
771

Chapter 30

Custom Controls
and

Handlers

• Describes how to create your own custom control and handler classes to extend the

function of the User Interface Library.

• Creates a value-set control class and associated event handler classes as an example.

• You should read Chapters 4 and 7 before reading this chapter.

• Chapters 15 and 17 cover related material.

This chapter describes how you can extend the User Interface Library by writing your own

window classes to encapsulate custom controls, and by writing handler classes to process input

and notification events for your custom control windows.

To illustrate how you accomplish these tasks, we present a full description of the Presentation

Manager value set control as a set of C++ classes.

Custom Controls
We use the term custom controls to refer to graphical user interface components that provide

some fundamentally different appearance or user input capability.

This section will describe how you create your own window classes that encapsulate custom

controls. These classes will be added to the User Interface Library’s IWindow hierarchy, most

likely as a class derived from IControl . Sometimes, you will derive from a more specialized

control class already present in the class hierarchy beneath IControl .

What we will cover in this chapter are the special techniques you need to know to encapsulate

new, and improved, user interface components. The objective is to make your new classes fit

into the User Interface Library design. This will make your objects easier to use by others, and

enable them to integrate with the rest of the User Interface Library features.

Placing Your Control in the IControl Hierarchy
The first step toward implementing a C++ custom control is to determine where to place your

control in the IWindow hierarchy. In most cases, your new class will be derived from IControl
class.

Deciding where in the hierarchy to place your custom control class is usually easy to do. You

will usually be dealing with one of the following situations.

• Encapsulating a new Presentation Manager window class.

• Implementation a custom control purely in C++.

• Extending an existing C++ window class.

New Presentation Manager Window Class

You can encapsulate new Presentation Manager window classes. As an example, in this

chapter, we will be using a wrapper for the value set window class, which falls into this

category. In cases such as this, you should derive from IControl class.

This decision follows from the fact that we are dealing with a distinct Presentation Manager

window class. This window class is unlikely to provide support for the same set of Presen-

tation Manager events and notifications, as another window class. As a result, it would prove

difficult to derive from a specialized IControl class, which was implemented to work with

some other type of Presentation Manager window.

However, you may choose to place your custom control class under one of the abstract classes

derived from IControl , such as ITextControl , or IButton . You would do this, if your control

could support the behavior required of those classes. For example, if your custom control

dealt with text contents, and it made sense for an application programmer to want to apply

text and setText functions to your objects, then you could derive from ITextControl .

Custom Control Purely in C++

You can implement custom controls purely in C++. Most likely, you will derive straight from

IControl in these cases, too, for much the same reasons as outlined above.

In other words, you do not have a special Presentation Manager window class with a corre-

sponding window procedure. Instead, you have implemented your user interface component

using a more generic Presentation Manager window, and a set of specialized handlers. The

User Interface Library’s ICanvas class, and its derivatives, are good examples of this kind of

custom control. The date control example—which uses a multicell canvas with spin buttons

—given in Chapter 11, “List Controls,” provides another example of this kind of custom

control.

772 Power GUI Programming with VisualAge for C++

Extending an Existing C++ Window Class

You can provide a C++ encapsulation of some specialization of a Presentation Manager

window already encapsulated in C++. In this case, you should derive from the existing C++

class.

A good example of this kind of extension—that technically is not a custom control—is the

User Interface Library class IGraphicPushButton . This class uses an underlying WC_BUTTON,
just like IPushButton , but provides additional C++ functionality (including a specialized

owner draw handler) to make it easier for you to use the WC_BUTTON with graphics instead of

text.

Constructing Your Custom Control Window
Naturally, the first aspect of your custom control’s design we will address is construction.

Your custom control has to meet two obligations during object construction.

• Ensure that a corresponding Presentation Manager window is created and attached to the

C++ object representing the control.

• Properly initialize any object state specific to your custom control C++ object.

The User Interface Library controls almost always assumes that the corresponding Presen-

tation Manager window has been constructed at the completion of the C++ object’s

constructor. This ensures that other member functions can be called and usually executed

properly, without requiring you to call some other member function first. This convention is

simply in keeping with the basic premise of C++ constructors: they ensure that the object is

always in a stable and operational state. So, your custom control’s constructors must take care

of creating the proper Presentation Manager window.

Of course, you also will have to take care of initializing the aspects of your objects that are

specific to your custom control. This will include constructing the data members of your

derived class, and performing what functions are necessary, to properly initialize the state of

your object and its components.

By convention, the User Interface Library controls all provide three basic constructors. These

handle the three most common ways in which you can create and attach the C++ objects, and

the corresponding Presentation Manager window.

Constructor With Window Handler

C++ custom controls, which correspond to Presentation Manager control windows, should

provide a constructor that takes the handle of an existing Presentation Manager window. This

permits you to use C++ controls created by non-C++ (or at least non-User Interface Library)

programs.

If you implement your control entirely in C++, rather than encapsulating some standard

Presentation Manager window class, then you probably will not provide this constructor. It is

not necessary, in that case, as any window handle for one of your controls would already have a

773Chapter 30 Custom Controls and Handlers

C++ object associated with it. Remember, you cannot have two C++ objects associated with

the same Presentation Manager window (for details on this, see Chapter 4, “Windows,

Handlers, and Events”).

The implementation of this standard constructor should:

• Validate the input window handle.

