneColorGradient or TwoColorGradient method to set the
gradient style for the fill.

GradientStyle Property Example

Set c1f = Charts(1).ChartArea.Fill
If c1f.Type = msoFillGradient And _
 c1f.GradientColorType = msoGradientOneColor Then
 With Charts(2).ChartArea.Fill
 .Visible = True
 .OneColorGradient c1f.GradientStyle, _
 c1f.GradientVariant, c1f.GradientDegree
 End With
End If

GradientVariant Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproGradientVariantC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproGradientVariantX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproGradientVariantA"}

Returns the shade variant for the specified fill as an integer value from 1 through 4. The values for this
property correspond to the gradient variants (numbered from left to right and from top to bottom) on
the Gradient tab in the Fill Effects dialog box. Read-only Long.

This property is read-only. Use the OneColorGradient or TwoColorGradient method to set the
gradient variant for the fill.

GradientVariant Property Example

This example sets the fill format for chart two to the same style used for chart one.
Set c1f = Charts(1).ChartArea.Fill
If c1f.Type = msoFillGradient And _
 c1f.GradientColorType = msoGradientOneColor Then
 With Charts(2).ChartArea.Fill
 .Visible = True
 .OneColorGradient c1f.GradientStyle, _
 c1f.GradientVariant, c1f.GradientDegree
 End With
End If

OneColorGradient Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthOneColorGradientC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthOneColorGradientX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthOneColorGradientA"}

Sets the specified fill to a one-color gradient.

Syntax
expression.OneColorGradient(GradientStyle, Variant, Degree)
expression Required. An expression that returns a FillFormat object.
GradientStyle Required Long. The gradient style. Can be one of the following MsoGradientStyle

constants: msoGradientDiagonalDown, msoGradientDiagonalUp, msoGradientFromCenter,
msoGradientFromCorner, msoGradientHorizontal, or msoGradientVertical.

Variant Required Long. The gradient variant. Can be a value from 1 through 4, corresponding to
one of the four variants on the Gradient tab in the Fill Effects dialog box. If GradientStyle is
msoGradientFromCenter, the Variant argument can only be 1 or 2.

Degree Required Single. The gradient degree. Can be a value from 0.0 (dark) through 1.0 (light).

OneColorGradient Method Example

This example sets the fill format for chart two to the same style used for chart one.
Set c1f = Charts(1).ChartArea.Fill
If c1f.Type = msoFillGradient And _
 c1f.GradientColorType = msoGradientOneColor Then
 With Charts(2).ChartArea.Fill
 .Visible = True
 .OneColorGradient c1f.GradientStyle, _
 c1f.GradientVariant, c1f.GradientDegree
 End With
End If

Patterned Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthPatternedC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthPatternedX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthPatternedA"}

Sets the specified fill to a pattern.

Syntax
expression.Patterned(Pattern)
expression Required. An expression that returns a FillFormat object.
Pattern Required Long. The pattern type. Can be one of the following MsoPatternType constants:

msoPattern10Percent
msoPattern20Percent
msoPattern25Percent
msoPattern30Percent
msoPattern40Percent
msoPattern50Percent
msoPattern5Percent
msoPattern60Percent
msoPattern70Percent
msoPattern75Percent
msoPattern80Percent
msoPattern90Percent
msoPatternDarkDownwardDiagonal
msoPatternDarkHorizontal
msoPatternDarkUpwardDiagonal
msoPatternDarkVertical
msoPatternDashedDownwardDiagonal
msoPatternDashedHorizontal
msoPatternDashedUpwardDiagonal
msoPatternDashedVertical
msoPatternDiagonalBrick
msoPatternDivits
msoPatternDottedGrid
msoPatternHorizontalBrick
msoPatternLargeCheckerBoard

msoPatternLargeConfetti
msoPatternLargeGrid
msoPatternLightDiamonds
msoPatternLightDownwardDiagonal
msoPatternLightHorizontal
msoPatternLightUpwardDiagonal
msoPatternLightVertical
msoPatternMixed
msoPatternNarrowHorizontal
msoPatternNarrowVertical
msoPatternOutlinedDiamonds
msoPatternPlaid
msoPatternShingles
msoPatternSmallCheckerBoard
msoPatternSmallConfetti
msoPatternSmallGrid
msoPatternSolidDiamonds
msoPatternSpheres
msoPatternTrellis
msoPatternWaves
msoPatternWavyLines
msoPatternWeave
msoPatternWideDownwardDiagonal
msoPatternWideUpwardDiagonal

Patterned Method Example

This example sets the fill pattern for chart one.
With Charts(1).ChartArea.Fill

.Patterned msoPatternDiagonalBrick

.Visible = True
End With

PresetGradient Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthPresetGradientC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthPresetGradientX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthPresetGradientA"}

Sets the specified fill to a preset gradient.

Syntax
expression.PresetGradient(GradientStyle, Variant, PresetGradientType)
expression Required. An expression that returns a FillFormat object.
GradientStyle Required Long. The gradient style. Can be one of the following MsoGradientStyle

constants: msoGradientDiagonalDown, msoGradientDiagonalUp, msoGradientFromCenter,
msoGradientFromCorner, msoGradientHorizontal, or msoGradientVertical.

Variant Required Long. The gradient variant. Can be a value from 1 through 4, corresponding to
one of the four variants on the Gradient tab in the Fill Effects dialog box. If GradientStyle is
msoGradientFromCenter, the Variant argument can only be 1 or 2.

PresetGradientType Required Long. The gradient type. Can be one of the following
MsoPresetGradientType constants:
msoGradientBrass
msoGradientCalmWater
msoGradientChrome
msoGradientChromeII
msoGradientDaybreak
msoGradientDesert
msoGradientEarlySunset
msoGradientFire
msoGradientFog
msoGradientGold
msoGradientGoldII
msoGradientHorizon
msoGradientLateSunset

msoGradientMahogany
msoGradientMoss
msoGradientNightfall
msoGradientOcean
msoGradientParchment
msoGradientPeacock
msoGradientRainbow
msoGradientRainbowII
msoGradientSapphire
msoGradientSilver
msoGradientWheat
msoPresetGradientMixed

PresetGradient Method Example

This example sets the fill format for chart two to the same style used for chart one.
Set c1f = Charts(1).ChartArea.Fill
If c1f.Type = msoFillGradient Then
 With Charts(2).ChartArea.Fill
 .Visible = True
 .PresetGradient c1f.GradientStyle, _
 c1f.GradientVariant, c1f.PresetGradientType
 End With
End If

PresetGradientType Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPresetGradientTypeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPresetGradientTypeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPresetGradientTypeA"}

Returns the preset gradient type for the specified fill. Read-only Long.

Can be one of the following MsoPresetGradientType constants:

msoGradientBrass
msoGradientCalmWater
msoGradientChrome
msoGradientChromeII
msoGradientDaybreak
msoGradientDesert
msoGradientEarlySunset
msoGradientFire
msoGradientFog
msoGradientGold
msoGradientGoldII
msoGradientHorizon
msoGradientLateSunset

msoGradientMahogany
msoGradientMoss
msoGradientNightfall
msoGradientOcean
msoGradientParchment
msoGradientPeacock
msoGradientRainbow
msoGradientRainbowII
msoGradientSapphire
msoGradientSilver
msoGradientWheat
msoPresetGradientMixed

Use the PresetGradient method to set the preset gradient type for the fill.

PresetGradientType Property Example

This example sets the fill format for chart two to the same style used for chart one.
Set c1f = Charts(1).ChartArea.Fill
If c1f.Type = msoFillGradient Then
 With Charts(2).ChartArea.Fill
 .Visible = True
 .PresetGradient c1f.GradientStyle, _
 c1f.GradientVariant, c1f.PresetGradientType
 End With
End If

PresetTextured Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthPresetTexturedC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthPresetTexturedX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthPresetTexturedA"}

Sets the specified fill format to a preset texture.

Syntax
expression.PresetTextured(PresetTexture)
expression An expression that returns a FillFormat object.
PresetTexture Required Long. The preset texture. Can be one of the following MsoPresetTexture

values: msoPresetTextureMixed, msoTextureBrownMarble, msoTextureCloth,
msoTextureCork, msoTextureGranite, msoTextureGreenMarble, msoTextureMediumWood,
msoTextureOak, msoTexturePaper, msoTextureSand, msoTextureWalnut,
msoTextureWhiteMarble, or msoTextureWovenMat.

PresetTextured Method Example

This example sets the fill format for chart two to the same style used for chart one.
Set c1f = Charts(1).ChartArea.Fill
If c1f.Type = msoFillTextured Then
 With Charts(2).ChartArea.Fill
 .Visible = True
 If c1f.TextureType = msoTexturePreset Then
 .PresetTextured c1f.PresetTexture
 Else
 .UserTextured c1f.TextureName
 End If
 End With
End If

PresetTexture Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPresetTextureC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPresetTextureX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPresetTextureA"}

Returns the preset texture for the specified fill. Read-only Long.

Can be one of the following MsoPresetTexture values:

msoPresetTextureMixed
msoTextureBlueTissuePaper
msoTextureBouquet
msoTextureBrownMarble
msoTextureCanvas
msoTextureCork
msoTextureDenim
msoTextureFishFossil
msoTextureGranite
msoTextureGreenMarble
msoTextureMediumWood
msoTextureNewsprint
msoTextureOak

msoTexturePaperBag
msoTexturePapyrus
msoTextureParchment
msoTexturePinkTissuePaper
msoTexturePurpleMesh
msoTextureRecycledPaper
msoTextureSand
msoTextureStationery
msoTextureWalnut
msoTextureWaterDroplets
msoTextureWhiteMarble
msoTextureWovenMat

Use the PresetTextured method to set the preset texture for the fill.

PresetTexture Property Example

This example sets the fill format for chart two to the same style used for chart one.
Set c1f = Charts(1).ChartArea.Fill
If c1f.Type = msoFillTextured Then
 With Charts(2).ChartArea.Fill
 .Visible = True
 If c1f.TextureType = msoTexturePreset Then
 .PresetTextured c1f.PresetTexture
 Else
 .UserTextured c1f.TextureName
 End If
 End With
End If

RGB Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproRGBC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproRGBX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproRGBA"}

ChartColorFormat object: Returns the red-green-blue value of the specified color. Read-only Long.

ColorFormat object: Returns or sets the red-green-blue value of the specified color. Read/write
Long.

RGB Property Example

This example sets the interior color of the range A1:A10 to the chart area foreground fill color on chart
one.
Worksheets(1).Range("A1:A10").Interior.Color = _

Charts(1).ChartArea.Fill.ForeColor.RGB

SchemeColor Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproSchemeColorC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproSchemeColorX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproSchemeColorA"}

Returns or sets the color of a Color object as an index in the current color scheme. Read/write Long.

SchemeColor Property Example

This example sets the foreground color, background color, and gradient for the chart area fill on chart
one.
With Charts(1).ChartArea.Fill

.Visible = True

.ForeColor.SchemeColor = 15

.BackColor.SchemeColor = 17

.TwoColorGradient msoGradientHorizontal, 1
End With

TextureName Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproTextureNameC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproTextureNameX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproTextureNameA"}

Returns the name of the custom texture file for the specified fill. Read-only String.

Use the UserPicture or UserTextured method to set the texture file for the fill.

TextureName Property Example

This example sets the fill format for chart two to the same style used for chart one.
Set c1f = Charts(1).ChartArea.Fill
If c1f.Type = msoFillTextured Then
 With Charts(2).ChartArea.Fill
 .Visible = True
 If c1f.TextureType = msoTexturePreset Then
 .PresetTextured c1f.PresetTexture
 Else
 .UserTextured c1f.TextureName
 End If
 End With
End If

TextureType Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproTextureTypeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproTextureTypeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproTextureTypeA"}

Returns the texture type for the specified fill. Can be one of the following MsoTextureType constants:
msoTexturePreset, msoTextureTypeMixed, or msoTextureUserDefined. Read-only Long.

Use the UserTextured method to set the texture type for the fill.

TextureType Property Example

This example sets the fill format for chart two to the same style used for chart one.
Set c1f = Charts(1).ChartArea.Fill
If c1f.Type = msoFillTextured Then
 With Charts(2).ChartArea.Fill
 .Visible = True
 If c1f.TextureType = msoTexturePreset Then
 .PresetTextured c1f.PresetTexture
 Else
 .UserTextured c1f.TextureName
 End If
 End With
End If

Transparency Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproTransparencyC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproTransparencyX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproTransparencyA"}

Returns or sets the degree of transparency of the specified fill as a value from 0.0 (opaque) through
1.0 (clear). Read/write Double.

Remarks
The value of this property affects the appearance of solid-colored fills and lines only; it has no effect
on the appearance of patterned lines or patterned, gradient, picture, or textured fills.

Transparency Property Example

This example sets the shadow of shape three on worksheet one to semitransparent red. If the shape
doesn't already have a shadow, this example adds one to it.
With Worksheets(1).Shapes(3).Shadow
 .Visible = True
 .ForeColor.RGB = RGB(255, 0, 0)
 .Transparency = 0.5
End With

TwoColorGradient Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthTwoColorGradientC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthTwoColorGradientX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthTwoColorGradientA"}

Sets the specified fill to a two-color gradient.

Syntax
expression.TwoColorGradient(Style, Variant)
expression Required. An expression that returns a FillFormat object.
Style Required Long. The gradient style. Can be one of the following MsoGradientStyle

constants: msoGradientDiagonalDown, msoGradientDiagonalUp, msoGradientFromCenter,
msoGradientFromCorner, msoGradientHorizontal, or msoGradientVertical.

Variant Required Long. The gradient variant. Can be a value from 1 through 4, corresponding to
one of the four variants on the Gradient tab in the Fill Effects dialog box. If Style is
msoGradientFromCenter, the Variant argument can only be 1 or 2.

TwoColorGradient Method Example

This example sets the foreground color, background color, and gradient for the chart area fill on chart
one.
With Charts(1).ChartArea.Fill

.Visible = True

.ForeColor.SchemeColor = 15

.BackColor.SchemeColor = 17

.TwoColorGradient msoGradientHorizontal, 1
End With

UserPicture Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthUserPictureC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthUserPictureX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthUserPictureA"}

Fills the specified shape with an image.

Syntax
expression.UserPicture(PictureFile, PictureFormat, PictureStackUnit, PicturePlacement)
expression An expression that returns a FillFormat object.
PictureFile Required String. The name of the picture file.
PictureFormat Required Long. The picture format. Can be one of the following

XlChartPictureType constants: xlStack, xlStackScale, or xlStretch.
PictureStackUnit Required Long. The picture stack or scale unit (depends on the PictureFormat

argument).
PicturePlacement Required Long. The picture placement. Can be one of the following

XlChartPicturePlacement constants: xlAllFaces, xlEnd, xlEndSides, xlFront, xlFrontEnd,
xlFrontSides, or xlSides.

UserPicture Method Example

This example sets the fill format for chart two.
Charts(2).ChartArea.Fill.UserPicture "brick.bmp

UserTextured Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthUserTexturedC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthUserTexturedX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthUserTexturedA"}

Fills the specified shape with small tiles of an image. If you want to fill the shape with one large
image, use the UserPicture method.

Syntax
expression.UserTextured(TextureFile)
expression Required. An expression that returns a FillFormat object.
TextureFile Required String. The name of the picture file.

UserTextured Method Example

This example sets the fill format for chart two.
Charts(2).ChartArea.Fill.UserTextured "brick.bmp"

ApplyCustomType Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthApplyCustomTypeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthApplyCustomTypeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthApplyCustomTypeA"}

Applies a standard or custom chart type to a chart or series.

Syntax
expression.ApplyCustomType(ChartType, TypeName)
expression Required. An expression that returns a Chart or Series object.
ChartType Required Long. A standard chart type (see the ChartType property for the list of

available constants). For Chart objects, this argument can also be one of the following
XlChartGallery constants: xlBuiltIn, xlUserDefined, or xlAnyGallery.

TypeName Optional Variant (used only with Chart objects). The name of the custom chart type if
ChartType specifies a custom chart gallery.

ApplyCustomType Method Example

This example applies the "Line with Data Markers" chart type to chart one.
Charts(1).ApplyCustomType xlLineMarkers

AutoShowCount Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproAutoShowCountC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproAutoShowCountX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproAutoShowCountA"}

Returns the number of top or bottom items that are automatically shown in the pivot field. Read-only
Long.

AutoShowCount Property Example

This example displays a message box showing the AutoShow parameters for the Salesman field.
With Worksheets(1).PivotTables(1).PivotFields("salesman")
 If .AutoShowType = xlAutomatic Then
 r = .AutoShowRange
 If r = xlTop Then
 rn = "top"
 Else
 rn = "bottom"
 End If
 MsgBox "PivotTable is showing " & rn & " " & _
 .AutoShowCount & " items in " & .Name & _
 " field by " & .AutoShowField
 Else
 MsgBox "Pivot table is not using AutoShow for this field"
 End If
End With

AutoShowField Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproAutoShowFieldC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproAutoShowFieldX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproAutoShowFieldA"}

Returns the name of the data field used to determine the top or bottom items that are automatically
shown in the pivot field. Read-only String.

AutoShowField Property Example

This example displays a message box showing the AutoShow parameters for the Salesman field.
With Worksheets(1).PivotTables(1).PivotFields("salesman")
 If .AutoShowType = xlAutomatic Then
 r = .AutoShowRange
 If r = xlTop Then
 rn = "top"
 Else
 rn = "bottom"
 End If
 MsgBox "PivotTable is showing " & rn & " " & _
 .AutoShowCount & " items in " & .Name & _
 " field by " & .AutoShowField
 Else
 MsgBox "Pivot table is not using AutoShow for this field"
 End If
End With

AutoShowRange Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproAutoShowRangeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproAutoShowRangeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproAutoShowRangeA"}

Returns xlTop if the top items are shown automatically in the pivot field; returns xlBottom if the
bottom items are shown. Read-only Long.

AutoShowRange Property Example

This example displays a message box showing the AutoShow parameters for the Salesman field.
With Worksheets(1).PivotTables(1).PivotFields("salesman")
 If .AutoShowType = xlAutomatic Then
 r = .AutoShowRange
 If r = xlTop Then
 rn = "top"
 Else
 rn = "bottom"
 End If
 MsgBox "PivotTable is showing " & rn & " " & _
 .AutoShowCount & " items in " & .Name & _
 " field by " & .AutoShowField
 Else
 MsgBox "Pivot table is not using AutoShow for this field"
 End If
End With

AutoShowType Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproAutoShowTypeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproAutoShowTypeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproAutoShowTypeA"}

Returns xlAutomatic if AutoShow is enabled for the pivot field; returns xlManual if AutoShow is
disabled. Read-only Long.

AutoShowType Property Example

This example displays a message box showing the AutoShow parameters for the Salesman field.
With Worksheets(1).PivotTables(1).PivotFields("salesman")
 If .AutoShowType = xlAutomatic Then
 r = .AutoShowRange
 If r = xlTop Then
 rn = "top"
 Else
 rn = "bottom"
 End If
 MsgBox "PivotTable is showing " & rn & " " & _
 .AutoShowCount & " items in " & .Name & _
 " field by " & .AutoShowField
 Else
 MsgBox "Pivot table is not using AutoShow for this field"
 End If
End With

AutoSortField Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproAutoSortFieldC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproAutoSortFieldX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproAutoSortFieldA"}

Returns the name of the data field used to sort the pivot field automatically. Read-only String.

AutoSortField Property Example

This example displays a message box showing the AutoSort parameters for the Product field.
With Worksheets(1).PivotTables(1).PivotFields("product")
 Select Case .AutoSortOrder
 Case xlManual
 aso = "manual"
 Case xlAscending
 aso = "ascending"
 Case xlDescending
 aso = "descending"
 End Select
 MsgBox " sorted in " & aso & _
 " order by " & .AutoSortField
End With

AutoSortOrder Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproAutoSortOrderC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproAutoSortOrderX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproAutoSortOrderA"}

Returns the order used to sort the pivot field automatically. Can be one of the following XlSortOrder
constants: xlAscending or xlDescending (or xlManual if automatic sorting is disabled). Read-only
Long.

AutoSortOrder Property Example

This example displays a message box showing the AutoSort parameters for the Product field.
With Worksheets(1).PivotTables(1).PivotFields("product")
 Select Case .AutoSortOrder
 Case xlManual
 aso = "manual"
 Case xlAscending
 aso = "ascending"
 Case xlDescending
 aso = "descending"
 End Select
 MsgBox " sorted in " & aso & _
 " order by " & .AutoSortField
End With

ClearComments Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthClearCommentsC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthClearCommentsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthClearCommentsA"}

Clears all cell comments from the specified range.

Syntax
expression.ClearComments
expression Required. An expression that returns a Range object.

ClearComments Method Example

This example clears all comments from cell E5.
Worksheets(1).Range("e5").ClearComments

KeepChangeHistory Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproKeepChangeHistoryC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproKeepChangeHistoryX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproKeepChangeHistoryA"}

True if change tracking is enabled for the shared workbook. Read/write Boolean.

KeepChangeHistory Property Example

This example sets the number of days shown in the change history for the active workbook if change
tracking is enabled.
With ActiveWorkbook

If .KeepChangeHistory Then
.ChangeHistoryDuration = 7

End If
End With

RollZoom Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproRollZoomC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproRollZoomX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproRollZoomA"}

True if the IntelliMouse zooms instead of scrolling. Read/write Boolean.

RollZoom Property Example

This example enables the IntelliMouse to zoom instead of scroll.
Application.RollZoom = True

UnprotectSharing Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthUnprotectSharingC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthUnprotectSharingX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthUnprotectSharingA"}

Turns off protection for sharing and saves the workbook.

Syntax
expression.UnprotectSharing(SharingPassword)
expression Required. An expression that returns a Workbook object.
SharingPassword Optional Variant. The workbook password.

UnprotectSharing Method Example

This example turns off protection for sharing and saves the active workbook.
ActiveWorkbook.UnprotectSharing Password:="drowssap"

Value2 Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproValue2C"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproValue2X":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproValue2A"}

Returns or sets the cell value. Read/write Variant.

Remarks
The only difference between this property and the Value property is that the Value2 property doesn't
use the Currency and Date data types. You can return values formatted with these data types as
floating-point numbers by using the Double data type.

Value2 Property Example

This example uses the Value2 property to add the values of two cells.
Range("a1").Value2 = Range("b1").Value2 + Range("c1").Value2

WhichAddress Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproWhichAddressC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproWhichAddressX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproWhichAddressA"}

Returns or sets the PowerTalk address type. Available only in Microsoft Excel for the Macintosh, with
the PowerTalk mail system extension installed. Read/write Variant.

Type Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproTypeC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproTypeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproTypeA "}

Returns or sets the object type, as shown in the following table.

Object Type
Axis Axis type. Can be one of the following XlAxisType

constants: xlCategory, xlSeriesAxis, or xlValue.
Read/write Long.

Color Color type. Can be one of the following
MsoColorType constants: msoColorTypeMixed,
msoColorTypeRGB, or msoColorTypeScheme.
Read-only Long.

ConnectorFormat Connector type. Can be one of the following
MsoConnectorType constants:
msoConnectorCurve, msoConnectorElbow,
msoConnectorStraight, or
msoConnectorTypeMixed. Read/write Long.

DataLabel,
DataLabels

Data label type. Can be one of the following
XlDataLabelsType constants:
xlDataLabelsShowBubbleSizes,
xlDataLabelsShowLabel,
xlDataLabelsShowLabelAndPercent,
xlDataLabelsShowNone,
xlDataLabelsShowPercent, or
xlDataLabelsShowValue. Read/write Long.

FillFormat Fill type. Can be one of the following MsoFillType
constants: msoFillBackground, msoFillGradient,
msoFillMixed, msoFillPatterned, msoFillPicture,
msoFillSolid, or msoFillTextured. The
msoFillBackground constant is not used in
Microsoft Excel. Read-only Long.

FormatCondition Conditional format type. Can be one of the following
xlFormatConditionType constants: xlCellValue or
xlExpression. Read-only Long.

HPageBreak,
VPageBreak

Page break type. Can be one of the following
XlPageBreak constants: xlPageBreakAutomatic or
xlPageBreakManual. Read/write Long.

Hyperlink Hyperlink type (what the hyperlink is associated
with). Can be one of the following
MsoHyperlinkType constants:
msoHyperlinkInlineShape, msoHyperlinkRange,
or msoHyperlinkShape. Read-only Long.

Parameter Parameter type. Can be one of the following
XlParameterType constants: xlConstant,
xlPrompt, or xlRange. Read/write Long.

Shape, ShapeRange Shape type. Can be one of the following
MsoShapeType constants: msoAutoShape,
msoCallout, msoChart, msoComment,
msoEmbeddedOLEObject, msoFormControl,
msoFreeform, msoGroup, msoLine,
msoLinkedOLEObject, msoLinkedPicture,

msoMedia, msoOLEControlObject, msoPicture,
msoPlaceholder, msoShapeTypeMixed, or
msoTextEffect. Read-only Long. In Microsoft Excel,
this property cannot be msoMedia or
msoPlaceholder (these constants are used with
shapes in other Microsoft Office applications)..

Trendline Trendline type. Can be one of the following
XlTrendlineType constants: xlExponential,
xlLinear, xlLogarithmic, xlMovingAvg,
xlPolynomial, or xlPower. Read/write Long.

Validation Data validation type. Can be one of the following
XlDVType constants: xlValidateCustom,
xlValidateDate, xlValidateDecimal,
xlValidateInputOnly, xlValidateList,
xlValidateTextLength, xlValidateTime, or
xlValidateWholeNumber. Read-only Long.

Window Window type. Can be one of the following
XlWindowType constants: xlChartAsWindow,
xlChartInPlace, xlClipboard, xlInfo, or
xlWorkbook. Read-only Long.

Worksheet Worksheet type. Can be one of xlWorksheet,
xlExcel4MacroSheet, or xlExcel4IntlMacroSheet.
Read-only Long.

Type Property Example

This example changes the trendline type for the first series in embedded chart one on worksheet one.
If the series has no trendline, this example fails.
Worksheets(1).ChartObjects(1).Chart. _
 SeriesCollection(1).Trendlines(1).Type = xlMovingAvg

ShapeRange Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproShapeRangeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproShapeRangeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproShapeRangeA"}

Returns a ShapeRange object that represents the specified object or objects. Read-only.

ShapeRange Property Example

This example creates a shape range that represents the embedded charts on worksheet one.
Set sr = Worksheets(1).ChartObjects.ShapeRange

TextFrame Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproTextFrameC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproTextFrameX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproTextFrameA"}

Returns a TextFrame object that contains the alignment and anchoring properties for the specified
shape. Read-only.

TextFrame Property Example

This example causes text in the text frame in shape one to be justified. If shape one doesn't have a
text frame, this example fails.
Worksheets(1).Shapes(1).TextFrame.HorizontalAlignment = xlHAlignJustify

VBE Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproVBEC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproVBEX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproVBEA"}

Returns a VBE object that represents the Visual Basic Editor. Read-only.

VBE Property Example

This example changes the name of the active Visual Basic project.
Application.VBE.ActiveVBProject.Name = "TestProject"

VBProject Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproVBProjectC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproVBProjectX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproVBProjectA"}

Returns a VBProject object that represents the Visual Basic project in the specified workbook. Read-
only.

VBProject Property Example

This example changes the name of the Visual Basic project in the workbook.
ThisWorkbook.VBProject.Name = "TestProject"

LinkedCell Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproLinkedCellC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproLinkedCellX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproLinkedCellA"}

Returns or sets the worksheet range linked to the control's value. If you place a value in the cell, the
control takes this value. Likewise, if you change the value of the control, that value is also placed in
the cell. Read/write String.

Remarks
You cannot use this property with multiselect list boxes.

LinkedCell Property Example

This example adds a check box to worksheet one and links the check box value to cell A1.
With Worksheets(1)

Set cb = .Shapes.AddFormControl(xlCheckBox, 10, 10, 100, 10)
cb.ControlFormat.LinkedCell = "A1"

End With

ListFillRange Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproListFillRangeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproListFillRangeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproListFillRangeA"}

Returns or sets the worksheet range used to fill the specified list box. Setting this property destroys
any existing list in the list box. Read/write String.

Remarks
Microsoft Excel reads the contents of every cell in the range and inserts the cell values into the list
box. The list tracks changes in the range's cells.

If the list in the list box was created with the AddItem method, this property returns an empty string
("").

ListFillRange Property Example

This example adds a list box to worksheet one and sets the fill range for the list box.
With Worksheets(1)

Set lb = .Shapes.AddFormControl(xlListBox, 100, 10, 100, 100)
lb.ControlFormat.ListFillRange = "A1:A10"

End With

SourceName Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproSourceNameC "} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproSourceNameX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproSourceNameA "}

OLEObject, OLEObjects objects: Return or set the specified object's link source name. Read/write
String.

PivotField, PivotItem objects: Return the specified object's name, as it appears in the original source
data for the PivotTable. This might be different from the current item name if the user renamed the
item after creating the PivotTable. Read-only String.

SourceName Property Example

This example displays the original name (the name from the source database) of the item that
contains the active cell.
Worksheets("Sheet1").Activate
ActiveSheet.PivotTables(1).PivotSelect "1998", xlDataAndLabel
MsgBox "The original item name is " & _

ActiveCell.PivotItem.SourceName

AddFormControl Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAddFormControlC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAddFormControlX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthAddFormControlA"}

Creates a Microsoft Excel control. Returns a Shape object that represents the new control.

Syntax
expression.AddFormControl(Type, Left, Top, Width, Height)
expression Required. An expression that returns a Shapes object.
Type Required Long. The Microsoft Excel control type. Can be one of the following

XlFormControl constants: xlButtonControl, xlCheckBox, xlDropDown, xlEditBox,
xlGroupBox, xlLabel, xlListBox, xlOptionButton, xlScrollBar, or xlSpinner. You cannot create
an edit box on a worksheet.

Left, Top Required Long. The initial coordinates of the new object (in points) relative to the upper-
left corner of cell A1 on a worksheet or to the upper-left corner of a chart.

Width, Height Required Long. The initial size of the new object, in points.

Remarks
Use the AddOLEObject method or the Add method of the OLEObjects collection to create an
ActiveX control.

AddFormControl Method Example

This example adds a list box to worksheet one and sets the fill range for the list box.
With Worksheets(1)

Set lb = .Shapes.AddFormControl(xlListBox, 100, 10, 100, 100)
lb.ControlFormat.ListFillRange = "A1:A10"

End With

AddItem Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAddItemC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAddItemX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthAddItemA"}

Adds an item to a list box or a combo box.

Syntax
expression.AddItem(Text, Index)
expression Required. An expression that returns a ControlFormat object.
Text Required String. The text to be added
Index Optional Variant. The position of the new entry. If the list has fewer entries than the specified

index, blank items from the end of the list are added to the specified position. If this argument is
omitted, the item is appended to the existing list.

Remarks
Using this method clears any range specified by the ListFillRange property.

AddItem Method Example

This example creates a list box and fills it with integers from 1 to 10.
With Worksheets(1)

Set lb = .Shapes.AddFormControl(xlListBox, 100, 10, 100, 100)
For x = 1 To 10

lb.ControlFormat.AddItem x
Next

End With

List Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthListC"} {ewc HLP95EN.DLL, DYNALINK, "Example":"xlmthListX":1}
{ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthListA"}

Returns or sets the text entries in the specified list box or a combo box, as an array of strings, or
returns or sets a single text entry. An error occurs if there are no entries in the list.

Syntax
expression.List(Index)
expression Required. An expression that returns a ControlFormat object.
Index Optional Variant. The index number of a single text entry to be set or returned. If this

argument is omitted, the entire list is returned or set as an array of strings.

Remarks
Setting this property clears any range specified by the ListFillRange property.

List Method Example

This example sets the entries in a list box on worksheet one. If Shapes(2) doesn't represent a list
box, this example fails.
Worksheets(1).Shapes(2).ControlFormat.List = _

Array("cogs", "widgets", "sprockets", "gizmos")
This example sets entry four in a list box on worksheet one. If Shapes(2) doesn't represent a list
box, this example fails.
Worksheets(1).Shapes(2).ControlFormat.List(4) = "gadgets"

OnKey Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthOnKeyC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthOnKeyX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthOnKeyA"}

Runs a specified procedure when a particular key or key combination is pressed.

Syntax
expression.OnKey(Key, Procedure)
expression Required. An expression that returns an Application object.
Key Required String. A string indicating the key to be pressed.
Procedure Optional Variant. A string indicating the name of the procedure to be run. If Procedure

is "" (empty text), nothing happens when Key is pressed. This form of OnKey changes the normal
result of keystrokes in Microsoft Excel. If Procedure is omitted, Key reverts to its normal result in
Microsoft Excel, and any special key assignments made with previous OnKey methods are
cleared.

Remarks
The Key argument can specify any single key; any key combined with ALT, CTRL, or SHIFT, or any
combination of these keys (in Windows); or COMMAND, CTRL, OPTION, or SHIFT, or any combination of
these keys (on the Macintosh). Each key is represented by one or more characters, such as "a" for
the character a, or "{ENTER}" for the ENTER key.

To specify characters that aren't displayed when you press the corresponding key (ENTER or TAB, for
example), use the codes listed in the following table. Each code in the table represents one key on
the keyboard.

Key Code
BACKSPACE {BACKSPACE} or {BS}
BREAK {BREAK}
CAPS LOCK {CAPSLOCK}
CLEAR {CLEAR}
DELETE or DEL {DELETE} or {DEL}
DOWN ARROW {DOWN}
END {END}
ENTER (numeric keypad) {ENTER}
ENTER ~ (tilde)
ESC {ESCAPE} or {ESC}
HELP {HELP}
HOME {HOME}
INS {INSERT}
LEFT ARROW {LEFT}
NUM LOCK {NUMLOCK}
PAGE DOWN {PGDN}
PAGE UP {PGUP}
RETURN {RETURN}
RIGHT ARROW {RIGHT}
SCROLL LOCK {SCROLLLOCK}
TAB {TAB}
UP ARROW {UP}

F1 through F15 {F1} through {F15}
In Windows, you can also specify keys combined with SHIFT and/or CTRL and/or ALT. On the
Macintosh, you can also specify keys combined with SHIFT and/or CTRL and/or OPTION and/or
COMMAND. To specify a key combined with another key or keys, use the following table.

To combine keys with Precede the key code by
SHIFT + (plus sign)
CTRL ^ (caret)
ALT or OPTION % (percent sign)
COMMAND * (asterisk)

To assign a procedure to one of the special characters (+, ^, %, and so on), enclose the character in
braces. For details, see the example.

OnKey Method Example

This example assigns "InsertProc" to the key sequence CTRL+PLUS SIGN and assigns
"SpecialPrintProc" to the key sequence SHIFT+CTRL+RIGHT ARROW.
Application.OnKey "^{+}", "InsertProc"
Application.OnKey "+^{RIGHT}", "SpecialPrintProc"
This example returns SHIFT+CTRL+RIGHT ARROW to its normal meaning.
Application.OnKey "+^{RIGHT}"
This example disables the SHIFT+CTRL+RIGHT ARROW key sequence.
Application.OnKey "+^{RIGHT}", ""

OnRepeat Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthOnRepeatC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthOnRepeatX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthOnRepeatA"}

Sets the Repeat menu item and the name of the procedure that will run if you choose the Repeat
command (Edit menu) after running the procedure that sets this property.

Syntax
expression.OnRepeat(Text, Procedure)
expression Required. An expression that returns an Application object.
Text Required String. The text that appears with the Repeat command (Edit menu).
Procedure Required String. The name of the procedure that will be run when you choose the

Repeat command (Edit menu).

Remarks
If a procedure doesn't use the OnRepeat method, the Repeat command repeats procedure that was
run most recently.

The procedure must use the OnRepeat and OnUndo methods last, to prevent the repeat and undo
procedures from being overwritten by subsequent actions in the procedure.

OnRepeat Method Example

This example sets the repeat and undo procedures.
Application.OnRepeat "Repeat VB Procedure", _

"Book1.xls!My_Repeat_Sub"
Application.OnUndo "Undo VB Procedure", _

"Book1.xls!My_Undo_Sub"

OnTime Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthOnTimeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthOnTimeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthOnTimeA"}

Schedules a procedure to be run at a specified time in the future (either at a specific time of day or
after a specific amount of time has passed).

Syntax
expression.OnTime(EarliestTime, Procedure, LatestTime, Schedule)
expression Required. An expression that returns an Application object.
EarliestTime Required Variant. The time when you want this procedure to be run.
Procedure Required String. The name of the procedure to be run.
LatestTime Optional Variant. The latest time at which the procedure can be run. For example, if

LatestTime is set to EarliestTime + 30 and Microsoft Excel is not in Ready, Copy, Cut, or Find
mode at EarliestTime because another procedure is running, Microsoft Excel will wait 30 seconds
for the first procedure to complete. If Microsoft Excel is not in Ready mode within 30 seconds, the
procedure won't be run. If this argument is omitted, Microsoft Excel will wait until the procedure can
be run.

Schedule Optional Variant. True to schedule a new OnTime procedure. False to clear a
previously set procedure. The default value is True.

Remarks
Use Now + TimeValue(time) to schedule something to be run when a specific amount of time
(counting from now) has elapsed. Use TimeValue(time) to schedule something to be run a
specific time.

OnTime Method Example

This example runs my_Procedure 15 seconds from now.
Application.OnTime Now + TimeValue("00:00:15"), "my_Procedure"
This example runs my_Procedure at 5 P.M.
Application.OnTime TimeValue("17:00:00"), "my_Procedure"
This example cancels the OnTime setting from the previous example.
Application.OnTime EarliestTime:=TimeValue("17:00:00"), _

Procedure:="my_Procedure", Schedule:=False

OnUndo Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthOnUndoC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthOnUndoX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthOnUndoA"}

Sets the text of the Undo and the name of the procedure that's run if you choose the Undo command
(Edit menu) after running the procedure that sets this property.

Syntax
expression.OnUndo(Text, Procedure)
expression Required. An expression that returns an Application object.
Text Required String. The text that appears with the Undo command (Edit menu).
Procedure Required String. The name of the procedure that's run when you choose the Undo

command (Edit menu).

Remarks
If a procedure doesn't use the OnUndo method, the Undo command is disabled.

The procedure must use the OnRepeat and OnUndo methods last, to prevent the repeat and undo
procedures from being overwritten by subsequent actions in the procedure.

OnUndo Method Example

This example sets the repeat and undo procedures.
Application.OnRepeat "Repeat VB Procedure", _

"Book1.xls!My_Repeat_Sub"
Application.OnUndo "Undo VB Procedure", _

"Book1.xls!My_Undo_Sub"

ProtectSharing Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthProtectSharingC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthProtectSharingX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthProtectSharingA"}

Saves the workbook and protects it for sharing.

Syntax
expression.ProtectSharing(Filename, Password, WriteResPassword, ReadOnlyRecommended,

CreateBackup, SharingPassword)
expression An expression that returns a Workbook object.
Filename Optional Variant. A string indicating the name of the saved file. You can include a full

path; if you don't, Microsoft Excel saves the file in the current folder.
Password Optional Variant. A case-sensitive string indicating the protection password to be given

to the file. Should be no longer than 15 characters.
WriteResPassword Optional Variant. A string indicating the write-reservation password for this

file. If a file is saved with the password and the password isn't supplied when the file is opened, the
file is opened read-only.

ReadOnlyRecommended Optional Variant. True to display a message when the file is opened,
recommending that the file be opened read-only.

CreateBackup Optional Variant. True to create a backup file.
SharingPassword Optional Variant. A string indicating the password to be used to protect the file

for sharing.

ProtectSharing Method Example

This example saves workbook one and protects it for sharing.
Workbooks(1).ProtectForSharing Password:="drowssap", _

SharingPassword:="gnirahs"

RemoveAllItems Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthRemoveAllItemsC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthRemoveAllItemsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthRemoveAllItemsA"}

Removes all entries from a Microsoft Excel list box or combo box. Use the Clear method to remove
all items from an ActiveX list box or combo box.

Syntax
expression.RemoveAllItems
expression Required. An expression that returns a ControlFormat object.

RemoveAllItems Method Example

This example removes all items from a list box. If Shapes(2) doesn't represent a list box, this
example fails.
Worksheets(1).Shapes(2).ControlFormat.RemoveAllItems

RemoveItem Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthRemoveItemC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthRemoveItemX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthRemoveItemA"}

Removes one or more items from a list box or combo box.

Syntax
expression.RemoveItem(Index, Count)
expression An expression that returns a ControlFormat object.
Index Required Long. The number of the first item to be removed. Valid values are from 1 to the

number of items in the list (returned by the ListCount property).
Count Optional Variant. The number of items to be removed, starting at item Index. If this

argument is omitted, one item is removed. If Index + Count exceeds the number of items in the
list, all items from Index through the end of the list are removed without an error.

Remarks
If the specified object has a fill range defined for it, this method fails.

Use the RemoveAllItems method to remove all entries from a Microsoft Excel list box or combo box.
Use the Clear method to remove all items from an ActiveX list box or combo box.

RemoveItem Method Example

This example removes the selected item from a list box. If Shapes(2) doesn't represent a list box,
this example fails.
Set lbcf = Worksheets(1).Shapes(2).ControlFormat
lbcf.RemoveItem lbcf.ListIndex

ChangeHistoryDuration Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproChangeHistoryDurationC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproChangeHistoryDurationX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproChangeHistoryDurationA"}

Returns or sets the number of days shown in the shared workbook's change history. Read/write
Long.

Remarks
Any changes in the change history older than the setting for this property are removed when the
workbook is closed.

ChangeHistoryDuration Property Example

This example sets the number of days shown in the change history for the active workbook if change
tracking is enabled. Any changes in the change history older than the setting for this property are
removed when the workbook is closed.
With ActiveWorkbook

If .KeepChangeHistory Then
.ChangeHistoryDuration = 7

End If
End With

Characters Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproCharactersC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproCharactersX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproCharactersA"}

Returns a Characters object that represents a range of characters within the object text. You can use
the Characters object to format characters within a text string.

Syntax
expression.Characters(Start, Length)
expression Required. An expression that returns an object in the Applies To list.
Start Optional Variant. The first character to be returned. If this argument is either 1 or omitted, this

method returns a range of characters starting with the first character.
Length Optional Variant. The number of characters to be returned. If this argument is omitted, this

method returns the remainder of the string (everything after the Start character).

Remarks
The Characters object isn't a collection.

When applied to a Range object, this property fails if it's used with arguments and the cell doesn't
contain a text value.

Characters Property Example

This example formats the third character in cell A1 on Sheet1 as bold.
With Worksheets("Sheet1").Range("A1")

.Value = "abcdefg"

.Characters(3, 1).Font.Bold = True
End With

CodeName Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproCodeNameC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproCodeNameX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproCodeNameA"}

Returns the code name for the object. Read-only String.

Remarks
The code name for an object can be used in place of an expression that returns the object. For
example, if the code name for worksheet one is "Sheet1", the following expressions are identical:
Worksheets(1).Range("a1")
Sheet1.Range("a1")
It's possible for the sheet name to be different from the code name. When you create a sheet, the
sheet name and code name are the same, but changing the sheet name doesn'tchange the code
name, and changing the code name (using the Properties window in the Visual Basic Editor) doesn't
change the sheet name.

CodeName Property Example

This example displays the code name for worksheet one.
MsgBox Worksheets(1).CodeName

ControlFormat Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproControlFormatC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproControlFormatX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproControlFormatA"}

Returns a ControlFormat object that contains Microsoft Excel control properties. Read-only.

ControlFormat Property Example

This example removes the selected item from a list box. If Shapes(2) doesn't represent a list box,
this example fails.
Set lbcf = Worksheets(1).Shapes(2).ControlFormat
lbcf.RemoveItem lbcf.ListIndex

DropDownLines Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDropDownLinesC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDropDownLinesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDropDownLinesA"}

Returns or sets the number of list lines displayed in the drop-down portion of a combo box.
Read/write Long.

Remarks
This property is ignored on the Apple Macintosh.

DropDownLines Property Example

This example creates a combo box with 10 list lines.
With Worksheets(1).Shapes.AddFormControl(xlDropDown, _

Left:=10, Top:=10, Width:=100, Height:=10)
.ControlFormat.DropDownLines = 10

End With

FormControlType Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproFormControlTypeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproFormControlTypeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproFormControlTypeA"}

Returns the Microsoft Excel control type. Can be one of the following XlFormControl constants:
xlButtonControl, xlCheckBox, xlDropDown, xlEditBox, xlGroupBox, xlLabel, xlListBox,
xlOptionButton, xlScrollBar, or xlSpinner. Read-only Long.

Remarks
You cannot use this property with ActiveX controls (the Type property for the Shape object must
return msoFormControl).

FormControlType Property Example

This example clears all the Microsoft Excel check boxes on worksheet one.
For Each s In Worksheets(1).Shapes

If s.Type = msoFormControl Then
If s.FormControlType = xlCheckBox Then _

s.ControlFormat.Value = False
End If

Next

LargeChange Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproLargeChangeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproLargeChangeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproLargeChangeA"}

Returns or sets the amount that the scroll box increments or decrements for a page scroll (when the
user clicks in the scroll bar body region). Read/write Long

LargeChange Property Example

This example creates a scroll bar and sets its linked cell, minimum, maximum, large change, and
small change values.
Set sb = Worksheets(1).Shapes.AddFormControl(xlScrollBar, _

Left:=10, Top:=10, Width:=10, Height:=200)
With sb.ControlFormat

.LinkedCell = "D1"

.Max = 100

.Min = 0

.LargeChange = 10

.SmallChange = 2
End With

LinkFormat Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproLinkFormatC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproLinkFormatX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproLinkFormatA"}

Returns a LinkFormat object that contains linked OLE object properties. Read-only.

LinkFormat Property Example

This example updates all linked OLE objects on worksheet one.
For Each s In Worksheets(1).Shapes

If s.Type = msoLinkedOLEObject Then s.LinkFormat.Update
Next

ListCount Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproListCountC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproListCountX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproListCountA"}

Returns the number of entries in a list box or combo box. Returns 0 (zero) if there are no entries in
the list. Read-only Long.

ListCount Property Example

This example adjusts a combo box to display all entries in its list. If Shapes(1) does not represent a
combo box, this example fails.
Set cf = Worksheets(1).Shapes(1).ControlFormat
cf.DropDownLines = cf.ListCount

ListIndex Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproListIndexC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproListIndexX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproListIndexA"}

Returns or sets the index number of the currently selected item in a list box or combo box. Read/write
Long.

Remarks
You cannot use this property ith multiselect list boxes.

ListIndex Property Example

This example removes the selected item from a list box. If Shapes(2) doesn't represent a list box,
this example fails.
Set lbcf = Worksheets(1).Shapes(2).ControlFormat
lbcf.RemoveItem lbcf.ListIndex

LockedText Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproLockedTextC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproLockedTextX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproLockedTextA"}

True if the text in the specified object will be locked to prevent changes when the workbook is
protected. Read/write Boolean.

LockedText Property Example

This example locks text in embedded chart one when the workbook is protected.
Worksheets(1).ChartObjects(1).LockedText = True

Max Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproMaxC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproMaxX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproMaxA"}

Returns or sets the maximum value of a scroll bar or spinner range. The scroll bar or spinner won't
take on values greater than this maximum value. Read/write Long.

For information about using the Max worksheet function in Visual Basic, see Using Worksheet
Functions in Visual Basic.

Remarks
The value of the Max property must be greater than the value of the Min property.

Max Property Example

This example creates a scroll bar and sets its linked cell, minimum, maximum, large change, and
small change values.
Set sb = Worksheets(1).Shapes.AddFormControl(xlScrollBar, _

Left:=10, Top:=10, Width:=10, Height:=200)
With sb.ControlFormat

.LinkedCell = "D1"

.Max = 100

.Min = 0

.LargeChange = 10

.SmallChange = 2
End With

Min Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproMinC"} {ewc HLP95EN.DLL, DYNALINK, "Example":"xlproMinX":1}
{ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproMinA"}

Returns or sets the minumum value of a scroll bar or spinner range. The scroll bar or spinner won't
take on values less than this minimum value. Read/write Long.