• Ensure that the window is of the proper type.

• Attach the C++ object to the Presentation Manager window.

• Attach any special handlers that your control requires.

Below is the implementation of this constructor for our ValueSet example. We factor out the

actual initialization code from the constructor so that we can reuse it to implement another

ValueSet constructor.

ValueSet :: ValueSet (const IWindowHandle &hwnd)
 : IControl()
 {
 this -> initialize(hwnd);
 }

void ValueSet :: initialize (const IWindowHandle & hwnd)
 {
 IASSERTPARM(hwnd.isValid());
 IString
 className("#nn");
 WinQueryClassName(hwnd, 4, className);
 IASSERTSTATE(className == "#39");
 this -> startHandlingEventsFor(hwnd);
 this -> setAutoDestroyWindow(false);
 }

The call to IWindow::startHandlingEventsFor attaches this C++ window object to the

Presentation Manager window. This causes the User Interface Library to subclass the window

procedure, and enables User Interface Library handlers to be attached to the control. Window

events will then be dispatched to those handlers. The User Interface Library requires you to

call that function sometime before completion of your window construction process. It is

necessary to enable the User Interface Library to begin intercepting window events for the

control, and to route events to any handlers you have attached to the control. You can read

more about this basic mechanism in Chapter 4, “Windows, Handlers, and Events.”

Notice the call to disable the automatic destruction of the Presentation Manager window, when

the C++ object is destructed. Since the C++ object did not create the window, the object

should not automatically destroy it. It is likely there is also non-C++ code that will take care

of destroying the window. You should always disable the automatic window destruction in this

standard constructor.

Constructor to Support Dialog Template

Classes that implement custom controls, which encapsulate Presentation Manager window

classes should also provide a constructor that accepts as arguments a parent window pointer

and a control identifier. Users will use this constructor to wrapper instances of these Presen-

774 Power GUI Programming with VisualAge for C++

tation Manager control windows they create implicitly as components of frame windows

defined by dialog template resources.

For example, you might use the dialog box editor to create a dialog template that looks like:

DLGTEMPLATE IC_DEFAULT_FRAME_ID
 BEGIN
 DIALOG "MyDialog", 1, 10, 10, 200, 200
 BEGIN
 VALUESET VALUESET_ID, 10, 10, 100, 100, VS_ ICON
 END
 END

The C++ code that loads this dialog and accessed the value set would then look like:

IFrameWindow dialog(IC_DEFAULT_FRAME_ID);
ValueSet valueSet = ValueSet(&dialog, VALUESET_ID);

The requirements of this standard constructor are the same as for the constructor, which

accepts a window handle. We can use the Presentation Manager function WinWindowFromID to

get the window handle of the argument window. It is easy to implement this constructor by

calling the same initialize function, passing the window handle obtained from that function.

ValueSet :: ValueSet (IWindow *parent, unsigned lo ng id)
 : IControl()
 {
 this -> initialize(WinWindowFromID
 (parent->handle(), id));
 }

As you can see, your provide this constructor mainly as a convenience and to enable usage

consistent with the built-in User Interface Library controls.

Constructor From Window Attributes

The third standard constructor all IControl classes provide is one that takes the full set of

standard control attributes.

• Control identifier

• Parent window

• Owner window

• Initial size and position

• Style

This constructor is the one that actually creates a Presentation Manager window, rather than

simply attach a C++ object to an existing one. The arguments provide the information

required for creation of that window.

For convenience, the last two arguments have default values. A control’s default size and

position is a default rectangle: positioned at (0,0) with size (0,0). The default style is the

default style for the custom control class. We cover this topic later in this chapter in the

section on “Custom Control Styles.”

Below is the implementation of this constructor for our ValueSet example.

775Chapter 30 Custom Controls and Handlers

ValueSet :: ValueSet (unsigned long id,
 IWindow *parent,
 IWindow *owner,
 const IRectangle &initial,
 const Style &style)
 : IControl()
 {
 this -> initialize (ISize(0,0),
 id,
 parent,
 owner,
 initial,
 style);
 }

void ValueSet :: initialize (const ISize &siz e,
 unsigned long id,
 IWindow *par ent,
 IWindow *own er,
 const IRectangle &ini tial,
 const Style &sty le)
 {
 IString
 ctlData = ValueSet::controlData(size);
 IWindowHandle
 hwnd = this -> create(id,
 0,
 style.asUnsignedLong(),
 WC_VALUESET,
 parent->handle(),
 owner ? owner->handle()
 : IWindowHandle(0) ,
 initial,
 (char*)ctlData,
 0);
 this -> startHandlingEventsFor(hwnd);
 }

IString ValueSet :: controlData (const ISize &size)
 {
 IString
 result(0, sizeof(VSCDATA));
 VSCDATA
 p = (VSCDATA)(char*)result;
 p->cbSize = sizeof(VSCDATA);
 p->usRowCount = size.height();
 p->usColumnCount = size.width();
 return result;
 }

There are a few details in this code you should note. You will have to deal with the same issues

when implementing your own custom control classes.

As we did with the constructors discussed previously, we have separated the construction logic

from the constructor. We have placed it in another overloaded version of the initialize
member function. This version of initialize function accepts an ISize argument that

provides the number of rows and columns in the value set. This standard constructor creates

value sets with zero rows and zero columns. In your custom controls, you will have to come up

with similar default values for your control’s attributes. Sometimes it makes sense to let the

user of your class control these defaults by maintaining them as static data members of your

class. You also would provide a static member function to set the default. However, this is not

really useful for this characteristic of value sets. It is not likely the user of this class will have

776 Power GUI Programming with VisualAge for C++

some standard size they want for all their value sets. Instead, we provide a special constructor

we describe below.

Some Presentation Manager windows require you pass certain control data at creation time.

With WC_VALUESET, we need a VSCDATA structure with the number of rows and columns. The

static member function controlData creates this structure and returns it as an IString . We

pass the address of this structure on the call to IWindow::create .

We connect the C++ and Presentation Manager window by calling the IWindow function

startHandlingEventsFor , passing the handle of the newly created window.

Other Constructors

In addition to the standard constructors, your custom control class should provide whatever

other constructors you need, to give users of your class the ability to easily create the objects

of your class they will be using most often.

The number and nature of those constructors will depend on the nature of your custom control

class. Generally, you will provide constructors that let users of your class pass in the data

corresponding to the information the Presentation Manager window class accepts, or requires,

in the control data argument on the WinCreateWindow call. If there is no control data, or if

there is some reasonable default you can always provide, then you will not need any additional

constructors.

In the case of ValueSet , we see the WC_VALUESET control data structure has fields for the

number of rows, and number of columns, in the value set. In the standard constructor,

described above, we provided 0 as the default values for these numbers. Of course, a value set

with no rows and no columns is not very useful, so we have an obligation to provide a

constructor, which lets the users of our class provide the actual number of rows and columns

they need.

We use an ISize argument to pass the value set size. This works well since it provides the

right “size” connotation and permits the information to be passed easily. We insert this ISize
argument before the arguments that have default values, so the user can still rely on those

defaults even if they want to provide an explicit size. This yields the following ValueSet
constructor. We use the initialize member function we discussed above, to implement this

constructor:

ValueSet :: ValueSet (unsigned long id,
 IWindow *parent,
 IWindow *owner,
 const ISize &rowsAndCol umns,
 const IRectangle &initial,
 const Style &style)
 : IControl()
 {
 this -> initialize(rowsAndColumns,
 id,
 parent,
 owner,
 initial,
 style);
 }

777Chapter 30 Custom Controls and Handlers

Attaching Handlers
Once your constructor has invoked the startHandlingEventsFor member function of IWindow ,

you can attach handlers to your custom control. Our value set example does not add any

handlers automatically. Sometimes you may have to attach handlers to implement your

custom control. Any custom control implemented strictly using C++, with no custom Presen-

tation Manager window class, would have to attach a handler to customize the standard

window you built it upon. For example:

• An IGraphicPushButton attaches handlers to the base IPushButton to manage the

drawing of the button graphics.

• An ICanvas attaches a handler to its underlying WC_STATIC Presentation Manager

window to manage the layout of child windows.

We cover custom handlers later in this chapter. That discussion will guide you in designing

and implementing the handlers that you may need to implement your custom control. You

would attach the handler in your constructors immediately after the call to

startHandlingEventsFor .

Custom Control Styles
Most controls provide for a variety of styles of appearance and behavior. When you are

designing your custom controls, you should enable programmers using your class to specify

the specific style of control at construction time. You should also provide functions to permit

them to change the control style after creation.

When you are encapsulating a Presentation Manager window class, you can usually determine

all the control styles by examining the values documented as valid input, via the style

argument on the WinCreateWindow call. For example, with WC_VALUESET, we see there are ten

VS_* style constants defined. These include VS_BITMAP, VS_ICON, VS_BORDER, VS_RIGHTTOLEFT,
and so forth.

You should define a nested Style bit mask class, and a set of static members corresponding to

each supported style attribute of your custom control class. You generate the nested Style
class declaration using the IBitFlag class and the macros defined in IBITFLAG.HPP . See

Chapter 26, “Data Types,” for a detailed description of the use of these macros.

In our ValueSet example, we generate the declaration of our nested Style class using the

macro invocation:

INESTEDBITFLAGCLASSDEF2(Style, ValueSet, IWindow, IControl);

In this example, we also declare that we wish to mix our styles with those defined for our base

classes IWindow and IControl . This is so you can also use the IWindow::visible and

IControl::tabStop styles with ValueSet objects.

We define the set of individual style attributes of a ValueSet as static data members of type

ValueSet::Style .

778 Power GUI Programming with VisualAge for C++

static const Style
 border,
 itemBorder,
 rightToLeft,
 scaleBitmaps,
 drawItem,
 classDefaultStyle;

We do not bother defining styles corresponding to VS_BITMAP, VS_ICON, and so on. The reason

is that these styles are really irrelevant when creating the value set. The individual value set

items can be of any type, regardless of the value set style, so we simply handle this attribute in

our ValueSet::Item class (which we describe below).