For information about using the Min worksheet function in Visual Basic, see Using Worksheet
Functions in Visual Basic.

Remarks
The value of the Min property must be less than the value of the Max property.

Min Property Example

This example creates a scroll bar and sets its linked cell, minimum, maximum, large change, and
small change values.
Set sb = Worksheets(1).Shapes.AddFormControl(xlScrollBar, _

Left:=10, Top:=10, Width:=10, Height:=200)
With sb.ControlFormat

.LinkedCell = "D1"

.Max = 100

.Min = 0

.LargeChange = 10

.SmallChange = 2
End With

MultiSelect Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproMultiSelectC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproMultiSelectX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproMultiSelectA"}

Returns or sets the selection mode of the specified list box. Can be one of the following constants:
xlNone, xlSimple, or xlExtended. Read/write Long.

Remarks
Single select (xlNone) allows only one item at a time to be selected. Clicking the mouse or pressing
the SPACEBAR cancels the selection and selects the clicked item.

Simple multiselect (xlSimple) toggles the selection on an item in the list when click it with the mouse
or press the SPACEBAR when the focus is on the item. This mode is appropriate for pick lists, in which
there are often multiple items selected.

Extended multiselect (xlExtended) usually acts like a single-selection list box, so when you click an
item, you cancel all other selections. When you hold down SHIFT while clicking the mouse or pressing
an arrow key, you select items sequentially from the current item. When you hold down CTRL while
clicking the mouse, you add single items to the list. This mode is appropriate when multiple items are
allowed but not often used.

You can use the Value or ListIndex property to return and set the selected item in a single-select list
box.

You cannot link multiselect list boxes by using the LinkedCell property.

MultiSelect Property Example

This example creates a simple multiselect list box.
Set lb = Worksheets(1).Shapes.AddFormControl(xlListBox, _

Left:=10, Top:=10, Height:=100, Width:100)
lb.ControlFormat.MultiSelect = xlSimple

OLEFormat Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproOLEFormatC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproOLEFormatX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproOLEFormatA"}

Returns an OLEFormat object that contains OLE object properties. Read-only.

OLEFormat Property Example

This example activates an OLE object. If Shapes(1) doesn't represent an embedded OLE object, this
example fails..
Worksheets(1).Shapes(1).OLEFormat.Activate

OnAction Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproOnActionC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproOnActionX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproOnActionA"}

Returns or sets the name of a macro that's run when the specified object is clicked. Read/write
String.

Remarks
Setting this property for a menu item overrides any custom help information set up for the menu item
with the information set up for the assigned macro.

OnAction Property Example

This example causes Microsoft Excel to run the ShapeClick procedure whenever shape one is
clicked.
Worksheets(1).Shapes(1).OnAction = "ShapeClick"

OnWindow Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproOnWindowC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproOnWindowX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproOnWindowA"}

Returns or sets the name of the procedure that's run whenever you activate a window. Read/write
String.

Remarks
The procedure specified by this property isn't run when other procedures switch to the window or
when a command to switch to a window is received through a DDE channel. Instead, the procedure
responds to the user's actions, such as clicking a window with the mouse, clicking Go To on the Edit
menu, and so on.

If a worksheet or macro sheet has an Auto_Activate or Auto_Deactivate macro defined for it, those
macros will be run after the procedure specified by the OnWindow property.

OnWindow Property Example

This example causes the WindowActivate procedure to be run whenever window one is activated.
ThisWorkbook.Windows(1).OnWindow = "WindowActivate"

SmallChange Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproSmallChangeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproSmallChangeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproSmallChangeA"}

Returns or sets the amount that the scroll bar or spinner is incremented or decremented for a line
scroll (when the user clicks an arrow). Read/write Long.

SmallChange Property Example

This example creates a scroll bar and sets its linked cell, minimum, maximum, large change, and
small change values.
Set sb = Worksheets(1).Shapes.AddFormControl(xlScrollBar, _

Left:=10, Top:=10, Width:=10, Height:=200)
With sb.ControlFormat

.LinkedCell = "D1"

.Max = 100

.Min = 0

.LargeChange = 10

.SmallChange = 2
End With

Item Property (AddIns Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproItemAddInsObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproItemX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproItemAddInsObjA"}

Returns a single AddIn object from an AddIns collection.

Syntax
expression.Item(Index)
expression Required. An expression that returns an AddIns object.
Index Required Variant. The name or index number of the add-in.

Item Property (AddIns Collection) Example

This example displays the status of the Analysis ToolPak add-in. Note that the string used as the
index to the AddIns method is the Title property of the AddIn object.
If AddIns.Item("Analysis ToolPak").Installed = True Then

MsgBox "Analysis ToolPak add-in is installed"
Else

MsgBox "Analysis ToolPak add-in is not installed"
End If

Item Property (Areas Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproItemAreasObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproItemAreasObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproItemAreasObjA"}

Returns a single Range object from an Areas collection.

Syntax
expression.Item(Index)
expression Required. An expression that returns an Areas object.
Index Required Long. The index number of the range.

Item Property (Areas Collection) Example

This example clears the first area in the current selection if the selection contains more than one area.
If Selection.Areas.Count <> 1 Then

Selection.Areas.Item(1).Clear
End If

Item Property (Charts Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproItemChartsObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproItemChartsObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproItemChartsObjA"}

Returns a single Chart object from a Charts collection.

Syntax
expression.Item(Index)
expression An expression that returns a Charts object.
Index Required Variant. The name or index number of the chart.

Item Property (Charts Collection) Example

This example sets the number of units that the trendline on Chart1 extends forward and backward.
The example should be run on a 2-D column chart that contains a single series with a trendline.
With Charts.Item("Chart1").SeriesCollection(1).Trendlines(1)

.Forward = 5

.Backward = .5
End With

Item Property (HPageBreaks Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproItemHPageBreaksObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproItemHPageBreaksObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproItemHPageBreaksObjA"}

Returns a single HPageBreak object from an HPageBreaks collection.

Syntax
expression.Item(Index)
expression Required. An expression that returns a HPageBreaks object.
Index Required Long. The index number of the horizontal page break.

Item Property (HPageBreaks Collection) Example

This example changes the location of horizontal page break one.
Worksheets(1).HPageBreaks.Item(1).Location = .Range("e5")

Item Property (Hyperlinks Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproItemHyperlinksObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproItemHyperlinksObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproItemHyperlinksObjA"}

Returns a single Hyperlink object from a Hyperlinks collection.

Syntax
expression.Item(Index)
expression Required. An expression that returns a Hyperlinks object.
Index Required Variant. The name or index number of the hyperlink.

Item Property (Hyperlinks Collection) Example

The folllowing example activates hyperlink one on cell E5.
Worksheets(1).Range("E5").Hyperlinks.Item(1).Follow

Item Property (Panes Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproItemPanesObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproItemPanesObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproItemPanesObjA"}

Returns a single Pane object from a Panes collection.

Syntax
expression.Item(Index)
expression Required. An expression that returns a Panes object.
Index Required Long. The index number of the pane.

Item Property (Panes Collection) Example

This example splits the window in which worksheet one is displayed and then scrolls through the
pane in the lower-left corner of the window until row five is at the top of the pane.
Worksheets(1).Activate
ActiveWindow.Split = True
ActiveWindow.Panes.Item(3).ScrollRow = 5

Item Property (RecentFiles Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproItemRecentFilesObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproItemRecentFilesObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproItemRecentFilesObjA"}

Returns a single RecentFile object from a RecentFiles collection.

Syntax
expression.Item(Index)
expression Required. An expression that returns a RecentFiles object.
Index Required Long. The index number of the file.

Item Property (RecentFiles Collection) Example

This example opens file two in the list of recently used files.
Application.RecentFiles.Item(2).Open

Item Property (Sheets Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproItemSheetsObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproItemSheetsObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproItemSheetsObjA"}

Returns a single Chart or Worksheet object from a Sheets collection.

Syntax
expression.Item(Index)
expression Required. An expression that returns a Sheets object.
Index Required Variant.The name or index number of the sheet.

Item Property (Sheets Collection) Example

This example activates Sheet1.
Sheets.Item("sheet1").Activate

Item Property (Styles Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproItemStylesObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproItemStylesObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproItemStylesObjA"}

Returns a single Style object from a Styles collection.

Syntax
expression.Item(Index)
expression Required. An expression that returns a Styles object.
Index Required Variant. The name or index number of the style.

Item Property (Styles Collection) Example

This example changes the Normal style for the active workbook by setting the style's Bold property.
ActiveWorkbook.Styles.Item("Normal").Font.Bold = True

Item Property (VPageBreaks Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproItemVPageBreaksObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproItemVPageBreaksObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproItemVPageBreaksObjA"}

Returns a single VPageBreak object from a VPageBreaks collection.

Syntax
expression.Item(Index)
expression Required. An expression that returns a VPageBreaks object.
Index Required Long. The index number of the vertical page break.

Item Property (VPageBreaks Collection) Example

This example changes the location of vertical page break one.
Worksheets(1).VPageBreaks.Item(1).Location = .Range("e5")

Item Property (Windows Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproItemWindowsObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproItemWindowsObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproItemWindowsObjA"}

Returns a single Window object from a Windows collection.

Syntax
expression.Item(Index)
expression Required. An expression that returns a Windows object.
Index Required Variant. The index number of the window.

Item Property (Windows Collection) Example

This example maximizes the active window.
Windows.Item(1).WindowState = xlMaximized

Item Property (Workbooks Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproItemWorkbooksObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproItemWorkbooksObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproItemWorkbooksObjA"}

Returns a single Workbook object from a Workbooks collection.

Syntax
expression.Item(Index)
expression Required. An expression that returns a Workbooks object.
Index Required Variant. The name or index number of the workbook.

Item Property (Workbooks Collection) Example

This example sets the wb variable to the workbook for Myaddin.xla.

Set wb = Workbooks.Item("myaddin.xla")

Item Property (Worksheets Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproItemWorksheetsObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproItemWorksheetsObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproItemWorksheetsObjA"}

Returns a single Worksheet object from a Worksheets collection.

Syntax
expression.Item(Index)
expression Required. An expression that returns a Worksheets object.
Index Required Variant. The name or index number of the worksheet.

Item Property (Worksheets Collection) Example

This example changes the location of vertical page break one.
Worksheets.Item(1).VPageBreaks(1).Location = .Range("e5")

Item Method (Axes Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthItemAxesObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthItemAxesObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthItemAxesObjA"}

Returns a single Axis object from an Axes collection.

Syntax
expression.Item(Type, AxisGroup)
expression Required. An expression that returns an Axes object.
Type Required Variant. The axis type. Can be one of the following XlAxisType constants: xlValue,

xlCategory, or xlSeriesAxis (xlSeriesAxis is valid only for 3-D charts).
AxisGroup Optional Variant. The axis group. Can be one of the following XlAxisGroup constants:

xlPrimary or xlSecondary. The default value is xlPrimary.

Item Method (Axes Collection) Example

This example sets the title text for the category axis on Chart1.
With Charts("chart1").Axes.Item(xlCategory)
 .HasTitle = True
 .AxisTitle.Caption = "1994"
End With

Item Method (CalculatedFields Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthItemCalculatedFieldsObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthItemCalculatedFieldsObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlmthItemCalculatedFieldsObjA"}

Returns a single PivotField object from a CalculatedFields collection.

Syntax
expression.Item(Index)
expression Required. An expression that returns a CalculatedFields object.
Index Required Variant. The name or index number of the pivot field.

Item Method (CalculatedFields Collection) Example

This example sets the formula for calculated field one.
Worksheets(1).PivotTables(1).CalculatedFields.Item(1) _

.Formula = "=Revenue - Cost"

Item Method (CalculatedItems Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthItemCalculatedItemsObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthItemCalculatedItemsObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlmthItemCalculatedItemsObjA"}

Returns a single PivotItem object from a CalculatedItems collection.

Syntax
expression.Item(Index)
expression Required. An expression that returns a CalculatedItems object.
Index Required Variant. The name or index number of the pivot item.

Item Method (CalculatedItems Collection) Example

This example hides calculated item one.
Worksheets(1).PivotTables(1).PivotFields("year") _

.CalculatedItems.Item(1).Visible = False

Item Method (ChartGroups Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthItemChartGroupsObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthItemChartGroupsObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlmthItemChartGroupsObjA"}

Returns a single ChartGroup object from a ChartGroups collection.

Syntax
expression.Item(Index)
expression Required. An expression that returns a ChartGroups object.
Index Required Variant. The index number of the chart group.

Item Method (ChartGroups Collection) Example

This example adds drop lines to chart group one on chart sheet one.
Charts(1).ChartGroups.Item(1).HasDropLines = True

Item Method (ChartObjects Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthItemChartObjectsObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthItemChartObjectsObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlmthItemChartObjectsObjA"}

Returns a single ChartObject object from a ChartObjects collection.

Syntax
expression.Item(Index)
expression Required. An expression that returns a ChartObjects object.
Index Required Variant. The name or index number of the embedded chart.

Item Method (ChartObjects Collection) Example

This example activates embedded chart one.
Worksheets("sheet1").ChartObjects.Item(1).Activate

Item Method (Comments Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthItemCommentsObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthItemCommentsObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthItemCommentsObjA"}

Returns a single Comment object from a Comments collection.

Syntax
expression.Item(Index)
expression Required. An expression that returns a Comments object.
Index Required Long. The index number of the comment.

Item Method (Comments Collection) Example

This example example hides comment two.
Worksheets(1).Comments.Item(2).Visible = False

Item Method (CustomViews Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthItemCustomViewsObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthItemCustomViewsObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlmthItemCustomViewsObjA"}

Returns a single CustomView object from a CustomViews collection.

Syntax
expression.Item(ViewName)
expression Required. An expression that returns a CustomViews object.
ViewName Required Variant. The name or index number of the custom view.

Item Method (CustomViews Collection) Example

This example includes print settings in the custom view named "Current Inventory."
ThisWorkbook.CustomViews.Item("Current Inventory").PrintSettings = True

Item Method (DataLabels Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthItemDataLabelsObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthItemDataLabelsObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthItemDataLabelsObjA"}

Returns a single DataLabel object from a DataLabels collection.

Syntax
expression.Item(Index)
expression Required. An expression that returns a DataLabels object.
Index Required Variant. The name or index number of the data label.

Item Method (DataLabels Collection) Example

This example sets the number format for the fifth data label in series one in embedded chart one on
worksheet one.
Worksheets(1).ChartObjects(1).Chart _

.SeriesCollection(1).DataLabels.Item(5).NumberFormat = "0.000"

Item Method (FormatConditions Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthItemFormatConditionsObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthItemFormatConditionsObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlmthItemFormatConditionsObjA"}

Returns a single FormatCondition object from a FormatConditions collection.

Syntax
expression.Item(Index)
expression Required. An expression that returns a FormatConditions object.
Index Required Variant. The index number of the conditional format.

Item Method (FormatConditions Collection) Example

This example sets format properties for an existing conditional format for cells E1:E10.
With Worksheets(1).Range("e1:e10").FormatConditions.Item(1)
 With .Borders
 .LineStyle = xlContinuous
 .Weight = xlThin
 .ColorIndex = 6
 End With
End With

Item Method (LegendEntries Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthItemLegendEntriesObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthItemLegendEntriesObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlmthItemLegendEntriesObjA"}

Returns a single LegendEntry object from a LegendEntries collection.

Syntax
expression.Item(Index)
expression Required. An expression that returns a LegendEntries object.
Index Required Variant. The index number of the legend entry.

Item Method (LegendEntries Collection) Example

This example changes the font for the text of the legend entry at the top of the legend (this is usually
the legend for series one) in embedded chart one on Sheet1.
Worksheets("sheet1").ChartObjects(1).Chart _
 .Legend.LegendEntries.Item(1).Font.Italic = True

Item Method (Names Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthItemNamesObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthItemNamesObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthItemNamesObjA"}

Returns a single Name object from a Names collection.

Syntax
expression.Item(Index, IndexLocal, RefersTo)
expression Required. An expression that returns a Names object.
Index Optional Variant. The name or number of the defined name to be returned.
IndexLocal Optional Variant. The name of the defined name, in the language of the user. No

names will be translated if you use this argument.
RefersTo Optional Variant. What the name refers to. You use this argument to identify a name by

what it refers to.

Remarks
You must specify one, and only one, of these three arguments.

Item Method (Names Collection) Example

This example deletes the name "mySortRange" from the active workbook.
ActiveWorkbook.Names.Item("mySortRange").Delete

Item Method (ODBCErrors Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthItemODBCErrorsObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthItemODBCErrorsObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlmthItemODBCErrorsObjA"}

Returns a single ODBCError object from an ODBCErrors collection.

Syntax
expression.Item(Index)
expression Required. An expression that returns an ODBCErrors object.
Index Required Long. The index number of the ODBCError object.

Item Method (ODBCErrors Collection) Example

This example displays an ODBC error.
Set er = Application.ODBCErrors.Item(1)
MsgBox "The following error occurred:" &

er.ErrorString & " : " & er.SqlState

Item Method (OLEObjects Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthItemOLEObjectsObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthItemOLEObjectsObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlmthItemOLEObjectsObjA"}

Returns a single OLEObject object from an OLEObjects collection.

Syntax
expression.Item(Index)
expression Required. An expression that returns an OLEObjects object.
Index Required Variant. The index number of the OLEObject object.

Item Method (OLEObjects Collection) Example

This example deletes OLE object one from Sheet1.
Worksheets("sheet1").OLEObjects.Item(1).Delete

Item Method (Parameters Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthItemParametersObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthItemParametersObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthItemParametersObjA"}

Returns a single Parameter object from a Parameters collection.

Syntax
expression.Item(Index)
expression Required. An expression that returns a Parameters object.
Index Required Variant. The name or index number of the parameter.

Item Method (Parameters Collection) Example

This example modifies the parameter prompt string.
With Worksheets(1).QueryTables(1).Parameters.Item(1)

.SetParam xlPrompt, "Please " & .PromptString
End With

Item Method (PivotCaches Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthItemPivotCachesObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthItemPivotCachesObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlmthItemPivotCachesObjA"}

Returns a single PivotCache object from a PivotCaches collection.

Syntax
expression.Item(Index)
expression Required. An expression that returns a PivotCaches object.
Index Required Variant. The index number of the pivot cache.

Item Method (PivotCaches Collection) Example

This example refreshes cache one.
ActiveWorkbook.PivotCaches.Item(1).Refresh

Item Method (PivotFields Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthItemPivotFieldsObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthItemPivotFieldsObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthItemPivotFieldsObjA"}

Returns a single PivotField object from a PivotFields collection.

Syntax
expression.Item(Index)
expression Required. An expression that returns a PivotFields object.
Index Required Variant. The name or index number of the pivot field.

Item Method (PivotFields Collection) Example

This example makes the Year field a row field in PivotTable one on Sheet3.
Worksheets("sheet3").PivotTables(1) _
 .PivotFields.Item("year").Orientation = xlRowField

Item Method (PivotFormulas Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthItemPivotFormulasObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthItemPivotFormulasObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlmthItemPivotFormulasObjA"}

Returns a single PivotFormula object from a PivotFormulas collection.

Syntax
expression.Item(Index)
expression Required. An expression that returns a PivotFormulas object.
Index Required Variant. The index number of the pivot formula.

Item Method (PivotFormulas Collection) Example

This example displays the formula for pivot formula one.
MsgBox Worksheets(1).PivotTables(1).PivotFormulas.Item(1).Formula

Item Method (PivotItems Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthItemPivotItemsObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthItemPivotItemsObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthItemPivotItemsObjA"}

Returns a single PivotItem object from a PivotItems collection.

Syntax
expression.Item(Index)
expression Required. An expression that returns a PivotItems object.
Index Required Variant. The name or index number of the pivot item.

Item Method (PivotItems Collection) Example

This example hides the "1998" item in PivotTable one on Sheet3.
Worksheets("sheet3").PivotTables(1) _
 .PivotFields("year").PivotItems.Item("1998").Visible = False

Item Method (PivotTables Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthItemPivotTablesObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthItemPivotTablesObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthItemPivotTablesObjA"}

Returns a single PivotTable object from a PivotTables collection.

Syntax
expression.Item(Index)
expression Required. An expression that returns a PivotTables object.
Index Required Variant. The name or index number of the PivotTable.

Item Method (PivotTables Collection) Example

This example makes the Year field a row field in PivotTable one on Sheet3.
Worksheets("sheet3").PivotTables.Item(1) _
 .PivotFields("year").Orientation = xlRowField

Item Method (Points Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthItemPointsObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthItemPointsObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthItemPointsObjA"}

Returns a single Point object from a Points collection.

Syntax
expression.Item(Index)
expression Required. An expression that returns a Points object.
Index Required Long. The index number of the point.

Item Method (Points Collection) Example

This example sets the marker style for the third point in series one in embedded chart one on
worksheet one. The specified series must be a 2-D line, scatter, or radar series.
Worksheets(1).ChartObjects(1).Chart. _
 SeriesCollection(1).Points.Item(3).MarkerStyle = xlDiamond

Item Method (QueryTables Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthItemQueryTablesObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthItemQueryTablesObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlmthItemQueryTablesObjA"}

Returns a single QueryTable object from a QueryTables collection.

Syntax
expression.Item(Index)
expression Required. An expression that returns a QueryTables object.
Index Required Variant. The index number of the query table.

Item Method (QueryTables Collection) Example

This example sets a query table so that formulas to the right of the query table are automatically
updated whenever it's refreshed.
Sheets("sheet1").QueryTables.Item(1).FillAdjacentFormulas = True

Item Method (Scenarios Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthItemScenariosObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthItemScenariosObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthItemScenariosObjA"}

Returns a single Scenario object from a Scenarios collection.

Syntax
expression.Item(Index)
expression Required. An expression that returns a Scenarios object.
Index Required Variant. The name or index number of the scenario.

Item Method (Scenarios Collection) Example

This example shows the scenario named "Typical" on the worksheet named "Options."
Worksheets("options").Scenarios.Item("typical").Show

Item Method (SeriesCollection Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthItemSeriesCollectionObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthItemSeriesCollectionObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlmthItemSeriesCollectionObjA"}

Returns a single Series object from a SeriesCollection collection.

Syntax
expression.Item(Index)
expression Required. An expression that returns a SeriesCollection object.
Index Required Variant. The name or index number of the series.

Item Method (SeriesCollection Collection) Example

This example sets the number of units that the trendline on Chart1 extends forward and backward.
The example should be run on a 2-D column chart that contains a single series with a trendline.
With Charts("Chart1").SeriesCollection.Item(1).Trendlines.Item(1)

.Forward = 5

.Backward = .5
End With

Item Method (ShapeRange Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthItemShapeRangeObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthItemShapeRangeObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlmthItemShapeRangeObjA"}

Returns a single Shape object from a ShapeRange object.

Syntax
expression.Item(Index)
expression Required. An expression that returns a ShapeRange object.
Index Required Variant. The name or index number of the shape.

Item Method (ShapeRange Collection) Example

This example sets the OnAction property for shape two in a shape range. If the sr variable doesn't
represent a ShapeRange object, this example fails.
sr.Item(2).OnAction = "ShapeAction"

Item Method (Shapes Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthItemShapesObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthItemShapesObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthItemShapesObjA"}

Returns a single Shape object from a Shapes collection.

Syntax
expression.Item(Index)
expression Required. An expression that returns a Shapes object.
Index Required Variant. The name or index number of the shape.

Item Method (Shapes Collection) Example

This example sets the OnAction property for shape two in a Shapes collection. If the ss variable
doesn't represent a Shapes object, this example fails.
ss.Item(2).OnAction = "ShapeAction"

Item Method (Trendlines Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthItemTrendlinesObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthItemTrendlinesObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthItemTrendlinesObjA"}

Returns a single Trendline object from a Trendlines collection.

Syntax
expression.Item(Index)
expression Required. An expression that returns a Trendlines object.
Index Optional Variant. The name or index number of the trendline.

Item Method (Trendlines Collection) Example

This example sets the number of units that the trendline on Chart1 extends forward and backward.
The example should be run on a 2-D column chart that contains a single series with a trendline.
With Charts("Chart1").SeriesCollection(1).Trendlines.Item(1)

.Forward = 5

.Backward = .5
End With

Microsoft Excel controls
Controls you add with the Forms toolbar. Don't confuse Microsoft Exel controls with ActiveX controls
(controls you add with the Control Toolbox).

ActiveX controls
Controls you add with the Control Toolbox. ActiveX controls are embedded OLE objects. Don't
confuse ActiveX controls with Microsoft Excel controls (controls you add with the Forms toolbar).

Add Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAddC"}

Adds an object to a collection. For more information, click a collection in the following list.

AddIns
CalculatedFields
CalculatedItems
ChartObjects
Charts
CustomViews
FormatConditions
HPageBreaks
Hyperlinks
Names
OLEObjects
Parameters
PivotFormulas

PivotItems
QueryTables
RecentFiles
Scenarios
SeriesCollection
Sheets
Styles
Trendlines
Validation
VPageBreaks
Workbooks
Worksheets

Group Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthGroupC"}

For more information, click one of the following objects.

Range
ShapeRange

Ungroup Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthUngroupC"}

For more information, click one of the following objects.

Range
Shape
ShapeRange

Range Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproRangeC"}

For more information, click one of the following objects.

Application
Hyperlink
Range
Shapes
Worksheet

Modify Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthModifyC"}

Modifies the data validation or conditional format. For more information, click the object you want to
modify.

FormatCondition
Validation

BarShape Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproBarShapeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproBarShapeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproBarShapeA"}

Returns or sets the shape used with the 3-D bar or column chart. Can be one of the following
XlBarShape constants: xlBox, xlConeToMax, xlConeToPoint, xlCylinder, xlPyramidToMax, or
xlPyramidToPoint. Read/write Long.

BarShape Property Example

This example sets the shape used with series one on chart one.
Charts(1).SeriesCollection(1).BarShape = xlConeToPoint

CharacterType Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproCharacterTypeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproCharacterTypeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproCharacterTypeA"}

Not used in U.S. English Microsoft Excel.

PivotSelect Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthPivotSelectC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthPivotSelectX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthPivotSelectA"}

Selects part of a PivotTable.

Syntax
expression.PivotSelect(Name, Mode)
expression An expression that returns a PivotTable object.
Name Required String. The selection, in standard PivotTable selection format.
Mode Required Long. Specifies the structured selection mode. Can be one of the following

XlPTSelectionMode constants: xlBlanks, xlButton, xlDataAndLabel, xlDataOnly, xlLabelOnly,
or xlOrigin.

PivotSelect Method Example

This example selects all date labels in PivotTable one.
Worksheets(1).PivotTables(1).PivotSelect "date[All]", xlLabelOnly

PivotSelection Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPivotSelectionC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPivotSelectionX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPivotSelectionA"}

Returns or sets the PivotTable selection, in standard PivotTable selection format. Read/write String.

Remarks
Setting this property is equivalent to calling the PivotSelect method with the Mode argument set to
xlDataAndLabel.

PivotSelection Property Example

This example selects the data and label for the salesperson named "Bob" in PivotTable one.
Worksheets(1).PivotTables(1).PivotSelection = "Salesman[Bob]"

PurgeChangeHistoryNow Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthPurgeChangeHistoryNowC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthPurgeChangeHistoryNowX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlmthPurgeChangeHistoryNowA"}

Removes entries from the change log for the specified workbook.

Syntax
expression.PurgeChangeHistoryNow(Days, SharingPassword)
expression An expression that returns a Workbook object.
Days Required Long. The number of days that changes in the change log are to be retained.
SharingPassword Optional Variant. The password that unprotects the workbook for sharing. If the

workbook is protected for sharing with a password and this argument is omitted, the user is
prompted for the password.

PurgeChangeHistoryNow Method Example

This example removes all changes that are more than one day old from the change log for the active
workbook.
ActiveWorkbook.PurgeChangeHistoryNow Days:=1

Range Property (Hyperlink Object)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproRangeHyperlinkObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproRangeHyperlinkObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproRangeHyperlinkObjA"}

Returns a Range object that represents the range the specified hyperlink is attached to. Read-only.

Range Property (Hyperlink Object) Example

This example scrolls through the workbook window until the hyperlink range is in the upper-left corner
of the active window.
Workbooks(1).Activate
Set hr = ActiveSheet.Hyperlinks(1).Range
ActiveWindow.ScrollRow = hr.Row
ActiveWindow.ScrollColumn = hr.Column

Shapes Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproShapesC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproShapesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproShapesA"}

Returns a Shapes object that represents all the shapes on the worksheet or chart sheet. Read-only.

For information about returning a single member of a collection, see Returning an Object from a
Collection.

Shapes Property Example

This example adds a blue dashed line to worksheet one.
With Worksheets(1).Shapes.AddLine(10, 10, 250, 250).Line
 .DashStyle = msoLineDashDotDot
 .ForeColor.RGB = RGB(50, 0, 128)
End With

Shape Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproShapeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproShapeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproShapeA"}

Returns a Shape object that represents the shape attached to the specified comment or hyperlink.

Shape Property Example

This example selects comment two on the active sheet.
ActiveSheet.Comments(2).Shape.Select

ShowError Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproShowErrorC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproShowErrorX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproShowErrorA"}

True if the data validation error message will be displayed whenever the user enters invalid data.
Read/write Boolean.

ShowError Property Example

This example adds data validation to cell A10 on worksheet one. The input value must be from 5
through 10; if the user types invalid data, an error message is displayed but no input message is
displayed.
With Worksheets(1).Range("A10").Validation
 .Add Type:=xlValidateWholeNumber, AlertStyle:=xlValidAlertStop, _
 Operator:=xlBetween, Formula1:="5", Formula2:="10"
 .ErrorMessage = "value must be between 5 and 10"
 .ShowInput = False
 .ShowError = True
End With

ShowInput Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproShowInputC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproShowInputX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproShowInputA"}

True if the data validation input message will be displayed whenever the user selects a cell in the
data validation range. Read/write Boolean.

ShowInput Property Example

This example adds data validation to cell A10. The input value must be from 5 through 10; if the user
types invalid data, an error message is displayed but no input message is displayed.
With Worksheets(1).Range("A10").Validation
 .Add Type:=xlValidateWholeNumber, AlertStyle:=xlValidAlertStop, _
 Operator:=xlBetween, Formula1:="5", Formula2:="10"
 .ErrorMessage = "value must be between 5 and 10"
 .ShowInput = False
 .ShowError = True
End With

Add Method (CalculatedFields or CalculatedItems Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAddCalculatedFieldsObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAddCalculatedFieldsObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlmthAddCalculatedFieldsObjA"}

Creates a new calculated field or calculated item. Returns a PivotField or PivotItem object.

Syntax
object.Add(Name, Formula)
object Required. An expression that returns a CalculatedFields or CalculatedItems object.
Name Required String. The name of the field or item.
Formula Required String. The formula for the field or item.

Add Method (CalculatedFields or CalculatedItems Collection) Example

This example adds a calculated field to PivotTable one.
Worksheets(1).PivotTables(1).CalculatedFields.Add "PxS", _

"= Product * Sales"

Add Method (ChartObjects Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAddChartObjectsObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAddChartObjectsObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlmthAddChartObjectsObjA"}

Creates a new embedded chart. Returns a ChartObject object.

Syntax
object.Add(Left, Top, Width, Height)
object Required. An expression that returns a ChartObjects object.
Left, Top Required Long. The initial coordinates of the new object (in points), relative to the upper-

left corner of cell A1 on a worksheet or to the upper-left corner of a chart.
Width, Height Required Long. The initial size of the new object, in points.

Add Method (ChartObjects Collection) Example

This example creates a new embedded chart.
Set co = Sheets("Sheet1").ChartObjects.Add(50, 40, 200, 100)
co.Chart..ChartWizard Source:=Worksheets("Sheet1").Range("A1:B2"), _

Gallery:=xlColumn, Format:=6, PlotBy:=xlColumns, _
CategoryLabels:=1, SeriesLabels:=0, HasLegend:=1

Add Method (HPageBreaks Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAddHPageBreaksObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAddHPageBreaksObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlmthAddHPageBreaksObjA"}

Adds a horizontal page break. Returns an HPageBreak object.

Syntax
object.Add(Before)
object Required. An expression that returns an HPageBreaks object.
Before Required Object. A Range object. The range above which the new page break will be

added.

Add Method (HPageBreaks Collection) Example

This example adds a horizontal page break above cell F25 and adds a vertical page break to the left
of this cell.
With Worksheets(1)

.HPageBreaks.Add .Range("F25")

.VPageBreaks.Add .Range("F25")
End With

Add Method (Hyperlinks Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAddHyperlinksObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAddHyperlinksObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthAddHyperlinksObjA"}

Adds a hyperink to the specified range or shape. Returns a Hyperlink object.

Syntax
object.Add(Anchor, Address, SubAddress)
object Required. An expression that returns a Hyperlinks object.
Anchor Required Object. The anchor for the hyperlink. Can be either a Range or Shape object.
Address Required String. The address of the hyperlink.
SubAddress Optional Variant. The subaddress of the hyperlink.

Add Method (Hyperlinks Collection) Example

This example adds a hyperlink to cell A5.
With Worksheets(1)

.Hyperlinks.Add Anchor:=.Range("a5"), _
Address:="http://www.microsoft.com"

End With

Add Method (PivotFormulas Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAddPivotFormulasObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAddPivotFormulasObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlmthAddPivotFormulasObjA"}

Creates a new pivot formula. Returns a PivotFormula object.

Syntax
object.Add(Formula)
object Required. An expression that returns a PivotFormulas object.
Formula Required String. The new pivot formula.

Add Method (PivotFormulas Collection) Example

This example creates a new pivot formula.
Worksheets(1).PivotTables(1).PivotFormulas _

.Add "Year['1998'] Apples = (Year['1997'] Apples) * 2"

Add Method (PivotItems Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAddPivotItemsObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAddPivotItemsObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthAddPivotItemsObjA"}

Creates a new pivot item. Returns a PivotItem object.

Syntax
object.Add(Name)
object Required. An expression that returns a PivotFormulas object.
Name Required String. The name of the new pivot item.

Add Method (PivotItems Collection) Example

This example creates a new pivot item.
Worksheets(1).PivotTables(1).PivotFields("Year").Add "1998"

Add Method (RecentFiles Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAddRecentFilesObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAddRecentFilesObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthAddRecentFilesObjA"}

Adds a file to the list of recently used files. Returns a RecentFile object.

Syntax
object.Add(Name)
object Required. An expression that returns a RecentFiles object.
Name Required String. The file name.

Add Method (RecentFiles Collection) Example

This example adds "Oscar.xls" to the list of recently used files.
Application.RecentFiles.Add Name:="oscar.xls"

Add Method (VPageBreaks Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAddVPageBreaksObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAddVPageBreaksObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlmthAddVPageBreaksObjA"}

Adds a vertical page break. Returns a VPageBreak object.

Syntax
object.Add(Before)
object Required. An expression that returns a VPageBreaks object.
Before Required Object. A Range object. The range to the left of which the new page break will be

added.

Add Method (VPageBreaks Collection) Example

This example adds a horizontal page break above cell F25 and adds a vertical page break to the left
of this cell.
With Worksheets(1)

.HPageBreaks.Add .Range("F25")

.VPageBreaks.Add .Range("F25")
End With

Paste Method (Floor or Walls Object)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthPasteFloorObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthPasteFloorObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthPasteFloorObjA"}

Paste a picture from the Clipboard on the floor or walls of the specified chart.

Syntax
object.Paste
object Required. An expression that returns a Floor or Walls object.

OLE Programmatic Identifiers (Microsoft Excel)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmscProgrammaticIdentifiersC;vafctCreateObject;vafctGetObject;OLE
Programmatic Identifiers"}

You use an OLE programmatic identifier (sometimes called a ProgID) to create an Automation object.
Use one of the following OLE programmatic identifiers to create a Microsoft Excel object.

Use this identifier To create this object
Excel.Application Application
Excel.Application.8 Application
Excel.Chart Workbook (returned Chart in previous versions of

Microsoft Excel)
Excel.Chart.8 Workbook
Excel.Sheet Workbook (returned Worksheet in previous versions

of Microsoft Excel)
Excel.Sheet.8 Workbook

Remarks
Using "Excel.Chart," "Excel.Sheet," or "Excel.Application" with no version number creates an object in
the most recent version of Microsoft Excel available on the machine where the macro is running.

standard PivotTable selection format
A string expression used to specify part of a PivotTable. The easiest way to understand the required
syntax is to turn on the macro recorder, select cells in the PivotTable, and then study the recorded
code.

You can refer to a particular cell only if the PivotTable selection string contains the names of all the
items used to identify individual cells in the selection. The number of items in that string should be
equal to number of fields in the view for a cell in a normal data area. If the cell is used in calculating a
subtotal or grand total, the number of items in the string would be fewer (including 0 (zero) for the
intersection of the column and row grand totals).

The item names in the string can appear in any order. If an item name is ambiguous because it
appears in another field as well, it must be qualified by "Field[Item]." If an item name contains symbols
and spaces, or if it doesn't start with an alphabetic character, it should be enclosed in single quotation
marks. If an item name contains embedded single quotation marks, each of these marks must be
converted to two single quotation marks. Quotation marks aren't required for spaces if the name is
unambiguous, and they're not required for unqualified names that begin with numbers.

AutoMargins Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproAutoMarginsC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproAutoMarginsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproAutoMarginsA"}

True if Microsoft Excel automatically calculates text frame margins. Read/write Boolean.

Remarks
When this property is True, the MarginLeft, MarginRight, MarginTop, and MaginBottom properties
are ignored.

AutoMargins Property Example

This example causes Microsoft Excel to automatically calculate text frame margins for text in shape
one.
Worksheets(1).Shapes(1).TextFrame.AutoMargins = True

Accent Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproAccentC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproAccentX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproAccentA"}

True if a vertical accent bar separates the callout text from the callout line. Read/write Long.

Accent Property Example

This example adds to myDocument an oval and a callout that points to the oval. The callout text won't
have a border, but it will have a vertical accent bar that separates the text from the callout line.
Set myDocument = Worksheets(1)
With myDocument.Shapes
 .AddShape msoShapeOval, 180, 200, 280, 130
 With .AddCallout(msoCalloutTwo, 420, 170, 170, 40)
 .TextFrame.Characters.Text = "My oval"
 With .Callout
 .Accent = True
 .Border = False
 End With
 End With
End With

AddCallout Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAddCalloutC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAddCalloutX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthAddCalloutA"}

Creates a borderless line callout. Returns a Shape object that represents the new callout.

Syntax
expression.AddCallout(Type, Left, Top, Width, Height)

expression Required. An expression that returns a Shapes object.
Type Required Long. The type of callout line. Can be one of the following MsoCalloutType

constants: msoCalloutOne (a single-segment callout line that can be either horizontal or vertical),
msoCalloutTwo (a single-segment callout line that rotates freely), msoCalloutThree (a two-
segment line), or msoCalloutFour (a three-segment line).

Left, Top Required Single. The position (in points) of the upper-left corner of the callout's bounding
box relative to the upper-left corner of the document.

Width, Height Required Single. The width and height of the callout's bounding box, in points.

Remarks
You can insert a greater variety of callouts by using the AddShape method.

AddCallout Method Example

This example adds a borderless callout with a freely rotating one-segment callout line to
myDocument and then sets the callout angle to 30 degrees.

Set myDocument = Worksheets(1)
myDocument.Shapes.AddCallout(msoCalloutTwo, 50, 50, 200, 100).Callout.Angle
= msoCalloutAngle30

AddConnector Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAddConnectorC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAddConnectorX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthAddConnectorA"}

Creates a connector. Returns a Shape object that represents the new connector. When a connector
is added, it's not connected to anything. Use the BeginConnect and EndConnect methods to attach
the beginning and end of a connector to other shapes in the document.

Syntax
expression.AddConnector(Type, BeginX, BeginY, EndX, EndY)

expression Required. An expression that returns a Shapes object.
Type Required Long. The type of connector. Can be one of the following MsoConnectorType

constants: msoConnectorCurve, msoConnectorElbow, or msoConnectorStraight.
BeginX, BeginY Required Single. The position (in points) of the connector's starting point relative

to the upper-left corner of the document.
EndX, EndY Required Single. The position (in points) of the connector's end point relative to the

upper-left corner of the document.

Remarks
When you attach a connector to a shape, the size and position of the connector are automatically
adjusted, if necessary. Therefore, if you're going to attach a connector to other shapes, the position
and dimensions you specify when adding the connector are irrelevant.

AddConnector Method Example

This example adds two rectangles to myDocument and connects them with a curved connector. Note
that when you attach the connector to the rectangles, the size and position of the connector are
automatically adjusted; therefore, the position and dimensions you specify when adding the callout
are irrelevant (dimensions must be nonzero).
Set myDocument = Worksheets(1)
Set s = myDocument.Shapes
Set firstRect = s.AddShape(msoShapeRectangle, 100, 50, 200, 100)
Set secondRect = s.AddShape(msoShapeRectangle, 300, 300, 200, 100)
Set c = s.AddConnector(msoConnectorCurve, 0, 0, 100, 100)
With c.ConnectorFormat
 .BeginConnect ConnectedShape:=firstRect, ConnectionSite:=1
 .EndConnect ConnectedShape:=secondRect, ConnectionSite:=1
 c.RerouteConnections
End With

AddCurve Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAddCurveC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAddCurveX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthAddCurveA"}

Creates a Bézier curve. Returns a Shape object that represents the new curve.

Syntax
expression.AddCurve(SafeArrayOfPoints)

expression Required. An expression that returns a Shapes object.
SafeArrayOfPoints Required Variant. An array of coordinate pairs that specifies the vertices and

control points of the curve. The first point you specify is the starting vertex, and the next two points
are control points for the first Bézier segment. Then, for each additional segment of the curve, you
specify a vertex and two control points. The last point you specify is the ending vertex for the curve.
Note that you must always specify 3n + 1 points, where n is the number of segments in the curve.

AddCurve Method Example

The following example adds a two-segment Bézier curve to myDocument.

Dim pts(1 To 7, 1 To 2) As Single
pts(1, 1) = 0
pts(1, 2) = 0
pts(2, 1) = 72
pts(2, 2) = 72
pts(3, 1) = 100
pts(3, 2) = 40
pts(4, 1) = 20
pts(4, 2) = 50
pts(5, 1) = 90
pts(5, 2) = 120
pts(6, 1) = 60
pts(6, 2) = 30
pts(7, 1) = 150
pts(7, 2) = 90
Set myDocument = Worksheets(1)
myDocument.Shapes.AddCurve pts

AddLabel Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAddLabelC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAddLabelX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthAddLabelA"}

Creates a label. Returns a Shape object that represents the new label.

Syntax
expression.AddLabel(Orientation, Left, Top, Width, Height)

expression Required. An expression that returns a Shapes object.
Orientation Required Long. The text orientation within the label. Can be one of the following

MsoTextOrientation constants: msoTextOrientationDownward,
msoTextOrientationHorizontal, msoTextOrientationHorizontalRotatedFarEast,
msoTextOrientationMixed, msoTextOrientationUpward, msoTextOrientationVertical, or
msoTextOrientationVerticalFarEast. The Far East constants are not used in U.S./English
Microsoft Excel.

Left, Top Required Single. The position (in points) of the upper-left corner of the label relative to
the upper-left corner of the document.

Width, Height Required Single. The width and height of the label, in points.

AddLabel Method Example

This example adds a vertical label that contains the text "Test Label" to myDocument.

Set myDocument = Worksheets(1)
myDocument.Shapes.AddLabel(msoTextOrientationVertical, 100, 100, 60, 150) _
 .TextFrame.Characters.Text = "Test Label"

AddLine Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAddLineC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAddLineX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthAddLineA"}

Creates a line. Returns a Shape object that represents the new line.

Syntax
expression.AddLine(BeginX, Beginy, EndX, EndY)

expression Required. An expression that returns a Shapes object.
BeginX, BeginY Required Single. The position (in points) of the line's starting point relative to the

upper-left corner of the document.
EndX, EndY Required Single. The position (in points) of the line's end point relative to the upper-

left corner of the document.

AddLine Method Example

This example adds a blue dashed line to myDocument.

Set myDocument = Worksheets(1)
With myDocument.Shapes.AddLine(10, 10, 250, 250).Line
 .DashStyle = msoLineDashDotDot
 .ForeColor.RGB = RGB(50, 0, 128)
End With

AddNodes Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAddNodesC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAddNodesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthAddNodesA"}

Inserts a new segment at the end of the freeform that's being created, and adds the nodes that define
the segment. You can use this method as many times as you want to add nodes to the freeform
you're creating. When you finish adding nodes, use the ConvertToShape method to create the
freeform you've just defined. To add nodes to a freeform after it's been created, use the Insert method
of the ShapeNodes collection.

Syntax
expression.AddNodes(SegmentType, EditingType, X1, Y1, X2, Y2, X3, Y3)

expression Required. An expression that returns a FreeformBuilder object.
SegmentType Required Long. The type of segment to be added. Can be either of the following

MsoSegmentType constants: msoSegmentCurve or msoSegmentLine.
EditingType Required Long. The editing property of the vertex. Can be either of the following

MsoEditingType constants: msoEditingAuto or msoEditingCorner (cannot be
msoEditingSmooth or msoEditingSymmetric). If SegmentType is msoSegmentLine,
EditingType must be msoEditingAuto.

X1 Required Single. If the EditingType of the new segment is msoEditingAuto, this argument
specifies the horizontal distance (in points) from the upper-left corner of the document to the end
point of the new segment. If the EditingType of the new node is msoEditingCorner, this
argument specifies the horizontal distance (in points) from the upper-left corner of the document to
the first control point for the new segment.

Y1 Required Single. If the EditingType of the new segment is msoEditingAuto, this argument
specifies the vertical distance (in points) from the upper-left corner of the document to the end point
of the new segment. If the EditingType of the new node is msoEditingCorner, this argument
specifies the vertical distance (in points) from the upper-left corner of the document to the first
control point for the new segment.

X2 Optional Single. If the EditingType of the new segment is msoEditingCorner, this argument
specifies the horizontal distance (in points) from the upper-left corner of the document to the
second control point for the new segment. If the EditingType of the new segment is
msoEditingAuto, don't specify a value for this argument.

Y2 Optional Single. If the EditingType of the new segment is msoEditingCorner, this argument
specifies the vertical distance (in points) from the upper-left corner of the document to the second
control point for the new segment. If the EditingType of the new segment is msoEditingAuto,
don't specify a value for this argument.

X3 Optional Single. If the EditingType of the new segment is msoEditingCorner, this argument
specifies the horizontal distance (in points) from the upper-left corner of the document to the end
point of the new segment. If the EditingType of the new segment is msoEditingAuto, don't
specify a value for this argument.

Y3 Optional Single. If the EditingType of the new segment is msoEditingCorner, this argument
specifies the vertical distance (in points) from the upper-left corner of the document to the end point
of the new segment. If the EditingType of the new segment is msoEditingAuto, don't specify a
value for this argument.

AddNodes Method Example

This example adds a freeform with four segments to myDocument.

Set myDocument = Worksheets(1)
With myDocument.Shapes.BuildFreeform(msoEditingCorner, 360, 200)
 .AddNodes msoSegmentCurve, msoEditingCorner, 380, 230, 400, 250, 450,
300
 .AddNodes msoSegmentCurve, msoEditingAuto, 480, 200
 .AddNodes msoSegmentLine, msoEditingAuto, 480, 400
 .AddNodes msoSegmentLine, msoEditingAuto, 360, 200
 .ConvertToShape
End With

AddOLEObject Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAddOLEObjectC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAddOLEObjectX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthAddOLEObjectA"}

Creates an OLE object. Returns a Shape object that represents the new OLE object.

Syntax
expression.AddOLEObject(ClassType, FileName, Link, DisplayAsIcon, IconFileName,

IconIndex, IconLabel, Left, Top, Width, Height,)

expression Required. An expression that returns a Shapes object.
ClassType Optional Variant. (you must specify either ClassType or FileName). A string that

contains the programmatic identifier for the object to be created. If ClassType is specified,
FileName and Link are ignored. For more information about programmatic identifiers, see OLE
Programmatic Identifiers.

FileName Optional Variant. The file from which the object is to be created. If the path isn't
specified, the current working folder is used. You must specify either the ClassType or FileName
argument for the object, but not both.

Link Optional Variant. True to link the OLE object to the file from which it was created. False to
make the OLE object an independent copy of the file. If you specified a value for ClassType, this
argument must be False. The default value is False.

DisplayAsIcon Optional Variant. True to display the OLE object as an icon. The default value is
False.

IconFileName Optional StriVariantng. The file that contains the icon to be displayed.
IconIndex Optional Variant. The index of the icon within IconFileName. The order of icons in the

specified file corresponds to the order in which the icons appear in the Change Icon dialog box
(accessed from the Insert Object dialog box when the Display as icon check box is selected).
The first icon in the file has the index number 0 (zero). If an icon with the given index number
doesn't exist in IconFileName, the icon with the index number 1 (the second icon in the file) is
used. The default value is 0 (zero).

IconLabel Optional Variant. A label (caption) to be displayed beneath the icon.
Left, Top Optional Variant. The position (in points) of the upper-left corner of the new object

relative to the upper-left corner of the document. The default value is 0 (zero).
Width, Height Optional Variant. The initial dimensions of the OLE object, in points.

AddOLEObject Method Example

This example adds a linked Word document to myDocument.

Set myDocument = Worksheets(1)
myDocument.Shapes.AddOLEObject Left:=100, Top:=100, Width:=200,
Height:=300, _
 FileName:="c:\my documents\testing.doc", link:=True
This example adds a new command button to myDocument.

Set myDocument = Worksheets(1)
myDocument.Shapes.AddOLEObject Left:=100, Top:=100, Width:=100,
Height:=200, _
 ClassType:="Forms.CommandButton.1"

AddPicture Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAddPictureC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAddPictureX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthAddPictureA"}

Creates a picture from an existing file. Returns a Shape object that represents the new picture.

Syntax
expression.AddPicture(FileName, LinkToFile, SaveWithDocument, Left, Top, Width, Height)

expression Required. An expression that returns a Shapes object.
FileName Required String. The file from which the OLE object is to be created.
LinkToFile Required Long. True to link the picture to the file from which it was created. False to

make the picture an independent copy of the file.
SaveWithDocument Required Long. True to save the linked picture with the document into which

it's inserted. False to storeonly the link information in the document. This argument must be True if
LinkToFile is False.

Left, Top Required Single. The position (in points) of the upper-left corner of the picture relative to
the upper-left corner of the document.

Width, Height Required Single. The width and height of the picture, in points.

AddPicture Method Example

This example adds a picture created from the file Music.bmp to myDocument. The inserted picture is
linked to the file from which it was created and is saved with myDocument.

Set myDocument = Worksheets(1)
myDocument.Shapes.AddPicture "c:\microsoft office\clipart\music.bmp", _
 True, True, 100, 100, 70, 70

AddPolyline Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAddPolylineC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAddPolylineX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthAddPolylineA"}

Creates an open polyline or a closed polygon drawing. Returns a Shape object that represents the
new polyline or polygon.

Syntax
expression.AddPolyline(SafeArrayOfPoints)

expression Required. An expression that returns a Shapes object.
SafeArrayOfPoints Required Variant. An array of coordinate pairs that specifies the polyline

drawing's vertices.

Remarks
To form a closed polygon, assign the same coordinates to the first and last vertices in the polyline
drawing.

AddPolyline Method Example

This example adds a triangle to myDocument. Because the first and last points have the same
coordinates, the polygon is closed and filled. The color of the triangle's interior will be the same as the
default shape's fill color.
Dim triArray(1 To 4, 1 To 2) As Single
triArray(1, 1) = 25
triArray(1, 2) = 100
triArray(2, 1) = 100
triArray(2, 2) = 150
triArray(3, 1) = 150
triArray(3, 2) = 50
triArray(4, 1) = 25 ' Last point has same coordinates as first
triArray(4, 2) = 100
Set myDocument = Worksheets(1)
myDocument.Shapes.AddPolyline triArray

AddShape Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAddShapeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAddShapeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthAddShapeA"}

Creates an AutoShape. Returns a Shape object that represents the new AutoShape.

Syntax
expression.AddShape(Type, Left, Top, Width, Height)

expression Required. An expression that returns a Shapes object.
Type Required Long. Specifies the type of AutoShape to create. Can be any one of the

MsoAutoShapeType constants.
Left, Top Required Single. The position (in points) of the upper-left corner of the AutoShape's

bounding box relative to the upper-left corner of the document.
Width, Height Required Single. The width and height of the AutoShape's bounding box, in points.

Remarks
To change the type of an AutoShape that you've added, set the AutoShapeType property.

AddShape Method Example

This example adds a rectangle to myDocument.

Set myDocument = Worksheets(1)
myDocument.Shapes.AddShape msoShapeRectangle, 50, 50, 100, 200

AddTextbox Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAddTextboxC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAddTextboxX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthAddTextboxA"}

Creates a text box. Returns a Shape object that represents the new text box.

Syntax
expression.AddTextbox(Orientation, Left, Top, Width, Height)

expression Required. An expression that returns a Shapes object.
Orientation Required Long. The text orientation within the label. Can be one of the following

MsoTextOrientation constants: msoTextOrientationDownward,
msoTextOrientationHorizontal, msoTextOrientationHorizontalRotatedFarEast,
msoTextOrientationMixed, msoTextOrientationUpward, msoTextOrientationVertical, or
msoTextOrientationVerticalFarEast. The Far East constants are not used in U.S. English
Microsoft Excel.

Left, Top Required Single. The position (in points) of the upper-left corner of the text box relative
to the upper-left corner of the document.

Width, Height Required Single. The width and height of the text box, in points.

AddTextbox Method Example

This example adds a text box that contains the text "Test Box" to myDocument.

Set myDocument = Worksheets(1)
myDocument.Shapes.AddTextbox(msoTextOrientationHorizontal, 100, 100, 200,
50) _
 .TextFrame.Characters.Text = "Test Box"

AddTextEffect Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAddTextEffectC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAddTextEffectX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthAddTextEffectA"}

Creates a WordArt object. Returns a Shape object that represents the new WordArt object.

Syntax
expression.AddTextEffect(PresetTextEffect, Text, FontName, FontSize, FontBold, FontItalic,

Left, Top)

expression Required. An expression that returns a Shapes object.
PresetTextEffect Required Long. The preset text effect. Can be one of the following

MsoPresetTextEffect constants:
msoTextEffect1
msoTextEffect10
msoTextEffect11
msoTextEffect12
msoTextEffect13
msoTextEffect14
msoTextEffect15
msoTextEffect16
msoTextEffect17
msoTextEffect18
msoTextEffect19
msoTextEffect2
msoTextEffect20
msoTextEffect21
msoTextEffect22

msoTextEffect23
msoTextEffect24
msoTextEffect25
msoTextEffect26
msoTextEffect27
msoTextEffect28
msoTextEffect29
msoTextEffect3
msoTextEffect30
msoTextEffect4
msoTextEffect5
msoTextEffect6
msoTextEffect7
msoTextEffect8
msoTextEffect9

Text Required String. The text in the WordArt.
FontName Required String. The name of the font used in the WordArt.
FontSize Required Single. The size (in points) of the font used in the WordArt.
FontBold Required Long. True to set the font used in the WordArt to bold.
FontItalic Required Long. True to set the font used in the WordArt to italic.
Left, Top Required Single. The position (in points) of the upper-left corner of the WordArt's

bounding box relative to the upper-left corner of the document.

Remarks
When you add WordArt to a document, the height and width of the WordArt are automatically set
based on the size and amount of text you specify.

AddTextEffect Method Example

This example adds WordArt that contains the text "Test" to myDocument.

Set myDocument = Worksheets(1)
Set newWordArt =
myDocument.Shapes.AddTextEffect(PresetTextEffect:=msoTextEffect1,
Text:="Test", _
 FontName:="Arial Black", FontSize:=36, FontBold:=False,
FontItalic:=False, Left:=10, Top:=10)

Adjustments Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproAdjustmentsC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproAdjustmentsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproAdjustmentsA"}

Returns an Adjustments object that contains adjustment values for all the adjustments in the
specified shape. Applies to any Shape or ShapeRange object that represents an AutoShape,
WordArt, or a connector. Read-only.

Adjustments Property Example

This example sets to 0.25 the value of adjustment one on shape one on myDocument.

Set myDocument = Worksheets(1)
myDocument.Shapes(1).Adjustments(1) = 0.25

Align Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAlignC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAlignX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthAlignA"}

Aligns the shapes in the specified range of shapes.

Syntax
expression.Align(AlignCmd, RelativeTo)
expression Required. An expression that returns a ShapeRange object.
AlignCmd Required Long. Specifies the way the shapes in the specified shape range are to be

aligned. Can be one of the following MsoAlignCmd constants: msoAlignBottoms,
msoAlignCenters, msoAlignLefts, msoAlignMiddles, msoAlignRights, or msoAlignTops.

RelativeTo Required Long. Not used in Microsoft Excel. Must be False.

Align Method Example

This example aligns the left edges of all the shapes in the specified range in myDocument with the
left edge of the leftmost shape in the range.
Set myDocument = Worksheets(1)
myDocument.Shapes.SelectAll
Selection.ShapeRange.Align msoAlignLefts, False

Alignment Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproAlignmentC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproAlignmentX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproAlignmentA"}

Returns or sets the alignment for the specified WordArt. Can be one of the following
MsoTextEffectAlignment constants: msoTextEffectAlignmentCentered,
msoTextEffectAlignmentLeft, msoTextEffectAlignmentLetterJustify,
msoTextEffectAlignmentMixed, msoTextEffectAlignmentRight,
msoTextEffectAlignmentStretchJustify, or msoTextEffectAlignmentWordJustify. Read/write
Long.

Alignment Property Example

This example adds a WordArt object to worksheet one and then right aligns the WordArt.
Set mySh = Worksheets(1).Shapes
Set myTE = mySh.AddTextEffect(PresetTextEffect:=msoTextEffect1, _
 Text:="Test Text", FontName:="Palatino", FontSize:=54, _
 FontBold:=True, FontItalic:=False, Left:=100, Top:=50)
myTE.TextEffect.Alignment = msoTextEffectAlignmentRight

Angle Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproAngleC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproAngleX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproAngleA"}

Returns or sets the angle of the callout line. If the callout line contains more than one line segment,
this property returns or sets the angle of the segment that is farthest from the callout text box. Can be
one of the following MsoCalloutAngleType constants: msoCalloutAngle30, msoCalloutAngle45,
msoCalloutAngle60, msoCalloutAngle90, msoCalloutAngleAutomatic, or
msoCalloutAngleMixed. Read/write Long.

Remarks
If you set the value of this property to anything other than msoCalloutAngleAutomatic, the callout
line maintains a fixed angle as you drag the callout.

Angle Property Example

This example sets to 90 degrees the callout angle for a callout named "callout1" on myDocument.

Set myDocument = Worksheets(1)
myDocument.Shapes("callout1").Callout.Angle = msoCalloutAngle90

Apply Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthApplyC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthApplyX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthApplyA"}

Applies to the specified shape formatting that's been copied by using the PickUp method.

Syntax
expression.Apply
expression Required. An expression that returns a Shape or ShapeRange object.

Apply Method Example

This example copies the formatting of shape one on myDocument and then applies the copied
formatting to shape two.
Set myDocument = Worksheets(1)
With myDocument
 .Shapes(1).PickUp
 .Shapes(2).Apply
End With

AutoAttach Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproAutoAttachC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproAutoAttachX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproAutoAttachA"}

True if the place where the callout line attaches to the callout text box changes depending on whether
the origin of the callout line (where the callout points to) is to the left or right of the callout text box.
Read/write Long.

Remarks
When the value of this property is True, the drop value (the vertical distance from the edge of the
callout text box to the place where the callout line attaches) is measured from the top of the text box
when the text box is to the right of the origin, and it's measured from the bottom of the text box when
the text box is to the left of the origin. When the value of this property is False, the drop value is
always measured from the top of the text box, regardless of the relative positions of the text box and
the origin. Use the CustomDrop method to set the drop value, and use the Drop property to return
the drop value.

Setting this property affects a callout only if it has an explicitly set drop value ¾ that is, if the value of
the DropType property is msoCalloutDropCustom. By default, callouts have explicitly set drop
values when they're created.

AutoAttach Property Example

This example adds two callouts to myDocument. If you drag the text box for each of these callouts to
the left of the callout line origin, the place on the text box where the callout line attaches will change
for the automatically attached callout.
Set myDocument = Worksheets(1)
With myDocument.Shapes
 With .AddCallout(msoCalloutTwo, 420, 170, 200, 50)
 .TextFrame.Characters.Text = "auto-attached"
 .Callout.AutoAttach = True
 End With
 With .AddCallout(msoCalloutTwo, 420, 350, 200, 50)
 .TextFrame.Characters.Text = "not auto-attached"
 .Callout.AutoAttach = False
 End With
End With

AutoLength Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproAutoLengthC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproAutoLengthX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproAutoLengthA"}

True if the first segment of the callout line (the segment attached to the text callout box) is scaled
automatically whenever the callout is moved. False if the first segment of the callout retains the fixed
length specified by the Length property whenever the callout is moved. Applies only to callouts
whose lines consist of more than one segment (types msoCalloutThree and msoCalloutFour).
Read-only Long.

Remarks
This property is read-only. Use the AutomaticLength method to set this property to True, and use
the CustomLength method to set this property to False.

AutoLength Property Example

This example toggles between an automatically scaling first segment and one with a fixed length for
the callout line for shape one on myDocument. For the example to work, shape one must be a
callout.
Set myDocument = Worksheets(1)
With myDocument.Shapes(1).Callout
 If .AutoLength Then
 .CustomLength 50
 Else
 .AutomaticLength
 End If
End With

AutomaticLength Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAutomaticLengthC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAutomaticLengthX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthAutomaticLengthA"}

Specifies that the first segment of the callout line (the segment attached to the text callout box) be
scaled automatically when the callout is moved. Use the CustomLength method to specify that the
first segment of the callout line retain the fixed length returned by the Length property whenever the
callout is moved. Applies only to callouts whose lines consist of more than one segment (types
msoCalloutThree and msoCalloutFour).

Syntax
expression.AutomaticLength
expression Required. An expression that returns a CalloutFormat object.

Remarks
Applying this method sets the AutoLength property to True.

AutomaticLength Method Example

This example toggles between an automatically scaling first segment and one with a fixed length for
the callout line for shape one on myDocument. For the example to work, shape one must be a
callout.
Set myDocument = Worksheets(1)
With myDocument.Shapes(1).Callout
 If .AutoLength Then
 .CustomLength 50
 Else
 .AutomaticLength
 End If
End With

AutoShapeType Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproAutoShapeTypeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproAutoShapeTypeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproAutoShapeTypeA"}

Returns or sets the shape type for the specified Shape or ShapeRange object, which must represent
an AutoShape other than a line, freeform drawing, or connector. Read/write Long.

Note When you change the type of a shape, the shape retains its size, color, and other attributes.

Can be one of the following MsoAutoShapeType constants:

msoShape16pointStar
msoShape24pointStar
msoShape32pointStar
msoShape4pointStar
msoShape5pointStar
msoShape8pointStar
msoShapeActionButtonBackorPrevious
msoShapeActionButtonBeginning
msoShapeActionButtonCustom
msoShapeActionButtonDocument
msoShapeActionButtonEnd
msoShapeActionButtonForwardorNext
msoShapeActionButtonHelp
msoShapeActionButtonHome
msoShapeActionButtonInformation
msoShapeActionButtonMovie
msoShapeActionButtonReturn
msoShapeActionButtonSound
msoShapeArc
msoShapeBalloon
msoShapeBentArrow
msoShapeBentUpArrow
msoShapeBevel
msoShapeBlockArc
msoShapeCan
msoShapeChevron
msoShapeCircularArrow
msoShapeCloudCallout
msoShapeCross
msoShapeCube
msoShapeCurvedDownArrow
msoShapeCurvedDownRibbon
msoShapeCurvedLeftArrow
msoShapeCurvedRightArrow
msoShapeCurvedUpArrow
msoShapeCurvedUpRibbon
msoShapeDiamond

msoShapeFlowchartSort
msoShapeFlowchartStoredData
msoShapeFlowchartSummingJunction
msoShapeFlowchartTerminator
msoShapeFoldedCorner
msoShapeHeart
msoShapeHexagon
msoShapeHorizontalScroll
msoShapeIsoscelesTriangle
msoShapeLeftArrow
msoShapeLeftArrowCallout
msoShapeLeftBrace
msoShapeLeftBracket
msoShapeLeftRightArrow
msoShapeLeftRightArrowCallout
msoShapeLeftRightUpArrow
msoShapeLeftUpArrow
msoShapeLightningBolt
msoShapeLineCallout1
msoShapeLineCallout1AccentBar
msoShapeLineCallout1BorderandAccentBar
msoShapeLineCallout1NoBorder
msoShapeLineCallout2
msoShapeLineCallout2AccentBar
msoShapeLineCallout2BorderandAccentBar
msoShapeLineCallout2NoBorder
msoShapeLineCallout3
msoShapeLineCallout3AccentBar
msoShapeLineCallout3BorderandAccentBar
msoShapeLineCallout3NoBorder
msoShapeLineCallout4
msoShapeLineCallout4AccentBar
msoShapeLineCallout4BorderandAccentBar
msoShapeLineCallout4NoBorder
msoShapeMixed
msoShapeMoon
msoShapeNoSymbol

msoShapeDonut
msoShapeDoubleBrace
msoShapeDoubleBracket
msoShapeDoubleWave
msoShapeDownArrow
msoShapeDownArrowCallout
msoShapeDownRibbon
msoShapeExplosion1
msoShapeExplosion2
msoShapeFlowchartAlternateProcess
msoShapeFlowchartCard
msoShapeFlowchartCollate
msoShapeFlowchartConnector
msoShapeFlowchartData
msoShapeFlowchartDecision
msoShapeFlowchartDelay
msoShapeFlowchartDirectAccessStorage
msoShapeFlowchartDisplay
msoShapeFlowchartDocument
msoShapeFlowchartExtract
msoShapeFlowchartInternalStorage
msoShapeFlowchartMagneticDisk
msoShapeFlowchartManualInput
msoShapeFlowchartManualOperation
msoShapeFlowchartMerge
msoShapeFlowchartMultidocument
msoShapeFlowchartOffpageConnector
msoShapeFlowchartOr
msoShapeFlowchartPredefinedProcess
msoShapeFlowchartPreparation
msoShapeFlowchartProcess
msoShapeFlowchartPunchedTape
msoShapeFlowchartSequentialAccessStorage

msoShapeNotchedRightArrow
msoShapeNotPrimitive
msoShapeOctagon
msoShapeOval
msoShapeOvalCallout
msoShapeParallelogram
msoShapePentagon
msoShapePlaque
msoShapeQuadArrow
msoShapeQuadArrowCallout
msoShapeRectangle
msoShapeRectangularCallout
msoShapeRegularPentagon
msoShapeRightArrow
msoShapeRightArrowCallout
msoShapeRightBrace
msoShapeRightBracket
msoShapeRightTriangle
msoShapeRoundedRectangle
msoShapeRoundedRectangularCallout
msoShapeSmileyFace
msoShapeStripedRightArrow
msoShapeSun
msoShapeTrapezoid
msoShapeUpArrow
msoShapeUpArrowCallout
msoShapeUpDownArrow
msoShapeUpDownArrowCallout
msoShapeUpRibbon
msoShapeUTurnArrow
msoShapeVerticalScroll
msoShapeWave

Remarks
Use the Type property of the ConnectorFormat object to set or return the connector type.

AutoShapeType Property Example

This example replaces all 16-point stars with 32-point stars in myDocument.

Set myDocument = Worksheets(1)
For Each s In myDocument.Shapes
 If s.AutoShapeType = msoShape16pointStar Then
 s.AutoShapeType = msoShape32pointStar
 End If
Next

AutoSize Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproAutoSizeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproAutoSizeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproAutoSizeA"}

True if the size of the specified object is changed automatically to fit text within its boundaries.
Read/write Boolean.

AutoSize Property Example

This example adjusts the size of the text frame on shape one to fit its text.
Worksheets(1).Shapes(1).TextFrame.AutoSize = True

BeginArrowheadLength Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproBeginArrowheadLengthC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproBeginArrowheadLengthX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproBeginArrowheadLengthA"}

Returns or sets the length of the arrowhead at the beginning of the specified line. Can be one of the
following MsoArrowheadLength constants: msoArrowheadLengthMedium,
msoArrowheadLengthMixed, msoArrowheadLong, or msoArrowheadShort. Read/write Long.

BeginArrowheadLength Property Example

This example adds a line to myDocument. There's a short, narrow oval on the line's starting point and
a long, wide triangle on its end point.
Set myDocument = Worksheets(1)
With myDocument.Shapes.AddLine(100, 100, 200, 300).Line
 .BeginArrowheadLength = msoArrowheadShort
 .BeginArrowheadStyle = msoArrowheadOval
 .BeginArrowheadWidth = msoArrowheadNarrow
 .EndArrowheadLength = msoArrowheadLong
 .EndArrowheadStyle = msoArrowheadTriangle
 .EndArrowheadWidth = msoArrowheadWide
End With

BeginArrowheadStyle Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproBeginArrowheadStyleC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproBeginArrowheadStyleX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproBeginArrowheadStyleA"}

Returns or sets the style of the arrowhead at the beginning of the specified line. Can be one of the
following MsoArrowheadStyle constants: msoArrowheadDiamond, msoArrowheadNone,
msoArrowheadOpen, msoArrowheadOval, msoArrowheadStealth, msoArrowheadStyleMixed,
or msoArrowheadTriangle. Read/write Long.

BeginArrowheadStyle Property Example

This example adds a line to myDocument. There's a short, narrow oval on the line's starting point and
a long, wide triangle on its end point.
Set myDocument = Worksheets(1)
With myDocument.Shapes.AddLine(100, 100, 200, 300).Line
 .BeginArrowheadLength = msoArrowheadShort
 .BeginArrowheadStyle = msoArrowheadOval
 .BeginArrowheadWidth = msoArrowheadNarrow
 .EndArrowheadLength = msoArrowheadLong
 .EndArrowheadStyle = msoArrowheadTriangle
 .EndArrowheadWidth = msoArrowheadWide
End With

BeginArrowheadWidth Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproBeginArrowheadWidthC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproBeginArrowheadWidthX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproBeginArrowheadWidthA"}

Returns or sets the width of the arrowhead at the beginning of the specified line. Can be one of the
following MsoArrowheadWidth constants: msoArrowheadNarrow, msoArrowheadWide,
msoArrowheadWidthMedium, or msoArrowheadWidthMixed. Read/write Long.

BeginArrowheadWidth Property Example

This example adds a line to myDocument. There's a short, narrow oval on the line's starting point and
a long, wide triangle on its end point.
Set myDocument = Worksheets(1)
With myDocument.Shapes.AddLine(100, 100, 200, 300).Line
 .BeginArrowheadLength = msoArrowheadShort
 .BeginArrowheadStyle = msoArrowheadOval
 .BeginArrowheadWidth = msoArrowheadNarrow
 .EndArrowheadLength = msoArrowheadLong
 .EndArrowheadStyle = msoArrowheadTriangle
 .EndArrowheadWidth = msoArrowheadWide
End With

BeginConnect Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthBeginConnectC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthBeginConnectX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthBeginConnectA"}

Attaches the beginning of the specified connector to a specified shape. If there's already a connection
between the beginning of the connector and another shape, that connection is broken. If the
beginning of the connector isn't already positioned at the specified connecting site, this method
moves the beginning of the connector to the connecting site and adjusts the size and position of the
connector. Use the EndConnect method to attach the end of the connector to a shape.

Syntax
expression.BeginConnect(ConnectedShape, ConnectionSite)

expression Required. An expression that returns a ConnectorFormat object.
ConnectedShape Required Shape object. The shape to attach the beginning of the connector to.

The specified Shape object must be in the same Shapes collection as the connector.
ConnectionSite Required Long. A connection site on the shape specified by ConnectedShape.

Must be an integer between 1 and the integer returned by the ConnectionSiteCount property of
the specified shape. If you want the connector to automatically find the shortest path between the
two shapes it connects, specify any valid integer for this argument and then use the
RerouteConnections method after the connector is attached to shapes at both ends.

Remarks
When you attach a connector to an object, the size and position of the connector are automatically
adjusted, if necessary.

BeginConnect Method Example

This example adds two rectangles to myDocument and connects them with a curved connector.
Notice that the RerouteConnections method makes it irrelevant what values you supply for the
ConnectionSite arguments used with the BeginConnect and EndConnect methods.
Set myDocument = Worksheets(1)
Set s = myDocument.Shapes
Set firstRect = s.AddShape(msoShapeRectangle, 100, 50, 200, 100)
Set secondRect = s.AddShape(msoShapeRectangle, 300, 300, 200, 100)
Set c = s.AddConnector(msoConnectorCurve, 0, 0, 100, 100)
with c.ConnectorFormat
 .BeginConnect ConnectedShape:=firstRect, ConnectionSite:=1
 .EndConnect ConnectedShape:=secondRect, ConnectionSite:=1
 c.RerouteConnections
End With

BeginConnected Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproBeginConnectedC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproBeginConnectedX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproBeginConnectedA"}

True if the beginning of the specified connector is connected to a shape. Read-only Long.

BeginConnected Property Example

If shape three on myDocument is a connector whose beginning is connected to a shape, this
example stores the connection site number in the variable oldBeginConnSite, stores a reference
to the connected shape in the object variable oldBeginConnShape, and then disconnects the
beginning of the connector from the shape.
Set myDocument = Worksheets(1)
With myDocument.Shapes(3)
 If .Connector Then
 With .ConnectorFormat
 If .BeginConnected Then
 oldBeginConnSite = .BeginConnectionSite
 Set oldBeginConnShape = .BeginConnectedShape
 .BeginDisconnect
 End If
 End With
 End If
End With

BeginConnectedShape Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproBeginConnectedShapeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproBeginConnectedShapeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproBeginConnectedShapeA"}

Returns a Shape object that represents the shape that the beginning of the specified connector is
attached to. Read-only.

Note If the beginning of the specified connector isn't attached to a shape, this property generates
an error.

BeginConnectedShape Property Example

This example assumes that myDocument already contains two shapes attached by a connector
named "Conn1To2." The code adds a rectangle and a connector to myDocument. The beginning of
the new connector will be attached to the same connection site as the beginning of the connector
named "Conn1To2," and the end of the new connector will be attached to connection site one on the
new rectangle.
Set myDocument = Worksheets(1)
With myDocument.Shapes
 Set r3 = .AddShape(msoShapeRectangle, 450, 190, 200, 100)
 .AddConnector(msoConnectorCurve, 0, 0, 10, 10).Name = "Conn1To3"
 With .Item("Conn1To2").ConnectorFormat
 beginConnSite1 = .BeginConnectionSite
 Set beginConnShape1 = .BeginConnectedShape
 End With
 With .Item("Conn1To3").ConnectorFormat
 .BeginConnect beginConnShape1, beginConnSite1
 .EndConnect r3, 1
 End With
End With

BeginConnectionSite Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproBeginConnectionSiteC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproBeginConnectionSiteX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproBeginConnectionSiteA"}

Returns an integer that specifies the connection site that the beginning of a connector is connected
to. Read-only Long.

Note If the beginning of the specified connector isn't attached to a shape, this property generates
an error.

BeginConnectionSite Property Example

This example assumes that myDocument already contains two shapes attached by a connector
named "Conn1To2." The code adds a rectangle and a connector to myDocument. The beginning of
the new connector will be attached to the same connection site as the beginning of the connector
named "Conn1To2," and the end of the new connector will be attached to connection site one on the
new rectangle.
Set myDocument = Worksheets(1)
With myDocument.Shapes
 Set r3 = .AddShape(msoShapeRectangle, 450, 190, 200, 100)
 .AddConnector(msoConnectorCurve, 0, 0, 10, 10).Name = "Conn1To3"
 With .Item("Conn1To2").ConnectorFormat
 beginConnSite1 = .BeginConnectionSite
 Set beginConnShape1 = .BeginConnectedShape
 End With
 With .Item("Conn1To3").ConnectorFormat
 .BeginConnect beginConnShape1, beginConnSite1
 .EndConnect r3, 1
 End With
End With

BeginDisconnect Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthBeginDisconnectC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthBeginDisconnectX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthBeginDisconnectA"}

Detaches the beginning of the specified connector from the shape it's attached to. This method
doesn't alter the size or position of the connector: the beginning of the connector remains positioned
at a connection site but is no longer connected. Use the EndDisconnect method to detach the end of
the connector from a shape.

Syntax
expression.BeginDisconnect
expression Required. An expression that returns a ConnectorFormat object.

BeginDisconnect Method Example

This example adds two rectangles to myDocument, attaches them with a connector, automatically
reroutes the connector along the shortest path, and then detaches the connector from the rectangles.
Set myDocument = Worksheets(1)
Set s = myDocument.Shapes
Set firstRect = s.AddShape(msoShapeRectangle, 100, 50, 200, 100)
Set secondRect = s.AddShape(msoShapeRectangle, 300, 300, 200, 100)
Set c = s.AddConnector(msoConnectorCurve, 0, 0, 0, 0)
With c.ConnectorFormat
 .BeginConnect firstRect, 1
 .EndConnect secondRect, 1
 c.RerouteConnections
 .BeginDisconnect
 .EndDisconnect
End With

BlackWhiteMode Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproBlackWhiteModeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproBlackWhiteModeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproBlackWhiteModeA"}

This property is not used in Microsoft Excel. It is provided only for compatibility with the drawing
object models in other Microsoft Office applications.

Brightness Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproBrightnessC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproBrightnessX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproBrightnessA"}

Returns or sets the brightness of the specified picture or OLE object. The value for this property must
be a number from 0.0 (dimmest) to 1.0 (brightest). Read/write Single.

Brightness Property Example

This example sets the brightness for shape one on myDocument. Shape one must be either a picture
or an OLE object.
Set myDocument = Worksheets(1)
myDocument.Shapes(1).PictureFormat.Brightness = 0.3

BuildFreeform Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthBuildFreeformC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthBuildFreeformX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthBuildFreeformA"}

Builds a freeform object. Returns a FreeformBuilder object that represents the freeform as it is being
built. Use the AddNodes method to add segments to the freeform. After you have added at least one
segment to the freeform, you can use the ConvertToShape method to convert the FreeformBuilder
object into a Shape object that has the geometric description you've defined in the FreeformBuilder
object.

Syntax
expression.BuildFreeform(EditingType, X1, Y1)

expression Required. An expression that returns a Shapes object.
EditingType Required Long. The editing property of the first node. Can be either of the following

MsoEditingType constants: msoEditingAuto or msoEditingCorner (cannot be
msoEditingSmooth or msoEditingSymmetric).

X1, Y1 Required Single. The position (in points) of the first node in the freeform drawing relative to
the upper-left corner of the document.

BuildFreeform Method Example

This example adds a freeform with five vertices to myDocument.

Set myDocument = Worksheets(1)
With myDocument.Shapes.BuildFreeform(msoEditingCorner, 360, 200)
 .AddNodes msoSegmentCurve, msoEditingCorner, 380, 230, 400, 250, 450,
300
 .AddNodes msoSegmentCurve, msoEditingAuto, 480, 200
 .AddNodes msoSegmentLine, msoEditingAuto, 480, 400
 .AddNodes msoSegmentLine, msoEditingAuto, 360, 200
 .ConvertToShape
End With

Callout Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproCalloutC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproCalloutX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproCalloutA"}

Returns a CalloutFormat object that contains callout formatting properties for the specified shape.
Applies to Shape or ShapeRange objects that represent line callouts. Read-only.

Callout Property Example

This example adds to myDocument an oval and a callout that points to the oval. The callout text won't
have a border, but it will have a vertical accent bar that separates the text from the callout line.
Set myDocument = Worksheets(1)
With myDocument.Shapes
 .AddShape msoShapeOval, 180, 200, 280, 130
 With .AddCallout(msoCalloutTwo, 420, 170, 170, 40)
 .TextFrame.Characters.Text = "My oval"
 With .Callout
 .Accent = True
 .Border = False
 End With
 End With
End With

ColorType Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproColorTypeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproColorTypeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproColorTypeA"}

Returns or sets the type of color transformation applied to the specified picture or OLE object. Can be
one of the following MsoPictureColorType constants: msoPictureAutomatic,
msoPictureBlackAndWhite, msoPictureGrayscale, msoPictureMixed, or msoPictureWatermark.
Read/write Long.

ColorType Property Example

This example sets the color transformation to grayscale for shape one on myDocument. Shape one
must be either a picture or an OLE object.
Set myDocument = Worksheets(1)
myDocument.Shapes(1).PictureFormat.ColorType = msoPictureGrayScale

ConnectionSiteCount Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproConnectionSiteCountC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproConnectionSiteCountX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproConnectionSiteCountA"}

Returns the number of connection sites on the specified shape. Read-only Long.

ConnectionSiteCount Property Example

This example adds two rectangles to myDocument and joins them with two connectors. The
beginnings of both connectors attach to connection site one on the first rectangle; the ends of the
connectors attach to the first and last connection sites of the second rectangle.
Set myDocument = Worksheets(1)
Set s = myDocument.Shapes
Set firstRect = s.AddShape(msoShapeRectangle, 100, 50, 200, 100)
Set secondRect = s.AddShape(msoShapeRectangle, 300, 300, 200, 100)
lastsite = secondRect.ConnectionSiteCount
With s.AddConnector(msoConnectorCurve, 0, 0, 100, 100).ConnectorFormat
 .BeginConnect ConnectedShape:=firstRect, ConnectionSite:=1
 .EndConnect ConnectedShape:=secondRect, ConnectionSite:=1
End With
With s.AddConnector(msoConnectorCurve, 0, 0, 100, 100).ConnectorFormat
 .BeginConnect ConnectedShape:=firstRect, ConnectionSite:=1
 .EndConnect ConnectedShape:=secondRect, ConnectionSite:=lastsite
End With

Connector Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproConnectorC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproConnectorX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproConnectorA"}

True if the specified shape is a connector. Read-only Long.

Connector Property Example

This example deletes all connectors on myDocument.

Set myDocument = Worksheets(1)
With myDocument.Shapes
 For i = .Count To 1 Step -1
 With .Item(i)
 If .Connector Then .Delete
 End With
 Next
End With

ConnectorFormat Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproConnectorFormatC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproConnectorFormatX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproConnectorFormatA"}

Returns a ConnectorFormat object that contains connector formatting properties. Applies to Shape
or ShapeRange objects that represent connectors. Read-only.

ConnectorFormat Property Example

This example adds two rectangles to myDocument, attaches them with a connector, automatically
reroutes the connector along the shortest path, and then detaches the connector from the rectangles.
Set myDocument = Worksheets(1)
Set s = myDocument.Shapes
Set firstRect = s.AddShape(msoShapeRectangle, 100, 50, 200, 100)
Set secondRect = s.AddShape(msoShapeRectangle, 300, 300, 200, 100)
Set c = s.AddConnector(msoConnectorCurve, 0, 0, 0, 0)
with c.ConnectorFormat
 .BeginConnect firstRect, 1
 .EndConnect secondRect, 1
 c.RerouteConnections
 .BeginDisconnect
 .EndDisconnect
End With

Contrast Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproContrastC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproContrastX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproContrastA"}

Returns or sets the contrast for the specified picture or OLE object. The value for this property must
be a number from 0.0 (the least contrast) to 1.0 (the greatest contrast). Read/write Single.

Contrast Property Example

This example sets the contrast for shape one on myDocument. Shape one must be either a picture or
an OLE object.
Set myDocument = Worksheets(1)
myDocument.Shapes(1).PictureFormat.Contrast = 0.8

ConvertToShape Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthConvertToShapeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthConvertToShapeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthConvertToShapeA"}

Creates a shape that has the geometric characteristics of the specified FreeformBuilder object.
Returns a Shape object that represents the new shape.

Note You must apply the AddNodes method to a FreeformBuilder object at least once before you
use the ConvertToShape method.

Syntax
expression.ConvertToShape
expression Required. An expression that returns a FreeformBuilder object.

ConvertToShape Method Example

This example adds a freeform with five vertices to myDocument.

Set myDocument = Worksheets(1)
With myDocument.Shapes.BuildFreeform(msoEditingCorner, 360, 200)
 .AddNodes msoSegmentCurve, msoEditingCorner, 380, 230, 400, 250, 450,
300
 .AddNodes msoSegmentCurve, msoEditingAuto, 480, 200
 .AddNodes msoSegmentLine, msoEditingAuto, 480, 400
 .AddNodes msoSegmentLine, msoEditingAuto, 360, 200
 .ConvertToShape
End With

CropBottom Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproCropBottomC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproCropBottomX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproCropBottomA"}

Returns or sets the number of points that are cropped off the bottom of the specified picture or OLE
object. Read/write Single.

Note Cropping is calculated relative to the original size of the picture. For example, if you insert a
picture that is originally 100 points high, rescale it so that it's 200 points high, and then set the
CropBottom property to 50, 100 points (not 50) will be cropped off the bottom of your picture.

CropBottom Property Example

This example crops 20 points off the bottom of shape three on myDocument. For the example to
work, shape three must be either a picture or an OLE object.
Set myDocument = Worksheets(1)
myDocument.Shapes(3).PictureFormat.CropBottom = 20
Using this example, you can specify the percentage you want to crop off the bottom of the selected
shape, regardless of whether the shape has been scaled. For the example to work, the selected
shape must be either a picture or an OLE object.
percentToCrop = InputBox("What percentage do you want to crop off the
bottom of this picture?")
Set shapeToCrop = ActiveWindow.Selection.ShapeRange(1)
With shapeToCrop.Duplicate
 .ScaleHeight 1, True
 origHeight = .Height
 .Delete
End With
cropPoints = origHeight * percentToCrop / 100
shapeToCrop.PictureFormat.CropBottom = cropPoints

CropLeft Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproCropLeftC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproCropLeftX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproCropLeftA"}

Returns or sets the number of points that are cropped off the left side of the specified picture or OLE
object. Read/write Single.

Note Cropping is calculated relative to the original size of the picture. For example, if you insert a
picture that is originally 100 points wide, rescale it so that it's 200 points wide, and then set the
CropLeft property to 50, 100 points (not 50) will be cropped off the left side of your picture.

CropLeft Property Example

This example crops 20 points off the left side of shape three on myDocument. For the example to
work, shape three must be either a picture or an OLE object.
Set myDocument = Worksheets(1)
myDocument.Shapes(3).PictureFormat.CropLeft = 20
Using this example, you can specify the percentage you want to crop off the left side of the selected
shape, regardless of whether the shape has been scaled. For the example to work, the selected
shape must be either a picture or an OLE object.
percentToCrop = InputBox("What percentage do you want to crop off the left
of this picture?")
Set shapeToCrop = ActiveWindow.Selection.ShapeRange(1)
With shapeToCrop.Duplicate
 .ScaleWidth 1, True
 origWidth = .Width
 .Delete
End With
cropPoints = origWidth * percentToCrop / 100
shapeToCrop.PictureFormat.CropLeft = cropPoints

CropRight Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproCropRightC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproCropRightX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproCropRightA"}

Returns or sets the number of points that are cropped off the right side of the specified picture or OLE
object. Read/write Single.

Note Cropping is calculated relative to the original size of the picture. For example, if you insert a
picture that is originally 100 points wide, rescale it so that it's 200 points wide, and then set the
CropRight property to 50, 100 points (not 50) will be cropped off the right side of your picture.

CropRight Property Example

This example crops 20 points off the right side of shape three on myDocument. For this example to
work, shape three must be either a picture or an OLE object.
Set myDocument = Worksheets(1)
myDocument.Shapes(3).PictureFormat.CropRight = 20
Using this example, you can specify the percentage you want to cropp off the right side of the
selected shape, regardless of whether the shape has been scaled. For the example to work, the
selected shape must be either a picture or an OLE object.
percentToCrop = InputBox("What percentage do you want to crop off the right
of this picture?")
Set shapeToCrop = ActiveWindow.Selection.ShapeRange(1)
With shapeToCrop.Duplicate
 .ScaleWidth 1, True
 origWidth = .Width
 .Delete
End With
cropPoints = origWidth * percentToCrop / 100
shapeToCrop.PictureFormat.CropRight = cropPoints

CropTop Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproCropTopC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproCropTopX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproCropTopA"}

Returns or sets the number of points that are cropped off the top of the specified picture or OLE
object. Read/write Single.

Note Cropping is calculated relative to the original size of the picture. For example, if you insert a
picture that is originally 100 points high, rescale it so that it's 200 points high, and then set the
CropTop property to 50, 100 points (not 50) will be cropped off the top of your picture.

CropTop Property Example

This example crops 20 points off the top of shape three on myDocument. For the example to work,
shape three must be either a picture or an OLE object.
Set myDocument = Worksheets(1)
myDocument.Shapes(3).PictureFormat.CropTop = 20
This example allows you to specify the percentage you want to crop off the top of the selected shape,
regardless of whether the shape has been scaled. For the example to work, the selected shape must
be either a picture or an OLE object.
percentToCrop = InputBox("What percentage do you want to crop off the top
of this picture?")
Set shapeToCrop = ActiveWindow.Selection.ShapeRange(1)
With shapeToCrop.Duplicate
 .ScaleHeight 1, True
 origHeight = .Height
 .Delete
End With
cropPoints = origHeight * percentToCrop / 100
shapeToCrop.PictureFormat.CropTop = cropPoints

CustomDrop Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthCustomDropC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthCustomDropX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthCustomDropA"}

Sets the vertical distance (in points) from the edge of the text bounding box to the place where the
callout line attaches to the text box. This distance is measured from the top of the text box unless the
AutoAttach property is set to True and the text box is to the left of the origin of the callout line (the
place that the callout points to), in which case the drop distance is measured from the bottom of the
text box.

Syntax
expression.CustomDrop(Drop)

expression Required. An expression that returns a CalloutFormat object.
Drop Required Single. The drop distance, in points.

CustomDrop Method Example

This example sets the custom drop distance to 14 points, and specifies that the drop distance always
be measured from the top. For the example to work, shape three must be a callout.
Set myDocument = Worksheets(1)
With myDocument.Shapes(3).Callout
 .CustomDrop 14
 .AutoAttach = False
End With

CustomLength Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthCustomLengthC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthCustomLengthX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthCustomLengthA"}

Specifies that the first segment of the callout line (the segment attached to the text callout box) retain
a fixed length whenever the callout is moved. Use the AutomaticLength method to specify that the
first segment of the callout line be scaled automatically whenever the callout is moved. Applies only to
callouts whose lines consist of more than one segment (types msoCalloutThree and
msoCalloutFour).

Syntax
expression.CustomLength(Length)

expression Required. An expression that returns a CalloutFormat object.
Length Required Single. The length of the first segment of the callout, in points.

Remarks
Applying this method sets the AutoLength property to False and sets the Length property to the
value specified for the Length argument.

CustomLength Method Example

This example toggles between an automatically scaling first segment and one with a fixed length for
the callout line for shape one on myDocument. For the example to work, shape one must be a
callout.
Set myDocument = Worksheets(1)
With myDocument.Shapes(1).Callout
 If .AutoLength Then
 .CustomLength 50
 Else
 .AutomaticLength
 End If
End With

DashStyle Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDashStyleC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDashStyleX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDashStyleA"}

Returns or sets the dash style for the specified line. Can be one of the following MsoLineDashStyle
constants: msoLineDash, msoLineDashDot, msoLineDashDotDot, msoLineDashStyleMixed,
msoLineLongDash, msoLineLongDashDot, msoLineRoundDot, msoLineSolid, or
msoLineSquareDot. Read/write Long.

DashStyle Property Example

This example adds a blue dashed line to myDocument.

Set myDocument = Worksheets(1)
With myDocument.Shapes.AddLine(10, 10, 250, 250).Line
 .DashStyle = msoLineDashDotDot
 .ForeColor.RGB = RGB(50, 0, 128)
End With

Depth Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDepthC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDepthX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDepthA"}

Returns or sets the depth of the shape's extrusion. Can be a value from – 600 through 9600 (positive
values produce an extrusion whose front face is the original shape; negative values produce an
extrusion whose back face is the original shape). Read/write Single.

Depth Property Example

This example adds an oval to myDocument and then specifies that the oval be extruded to a depth of
50 points and that the extrusion be purple.
Set myDocument = Worksheets(1)
Set myShape = myDocument.Shapes.AddShape(msoShapeOval, 90, 90, 90, 40)
With myShape.ThreeD
 .Visible = True
 .Depth = 50
 .ExtrusionColor.RGB = RGB(255, 100, 255) ' RGB value for purple
End With

Distribute Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthDistributeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthDistributeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthDistributeA"}

Horizontally or vertically distributes the shapes in the specified range of shapes.

Syntax
expression.Distribute(DistributeCmd, RelativeTo)
expression Required. An expression that returns a ShapeRange object.
DistributeCmd Required Long. Specifies whether shapes in the range are to be distributed

horizontally or vertically. Can be either of the following MsoDistributeCmd constants:
msoDistributeHorizontally or msoDistributeVertically.

RelativeTo Required Long. Not used in Microsoft Excel. Must be False.

Distribute Method Example

This example defines a shape range that contains all the AutoShapes on myDocument and then
horizontally distributes the shapes in this range. The leftmost shape retains its position.
Set myDocument = Worksheets(1)
With myDocument.Shapes
 numShapes = .Count
 If numShapes > 1 Then
 numAutoShapes = 0
 ReDim autoShpArray(1 To numShapes)
 For i = 1 To numShapes
 If .Item(i).Type = msoAutoShape Then
 numAutoShapes = numAutoShapes + 1
 autoShpArray(numAutoShapes) = .Item(i).Name
 End If
 Next
 If numAutoShapes > 1 Then
 ReDim Preserve autoShpArray(1 To numAutoShapes)
 Set asRange = .Range(autoShpArray)
 asRange.Distribute msoDistributeHorizontally, False
 End If
 End If
End With

Drop Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDropC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDropX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDropA"}

For callouts with an explicitly set drop value, this property returns the vertical distance (in points) from
the edge of the text bounding box to the place where the callout line attaches to the text box. This
distance is measured from the top of the text box unless the AutoAttach property is set to True and
the text box is to the left of the origin of the callout line (the place that the callout points to), in which
case the drop distance is measured from the bottom of the text box. Read-only Single.

Remarks
Use the CustomDrop method to set the value of this property.

The value of this property accurately reflects the position of the callout line attachment to the text box
only if the callout has an explicitly set drop value ¾ that is, if the value of the DropType property is
msoCalloutDropCustom.