There is also a style value named classDefaultStyle . This is the style that describes the

default characteristics of a ValueSet the constructors will use, unless you provide an explicit

style when you create the value set object. ValueSet ’s default style is 0; none of the style

attributes is set. Here is the definition of these static members.

const ValueSet::Style
 ValueSet::border = VS_BORDER,
 ValueSet::itemBorder = VS_ITEMBORDER,
 ValueSet::rightToLeft = VS_RIGHTTOLEFT,
 ValueSet::scaleBitmaps = VS_SCALEBITMAPS,
 ValueSet::drawItem = VS_OWNERDRAW,
 ValueSet::classDefaultStyle = WS_VISIBLE;

In this example, we initialize our style values to the corresponding constant from the Devel-

oper’s Toolkit for OS/2. This simplifies the implementation of ValueSet , because we don’t

have to convert ValueSet::Style values to the equivalent unsigned long value when passing

them to the Presentation Manager. For example, we pass the argument style passed to the

ValueSet constructors straight through as an unsigned long to IWindow::create .

The User Interface Library provides flexibility regarding default styles. To be consistent with

the rest of the library, you should provide static functions in your custom control class to get

and set the user’s choice of what the default style should really be. These functions usually

look like the following.

static Style
 defaultStyle();
static void
 setDefaultStyle(const Style &style);

To implement this default style support, you simply need to do the following.

• Define a private static data member to hold the user’s choice for default style.

 private:
 static Style
 dfltStyle;

• Initialize this to the value defined by the classDefaultStyle data member.

 ValueSet::Style
 ValueSet::dfltStyle = WS_VISIBLE;

• Implement the static functions to get and set this static data member.

 ValueSet::Style ValueSet :: defaultStyle ()
 {
 return ValueSet::dfltStyle;
 }

779Chapter 30 Custom Controls and Handlers

 void ValueSet :: setDefaultStyle (const Style &style)
 {
 ValueSet::dfltStyle = style;
 }

Typically, your custom control class will need to provide a member function to test each style

attribute, and two member functions to turn a given attribute on and off. For example, the

ValueSet class provides these functions to manage the VS_BORDER style.

Boolean
 hasBorder () const;

ValueSet
 &enableBorder (Boolean flag = true),
 &disableBorder ();

The User Interface Library convention is to provide two style-setting functions for each

attribute, one to turn the attribute on—but accepting an optional Boolean argument to turn it

off—and one to turn it off. This permits you to replace:

if (needsBorder)
 aValueSet.enableBorder();
else
 aValueSet.disableBorder();

with a simpler version:

aValueSet.enableBorder(needsBorder);

Below is the implementation of the three ValueSet::border style manipulation functions.

Boolean ValueSet :: hasBorder () const
 {
 return this->style() & VS_BORDER;
 }

ValueSet &ValueSet :: enableBorder (Boolean flag)
 {
 if (flag)
 this->setStyle(this->style() | VS_BORDER);
 else
 this->setStyle(this->style() & ~VS_BORDER);
 return *this;
 }

ValueSet &ValueSet :: disableBorder ()
 {
 return this->enableBorder(false);
 }

Standard Member Functions
It happens that most of the virtual functions defined for IControl and IWindow objects can be

applied to objects of any derived class without any difficulty. As a result, you usually do not

need to override any IWindow or IControl virtual functions in your custom control classes.

The User Interface Library design does impose a small number of simple requirements your

custom control class must meet to be fully integrated into the library. As the designer of a

custom control class, you should make sure you address each of these issues and provide the

appropriate level of support in your custom control.

780 Power GUI Programming with VisualAge for C++

Table 30-1. Value Set Color Areas

Color Area Description

borders This is the color used to paint the value set borders. It corresponds to the

presentation parameter with code PP_BORDERCOLOR.

foreground This is the color used to paint the foreground for text items. It corresponds

to the presentation parameter with code PP_FOREGROUNDCOLOR.

background This is the color used to paint the value set background for text, icon, and

empty items. It corresponds to the presentation parameter with code

PP_BACKGROUNDCOLOR.

highlightBackground This is the color used to paint the selection emphasis around the selected

value set item. It corresponds to the presentation parameter with code

PP_HILITEBACKGROUNDCOLOR.

Color Support

The User Interface Library provides full support for controlling the colors that the Presen-

tation Manager uses to draw controls. You should provide the same level of support in your

custom control classes.

The design strategy for manipulating window colors is to define the set of color areas, using a

ColorArea enumeration that the control supports, and define the member functions to query,

and set, the colors to be used to draw these areas. The color areas are the unique visual

elements of the control. For the value set controls, the WC_VALUESET window class dictates

these color areas found in Table 30-1.

The declaration of the ValueSet::ColorArea enumeration is as follows.

enum ColorArea
 {
 borders,
 foreground,
 background,
 hightlightBackground
 };

Once you have defined your control’s color areas, you can add the member functions to query

and set the colors to be used to draw these areas. These functions are essentially the same in

each control class; they simply use the ColorArea enumeration appropriate to the class. Here

are the declarations of these functions for ValueSet .

virtual IColor
 color (ColorArea area) const;

virtual ValueSet
 &setColor (ColorArea area,
 const IColor &color);

781Chapter 30 Custom Controls and Handlers

You implement these functions by translating the enumeration values to the appropriate PP_*
index, and then calling the base IWindow function that accepts these indices as argument. In

this example, there are of course PP_* values corresponding to each color area. If your custom

control has unique color areas, then you would reuse a PP_* index that is not otherwise appli-

cable to your control.