Drop Property Example

This example replaces the custom drop for shape one on myDocument with one of two preset drops,
depending on whether the custom drop value is greater than or less than half the height of the callout
text box. For the example to work, shape one must be a callout.
Set myDocument = Worksheets(1)
With myDocument.Shapes(1).Callout
 If .DropType = msoCalloutDropCustom Then
 If .Drop < .Parent.Height / 2 Then
 .PresetDrop msoCalloutDropTop
 Else
 .PresetDrop msoCalloutDropBottom
 End If
 End If
End With

DropType Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDropTypeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDropTypeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDropTypeA"}

Returns a value that indicates where the callout line attaches to the callout text box. Can be one of
the following MsoCalloutDropType constants: msoCalloutDropBottom, msoCalloutDropCenter,
msoCalloutDropCustom, msoCalloutDropMixed, or msoCalloutDropTop. Read-only Long.

Remarks
If the callout drop type is msoCalloutDropCustom, the values of the Drop and AutoAttach
properties and the relative positions of the callout text box and callout line origin (the place that the
callout points to) are used to determine where the callout line attaches to the text box.

This property is read-only. Use the PresetDrop method to set the value of this property.

DropType Property Example

This example replaces the custom drop for shape one on myDocument with one of two preset drops,
depending on whether the custom drop value is greater than or less than half the height of the callout
text box. For the example to work, shape one must be a callout.
Set myDocument = Worksheets(1)
With myDocument.Shapes(1).Callout
 If .DropType = msoCalloutDropCustom Then
 If .Drop < .Parent.Height / 2 Then
 .PresetDrop msoCalloutDropTop
 Else
 .PresetDrop msoCalloutDropBottom
 End If
 End If
End With

EditingType Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproEditingTypeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproEditingTypeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproEditingTypeA"}

If the specified node is a vertex, this property returns a value that indicates how changes made to the
node affect the two segments connected to the node. Can be one of the following MsoEditingType
constants: msoEditingAuto, msoEditingCorner, msoEditingSmooth, or msoEditingSymmetric. If
the node is a control point for a curved segment, this property returns the editing type of the adjacent
vertex. Read-only Long.

Remarks
This property is read-only. Use the SetEditingType method to set the value of this property.

EditingType Property Example

This example changes all corner nodes to smooth nodes in shape three on myDocument. Shape
three must be a freeform drawing.
Set myDocument = Worksheets(1)
With myDocument.Shapes(3).Nodes
 For n = 1 to .Count
 If .Item(n).EditingType = msoEditingCorner Then
 .SetEditingType n, msoEditingSmooth
 End If
 Next
End With

EndArrowheadLength Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproEndArrowheadLengthC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproEndArrowheadLengthX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproEndArrowheadLengthA"}

Returns or sets the length of the arrowhead at the end of the specified line. Can be one of the
following MsoArrowheadLength constants: msoArrowheadLengthMedium,
msoArrowheadLengthMixed, msoArrowheadLong, or msoArrowheadShort. Read/write Long.

EndArrowheadLength Property Example

This example adds a line to myDocument. There's a short, narrow oval on the line's starting point and
a long, wide triangle on its end point.
Set myDocument = Worksheets(1)
With myDocument.Shapes.AddLine(100, 100, 200, 300).Line
 .BeginArrowheadLength = msoArrowheadShort
 .BeginArrowheadStyle = msoArrowheadOval
 .BeginArrowheadWidth = msoArrowheadNarrow
 .EndArrowheadLength = msoArrowheadLong
 .EndArrowheadStyle = msoArrowheadTriangle
 .EndArrowheadWidth = msoArrowheadWide
End With

EndArrowheadStyle Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproEndArrowheadStyleC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproEndArrowheadStyleX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproEndArrowheadStyleA"}

Returns or sets the style of the arrowhead at the end of the specified line. Can be one of the following
MsoArrowheadStyle constants: msoArrowheadDiamond, msoArrowheadNone,
msoArrowheadOpen, msoArrowheadOval, msoArrowheadStealth, msoArrowheadStyleMixed,
or msoArrowheadTriangle. Read/write Long.

EndArrowheadStyle Property Example

This example adds a line to myDocument. There's a short, narrow oval on the line's starting point and
a long, wide triangle on its end point.
Set myDocument = Worksheets(1)
With myDocument.Shapes.AddLine(100, 100, 200, 300).Line
 .BeginArrowheadLength = msoArrowheadShort
 .BeginArrowheadStyle = msoArrowheadOval
 .BeginArrowheadWidth = msoArrowheadNarrow
 .EndArrowheadLength = msoArrowheadLong
 .EndArrowheadStyle = msoArrowheadTriangle
 .EndArrowheadWidth = msoArrowheadWide
End With

EndArrowheadWidth Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproEndArrowheadWidthC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproEndArrowheadWidthX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproEndArrowheadWidthA"}

Returns or sets the width of the arrowhead at the end of the specified line. Can be one of the
following MsoArrowheadWidth constants: msoArrowheadNarrow, msoArrowheadWide,
msoArrowheadWidthMedium, or msoArrowheadWidthMixed. Read/write Long.

EndArrowheadWidth Property Example

This example adds a line to myDocument. There's a short, narrow oval on the line's starting point and
a long, wide triangle on its end point.
Set myDocument = Worksheets(1)
With myDocument.Shapes.AddLine(100, 100, 200, 300).Line
 .BeginArrowheadLength = msoArrowheadShort
 .BeginArrowheadStyle = msoArrowheadOval
 .BeginArrowheadWidth = msoArrowheadNarrow
 .EndArrowheadLength = msoArrowheadLong
 .EndArrowheadStyle = msoArrowheadTriangle
 .EndArrowheadWidth = msoArrowheadWide
End With

EndConnect Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthEndConnectC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthEndConnectX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthEndConnectA"}

Attaches the end of the specified connector to a specified shape. If there's already a connection
between the end of the connector and another shape, that connection is broken. If the end of the
connector isn't already positioned at the specified connecting site, this method moves the end of the
connector to the connecting site and adjusts the size and position of the connector. Use the
BeginConnect method to attach the beginning of the connector to a shape.

Syntax
expression.EndConnect(ConnectedShape, ConnectionSite)

expression Required. An expression that returns a ConnectorFormat object.
ConnectedShape Required Shape object. The shape to attach the end of the connector to. The

specified Shape object must be in the same Shapes collection as the connector.
ConnectionSite Required Long. A connection site on the shape specified by ConnectedShape.

Must be an integer between 1 and the integer returned by the ConnectionSiteCount property of
the specified shape. If you want the connector to automatically find the shortest path between the
two shapes it connects, specify any valid integer for this argument and then use the
RerouteConnections method after the connector is attached to shapes at both ends.

Remarks
When you attach a connector to an object, the size and position of the connector are automatically
adjusted, if necessary.

EndConnect Method Example

This example adds two rectangles to myDocument and connects them with a curved connector.
Notice that the RerouteConnections method makes it irrelevant what values you supply for the
ConnectionSite arguments used with the BeginConnect and EndConnect methods.
Set myDocument = Worksheets(1)
Set s = myDocument.Shapes
Set firstRect = s.AddShape(msoShapeRectangle, 100, 50, 200, 100)
Set secondRect = s.AddShape(msoShapeRectangle, 300, 300, 200, 100)
Set c = s.AddConnector(msoConnectorCurve, 0, 0, 100, 100)
With c.ConnectorFormat
 .BeginConnect ConnectedShape:=firstRect, ConnectionSite:=1
 .EndConnect ConnectedShape:=secondRect, ConnectionSite:=1
 c.RerouteConnections
End With

EndConnected Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproEndConnectedC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproEndConnectedX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproEndConnectedA"}

True if the end of the specified connector is connected to a shape. Read-only Long.

EndConnected Property Example

If the end of the connector represented by shape three on myDocument is connected to a shape, this
example stores the connection site number in the variable oldEndConnSite, stores a reference to
the connected shape in the object variable oldEndConnShape, and then disconnects the end of the
connector from the shape.
Set myDocument = Worksheets(1)
With myDocument.Shapes(3)
 If .Connector Then
 With .ConnectorFormat
 If .EndConnected Then
 oldEndConnSite = .EndConnectionSite
 Set oldEndConnShape = .EndConnectedShape
 .EndDisconnect
 End If
 End With
 End If
End With

EndConnectedShape Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproEndConnectedShapeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproEndConnectedShapeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproEndConnectedShapeA"}

Returns a Shape object that represents the shape that the end of the specified connector is attached
to. Read-only.

Note If the end of the specified connector isn't attached to a shape, this property generates an
error.

EndConnectedShape Property Example

This example assumes that myDocument already contains two shapes attached by a connector
named "Conn1To2." The code adds a rectangle and a connector to myDocument. The end of the new
connector will be attached to the same connection site as the end of the connector named
"Conn1To2," and the beginning of the new connector will be attached to connection site one on the
new rectangle.
Set myDocument = Worksheets(1)
With myDocument.Shapes
 Set r3 = .AddShape(msoShapeRectangle, 100, 420, 200, 100)
 With .Item("Conn1To2").ConnectorFormat
 endConnSite1 = .EndConnectionSite
 Set endConnShape1 = .EndConnectedShape
 End With
 With .AddConnector(msoConnectorCurve, 0, 0, 10, 10).ConnectorFormat
 .BeginConnect r3, 1
 .EndConnect endConnShape1, endConnSite1
 End With
End With

EndConnectionSite Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproEndConnectionSiteC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproEndConnectionSiteX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproEndConnectionSiteA"}

Returns an integer that specifies the connection site that the end of a connector is connected to.
Read-only Long.

Note If the end of the specified connector isn't attached to a shape, this property generates an
error.

EndConnectionSite Property Example

This example assumes that myDocument already contains two shapes attached by a connector
named "Conn1To2." The code adds a rectangle and a connector to myDocument. The end of the new
connector will be attached to the same connection site as the end of the connector named
"Conn1To2," and the beginning of the new connector will be attached to connection site one on the
new rectangle.
Set myDocument = Worksheets(1)
With myDocument.Shapes
 Set r3 = .AddShape(msoShapeRectangle, 100, 420, 200, 100)
 With .Item("Conn1To2").ConnectorFormat
 endConnSite1 = .EndConnectionSite
 Set endConnShape1 = .EndConnectedShape
 End With
 With .AddConnector(msoConnectorCurve, 0, 0, 10, 10).ConnectorFormat
 .BeginConnect r3, 1
 .EndConnect endConnShape1, endConnSite1
 End With
End With

EndDisconnect Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthEndDisconnectC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthEndDisconnectX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthEndDisconnectA"}

Detaches the end of the specified connector from the shape it's attached to. This method doesn't alter
the size or position of the connector: the end of the connector remains positioned at a connection site
but is no longer connected. Use the BeginDisconnect method to detach the beginning of the
connector from a shape.

Syntax
expression.EndDisconnect
expression Required. An expression that returns a ConnectorFormat object.

EndDisconnect Method Example

This example adds two rectangles to myDocument, attaches them with a connector, automatically
reroutes the connector along the shortest path, and then detaches the connector from the rectangles.
Set myDocument = Worksheets(1)
Set s = myDocument.Shapes
Set firstRect = s.AddShape(msoShapeRectangle, 100, 50, 200, 100)
Set secondRect = s.AddShape(msoShapeRectangle, 300, 300, 200, 100)
set c = s.AddConnector(msoConnectorCurve, 0, 0, 0, 0)
with c.ConnectorFormat
 .BeginConnect firstRect, 1
 .EndConnect secondRect, 1
 c.RerouteConnections
 .BeginDisconnect
 .EndDisconnect
End With

ExtrusionColor Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproExtrusionColorC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproExtrusionColorX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproExtrusionColorA"}

Returns a ColorFormat object that represents the color of the shape's extrusion. Read-only.

ExtrusionColor Property Example

This example adds an oval to myDocument and then specifies that the oval be extruded to a depth of
50 points and that the extrusion be purple.
Set myDocument = Worksheets(1)
Set myShape = myDocument.Shapes.AddShape(msoShapeOval, 90, 90, 90, 40)
With myShape.ThreeD
 .Visible = True
 .Depth = 50
 .ExtrusionColor.RGB = RGB(255, 100, 255) ' RGB value for purple
End With

ExtrusionColorType Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproExtrusionColorTypeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproExtrusionColorTypeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproExtrusionColorTypeA"}

Returns or sets a value that indicates whether the extrusion color is based on the extruded shape's fill
(the front face of the extrusion) and automatically changes when the shape's fill changes, or whether
the extrusion color is independent of the shape's fill. Can be one of the following
MsoExtrusionColorType constants: msoExtrusionColorAutomatic (extrusion color based on
shape fill), msoExtrusionColorCustom (extrusion color independent of shape fill), or
msoExtrusionColorTypeMixed. Read/write Long.

ExtrusionColorType Property Example

If shape one on myDocument has an automatic extrusion color, this example gives the extrusion a
custom yellow color.
Set myDocument = Worksheets(1)
With myDocument.Shapes(1).ThreeD
 If .ExtrusionColorType = msoExtrusionColorAutomatic Then
 .ExtrusionColor.RGB = RGB(240, 235, 16)
 End If
End With

Fill Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproFillC"} {ewc HLP95EN.DLL, DYNALINK, "Example":"xlproFillX":1}
{ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproFillA"}

Returns a FillFormat object that contains fill formatting properties for the specified chart or shape.
Read-only.

Fill Property Example

This example adds a rectangle to myDocument and then sets the foreground color, background color,
and gradient for the rectangle's fill.
Set myDocument = Worksheets(1)
With myDocument.Shapes.AddShape(msoShapeRectangle, 90, 90, 90, 50).Fill
 .ForeColor.RGB = RGB(128, 0, 0)
 .BackColor.RGB = RGB(170, 170, 170)
 .TwoColorGradient msoGradientHorizontal, 1
End With

Flip Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthFlipC"} {ewc HLP95EN.DLL, DYNALINK, "Example":"xlmthFlipX":1}
{ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthFlipA"}

Flips the specified shape around its horizontal or vertical axis.

Syntax
expression.Flip(FlipCmd)
expression Required. An expression that returns a Shape or ShapeRange object.
FlipCmd Required Long. Specifies whether the shape is to be flipped horizontally or vertically. Can

be either of the following MsoFlipCmd constants: msoFlipHorizontal or msoFlipVertical.

Flip Method Example

This example adds a triangle to myDocument, duplicates the triangle, and then flips the duplicate
triangle vertically and makes it red.
Set myDocument = Worksheets(1)
With myDocument.Shapes.AddShape(msoShapeRightTriangle, 10, 10, 50,
50).Duplicate
 .Fill.ForeColor.RGB = RGB(255, 0, 0)
 .Flip msoFlipVertical
End With

FontBold Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproFontBoldC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproFontBoldX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproFontBoldA"}

True if the font in the specified WordArt is bold. Read/write Long.

FontBold Property Example

This example sets the font to bold for shape three on myDocument if the shape is WordArt.

Set myDocument = Worksheets(1)
With myDocument.Shapes(3)
 If .Type = msoTextEffect Then
 .TextEffect.FontBold = True
 End If
End With

FontItalic Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproFontItalicC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproFontItalicX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproFontItalicA"}

True if the font in the specified WordArt is italic. Read/write Long.

FontItalic Property Example

This example sets the font to italic for the shape named "WordArt 4" in myDocument.

Set myDocument = Worksheets(1)
myDocument.Shapes("WordArt 4").TextEffect.FontItalic = True

FontName Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproFontNameC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproFontNameX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproFontNameA"}

Returns or sets the name of the font in the specified WordArt. Read/write String.

FontName Property Example

This example sets the font name to "Courier New" for shape three on myDocument if the shape is
WordArt.
Set myDocument = Worksheets(1)
With myDocument.Shapes(3)
 If .Type = msoTextEffect Then
 .TextEffect.FontName = "Courier New"
 End If
End With

FontSize Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproFontSizeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproFontSizeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproFontSizeA"}

Returns or sets the font size for the specified WordArt, in points. Read/write Single.

FontSize Property Example

This example sets the font size to 16 points for the shape named "WordArt 4" in myDocument.

Set myDocument = Worksheets(1)
myDocument.Shapes("WordArt 4").TextEffect.FontSize = 16

Gap Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproGapC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproGapX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproGapA"}

Returns or sets the horizontal distance (in points) between the end of the callout line and the text
bounding box. Read/write Single.

Gap Property Example

This example sets the distance between the callout line and the text bounding box to 3 points for
shape one on myDocument. For the example to work, shape one must be a callout.

Set myDocument = Worksheets(1)
myDocument.Shapes(1).Callout.Gap = 3

Group Method (ShapeRange Object)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthGroupShapeRangeObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthGroupShapeRangeObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlmthGroupShapeRangeObjA"}

Groups the shapes in the specified range. Returns the grouped shapes as a single Shape object.

Syntax
expression.Group
expression Required. An expression that returns a ShapeRange object.

Remarks
Because a group of shapes is treated as a single shape, grouping and ungrouping shapes changes
the number of items in the Shapes collection and changes the index numbers of items that come
after the affected items in the collection.

Group Method (ShapeRange Object) Example

This example adds two shapes to myDocument, groups the two new shapes, sets the fill for the
group, rotates the group, and sends the group to the back of the drawing layer.
Set myDocument = Worksheets(1)
With myDocument.Shapes
 .AddShape(msoShapeCan, 50, 10, 100, 200).Name = "shpOne"
 .AddShape(msoShapeCube, 150, 250, 100, 200).Name = "shpTwo"
 With .Range(Array("shpOne", "shpTwo")).Group
 .Fill.PresetTextured msoTextureBlueTissuePaper
 .Rotation = 45
 .ZOrder msoSendToBack
 End With
End With

GroupItems Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproGroupItemsC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproGroupItemsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproGroupItemsA"}

Returns a GroupShapes object that represents the individual shapes in the specified group. Use the
Item method of the GroupShapes object to return a single shape from the group. Applies to Shape
or ShapeRange objects that represent grouped shapes. Read-only.

GroupItems Property Example

This example adds three triangles to myDocument, groups them, sets a color for the entire group,
and then changes the color for the second triangle only.
Set myDocument = Worksheets(1)
With myDocument.Shapes
 .AddShape(msoShapeIsoscelesTriangle, 10, 10, 100, 100).Name = "shpOne"
 .AddShape(msoShapeIsoscelesTriangle, 150, 10, 100, 100).Name = "shpTwo"
 .AddShape(msoShapeIsoscelesTriangle, 300, 10, 100, 100).Name =
"shpThree"
 With .Range(Array("shpOne", "shpTwo", "shpThree")).Group
 .Fill.PresetTextured msoTextureBlueTissuePaper
 .GroupItems(2).Fill.PresetTextured msoTextureGreenMarble
 End With
End With

HorizontalFlip Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproHorizontalFlipC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproHorizontalFlipX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproHorizontalFlipA"}

True if the specified shape is flipped around the horizontal axis. Read-only Long.

HorizontalFlip Property Example

This example restores each shape on myDocument to its original state if it's been flipped horizontally
or vertically.
Set myDocument = Worksheets(1)
For Each s In myDocument.Shapes
 If s.HorizontalFlip Then s.Flip msoFlipHorizontal
 If s.VerticalFlip Then s.Flip msoFlipVertical
Next

IncrementBrightness Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthIncrementBrightnessC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthIncrementBrightnessX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlmthIncrementBrightnessA"}

Changes the brightness of the picture by the specified amount. Use the Brightness property to set
the absolute brightness of the picture.

Syntax
expression.IncrementBrightness(Increment)

expression Required. An expression that returns a PictureFormat object.
Increment Required Single. Specifies how much to change the value of the Brightness property

for the picture. A positive value makes the picture brighter; a negative value makes the picture
darker.

Remarks
You cannot adjust the brightness of a picture past the upper or lower limit for the Brightness property.
For example, if the Brightness property is initially set to 0.9 and you specify 0.3 for the Increment
argument, the resulting brightness level will be 1.0, which is the upper limit for the Brightness
property, instead of 1.2.

IncrementBrightness Method Example

This example creates a duplicate of shape one on myDocument and then moves and darkens the
duplicate. For the example to work, shape one must be either a picture or an OLE object.
Set myDocument = Worksheets(1)
With myDocument.Shapes(1).Duplicate
 .PictureFormat.IncrementBrightness -0.2
 .IncrementLeft 50
 .IncrementTop 50
End With

IncrementContrast Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthIncrementContrastC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthIncrementContrastX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthIncrementContrastA"}

Changes the contrast of the picture by the specified amount. Use the Contrast property to set the
absolute contrast for the picture.

Syntax
expression.IncrementContrast(Increment)

expression Required. An expression that returns a PictureFormat object.
Increment Required Single. Specifies how much to change the value of the Contrast property for

the picture. A positive value increases the contrast; a negative value decreases the contrast.

Remarks
You cannot adjust the contrast of a picture past the upper or lower limit for the Contrast property. For
example, if the Contrast property is initially set to 0.9 and you specify 0.3 for the Increment
argument, the resulting contrast level will be 1.0, which is the upper limit for the Contrast property,
instead of 1.2.

IncrementContrast Method Example

This example increases the contrast for all pictures on myDocument that aren't already set to
maximum contrast.
Set myDocument = Worksheets(1)
For Each s In myDocument.Shapes
 If s.Type = msoPicture Or s.Type = msoLinkedPicture Then
 s.PictureFormat.IncrementContrast 0.1
 End If
Next

IncrementLeft Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthIncrementLeftC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthIncrementLeftX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthIncrementLeftA"}

Moves the specified shape horizontally by the specified number of points.

Syntax
expression.IncrementLeft(Increment)
expression Required. An expression that returns a Shape object.
Increment Required Single. Specifies how far the shape is to be moved horizontally, in points. A

positive value moves the shape to the right; a negative value moves it to the left.

IncrementLeft Method Example

This example duplicates shape one on myDocument, sets the fill for the duplicate, moves it 70 points
to the right and 50 points up, and rotates it 30 degrees clockwise.
Set myDocument = Worksheets(1)
With myDocument.Shapes(1).Duplicate
 .Fill.PresetTextured msoTextureGranite
 .IncrementLeft 70
 .IncrementTop -50
 .IncrementRotation 30
End With

IncrementOffsetX Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthIncrementOffsetXC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthIncrementOffsetXX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthIncrementOffsetXA"}

Changes the horizontal offset of the shadow by the specified number of points. Use the OffsetX
property to set the absolute horizontal shadow offset.

Syntax
expression.IncrementOffsetX(Increment)

expression Required. An expression that returns a ShadowFormat object.
Increment Required Single. Specifies how far the shadow offset is to be moved horizontally, in

points. A positive value moves the shadow to the right; a negative value moves it to the left.

IncrementOffsetX Method Example

This example moves the shadow on shape three on myDocument to the left by 3 points.

Set myDocument = Worksheets(1)
myDocument.Shapes(3).Shadow.IncrementOffsetX -3

IncrementOffsetY Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthIncrementOffsetYC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthIncrementOffsetYX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthIncrementOffsetYA"}

Changes the vertical offset of the shadow by the specified number of points. Use the OffsetY property
to set the absolute vertical shadow offset.

Syntax
expression.IncrementOffsetY(Increment)

expression Required. An expression that returns a ShadowFormat object.
Increment Required Single. Specifies how far the shadow offset is to be moved vertically, in

points. A positive value moves the shadow down; a negative value moves it up.

IncrementOffsetY Method Example

This example moves the shadow on shape three on myDocument up by 3 points.

Set myDocument = Worksheets(1)
myDocument.Shapes(3).Shadow.IncrementOffsetY -3

IncrementRotation Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthIncrementRotationC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthIncrementRotationMethodX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlmthIncrementRotationA"}

Changes the rotation of the specified shape around the z-axis. by the specified number of degrees.
Use the Rotation property to set the absolute rotation of the shape.

Syntax
expression.IncrementRotation(Increment)
expression Required. An expression that returns a Shape object.
Increment Required Single. Specifies how far the shape is to be rotated horizontally, in degrees. A

positive value rotates the shape clockwise; a negative value rotates it counterclockwise.

Remarks
To rotate a three-dimensional shape around the x-axis or the y-axis, use the IncrementRotationX
method or the IncrementRotationY method.

IncrementRotation Method Example

This example duplicates shape one on myDocument, sets the fill for the duplicate, moves it 70 points
to the right and 50 points up, and rotates it 30 degrees clockwise.
Set myDocument = Worksheets(1)
With myDocument.Shapes(1).Duplicate
 .Fill.PresetTextured msoTextureGranite
 .IncrementLeft 70
 .IncrementTop -50
 .IncrementRotation 30
End With

IncrementRotationX Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthIncrementRotationXC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthIncrementRotationXX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthIncrementRotationXA"}

Changes the rotation of the specified shape around the x-axis by the specified number of degrees.
Use the RotationX property to set the absolute rotation of the shape around the x-axis.

Syntax
expression.IncrementRotationX(Increment)

expression Required. An expression that returns a ThreeDFormat object.
Increment Required Single. Specifies how much (in degrees) the rotation of the shape around the

x-axis is to be changed. Can be a value from – 90 through 90. A positive value tilts the shape up; a
negative value tilts it down.

Remarks
You cannot adjust the rotation around the x-axis of the specified shape past the upper or lower limit
for the RotationX property (90 degrees to – 90 degrees). For example, if the RotationX property is
initially set to 80 and you specify 40 for the Increment argument, the resulting rotation will be 90 (the
upper limit for the RotationX property) instead of 120.

To change the rotation of a shape around the y-axis, use the IncrementRotationY method. To
change the rotation around the z-axis, use the IncrementRotation method.

IncrementRotationX Method Example

This example tilts shape one on myDocument up 10 degrees. Shape one must be an extruded shape
for you to see the effect of this code.
Set myDocument = Worksheets(1)
myDocument.Shapes(1).ThreeD.IncrementRotationX 10

IncrementRotationY Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthIncrementRotationYC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthIncrementRotationYX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthIncrementRotationYA"}

Changes the rotation of the specified shape around the y-axis by the specified number of degrees.
Use the RotationY property to set the absolute rotation of the shape around the y-axis.

Syntax
expression.IncrementRotationY(Increment)

expression Required. An expression that returns a ThreeDFormat object.
Increment Required Single. Specifies how much (in degrees) the rotation of the shape around the

y-axis is to be changed. Can be a value from – 90 through 90. A positive value tilts the shape to
the left; a negative value tilts it to the right.

Remarks
To change the rotation of a shape around the x-axis, use the IncrementRotationX method. To
change the rotation around the z-axis, use the IncrementRotation method.

You cannot adjust the rotation around the y-axis of the specified shape past the upper or lower limit
for the RotationY property (90 degrees to – 90 degrees). For example, if the RotationY property is
initially set to 80 and you specify 40 for the Increment argument, the resulting rotation will be 90 (the
upper limit for the RotationY property) instead of 120.

IncrementRotationY Method Example

This example tilts shape one on myDocument 10 degrees to the right. Shape one must be an
extruded shape for you to see the effect of this code.
Set myDocument = Worksheets(1)
myDocument.Shapes(1).ThreeD.IncrementRotationY -10

IncrementTop Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthIncrementTopC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthIncrementTopX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthIncrementTopA"}

Moves the specified shape vertically by the specified number of points.

Syntax
expression.IncrementTop(Increment)
expression Required. An expression that returns a Shape object.
Increment Required Single. Specifies how far the shape object is to be moved vertically, in points.

A positive value moves the shape down; a negative value moves it up.

IncrementTop Method Example

This example duplicates shape one on myDocument, sets the fill for the duplicate, moves it 70 points
to the right and 50 points up, and rotates it 30 degrees clockwise.
Set myDocument = Worksheets(1)
With myDocument.Shapes(1).Duplicate
 .Fill.PresetTextured msoTextureGranite
 .IncrementLeft 70
 .IncrementTop -50
 .IncrementRotation 30
End With

KernedPairs Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproKernedPairsC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproKernedPairsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproKernedPairsA"}

True if character pairs in the specified WordArt are kerned. Read/write Long.

KernedPairs Property Example

This example turns on character pair kerning for shape three on myDocument if the shape is
WordArt.
Set myDocument = Worksheets(1)
With myDocument.Shapes(3)
 If .Type = msoTextEffect Then
 .TextEffect.KernedPairs = True
 End If
End With

Length Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproLengthC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproLengthX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproLengthA"}

When the AutoLength property of the specified callout is set to False, the Length property returns
the length (in points) of the first segment of the callout line (the segment attached to the text callout
box). Applies only to callouts whose lines consist of more than one segment (types msoCalloutThree
and msoCalloutFour). Read-only Single.

Remarks
This property is read-only. Use the CustomLength method to set the value of this property for the
CalloutFormat object.

Length Property Example

If the first line segment in the callout named "callout1" has a fixed length, this example specifies that
the length of the first line segment in the callout named "callout2" will also be fixed at that length. For
the example to work, both callouts must have multiple-segment lines.
Set myDocument = Worksheets(1)
With myDocument.Shapes
 With .Item("callout1").Callout
 If Not .AutoLength Then len1 = .Length
 End With
 If len1 Then .Item("callout2").Callout.CustomLength len1
End With

Line Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproLineC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproLineX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproLineA"}

Returns a LineFormat object that contains line formatting properties for the specified shape. (For a
line, the LineFormat object represents the line itself; for a shape with a border, the LineFormat
object represents the border.) Read-only.

Line Property Example

This example adds a blue dashed line to myDocument.

Set myDocument = Worksheets(1)
With myDocument.Shapes.AddLine(10, 10, 250, 250).Line
 .DashStyle = msoLineDashDotDot
 .ForeColor.RGB = RGB(50, 0, 128)
End With
This example adds a cross to myDocument and then sets its border to be 8 points thick and red.

Set myDocument = Worksheets(1)
With myDocument.Shapes.AddShape(msoShapeCross, 10, 10, 50, 70).Line
 .Weight = 8
 .ForeColor.RGB = RGB(255, 0, 0)
End With

LockAspectRatio Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproLockAspectRatioC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproLockAspectRatioX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproLockAspectRatioA"}

True if the specified shape retains its original proportions when you resize it. False if you can change
the height and width of the shape independently of one another when you resize it. Read/write Long.

LockAspectRatio Property Example

This example adds a cube to myDocument. The cube can be moved and resized, but not
reproportioned.
Set myDocument = Worksheets(1)
myDocument.Shapes.AddShape(msoShapeCube, 50, 50, 100, 200).LockAspectRatio
= True

MarginBottom Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproMarginBottomC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproMarginBottomX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproMarginBottomA"}

Returns or sets the distance (in points) between the bottom of the text frame and the bottom of the
inscribed rectangle of the shape that contains the text. Read/write Single.

MarginBottom Property Example

This example adds a rectangle to myDocument, adds text to the rectangle, and then sets the margins
for the text frame.
Set myDocument = Worksheets(1)
With myDocument.Shapes.AddShape(msoShapeRectangle, 0, 0, 250,
140).TextFrame
 .Characters.Text = "Here is some test text"
 .MarginBottom = 0
 .MarginLeft = 100
 .MarginRight = 0
 .MarginTop = 20
End With

MarginLeft Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproMarginLeftC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproMarginLeftX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproMarginLeftA"}

Returns or sets the distance (in points) between the left edge of the text frame and the left edge of the
inscribed rectangle of the shape that contains the text. Read/write Single.

MarginLeft Property Example

This example adds a rectangle to myDocument, adds text to the rectangle, and then sets the margins
for the text frame.
Set myDocument = Worksheets(1)
With myDocument.Shapes.AddShape(msoShapeRectangle, 0, 0, 250,
140).TextFrame
 .Characters.Text = "Here is some test text"
 .MarginBottom = 0
 .MarginLeft = 100
 .MarginRight = 0
 .MarginTop = 20
End With

MarginRight Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproMarginRightC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproMarginRightX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproMarginRightA"}

Returns or sets the distance (in points) between the right edge of the text frame and the right edge of
the inscribed rectangle of the shape that contains the text. Read/write Single.

MarginRight Property Example

Set myDocument = Worksheets(1)
With myDocument.Shapes.AddShape(msoShapeRectangle, 0, 0, 250,
140).TextFrame
 .Characters.Text = "Here is some test text"
 .MarginBottom = 0
 .MarginLeft = 100
 .MarginRight = 0
 .MarginTop = 20
End With

MarginTop Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproMarginTopC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproMarginTopX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproMarginTopA"}

Returns or sets the distance (in points) between the top of the text frame and the top of the inscribed
rectangle of the shape that contains the text. Read/write Single.

MarginTop Property Example

This example adds a rectangle to myDocument, adds text to the rectangle, and then sets the margins
for the text frame.
Set myDocument = Worksheets(1)
With myDocument.Shapes.AddShape(msoShapeRectangle, 0, 0, 250,
140).TextFrame
 .Characters.Text = "Here is some test text"
 .MarginBottom = 0
 .MarginLeft = 100
 .MarginRight = 0
 .MarginTop = 20
End With

Nodes Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproNodesC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproNodesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproNodesA"}

Returns a ShapeNodes collection that represents the geometric description of the specified shape.
Applies to Shape or ShapeRange objects that represent freeform drawings.

Nodes Property Example

This example adds a smooth node with a curved segment after node four in shape three on
myDocument. Shape three must be a freeform drawing with at least four nodes.

Set myDocument = Worksheets(1)
With myDocument.Shapes(3).Nodes
 .Insert 4, msoSegmentCurve, msoEditingSmooth, 210, 100
End With

NormalizedHeight Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproNormalizedHeightC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproNormalizedHeightX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproNormalizedHeightA"}

True if all characters (both uppercase and lowercase) in the specified WordArt are the same height.
Read/write Long.

NormalizedHeight Property Example

This example adds WordArt that contains the text "Test Effect" to myDocument and gives the new
WordArt the name "texteff1." The code then makes all characters in the shape named "texteff1" the
same height.
Set myDocument = Worksheets(1)
myDocument.Shapes.AddTextEffect(PresetTextEffect:=msoTextEffect1, _
 Text:="Test Effect", FontName:="Courier New", FontSize:=44,
FontBold:=True, _
 FontItalic:=False, Left:=10, Top:=10).Name = "texteff1"
myDocument.Shapes("texteff1").TextEffect.NormalizedHeight = True

Obscured Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproObscuredC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproObscuredX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproObscuredA"}

True if the shadow of the specified shape appears filled in and is obscured by the shape, even if the
shape has no fill. False if the shadow has no fill and the outline of the shadow is visible through the
shape if the shape has no fill. Read/write Long.

Obscured Property Example

This example sets the horizontal and vertical offsets for the shadow of shape three on myDocument.
The shadow is offset 5 points to the right of the shape and 3 points above it. If the shape doesn't
already have a shadow, this example adds one to it. The shadow will be filled in and obscured by the
shape, even if the shape has no fill.
Set myDocument = Worksheets(1)
With myDocument.Shapes(3).Shadow
 .Visible = True
 .OffsetX = 5
 .OffsetY = -3
 .Obscured = True
End With

OffsetX Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproOffsetXC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproOffsetXX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproOffsetXA"}

Returns or sets the horizontal offset of the shadow from the specified shape, in points. A positive
value offsets the shadow to the right of the shape; a negative value offsets it to the left. Read/write
Single.

Remarks
If you want to nudge a shadow horizontally or vertically from its current position without having to
specify an absolute position, use the IncrementOffsetX method or the IncrementOffsetY method.

OffsetX Property Example

This example sets the horizontal and vertical offsets for the shadow of shape three on myDocument.
The shadow is offset 5 points to the right of the shape and 3 points above it. If the shape doesn't
already have a shadow, this example adds one to it.
Set myDocument = Worksheets(1)
With myDocument.Shapes(3).Shadow
 .Visible = True
 .OffsetX = 5
 .OffsetY = -3
End With

OffsetY Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproOffsetYC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproOffsetYX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproOffsetYA"}

Returns or sets the vertical offset of the shadow from the specified shape, in points. A positive value
offsets the shadow to the right of the shape; a negative value offsets it to the left. Read/write Single.

Remarks
If you want to nudge a shadow horizontally or vertically from its current position without having to
specify an absolute position, use the IncrementOffsetX method or the IncrementOffsetY method.

OffsetY Property Example

This example sets the horizontal and vertical offsets for the shadow of shape three on myDocument.
The shadow is offset 5 points to the right of the shape and 3 points above it. If the shape doesn't
already have a shadow, this example adds one to it.
Set myDocument = Worksheets(1)
With myDocument.Shapes(3).Shadow
 .Visible = True
 .OffsetX = 5
 .OffsetY = -3
End With

PickUp Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthPickUpC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthPickUpX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthPickUpA"}

Copies the formatting of the specified shape. Use the Apply method to apply the copied formatting to
another shape.

Syntax
expression.PickUp
expression Required. An expression that returns a Shape or ShapeRange object.

PickUp Method Example

This example copies the formatting of shape one on myDocument and then applies the copied
formatting to shape two.
Set myDocument = Worksheets(1)
With myDocument
 .Shapes(1).PickUp
 .Shapes(2).Apply
End With

PictureFormat Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPictureFormatC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPictureFormatX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPictureFormatA"}

Returns a PictureFormat object that contains picture formatting properties for the specified shape.
Applies to Shape or ShapeRange objects that represent pictures or OLE objects. Read-only.

PictureFormat Property Example

This example sets the brightness and contrast for shape one on myDocument. Shape one must be a
picture or an OLE object.
Set myDocument = Worksheets(1)
With myDocument.Shapes(1).PictureFormat
 .Brightness = 0.3
 .Contrast = .75
End With

Points Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPointsC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPointsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPointsA"}

Returns the position of the specified node as a coordinate pair. Each coordinate is expressed in
points. Read-only Variant.

Remarks
This property is read-only. Use the SetPosition method to set the value of this property.

Points Property Example

This example moves node two in shape three on myDocument to the right 200 points and down 300
points. Shape three must be a freeform drawing.
Set myDocument = Worksheets(1)
With myDocument.Shapes(3).Nodes
 pointsArray = .Item(2).Points
 currXvalue = pointsArray(1, 1)
 currYvalue = pointsArray(1, 2)
 .SetPosition 2, currXvalue + 200, currYvalue + 300
End With

PresetDrop Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthPresetDropC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthPresetDropX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthPresetDropA"}

Specifies whether the callout line attaches to the top, bottom, or center of the callout text box or
whether it attaches at a point that's a specified distance from the top or bottom of the text box.

Syntax
expression.PresetDrop(DropType)

expression Required. An expression that returns a CalloutFormat object.
DropType Required Long. The starting position of the callout line relative to the text bounding box.

Can be one of the following MsoCalloutDropType constants: msoCalloutDropBottom,
msoCalloutDropCenter, or msoCalloutDropTop. Specifying msoCalloutDropCustom for this
argument will cause your code to fail.

PresetDrop Method Example

This example specifies that the callout line attach to the top of the text bounding box for shape one on
myDocument. For the example to work, shape one must be a callout.

Set myDocument = Worksheets(1)
myDocument.Shapes(1).Callout.PresetDrop msoCalloutDropTop
This example toggles between two preset drops for shape one on myDocument. For the example to
work, shape one must be a callout.
Set myDocument = Worksheets(1)
With myDocument.Shapes(1).Callout
 If .DropType = msoCalloutDropTop Then
 .PresetDrop msoCalloutDropBottom
 ElseIf .DropType = msoCalloutDropBottom Then
 .PresetDrop msoCalloutDropTop
 End If
End With

PresetExtrusionDirection Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPresetExtrusionDirectionC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPresetExtrusionDirectionX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproPresetExtrusionDirectionA"}

Returns the direction that the extrusion's sweep path takes away from the extruded shape (the front
face of the extrusion). Can be one of the following MsoPresetExtrusionDirection constants:
msoExtrusionBottom, msoExtrusionBottomLeft, msoExtrusionBottomRight,
msoExtrusionLeft, msoExtrusionNone, msoExtrusionRight, msoExtrusionTop,
msoExtrusionTopLeft, msoExtrusionTopRight, or msoPresetExtrusionDirectionMixed. Read-
only Long.

Remarks
This property is read-only. To set the value of this property, use the SetExtrusionDirection method.

PresetExtrusionDirection Property Example

This example changes each extrusion on myDocument that extends toward the upper-left corner of
the extrusion's front face to an extrusion that extends toward the lower-right corner of the front face.
Set myDocument = Worksheets(1)
For Each s In myDocument.Shapes
 With s.ThreeD
 If .PresetExtrusionDirection = msoExtrusionTopLeft Then
 .SetExtrusionDirection msoExtrusionBottomRight
 End If
 End With
Next

PresetLightingDirection Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPresetLightingDirectionC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPresetLightingDirectionX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproPresetLightingDirectionA"}

Returns or sets the position of the light source relative to the extrusion. Can be one of the following
MsoPresetLightingDirection constants: msoLightingBottom, msoLightingBottomLeft,
msoLightingBottomRight, msoLightingLeft, msoLightingNone, msoLightingRight,
msoLightingTop, msoLightingTopLeft, msoLightingTopRight, or
msoPresetLightingDirectionMixed. Read/write Long.

Note You won't see the lighting effects you set if the extrusion has a wire frame surface.

PresetLightingDirection Property Example

This example specifies that the extrusion for shape one on myDocument extend toward the top of the
shape and that the lighting for the extrusion come from the left.
Set myDocument = Worksheets(1)
With myDocument.Shapes(1).ThreeD
 .Visible = True
 .SetExtrusionDirection msoExtrusionTop
 .PresetLightingDirection = msoLightingLeft
End With

PresetLightingSoftness Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPresetLightingSoftnessC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPresetLightingSoftnessX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproPresetLightingSoftnessA"}

Returns or sets the intensity of the extrusion lighting. Can be one of the following
MsoPresetLightingSoftness constants: msoLightingBright, msoLightingDim,
msoLightingNormal, or msoPresetLightingSoftnessMixed. Read/write Long.

PresetLightingSoftness Property Example

This example specifies that the extrusion for shape one on myDocument be lit brightly from the left.

Set myDocument = Worksheets(1)
With myDocument.Shapes(1).ThreeD
 .Visible = True
 .PresetLightingSoftness = msoLightingBright
 .PresetLightingDirection = msoLightingLeft
End With

PresetMaterial Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPresetMaterialC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPresetMaterialX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPresetMaterialA"}

Returns or sets the extrusion surface material. Can be one of the following MsoPresetMaterial
constants: msoMaterialMatte, msoMaterialMetal, msoMaterialPlastic, msoMaterialWireFrame, or
msoPresetMaterialMixed. Read/write Long.

PresetMaterial Property Example

This example specifies that the extrusion surface for shape one in myDocument be wire frame.

Set myDocument = Worksheets(1)
With myDocument.Shapes(1).ThreeD
 .Visible = True
 .PresetMaterial = msoMaterialWireFrame
End With

PresetShape Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPresetShapeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPresetShapeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPresetShapeA"}

Returns or sets the shape of the specified WordArt. Read/write Long.

Can be one of the following MsoPresetTextEffectShape constants:

msoTextEffectShapeArchDownCurve
msoTextEffectShapeArchDownPour
msoTextEffectShapeArchUpCurve
msoTextEffectShapeArchUpPour
msoTextEffectShapeButtonCurve
msoTextEffectShapeButtonPour
msoTextEffectShapeCanDown
msoTextEffectShapeCanUp
msoTextEffectShapeCascadeDown
msoTextEffectShapeCascadeUp
msoTextEffectShapeChevronDown
msoTextEffectShapeChevronUp
msoTextEffectShapeCircleCurve
msoTextEffectShapeCirclePour
msoTextEffectShapeCurveDown
msoTextEffectShapeCurveUp
msoTextEffectShapeDeflate
msoTextEffectShapeDeflateBottom
msoTextEffectShapeDeflateInflate
msoTextEffectShapeDeflateInflateDeflate
msoTextEffectShapeDeflateTop

msoTextEffectShapeDoubleWave1
msoTextEffectShapeDoubleWave2
msoTextEffectShapeFadeDown
msoTextEffectShapeFadeLeft
msoTextEffectShapeFadeRight
msoTextEffectShapeFadeUp
msoTextEffectShapeInflate
msoTextEffectShapeInflateBottom
msoTextEffectShapeInflateTop
msoTextEffectShapeMixed
msoTextEffectShapePlainText
msoTextEffectShapeRingInside
msoTextEffectShapeRingOutside
msoTextEffectShapeSlantDown
msoTextEffectShapeSlantUp
msoTextEffectShapeStop
msoTextEffectShapeTriangleDown
msoTextEffectShapeTriangleUp
msoTextEffectShapeWave1
msoTextEffectShapeWave2

Remarks
Setting the PresetTextEffect property automatically sets the PresetShape property.

PresetShape Property Example

This example sets the shape of all WordArt on myDocument to a chevron whose center points down.

Set myDocument = Worksheets(1)
For Each s In myDocument.Shapes
 If s.Type = msoTextEffect Then
 s.TextEffect.PresetShape = msoTextEffectShapeChevronDown
 End If
Next

PresetTextEffect Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPresetTextEffectC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPresetTextEffectX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPresetTextEffectA"}

Returns or sets the style of the specified WordArt. The values for this property correspond to the
formats in the WordArt Gallery dialog box (numbered from left to right, top to bottom). Read/write
Long.

Can be one of the following MsoPresetTextEffect constants:

msoTextEffect1
msoTextEffect2
msoTextEffect3
msoTextEffect4
msoTextEffect5
msoTextEffect6
msoTextEffect7
msoTextEffect8
msoTextEffect9
msoTextEffect10
msoTextEffect11
msoTextEffect12
msoTextEffect13
msoTextEffect14
msoTextEffect15
msoTextEffect16

msoTextEffect17
msoTextEffect18
msoTextEffect19
msoTextEffect20
msoTextEffect21
msoTextEffect22
msoTextEffect23
msoTextEffect24
msoTextEffect25
msoTextEffect26
msoTextEffect27
msoTextEffect28
msoTextEffect29
msoTextEffect30
msoTextEffectMixed

Remarks
Setting the PresetTextEffect property automatically sets many other formatting properties of the
specified shape.

PresetTextEffect Property Example

This example sets the style for all WordArt on myDocument to the first style listed in the WordArt
Gallery dialog box.
Set myDocument = Worksheets(1)
For Each s In myDocument.Shapes
 If s.Type = msoTextEffect Then
 s.TextEffect.PresetTextEffect = msoTextEffect1
 End If
Next

PresetThreeDFormat Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPresetThreeDFormatC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPresetThreeDFormatX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproPresetThreeDFormatA"}

Returns the preset extrusion format. Each preset extrusion format contains a set of preset values for
the various properties of the extrusion. If the extrusion has a custom format rather than a preset
format, this property returns msoPresetThreeDFormatMixed. Can be one of the following
MsoPresetThreeDFormat constants: msoPresetThreeDFormatMixed, msoThreeD1,
msoThreeD10, msoThreeD11, msoThreeD12, msoThreeD13, msoThreeD14, msoThreeD15,
msoThreeD16, msoThreeD17, msoThreeD18, msoThreeD19, msoThreeD2, msoThreeD20,
msoThreeD3, msoThreeD4, msoThreeD5, msoThreeD6, msoThreeD7, msoThreeD8, or
msoThreeD9. The values for this property correspond to the options (numbered from left to right, top
to bottom) displayed when you click the 3-D button on the Drawing toolbar. Read-only Long.

Remarks
This property is read-only. To set the preset extrusion format, use the SetThreeDFormat method.

PresetThreeDFormat Property Example

This example sets the extrusion format for shape one on myDocument to 3D Style 12 if the shape
initially has a custom extrusion format.
Set myDocument = Worksheets(1)
With myDocument.Shapes(1).ThreeD
 If .PresetThreeDFormat = msoPresetThreeDFormatMixed Then
 .SetThreeDFormat msoThreeD12
 End If
End With

Range Property (Shapes Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproRangeShapesObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproRangeShapesObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproRangeShapesObjA"}

Returns a ShapeRange object that represents a subset of the shapes in a Shapes collection.