IColor ValueSet :: color (ColorArea area) const
 {
 unsigned long
 colorArea;
 IGUIColor
 defaultColor(IGUIColor::windowBgnd);
 switch (area)
 {
 case borders:
 colorArea = PP_BORDERCOLOR;
 defaultColor = IGUIColor::frameBorder;
 break;
 case foreground:
 colorArea = PP_FOREGROUNDCOLOR;
 defaultColor = IGUIColor::windowText;
 break;
 case background:
 colorArea = PP_BACKGROUNDCOLOR;
 defaultColor = IGUIColor::windowBgnd;
 break;
 case highlightBackground:
 colorArea = PP_HILITEBACKGROUNDCOLOR;
 defaultColor = IGUIColor::hiliteBgnd;
 break;
 }
 return IWindow::color(colorArea, defaultColor);
 }

ValueSet &ValueSet :: setColor (ColorArea area ,
 const IColor &colo r)
 {
 unsigned long
 colorArea;
 switch (area)
 {
 case borders:
 colorArea = PP_BORDERCOLOR;
 break;
 case foreground:
 colorArea = PP_FOREGROUNDCOLOR;
 break;
 case background:
 colorArea = PP_BACKGROUNDCOLOR;
 break;
 case highlightBackground:
 colorArea = PP_HILITEBACKGROUNDCOLOR;
 break;
 }
 IWindow::setColor(colorArea, color);
 return *this;
 }

Calculating Minimum Size

The User Interface Library canvas classes’ layout strategies require information about the

minimum size of their child controls. If you want these canvasses to work effectively with

your custom controls, then you must override the calcMinimumSize virtual member function in

782 Power GUI Programming with VisualAge for C++

your custom control class. This function returns an ISize object that describes the minimize

size at which your control can still manage to effectively display its contents.

Fortunately, your calcMinimumSize function does not have to provide a precise answer. A

reasonable estimate, erring on the conservative side, is generally good enough. You can get a

feel for how to implement this function, for your custom controls, by looking at the imple-

mentation of ValueSet::calcMinimumSize .

ISize ValueSet :: calcMinimumSize () const
 {
 ISize
 dim = dimensions();
 // Find widest and tallest items...
 unsigned
 widest = 0,
 tallest = 0;
 for (unsigned row = 0; row < dim.height(); row++)
 for (unsigned col = 0; col < dim.width(); col+ +)
 {
 Item
 cell = item(row+1, col+1);
 ISize
 size;
 switch (cell.itemType)
 {
 case ValueSet::Item::emptyItem:
 // Empty items must be at least 2x2.
 size = ISize(2, 2);
 break;
 case ValueSet::Item::colorItem:
 // We'll make color items at least 5x5.
 size = ISize(5, 5);
 break;
 case ValueSet::Item::bitmapItem:
 // We'll make bitmap items at least 50x50 .
 size = ISize(50, 50);
 break;
 case ValueSet::Item::iconItem:
 // We'll make icon items at least 32x32.
 size = ISize(32, 32);
 break;
 case ValueSet::Item::textItem:
 // We'll make text items avg char size * text length.
 size = ((ValueSet*)this)->characterSize()
 .scaledBy(cell.text().length(), 1);
 break;
 }
 // Update maximums if this item is bigger...
 if (size.width() > widest)
 widest = size.width();
 if (size.height() > tallest)
 tallest = size.height();
 }
 // Calculate size that will hold all items + 12 f or border.
 ISize
 min = ISize(widest * dim.width() + 12,
 tallest * dim.height() + 12);
 ISize
 space = itemSpacing();
 // Add horizontal space, including 7 for border/h ighlighting.
 if (dim.width() > 1)
 min.setWidth(min.width()
 +
 (dim.width()-1)*(space.width() + 7));

783Chapter 30 Custom Controls and Handlers

 // Add vertical space, including 7 for border/hig hlighting.
 if (dim.height() > 1)
 min.setHeight(min.height()
 +
 (dim.height()-1)*(space.height() + 7));
 return min;
 }

Since all items in the value set must be the same size, we make the item size big enough for

both the widest and tallest items. We then calculate the minimum size for the entire value

from that item size. We also allow for the spacing between items and some room for the border

around the outside of the value set.

There is plenty of room for subjectivity in this minimum-size calculation. We let bitmap items

be sized to (50,50) which is much smaller than most bitmaps. We also presume all icons can fit

within an item sized at (32,32). This function calculates the size of text items using the size of

average characters rather than the actual characters in the item text. However, the margin of

error, resulting from all these approximations, is negligible. You should only invest as little

time and energy into the design of your calcMinimumSize functions as is necessary to get the

precision required for your application’s needs.

If the size calculated by this function is wrong, then you can always call setMinimumSize to set

the minimum size of the control to some specific value. calcMinimumSize will not be called if

you have set an explicit size by calling setMinimumSize . See Chapter 15, “Canvases,” for

more information about canvas layout.

Notifying Canvases When Minimum Size Changes

Supplying an appropriate calcMinimumSize function, so a canvas can properly lay out its

children, if one of them is one of your custom controls, is only half the battle. You need to

notify the canvas to update the layout of its children, when the minimum size of your custom

control has changed. You do so by calling the setLayoutDistored function with the

minimumSizeChanged flag on. Here is one example from the implementation of the sample

ValueSet control.