Syntax
expression.Range(Index)

expression Required. An expression that returns a Shapes object.
Index Required Variant. The individual shapes to be included in the range. Can be an integer that

specifies the index number of the shape, a string that specifies the name of the shape, or an array
that contains either integers or strings.

Remarks
Although you can use the Range property to return any number of shapes, it's simpler to use the Item
method if you only want to return a single member of the collection. For example, Shapes(1) is
simpler than Shapes.Range(1).

To specify an array of integers or strings for Index, you can use the Array function. For example, the
following instruction returns two shapes specified by name.
Set myRange = myDocument.Shapes.Range(Array("Oval 4", "Rectangle 5"))
In Microsoft Excel, you cannot use this property to return a ShapeRange object containing all the
Shape objects on a worksheet. Instead, use the following code:
Worksheets(1).Shapes.Select ' select all shapes
set sr = Selection.ShapeRange' create ShapeRange

Range Property (Shapes Collection) Example

This example sets the fill pattern for shapes one and three on myDocument.

Set myDocument = Worksheets(1)
myDocument.Shapes.Range(Array(1, 3)).Fill.Patterned
msoPatternHorizontalBrick
This example sets the fill pattern for the shapes named "Oval 4" and "Rectangle 5" on myDocument.

Set myDocument = Worksheets(1)
Set myRange = myDocument.Shapes.Range(Array("Oval 4", "Rectangle 5"))
myRange.Fill.Patterned msoPatternHorizontalBrick
This example sets the fill pattern for shape one on myDocument.

Set myDocument = Worksheets(1)
Set myRange = myDocument.Shapes.Range(1)
myRange.Fill.Patterned msoPatternHorizontalBrick
This example creates an array that contains all the AutoShapes on myDocument, uses that array to
define a shape range, and then distributes all the shapes in that range horizontally.
Set myDocument = Worksheets(1)
With myDocument.Shapes
 numShapes = .Count
 If numShapes > 1 Then
 numAutoShapes = 1
 ReDim autoShpArray(1 To numShapes)
 For i = 1 To numShapes
 If .Item(i).Type = msoAutoShape Then
 autoShpArray(numAutoShapes) = .Item(i).Name
 numAutoShapes = numAutoShapes + 1
 End If
 Next
 If numAutoShapes > 1 Then
 ReDim Preserve autoShpArray(1 To numAutoShapes)
 Set asRange = .Range(autoShpArray)
 asRange.Distribute msoDistributeHorizontally, False
 End If
 End If
End With

Regroup Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthRegroupC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthRegroupX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthRegroupA"}

Regroups the group that the specified shape range belonged to previously. Returns the regrouped
shapes as a single Shape object.

Syntax
expression.Regroup
expression Required. An expression that returns a ShapeRange object.

Remarks
The Regroup method only restores the group for the first previously grouped shape it finds in the
specified ShapeRange collection. Therefore, if the specified shape range contains shapes that
previously belonged to different groups, only one of the groups will be restored.

Note that because a group of shapes is treated as a single shape, grouping and ungrouping shapes
changes the number of items in the Shapes collection and changes the index numbers of items that
come after the affected items in the collection.

Regroup Method Example

This example regroups the shapes in the selection in the active window. If the shapes haven't been
previously grouped and ungrouped, this example will fail.
ActiveWindow.Selection.ShapeRange.Regroup

RerouteConnections Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthRerouteConnectionsC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthRerouteConnectionsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlmthRerouteConnectionsA"}

Reroutes connectors so that they take the shortest possible path between the shapes they connect.
To do this, the RerouteConnections method may detach the ends of a connector and reattach them
to different connecting sites on the connected shapes.

This method reroutes all connectors attached to the specified shape; if the specified shape is a
connector, it's rerouted.

Syntax
expression.RerouteConnections
expression Required. An expression that returns a Shape or ShapeRange object.

Remarks
If this method is applied to a connector, only that connector will be rerouted. If this method is applied
to a connected shape, all connectors to that shape will be rerouted.

RerouteConnections Method Example

This example adds two rectangles to myDocument, connects them with a curved connector, and then
reroutes the connector so that it takes the shortest possible path between the two rectangles. Note
that the RerouteConnections method adjusts the size and position of the connector and determines
which connecting sites it attaches to, so the values you initially specify for the ConnectionSite
arguments used with the BeginConnect and EndConnect methods are irrelevant.
Set myDocument = Worksheets(1)
Set s = myDocument.Shapes
Set firstRect = s.AddShape(msoShapeRectangle, 100, 50, 200, 100)
Set secondRect = s.AddShape(msoShapeRectangle, 300, 300, 200, 100)
Set newConnector = s.AddConnector(msoConnectorCurve, 0, 0, 100, 100)
With newConnector.ConnectorFormat
 .BeginConnect firstRect, 1
 .EndConnect secondRect, 1
End With
newConnector.RerouteConnections

ResetRotation Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthResetRotationC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthResetRotationX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthResetRotationA"}

Resets the extrusion rotation around the x-axis and the y-axis to 0 (zero) so that the front of the
extrusion faces forward. This method doesn't reset the rotation around the z-axis.

Syntax
expression.ResetRotation
expression Required. An expression that returns a ThreeDFormat object.

Remarks
To set the extrusion rotation around the x-axis and the y-axis to anything other than 0 (zero), use the
RotationX and RotationY properties of the ThreeDFormat object. To set the extrusion rotation
around the z-axis, use the Rotation property of the Shape object that represents the extruded shape.

ResetRotation Method Example

This example resets the rotation around the x-axis and the y-axis to 0 (zero) for the extrusion of
shape one on myDocument.

Set myDocument = Worksheets(1)
myDocument.Shapes(1).ThreeD.ResetRotation

RotatedChars Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproRotatedCharsC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproRotatedCharsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproRotatedCharsA"}

True if characters in the specified WordArt are rotated 90 degrees relative to the WordArt's bounding
shape. False if characters in the specified WordArt retain their original orientation relative to the
bounding shape. Read/write Long.

Remarks
If the WordArt has horizontal text, setting the RotatedChars property to True rotates the characters
90 degrees counterclockwise. If the WordArt has vertical text, setting the RotatedChars property to
False rotates the characters 90 degrees clockwise. Use the ToggleVerticalText method to switch
between horizontal and vertical text flow.

The Flip method and Rotation property of the Shape object and the RotatedChars property and
ToggleVerticalText method of the TextEffectFormat object all affect the character orientation and
direction of text flow in a Shape object that represents WordArt. You may have to experiment to find
out how to combine the effects of these properties and methods to get the result you want.

RotatedChars Property Example

This example adds WordArt that contains the text "Test" to myDocument and rotates the characters
90 degrees counterclockwise.
Set myDocument = Worksheets(1)
Set newWordArt =
myDocument.Shapes.AddTextEffect(PresetTextEffect:=msoTextEffect1,
Text:="Test", _
 FontName:="Arial Black", FontSize:=36, FontBold:=False,
FontItalic:=False, Left:=10, Top:=10)
newWordArt.TextEffect.RotatedChars = True

RotationX Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproRotationXC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproRotationXX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproRotationXA"}

Returns or sets the rotation of the extruded shape around the x-axis, in degrees. Can be a value from
– 90 through 90. A positive value indicates upward rotation; a negative value indicates downward
rotation. Read/write Single.

Remarks
To set the rotation of the extruded shape around the y-axis, use the RotationY property of the
ThreeDFormat object. To set the rotation of the extruded shape around the z-axis, use the Rotation
property of the Shape object. To change the direction of the extrusion's sweep path without rotating
the front face of the extrusion, use the SetExtrusionDirection method.

RotationX Property Example

This example adds three identical extruded ovals to myDocument and sets their rotation around the
x-axis to – 30, 0, and 30 degrees, respectively.
Set myDocument = Worksheets(1)
With myDocument.Shapes
 With .AddShape(msoShapeOval, 30, 60, 50, 25).ThreeD
 .Visible = True
 .RotationX = -30
 End With
 With .AddShape(msoShapeOval, 90, 60, 50, 25).ThreeD
 .Visible = True
 .RotationX = 0
 End With
 With .AddShape(msoShapeOval, 150, 60, 50, 25).ThreeD
 .Visible = True
 .RotationX = 30
 End With
End With

RotationY Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproRotationYC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproRotationYX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproRotationYA"}

Returns or sets the rotation of the extruded shape around the y-axis, in degrees. Can be a value from
– 90 through 90. A positive value indicates rotation to the left; a negative value indicates rotation to
the right. Read/write Single.

Remarks
To set the rotation of the extruded shape around the x-axis, use the RotationX property of the
ThreeDFormat object. To set the rotation of the extruded shape around the z-axis, use the Rotation
property of the Shape object. To change the direction of the extrusion's sweep path without rotating
the front face of the extrusion, use the SetExtrusionDirection method.

RotationY Property Example

This example adds three identical extruded ovals to myDocument and sets their rotation around the
y-axis to – 30, 0, and 30 degrees, respectively.
Set myDocument = Worksheets(1)
With myDocument.Shapes
 With .AddShape(msoShapeOval, 30, 30, 50, 25).ThreeD
 .Visible = True
 .RotationY = -30
 End With
 With .AddShape(msoShapeOval, 30, 70, 50, 25).ThreeD
 .Visible = True
 .RotationY = 0
 End With
 With .AddShape(msoShapeOval, 30, 110, 50, 25).ThreeD
 .Visible = True
 .RotationY = 30
 End With
End With

ScaleHeight Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthScaleHeightC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthScaleHeightX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthScaleHeightA"}

Scales the height of the shape by a specified factor. For pictures and OLE objects, you can indicate
whether you want to scale the shape relative to the original size or relative to the current size. Shapes
other than pictures and OLE objects are always scaled relative to their current height.

Syntax
expression.ScaleHeight(Factor, RelativeToOriginalSize, fScale)
expression Required. An expression that returns a Shape or ShapeRange object.
Factor Required Single. Specifies the ratio between the height of the shape after you resize it and

the current or original height. For example, to make a rectangle 50 percent larger, specify 1.5 for
this argument.

RelativeToOriginalSize Required Long. True to scale the shape relative to its original size. False
to scale it relative to its current size. You can specify True for this argument only if the specified
shape is a picture or an OLE object.

fScale Optional Long. Specifies which part of the shape retains its position when the shape is
scaled. Can be one of the following MsoScaleFrom constants: msoScaleFromBottomRight,
msoScaleFromMiddle, or msoScaleFromTopLeft. The default value is msoScaleFromTopLeft.

ScaleHeight Method Example

This example scales all pictures and OLE objects on myDocument to 175 percent of their original
height and width, and it scales all other shapes to 175 percent of their current height and width.
Set myDocument = Worksheets(1)
For Each s In myDocument.Shapes
 Select Case s.Type
 Case msoEmbeddedOLEObject, msoLinkedOLEObject, msoOLEControlObject, _
 msoLinkedPicture, msoPicture
 s.ScaleHeight 1.75, True
 s.ScaleWidth 1.75, True
 Case Else
 s.ScaleHeight 1.75, False
 s.ScaleWidth 1.75, False
 End Select
Next

ScaleWidth Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthScaleWidthC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthScaleWidthX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthScaleWidthA"}

Scales the width of the shape by a specified factor. For pictures and OLE objects, you can indicate
whether you want to scale the shape relative to the original size or relative to the current size. Shapes
other than pictures and OLE objects are always scaled relative to their current width.

Syntax
expression.ScaleWidth(Factor, RelativeToOriginalSize, fScale)
expression Required. An expression that returns a Shape or ShapeRange object.
Factor Required Single. Specifies the ratio between the width of the shape after you resize it and

the current or original width. For example, to make a rectangle 50 percent larger, specify 1.5 for
this argument.

RelativeToOriginalSize Required Long. True to scale the shape relative to its original size. False
to scale it relative to its current size. You can specify True for this argument only if the specified
shape is a picture or an OLE object.

fScale Optional Long. Specifies which part of the shape retains its position when the shape is
scaled. Can be one of the following MsoScaleFrom constants: msoScaleFromBottomRight,
msoScaleFromMiddle, or msoScaleFromTopLeft. The default value is msoScaleFromTopLeft.

ScaleWidth Method Example

This example scales all pictures and OLE objects on myDocument to 175 percent of their original
height and width, and it scales all other shapes to 175 percent of their current height and width.
Set myDocument = Worksheets(1)
For Each s In myDocument.Shapes
 Select Case s.Type
 Case msoEmbeddedOLEObject, msoLinkedOLEObject, msoOLEControlObject, _
 msoLinkedPicture, msoPicture
 s.ScaleHeight 1.75, True
 s.ScaleWidth 1.75, True
 Case Else
 s.ScaleHeight 1.75, False
 s.ScaleWidth 1.75, False
 End Select
Next

SegmentType Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproSegmentTypeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproSegmentTypeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproSegmentTypeA"}

Returns a value that indicates whether the segment assocated with the specified node is straight or
curved. Can be either of the following MsoSegmentType constants: msoSegmentCurve or
msoSegmentLine. If the specified node is a control point for a curved segment, this property returns
msoSegmentCurve. Read-only Long.

Remarks
This property is read-only. Use the SetSegmentType method to set the value of this property.

SegmentType Property Example

This example changes all straight segments to curved segments in shape three on myDocument.
Shape three must be a freeform drawing.
Set myDocument = Worksheets(1)
With myDocument.Shapes(3).Nodes
 n = 1
 While n <= .Count
 If .Item(n).SegmentType = msoSegmentLine Then
 .SetSegmentType n, msoSegmentCurve
 End If
 n = n + 1
 Wend
End With

SelectAll Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthSelectAllC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthSelectAllX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthSelectAllA"}

Selects all the shapes in the specified Shapes collection.

Syntax
expression.SelectAll
expression Required. An expression that returns a Shapes object.

SelectAll Method Example

This example selects all the shapes on myDocument and creates a ShapeRange object containing
all the shapes.
Set myDocument = Worksheets(1)
myDocument.Shapes.SelectAll
Set sr = Selection.ShapeRange

SetEditingType Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthSetEditingTypeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthSetEditingTypeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthSetEditingTypeA"}

Sets the editing type of the node specified by Index. If the node is a control point for a curved
segment, this method sets the editing type of the node adjacent to it that joins two segments. Note
that, depending on the editing type, this method may affect the position of adjacent nodes.

Syntax
expression.SetEditingType(Index, EditingType)

expression Required. An expression that returns a ShapeNodes object.
Index Required Long. The node whose editing type is to be set.
EditingType Required Long. The editing property of the vertex. Can be one of the following

MsoEditingType constants: msoEditingAuto, msoEditingCorner, msoEditingSmooth, or
msoEditingSymmetric.

SetEditingType Method Example

This example changes all corner nodes to smooth nodes in shape three on myDocument. Shape
three must be a freeform drawing.
Set myDocument = Worksheets(1)
With myDocument.Shapes(3).Nodes
 For n = 1 to .Count
 If .Item(n).EditingType = msoEditingCorner Then
 .SetEditingType n, msoEditingSmooth
 End If
 Next
End With

SetExtrusionDirection Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthSetExtrusionDirectionC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthSetExtrusionDirectionX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlmthSetExtrusionDirectionA"}

Sets the direction that the extrusion's sweep path takes away from the extruded shape.

Syntax
expression.SetExtrusionDirection(PresetExtrusionDirection)

expression Required. An expression that returns a ThreeDFormat object.
PresetExtrusionDirection Required Long. Specifies the extrusion direction. Can be one of the

following MsoPresetExtrusionDirection constants: msoExtrusionBottom,
msoExtrusionBottomLeft, msoExtrusionBottomRight, msoExtrusionLeft,
msoExtrusionNone, msoExtrusionRight, msoExtrusionTop, msoExtrusionTopLeft, or
msoExtrusionTopRight.

Remarks
This method sets the PresetExtrusionDirection property to the direction specified by the
PresetExtrusionDirection argument.

SetExtrusionDirection Method Example

This example specifies that the extrusion for shape one on myDocument extend toward the top of the
shape and that the lighting for the extrusion come from the left.
Set myDocument = Worksheets(1)
With myDocument.Shapes(1).ThreeD
 .Visible = True
 .SetExtrusionDirection msoExtrusionTop
 .PresetLightingDirection = msoLightingLeft
End With

SetPosition Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthSetPositionC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthSetPositionX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthSetPositionA"}

Sets the location of the node specified by Index. Note that, depending on the editing type of the node,
this method may affect the position of adjacent nodes.

Syntax
expression.SetPosition(Index, X1, Y1)

expression Required. An expression that returns a ShapeNodes object.
Index Required Long. The node whose position is to be set.
X1, Y1 Required Single. The position (in points) of the new node relative to the upper-left corner of

the document.

SetPosition Method Example

This example moves node two in shape three on myDocument to the right 200 points and down 300
points. Shape three must be a freeform drawing.
Set myDocument = Worksheets(1)
With myDocument.Shapes(3).Nodes
 pointsArray = .Item(2).Points
 currXvalue = pointsArray(0, 0)
 currYvalue = pointsArray(0, 1)
 .SetPosition 2, currXvalue + 200, currYvalue + 300
End With

SetSegmentType Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthSetSegmentTypeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthSetSegmentTypeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthSetSegmentTypeA"}

Sets the segment type of the segment that follows the node specified by Index. If the node is a
control point for a curved segment, this method sets the segment type for that curve. Note that this
may affect the total number of nodes by inserting or deleting adjacent nodes.

Syntax
expression.SetSegmentType(Index, SegmentType)

expression Required. An expression that returns a ShapeNodes object.
Index Required Long. The node whose segment type is to be set.
SegmentType Required Long. Specifies if the segment is straight or curved. Can be either of the

following MsoSegmentType constants: msoSegmentCurve or msoSegmentLine.

SetSegmentType Method Example

This example changes all straight segments to curved segments in shape three on myDocument.
Shape three must be a freeform drawing.
Set myDocument = Worksheets(1)
With myDocument.Shapes(3).Nodes
 n = 1
 While n <= .Count
 If .Item(n).SegmentType = msoSegmentLine Then
 .SetSegmentType n, msoSegmentCurve
 End If
 n = n + 1
 Wend
End With

SetShapesDefaultProperties Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthSetShapesDefaultPropertiesC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthSetShapesDefaultPropertiesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlmthSetShapesDefaultPropertiesA"}

Applies the formatting for the specified shape to the default shape. Shapes created after this method
has been used will have this formatting applied by default.

Syntax
expression.SetShapesDefaultProperties
expression Required. An expression that returns a Shape or ShapeRange object.

SetShapesDefaultProperties Method Example

This example adds a rectangle to myDocument, formats the rectangle's fill, applies the rectangle's
formatting to the default shape, and then adds another smaller rectangle to the document. The
second rectangle has the same fill as the first one.
Set myDocument = Worksheets(1)
With mydocument.Shapes
 With .AddShape(msoShapeRectangle, 5, 5, 80, 60)
 With .Fill
 .ForeColor.RGB = RGB(0, 0, 255)
 .BackColor.RGB = RGB(0, 204, 255)
 .Patterned msoPatternHorizontalBrick
 End With
 .SetShapesDefaultProperties ' Sets formatting for default
shapes
 End With
 .AddShape msoShapeRectangle, 90, 90, 40, 30 ' New shape has default
formatting
End With

SetThreeDFormat Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthSetThreeDFormatC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthSetThreeDFormatX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthSetThreeDFormatA"}

Sets the preset extrusion format. Each preset extrusion format contains a set of preset values for the
various properties of the extrusion.

Syntax
expression.SetThreeDFormat(PresetThreeDFormat)

expression Required. An expression that returns a ThreeDFormat object.
PresetThreeDFormat Required Long. Specifies a preset extrusion format that corresponds to one

of the options (numbered from left to right, from top to bottom) displayed when you click the 3-D
button on the Drawing toolbar. Can be one of the following MsoPresetThreeDFormat constants:
msoThreeD1, msoThreeD10, msoThreeD11, msoThreeD12, msoThreeD13, msoThreeD14,
msoThreeD15, msoThreeD16, msoThreeD17, msoThreeD18, msoThreeD19, msoThreeD2,
msoThreeD20, msoThreeD3, msoThreeD4, msoThreeD5, msoThreeD6, msoThreeD7,
msoThreeD8, or msoThreeD9. Note that specifying msoPresetThreeDFormatMixed for this
argument causes an error.

Remarks
This method sets the PresetThreeDFormat property to the format specified by the
PresetThreeDFormat argument.

SetThreeDFormat Method Example

This example adds an oval to myDocument and sets its extrusion format to 3D Style 12.

Set myDocument = Worksheets(1)
With myDocument.Shapes.AddShape(msoShapeOval, 30, 30, 50, 25).ThreeD
 .Visible = True
 .SetThreeDFormat msoThreeD12
End With

Solid Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthSolidC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthSolidX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthSolidA"}

Sets the specified fill to a uniform color. Use this method to convert a gradient, textured, patterned, or
background fill back to a solid fill.

Syntax
expression.Solid
expression Required. An expression that returns a FillFormat object.

Solid Method Example

This example converts all fills on myDocument to uniform red fills.

Set myDocument = Worksheets(1)
For Each s In myDocument.Shapes
 With s.Fill
 .Solid
 .ForeColor.RGB = RGB(255, 0, 0)
 End With
Next

TextEffect Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproTextEffectC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproTextEffectX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproTextEffectA"}

Returns a TextEffectFormat object that contains text-effect formatting properties for the specified
shape. Applies to Shape or ShapeRange objects that represent WordArt. Read-only.

TextEffect Property Example

This example sets the font style to bold for shape three on myDocument if the shape is WordArt.

Set myDocument = Worksheets(1)
With myDocument.Shapes(3)
 If .Type = msoTextEffect Then
 .TextEffect.FontBold = True
 End If
End With

ThreeD Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproThreeDC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproThreeDX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproThreeDA"}

Returns a ThreeDFormat object that contains 3-D – effect formatting properties for the specified
shape. Read-only.

ThreeD Property Example

This example sets the depth, extrusion color, extrusion direction, and lighting direction for the 3-D
effects applied to shape one on myDocument.

Set myDocument = Worksheets(1)
With myDocument.Shapes(1).ThreeD
 .Visible = True
 .Depth = 50
 .ExtrusionColor.RGB = RGB(255, 100, 255) ' RGB value for purple
 .SetExtrusionDirection msoExtrusionTop
 .PresetLightingDirection = msoLightingLeft
End With

ToggleVerticalText Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthToggleVerticalTextC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthToggleVerticalTextX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthToggleVerticalTextA"}

Switches the text flow in the specified WordArt from horizontal to vertical, or vice versa.

Syntax
expression.ToggleVerticalText
expression Required. An expression that returns a TextEffectFormat object.

Remarks
Using the ToggleVerticalText method swaps the values of the Width and Height properties of the
Shape object that represents the WordArt and leaves the Left and Top properties unchanged.

The Flip method and Rotation property of the Shape object and the RotatedChars property and
ToggleVerticalText method of the TextEffectFormat object all affect the character orientation and
the direction of text flow in a Shape object that represents WordArt. You may have to experiment to
find out how to combine the effects of these properties and methods to get the result you want.

ToggleVerticalText Method Example

This example adds WordArt that contains the text "Test" to myDocument and switches from horizontal
text flow (the default for the specified WordArt style, msoTextEffect1) to vertical text flow.
Set myDocument = Worksheets(1)
Set newWordArt =
myDocument.Shapes.AddTextEffect(PresetTextEffect:=msoTextEffect1,
Text:="Test", _
 FontName:="Arial Black", FontSize:=36, FontBold:=False,
FontItalic:=False, Left:=100, Top:=100)
newWordArt.TextEffect.ToggleVerticalText

Tracking Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproTrackingC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproTrackingX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproTrackingA"}

Returns or sets the ratio of the horizontal space allotted to each character in the specified WordArt to
the width of the character. Can be a value from 0 (zero) thorugh 5. (Large values for this property
specify ample space between characters; values less than 1 can produce character overlap.)
Read/write Single.

The following table gives the values of the Tracking property that correspond to the settings available
in the user interface.

User interface setting Equivalent Tracking property value
Very Tight 0.8
Tight 0.9
Normal 1.0
Loose 1.2
Very Loose 1.5

Tracking Property Example

This example adds WordArt that contains the text "Test" to myDocument and specifies that the
characters be very tightly spaced.
Set myDocument = Worksheets(1)
Set newWordArt =
myDocument.Shapes.AddTextEffect(PresetTextEffect:=msoTextEffect1,
Text:="Test", _
 FontName:="Arial Black", FontSize:=36, FontBold:=False,
FontItalic:=False, Left:=100, Top:=100)
newWordArt.TextEffect.Tracking =0.8

TransparencyColor Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproTransparencyColorC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproTransparencyColorX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproTransparencyColorA"}

Returns or sets the transparent color for the specified picture as a red-green-blue (RGB) value. For
this property to take effect, the TransparentBackground property must be set to True. Applies to
bitmaps only. Read/write Long.

Remarks
If you want to be able to see through the transparent parts of the picture all the way to the objects
behind the picture, you must set the Visible property of the picture's FillFormat object to False. If
your picture has a transparent color and the Visible property of the picture's FillFormat object is set
to True, the picture's fill will be visible through the transparent color, but objects behind the picture will
be obscured.

TransparencyColor Property Example

This example sets the color that has the RGB value returned by the function RGB(0, 0, 255) as the
transparent color for shape one on myDocument. For the example to work, shape one must be a
bitmap.
blueScreen = RGB(0, 0, 255)
Set myDocument = Worksheets(1)
With myDocument.Shapes(1)
 With .PictureFormat
 .TransparentBackground = True
 .TransparencyColor = blueScreen
 End With
 .Fill.Visible = False
End With

TransparentBackground Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproTransparentBackgroundC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproTransparentBackgroundX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproTransparentBackgroundA"}

True if the parts of the picture that are the color defined as the transparent color appear transparent.
Use the TransparencyColor property to set the transparent color. Applies to bitmaps only. Read/write
Long.

Remarks
If you want to be able to see through the transparent parts of the picture all the way to the objects
behind the picture, you must set the Visible property of the picture's FillFormat object to False. If
your picture has a transparent color and the Visible property of the picture's FillFormat object is set
to True, the picture's fill will be visible through the transparent color, but objects behind the picture will
be obscured.

TransparentBackground Property Example

This example sets the color that has the RGB value returned by the function RGB(0, 24, 240) as the
transparent color for shape one on myDocument. For the example to work, shape one must be a
bitmap.
blueScreen = RGB(0, 0, 255)
Set myDocument = Worksheets(1)
With myDocument.Shapes(1)
 With .PictureFormat
 .TransparentBackground = True
 .TransparencyColor = blueScreen
 End With
 .Fill.Visible = False
End With

Ungroup Method (Shape or ShapeRange Object)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthUngroupShapeObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthUngroupShapeObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthUngroupShapeObjA"}

Ungroups any grouped shapes in the specified shape or range of shapes. Disassembles pictures and
OLE objects within the specified shape or range of shapes. Returns the ungrouped shapes as a
single ShapeRange object.

Syntax
expression.Ungroup
expression Required. An expression that returns a ShapeRange object.

Remarks
Because a group of shapes is treated as a single object, grouping and ungrouping shapes changes
the number of items in the Shapes collection and changes the index numbers of items that come
after the affected items in the collection.

Ungroup Method (Shape or ShapeRange Object) Example

This example ungroups any grouped shapes and disassembles any pictures or OLE objects on
myDocument.

Set myDocument = Worksheets(1)
For Each s In myDocument.Shapes
 s.Ungroup
Next
This example ungroups any grouped shapes on myDocument without disassembling pictures or OLE
objects on the document.
Set myDocument = Worksheets(1)
For Each s In myDocument.Shapes
 If s.Type = msoGroup Then s.Ungroup
Next

VerticalFlip Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproVerticalFlipC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproVerticalFlipX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproVerticalFlipA"}

True if the specified shape is flipped around the vertical axis. Read-only Long.

VerticalFlip Property Example

This example restores each shape on myDocument to its original state if it's been flipped horizontally
or vertically.
Set myDocument = Worksheets(1)
For Each s In myDocument.Shapes
 If s.HorizontalFlip Then s.Flip msoFlipHorizontal
 If s.VerticalFlip Then s.Flip msoFlipVertical
Next

Vertices Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproVerticesC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproVerticesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproVerticesA"}

Returns the coordinates of the specified freeform drawing's vertices (and control points for Bézier
curves) as a series of coordinate pairs. You can use the array returned by this property as an
argument to the AddCurve method or AddPolyLine method. Read-only Variant.
The following table shows how the Vertices property associates the values in the array
vertArray() with the coordinates of a triangle's vertices.

vertArray element Contains
vertArray(1, 1) The horizontal distance from the first vertex to the left

side of the document
vertArray(1, 2) The vertical distance from the first vertex to the top of

the document
vertArray(2, 1) The horizontal distance from the second vertex to the

left side of the document
vertArray(2, 2) The vertical distance from the second vertex to the

top of the document
vertArray(3, 1) The horizontal distance from the third vertex to the left

side of the document
vertArray(3, 2) The vertical distance from the third vertex to the top of

the document

Vertices Property Example

This example assigns the vertex coordinates for shape one on myDocument to the array variable
vertArray() and displays the coordinates for the first vertex.

Set myDocument = Worksheets(1)
With myDocument.Shapes(1)
 vertArray = .Vertices
 x1 = vertArray(1, 1)
 y1 = vertArray(1, 2)
 MsgBox "First vertex coordinates: " & x1 & ", " & y1
End With
This example creates a curve that has the same geometric description as shape one on
myDocument. Shape one must contain 3n+1 vertices for this example to succeed.

Set myDocument = Worksheets(1)
With myDocument.Shapes
 .AddCurve .Item(1).Vertices
End With

ZOrder Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthZOrderC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthZOrderX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthZOrderA"}

Moves the specified shape in front of or behind other shapes in the collection (that is, changes the
shape's position in the z-order).

Syntax
expression.ZOrder(ZOrderCmd)
expression Required. An expression that returns a Shape or ShapeRange object.
ZOrderCmd Required Long. Specifies where to move the specified shape relative to the other

shapes. Can be one of the following MsoZOrderCmd constants: msoBringForward,
msoBringToFront, msoSendBackward, or msoSendToBack. The constants
msoBringInFrontOfText and msoSendBehindText are used only in Microsoft Word.

Remarks
Use the ZOrderPosition property to determine a shape's current position in the z-order.

ZOrder Method Example

This example adds an oval to myDocument and then places the oval second from the back in the z-
order if there is at least one other shape on the document.
Set myDocument = Worksheets(1)
With myDocument.Shapes.AddShape(msoShapeOval, 100, 100, 100, 300)
 While .ZOrderPosition > 2
 .ZOrder msoSendBackward
 Wend
End With

ZOrderPosition Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproZOrderPositionC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproZOrderPositionX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproZOrderPositionA"}

Returns the position of the specified shape in the z-order. Read-only Long.

This property is read-only. To set the shape's position in the z-order, use the ZOrder method.

Remarks
A shape's position in the z-order corresponds to the shape's index number in the Shapes collection.
For example, if there are four shapes on myDocument, the expression myDocument.Shapes(1)
returns the shape at the back of the z-order, and the expression myDocument.Shapes(4) returns
the shape at the front of the z-order.

Whenever you add a new shape to a collection, it's added to the front of the z-order by default.

ZOrderPosition Property Example

This example adds an oval to myDocument and then places the oval second from the back in the z-
order if there is at least one other shape on the document.
Set myDocument = Worksheets(1)
With myDocument.Shapes.AddShape(msoShapeOval, 100, 100, 100, 300)
 While .ZOrderPosition > 2
 .ZOrder msoSendBackward
 Wend
End With

Item Method (GroupShapes Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthItemGroupShapesObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthItemGroupShapesObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlmthItemGroupShapesObjA"}

Returns a single Shape object from a GroupShapes collection.

Syntax
expression.Item(Index)

expression Required. An expression that returns a GroupShapes object.
Index Required Variant. The shape name or index number.

Item Method (ShapeNodes Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthItemShapeNodesObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthItemShapeNodesObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlmthItemShapeNodesObjA"}

Returns a single ShapeNode object from a ShapeNodes collection.

Syntax
expression.Item(Index)

expression Required. An expression that returns a ShapeNodes object.
Index Required Variant. The shape node index number.

Item Property (Adjustments Object)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproItemAdjustmentsObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproItemAdjustmentsObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproItemAdjustmentsObjA"}

Returns or sets the adjustment value specified by the Index argument. For linear adjustments, an
adjustment value of 0.0 generally corresponds to the left or top edge of the shape, and a value of 1.0
generally corresponds to the right or bottom edge of the shape. However, adjustments can pass
beyond shape boundaries for some shapes. For radial adjustments, an adjustment value of 1.0
corresponds to the width of the shape. For angular adjustments, the adjustment value is specified in
degrees. The Item property applies only to shapes that have adjustments. Read/write Single.

Syntax
expression.Item(Index)
expression Required. An expression that returns an Adjustments object.
Index Required Long. The index number of the adjustment.

Remarks
AutoShapes, connectors, and WordArt objects can have up to eight adjustments.

coordinate pair
A pair of values representing the x- and y-coordinates of a point that are stored in a one-based two-
dimensional array that can contain coordinates for many points.

The following example creates a one-based array that contains the coordinate pairs 50, 150, 100,
200, and 150, 250. Note that when you dimension the array, the size of the first dimension is the
number of points you want to include, and the size of the second dimension is two (the first position
within the dimension is for the x-coordinate, the second is for the y-coordinate).
Dim cpArray(1 to 3, 1 to 2)
cpArray(1, 1) = 50' The x-coordinate of the first point
cpArray(1, 2) = 150 ' The y-coordinate of the first point
cpArray(2, 1) = 100 ' The x-coordinate of the second point
cpArray(2, 2) = 200 ' The y-coordinate of the second point
cpArray(3, 1) = 150 ' The x-coordinate of the third point
cpArray(3, 2) = 250 ' The y-coordinate of the third point

x-, y-, and z-axes
The three mutually perpendicular lines that are used to locate a point in a Cartesian coordinate
system. Note that in the Microsoft Office drawing layer, the x-axis runs horizontally across your
document, the y-axis runs vertically, and the z-axis runs perpendicular to the plane of your document
(sticking out toward you).

RGB value
Value returned by the RGB function; specifies a color as a combination of red, green, and blue
values. The RGB function has the following syntax:

RGB(red, green, blue)

The arguments specify the red, green, and blue components of the color as integers from 0 to 255.

default shape
An invisible shape that contains the initial properties for newly created shapes.

Add Method (QueryTables Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthAddQueryTablesObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthAddQueryTablesObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlmthAddQueryTablesObjA"}

Creates a new query table. Returns a QueryTable object that represents the new query table.

Syntax
expression.Add(Connection, Destination, Sql)
expression Required. An expression that returns a QueryTables object.
Connection Required Variant. The data source for the query table. Can be one of the following:

· A string containing an ODBC connection string.
· A QueryTable object from which the query information is initially copied, including the

connection string and the SQL text, but not including the Destination range. Specifying a
QueryTable object causes the Sql argument to be ignored.

· A DAO RecordSet object. Data is read from the DAO recordset. Microsoft Excel retains the
DAO recordset until the query table is deleted or the connection is changed. The resulting query
table cannot be edited.

· A Web query. A string in the form "URL;<url>", where "URL;" is required but not localized and the
rest of the string is used for the URL of the Web query.

· Data Finder. A string in the form "FINDER;<data finder file path>" where "FINDER;" is required
but not localized. The rest of the string is the path and file name of a Data Finder file (*.dqy or
*.iqy). The file is read when the Add method is run; subsequent calls to the Connection
property of the query table will return strings beginning with "ODBC;" or "URL;" as appropriate.

Destination Required Range. The cell in the upper-left corner of the query table destination range
(the range where the resulting query table will be placed). The destination range must be on the
worksheet that contains the QueryTables object specified by expression.

Sql Optional Variant. The SQL query string to be run on the ODBC data source. This argument is
optional when you're using an ODBC data source (if you don't specify it here, you should set it by
using the Sql property of the query table before the table is refreshed). This argument cannot be
used when a QueryTable object or a DAO Recordset object is specified as the data source.

Remarks
A query created by this method isn't run until the Refresh method is called.

Add Method (QueryTables Collection) Example

This example creates a new query table.
sqlstring = "select 96Sales.totals from 96Sales where profit < 5"
connstring = _

"ODBC;DSN=96SalesData;UID=Rep21;PWD=NUyHwYQI;Database=96Sales"
With ActiveSheet.QueryTables.Add(Connection:=connstring, _

Destination:=Range("B1"), Sql:=sqlstring)
.Refresh

End With

CancelRefresh Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlmthCancelRefreshC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlmthCancelRefreshX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlmthCancelRefreshA"}

Cancels all background queries for the specified query table. Use the Refreshing property to
determine whether a background query is currently in progress.

Syntax
expression.CancelRefresh
expression Required. An expression that returns a QueryTable object.

CancelRefresh Method Example

This example cancels a query table refresh operation.
With Worksheets(1).QueryTables(1)
 If .Refreshing Then .CancelRefresh
End With

Connection Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproConnectionC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproConnectionX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproConnectionA"}

Returns or sets a string that contains one of the following: ODBC settings that enable Microsoft Excel
to connect to an ODBC data source; a URL that enables Microsoft Excel to connect to a Web data
source; or a file that specifies a database or Web query. Read/write String.

Remarks
Setting the Connection property doesn't immediately initiate the connection to the data source. You
must use the Refresh method to make the connection and retrieve the data.

For more information about the connection string syntax, see the Add method.

Connection Property Example

This example supplies new ODBC connection information for query table one.
Worksheets(1).QueryTables(1) _

.Connection:="ODBC;DSN=96SalesData;UID=Rep21;PWD=NUyHwYQI;"

Destination Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproDestinationC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproDestinationX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproDestinationA"}

Returns the cell in the upper-left corner of the query table destination range (the range where the
resulting query table will be placed). The destination range must be on the worksheet that contains
the QueryTable object. Read-only Range.

Destination Property Example

This example scrolls through the active window until the upper-left corner of query table one is in the
upper-left corner of the window.
Set d = Worksheets(1).QueryTables(1).Destination
With ActiveWindow
 .ScrollColumn = d.Column
 .ScrollRow = d.Row
End With

FetchedRowOverflow Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproFetchedRowOverflowC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproFetchedRowOverflowX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproFetchedRowOverflowA"}

True if the number of rows returned by the last use of the Refresh method is greater than the number
of rows available on the worksheet. Read-only Boolean.

FetchedRowOverflow Property Example

This example refreshes query table one. If the number of rows returned by the query exceeds the
number of rows available on the worksheet, an error message is displayed.
With Worksheets(1).QueryTables(1)
 .Refresh
 If .FetchedRowOverflow Then
 MsgBox "Query too large: please redefine."
 End If
End With

FieldNames Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproFieldNamesC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproFieldNamesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproFieldNamesA"}

True if field names from the data source appear as column headings for the returned data. The
default value is True. Read/write Boolean.

FieldNames Property Example

This example sets query table one so that the field names don't appear in it.
Worksheets(1).QueryTables(1).FieldNames = False

FillAdjacentFormulas Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproFillAdjacentFormulasC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproFillAdjacentFormulasX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproFillAdjacentFormulasA"}

True if formulas to the right of the specified query table are automatically updated whenever the query
table is refreshed. Read/write Boolean.

FillAdjacentFormulas Property Example

This example sets query table one so that formulas to the right of it are automatically updated
whenever the query table is refreshed.
Sheets("sheet1").QueryTables(1).FillAdjacentFormulas = True

ODBCErrors Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproODBCErrorsC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproODBCErrorsX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproODBCErrorsA"}

Returns an ODBCErrors collection that contains all the ODBC errors generated by the most recent
query table or PivotTable operation. Read-only.

For more information about returning a single object from a collection, see Returning an Object from a
Collection.

Remarks
If there's more than one query running at the same time, the ODBCErrors collection contains the
ODBC errors from the query that's finished last.

ODBCErrors Property Example

This example refreshes query table one and displays any ODBC errors that occur.
With Worksheets(1).QueryTables(1)

.Refresh
Set errs = Application.ODBCErrors
If errs.Count > 0 Then

Set r = .Destination.Cells(1)
r.Value = "The following errors occurred:"
c = 0
For Each er In errs

c = c + 1
r.offset(c, 0).value = er.ErrorString
r.offset(c, 1).value = er.SqlState

Next
Else

MsgBox "Query complete: all records returned."
End If

End With

ODBCTimeout Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproODBCTimeoutC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproODBCTimeoutX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproODBCTimeoutA"}

Returns or sets the ODBC query time limit, in seconds. The default value is 45 seconds. Read/write
Long.

Remarks
The value 0 (zero) indicates an indefinite time limit.

ODBCTimeout Property Example

This example sets the ODBC query time limit to 15 seconds.
Application.ODBCTimeout = 15

Parameters Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproParametersC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproParametersX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproParametersA"}

Returns a Parameters collection that represents the query table parameters. Read-only.

For more information about returning a single object from a collection, see Returning an Object from a
Collection.

Parameters Property Example

This example returns the Parameters collection from an existing parameter query. If the first
parameter uses the character data type, the user is instructed to enter characters only in the prompt
dialog box.
With Sheets("sheet1").QueryTables(1).Parameters(1)
 If .DataType = xlParamTypeVarChar Then
 .SetParam xlPrompt, "Enter a character only"
 End If
End With

PostText Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPostTextC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPostTextX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPostTextA"}

Returns or sets the string used with the post method of inputting data into a Web server to return data
from a Web query. Read/write String.

Remarks
Microsoft Excel includes sample Web queries that you can modify by changing the HTML code by
using WordPad or another text editor. You can find these samples in the Queries folder where you
installed Microsoft Office.

The Microsoft Office 97 Resource Kit contains information about how to create a Web query. For
information about how to obtain the Office Resource Kit, click .

QueryTable Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproQueryTableC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproQueryTableX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproQueryTableA"}

Returns a QueryTable object that represents the query table that intersects the specified range.
Read-only.

QueryTable Property Example

This example refreshes the query table that intersects cell A10 on worksheet one.
Worksheets(1).Range("a10").QueryTable.Refresh

QueryTables Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproQueryTablesC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproQueryTablesX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproQueryTablesA"}

Returns the QueryTables collection that represents all the query tables on the specified worksheet.
Read-only.

For more information about returning a single object from a collection, see Returning an Object from a
Collection.

QueryTables Property Example

This example refreshes all query tables on worksheet one.
For Each qt in Worksheets(1).QueryTables

qt.Refresh
Next
This example sets query table one so that formulas to the right of it are automatically updated
whenever it's refreshed.
Sheets("sheet1").QueryTables(1).FillAdjacentFormulas = True

Recordset Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproRecordsetC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproRecordsetX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproRecordsetA"}

Returns or sets a Recordset object that's used as the data source for the specified query table.
Read/write.

Remarks
If this property is used to overwrite an existing recordset, the change takes effect when the Refresh
method is run.

Recordset Property Example

This example changes the Recordset object used with query table one and then refreshes the query
table.
With Worksheets(1).QueryTables(1)

.Recordset = OpenDatabase("c:\Nwind.mdb").OpenRecordset("employees")

.Refresh
End With

Refreshing Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproRefreshingC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproRefreshingX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproRefreshingA"}

True if there's a background query in progress for the specified query table. Read/write Boolean.

Remarks
Use the CancelRefresh method to cancel background queries.

Refreshing Property Example

This example displays a message box if there's a background query in progress for query table one.
With Worksheets(1).QueryTables(1)
 If .Refreshing Then
 MsgBox "Query is currently refreshing: please wait"
 Else
 .Refresh BackgroundQuery := False
 .ResultRange.Select
 End If
End With

RefreshStyle Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproRefreshStyleC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproRefreshStyleX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproRefreshStyleA"}

Returns or sets the way rows on the specified worksheet are added or deleted to accommodate the
number of rows in a recordset returned by a query. Read/write Long.

Can be one of the following xlCellInsertionMode constants.

Constant Description
xlOverwriteCells No new cells or rows are added to the worksheet.

Data in surrounding cells is overwritten to
accommodate any overflow.

xlInsertDeleteCells Partial rows are inserted or deleted to match the
exact number of rows required for the new recordset.

xlInsertEntireRows Entire rows are inserted, if necessary, to
accommodate any overflow. No cells or rows are
deleted from the worksheet.

RefreshStyle Property Example

This example adds a query table to Sheet1. The RefreshStyle property adds rows to the worksheet
as needed, to hold the data results.
Dim qt As QueryTable
Set qt = Sheets("sheet1").QueryTables _

.Add(Connection:="Finder;c:\myfile.dqy", _
Destination:=Range("sheet1!a1"))

With qt
 .RefreshStyle = xlInsertEntireRows
 .Refresh
End With

ResultRange Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproResultRangeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproResultRangeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproResultRangeA"}

Returns a Range object that represents the area of the worksheet occupied by the specified query
table. Read-only.

Remarks
The range doesn't include the field name row or the row number column.

ResultRange Property Example

This example sums the data in the first column of query table one. The sum of the first column is
displayed below the data range.
Set c1 = Sheets("sheet1").QueryTables(1).ResultRange.Columns(1)
c1.Name = "Column1"
c1.End(xlDown).Offset(2, 0).Formula = "=sum(Column1)"

RowNumbers Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproRowNumbersC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproRowNumbersX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproRowNumbersA"}

True if row numbers are added as the first column of the specified query table. Read/write Boolean.

Remarks
Setting this property to True doesn't immediately cause row numbers to appear. The row numbers
appear the next time the query table is refreshed, and they're reconfigured every time the query table
is refreshed.

RowNumbers Property Example

This example adds row numbers and field names to the query table.
With Worksheets(1).QueryTables("ExternalData1")
 .RowNumbers = True
 .FieldNames = True
 .Refresh
End With

SavePassword Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproSavePasswordC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproSavePasswordX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproSavePasswordA"}

True if password information in an ODBC connection string is saved with the specified query. False if
the password is removed. Read/write Boolean.

Remarks
This property affects only ODBC queries.

SavePassword Property Example

This example causes password information to be removed from the ODBC connection string
whenever query table one is saved.
Worksheets(1).QueryTables(1).SavePassword = False

Sql Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproSqlC"} {ewc HLP95EN.DLL, DYNALINK, "Example":"xlproSqlX":1}
{ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproSqlA"}

Returns or sets the SQL query string used with the specified ODBC data source. Read/write String.

Remarks
This property supports the full ODBC Data Manipulation Language (DML) grammar, including wild
card characters, and stored procedures that return data. This property doesn't support Data Definition
Language (DDL) statements.

Sql Property Example

This example changes the SQL query string for query tabel one and then refreshes the query table.
With Worksheets(1).QueryTables(1)

.Sql = "select 96Sales.totals from 96Sales where profit < 5"

.Refresh
End With

SqlState Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproSqlStateC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproSqlStateX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproSqlStateA"}

Returns the SQL state error. Read-only String.

Remarks
For an explanation of the specific error, see you SQL documentation.

SqlState Property Example

This example refreshes query table one and displays any ODBC errors that occur.
With Worksheets(1).QueryTables(1)

.Refresh
Set errs = Application.ODBCErrors
If errs.Count > 0 Then

Set r = .Destination.Cells(1)
r.Value = "The following errors occurred:"
c = 0
For Each er In errs

c = c + 1
r.offset(c, 0).value = er.ErrorString
r.offset(c, 1).value = er.SqlState

Next
Else

MsgBox "Query complete: all records returned."
End If

End With

PromptString Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproPromptStringC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproPromptStringX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproPromptStringA"}

Returns the phrase that prompts the user for a parameter value in a parameter query. Read-only
String.