ValueSet &ValueSet :: setDimensions (const ISize & dimensions)
 {
 IString
 ctlData = ValueSet::controlData(dimensions);
 WNDPARAMS
 parms = { WPM_CTLDATA,
 0,
 0,
 0,
 0,
 0,
 (char*)ctlData };
 if (sendEvent(WM_SETWINDOWPARAMS, &parms) == 0)
 ITHROWGUIERROR("WM_SETWINDOWPARAMS");
 else
 setLayoutDistorted(minimumSizeChanged, 0);
 return *this;
 }

784 Power GUI Programming with VisualAge for C++

Table 30-2. Value Set Functions

Message Member Functions

Value Set Dimension
WM_QUERYWINDOWPARAMS dimensions

numberOfRows
numberOfColumns

WM_SETWINDOWPARAMS setDimensions

VM_QUERYMETRICS itemSize
itemSpacing

VM_SETMETRICS setItemSize
setItemSpacing

Value Set Selection

VM_QUERYSELECTED hasSelection
selection
selectedItem
selectedRow
selectedColumn

VM_SELECTITEM setSelection

Value Set Item Manipulation

VM_QUERYITEM item

VM_SETITEM setItem
setItemContents

VM_QUERYITEMATTR item

VM_SETITEMATTR setItem
setItemContents
setItemStyle

Custom Control Functions
In addition to the standard functions all controls must provide, your custom controls will likely

have another set of member functions that provide services unique to your control. We will not

try to tell you how to design custom controls. Instead, we presume you have designed your

custom control so it is implemented via a Presentation Manager window procedure. We will

describe how to encapsulate the functions supported by those windows in your custom control

C++ class.

The value set control provides a good example of how to accomplish this task. To determine

what member functions our ValueSet class should provide, we simply look at the set of

Presentation Manager events a WC_VALUESET window supports. After just a little bit of

analysis, we can come up with the following functions, which we group into three categories

found in Table 30-2. For each of these events, we define one or more member functions of our

ValueSet class to provide you access to the service from C++.

The design and implementation of the functions in the first two categories is straightforward.

The arguments for each function correspond to the event parameters on the associated Presen-

tation Manager window event. The return value from the member function matches the event

result. The following example shows this mapping. It gives the implementation of the

dimensions and setDimensions member functions of ValueSet .

785Chapter 30 Custom Controls and Handlers

ISize ValueSet :: dimensions () const
 {
 ISize
 result;
 IString
 ctlData = ValueSet::controlData(ISize(0, 0));
 WNDPARAMS
 parms = { WPM_CTLDATA,
 0,
 0,
 0,
 0,
 ((VSCDATA*)(char*)ctlData)->cbSize,
 (char*)ctlData };
 if (sendEvent(WM_QUERYWINDOWPARAMS, &parms) != 0)
 {
 VSCDATA
 p = (VSCDATA)(parms.pCtlData);
 result = ISize(p->usColumnCount, p->usRowCount);
 }
 else
 ITHROWGUIERROR("WM_QUERYWINDOWPARAMS");
 return result;
 }

ValueSet &ValueSet :: setDimensions (const ISize & dimensions)
 {
 IString
 ctlData = ValueSet::controlData(dimensions);
 WNDPARAMS
 parms = { WPM_CTLDATA,
 0,
 0,
 0,
 0,
 0,
 (char*)ctlData };
 if (sendEvent(WM_SETWINDOWPARAMS, &parms) == 0)
 ITHROWGUIERROR("WM_SETWINDOWPARAMS");
 return *this;
 }

In addition to the basic support for the various Presentation Manager events, you should apply

conventional C++ class library design techniques to make programming your custom controls

easier. As an example, we have added an additional hasSelection member function to our

ValueSet control. This function returns a Boolean indicator of whether the value set has a

currently selected item. Users can call this function instead of using the basic selection
function, and testing its return value to see if it equals IPoint(0,0) . You should also use

overloading and default arguments, where applicable, to simplify use of your custom control

class.

ValueSet ’s item query and set functions are a little more complicated. One objective of

encapsulating windows as C++ objects is to raise the level of abstraction. This requires us to

combine sets of related data to form objects, and, when necessary, we give these objects

functionality you can apply to the data. For our ValueSet control, we combine the separate

item content and item attribute characteristics, which the Presentation Manager control

supports, into the nested class ValueSet::Item .

As a consequence of the additional abstraction, provided by the ValueSet::Item class, the

ValueSet member functions that manipulate items do not match the Presentation Manager

events quite as closely as do the simpler ValueSet functions. For example, the setItem

786 Power GUI Programming with VisualAge for C++

member function will set both the item contents and the item style. The various setContents
member functions take care of resetting the item attribute. The attribute must first be set to

indicate the type of contents we will assign.

Below is the implementation of the ValueSet functions, which set the contents of an item to a

bitmap loaded from a resource file. You should be able to see the value provided by the C++

wrapper as compared to programming the equivalent operation in plain Presentation Manager

functions:

ValueSet
 &ValueSet :: setItemContents (unsigned long row,
 unsigned long column,
 const IResourceId & resId,
 ItemType type)
 {
 const IResourceLibrary
 &resLib = resId.resourceLibrary();
 switch (type)
 {
 case bitmapItem:
 setItemContents(row,
 column,
 resLib.loadBitmap(resId.id()));
 break;
 case iconItem:
 setItemContents(row,
 column,
 resLib.loadIcon(resId.id()));
 break;
 case textItem:
 setItemContents(row,
 column,
 resLib.loadString(resId.id()));
 break;
 }
 return *this;
 }

ValueSet
 &ValueSet :: setItemContents (unsigned long row,
 unsigned long colum n,
 const IBitmapHandle &bmp)
 {
 setItemAttributes(row,
 column,
 IEventParameter2(VIA_BITMAP, true));
 setItem(row,
 column,
 IEventParameter2(bmp));
 return *this;
 }

void ValueSet :: setItemAttributes
 (unsigned long row,
 unsigned long column ,
 const IEventParameter2 &attr)
 {
 IEventParameter1
 coord(row, column);
 if (sendEvent(VM_SETITEMATTR,
 coord,
 attr) == 0)
 ITHROWGUIERROR("VM_SETITEMATTR");
 }

787Chapter 30 Custom Controls and Handlers

void ValueSet :: setItem (unsigned long row,
 unsigned long column,
 const IEventParameter2 & contents)
 {
 IEventParameter1
 coord(row, column);
 if (sendEvent(VM_SETITEM,
 coord,
 contents) == 0)
 ITHROWGUIERROR("VM_SETITEM");
 }

All this implementation code is necessary to enable you to use ValueSet controls more

conveniently. It permits you to set a bitmap using the simple statement:

valueSet.setItemContents(BITMAP_ID, ValueSet::bitm apItem);

As a user, you would not have to know how the value set accomplishes this simple request.

Custom Handlers
Custom controls will typically send a set of control-specific notification events in response to

user input such as mouse clicks, key presses, and so on. This section will describe how you

design and implement custom handler and event classes to encapsulate those notification

events and the processing of them. Programmers can then derive from these custom handler

classes, override virtual functions, and process the custom control events to tailor use of the

customer controls for their applications.

The first step in designing the custom handlers and events for your custom control windows, is

to analyze the set of owner notification messages that the control broadcasts. After this

analysis, you should be able to place each event into one of two categories.

• Notification events that are identical, or at least very similar, to similar events, which

occur for other controls.

• Notification events specific to your custom control.

Events falling into the first category should be dealt with by extending the existing handler

and event classes, which already encapsulate those events for the existing controls. The

second set will require you to derive a new class from IHandler and also derive one, or more,

new class(es) from IEvent .

Let us look at the value set control messages and perform the preliminary analysis of its

notification events. We will arrive at a set of handler and event classes that will permit you to

tailor the handling of these events. There are ten separate notification events that a value set

issues. However, half of these deal with direct manipulation. We will cover those in

Chapter 21, “Direct Manipulation.” Table 30-3 lists five events, based on the notifyCode
parameter of the WM_CONTROL event, which apply to value set controls.

It happens that we do not need special handler or event classes for any of these events, except

for the VN_HELP notification event. Even though the User Interface Library does not provide

its own value set control class, its ISelectHandler and IFocusHandler objects properly detect

and process the select, enter, and focus change notification events. If you attach one of these

handlers to a value set control window, you can process these events.

788 Power GUI Programming with VisualAge for C++

Table 30-3. Value Set Notification Events

Notify Code Description
VN_ENTER

The user has pressed the Enter key while the value set had the input focus.

VN_SELECT
The user has selected one of the value set items.

VN_KILLFOCUS
The user has switched the input focus from the value set to another window.

VN_SETFOCUS The user has switched the input focus to the value set from another window.

VN_HELP
The user has pressed the Help key (F1) while the value set had the input focus.

We do need to design a handler to enable you to process help notification events. Writing a

custom handler to process some set of events involves the following steps.

• Deriving from the appropriate IHandler base class. Usually, you derive straight

from IHandler . In this example, we will create a ValueSetHandler class with IHandler
as a public base class.

• Add an overloaded version of startHandlingEventsFor that accepts as argument a

reference to the type of control to which your handler can be attached. In addition, you

should override the generic version of the function, which attaches the handler to a

generic IWindow , to disable it. We make this function private in our ValueSetHandler
class, to make it even harder for somebody to attach our handler to something other than

a ValueSet control.

• For convenience, we also add a constructor that takes a ValueSet as argument. Since the

most common use of a ValueSetHandler is for you to create one, and immediately attach

it to a ValueSet , this constructor makes it possible to do both of those things in one step.

• Provide virtual functions for each event to be handled. When programmers wish to

implement their application-specific event handling, they simply override these

functions.

• Most importantly, you must override the dispatchHandlerEvent function to detect when

the events of interest occur. The implementation of this function will look a lot like a

conventional Presentation Manager window procedure. You switch on the event identi-

fier, and the notification code, if it is a WM_CONTROL owner notification event. In each

case statement, you create a more specific type of event and dispatch the appropriate

virtual function. Custom events will be discussed in more detail later.

Even though you can handle most of the value set notification events using standard User

Interface Library handlers, we still add support for the complete set of value set notification

events to ValueSetHandler . There are two reasons for this.

First, programmers will generally produce two kinds of handlers. They will build general

purpose ones, which work for many different kinds of controls. The User Interface Library

direct manipulation handlers are examples of these. They also will build custom controls

using just C++ to provide all the tailoring in a single handler. To facilitate development of

specialized value sets, we let you handle all the value set notifications in one place.