PromptString Property Example

This example modifies the parameter prompt string for query table one.
With Worksheets(1).QueryTables(1).Parameters(1)

.SetParam xlPrompt, "Please " & .PromptString
End With

SetParam Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"XLmthSetParamC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"XLmthSetParamX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"XLmthSetParamA"}

Defines a parameter for the specified query table.

Syntax
expression.SetParam(Type, Value)
expression Required. An expression that returns a Parameter object.
Type Required Long. The parameter type. Can be one of the following XlParameterType

constants.
Constant Description
xlConstant Uses the value specified by the Value argument.
xlPrompt Displays a dialog box that prompts the user for the value.

The Value argument specifies the text shown in the dialog
box.

xlRange Uses the value of the cell in the upper-left corner of the
range. The Value argument specifies a Range object.

Value Required Variant. The value of the specified parameter, as shown in the description of the
Type argument.

SetParam Method Example

This example changes the SQL statement for query table one. The clause "(city=?)" indicates that the
query is a parameter query, and the example sets the value of city to the constant "Oakland."
Set qt = Sheets("sheet1").QueryTables(1)
qt.Sql = "SELECT * FROM authors WHERE (city=?)"
Set param1 = qt.Parameters.Add("City Parameter", xlParamTypeVarChar)
param1.SetParam xlConstant, "Oakland"
qt.Refresh
This example sets the value of city to the value of cell A2 on worksheet two.
Set qt = Sheets("sheet1").QueryTables(1)
qt.Sql = "SELECT * FROM authors WHERE (city=?)"
Set param1 = qt.Parameters.Add("City Parameter", xlParamTypeVarChar)
param1.SetParam xlRange, Range("sheet2!a1")
qt.Refresh

SourceRange Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproSourceRangeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproSourceRangeX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproSourceRangeA"}

Returns a Range object that represents the cell that contains the value of the specified query
parameter. Read-only.

SourceRange Property Example

This example changes the value of the cell used as the source range for the query.
Set qt = Sheets("sheet1").QueryTables(1)
Set param1 = qt.Parameters(1)
Set r = param1.SourceRange
r.Value = "New York"
qt.Refresh

Add Method (Parameters Collection)
{ewc HLP95EN.DLL, DYNALINK, "See Also":"XLmthAddParametersObjC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"XLmthAddParametersObjX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"XLmthAddParametersObjA"}

Creates a new query parameter. Returns a Parameter object that represents the new query
parameter.

Syntax
expression.Add(Name, DataType)
expression Required. An expression that returns a Parameters object.
Name Required String. The name of the specified parameter. The parameter name should match

the parameter clause in the SQL statement.
DataType Optional Variant. The data type of the parameter. Can be one of the following

XlParameterDataType constants:
xlParamTypeBigInt
xlParamTypeBinary
xlParamTypeBit
xlParamTypeChar
xlParamTypeDate
xlParamTypeDecimal
xlParamTypeDouble
xlParamTypeFloat
xlParamTypeInteger
xlParamTypeLongVarBinary

xlParamTypeNumeric
xlParamTypeLongVarChar
xlParamTypeReal
xlParamTypeSmallInt
xlParamTypeTime
xlParamTypeTimeStamp
xlParamTypeTinyInt
xlParamTypeUnknown
xlParamTypeVarBinary
xlParamTypeVarChar

These values correspond to ODBC data types. They indicate the type of value the ODBC driver is
expecting to receive. Microsoft Excel and the ODBC driver manager will coerce the parameter
value given in Microsoft Excel into the correct data type for the driver.

Add Method (Parameters Collection) Example

This example changes the SQL statement for query table one. The clause "(city=?)" indicates that the
query is a parameter query, and the value of city is set to the constant "Oakland."
Set qt = Sheets("sheet1").QueryTables(1)
qt.Sql = "SELECT * FROM authors WHERE (city=?)"
Set param1 = qt.Parameters.Add("City Parameter", xlParamTypeVarChar)
param1.SetParam xlConstant, "Oakland"
qt.Refresh

RefreshAll Method
{ewc HLP95EN.DLL, DYNALINK, "See Also":"XLmthRefreshAllC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"XLmthRefreshAllX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"XLmthRefreshAllA"}

Refreshes all query tables and PivotTables in the specified workbook.

Syntax
expression.RefreshAll
expression Required. An expression that returns a Workbook object.

RefreshAll Method Example

This example refreshes all the query tables and PivotTables in workbook three. The query tables and
PivotTables that have the BackgroundQuery property set to True are refreshed in the background.
Workbooks(3).RefreshAll

TablesOnlyFromHTML Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproTablesOnlyFromHTMLC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproTablesOnlyFromHTMLX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies
To":"xlproTablesOnlyFromHTMLA"}

True if only the HTML tables in the document are read when a query table is refreshed. False if the
entire HTML document is read when a query table is refreshed. This property has an effect only when
the query table is using a URL connection and the Web query returns an HTML document. Read/write
Boolean.

TablesOnlyFromHTML Property Example

This example sets query table one to update only tables from an HTML document..
Worksheets(1).QueryTables(1).TablesOnlyFromHTML = True

EnableEditing Property
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlproEnableEditingC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlproEnableEditingX":1} {ewc HLP95EN.DLL, DYNALINK, "Applies To":"xlproEnableEditingA"}

True if the user can edit the specified query table. False if the user can only refresh the query table.
Read/write Boolean.

EnableEditing Property Example

This example sets query table one so that the user cannot edit it.
Worksheets(1).QueryTables(1).EnableEditing = False

Parameter Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjParameterC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjParameterP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjParameterM"}

Represents a single parameter used in a parameter query. The Parameter object is a member of the
Parameters collection.

Using the Parameter Object
Use Parameters(index), where index is the index number of the parameter, to return a single
Parameter object. The following example modifies the prompt string for parameter one.
With Worksheets(1).QueryTables(1).Parameters(1)

.SetParam xlPrompt, "Please " & .PromptString
End With

Parameters Collection Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjParametersC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjParametersP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjParametersM"}

A collection of Parameter objects for the specified query table. Each Parameter object represents a
single query parameter. Every query table contains a Parameters collection, but the collection is
empty unless the query table is using a parameter query.

Using the Parameters Collection
Use the Parameters property to return the Parameters collection. The following example displays the
number of parameters in query table one.
MsgBox Workbooks(1).ActiveSheet.QueryTables(1).Parameters.Count
Use the Add method to create a new parameter for a query table. The following example changes the
SQL statement for query table one. The clause "(city=?)" indicates that the query is a parameter
query, and the value of city is set to the constant "Oakland."
Set qt = Sheets("sheet1").QueryTables(1)
qt.Sql = "SELECT * FROM authors WHERE (city=?)"
Set param1 = qt.Parameters.Add("City Parameter", xlParamTypeVarChar)
param1.SetParam xlConstant, "Oakland"
qt.Refresh
You cannot use the Add method on a URL connection query table. For URL connection query tables,
Microsoft Excel creates the parameters based on the Connection and PostText properties.

ODBCError Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjODBCErrorC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjODBCErrorP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjODBCErrorM"}

Represents an ODBC error generated by the the most recent ODBC query. The ODBCError object is
a member of the ODBCErrors collection. If the specified ODBC query runs without error, the
ODBCErrors collection is empty. The errors in the collection are indexed in the order in which they're
generated by the ODBC data source.

Using the ODBCError Object
Use ODBCErrors(index), where index is the index number of the error, to return a single ODBCError
object. The following example refreshes query table one and displays the first ODBC error that
occurs.
With Worksheets(1).QueryTables(1)

.Refresh
If Application.ODBCErrors.Count > 0 Then

Set er = Application.ODBCErrors(1)
MsgBox "The following error occurred:" &

er.ErrorString & " : " & er.SqlState
Else

MsgBox "Query complete: all records returned."
End If

End With

ODBCErrors Collection Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjODBCErrorsC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjODBCErrorsP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjODBCErrorsM"}

A collection of ODBCError objects. Each ODBCError object represents an error returned by the most
recent ODBC query. If the specified ODBC query runs without error, the ODBCErrors collection is
empty. The errors in the collection are indexed in the order in which they're generated by the ODBC
data source. You cannot add members to the collection.

Using the ODBCErrors Collection
Use the ODBCErrors property to return the ODBCErrors collection. The following example refreshes
query table one and displays any ODBC errors that occur.
With Worksheets(1).QueryTables(1)

.Refresh
Set errs = Application.ODBCErrors
If errs.Count > 0 Then

Set r = .Destination.Cells(1)
r.Value = "The following errors occurred:"
c = 0
For Each er In errs

c = c + 1
r.offset(c, 0).value = er.ErrorString
r.offset(c, 1).value = er.SqlState

Next
Else

MsgBox "Query complete: all records returned."
End If

End With

QueryTable Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjQueryTableC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjQueryTableP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjQueryTableM"}

Represents a worksheet table built from data returned from an external data source, such as an SQL
server or a Microsoft Access database. The QueryTable object is a member of the QueryTables
collection.

Using the QueryTable Object
Use QueryTables(index), where index is the index number of the query table, to return a single
QueryTable object. The following example sets query table one so that formulas to the right of it are
automatically updated whenever it's refreshed.
Sheets("sheet1").QueryTables(1).FillAdjacentFormulas = True

QueryTables Collection Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjQueryTablesC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjQueryTablesP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjQueryTablesM"}

A collection of QueryTable objects. Each QueryTable object represents a worksheet table built from
data returned from an external data source.

Using the QueryTables Collection
Use the QueryTables property to return the QueryTables collection. The following example displays
the number of query tables on the active worksheet.
MsgBox ActiveSheet.QueryTables.Count
Use the Add method to create a new query table and add it to the QueryTables collection. The
following example creates a new query table.
Dim qt As QueryTable
sqlstring = "select 96Sales.totals from 96Sales where profit < 5"
connstring = _

"ODBC;DSN=96SalesData;UID=Rep21;PWD=NUyHwYQI;Database=96Sales"
With ActiveSheet.QueryTables.Add(Connection:=connstring, _

Destination:=Range("B1"), Sql:=sqlstring)
.Refresh

End With

AddIn Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjAddInC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjAddInX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjAddInP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjAddInM"} {ewc HLP95EN.DLL, DYNALINK, "Events":"xlobjAddInE"}

Represents a single add-in, either installed or not installed. The AddIn object is a member of the
AddInscollection. The AddIns collection contains a list of all the add-ins available to Microsoft Excel,
regardless of whether they're installed. This list corresponds to the list of add-ins displayed in the
Add-Ins dialog box (Tools menu).

Using the Addin Object
Use AddIns(index), where index is the add-in title or index number, to return a single AddIn object.
The following example installs the Analysis Toolpak add-in.
AddIns("analysis toolpak").Installed = True
Don't confuse the add-in title, which appears in the Add-Ins dialog box, with the add-in name, which
is the file name of the add-in. You must spell the add-in title exactly as it's spelled in the Add-Ins
dialog box, but the capitalization doesn't have to match.

The index number represents the position of the add-in in the Add-ins available box in the Add-Ins
dialog box. The following example creates a list that contains specified properties of the available
add-ins.
With Worksheets("sheet1")

.Rows(1).Font.Bold = True

.Range("a1:d1").Value = _
Array("Name", "Full Name", "Title", "Installed")

For i = 1 To AddIns.Count
.Cells(i + 1, 1) = AddIns(i).Name
.Cells(i + 1, 2) = AddIns(i).FullName
.Cells(i + 1, 3) = AddIns(i).Title
.Cells(i + 1, 4) = AddIns(i).Installed

Next
.Range("a1").CurrentRegion.Columns.AutoFit

End With

Remarks
The Add method adds an add-in to the list of available add-ins but doesn't install the add-in. Set the
Installed property of the add-in to True to install the add-in. To install an add-in that doesn't appear in
the list of available add-ins, you must first use the Add method and then set the Installed property.
This can be done in a single step, as shown in the following example (note that you use the name of
the add-in, not its title, with the Add method).
AddIns.Add("generic.xll").Installed = True
Use Workbooks(index) where index is the add-in filename (not title) to return a reference to the
workbook corresponding to a loaded add-in. You must use the file name because loaded add-ins don't
normally appear in the Workbooks collection. This example sets the wb variable to the workbook for
Myaddin.xla.
Set wb = Workbooks("myaddin.xla")

The following example sets the wb variable to the workbook for the Analysis Toolpak add-in.
Set wb = Workbooks(AddIns("analysis toolpak").Name)
If the Installed property returns True, but calls to functions in the add-in still fail, the add-in may not
actually be loaded. This is because the Addin object represents the existence and installed state of
the add-in but doesn't represent the actual contents of the add-in workbook.To guarantee that an
installed add-in is loaded, you should open the add-in workbook. The following example opens the
workbook for the add-in named "My Addin" if the add-in isn't already present in the Workbooks
collection.
On Error Resume Next ' turn off error checking
Set wbMyAddin = Workbooks(Addins("My Addin").Name)
lastError = Err
On Error Goto 0 ' restore error checking
If lastError <> 0 Then

' the add-in workbook isn't currently open. Manually open it.
Set wbMyAddin = Workbooks.Open(Addins("My Addin").FullName)

End If

AddIns Collection Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjAddInsC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjAddInsX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjAddInsP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjAddInsM"} {ewc HLP95EN.DLL, DYNALINK, "Events":"xlobjAddInsE"}

A collection of AddIn objects that represents all the add-ins available to Microsoft Excel, regardless of
whether they're installed. This list corresponds to the list of add-ins displayed in the Add-Ins dialog
box (Tools menu).

Using the Addins Collection
Use the AddIns method to return the AddIns collection. The following example creates a list that
contains the names and installed states of all the available add-ins.
Sub DisplayAddIns()
 Worksheets("Sheet1").Activate
 rw = 1
 For Each ad In Application.AddIns
 Worksheets("Sheet1").Cells(rw, 1) = ad.Name
 Worksheets("Sheet1").Cells(rw, 2) = ad.Installed
 rw = rw + 1
 Next
End Sub
Use the Add method to add an add-in to the list of available add-ins. The Add method adds an add-in
to the list but doesn't install the add-in. Set the Installed property of the add-in to True to install the
add-in. To install an add-in that doesn't appear in the list of available add-ins, you must first use the
Add method and then set the Installed property. This can be done in a single step, as shown in the
following example (note that you use the name of the add-in, not its title, with the Add method).
AddIns.Add("generic.xll").Installed = True
Use AddIns(index) where index is the add-in title or index number to return a single AddIn object.
The following example installs the Analysis Toolpak add-in.
AddIns("analysis toolpak").Installed = True
Don't confuse the add-in title, which appears in the Add-Ins dialog box, with the add-in name, which
is the file name of the add-in. You must spell the add-in title exactly as it's spelled in the Add-Ins
dialog box, but the capitalization doesn't have to match.

Application Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjApplicationC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjApplicationX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjApplicationP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjApplicationM"} {ewc HLP95EN.DLL, DYNALINK,
"Events":"xlobjApplicationE"}

Represents the entire Microsoft Excel application. The Application object contains:

· Application-wide settings and options (many of the options in the Options dialog box (Tools
menu), for example).

· Methods that return top-level objects, such as ActiveCell, ActiveSheet, and so on.

Using the Application Object
Use the Application property to return the Application object. The following example applies the
Windows property to the Application object.
Application.Windows("book1.xls").Activate
The following example creates a Microsoft Excel worksheet object in another application and then
opens a workbook in Microsoft Excel.
Set xl = CreateObject("Excel.Sheet")
xl.Application.Workbooks.Open "newbook.xls"

Remarks
Many of the properties and methods that return the most common user-interface objects, such as the
active cell (ActiveCell property), can be used without the Application object qualifier. For example,
instead of writing Application.ActiveCell.Font.Bold = True, you can write
ActiveCell.Font.Bold = True.

AddIn, Assistant, AutoCorrect, Chart, CommandBars, Debug, Dialog, RecentFiles, VBE,
Window, Worksheet, WorksheetFunction, Workbook

Areas Collection Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjAreasC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjAreasX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjAreasP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjAreasM"} {ewc HLP95EN.DLL, DYNALINK, "Events":"xlobjAreasE"}

A collection of the areas, or contiguous blocks of cells, within a selection. There's no singular Area
object; individual members of the Areas collection are Range objects. The Areas collection contains
one Range object for each discrete, contiguous range of cells within the selection. If the selection
contains only one area, the Areas collection contains a single Range object that corresponds to that
selection.

Using the Areas Collection
Use the Areas property to return the Areas collection. The following example clears the current
selection if it contains more than one area.
If Selection.Areas.Count <> 1 Then Selection.Clear
Use Areas(index), where index is the area index number, to return a single Range object from the
collection. The index numbers correspond to the order in which the areas were selected. The
following example clears the first area in the current selection if the selection contains more than one
area.
If Selection.Areas.Count <> 1 Then

Selection.Areas(1).Clear
End If
Some operations cannot be performed on more than one area in a selection at the same time; you
must loop through the individual areas in the selection and perform the operations on each area
separately. The following example performs the operation named "myOperation" on the selected
range if the selection contains only one area; if the selection contains multiple areas, the example
performs myOperation on each individual area in the selection.
Set rangeToUse = Selection
If rangeToUse.Areas.Count = 1 Then
 myOperation rangeToUse
Else
 For Each singleArea in rangeToUse.Areas
 myOperation singleArea
 Next
End If

Border, Characters, Font, Interior, Name, SoundNote, Style

Axes Collection Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjAxesC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjAxesX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjAxesP"} {ewc HLP95EN.DLL,
DYNALINK, "Methods":"xlobjAxesM"} {ewc HLP95EN.DLL, DYNALINK, "Events":"xlobjAxesE"}

A collection of all the Axis objects in the specified chart.

Using the Axes Collection
Use the Axes method to return the Axes collection. The following example displays the number of
axes on embedded chart one on worksheet one.
With Worksheets(1).ChartObjects(1).Chart
 MsgBox .Axes.Count
End With
Use Axes(type, group), where type is the axis type and group is the axis group, to return a single
Axis object. Type can be one of the following XlAxisType constants: xlCategory, xlSeries, or
xlValue. Group can be one of the following XlAxisGroup constants: xlPrimary or xlSecondary. For
more information, see the Axes method.

The following example sets the category axis title text on the chart sheet named "Chart1."
With Charts("chart1").Axes(xlCategory)
 .HasTitle = True
 .AxisTitle.Caption = "1994"
End With

Axis Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjAxisC"} {ewc HLP95EN.DLL, DYNALINK, "Example":"xlobjAxisX":1}
{ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjAxisP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjAxisM"}
{ewc HLP95EN.DLL, DYNALINK, "Events":"xlobjAxisE"}

Represents a single axis in a chart. The Axis object is a member of the Axes collection.

Using the Axis Object
Use Axes(type, group) where type is the axis type and group is the axis group to return a single Axis
object. Type can be one of the following XlAxisType constants: xlCategory, xlSeries, or xlValue.
Group can be one of the following XlAxisGroup constants: xlPrimary or xlSecondary. For more
information, see the Axes method.

The following example sets the category axis title text on the chart sheet named "Chart1."
With Charts("chart1").Axes(xlCategory)
 .HasTitle = True
 .AxisTitle.Caption = "1994"
End With

AxisTitle Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjAxisTitleC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjAxisTitleX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjAxisTitleP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjAxisTitleM"} {ewc HLP95EN.DLL, DYNALINK, "Events":"xlobjAxisTitleE"}

Represents a chart axis title.

Using the AxisTitle Object
Use the AxisTitle property to return an AxisTitle object. The following example activates embedded
chart one, sets the value axis title text, sets the font to Bookman 10 point, and formats the word
"millions" as italic.
Worksheets("sheet1").ChartObjects(1).Activate
With ActiveChart.Axes(xlValue)
 .HasTitle = True
 With .AxisTitle
 .Caption = "Revenue (millions)"
 .Font.Name = "bookman"
 .Font.Size = 10
 .Characters(10, 8).Font.Italic = True
 End With
End With

Remarks
The AxisTitle object doesn't exist and cannot be used unless the HasTitle property for the axis is
True.

Border, Characters, Font, Interior

Border Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjBorderC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjBorderX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjBorderP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjBorderM"} {ewc HLP95EN.DLL, DYNALINK, "Events":"xlobjBorderE"}

Represents the border of an object.

Using the Border Object
Most bordered objects (all except for the Range and Style objects) have a border that's treated as a
single entity, regardless of how many sides it has. The entire border must be returned as a unit. Use
the Border property to return the Border object for this kind of object. The following example
activates the chart sheet named "Chart1," places a dashed border around the chart area for the active
chart, and places a dotted border around the plot area.
Charts("chart1").Activate
With ActiveChart
 .ChartArea.Border.LineStyle = xlDash
 .PlotArea.Border.LineStyle = xlDot
End With
Range and Style objects have four discrete borders ¾ left, right, top, and bottom ¾ which can be
returned individually or as a group. Use the Borders property to return the Borders collection, which
contains all four borders. The following example adds a double border to cell A1 on worksheet one.
Worksheets(1).Range("a1").Borders.LineStyle = xlBorderStyleDouble
Use Borders(index), where index identifies the border, to return a single Border object. The following
example sets the color of the bottom border of cells A1:G1.
Worksheets("Sheet1").Range("a1:g1"). _
 Borders(xlEdgeBottom).Color = RGB(255, 0, 0)
Index can be one of the following XlBorderType constants: xlInsideHorizontal, xlInsideVertical,
xlDiagonalDown, xlDiagonalUp, xlEdgeBottom, xlEdgeLeft, xlEdgeRight, or xlEdgeTop.

Axis, AxisTitle, ChartArea, ChartObject, ChartObjects, ChartTitle, DataLabel, DataLabels,
DownBars, DropLines, ErrorBars, Floor, Gridlines, HiLoLines, Legend, LegendKey,
OLEObject, OLEObjects, PlotArea, Point, Series, SeriesLines, Trendline, UpBars, Walls

Borders Collection Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjBordersC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjBordersX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjBordersP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjBordersM"} {ewc HLP95EN.DLL, DYNALINK, "Events":"xlobjBordersE"}

A collection of four Border objects that represent the four borders of a Range or Style object.

Using the Borders Collection
Use the Borders property to return the Borders collection, which contains all four borders. The
following example adds a double border to cell A1 on worksheet one.
Worksheets(1).Range("a1").Borders.LineStyle = xlBorderStyleDouble
Use Borders(index), where index identifies the border, to return a single Border object. The following
example sets the color of the bottom border of cells A1:G1 to red.
Worksheets("Sheet1").Range("a1:g1"). _
 Borders(xlEdgeBottom).Color = RGB(255, 0, 0)
Index can be one of the following XlBorderType constants: xlInsideHorizontal, xlInsideVertical,
xlDiagonalDown, xlDiagonalUp, xlEdgeBottom, xlEdgeLeft, xlEdgeRight, or xlEdgeTop.

Remarks
You can set border properties for an individual border only with Range and Style objects. Other
bordered objects, such as check boxes and chart areas, have a border that's treated as a single
entity, regardless of how many sides it has. For these objects, you must return and set properties for
the entire border as a unit. For more information, see the Border object.

Range, Style

Characters Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjCharactersC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjCharactersX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjCharactersP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjCharactersM"} {ewc HLP95EN.DLL, DYNALINK,
"Events":"xlobjCharactersE"}

Represents characters in an object that contains text. The Characters object lets you modify any
sequence of characters contained in the full text string.

Using the Characters Object
Use Characters(start, length), where start is the start character number and length is the number of
characters, to return a Characters object. The following example adds text to cell B1 and then makes
the second word bold.
With Worksheets("sheet1").Range("b1")
 .Value = "New Title"
 .Characters(5, 5).Font.Bold = True
End With

Remarks
The Characters method is necessary only when you need to change some of an object's text without
affecting the rest (you cannot use the Characters method to format a portion of the text if the object
doesn't support rich text). To change all the text at the same time, you can usually apply the
appropriate method or property directly to the object. The following example formats the contents of
cell A5 as italic.
Worksheets("sheet1").Range("a5").Font.Italic = True

AxisTitle, ChartTitle, DataLabel, Range

Chart Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjChartC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjChartX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjChartP"} {ewc HLP95EN.DLL,
DYNALINK, "Methods":"xlobjChartM"} {ewc HLP95EN.DLL, DYNALINK, "Events":"xlobjChartE"}

Represents a chart in a workbook. The chart can be either an embedded chart (contained in a
ChartObject) or a separate chart sheet.

Using the Chart Object
The following properties and methods for returning a Chart object are described in this section:

· Chart property
· Charts method
· ActiveChart property
· ActiveSheet property

Chart Property
Use the Chart property to return a Chart object that represents the chart contained in a ChartObject
object. The following example sets the pattern for the chart area in embedded chart one on the
worksheet named "Sheet1."

Worksheets("sheet1").ChartObjects(1).Chart. _
 ChartArea.Interior.Pattern = xlLightDown

Charts Method
The Charts collection contains a Chart object for each chart sheet in a workbook. Use Charts(index),
where index is the chart-sheet index number or name, to return a single Chart object. The following
example changes the color of series one on chart sheet one.
Charts(1).SeriesCollection(1).Interior.Color = RGB(255, 0, 0)
The chart index number represents the position of the chart sheet on the workbook tab bar.
Charts(1) is the first (leftmost) chart in the workbook; Charts(Charts.Count) is the last
(rightmost). All chart sheets are included in the index count, even if they're hidden. The chart-sheet
name is shown on the workbook tab for the chart. You can use the Name property to set or return the
chart name.

The following example moves the chart named "Sales" to the end of the active workbook.
Charts("sales").Move after:=Sheets(Sheets.Count)
The Chart object is also a member of the Sheets collection. The Sheets collection contains all the
sheets in the workbook (both chart sheets and worksheets). Use Sheets(index), where index is the
sheet index number or name, to return a single sheet.

ActiveChart Property
When a chart is the active object, you can use the ActiveChart property to refer to it. A chart sheet is
active if the user has selected it or it's been activated with the Activate method. The following
example activates chart sheet one and then sets the chart type and title.
Charts(1).Activate
With ActiveChart

.Type = xlLine

.HasTitle = True

.ChartTitle.Text = "January Sales"
End With
An embedded chart is active if the user has selected it or the ChartObject object that it's contained in
has been activated with the Activate method. The following example activates embedded chart one
on worksheet one and then sets the chart type and title. Notice that after the embedded chart has
been activated, the code in this example is the same as that in the previous example. Using the
ActiveChart property allows you to write Visual Basic code that can refer to either an embedded
chart or a chart sheet (whichever is active).
Worksheets(1).ChartObjects(1).Activate
ActiveChart.Type = xlLine
ActiveChart.HasTitle = True
ActiveChart.ChartTitle.Text = "January Sales"

ActiveSheet Property
When a chart sheet is the active sheet, you can use the ActiveSheet property to refer to it. The
following example uses the Activate method to activate the chart sheet named "Chart1" and then
sets the interior color for series one in the chart to blue.
Charts("chart1").Activate
ActiveSheet.SeriesCollection(1).Interior.ColorIndex = 5

Axis, ChartArea, ChartGroups, ChartObjects, ChartTitle, Corners, Floor, Legend, OLEObjects,
PageSetup, PlotArea, SeriesCollection, Walls

ChartArea Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjChartAreaC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjChartAreaX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjChartAreaP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjChartAreaM"} {ewc HLP95EN.DLL, DYNALINK,
"Events":"xlobjChartAreaE"}

Represents the chart area of a chart. The chart area on a 2-D chart contains the axes, the chart title,
the axis titles, and the legend. The chart area on a 3-D chart contains the chart title and the legend; it
doesn't include the plot area (the area within the chart area where the data is plotted). For information
about formatting the plot area, see the PlotArea object.

Using the ChartArea Object
Use the ChartArea property to return the ChartArea object. The following example sets the pattern
for the chart area in embedded chart one on the worksheet named "Sheet1."
Worksheets("sheet1").ChartObjects(1).Chart. _
 ChartArea.Interior.Pattern = xlLightDown

ChartGroup Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjChartGroupC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjChartGroupX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjChartGroupP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjChartGroupM"} {ewc HLP95EN.DLL, DYNALINK,
"Events":"xlobjChartGroupE"}

Represents one or more series plotted in a chart with the same format. A chart contains one or more
chart groups, each chart group contains one or more series, and each series contains one or more
points. For example, a single chart might contain both a line chart group, containing all the series
plotted with the line chart format, and a bar chart group, containing all the series plotted with the bar
chart format. The ChartGroup object is a member of the ChartGroups collection.

Using the ChartGroup Object
Use ChartGroups(index), where index is the chart-group index number, to return a single
ChartGroup object. The following example adds drop lines to chart group one on chart sheet one.
Charts(1).ChartGroups(1).HasDropLines = True
If the chart has been activated, you can use the ActiveChart property.
Charts(1).Activate
ActiveChart.ChartGroups(1).HasDropLines = True
Because the index number for a particular chart group can change if the chart format used for that
group is changed, it may be easier to use one of the named chart group shortcut methods to return a
particular chart group. The PieGroups method returns the collection of pie chart groups in a chart, the
LineGroups method returns the collection of line chart groups, and so on. Each of these methods
can be used with an index number to return a single ChartGroup object, or without an index number
to return a ChartGroups collection. The following chart group methods are available:

· AreaGroups method
· BarGroups method
· ColumnGroups method
· DoughnutGroups method
· LineGroups method
· PieGroups method

DownBars, DropLines, HiLoLines, SeriesCollection, SeriesLines, UpBars

ChartGroups Collection Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjChartGroupsC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjChartGroupsX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjChartGroupsP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjChartGroupsM"} {ewc HLP95EN.DLL, DYNALINK,
"Events":"xlobjChartGroupsE"}

A collection of all the ChartGroup objects in the specified chart. Each ChartGroup object represents
one or more series plotted in a chart with the same format. A chart contains one or more chart groups,
each chart group contains one or more series, and each series contains one or more points. For
example, a single chart might contain both a line chart group, containing all the series plotted with the
line chart format, and a bar chart group, containing all the series plotted with the bar chart format.

Using the ChartGroups Collection
Use the ChartGroups method to return the ChartGroups collection. The following example displays
the number of chart groups on embedded chart one on worksheet one.
MsgBox Worksheets(1).ChartObjects(1).Chart.ChartGroups.Count
Use ChartGroups(index), where index is the chart-group index number, to return a single
ChartGroup object. The following example adds drop lines to chart group one on chart sheet one.
Charts(1).ChartGroups(1).HasDropLines = True
If the chart has been activated, you can use ActiveChart:
Charts(1).Activate
ActiveChart.ChartGroups(1).HasDropLines = True
Because the index number for a particular chart group can change if the chart format used for that
group is changed, it may be easier to use one of the named chart group shortcut methods to return a
particular chart group. The PieGroups method returns the collection of pie chart groups in a chart, the
LineGroups method returns the collection of line chart groups, and so on. Each of these methods
can be used with an index number to return a single ChartGroup object, or without an index number
to return a ChartGroups collection. The following chart group methods are available:

· AreaGroups method
· BarGroups method
· ColumnGroups method
· DoughnutGroups method
· LineGroups method
· PieGroups method

ChartObject Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjChartObjectC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjChartObjectX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjChartObjectP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjChartObjectM"} {ewc HLP95EN.DLL, DYNALINK,
"Events":"xlobjChartObjectE"}

Represents an embedded chart on a worksheet. The ChartObject object acts as a container for a
Chart object. Properties and methods for the ChartObject object control the appearance and size of
the embedded chart on the worksheet. The ChartObject object is a member of the ChartObjects
collection. The ChartObjects collection contains all the embedded charts on a single sheet.

Using the ChartObject Object
Use ChartObjects(index), where index is the embedded chart index number or name, to return a
single ChartObject object. The following example sets the pattern for the chart area in embedded
chart one on the worksheet named "Sheet1."
Worksheets("Sheet1").ChartObjects(1).Chart. _
 ChartArea.Interior.Pattern = xlLightDown
The embedded chart name is shown in the Name box when the embedded chart is selected. Use the
Name property to set or return the name of the ChartObject object. The following example puts
rounded corners on the embedded chart named "Chart 1" on the worksheet named "Sheet1."
Worksheets("sheet1").ChartObjects("chart 1").RoundedCorners = True

ChartObjects Collection Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjChartObjectsC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjChartObjectsX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjChartObjectsP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjChartObjectsM"} {ewc HLP95EN.DLL, DYNALINK,
"Events":"xlobjChartObjectsE"}

A collection of all the ChartObject objects on the specified chart sheet, dialog sheet, or worksheet.
Each ChartObject object represents an embedded chart. The ChartObject object acts as a container
for a Chart object. Properties and methods for the ChartObject object control the appearance and
size of the embedded chart on the sheet.

Using the ChartObjects Collection
Use the ChartObjects method to return the ChartObjects collection. The following example deletes
all the embedded charts on the worksheet named "Sheet1."
Worksheets("sheet1").ChartObjects.Delete
Use the Add method to create a new, empty embedded chart and add it to the collection. Use the
ChartWizard method to add data and format the new chart. The following example creates a new
embedded chart and then adds the data from cells A1:A20 as a line chart.
Dim ch As ChartObject
Set ch = Worksheets("sheet1").ChartObjects.Add(100, 30, 400, 250)
ch.Chart.ChartWizard source:=Worksheets("sheet1").Range("a1:a20"), _
 gallery:=xlLine, title:="New Chart"
Use ChartObjects(index), where index is the embedded chart index number or name, to return a
single ChartObject object. The following example sets the pattern for the chart area in embedded
chart one on the worksheet named "Sheet1."
Worksheets("Sheet1").ChartObjects(1).Chart. _
 ChartArea.Interior.Pattern = xlLightDown

Charts Collection Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjChartsC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjChartsX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjChartsP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjChartsM"} {ewc HLP95EN.DLL, DYNALINK, "Events":"xlobjChartsE"}

A collection of all the chart sheets in the specified or active workbook. Each chart sheet is
represented by a Chart object. This doesn't include charts embedded on worksheets or dialog sheets.
For information about embedded charts, see the Chart or ChartObject object.

Using the Charts Collection
Use the Charts property to return the Charts collection. The following example prints all chart sheets
in the active workbook.
Charts.PrintOut
Use the Add method to create a new chart sheet and add it to the workbook. The following example
adds a new chart sheet to the active workbook and places the new chart sheet immediately after the
worksheet named "Sheet1."
Charts.Add after:=Worksheets("sheet1")
You can combine the Add method with the ChartWizard method to add a new chart that contains
data from a worksheet. The following example adds a new line chart based on data in cells A1:A20 on
the worksheet named "Sheet1."
With Charts.Add

.ChartWizard source:=Worksheets("sheet1").Range("a1:a20"), _
 gallery:=xlLine, title:="February Data"
End With
Use Charts(index), where index is the chart-sheet index number or name, to return a single Chart
object. The following example changes the color of series one on chart sheet one to red.
Charts(1).SeriesCollection(1).Interior.Color = RGB(255, 0, 0)
The Sheets collection contains all the sheets in the workbook (both chart sheets and worksheets).
Use Sheets(index), where index is the sheet name or number, to return a single sheet.

ChartTitle Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjChartTitleC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjChartTitleX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjChartTitleP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjChartTitleM"} {ewc HLP95EN.DLL, DYNALINK,
"Events":"xlobjChartTitleE"}

Represents the chart title.

Using the ChartTitle Object
Use the ChartTitle property to return the ChartTitle object. The following example adds a title to
embedded chart one on the worksheet named "Sheet1."
With Worksheets("sheet1").ChartObjects(1).Chart
 .HasTitle = True
 .ChartTitle.Text = "February Sales"
End With

Remarks
The ChartTitle object doesn't exist and cannot be used unless the HasTitle property for the chart is
True.

DataLabel Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjDataLabelC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjDataLabelX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjDataLabelP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjDataLabelM"} {ewc HLP95EN.DLL, DYNALINK,
"Events":"xlobjDataLabelE"}

Represents the data label on a chart point or trendline. On a series, the DataLabel object is a
member of the DataLabels collection. The DataLabels collection contains a DataLabel object for
each point. For a series without definable points (such as an area series), the DataLabels collection
contains a single DataLabel object.

Using the DataLabel Object
Use DataLabels(index), where index is the data-label index number, to return a single DataLabel
object. The following example sets the number format for the fifth data label in series one in
embedded chart one on worksheet one.

Worksheets(1).ChartObjects(1).Chart _
.SeriesCollection(1).DataLabels(5).NumberFormat = "0.000"

Use the DataLabel property to return the DataLabel object for a single point. The following example
turns on the data label for the second point in series one on the chart sheet named "Chart1" and sets
the data label text to "Saturday."
With Charts("chart1")
 With .SeriesCollection(1).Points(2)
 .HasDataLabel = True
 .DataLabel.Text = "Saturday"
 End With
End With
On a trendline, the DataLabel property returns the text shown with the trendline. This can be the
equation, the R-squared value, or both (if both are showing). The following example sets the trendline
text to show only the equation and then places the data label text in cell A1 on the worksheet named
"Sheet1."
With Charts("chart1").SeriesCollection(1).Trendlines(1)
 .DisplayRSquared = False
 .DisplayEquation = True
 Worksheets("sheet1").Range("a1").Value = .DataLabel.Text
End With

DataLabels Collection Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjDataLabelsC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjDataLabelsX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjDataLabelsP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjDataLabelsM"} {ewc HLP95EN.DLL, DYNALINK,
"Events":"xlobjDataLabelsE"}

A collection of all the DataLabel objects for the specified series. Each DataLabel object represents a
data label for a point or trendline. For a series without definable points (such as an area series), the
DataLabels collection contains a single data label.

Using the Datalabels Collection
Use the DataLabels method to return the DataLabels collection. The following example sets the
number format for data labels on series one on chart sheet one.
With Charts(1).SeriesCollection(1)
 .HasDataLabels = True

 .DataLabels.NumberFormat = "##.##"
End With
Use DataLabels(index), where index is the data-label index number, to return a single DataLabel
object. The following example sets the number format for the fifth data label in series one in
embedded chart one on worksheet one.
Worksheets(1).ChartObjects(1).Chart _

.SeriesCollection(1).DataLabels(5).NumberFormat = "0.000"

Dialog Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjDialogC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjDialogX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjDialogP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjDialogM"} {ewc HLP95EN.DLL, DYNALINK, "Events":"xlobjDialogE"}

Represents a built-in Microsoft Excel dialog box. The Dialog object is a member of the Dialogs
collection. The Dialogs collection contains all the built-in dialog boxes in Microsoft Excel. You cannot
create a new built-in dialog box or add one to the collection. The only useful thing you can do with a
Dialog object is use it with the Show method to display the corresponding dialog box.

Using the Dialog Object
Use Dialogs(index), where index is a built-in constant identifying the dialog box, to return a single
Dialog object. The following example runs the built-in Open dialog box (File menu). The Show
method returns True if Microsoft Excel successfully opens a file; it returns False if the user cancels
the dialog box.
dlgAnswer = Application.Dialogs(xlDialogOpen).Show
The Microsoft Excel Visual Basic object library includes built-in constants for many of the built-in
dialog boxes. Each constant is formed from the prefix "xlDialog" followed by the name of the dialog
box. For example, the Apply Names dialog box constant is xlDialogApplyNames, and the Find File
dialog box constant is xlDialogFindFile. These constants are members of the XlBuiltinDialog
enumerated type. For more information about the available constants, see Built-in Dialog Box
Argument Lists.

Dialogs Collection Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjDialogsC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjDialogsX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjDialogsP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjDialogsM"} {ewc HLP95EN.DLL, DYNALINK, "Events":"xlobjDialogsE"}

A collection of all the Dialog objects in Microsoft Excel. Each Dialog object represents a built-in
dialog box. You cannot create a new built-in dialog box or add one to the collection. The only useful
thing you can do with a Dialog object is use it with the Show method to display the dialog
corresponding dialog box.

Using the Dialogs Collection
Use the Dialogs property to return the Dialogs collection. The following example displays the number
of available built-in Microsoft Excel dialog boxes.
MsgBox Application.Dialogs.Count
Use Dialogs(index), where index is a built-in constant identifying the dialog box, to return a single
Dialog object. The following example runs the built-in File Open dialog box.
dlgAnswer = Application.Dialogs(xlDialogOpen).Show
The Microsoft Excel Visual Basic object library includes built-in constants for many of the built-in
dialog boxes. Each constant is formed from the prefix "xlDialog" followed by the name of the dialog
box. For example, the Apply Names dialog box constant is xlDialogApplyNames, and the Find File
dialog box constant is xlDialogFindFile. These constants are members of the XlBuiltinDialog
enumerated type. For more information about the available constants, see Built-in Dialog Box
Argument Lists.

DownBars Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjDownBarsC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjDownBarsX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjDownBarsP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjDownBarsM"} {ewc HLP95EN.DLL, DYNALINK,
"Events":"xlobjDownBarsE"}

Represents the down bars in a chart group. Down bars connect points on the first series in the chart
group with lower values on the last series (the lines go down from the first series). Only 2-D line
groups that contain at least two series can have down bars. This object isn't a collection. There's no
object that represents a single down bar; you either have up bars and down bars turned on for all
points in a chart group or you have them turned off.

Using the DownBars Object
Use the DownBars property to return the DownBars object. The following example turns on up and
down bars for chart group one in embedded chart one on the worksheet named "Sheet5." The
example then sets the up bar color to blue and the down bar color to red.
With Worksheets("sheet5").ChartObjects(1).Chart.ChartGroups(1)
 .HasUpDownBars = True
 .UpBars.Interior.Color = RGB(0, 0, 255)
 .DownBars.Interior.Color = RGB(255, 0, 0)
End With

Remarks
If the HasUpDownBars property is False, most properties of the DownBars object are disabled.

DropLines Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjDropLinesC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjDropLinesX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjDropLinesP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjDropLinesM"} {ewc HLP95EN.DLL, DYNALINK,
"Events":"xlobjDropLinesE"}

Represents the drop lines in a chart group. Drop lines connect the points in the chart with the x-axis.
Only line and area chart groups can have drop lines. This object isn't a collection. There's no object
that represents a single drop line; you either have drop lines turned on for all points in a chart group
or you have them turned off.

Using the DropLines Object
Use the DropLines property to return the DropLines object. The following example turns on drop
lines for chart group one in embedded chart one and then sets the drop line color to red.
Worksheets("sheet1").ChartObjects(1).Activate
ActiveChart.ChartGroups(1).HasDropLines = True
ActiveChart.ChartGroups(1).DropLines.Border.ColorIndex = 3

Remarks
If the HasDropLines property is False, most properties of the DropLines object are disabled.

ErrorBars Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjErrorBarsC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjErrorBarsX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjErrorBarsP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjErrorBarsM"} {ewc HLP95EN.DLL, DYNALINK,
"Events":"xlobjErrorBarsE"}

Represents the error bars on a chart series. Error bars indicate the degree of uncertainty for chart
data. Only series in area, bar, column, line, and scatter groups on a 2-D chart can have error bars.
Only series in scatter groups can have x and y error bars. This object isn't a collection. There's no
object that represents a single error bar; you either have x error bars or y error bars turned on for all
points in a series or you have them turned off.

Using the ErrorBars Object
Use the ErrorBars property to return the ErrorBars object. The following example turns on error bars
for series one in embedded chart one and then sets the end style for the error bars.
Worksheets("sheet1").ChartObjects(1).Activate
ActiveChart.SeriesCollection(1).HasErrorBars = True
ActiveChart.SeriesCollection(1).ErrorBars.EndStyle = xlNoCap

Remarks
The ErrorBar method changes the error bar format and type.

Floor Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjFloorC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjFloorX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjFloorP"} {ewc HLP95EN.DLL,
DYNALINK, "Methods":"xlobjFloorM"} {ewc HLP95EN.DLL, DYNALINK, "Events":"xlobjFloorE"}

Represents the floor of a 3-D chart

Using the Floor Object
Use the Floor property to return the Floor object. The following example sets the floor color for
embedded chart one to cyan. The example will fail if the chart isn't a 3-D chart.
Worksheets("sheet1").ChartObjects(1).Activate
ActiveChart.Floor.Interior.Color = RGB(0, 255, 255)

Font Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjFontC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjFontX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjFontP"} {ewc HLP95EN.DLL,
DYNALINK, "Methods":"xlobjFontM"} {ewc HLP95EN.DLL, DYNALINK, "Events":"xlobjFontE"}

Contains the font attributes (font name, font size, color, and so on) for an object.

Using the Font Object
Use the Font property to return the Font object. The following example formats cells A1:C5 as bold.
Worksheets("sheet1").Range("a1:c5").Font.Bold = True
If you don't want to format all the text in a cell or graphic the same way, use the Characters property
to return a subset of the text.

AxisTitle, Characters, ChartArea, ChartTitle, DataLabel, DataLabels, Legend, LegendEntry,
Range, Style, TickLabels

Gridlines Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjGridlinesC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjGridlinesX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjGridlinesP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjGridlinesM"} {ewc HLP95EN.DLL, DYNALINK, "Events":"xlobjGridlinesE"}

Represents major or minor gridlines on a chart axis. Gridlines extend the tick marks on a chart axis to
make it easier to see the values associated with the data markers. This object isn't a collection.
There's no object that represents a single gridline; you either have all gridlines for an axis turned on or
all of them turned off.

Using the Gridlines Object
Use the MajorGridlines property to return the GridLines object that represents the major gridlines
for the axis. Use the MinorGridlines property to return the GridLines object that represents the
minor gridlines. It's possible to return both major and minor gridlines at the same time.

The following example turns on major gridlines for the category axis on the chart sheet named
"Chart1" and then formats the gridlines to be blue dashed lines.
With Charts("chart1").Axes(xlCategory)

.HasMajorGridlines = True

.MajorGridlines.Border.Color = RGB(0, 0, 255)

.MajorGridlines.Border.LineStyle = xlDash
End With

HiLoLines Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjHiLoLinesC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjHiLoLinesX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjHiLoLinesP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjHiLoLinesM"} {ewc HLP95EN.DLL, DYNALINK,
"Events":"xlobjHiLoLinesE"}

Represents the high-low lines in a chart group. High-low lines connect the highest point with the
lowest point in every category in the chart group. Only 2-D line groups can have high-low lines. This
object isn't a collection. There's no object that represents a single high-low line; you either have high-
low lines turned on for all points in a chart group or you have them turned off.

Using the HiLoLines Object
Use the HiLoLines property to return the HiLoLines object. The following example uses the
AutoFormat method to create a high-low-close stock chart in embedded chart one (the chart must
contain three series) on worksheet one. The example then makes the high-low lines blue.
Worksheets(1).ChartObjects(1).Activate
ActiveChart.AutoFormat gallery:=xlLine, format:=8
ActiveChart.ChartGroups(1).HiLoLines.Border.Color = RGB(0, 0, 255)

Remarks
If the HasHiLoLines property is False, most properties of the HiLoLines object are disabled.

Interior Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjInteriorC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjInteriorX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjInteriorP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjInteriorM"} {ewc HLP95EN.DLL, DYNALINK, "Events":"xlobjInteriorE"}

Represents the interior of an object.

Using the Interior Object
Use the Interior property to return the Interior object. The following example sets the color for the
interior of cell A1 to red.
Worksheets("sheet1").Range("a1").Interior.ColorIndex = 3

AxisTitle, ChartArea, ChartObject, ChartObjects, ChartTitle, DataLabel, DataLabels, DownBars,
FormatCondition, Floor, Legend, LegendKey, OLEObject, OLEObjects, PlotArea, Point, Range,
Series, Style, UpBars, Walls

Legend Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjLegendC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjLegendX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjLegendP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjLegendM"} {ewc HLP95EN.DLL, DYNALINK, "Events":"xlobjLegendE"}

Represents the legend in a chart. Each chart can have only one legend.The Legend object contains
one or more LegendEntry objects; each LegendEntry object contains a LegendKey object.