789Chapter 30 Custom Controls and Handlers

Secondly, there are often subtle differences between notification events, depending on their

source. For example, the value set’s “enter” and “select” events both provide the row and

column of the selected item in the second event parameter. The only way you can obtain these

from the generic IControlEvent object in the generic enter , or selected handler functions, is

to extract this parameter as an unsigned long and extract the values from it. We can do better

in a ValueSetEvent class by adding explicit row and column member functions. To put these

events to any use, requires us to create ValueSetEvent s and provide overloaded versions of

enter and selected , which get a ValueSetEvent as argument.

So, our ValueSetHandler class has five virtual functions corresponding to the five (non-

drag/drop) value set owner notification events.

Custom Events
Now we will discuss those events themselves in a little more detail. All event classes are,

essentially, wrappers for the five pieces of data that make up a User Interface Library event.

They are:

• A source window handle. This data can be translated to a generic IWindow pointer.

• An event identifier.

• Two message parameters; the value and meaning of which depend on the specific event.

These simply are unsigned long s (or void * pointers) by default.

• The event result to be passed back to the sender of the event.

Since these comprise the state data of all event objects, a generic IEvent can be used to

represent any event. Generally, you will want to create derived IEvent classes, whenever you

need to make it easier to translate the generic event attributes into something more

meaningful. For our value set custom control, we create an enhanced ValueSetEvent class

that:

• Returns the control window pointer as type ValueSet* .

• Translates the second event parameter as row and column number.

The code listing at the end of this chapter has the full declaration of our ValueSetHandler and

ValueSetEvent classes.

Event Results

While it does not come up in the implementation of the sample ValueSet custom control, there

are some additional issues you should be aware when dealing with the result value associated

with the handling of certain events.

Some Presentation Manager events require the handler of the event return a result. In terms of

the User Interface Library, this means the handler that processes the event must set the result

attribute of the IEvent object, which gets passed to the handler’s dispatchHandlerEvent
function. This imposes two requirements on your custom handler and event classes.

790 Power GUI Programming with VisualAge for C++

First, you should provide specialized functions to set the event attribute of your custom event

classes. While a programmer can always call the generic setResult function declared in

IEvent , its function doesn’t provide any clues as to whether or not they must call it, or indicate

what value the result should be set to. As an example, if we were to define a

ValueSetDrawEvent class, to represent owner draw events for value sets, we would have the

class provide functions like:

Boolean
 hasItemBeenDrawn () const;
ValueSetDrawEvent
 &itemDrawn (Boolean drawn = true);

Second, as we saw in this chapter, you handle most events in an overridden virtual function,

which the handler’s dispatchHandlerEvent calls. The usual scenario has the form:

...
case WM_DRAWITEM:
 {
 // Construct specialized event from generic one a nd
 // dispatch handler function:
 ValueSetDrawEvent
 customEvent(event);
 this -> draw(customEvent);
 break;
 }
...

In this example, ValueSetDrawEvent is the custom event class and draw is the handler virtual

function that processes the event.

So what if we override draw and draw the item? Somehow, we need this fact to get back to the

other handlers in the chain, and back to the Presentation Manager value set itself, so they know

not to draw it. The first step is to add the itemDrawn function to the event—as we described

above—and to call that function when you draw the item. However, more needs to be done.

The above code cannot work, as it discards any result you might have placed in the

ValueSetDrawEvent .

The solution is to transfer the event result back to the generic IEvent object, which the User

Interface Library passed to dispatchHandlerEvent . This requires a single line of code to

assign to the generic event result, after processing the specialized event.

...
this -> draw(customEvent);
event.setResult(customEvent.result);
...

Summary
This chapter has described the process you use to incorporate custom controls into the User

Interface Library. The basic steps are:

791Chapter 30 Custom Controls and Handlers

Table 30-4. Value Set Components

Component Example Location

ValueSet Interface extlib\valueset\valueset.hpp

ValueSet Implementation extlib\valueset\valueset.cpp

ValueSetHandler Interface extlib\valueset\vsethdr.hpp

ValueSetHandler Implementation extlib\valueset\vsethdr.cpp

ValueSetEvent Interface extlib\valueset\vsetevt.hpp

ValueSetEvent Implementation extlib\valueset\vsetevt.cpp

ValueSet Test Program extlib\valueset\testvset.cpp

• To create a new class somewhere in the window class hierarchy, usually derived directly

from IControl . Your custom control class should provide:

- Constructors that permit new custom control windows to be created, and existing

windows to be encapsulated as C++ objects.

- A nested Style class to describe the style attributes of your custom control

windows, and a set of member functions to allow a programmer to query and set

the various attributes.

- A ColorArea enumeration, which defines the various drawing components of your

control, and member functions color and setColor to get and set the colors used

to draw these components.

- An override of the calcMinimumSize function, which calculates the minimum size

your control needs to display its contents.

- Member functions corresponding to the set of additional Presentation Manager

window events to which your custom controls respond.

• A custom handler class derived from IHandler , which handles the owner notification

events your control generates. The handler will invoke separate virtual handler

functions for each event.

• One or more custom event classes to encapsulate any special event parameters, or

results, which your control’s notification events require.

The complete definition of the classes that implement the value set control, and a test program,

are contained on the example program disk. Table 30-4 indicates the location of the value set

components, after you install these programs.

792 Power GUI Programming with VisualAge for C++