Using the Legend Object
Use the Legend property to return the Legend object. The following example sets the font style for
the legend in embedded chart one on worksheet one to bold.
Worksheets(1).ChartObjects(1).Chart.Legend.Font.Bold = True

Remarks
The chart legend isn't visible unless the HasLegend property is True. If this property is False,

properties and methods of the Legend object will fail.

LegendEntries Collection Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjLegendEntriesC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjLegendEntriesX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjLegendEntriesP"}
{ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjLegendEntriesM"} {ewc HLP95EN.DLL, DYNALINK,
"Events":"xlobjLegendEntriesE"}

A collection of all the LegendEntry objects in the specified chart legend. Each legend entry has two
parts: the text of the entry, which is the name of the series or trendline associated with the legend
entry; and the entry marker, which visually links the legend entry with its associated series or trendline
in the chart. The formatting properties for the entry marker and its associated series or trendline are
contained in the LegendKey object.

Using the LegendEntries Collection
Use the LegendEntries method to return the LegendEntries collection. The following example loops
through the collection of legend entries in embedded chart one and changes their font color.
With Worksheets("sheet1").ChartObjects(1).Chart.Legend
 For i = 1 To .LegendEntries.Count
 .LegendEntries(i).Font.ColorIndex = 5
 Next
End With
Use LegendEntries(index), where index is the legend entry index number, to return a single
LegendEntry object. You cannot return legend entries by name.

The index number represents the position of the legend entry in the legend. LegendEntries(1) is
at the top of the legend; LegendEntries(LegendEntries.Count) is at the bottom. The following
example changes the font style for the text of the legend entry at the top of the legend (this is usually
the legend for series one) in embedded chart one to italic.

Worksheets("sheet1").ChartObjects(1).Chart _
 .Legend.LegendEntries(1).Font.Italic = True

LegendEntry Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjLegendEntryC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjLegendEntryX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjLegendEntryP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjLegendEntryM"} {ewc HLP95EN.DLL, DYNALINK,
"Events":"xlobjLegendEntryE"}

Represents a legend entry in a chart legend. The LegendEntry object is a member of the
LegendEntries collection. The LegendEntries collection contains all the LegendEntry objects in the
legend.

Each legend entry has two parts: the text of the entry, which is the name of the series associated with
the legend entry; and an entry marker, which visually links the legend entry with its associated series
or trendline in the chart. Formatting properties for the entry marker and its associated series or
trendline are contained in the LegendKey object.

The text of a legend entry cannot be changed. LegendEntry objects support font formatting, and they
can be deleted. No pattern formatting is supported for legend entries. The position and size of entries
is fixed.

Using the LegendEntry Object
Use LegendEntries(index), where index is the legend entry index number, to return a single
LegendEntry object. You cannot return legend entries by name.

The index number represents the position of the legend entry in the legend. LegendEntries(1) is
at the top of the legend, and LegendEntries(LegendEntries.Count) is at the bottom. The
following example changes the font for the text of the legend entry at the top of the legend (this is
usually the legend for series one) in embedded chart one on the worksheet named "Sheet1."
Worksheets("sheet1").ChartObjects(1).Chart _

 .Legend.LegendEntries(1).Font.Italic = True

Remarks
There's no direct way to return the series or trendline corresponding to the legend entry.

After legend entries have been deleted, the only way to restore them is to remove and recreate the
legend that contained them by setting the HasLegend property for the chart to False and then back
to True.

LegendKey Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjLegendKeyC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjLegendKeyX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjLegendKeyP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjLegendKeyM"} {ewc HLP95EN.DLL, DYNALINK,
"Events":"xlobjLegendKeyE"}

Represents a legend key in a chart legend. Each legend key is a graphic that visually links a legend
entry with its associated series or trendline in the chart. The legend key is linked to its associated

series or trendline in such a way that changing the formatting of one simultaneously changes the
formatting of the other.

Using the LegendKey Object
Use the LegendKey property to return the LegendKey object. The following example changes the
marker background color for the legend entry at the top of the legend for embedded chart one on the
worksheet named "Sheet1." This simultaneously changes the format of every point in the series
associated with this legend entry. The associated series must support data markers.
Worksheets("sheet1").ChartObjects(1).Chart _

.Legend.LegendEntries(1).LegendKey.MarkerBackgroundColorIndex = 5

Mailer Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjMailerC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjMailerX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjMailerP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjMailerM"} {ewc HLP95EN.DLL, DYNALINK, "Events":"xlobjMailerE"}

Represents the PowerTalk Mailer for a workbook. This object is available only on the Macintosh, with
the PowerTalk system extension installed.

Using the Mailer Object
Use the Mailer property to return the Mailer object. The following example sets the Subject property
for the mailer attached to the active workbook.
ActiveWorkbook.HasMailer = True
ActiveWorkbook.Mailer.Subject = "Here is the workbook."

Name Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjNameC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjNameX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjNameP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjNameM"} {ewc HLP95EN.DLL, DYNALINK, "Events":"xlobjNameE"}

Represents a defined name for a range of cells. Names can be either built-in names ¾ such as
Database, Print_Area, and Auto_Open ¾ or custom names.

Application, Workbook, and Worksheet Objects
The Name object is a member of the Names collection for the Application,Workbook, and
Worksheet objects. Use Names(index), where index is the name index number or defined name, to
return a single Name object.

The index number indicates the position of the name within the collection. Names are placed in
alphabetic order, from a to z, and are not case-sensitive (this is the same order as is displayed in the
Define Name and Apply Names dialog boxes, returned by clicking the Name command on the
Insert menu). The following example displays the cell reference for the first name in the application
collection.
MsgBox Names(1).RefersTo

The following example deletes the name "mySortRange" from the active workbook.
ActiveWorkbook.Names("mySortRange").Delete
Use the Name property to return or set the text of the name itself. The following example changes the
name of the first Name object in the active workbook.
Names(1).Name = "stock_values"

Range Objects
Although a Range object can have more than one name, there's no Names collection for the Range
object. Use Name with a Range object to return the first name from the list of names (sorted
alphabetically) assigned to the range. The following example sets the Visible property for the first
name assigned to cells A1:B1 on worksheet one.
Worksheets(1).Range("a1:b1").Name.Visible = False

Names Collection Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjNamesC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjNamesX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjNamesP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjNamesM"} {ewc HLP95EN.DLL, DYNALINK, "Events":"xlobjNamesE"}

A collection of all the Name objects in the application or workbook. Each Name object represents a
defined name for a range of cells. Names can be either built-in names ¾ such as Database,
Print_Area, and Auto_Open ¾ or custom names.

Using the Names Collection
Use the Names property to return the Names collection. The following example creates a list of all the

names in the active workbook, plus the addresses they refer to.
Set nms = ActiveWorkbook.Names
Set wks = Worksheets(1)
For r = 1 To nms.Count
 wks.Cells(r, 2).Value = nms(r).Name
 wks.Cells(r, 3).Value = nms(r).RefersToRange.Address
Next
Use the Add method to create a name and add it to the collection.The following example creates a
new name that refers to cells A1:C20 on the worksheet named "Sheet1."
Names.Add Name:="test", RefersTo:="=sheet1!a1:c20"
The RefersTo argument must be specified in A1-style notation, including dollar signs ($) where
appropriate. For example, if cell A10 is selected on Sheet1 and you define a name by using the
RefersTo argument "=sheet1!A1:B1", the new name actually refers to cells A10:B10 (because you
specified a relative reference). To specify an absolute reference, use "=sheet1!A1:B1".

Use Names(index), where index is the name index number or defined name, to return a single Name
object.The following example deletes the name "mySortRange" from the active workbook.
ActiveWorkbook.Names("mySortRange").Delete

Outline Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjOutlineC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjOutlineX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjOutlineP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjOutlineM"} {ewc HLP95EN.DLL, DYNALINK, "Events":"xlobjOutlineE"}

Represents an outline on a worksheet.

Using the Outline Object
Use the Outline property to return an Outline object. The following example sets the outline on
Sheet4 so that only the first outline level is shown.
Worksheets("sheet4").Outline.ShowLevels 1

PageSetup Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjPageSetupC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjPageSetupX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjPageSetupP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjPageSetupM"} {ewc HLP95EN.DLL, DYNALINK,
"Events":"xlobjPageSetupE"}

Represents the page setup description. The PageSetup object contains all page setup attributes (left
margin, bottom margin, paper size, and so on) as properties.

Using the PageSetup Object
Use the PageSetup property to return a PageSetup object. The following example sets the
orientation to landscape mode and then prints the worksheet.
With Worksheets("sheet1")

.PageSetup.Orientation = xlLandscape

.PrintOut
End With
The With statement makes it easier and faster to set several properties at the same time. The
following example sets all the margins for worksheet one.
With Worksheets(1).PageSetup
 .LeftMargin = Application.InchesToPoints(0.5)
 .RightMargin = Application.InchesToPoints(0.75)
 .TopMargin = Application.InchesToPoints(1.5)
 .BottomMargin = Application.InchesToPoints(1)
 .HeaderMargin = Application.InchesToPoints(0.5)
 .FooterMargin = Application.InchesToPoints(0.5)
End With

Chart, Worksheet

Pane Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjPaneC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjPaneX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjPaneP"} {ewc HLP95EN.DLL,
DYNALINK, "Methods":"xlobjPaneM"} {ewc HLP95EN.DLL, DYNALINK, "Events":"xlobjPaneE"}

Represents a pane of a window. Pane objects exist only for worksheets and Microsoft Excel 4.0
macro sheets. The Pane object is a member of the Panes collection. The Panes collection contains
all of the panes shown in a single window.

Using the Pane Object
Use Panes(index), where index is the pane index number, to return a single Pane object. The
following example splits the window in which worksheet one is displayed and then scrolls through the
pane in the lower-left corner until row five is at the top of the pane.
Worksheets(1).Activate
ActiveWindow.Split = True
ActiveWindow.Panes(3).ScrollRow = 5

Panes Collection Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjPanesC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjPanesX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjPanesP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjPanesM"} {ewc HLP95EN.DLL, DYNALINK, "Events":"xlobjPanesE"}

A collection of all the Pane objects shown in the specified window. Pane objects exist only for
worksheets and Microsoft Excel 4.0 macro sheets.

Using the Panes Collection
Use the Panes property to return the Panes collection. The following example freezes panes in the
active window if the window contains more than one pane.
If ActiveWindow.Panes.Count > 1 Then ActiveWindow.FreezePanes = True
Use Panes(index), where index is the pane index number, to return a single Pane object. The
following example scrolls through the upper-left pane of the window in which Sheet1 is displayed.
Worksheets("sheet1").Activate
Windows(1).Panes(1).LargeScroll down:=1

PivotField Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjPivotFieldC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjPivotFieldX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjPivotFieldP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjPivotFieldM"} {ewc HLP95EN.DLL, DYNALINK,
"Events":"xlobjPivotFieldE"}

Represents a field in a PivotTable. The PivotField object is a member of the PivotFields collection.
The PivotFields collection contains all the fields objects in a PivotTable, including hidden fields.

Using the PivotField Object
Use PivotFields(index), where index is the pivot-field name or index number, to return a single
PivotField object. The following example makes the Year field a row field in PivotTable one on
Sheet3.
Worksheets("sheet3").PivotTables(1) _
 .PivotFields("year").Orientation = xlRowField
In some cases, it may be easier to use one of the properties that returns a subset of the PivotTable
fields. The following properties are available:

· ColumnFields property
· DataFields property
· HiddenFields property
· PageFields property
· RowFields property
· VisibleFields property

PivotFields Collection Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjPivotFieldsC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjPivotFieldsX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjPivotFieldsP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjPivotFieldsM"} {ewc HLP95EN.DLL, DYNALINK,
"Events":"xlobjPivotFieldsE"}

A collection of all the PivotField objects in a PivotTable.

Using the PivotFields Collection
Use the PivotFields method to return the PivotFields collection. The following example enumerates
the pivot field names in PivotTable one on Sheet3.
With Worksheets("sheet3").PivotTables(1)
 For i = 1 To .PivotFields.Count
 MsgBox .PivotFields(i).Name
 Next
End With
Use PivotFields(index), where index is the pivot-field name or index number, to return a single
PivotField object. The following example makes the Year field a row field in PivotTable one on
Sheet3.
Worksheets("sheet3").PivotTables(1) _
 .PivotFields("year").Orientation = xlRowField
In some cases, it may be easier to use one of the properties that returns a subset of the PivotTable
fields. The following accessor methods are available:

· ColumnFields property
· DataFields property
· HiddenFields property
· PageFields property
· RowFields property
· VisibleFields property

PivotItem Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjPivotItemC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjPivotItemX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjPivotItemP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjPivotItemM"} {ewc HLP95EN.DLL, DYNALINK,
"Events":"xlobjPivotItemE"}

Represents an item in a pivot field. The items are the individual data entries in a field category. The
PivotItem object is a member of the PivotItems collection. The PivotItems collection contains all the
items in a PivotField object.

Using the PivotItem Object
Use PivotItems(index), where index is the pivot item index number or name, to return a single
PivotItem object. The following example hides all entries in PivotTable one on Sheet3 that contain
"1998" in the Year field.
Worksheets("sheet3").PivotTables(1) _
 .PivotFields("year").PivotItems("1998").Visible = False

PivotItems Collection Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjPivotItemsC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjPivotItemsX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjPivotItemsP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjPivotItemsM"} {ewc HLP95EN.DLL, DYNALINK,
"Events":"xlobjPivotItemsE"}

A collection of all the PivotItem objects in a pivot field. The items are the individual data entries in a
field category.

Using the PivotItems Collection
Use the PivotItems method to return the PivotItems collection. The following example creates an
enumerated list of pivot field names and the items contained in those fields for PivotTable one on
Sheet4.
Worksheets("sheet4").Activate
With Worksheets("sheet3").PivotTables(1)
 c = 1
 For i = 1 To .PivotFields.Count
 r = 1
 Cells(r, c) = .PivotFields(i).Name
 r = r + 1
 For x = 1 To .PivotFields(i).PivotItems.Count
 Cells(r, c) = .PivotFields(i).PivotItems(x).Name
 r = r + 1
 Next
 c = c + 1
 Next
End With
Use PivotItems(index), where index is the pivot item index number or name to return a single
PivotItem object. The following example hides all entries in PivotTable one on Sheet3 that contain
"1998" in the Year field.
Worksheets("sheet3").PivotTables(1) _
 .PivotFields("year").PivotItems("1998").Visible = False

PivotTable Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjPivotTableC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjPivotTableX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjPivotTableP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjPivotTableM"} {ewc HLP95EN.DLL, DYNALINK,
"Events":"xlobjPivotTableE"}

Represents a PivotTable on a worksheet. The PivotTable object is a member of the PivotTables
collection. The PivotTables collection contains all the PivotTable objects on a single worksheet.

Using the PivotTable Object
Use PivotTables(index), where index is the PivotTable index number or name, to return a single
PivotTable object. The following example makes the field named "year" a row field in PivotTable one
on Sheet3.
Worksheets("sheet3").PivotTables(1) _
 .PivotFields("year").Orientation = xlRowField

Remarks
Because PivotTable programming can be complex, it's generally easiest to record PivotTable actions
and then revise the recorded code. To record a macro, point to Macro on the Tools menu and click
Record New Macro.

PivotTables Collection Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjPivotTablesC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjPivotTablesX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjPivotTablesP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjPivotTablesM"} {ewc HLP95EN.DLL, DYNALINK,
"Events":"xlobjPivotTablesE"}

A collection of all the PivotTable objects on the specified worksheet.

Using the PivotTables Collection
Use the PivotTables method to return the PivotTables collection. The following example displays the
number of PivotTables on Sheet3.
MsgBox Worksheets("sheet3").PivotTables.Count
Use the PivotTableWizard method to create a new PivotTable and add it to the collection. The
following example creates a new PivotTable from a Microsoft Excel database (contained in the range
A1:C100).
ActiveSheet.PivotTableWizard xlDatabase, Range("A1:C100")
Use PivotTables(index), where index is the PivotTable index number or name, to return a single
PivotTable object. The following example makes the Year field a row field in PivotTable one on
Sheet3.
Worksheets("sheet3").PivotTables(1) _
 .PivotFields("year").Orientation = xlRowField

Remarks
Because PivotTable programming can be complex, it's generally easiest to record PivotTable actions
and then revise the recorded code. To record a macro, point to Macro on the Tools menu and click
Record New Macro.

PlotArea Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjPlotAreaC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjPlotAreaX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjPlotAreaP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjPlotAreaM"} {ewc HLP95EN.DLL, DYNALINK, "Events":"xlobjPlotAreaE"}

Represents the plot area of a chart. This is the area where your chart data is plotted. The plot area on
a 2-D chart contains the data markers, gridlines, data labels, trendlines, and optional chart items
placed in the chart area. The plot area on a 3-D chart contains all the above items plus the walls,
floor, axes, axis titles, and tick-mark labels in the chart.

The plot area is surrounded by the chart area. The chart area on a 2-D chart contains the axes, the
chart title, the axis titles, and the legend. The chart area on a 3-D chart contains the chart title and the
legend. For information about formatting the chart area, see the ChartArea object.

Using the PlotArea Object
Use the PlotArea property to return a PlotArea object. The following example activates the chart
sheet named "Chart1," places a dashed border around the chart area of the active chart, and places a
dotted border around the plot area.
Charts("Chart1").Activate
With ActiveChart
 .ChartArea.Border.LineStyle = xlDash
 .PlotArea.Border.LineStyle = xlDot
End With

Point Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjPointC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjPointX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjPointP"} {ewc HLP95EN.DLL,
DYNALINK, "Methods":"xlobjPointM"} {ewc HLP95EN.DLL, DYNALINK, "Events":"xlobjPointE"}

Represents a single point in a series in a chart. The Point object is a member of the Points
collection. The Points collection contains all the points in one series.

Using the Point Object
Use Points(index), where index is the point index number, to return a single Point object. Points are
numbered from left to right on the series. Points(1) is the leftmost point, and

Points(Points.Count) is the rightmost point. The following example sets the marker style for the
third point in series one in embedded chart one on worksheet one. The specified series must be a 2-D
line, scatter, or radar series.
Worksheets(1).ChartObjects(1).Chart. _
 SeriesCollection(1).Points(3).MarkerStyle = xlDiamond

Points Collection Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjPointsC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjPointsX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjPointsP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjPointsM"} {ewc HLP95EN.DLL, DYNALINK, "Events":"xlobjPointsE"}

A collection of all the Point objects in the specified series in a chart.

Using the Points Collection
Use the Points method to return the Points collection. The following example adds a data label to the
last point on series one in embedded chart one on worksheet one.
Dim pts As Points

Set pts = Worksheets(1).ChartObjects(1).Chart. _
 SeriesCollection(1).Points
pts(pts.Count).ApplyDataLabels type:=xlShowValue
Use Points(index), where index is the point index number, to return a single Point object. Points are
numbered from left to right on the series. Points(1) is the leftmost point, and
Points(Points.Count) is the rightmost point. The following example sets the marker style for the
third point in series one in embedded chart one on worksheet one. The specified series must be a 2-D
line, scatter, or radar series.
Worksheets(1).ChartObjects(1).Chart. _
 SeriesCollection(1).Points(3).MarkerStyle = xlDiamond

Range Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjRangeC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjRangeX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjRangeP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjRangeM"} {ewc HLP95EN.DLL, DYNALINK, "Events":"xlobjRangeE"}

Represents a cell, a row, a column, a selection of cells containing one or more contiguous blocks of
cells, or a 3-D range.

Using the Range Object
The following properties and methods for returning a Range object are described in this section:

· Range property
· Cells property
· Range and Cells
· Offset property
· Union method

Range Property
Use Range(arg), where arg names the range, to return a Range object that represents a single cell or
a range of cells. The following example places the value of cell A1 in cell A5.
Worksheets("Sheet1").Range("A5").Value = _
 Worksheets("Sheet1").Range("A1").Value
The following example fills the range A1:H8 with random numbers by setting the formula for each cell
in the range. When it's used without an object qualifier (an object to the left of the period), the Range
property returns a range on the active sheet. If the active sheet isn't a worksheet, the method fails.
Use the Activate method to activate a worksheet before you use the Range property without an
explicit object qualifier.
Worksheets("sheet1").Activate
Range("A1:H8").Formula = "=rand()" 'Range is on the active sheet
The following example clears the contents of the range named "Criteria."

Worksheets(1).Range("criteria").ClearContents
If you use a text argument for the range address, you must specify the address in A1-style notation
(you cannot use R1C1-style notation).

Cells Property
Use Cells(row, column) where row is the row index and column is the column index, to return a single
cell. The following example sets the value of cell A1 to 24.
Worksheets(1).Cells(1, 1).Value = 24
The following example sets the formula for cell A2.
ActiveSheet.Cells(2, 1).Formula = "=sum(b1:b5)"
Although you can also use Range("A1") to return cell A1, there may be times when the Cells
property is more convenient because you can use a variable for the row or column. The following
example creates column and row headings on Sheet1. Notice that after the worksheet has been
activated, the Cells property can be used without an explicit sheet declaration (it returns a cell on the
active sheet).
Sub SetUpTable()
Worksheets("sheet1").Activate
For theYear = 1 To 5

Cells(1, theYear + 1).Value = 1990 + theYear
Next theYear
'
For theQuarter = 1 To 4

Cells(theQuarter + 1, 1).Value = "Q" & theQuarter
Next theQuarter
End Sub
Although you could use Visual Basic string functions to alter A1-style references, it's much easier (and
much better programming practice) to use the Cells(1, 1) notation.

Use expression.Cells(row, column) , where expression is an expression that returns a Range object,
and row and column are relative to the upper-left corner of the range, to return part of a range. The
following example sets the formula for cell C5.
Worksheets(1).Range("c5:c10").Cells(1, 1).Formula = "=rand()"

Range and Cells
Use Range(cell1, cell2), where cell1 and cell2 are Range objects that specify the start and end cells,
to return a Range object. The following example sets the border line style for cells 1:J10.
With Worksheets(1)
 .Range(.Cells(1, 1), .Cells(10, 10)).Borders.LineStyle = xlThick
End With
Notice the period in front of each occurrence of the Cells property. The period is required if the result
of the preceding With statement is to be applied to the Cells property ¾ in this case, to indicate that
the cells are on worksheet one (without the period, the Cells property would return cells on the active
sheet).

Offset Property
Use Offset(row, column), where row and column are the row and column offsets, to return a range at
a specified offset to another range. The following example selects the cell three rows down from and
one column to the right of the cell in the upper-left corner of the current selection. You cannot select a
cell that isn't on the active sheet, so you must first activate the worksheet.

Worksheets("sheet1").Activate 'can't select unless the sheet is active
Selection.Offset(3, 1).Range("a1").Select

Union Method
Use Union(range1, range2, ...) to return multiple-area ranges ¾ that is, ranges composed of two or
more contiguous blocks of cells. The following example creates an object defined as the union of
ranges A1:B2 and C3:D4, and then selects the defined range.
Dim r1 As Range, r2 As Range, myMultiAreaRange As Range
Worksheets("sheet1").Activate
Set r1 = Range("A1:B2")
Set r2 = Range("C3:D4")
Set myMultiAreaRange = Union(r1, r2)
myMultiAreaRange.Select
If you work with selections that contain more than one area, the Areas property is very useful. It
divides a multiple-area selection into individual Range objects and then returns the objects as a
collection. You can use the Count property on the returned collection to check for a selection that
contains more than one area, as shown in the following example.
Sub NoMultiAreaSelection()

numberOfSelectedAreas = Selection.Areas.Count
If numberOfSelectedAreas > 1 Then

MsgBox "You cannot carry out this command " & _
"on multi-area selections"

End If
End Sub

Areas, Borders, Characters, Font, Interior, Name, Style

RoutingSlip Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjRoutingSlipC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjRoutingSlipX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjRoutingSlipP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjRoutingSlipM"} {ewc HLP95EN.DLL, DYNALINK,
"Events":"xlobjRoutingSlipE"}

Represents the routing slip for a workbook. The routing slip is used to send a workbook through the
electronic mail system.

Using the RoutingSlip Object
Use the RoutingSlip property to return the RoutingSlip object. The following example sets the
delivery style for the routing slip attached to the active workbook. For a more detailed example, see
the RoutingSlip property.
ActiveWorkbook.HasRoutingSlip = True
ActiveWorkbook.RoutingSlip.Delivery = xlOneAfterAnother

Remarks
The RoutingSlip object doesn't exist and cannot be returned unless the HasRoutingSlip property for
the workbook is True.

Scenario Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjScenarioC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjScenarioX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjScenarioP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjScenarioM"} {ewc HLP95EN.DLL, DYNALINK, "Events":"xlobjScenarioE"}

Represents a scenario on a worksheet. A scenario is a group of input values (called changing cells)
that's named and saved. The Scenario object is a member of the Scenarios collection. The
Scenarios collection contains all the defined scenarios for a worksheet.

Using the Scenario Object
Use Scenarios(index), where index is the scenario name or index number, to return a single
Scenario object. The following example shows the scenario named "Typical" on the worksheet
named "Options."
Worksheets("options").Scenarios("typical").Show

Scenarios Collection Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjScenariosC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjScenariosX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjScenariosP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjScenariosM"} {ewc HLP95EN.DLL, DYNALINK,
"Events":"xlobjScenariosE"}

A collection of all the Scenario objects on the specified worksheet. A scenario is a group of input
values (called changing cells) that's named and saved.

Using the Scenarios Collection
Use the Scenarios method to return the Scenarios collection. The following example creates a
summary for the scenarios on the worksheet named "Options," using cells J10 and J20 as the result
cells.
Worksheets("options").Scenarios.CreateSummary _
 resultCells:=Worksheets("options").Range("j10,j20")
Use the Add method to create a new scenario and add it to the collection. The following example
adds a new scenario named "Typical" to the worksheet named "Options." The new scenario has two
changing cells, A2 and A12, with the respective values 55 and 60.
Worksheets("options").Scenarios.Add name:="Typical", _
 changingCells:=Worksheets("options").Range("A2,A12"), _
 values:=Array("55", "60")
Use Scenarios(index), where index is the scenario name or index number, to return a single
Scenario object. The following example shows the scenario named "Typical" on the worksheet
named "Options."
Worksheets("options").Scenarios("typical").Show

Series Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjSeriesC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjSeriesX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjSeriesP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjSeriesM"} {ewc HLP95EN.DLL, DYNALINK, "Events":"xlobjSeriesE"}

Represents a series in a chart. The Series object is a member of the SeriesCollection collection.

Using the Series Object
Use SeriesCollection(index), where index is the series index number or name, to return a single
Series object. The following example sets the color of the interior for the first series in embedded
chart one on Sheet1.
Worksheets("sheet1").ChartObjects(1).Chart. _
 SeriesCollection(1).Interior.Color = RGB(255, 0, 0)
The series index number indicates the order in which the series were added to the chart.
SeriesCollection(1) is the first series added to the chart, and
SeriesCollection(SeriesCollection.Count) is the last one added.

SeriesCollection Collection Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjSeriesCollectionC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjSeriesCollectionX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjSeriesCollectionP"}
{ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjSeriesCollectionM"} {ewc HLP95EN.DLL, DYNALINK,
"Events":"xlobjSeriesCollectionE"}

A collection of all the Series objects in the specified chart or chart group.

Using the SeriesCollection Collection
Use the SeriesCollection method to return the SeriesCollection collection. The following example
adds the data in cells C1:C10 on worksheet one to an existing series in the series collection in
embedded chart one.
Worksheets(1).ChartObjects(1).Chart. _
 SeriesCollection.Extend Worksheets(1).Range("c1:c10")
Use the Add method to create a new series and add it to the chart. The following example adds the
data from cells A1:A19 as a new series on the chart sheet named "Chart1."
Charts("chart1").SeriesCollection.Add _
 source:=Worksheets("sheet1").Range("a1:a19")
Use SeriesCollection(index), where index is the series index number or name, to return a single
Series object. The following example sets the color of the interior for the first series in embedded
chart one on Sheet1.

Worksheets("sheet1").ChartObjects(1).Chart. _
 SeriesCollection(1).Interior.Color = RGB(255, 0, 0)

SeriesLines Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjSeriesLinesC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjSeriesLinesX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjSeriesLinesP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjSeriesLinesM"} {ewc HLP95EN.DLL, DYNALINK,
"Events":"xlobjSeriesLinesE"}

Represents series lines in a chart group. Series lines connect the data values from each series. Only
2-D stacked bar or column chart groups can have series lines. This object isn't a collection. There's
no object that represents a single series line; you either have series lines turned on for all points in a
chart group or you have them turned off.

Using the SeriesLines Object
Use the SeriesLines property to return a SeriesLines object. The following example adds series
lines to chart group one in embedded chart one on worksheet one (the chart must be a 2-D stacked
bar or column chart).
With Worksheets(1).ChartObjects(1).Chart.ChartGroups(1)
 .HasSeriesLines = True
 .SeriesLines.Border.Color = RGB(0, 0, 255)
End With

Remarks
If the HasSeriesLines property is False, most properties of the SeriesLines object are disabled.

Sheets Collection Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjSheetsC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjSheetsX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjSheetsP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjSheetsM"} {ewc HLP95EN.DLL, DYNALINK, "Events":"xlobjSheetsE"}

A collection of all the sheets in the specified or active workbook. The Sheets collection can contain
Chart or Worksheet objects.

The Sheets collection is useful when you want to return sheets of any type. If you need to work with
sheets of only one type, see the object topic for that sheet type.

Using the Sheets Collection
Use the Sheets property to return the Sheets collection. The following example prints all sheets in
the active workbook.
Sheets.PrintOut
Use the Add method to create a new sheet and add it to the collection. The following example adds
two chart sheets to the active workbook, placing them after sheet two in the workbook.
Sheets.Add type:=xlChart, count:=2, after:=Sheets(2)
Use Sheets(index), where index is the sheet name or index number, to return a single Chart or
Worksheet object. The following example activates the sheet named "sheet1."
Sheets("sheet1").Activate
Use Sheets(array) to specify more than one sheet. The following example moves the sheets named
"Sheet4" and "Sheet5" to the beginning of the workbook.
Sheets(Array("Sheet4", "Sheet5")).Move before:=Sheets(1)

SoundNote Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjSoundNoteC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjSoundNoteX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjSoundNoteP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjSoundNoteM"} {ewc HLP95EN.DLL, DYNALINK,
"Events":"xlobjSoundNoteE"}

This object should not be used. Sound notes have been removed from Microsoft Excel.

Style Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjStyleC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjStyleX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjStyleP"} {ewc HLP95EN.DLL,
DYNALINK, "Methods":"xlobjStyleM"} {ewc HLP95EN.DLL, DYNALINK, "Events":"xlobjStyleE"}

Represents a style description for a range. The Style object contains all style attributes (font, number
format, alignment, and so on) as properties. There are several built-in styles, including Normal,
Currency, and Percent. Using the Style object is a fast and efficient way to change several cell-
formatting properties on multiple cells at the same time.

For the Workbook object, the Style object is a member of the Styles collection. The Styles collection
contains all the defined styles for the workbook.

Using the Style Object
Use the Style property to return the Style object used with a Range object. The following example
applies the Percent style to cells A1:A10 on Sheet1.
Worksheets("sheet1").Range("a1:a10").Style.Name = "percent"
You can change the appearance of a cell by changing properties of the style applied to that cell. Keep
in mind, however, that changing a style property will affect all cells already formatted with that style.

Use Styles(index), where index is the style index number or name, to return a single Style object
from the workbook Styles collection. The following example changes the Normal style for the active
workbook by setting the style's Bold property.
ActiveWorkbook.Styles("Normal").Font.Bold = True
Styles are sorted alphabetically by style name. The style index number denotes the position of the
specified style in the sorted list of style names. Styles(1) is the first style in the alphabetic list, and
Styles(Styles.Count) is the last one in the list.

For more information about creating and modifying a style, see the Styles object.

Range, Workbook

Styles Collection Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjStylesC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjStylesX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjStylesP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjStylesM"} {ewc HLP95EN.DLL, DYNALINK, "Events":"xlobjStylesE"}

A collection of all the Style objects in the specified or active workbook. Each Style object represents
a style description for a range. The Style object contains all style attributes (font, number format,
alignment, and so on) as properties. There are several built-in styles ¾ including Normal, Currency,
and Percent ¾ which are listed in the Style name box inthe Style dialog box (Format menu).

Using the Styles Collection
Use the Styles property to return the Styles collection. The following example creates a list of style
names on worksheet one in the active workbook.
For i = 1 To ActiveWorkbook.Styles.Count
 Worksheets(1).Cells(i, 1) = ActiveWorkbook.Styles(i).Name
Next
Use the Add method to create a new style and add it to the collection. The following example creates
a new style based on the Normal style, modifies the border and font, and then applies the new style to
cells A25:A30.
With ActiveWorkbook.Styles.Add(name:="bookman top border")

.Borders(xlTop).LineStyle = xlDouble

.Font.Bold = True

.Font.Name = "bookman"
End With
Worksheets(1).Range("a25:a30").Style = "bookman top border"
Use Styles(index), where index is the style index number or name, to return a single Style object
from the workbook Styles collection. The following example changes the Normal style for the active

workbook by setting its Bold property.
ActiveWorkbook.Styles("Normal").Font.Bold = True

TickLabels Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjTickLabelsC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjTickLabelsX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjTickLabelsP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjTickLabelsM"} {ewc HLP95EN.DLL, DYNALINK,
"Events":"xlobjTickLabelsE"}

Represents the tick-mark labels associated with tick marks on a chart axis. This object isn't a
collection. There's no object that represents a single tick-mark label; you must return all the tick-mark
labels as a unit.

Tick-mark label text for the category axis comes from the name of the associated category in the
chart. The default tick-mark label text for the category axis is the number that indicates the position of
the category relative to the left end of this axis. To change the number of unlabeled tick marks
between tick-mark labels, you must change the TickLabelSpacing property for the category axis.

Tick-mark label text for the value axis is calculated based on the MajorUnit, MinimumScale, and
MaximumScale properties of the value axis. To change the tick-mark label text for the value axis, you
must change thte values of these properties.

Using the TickLabels Object
Use the TickLabels property to return the TickLabels object. The following example sets the number
format for the tick-mark labels on the value axis in embedded chart one on Sheet1.
Worksheets("sheet1").ChartObjects(1).Chart _
 .Axes(xlValue).TickLabels.NumberFormat = "0.00"

Trendline Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjTrendlineC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjTrendlineX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjTrendlineP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjTrendlineM"} {ewc HLP95EN.DLL, DYNALINK,
"Events":"xlobjTrendlineE"}

seriesco.bmp}

Represents a trendline in a chart. A trendline shows the trend, or direction, of data in a series. The
Trendline object is a member of the Trendlines collection. The Trendlines collection contains all the
Trendline objects for a single series.

Using the Trendline Object
Use Trendlines(index), where index is the trendline index number, to return a single Trendline
object. The following example changes the trendline type for the first series in embedded chart one on
worksheet one. If the series has no trendline, this example will fail.
Worksheets(1).ChartObjects(1).Chart. _
 SeriesCollection(1).Trendlines(1).Type = xlMovingAvg
The index number denotes the order in which the trendlines were added to the series.
Trendlines(1) is the first trendline added to the series, and Trendlines(Trendlines.Count)
is the last one added.

Trendlines Collection Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjTrendlinesC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjTrendlinesX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjTrendlinesP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjTrendlinesM"} {ewc HLP95EN.DLL, DYNALINK,
"Events":"xlobjTrendlinesE"}

seriesco.bmp}

A collection of all the Trendline objects for the specified series. Each Trendline object represents a
trendline in a chart. A trendline shows the trend, or direction, of data in a series.

Using the Trendlines Collection
Use the Trendlines method to return the Trendlines collection. The following example displays the
number of trendlines for series one in Chart1.
MsgBox Charts(1).SeriesCollection(1).Trendlines.Count
Use the Add method to create a new trendline and add it to the series. The following example adds a
linear trendline to the first series in embedded chart one on Sheet1.
Worksheets("sheet1").ChartObjects(1).Chart.SeriesCollection(1) _
 .Trendlines.Add type:=xlLinear, name:="Linear Trend"
Use Trendlines(index), where index is the trendline index number, to return a single TrendLine
object. The following example changes the trendline type for the first series in embedded chart one on
worksheet one. If the series has no trendline, this example will fail.
Worksheets(1).ChartObjects(1).Chart. _
 SeriesCollection(1).Trendlines(1).Type = xlMovingAvg
The index number denotes the order in which the trendlines were added to the series.
Trendlines(1) is the first trendline added to the series, and Trendlines(Trendlines.Count)
is the last one added.

UpBars Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjUpBarsC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjUpBarsX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjUpBarsP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjUpBarsM"} {ewc HLP95EN.DLL, DYNALINK, "Events":"xlobjUpBarsE"}

Represents the up bars in a chart group. Up bars connect points on series one with higher values on
the last series in the chart group (the lines go up from series one). Only 2-D line groups that contain
at least two series can have up bars. This object isn't a collection. There's no object that represents a
single up bar; you either have up bars turned on for all points in a chart group or you have them
turned off.

Using the UpBars Object
Use the UpBars property to return the UpBars object. The following example turns on up and down
bars for chart group one in embedded chart one on Sheet5. The example then sets the up bar color to
blue and sets the down bar color to red.
With Worksheets("sheet5").ChartObjects(1).Chart.ChartGroups(1)
 .HasUpDownBars = True
 .UpBars.Interior.Color = RGB(0, 0, 255)
 .DownBars.Interior.Color = RGB(255, 0, 0)
End With

Remarks
If the HasUpDownBars property is False, most properties of the UpBars object are disabled.

Walls Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjWallsC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjWallsX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjWallsP"} {ewc HLP95EN.DLL,
DYNALINK, "Methods":"xlobjWallsM"} {ewc HLP95EN.DLL, DYNALINK, "Events":"xlobjWallsE"}

Represents the walls of a 3-D chart. This object isn't a collection. There's no object that represents a
single wall; you must return all the walls as a unit.

Using the Walls Object
Use the Walls property to return the Walls object. The following example sets the pattern on the walls
for embedded chart one on Sheet1. If the chart isn't a 3-D chart, this example will fail.
Worksheets("Sheet1").ChartObjects(1).Chart _
 .Walls.Interior.Pattern = xlGray75

Window Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjWindowC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjWindowX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjWindowP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjWindowM"} {ewc HLP95EN.DLL, DYNALINK, "Events":"xlobjWindowE"}

Represents a window. Many worksheet characteristics, such as scroll bars and gridlines, are actually
properties of the window. The Window object is a member of the Windows collection. The Windows
collection for the Application object contains all the windows in the application, whereas the
Windows collection for the Workbook object contains only the windows in the specified workbook.

Using the Window Object
Use Windows(index), where index is the window name or index number, to return a single Window
object. The following example maximizes the active window.
Windows(1).WindowState = xlMaximized
Note that the active window is always Windows(1).

The window caption is the text shown in the title bar at the top of the window when the window isn't
maximized. The caption is also shown in the list of open files on the bottom of the Windows menu.
Use the Caption property to set or return the window caption. Changing the window caption doesn't
change the name of the workbook. The following example turns off cell gridlines for the worksheet
shown in the Book1.xls:1 window.
Windows("book1.xls":1).DisplayGridlines = False

Windows Collection Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjWindowsC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjWindowsX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjWindowsP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjWindowsM"} {ewc HLP95EN.DLL, DYNALINK,
"Events":"xlobjWindowsE"}

A collection of all the Window objects in Microsoft Excel. The Windows collection for the Application
object contains all the windows in the application, whereas the Windows collection for the Workbook
object contains only the windows in the specified workbook.

Using the Windows Collection
Use the Windows property to return the Windows collection. The following example cascades all the
windows that are currently displayed in Microsoft Excel.
Windows.Arrange arrangeStyle:=xlCascade
Use the NewWindow method to create a new window and add it to the collection. The following
example creates a new window for the active workbook.
ActiveWorkbook.NewWindow
Use Windows(index), where index is the window name or index number, to return a single Window
object. The following example maximizes the active window.
Windows(1).WindowState = xlMaximized
Note that the active window is always Windows(1).

Workbook Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjWorkbookC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjWorkbookX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjWorkbookP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjWorkbookM"} {ewc HLP95EN.DLL, DYNALINK,
"Events":"xlobjWorkbookE"}

Represents a Microsoft Excel workbook. The Workbook object is a member of the Workbooks
collection. The Workbooks collection contains all the Workbook objects currently open in Microsoft
Excel.

Using the Workbook Object
The following properties for returning a Workbook object are described in this section:

· Workbooks property
· ActiveWorkbook property
· ThisWorkbook property

Workbooks Property
Use Workbooks(index), where index is the workbook name or index number, to return a single
Workbook object. The following example activates workbook one.
Workbooks(1).Activate
The index number denotes the order in which the workbooks were opened or created.
Workbooks(1) is the first workbook created, and Workbooks(Workbooks.Count) is the last one
created. Activating a workbook doesn't change its index number. All workbooks are included in the
index count, even if they're hidden.

The Name property returns the workbook name. You cannot set the name by using this property; if
you need to change the name, use the SaveAs method to save the workbook under a different name.
The following example activates Sheet1 in the workbook named "Cogs.xls" (the workbook must
already be open in Microsoft Excel).
Workbooks("cogs.xls").Worksheets("sheet1").Activate

ActiveWorkbook Property
The ActiveWorkbook property returns the workbook that's currently active. The following example
sets the name of the author for the active workbook.
ActiveWorkbook.Author = "Jean Selva"

ThisWorkbook Property
The ThisWorkbook property returns the workbook where the Visual Basic code is running. In most

cases, this is the same as the active workbook. However, if the Visual Basic code is part of an add-in,
the ThisWorkbook property won't return the active workbook. In this case, the active workbook is the
workbook calling the add-in, whereas the ThisWorkbook property returns the add-in workbook.

If you'll be creating an add-in from your Visual Basic code, you should use the ThisWorkbook
property to qualify any statement that must be run on the workbook you compile into the add-in.

Charts, Mailer, Names, PageSetup, RoutingSlip, Styles, Windows, Worksheets

Workbooks Collection Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjWorkbooksC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjWorkbooksX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjWorkbooksP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjWorkbooksM"} {ewc HLP95EN.DLL, DYNALINK,
"Events":"xlobjWorkbooksE"}

A collection of all the Workbook objects that are currently open in the Microsoft Excel application.

Using the Workbooks Collection
Use the Workbooks property to return the Workbooks collection. The following example closes all
open workbooks.
Workbooks.Close
Use the Add method to create a new, empty workbook and add it to the collection. The following
example adds a new, empty workbook to Microsoft Excel.
Workbooks.Add
Use the Open method to open a file. This creates a new workbook for the opened file. The following
example opens the file Array.xls as a read-only workbook.
Workbooks.Open fileName:="array.xls", readOnly:=True
For more information about using a single Workbook object, see the Workbook object.

Worksheet Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjWorksheetC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjWorksheetX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjWorksheetP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjWorksheetM"} {ewc HLP95EN.DLL, DYNALINK,
"Events":"xlobjWorksheetE"}

Represents a worksheet. The Worksheet object is a member of the Worksheets collection. The
Worksheets collection contains all the Worksheet objects in a workbook.

Using the Worksheet Object
The following properties for returning a Worksheet object are described in this section:

· Worksheets property
· ActiveSheet property

Worksheets Property
Use Worksheets(index), where index is the worksheet index number or name to return a single
Worksheet object. The following example hides worksheet one in the active workbook.
Worksheets(1).Visible = False
The worksheet index number denotes the position of the worksheet on the workbook's tab bar.
Worksheets(1) is the first (leftmost) worksheet in the workbook, and
Worksheets(Worksheets.Count) is the last one. All worksheets are included in the index count,
even if they're hidden.

The worksheet name is shown on the tab for the worksheet. Use the Name property to set or return
the worksheet name. The following example protects the scenarios on Sheet1.
Worksheets("sheet1").Protect password:="drowssap", scenarios:=True
The Worksheet object is also a member of the Sheets collection. The Sheets collection contains all
the sheets in the workbook (both chart sheets and worksheets).

ActiveSheet Property
When a worksheet is the active sheet, you can use the ActiveSheet property to refer to it. The
following example uses the Activate method to activate Sheet 1, sets the page orientation to
landscape mode, and then prints the worksheet.
Worksheets("sheet1").Activate
ActiveSheet.PageSetup.Orientation = xlLandscape
ActiveSheet.PrintOut

ChartObjects, OLEObjects, Outline, PageSetup, PivotTables, Range, Scenarios

Worksheets Collection Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjWorksheetsC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjWorksheetsX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjWorksheetsP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjWorksheetsM"} {ewc HLP95EN.DLL, DYNALINK,
"Events":"xlobjWorksheetsE"}

A collection of all the Worksheet objects in the specified or active workbook. Each Worksheet object
represents a worksheet.

Using the Worksheets Collection
Use the Worksheets property to return the Worksheets collection.The following example moves all
the worksheets to the end of the workbook.
Worksheets.Move after:=Sheets(Sheets.Count)
Use the Add method to create a new worksheet and add it to the collection. The following example
adds two new worksheets before sheet one of the active workbook.
Worksheets.Add count:=2, before:=Sheets(1)
Use Worksheets(index), where index is the worksheet index number or name to return a single
Worksheet object. The following example hides worksheet one in the active workbook.
Worksheets(1).Visible = False
The Worksheet object is also a member of the Sheets collection. The Sheets collection contains all
the sheets in the workbook (both chart sheets and worksheets).

CalculatedFields Collection Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjCalculatedFieldsC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjCalculatedFieldsP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjCalculatedFieldsM"}
{ewc HLP95EN.DLL, DYNALINK, "Events":"xlobjCalculatedFieldsE"}

A collection of PivotField objects that represents all the calculated fields in the specified PivotTable.
For example, a PivotTable that contains Revenue and Expense fields could have a calculated field
named "Profit" defined as the amount in the Revenue field minus the amount in the Expense field.

Using the CalculatedFields Collection
Use the CalculatedFields method to return the CalculatedFields collection The following example
deletes the calculated fields from PivotTable one.
For Each fld in Worksheets(1).PivotTables("Pivot1").CalculatedFields

fld.Delete
Next
Use CalculatedFields(index), where index is specified field's name or index number, to return a
single PivotField object from the CalculatedFields collection.

CalculatedItems Collection Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjCalculatedItemsC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjCalculatedItemsP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjCalculatedItemsM"}
{ewc HLP95EN.DLL, DYNALINK, "Events":"xlobjCalculatedItemsE"}

A collection of PivotItem objects that represent all the calculated items in the specified PivotTable.
For example, a PivotTable that contains January, February, and March items could have a calculated
item named "FirstQuarter" defined as the sum of the amounts in January, February, and March.

Using the CalculatedItems Collection
Use the CalculatedItems method to return the CalculatedItems collection The following example
creates a list of the calculated items in PivotTable one, along with their formulas.
Set pt = Worksheets(1).PivotTables(1)
For Each ci In pt.PivotFields("Sales").CalculatedItems

r = r + 1
With Worksheets(2)

.Cells(r, 1).Value = ci.Name

.Cells(r, 2).Value = ci.Formula
End With

Next
Use CalculatedFields(index), where index is the name or index number of the field, to return a single
PivotField object from the CalculatedFields collection.

Comment Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjCommentC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjCommentP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjCommentM"} {ewc
HLP95EN.DLL, DYNALINK, "Events":"xlobjCommentE"}

Represents a cell comment. The Comment object is a member of the Comments collection.

Using the Comment Object
Use the Comment property to return a Comment object. The following example changes the text in
the comment in cell E5.
Worksheets(1).Range("E5").Comment.Text "reviewed on " & Date
Use Comments(index), where index is the comment number, to return a single comment from the
Comments collection. The following example hides comment two on worksheet one.
Worksheets(1).Comments(2).Visible = False
Use the AddComment method to add a comment to a range. The following example adds a
comment to cell E5 on worksheet one.
With Worksheets(1).Range("e5").AddComment

.Visible = False

.Text "reviewed on " & Date
End With

Comments Collection Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjCommentsC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjCommentsP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjCommentsM"} {ewc
HLP95EN.DLL, DYNALINK, "Events":"xlobjCommentsE"}

A collection of cell comments. Each comment is represented by a Comment object.

Using the Comments Collection
Use the Comments property to return the Comments collection. The following example hides all the
comments on worksheet one.
Set cmt = Worksheets(1).Comments
For Each c In cmt

c.Visible = False
Next
Use the AddComment method to add a comment to a range. The following example adds a
comment to cell E5 on worksheet one.
With Worksheets(1).Range("e5").AddComment

.Visible = False

.Text "reviewed on " & Date
End With
Use Comments(index), where index is the comment number, to return a single comment from the
Comments collection. The following example hides comment two on worksheet one.
Worksheets(1).Comments(2).Visible = False

CustomView Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjCustomViewC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjCustomViewP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjCustomViewM"} {ewc
HLP95EN.DLL, DYNALINK, "Events":"xlobjCustomViewE"}

Represents a custom workbook view. The CustomView object is a member of the CustomViews
collection.

Using the CustomView Object
Use CustomViews(index), where index is the name or index number of the custom view, to return a
CustomView object. The following example shows the custom view named "Current Inventory."
ThisWorkbook.CustomViews("Current Inventory").Show

CustomViews Collection Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjCustomViewsC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjCustomViewsP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjCustomViewsM"} {ewc
HLP95EN.DLL, DYNALINK, "Events":"xlobjCustomViewsE"}

A collection of custom workbook views. Each view is represented by a CustomView object.

Using the CustomViews Collection
Use the CustomViews property to return the CustomViews collection. Use the Add method to
create a new custom view and add it to the CustomViews collection. The following example creates
a new custom view named "Summary."
ActiveWorkbook.CustomViews.Add "Summary", True, True

DataTable Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjDataTableC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjDataTableP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjDataTableM"} {ewc
HLP95EN.DLL, DYNALINK, "Events":"xlobjDataTableE"}

Represents a chart data table.

Using the DataTable Object
Use the DataTable property to return a DataTable object. The following example adds a data table
with an outline border to embedded chart one.
With Worksheets(1).ChartObjects(1).Chart

.HasDataTable = True

.DataTable.HasBorderOutline = True
End With

HPageBreak Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjHPageBreakC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjHPageBreakP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjHPageBreakM"} {ewc
HLP95EN.DLL, DYNALINK, "Events":"xlobjHPageBreakE"}

Represents a horizontal page break. The HPageBreak object is a member of the HPageBreaks
collection.

Using the HPageBreak Object
Use HPageBreaks(index), where index is the index number of the page break, to return an
HPageBreak object. The following example changes the location of horizontal page break one.
Worksheets(1).HPageBreaks(1).Location = Worksheets(1).Range("e5")

HPageBreaks Collection Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjHPageBreaksC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjHPageBreaksP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjHPageBreaksM"} {ewc
HLP95EN.DLL, DYNALINK, "Events":"xlobjHPageBreaksE"}

The collection of horizontal page breaks. Each horizontal page break is represented by an
HPageBreak object.

Using the HPageBreaks Collection
Use the HPageBreaks property to return the HPageBreaks collection. Use the Add method to add a
horizontal page break. The following example adds a horizontal page break above the active cell.
ActiveSheet.HPageBreaks.Add Before:=ActiveCell

VPageBreak Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjVPageBreakC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjVPageBreakP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjVPageBreakM"} {ewc
HLP95EN.DLL, DYNALINK, "Events":"xlobjVPageBreakE"}

Represents a vertical page break. The VPageBreak object is a member of the VPageBreaks
collection.

Using the VPageBreak Object
Use VPageBreaks(index), where index is the page break index number of the page break, to return a
VPageBreak object. The following example changes the location of vertical page break one.
Worksheets(1).VPageBreaks(1).Location = Worksheets(1).Range("e5")

VPageBreaks Collection Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjVPageBreaksC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjVPageBreaksP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjVPageBreaksM"} {ewc
HLP95EN.DLL, DYNALINK, "Events":"xlobjVPageBreaksE"}

A collection of vertical page breaks. Each vertical page break is represented by a VPageBreak
object.

Using the VPageBreaks Collection
Use the VPageBreaks property to return the VPageBreaks collection. Use the Add method to add a
vertical page break. The following example adds a vertical page break to the left of the active cell.
ActiveSheet.VPageBreaks.Add Before:=ActiveCell

Hyperlink Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjHyperlinkC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjHyperlinkP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjHyperlinkM"} {ewc
HLP95EN.DLL, DYNALINK, "Events":"xlobjHyperlinkE"}

Represents a hyperlink. The Hyperlink object is a member of the Hyperlinks collection.

Using the Hyperlink Object
Use the Hyperlink property to return the hyperlink for a shape (a shape can have only one hyperlink).
The following example activates the hyperlink for shape one.
Worksheets(1).Shapes(1).Hyperlink.Follow NewWindow:=True
A range or worksheet can have more than one hyperlink. Use Hyperlinks(index), where index is the
hyperlink number, to return a single Hyperlink object. The folllowing example activates hyperlink two
in the range A1:B2.
Worksheets(1).Range("A1:B2").Hyperlinks(2).Follow

Range, Shape, Worksheet

Hyperlinks Collection Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjHyperlinksC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjHyperlinksP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjHyperlinksM"} {ewc
HLP95EN.DLL, DYNALINK, "Events":"xlobjHyperlinksE"}

Represents the collection of hyperlinks for a worksheet or range. Each hyperlink is represented by a
Hyperlink object.

Using the Hyperlinks Collection
Use the Hyperlinks property to return the Hyperlinks collection. The following example checks the
hyperlinks on worksheet one for a link that contains the word "Microsoft."
For Each h in Worksheets(1).Hyperlinks

If Instr(h.Name, "Microsoft") <> 0 Then h.Follow
Next
Use the Add method to create a hyperlink and add it to the Hyperlinks collection. The following
example creates a new hyperlink for cell E5.
With Worksheets(1)

.Hyperlinks.Add .Range("E5"), "http://www.gohere.com"
End With

Range, Worksheet

LeaderLines Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjLeaderLinesC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjLeaderLinesP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjLeaderLinesM"} {ewc
HLP95EN.DLL, DYNALINK, "Events":"xlobjLeaderLinesE"}

Represents leader lines on a chart. Leader lines connect data labels to data points. This object isn't a
collection; there's no object that represents a single leader line.

Using the LeaderLines Object
Use the LeaderLines property to return the LeaderLines object. The following example adds data
labels and blue leader lines to series one on chart one.
With Worksheets(1).ChartObjects(1).Chart.SeriesCollection(1)

.HasDataLabels = True

.DataLabels.Position = xlLabelPositionBestFit

.HasLeaderLines = True

.LeaderLines.Border.ColorIndex = 5
End With

RecentFile Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjRecentFileC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjRecentFileP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjRecentFileM"} {ewc
HLP95EN.DLL, DYNALINK, "Events":"xlobjRecentFileE"}

Represents a file in the list of recently used files. The RecentFile object is a member of the
RecentFiles collection.

Using the RecentFile Object
Use RecentFiles(index), where index is the file number, to return a RecentFile object. The following
example opens file two in the list of recently used files.
Application.RecentFiles(2).Open

RecentFiles Collection Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjRecentFilesC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjRecentFilesP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjRecentFilesM"} {ewc
HLP95EN.DLL, DYNALINK, "Events":"xlobjRecentFilesE"}

Represents the list of recently used files. Each file is represented by a RecentFile object.

Using the RecentFiles Collection
Use the RecentFiles property to return the RecentFiles collection. The following example sets the
maximum number of files in the list of recently used files.
Application.RecentFiles.Maximum = 6

PivotCache Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjPivotCacheC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjPivotCacheP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjPivotCacheM"} {ewc
HLP95EN.DLL, DYNALINK, "Events":"xlobjPivotCacheE"}

Represents the memory cache for a PivotTable. The PivotCache object is a member of the
PivotCaches collection.

Using the PivotCache Object
Use the PivotCache method to return a PivotCache object for a PivotTable (each PivotTable has
only one cache). The following example causes PivotTable one to refresh itself whenever its file is
opened.
Worksheets(1).PivotTables(1).PivotCache.RefreshOnFileOpen = True
Use PivotCaches(index), where index is the cache number, to return a single PivotCache object
from the PivotCaches collection for a workbook. The following example refreshes cache one.
ActiveWorkbook.PivotCaches(1).Refresh

PivotTable, Workbook

PivotCaches Collection Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjPivotCachesC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjPivotCachesP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjPivotCachesM"} {ewc
HLP95EN.DLL, DYNALINK, "Events":"xlobjPivotCachesE"}

Represents the collection of PivotTable memory caches in a workbook. Each memory cache is
represented by a PivotCache object.

Using the PivotCaches Collection
Use the PivotCaches method to return the PivotCaches collection. The following example sets the
RefreshOnFileOpen property for all pivot caches in the active workbook.
For Each pc In ActiveWorkbook.PivotCaches

pc.RefreshOnFileOpen = True
Next

PivotFormula Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjPivotFormulaC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjPivotFormulaP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjPivotFormulaM"} {ewc
HLP95EN.DLL, DYNALINK, "Events":"xlobjPivotFormulaE"}

Represents a formula used to calculate results in a PivotTable.

Using the PivotFormula Object
Use PivotFormulas(index), where index is the formula number or string on the left side of the pivot
formula, to return the PivotFormula object. The following example changes the index number for
formula one so that it will be solved after formula two.
Worksheets(1).PivotTables(1).PivotFormulas(1).Index = 2

PivotFormulas Collection Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjPivotFormulasC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjPivotFormulasP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjPivotFormulasM"} {ewc
HLP95EN.DLL, DYNALINK, "Events":"xlobjPivotFormulasE"}

Represents the collection of formulas for a PivotTable. Each formula is represented by a
PivotFormula object.

Using the PivotFormulas Collection
Use the PivotFormulas method to return the PivotFormulas collection. The following example
creates a list of pivot formulas for PivotTable one.
For Each pf in ActiveSheet.PivotTables(1).PivotFormulas

Cells(r, 1).Value = pf.Formula
r = r + 1

Next

LinkFormat Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjLinkFormatC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjLinkFormatP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjLinkFormatM"} {ewc
HLP95EN.DLL, DYNALINK, "Events":"xlobjLinkFormatE"}

Contains linked OLE object properties.

Using the LinkFormat Object
Use the LinkFormat property to return the LinkFormat object. The following example updates an
OLE object in the Shapes collection.
Worksheets(1).Shapes(1).LinkFormat.Update
If the Shape object doesn't represent a linked object, the LinkFormat property fails.

OLEFormat Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjOLEFormatC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjOLEFormatP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjOLEFormatM"} {ewc
HLP95EN.DLL, DYNALINK, "Events":"xlobjOLEFormatE"}

Contains OLE object properties.

Using the OLEFormat Object
Use the OLEFormat property to return the OLEFormat object. The following example activates an
OLE object in the Shapes collection.
Worksheets(1).Shapes(1).OLEFormat.Activate
If the Shape object doesn't represent a linked or embedded object, the OLEFormat property fails.

Validation Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjValidationC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjValidationP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjValidationM"} {ewc
HLP95EN.DLL, DYNALINK, "Events":"xlobjValidationE"}

Represents data validation for a worksheet range.

Using the Validation Object
Use the Validation property to return the Validation object. The following example changes the data
validation for cell E5.
Range("e5").Validation _

.Modify xlValidateList, xlValidAlertStop, "=A1:A10"
Use the Add method to add data validation to a range and create a new Validation object. The
following example adds data validation to cell E5.
With Range("e5").Validation

.Add Type:=xlValidateWholeNumber, _
AlertStyle:=xlValidAlertInformation, Minimum:="5", Maximum:="10"

.InputTitle = "Integers"

.ErrorTitle = "Integers"

.InputMessage = "Enter an integer from five to ten"

.ErrorMessage = "You must enter a number from five to ten"
End With

ControlFormat Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjControlFormatC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjControlFormatP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjControlFormatM"} {ewc
HLP95EN.DLL, DYNALINK, "Events":"xlobjControlFormatE"}

Contains Microsoft Excel control properties.

Using the ControlFormat Object
Use the ControlFormat property to return a ControlFormat object. The following example sets the
fill range for a list box control on worksheet one.
Worksheets(1).Shapes(1).ControlFormat.ListFillRange = "A1:A10"
If the shape isn't a control, the ControlFormat property fails; and if the control isn't a list box, the
ListFillRange property fails.

FormatCondition Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjFormatConditionC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjFormatConditionP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjFormatConditionM"}
{ewc HLP95EN.DLL, DYNALINK, "Events":"xlobjFormatConditionE"}

Represents a conditional format. The FormatCondition object is a member of the
FormatConditions collection. The FormatConditions collection can contain up to three conditional
formats for a given range.

Using the FormatCondition Object
Use FormatConditions(index), where index is the index number of the conditional format, to return a
FormatCondition object. The following example sets format properties for an existing conditional
format for cells E1:E10.
With Worksheets(1).Range("e1:e10").FormatConditions(1)
 With .Borders
 .LineStyle = xlContinuous
 .Weight = xlThin
 .ColorIndex = 6
 End With
 With .Font
 .Bold = True
 .ColorIndex = 3
 End With
End With

Remarks
Use the Add method to create a new conditional format. If you try to create more than three
conditional formats for a single range, the Add method fails. If a range has three formats, you can use
the Modify method to change one of the formats, or you can use the Delete method to delete a

format and then use the Add method to create a new format.

Use the Font, Border, and Interior properties of the FormatCondition object to control the
appearance of formatted cells. Some properties of these objects aren't supported by the conditional
format object model. The properties that can be used with conditional formatting are listed in the
following table.

Object Properties
Font Bold

Color
ColorIndex
FontStyle
Italic
Strikethrough
Underline
The accounting underline styles cannot be used.

Border Bottom
Color
Left
Right
Style
The following border styles can be used (all others aren't
supported): xlNone, xlSolid, xlDash, xlDot, xlDashDot,
xlDashDotDot, xlGray50, xlGray75, and xlGray25.
Top
Weight
The following border weights can be used (all others
aren't supported): xlWeightHairline and xlWeightThin.

Interior Color
ColorIndex
Pattern
PatternColorIndex

FormatConditions Collection Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjFormatConditionsC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjFormatConditionsP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjFormatConditionsM"}
{ewc HLP95EN.DLL, DYNALINK, "Events":"xlobjFormatConditionsE"}

Represents the collection of conditional formats for a single range. The FormatConditions collection
can contain up to three conditional formats. Each format is represented by a FormatCondition
object.

Using the FormatConditions Collection
Use the FormatConditions property to return a FormatConditions object. Use the Add method to
create a new conditional format, and use the Modify method to change an existing conditional format.

The following example adds a conditional format to cells E1:E10.
With Worksheets(1).Range("e1:e10").FormatConditions _
 .Add(xlCellValue, xlGreater, "=a1")
 With .Borders
 .LineStyle = xlContinuous
 .Weight = xlThin
 .ColorIndex = 6
 End With
 With .Font
 .Bold = True
 .ColorIndex = 3
 End With
End With

Remarks
If you try to create more than three conditional formats for a single range, the Add method fails. If a
range has three formats, you can use the Modify method to change one of the formats, or you can

use the Delete method to delete a format and then use the Add method to create a new format.

For more information about conditional formats, see the FormatCondition object.

AutoCorrect Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjAutoCorrectC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjAutoCorrectP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjAutoCorrectM"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjAutoCorrectE"} {ewc HLP95EN.DLL, DYNALINK,
"Events":"xlobjAutoCorrectE"}

Contains Microsoft Excel AutoCorrect attributes (capitalization of names of days, correction of two
initial capital letters, automatic correction list, and so on).

Using the AutoCorrect Object
Use the AutoCorrect property to return the AutoCorrect object. The following example sets
Microsoft Excel to correct words that begin with two initial capital letters.
With Application.AutoCorrect

.TwoInitialCapitals = True

.ReplaceText = True
End With

Corners Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjCornersC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjCornersX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjCornersP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjCornersM"} {ewc HLP95EN.DLL, DYNALINK, "Events":"xlobjCornersE"}
{ewc HLP95EN.DLL, DYNALINK, "Events":"xlobjCornersE"}

Represents the corners of a 3-D chart. This object isn't a collection.

Using the Corners Object
Use the Corners property to return the Corners object. The following example selects the corners of
chart one.
Charts(1).Corners.Select
If the chart isn't a 3-D chart, the Corners property fails.

OLEObject Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjOLEObjectC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjOLEObjectX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjOLEObjectP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjOLEObjectM"} {ewc HLP95EN.DLL, DYNALINK,
"Events":"xlobjOLEObjectE"}

Represents an ActiveX control or a linked or embedded OLE object on a worksheet. The OLEObject
object is a member of the OLEObjects collection. The OLEObjects collection contains all the OLE
objects on a single worksheet.

Using the OLEObject Object
Use OLEObjects(index), where index is the name or number of the object, to return an OLEObject
object. The following example deletes OLE object one on Sheet1.
Worksheets("sheet1").OLEObjects(1).Delete
The following example deletes the OLE object named "ListBox1."
Worksheets("sheet1").OLEObjects("ListBox1").Delete

Remarks
The properties and methods of the OLEObject object are duplicated on each ActiveX control on a
worksheet. This enables Visual Basic code to gain access to these properties by using the control's
name. The following example selects the check box control named "MyCheckBox," aligns it with the
active cell, and then activates the control.
With MyCheckBox

.Value = True

.Top = ActiveCell.Top

.Activate
End With
For more information, see Using ActiveX controls on sheets.

Chart, Worksheet

OLEObjects Collection Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjOLEObjectsC"} {ewc HLP95EN.DLL, DYNALINK,
"Example":"xlobjOLEObjectsX":1} {ewc HLP95EN.DLL, DYNALINK, "Properties":"xlobjOLEObjectsP"} {ewc
HLP95EN.DLL, DYNALINK, "Methods":"xlobjOLEObjectsM"} {ewc HLP95EN.DLL, DYNALINK,
"Events":"xlobjOLEObjectsE"}

A collection of all the OLEObject objects on the specified worksheet. Each OLEObject object
represents an ActiveX control or a linked or embedded OLE object.

Using the OLEObjects Collection
Use the OLEObjects method to return the OLEObjects collection. The following example hides all
the OLE objects on worksheet one.
Worksheets(1).OLEObjects.Visible = False
Use the Add method to create a new OLE object and add it to the OLEObjects collection. The
following example creates a new OLE object representing the bitmap file Arcade.bmp and adds it to
worksheet one.
Worksheets(1).OLEObjects.Add FileName:="arcade.bmp"
The following example creates a new ActiveX control (a list box) and adds it to worksheet one.
Worksheets(1).OLEObjects.Add ClassType:="Forms.ListBox.1"
For more information, see Using ActiveX controls on sheets.

Adjustments Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjAdjustmentsC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjAdjustmentsP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjAdjustmentsM"}

Contains a collection of adjustment values for the specified AutoShape, WordArt object, or connector.
Each adjustment value represents one way an adjustment handle can be adjusted. Because some
adjustment handles can be adjusted in two ways ¾ for instance, some handles can be adjusted both
horizontally and vertically ¾ a shape can have more adjustment values than it has adjustment
handles. A shape can have up to eight adjustments.

Using the Adjustments Object
Use the Adjustments property to return an Adjustments object. Use Adjustments(index), where
index is the adjustment value's index number, to return a single adjustment value.

Different shapes have different numbers of adjustment values, different kinds of adjustments change
the geometry of a shape in different ways, and different kinds of adjustments have different ranges of
valid values. For example, the following illustration shows what each of the four adjustment values for
a right-arrow callout contributes to the definition of the callout's geometry.

Note Because each adjustable shape has a different set of adjustments, the best way to verify the
adjustment behavior for a specific shape is to manually create an instance of the shape, make
adjustments with the macro recorder turned on, and then examine the recorded code.

The following table summarizes the ranges of valid adjustment values for different types of
adjustments. In most cases, if you specify a value that's beyond the range of valid values, the closest
valid value will be assigned to the adjustment.

Type of adjustment Valid values
Linear (horizontal or
vertical)

Generally the value 0.0 represents the left or top
edge of the shape and the value 1.0 represents the
right or bottom edge of the shape. Valid values
correspond to valid adjustments you can make to the
shape manually. For example, if you can only pull an
adjustment handle half way across the shape
manually, the maximum value for the corresponding
adjustment will be 0.5. For shapes such as
connectors and callouts, where the values 0.0 and
1.0 represent the limits of the rectangle defined by
the starting and ending points of the connector or

callout line, negative numbers and numbers greater
than 1.0 are valid values.

Radial An adjustment value of 1.0 corresponds to the width
of the shape. The maximum value is 0.5, or half way
across the shape.

Angle Values are expressed in degrees. If you specify a
value outside the range – 180 to 180, it will be
normalized to be within that range.

The following example adds a right-arrow callout to myDocument and sets adjustment values for the
callout. Note that although the shape has only three adjustment handles, it has four adjustments.
Adjustments three and four both correspond to the handle between the head and neck of the arrow.
Set myDocument = Worksheets(1)
Set rac = myDocument.Shapes.AddShape(msoShapeRightArrowCallout, 10, 10,
250, 190)
With rac.Adjustments
 .Item(1) = 0.5 'adjusts width of text box
 .Item(2) = 0.15 'adjusts width of arrow head
 .Item(3) = 0.8 'adjusts length of arrow head
 .Item(4) = 0.4 'adjusts width of arrow neck
End With

CalloutFormat Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjCalloutFormatC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjCalloutFormatP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjCalloutFormatM"}

Contains properties and methods that apply to line callouts.

Using the CalloutFormat Object
Use the Callout property to return a CalloutFormat object. The following example specifies the
following attributes of shape three (a line callout) on myDocument: the callout will have a vertical
accent bar that separates the text from the callout line; the angle between the callout line and the side
of the callout text box will be 30 degrees; there will be no border around the callout text; the callout
line will be attached to the top of the callout text box; and the callout line will contain two segments.
For this example to work, shape three must be a callout.
Set myDocument = Worksheets(1)
With myDocument.Shapes(3).Callout
 .Accent = True
 .Angle = msoCalloutAngle30
 .Border = False
 .PresetDrop msoCalloutDropTop
 .Type = msoCalloutThree
End With

ConnectorFormat Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjConnectorFormatC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjConnectorFormatP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjConnectorFormatM"}

Contains properties and methods that apply to connectors. A connector is a line that attaches two
other shapes at points called connection sites. If you rearrange shapes that are connected, the
geometry of the connector will be automatically adjusted so that the shapes remain connected.

Using the ConnectorFormat Object
Use the ConnectorFormat property to return a ConnectorFormat object. Use the BeginConnect
and EndConnect methods to attach the ends of the connector to other shapes in the document. Use
the RerouteConnections method to automatically find the shortest path between the two shapes
connected by the connector. Use the Connector property to see whether a shape is a connector.

Note that you assign a size and a position when you add a connector to the Shapes collection, but
the size and position are automatically adjusted when you attach the beginning and end of the
connector to other shapes in the collection. Therefore, if you intend to attach a connector to other
shapes, the initial size and position you specify are irrelevant. Likewise, you specify which connection
sites on a shape to attach the connector to when you attach the connector, but using the
RerouteConnections method after the connector is attached may change which connection sites the
connector attaches to, making your original choice of connection sites irrelevant.

The following example adds two rectangles to myDocument and connects them with a curved
connector.
Set myDocument = Worksheets(1)
Set s = myDocument.Shapes
Set firstRect = s.AddShape(msoShapeRectangle, 100, 50, 200, 100)
Set secondRect = s.AddShape(msoShapeRectangle, 300, 300, 200, 100)
Setc c = s.AddConnector(msoConnectorCurve, 0, 0, 0, 0)
With c.ConnectorFormat
 .BeginConnect ConnectedShape:=firstRect, ConnectionSite:=1
 .EndConnect ConnectedShape:=secondRect, ConnectionSite:=1
 c.RerouteConnections
End With

Remarks
Connection sites are generally numbered according to the rules presented in the following table.

Shape type Connection site numbering scheme
AutoShapes,
WordArt, pictures,
and OLE objects

The connection sites are numbered starting at the top
and proceeding counterclockwise.

Freeforms The connection sites are the vertices, and they
correspond to the vertex numbers.

To figure out which number corresponds to which connection site on a complex shape, you can
experiment with the shape while the macro recorder is turned on and then examine the recorded
code; or you can create a shape, select it, and then run the following example. This code will number
each connection site and attach a connector to it.

Set mainshape = ActiveWindow.Selection.ShapeRange(1)
With mainshape
 bx = .Left + .Width + 50
 by = .Top + .Height + 50
End With
With ActiveSheet
 For j = 1 To mainshape.ConnectionSiteCount
 With .Shapes.AddConnector(msoConnectorStraight, bx, by, bx + 50, by
+ 50)
 .ConnectorFormat.EndConnect mainshape, j
 .ConnectorFormat.Type = msoConnectorElbow
 .Line.ForeColor.RGB = RGB(255, 0, 0)
 l = .Left
 t = .Top
 End With
 With .Shapes.AddTextbox(msoTextOrientationHorizontal, l, t, 36, 14)
 .Fill.Visible = False
 .Line.Visible = False
 .TextFrame.Characters.Text = j
 End With
 Next j
End With

GroupShapes Collection Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjGroupShapesC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjGroupShapesP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjGroupShapesM"}

Represents the individual shapes within a grouped shape. Each shape is represented by a Shape
object. Using the Item method with this object, you can work with single shapes within a group
without having to ungroup them.

Using The GroupShapes Collection
Use the GroupItems property to return the GroupShapes collection. Use GroupItems(index), where
index is the number of the individual shape within the grouped shape, to return a single shape from
the the GroupShapes collection. The following example adds three triangles to myDocument, groups
them, sets a color for the entire group, and then changes the color for the second triangle only.
Set myDocument = Worksheets(1)
With myDocument.Shapes
 .AddShape(msoShapeIsoscelesTriangle, 10, 10, 100, 100).Name = "shpOne"
 .AddShape(msoShapeIsoscelesTriangle, 150, 10, 100, 100).Name = "shpTwo"
 .AddShape(msoShapeIsoscelesTriangle, 300, 10, 100, 100).Name =
"shpThree"
 With .Range(Array("shpOne", "shpTwo", "shpThree")).Group
 .Fill.PresetTextured msoTextureBlueTissuePaper
 .GroupItems(2).Fill.PresetTextured msoTextureGreenMarble
 End With
End With

LineFormat Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjLineFormatC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjLineFormatP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjLineFormatM"}

Represents line and arrowhead formatting. For a line, the LineFormat object contains formatting
information for the line itself; for a shape with a border, this object contains formatting information for
the shape's border.

Using the LineFormat Object
Use the Line property to return a LineFormat object. The following example adds a a blue, dashed
line to myDocument. There's a short, narrow oval at the line's starting point and a long, wide triangle
at its end point.
Set myDocument = Worksheets(1)
With myDocument.Shapes.AddLine(100, 100, 200, 300).Line
 .DashStyle = msoLineDashDotDot
 .ForeColor.RGB = RGB(50, 0, 128)
 .BeginArrowheadLength = msoArrowheadShort
 .BeginArrowheadStyle = msoArrowheadOval
 .BeginArrowheadWidth = msoArrowheadNarrow
 .EndArrowheadLength = msoArrowheadLong
 .EndArrowheadStyle = msoArrowheadTriangle
 .EndArrowheadWidth = msoArrowheadWide
End With

PictureFormat Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjShapeC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjShapeP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjShapeM"}

Contains properties and methods that apply to pictures and OLE objects. The LinkFormat object
contains properties and methods that apply to linked OLE objects only. The OLEFormat object
contains properties and methods that apply to OLE objects whether or not they're linked.

Using the PictureFormat Object
Use the PictureFormat property to return a PictureFormat object. The following example sets the
brightness, contrast, and color transformation for shape one on myDocument and crops 18 points off
the bottom of the shape. For this example to work, shape one must be either a picture or an OLE
object.
Set myDocument = Worksheets(1)
With myDocument.Shapes(1).PictureFormat
 .Brightness = 0.3
 .Contrast = 0.7
 .ColorType = msoPictureGrayScale
 .CropBottom = 18

ShadowFormat Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjShadowFormatC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjShadowFormatP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjShadowFormatM"}

Represents shadow formatting for a shape.

Using the ShadowFormat Object
Use the Shadow property to return a ShadowFormat object. The following example adds a
shadowed rectangle to myDocument. The semitransparent, blue shadow is offset 5 points to the right
of the rectangle and 3 points above it.
Set myDocument = Worksheets(1)
With myDocument.Shapes.AddShape(msoShapeRectangle, 50, 50, 100, 200).Shadow
 .ForeColor.RGB = RGB(0, 0, 128)
 .OffsetX = 5
 .OffsetY = -3
 .Transparency = 0.5
 .Visible = True
End With

Shape Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjShapeC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjShapeP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjShapeM"}

Represents an object in the drawing layer, such as an AutoShape, freeform, OLE object, or picture.
The Shape object is a member of the Shapes collection. The Shapes collection contains all the
shapes on a slide.

Note There are three objects that represent shapes: the Shapes collection, which represents all
the shapes on a document; the ShapeRange collection, which represents a specified subset of the
shapes on a document (for example, a ShapeRange object could represent shapes one and four on
the document, or it could represent all the selected shapes on the document); and the Shape object,
which represents a single shape on a document. If you want to work with several shapes at the same
time or with shapes within the selection, use a ShapeRange collection. For an overview of how to
work with either a single shape or with more than one shape at a time, see Working with Shapes
(Drawing Objects).

Using the Shape Object
This section describes how to:

· Return an existing shape.
· Return a shape within the selection.
· Return the shapes attached to the ends of a connector.
· Return a newly created freeform.
· Return a single shape from within a group.
· Return a newly formed group of shapes.

Returning an Existing Shape
Use Shapes(index), where index is the shape name or the index number, to return a Shape object
that represents a shape. The following example horizontally flips shape one and the shape named
"Rectangle 1" on myDocument.

Set myDocument = Worksheets(1)
myDocument.Shapes(1).Flip msoFlipHorizontal
myDocument.Shapes("Rectangle 1").Flip msoFlipHorizontal
Each shape is assigned a default name when you add it to the Shapes collection. To give the shape a
more meaningful name, use the Name property. The following example adds a rectangle to
myDocument, gives it the name "Red Square," and then sets its foreground color and line style.

Set myDocument = Worksheets(1)
With myDocument.Shapes.AddShape(msoShapeRectangle, 144, 144, 72, 72)

 .Name = "Red Square"
 .Fill.ForeColor.RGB = RGB(255, 0, 0)
 .Line.DashStyle = msoLineDashDot
End With

Returning a Shape Within the Selection
Use Selection.ShapeRange(index), where index is the shape name or the index number, to return a
Shape object that represents a shape within the selection. The following example sets the fill for the
first shape in the selection in the active window, assuming that there's at least one shape in the
selection.
ActiveWindow.Selection.ShapeRange(1).Fill.ForeColor.RGB = RGB(255, 0, 0)

Returning the Shapes Attached to the Ends of a Connector
To return a Shape object that represents one of the shapes attached by a connector, use the
BeginConnectedShape or EndConnectedShape property.

Returning a newly created freeform
Use the BuildFreeform and AddNodes methods to define the geometry of a new freeform, and use
the ConvertToShape method to create the freeform and return the Shape object that represents it.

Returning a Single Shape from Within a Group
Use GroupItems(index), where index is the shape name or the index number within the group, to
return a Shape object that represents a single shape in a grouped shape.

Returning a Newly Formed Group of Shapes
Use the Group or Regroup method to group a range of shapes and return a single Shape object that
represents the newly formed group. After a group has been formed, you can work with the group the
same way you work with any other shape.

ShapeRange Collection Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjShapeRangeC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjShapeRangeP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjShapeRangeM"}

Represents a shape range, which is a set of shapes on a document. A shape range can contain as
few as a single shape or as many as all the shapes on the document. You can include whichever
shapes you want ¾ chosen from among all the shapes on the document or all the shapes in the
selection ¾ to construct a shape range. For example, you could construct a ShapeRange collection
that contains the first three shapes on a document, all the selected shapes on a document, or all the
freeforms on a document.

For an overview of how to work with either a single shape or with more than one shape at a time, see
Working with Shapes (Drawing Objects).

Using the ShapeRange Collection
This section describes how to:

· Return a set of shapes you specify by name or index number.
· Return all or some of the selected shapes on a document.

Returning a Set of Shapes You Specify by Name or Index Number
Use Shapes.Range(index), where index is the name or index number of the shape or an array that
contains either names or index numbers of shapes, to return a ShapeRange collection that
represents a set of shapes on a document. You can use the Array function to construct an array of
names or index numbers. The following example sets the fill pattern for shapes one and three on
myDocument.

Set myDocument = Worksheets(1)
myDocument.Shapes.Range(Array(1, 3)).Fill.Patterned
msoPatternHorizontalBrick
The following example sets the fill pattern for the shapes named "Oval 4" and "Rectangle 5" on
myDocument.

Set myDocument = Worksheets(1)
Set myRange = myDocument.Shapes.Range(Array("Oval 4", "Rectangle 5"))
myRange.Fill.Patterned msoPatternHorizontalBrick
Although you can use the Range property to return any number of shapes or slides, it's simpler to use
the Item method if you want to return only a single member of the collection. For example,
Shapes(1) is simpler than Shapes.Range(1).

Returning All or Some of the Selected Shapes on a Document

Use the ShapeRange property of the Selection object to return all the shapes in the selection. The
following example sets the fill foreground color for all the shapes in the selection in window one,
assuming that there's at least one shape in the selection.
Windows(1).Selection.ShapeRange.Fill.ForeColor.RGB = RGB(255, 0, 255)
Use Selection.ShapeRange(index), where index is the shape name or the index number, to return a
single shape within the selection. The following example sets the fill foreground color for shape two in
the collection of selected shapes in window one, assuming that there are at least two shapes in the
selection.
Windows(1).Selection.ShapeRange(2).Fill.ForeColor.RGB = RGB(255, 0, 255)

ShapeNode Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjShapeNodeC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjShapeNodeP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjShapeNodeM"}

Represents the geometry and the geometry-editing properties of the nodes in a user-defined
freeform. Nodes include the vertices between the segments of the freeform and the control points for
curved segments. The ShapeNode object is a member of the ShapeNodes collection. The
ShapeNodes collection contains all the nodes in a freeform.

Using the ShapeNode Object
Use Nodes(index), where index is the node index number, to return a single ShapeNode object. If
node one in shape three on myDocument is a corner point, the following example makes it a smooth
point. For this example to work, shape three must be a freeform.
Set myDocument = Worksheets(1)
With myDocument.Shapes(3)
 If .Nodes(1).EditingType = msoEditingCorner Then
 .Nodes.SetEditingType 1, msoEditingSmooth
 End If
End With

ShapeNodes Collection Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjShapeNodesC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjShapeNodesP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjShapeNodesM"}

A collection of all the ShapeNode objects in the specified freeform. Each ShapeNode object
represents either a node between segments in a freeform or a control point for a curved segment of a
freeform. You can create a freeform manually or by using the BuildFreeform and ConvertToShape
methods.

Using the ShapeNodes Collection
Use the Nodes property to return the ShapeNodes collection. The following example deletes node
four in shape three on myDocument. For this example to work, shape three must be a freeform with
at least four nodes.
Set myDocument = Worksheets(1)
myDocument.Shapes(3).Nodes.Delete 4
Use the Insert method to create a new node and add it to the ShapeNodes collection. The following
example adds a smooth node with a curved segment after node four in shape three on myDocument.
For this example to work, shape three must be a freeform with at least four nodes.
Set myDocument = Worksheets(1)
With myDocument.Shapes(3).Nodes
 .Insert 4, msoSegmentCurve, msoEditingSmooth, 210, 100
End With
Use Nodes(index), where index is the node index number, to return a single ShapeNode object. If
node one in shape three on myDocument is a corner point, the following example makes it a smooth
point. For this example to work, shape three must be a freeform.
Set myDocument = Worksheets(1)
With myDocument.Shapes(3)
 If .Nodes(1).EditingType = msoEditingCorner Then
 .Nodes.SetEditingType 1, msoEditingSmooth
 End If
End With

TextEffectFormat Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjTextEffectFormatC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjTextEffectFormatP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjTextEffectFormatM"}

Contains properties and methods that apply to WordArt objects.

Using the TextEffectFormat Object
Use the TextEffect property to return a TextEffectFormat object. The following example sets the font
name and formatting for shape one on myDocument. For this example to work, shape one must be a
WordArt object.
Set myDocument = Worksheets(1)
With myDocument.Shapes(1).TextEffect
 .FontName = "Courier New"
 .FontBold = True
 .FontItalic = True
End With

ThreeDFormat Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjThreeDFormatC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjThreeDFormatP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjThreeDFormatM"}

Represents a shape's three-dimensional formatting.

Using The ThreeDFormat Object
Use the ThreeD property to return a ThreeDFormat object. The following example adds an oval to
myDocument and then specifies that the oval be extruded to a depth of 50 points and that the
extrusion be purple.
Set myDocument = Worksheets(1)
Set myShape = myDocument.Shapes.AddShape(msoShapeOval, 90, 90, 90, 40)
With myShape.ThreeD
 .Visible = True
 .Depth = 50
 .ExtrusionColor.RGB = RGB(255, 100, 255) ' RGB value for purple
End With

Remarks
You cannot apply three-dimensional formatting to some kinds of shapes, such as beveled shapes or
multiple-disjoint paths. Most of the properties and methods of the ThreeDFormat object for such a
shape will fail.

FreeformBuilder Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjFreeformBuilderC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjFreeformBuilderP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjFreeformBuilderM"}

Represents the geometry of a freeform while it's being built.

Using the FreeformBuilder Object
Use the BuildFreeform method to return a FreeformBuilder object. Use the AddNodes method to
add nodes to the freefrom. Use the ConvertToShape method to create the shape defined in the
FreeformBuilder object and add it to the Shapes collection. The following example adds a freeform
with four segments to myDocument.

Set myDocument = Worksheets(1)
With myDocument.Shapes.BuildFreeform(msoEditingCorner, 360, 200)
 .AddNodes msoSegmentCurve, msoEditingCorner, 380, 230, 400, 250, 450,
300
 .AddNodes msoSegmentCurve, msoEditingAuto, 480, 200
 .AddNodes msoSegmentLine, msoEditingAuto, 480, 400
 .AddNodes msoSegmentLine, msoEditingAuto, 360, 200
 .ConvertToShape
End With

ColorFormat Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjColorFormatC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjColorFormatP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjColorFormatM"}

Represents the color of a one-color object, the foreground or background color of an object with a
gradient or patterned fill, or the pointer color. You can set colors to an explicit red-green-blue value (by
using the RGB property) or to a color in the color scheme (by using the SchemeColor property).

Using the ColorFormat Object
Use one of the properties listed in the following table to return a ColorFormat object.

To return a ColorFormat object
that represents this

Use this
property With this object

Background fill color (used in a
shaded or patterned fill)

BackColor FillFormat

Foreground fill color (or simply the
fill color for a solid fill)

ForeColor FillFormat

Background line color (used in a
patterned line)

BackColor LineFormat

Foreground line color (or just the
line color for a solid line)

ForeColor LineFormat

Shadow color ForeColor ShadowFormat
Color of the sides of an extruded
object

ExtrusionColor ThreeDFormat

Use the RGB property to set a color to an explicit red-green-blue value. The following example adds a
rectangle to myDocument and then sets the foreground color, background color, and gradient for the
rectangle's fill.
Set myDocument = Worksheets(1)
With myDocument.Shapes.AddShape(msoShapeRectangle, 90, 90, 90, 50).Fill
 .ForeColor.RGB = RGB(128, 0, 0)
 .BackColor.RGB = RGB(170, 170, 170)
 .TwoColorGradient msoGradientHorizontal, 1
End With

Shapes Collection Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjShapesC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjShapesP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjShapesM"}

A collection of all the Shape objects on the specified sheet. Each Shape object represents an object
in the drawing layer, such as an AutoShape, freeform, OLE object, or picture.

Note If you want to work with a subset of the shapes on a document — for example, to do
something to only the AutoShapes on the document or to only the selected shapes — you must
construct a ShapeRange collection that contains the shapes you want to work with. For an overview
of how to work either with a single shape or with more than one shape at a time, see Working with
Shapes (Drawing Objects).

Using the Shapes Collection
Use the Shapes property to return the Shapes collection.The following example selects all the
shapes on myDocument.

Set myDocument = Worksheets(1)
myDocument.Shapes.SelectAll
Note If you want to do something (like delete or set a property) to all the shapes on a sheet at the
same time, select all the shapes and then use the ShapeRange property on the selection to create a
ShapeRange object that contains all the shapes on the sheet, and then apply the appropriate
property or method to the ShapeRange object.

Use Shapes(index), where index is the shape's name or index number, to return a single Shape
object. The following example sets the fill to a preset shade for shape one on myDocument.

Set myDocument = Worksheets(1)
myDocument.Shapes(1).Fill.PresetGradient msoGradientHorizontal, 1,
msoGradientBrass
Use Shapes.Range(index), where index is the shape's name or index number or an array of shape
names or index numbers, to return a ShapeRange collection that represents a subset of the Shapes
collection. The following example sets the fill pattern for shapes one and three on myDocument.

Set myDocument = Worksheets(1)
myDocument.Shapes.Range(Array(1, 3)).Fill.Patterned
msoPatternHorizontalBrick

TextFrame Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjTextFrameC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjTextFrameP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjTextFrameM"}

Represents the text frame in a Shape object. Contains the text in the text frame as well as the
properties and methods that control the alignment and anchoring of the text frame.

Using the TextFrame Object
Use the TextFrame property to return a TextFrame object. The following example adds a rectangle to
myDocument, adds text to the rectangle, and then sets the margins for the text frame.

Set myDocument = Worksheets(1)
With myDocument.Shapes.AddShape(msoShapeRectangle, 0, 0, 250,
140).TextFrame
 .Characters.Text = "Here is some test text"
 .MarginBottom = 10
 .MarginLeft = 10
 .MarginRight = 10
 .MarginTop = 10
End With

text frame
The area within a shape that can contain text.

FillFormat Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjFillFormatC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjFillFormatP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjFillFormatM"}

Represents fill formatting for a shape. A shape can have a solid, gradient, texture, pattern, picture, or
semi-transparent fill.

Using the FillFormat Object
Use the Fill property to return a FillFormat object. The following example adds a rectangle to
myDocument and then sets the gradient and color for the rectangle's fill.

Set myDocument = Worksheets(1)
With myDocument.Shapes.AddShape(msoShapeRectangle, 90, 90, 90, 80).Fill
 .ForeColor.RGB = RGB(0, 128, 128)
 .OneColorGradient msoGradientHorizontal, 1, 1
End With

Remarks
Many of the properties of the FillFormat object are read-only. To set one of these properties, you
have to apply the corresponding method.

Adjustments, CalloutFormat, ConnectorFormat, FillFormat, GroupShapes, LineFormat,
LinkFormat, OLEFormat, PictureFormat, ShadowFormat, ShapeNodes, ShapeRange,
TextEffectFormat, TextFrame, ThreeDFormat

FillFormat, LineFormat, ShadowFormat, ThreeDFormat

Adjustments, CalloutFormat, ConnectorFormat, FillFormat, GroupShapes, LineFormat,
LinkFormat, OLEFormat, PictureFormat, ShadowFormat, Shape, ShapeNodes, ShapeRange,
TextEffectFormat, TextFrame, ThreeDFormat

WorksheetFunction Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjWorksheetFunctionC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjWorksheetFunctionP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjWorksheetFunctionM"}
{ewc HLP95EN.DLL, DYNALINK, "Events":"xlobjWorksheetFunctionE"}

Used as a container for Microsoft Excel worksheet functions that can be called from Visual Basic.

Using the WorksheetFunction Object
Use the WorksheetFunction property to return the WorksheetFunction object. The following
example displays the result of applying the Min worksheet function to the range A1:A10.
Set myRange = Worksheets("Sheet1").Range("A1:C10")
answer = Application.WorksheetFunction.Min(myRange)
MsgBox answer

Remarks
In previous versions of Microsoft Excel, worksheet functions were contained by the Application
object.

ChartColorFormat Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjChartColorFormatC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjChartColorFormatP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjChartColorFormatM"}
{ewc HLP95EN.DLL, DYNALINK, "Events":"xlobjChartColorFormatE"}

Used only with charts. Represents the color of a one-color object or the foreground or background
color of an object with a gradient or patterned fill.

Using the ChartColorFormat Object
Use one of the properties listed in the following table to return a ChartColorFormat object.

To return a ChartColorFormat
object that represents this Use this property With this object
Background fill color (used in a
shaded or patterned fill)

BackColor ChartFillFormat

Foreground fill color (or just the fill
color for a solid fill)

ForeColor ChartFillFormat

ChartFillFormat Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjChartFillFormatC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjChartFillFormatP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjChartFillFormatM"}
{ewc HLP95EN.DLL, DYNALINK, "Events":"xlobjChartFillFormatE"}

Used only with charts. Represents fill formatting for chart elements.

Using the ChartFillFormat Object
Use the Fill property to return a ChartFillFormat object. The following example sets the foreground
color, background color, and gradient for the chart area fill on chart one.
With Charts(1).ChartArea.Fill

.Visible = True

.ForeColor.SchemeColor = 15

.BackColor.SchemeColor = 17

.TwoColorGradient Style:=msoGradientHorizontal, Variant:=1
End With

AxisTitle, ChartArea, ChartTitle, DataLabel, DataLabels, DownBars, Floor, Legend, LegendKey,
PlotArea, Point, Series, Shape, ShapeRange, UpBars, Walls

Phonetic Object
{ewc HLP95EN.DLL, DYNALINK, "See Also":"xlobjPhoneticC"} {ewc HLP95EN.DLL, DYNALINK,
"Properties":"xlobjPhoneticP"} {ewc HLP95EN.DLL, DYNALINK, "Methods":"xlobjPhoneticM"} {ewc
HLP95EN.DLL, DYNALINK, "Events":"xlobjPhoneticE"}

This object is not used in U.S. English Microsoft Excel.

DocumentProperty Object (Microsoft Excel)

Each workbook has a collection of built-in document properties and a collection of custom document
properties. Each collection is represented by a DocumentProperties object, and each collection
contains individual DocumentProperty objects.

Use the BuiltinDocumentProperties property to return the collection of built-in document properties,
and use the CustomDocumentProperties property to return the collection of custom document
properties. Use the Item property to return a single member of the collection.

The following example sets the value of the built-in document property named "Title."
ActiveWorkbook.BuiltinDocumentProperties.Item("Title") _

.Value = "Year-End Sales Results"

DocumentProperties Collection Object (Microsoft Excel)

Each workbook has a collection of built-in document properties and a collection of custom document
properties. Each collection is represented by a DocumentProperties object, and each collection
contains individual DocumentProperty objects.

Use the BuiltinDocumentProperties property to return the collection of built-in document properties,
and use the CustomDocumentProperties property to return the collection of custom document
properties.

The following example displays the names of the built-in document properties as a list on worksheet
one.
rw = 1
Worksheets(1).Activate
For Each p In ActiveWorkbook.BuiltinDocumentProperties
 Cells(rw, 1).Value = p.Name
 rw = rw + 1
Next

